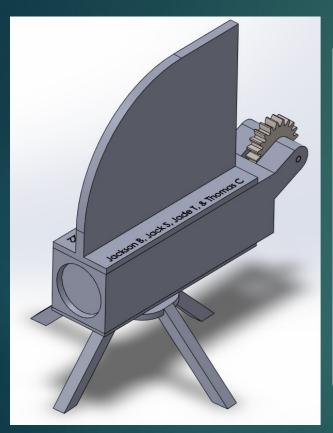
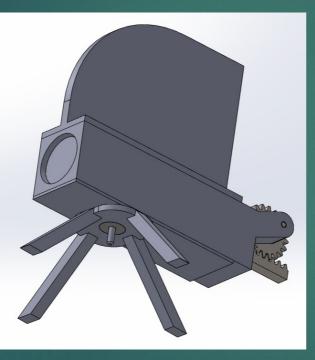
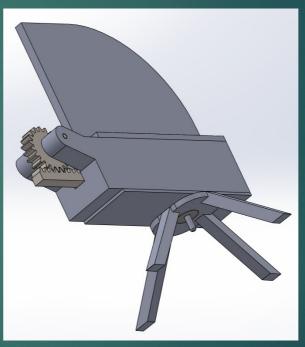
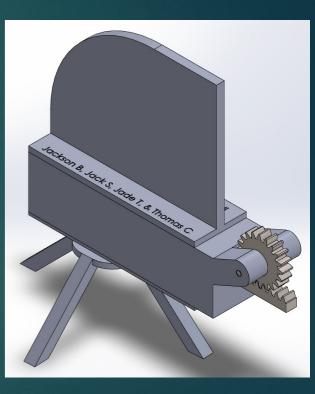
Mechanical Anemometer for Rover

PROJECT TEAM 20

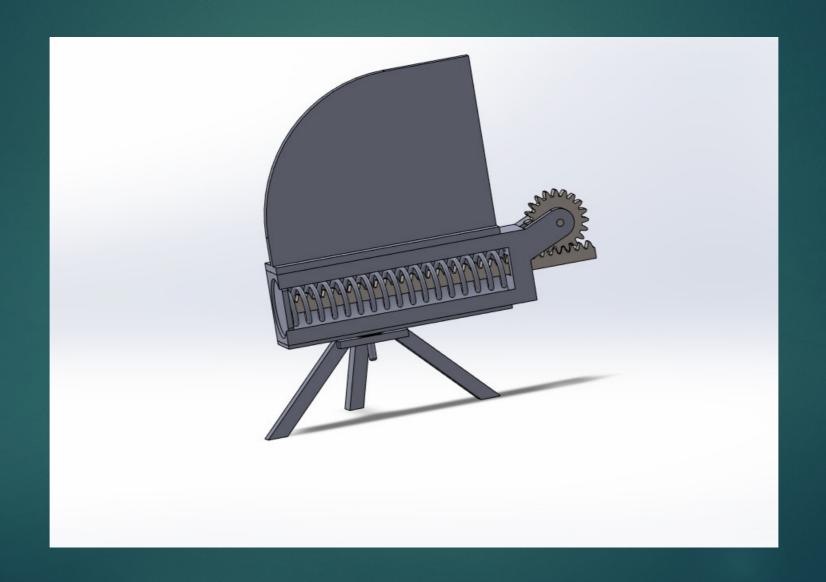

JACK SOWELL, JACKSON BURNETT, JADE THOMAS, THOMAS CICATIELLO


What drove the design effort?


The customer needs that drove the design effort were that:


- The machine must be able to accurately measure wind speed.
- The machine must be able to report the measured wind speed.
- The machine must not interfere with other components on the rover.
- The machine must be able to withstand high wind speeds.
- The machine must be able to withstand dust and debris.
- > The machine must be able to withstand extreme temperatures.
- > The machine must be able to **power itself using only the environment.**
- > The machine must be cost-efficient.
- > The machine must be sustainable.
- The machine must be able to operate without human input.
- > The machine must be durable for the entire lifespan of the rover.

Complete CAD Assembly



Product Animation

Estimated Cost of the Product

Quantity	Part Name	Material	Source	Estimated Cost (For One Part)
One	Spring	Stainless 302 ASTM A313	Acxess Spring	\$13.00
One	Pressure Plate	Steel 1018	Xometry	\$212.28
One	Rack	1018 Carbon Steel	McMaster-Carr	\$30.31
One	Pinion Gear	1144 Carbon Steel	McMaster-Carr	\$29.94
One	Housing	Stainless Steel 303	Xometry	\$627.76
One	Fin	Stainless Steel 304	Xometry	\$320.40
One	Ball Bearing	Steel	McMaster-Carr	\$7.03
One	Base Plate	Sheet Stainless Steel 304	Xometry	\$162.25

Total Estimated Cost: \$1,402.97

NOTE: The product would likely not actually cost this much to produce. Some of these numbers were gotten from the Xometry website which gives a high estimate based on CNC machined parts. We expect the actual cost to be lower.

Why this design deserves to be funded for further development!

Simplicity

▶ This design is not flashy, but it gets the job done. It was designed to be as cheap and easy to build at possible.

Low Number of Parts

- ▶ With few parts, this device can be assembled quickly and easily, which can be useful if it were to be mass produced.
- ▶ Fewer parts also means that there are fewer points of failure in the device, increasing its predicted lifespan.

Durable

With few parts, and the functional ones being enclosed, this device can withstand extreme weather with ease.

Low Cost

▶ This design only has two custom-made parts, the rest of the parts can be bought from manufacturers.

► Fully Autonomous

▶ This device can function on its own with no human interaction.