

Identifying patterns of attention to screen media in typically developing infants

Cole Kaufmann, Elena Luchkina, & Elizabeth Spelke

Harvard Laboratory for Developmental Studies

Introduction

- Screen media become increasingly integrated into early learning.
- This is especially true for children with learning differences (e.g., ADHD, ASD).
- To benefit from screen media, children must be able to maintain attention on visual and auditory input from the screen.
- It is an open question how learning differences may interact with the attentional demands of learning from screens.
- Before addressing this open question, it is key to characterize normative patterns of variation in visual attention.
- Our goal in this investigation was to explore such patterns and identify factors that predict this variation.

Questions

- 1. How should attention to screen media be measured?
- 2. What predicts differences in attention to screen media in typically developing children?

Methods

- **Data source**: video recordings of 15-to-18-month-olds' looking behavior in a word learning study that used a looking-while-listening procedure (test trials only).
- **Demographic and language measures** (MCDI I) were collected in a parent survey (Table 1).
- $N_{\text{participants}}$ = 89, 2 trials per participant (N_{trials} =178).
- Attention measures: (1) number of gaze shifts from one visual stimulus to another; (2) number of off-screen gaze shifts.
- **Principal Component Analysis** (with R functions *prcomp* and *PCAtest*) identified the axes of the largest variation in the data and tested their significance.
- Exploratory linear regression analysis evaluated the contribution of principle components to infants' attention.

Conclusion

- Children's sustained attention to the screen, rather than their gaze shifts among the stimuli, is predicted by language and SES.
- Language competency has the largest effect on attention to the screen in children from a lower-SES background.
- Limitations: (1) the SES in the sample is skewed towards the higher end; more work is needed to generalize these findings beyond our sample; (2) this investigation is exploratory, future work will conduct hypothesis testing.

Results

• PCA identified two significant principal components (Table 2).

39 (2)

34 (15)

2 (0.3)

34 (5)

3% 19%

2%

64%

1%

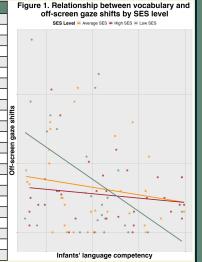
32%

24%

22%

11%

1%


2-vear college degree

Other Country

- Gaze shifts among images (M=6.3, SD=3.5) were not predicted by either component.
- Off-screen shifts (M=3.3, SD=3.2)
 were predicted by the language
 component, SES component, and
 their interaction (Fig. 1, Table 3).

Table 3. Regression coefficients; DV: off-screen gaze shifts				
	Estimate	SE	T- value	P-value
(Intercept)	9.96	1.92	5.18	<.001 ***
Language	-6.7	2.23	-3.09	.003 **
SES	-5.17	1.83	-2.83	.006 **
Language*SES	4.87	2.06	2.37	.02 *

Table 2. PCA Factor Loadings Gestational age, weeks 0.44 0.04 0.93 * 0.03 MCDI: Adjectives MCDI: Total Vocabulary 0.96 * 0.03 -0.17 0.03 0.12 arent's Age Parent's Education 0.07 0.68 * -0.01 0.4 Northeastern States -0.32 0.13 0.48 0.17 -0.32 -0.54 * 0.15 Another Ethnicity

Future work: Clinical Extension


- We aim to identify risk and protective factors of learning from screen media among children with ADHD and ASD.
- The double dissociation between ADHD and ASD (language and attention deficits) is instrumental in exploring factors predicting success in learning from screens among clinical populations.
- It is key that all children in the sample are recruited from the same SES pool to ensure that any observed differences are attributable to diagnoses and not SES.

Table 1. Descriptive Statistics			
	Variable	M (SD)	
	Child age, days	492 (24)	
	Gestational age, weeks	39 (2)	
	Foreign lang. exposure	8% (15%)	
	MCDI: Nouns	34 (15)	
	MCDI: Verbs	5(3)	
	MCDI: Adjectives	2 (2)	
	MCDI: Total Vocabulary	47 (22)	
0	Number of Children	2 (1)	
	Number of Parents	2 (0.3)	
	Parent's Age, years	34 (5)	
	Income	\$137K (\$63K)	
	Variable	Percentage	
Child's say	Female	53%	
Child's sex	Male	47%	
	2-year college degree	3%	
Parent's	4-year college degree	19%	
education	Graduate degree	2%	
education	Professional degree	64%	
	Some college	1%	
Country	Other Country	17%	
Country	United States	83%	
	Midwest States	32%	
LIS Pogion	Northeast States	24%	
US Region	Southern States	22%	
	West States	22%	
	Hispanic or Latino	11%	
	African American	8%	
Ethnicity	Native American	1%	
Ethnicity	White	80%	
	Asian	19%	
	Another Ethnicity	1%	

Table 2. PCA Factor Loadings			
Variable	PC1: Language	PC2: SES	
Child age, days	0.1	0.11	
Gestational age, weeks	0.12	-0.13	
Foreign lang. exposure	0	0.44	
MCDI: Nouns	0.93 *	0.04	
MCDI: Verbs	0.93 *	0.03	
MCDI: Adjectives	0.88 *	-0.04	
MCDI: Total Vocabulary	0.96 *	0.03	
Number of Children	0.01	-0.17	
Number of Parents	0.03	0.12	
Parent's Age	0.05	0.52	
Parent's Education	0.07	0.46	
Income	0.02	0.68 *	
Northeastern States	-0.01	0.4	
Southern States	-0.16	-0.42	
Midwest States	0.13	-0.32	
Overseas States	0.01	0.48	
Hispanic or Latino	-0.32	0.17	
African American	0.14	-0.54 *	
Native American	0.13	0	
White	0.03	0.25	
Asian	0.15	-0.14	
Another Ethnicity	-0.13	-0.15	

Table 3. Regression coefficients; DV: off-screen gaze shifts				
	Estimate	SE	<i>T</i> - value	<i>P</i> -value
(Intercept)	9.96	1.92	5.18	<.001 ***
Language	-6.7	2.23	-3.09	.003 **
SES	-5.17	1.83	-2.83	.006 **
Language*SES	4.87	2.06	2.37	.02 *

Figure 1. Relationship between vocabulary and off-screen gaze shifts by SES level

Identifying patterns of attention to screen media in typically developing infants

Cole Kaufmann, Elena Luchkina, & Elizabeth Spelke

Harvard Laboratory for Developmental Studies

Introduction

- Screen media become increasingly integrated into early learning.
- This is especially true for children with learning differences (e.g., ADHD, ASD).
- To benefit from screen media, children must be able to maintain attention on visual and auditory input from the screen.
- It is an open question how learning differences may interact with the attentional demands of learning from screens.
- Before addressing this open question, it is key to characterize normative patterns of variation in visual attention.
- Our goal in this investigation was to explore such patterns and identify factors that predict this variation.

Questions

- 1. How should attention to screen media be measured?
- 2. What predicts differences in attention to screen media in typically developing children?

Methods

- **Data source**: video recordings of 15-to-18-month-olds' looking behavior in a word learning study that used a looking-while-listening procedure (test trials only).
- **Demographic and language measures** (MCDI I) were collected in a parent survey (Table 1).
- $N_{\text{participants}}$ = 89, 2 trials per participant (N_{trials} =178).
- Attention measures: (1) number of gaze shifts from one visual stimulus to another; (2) number of off-screen gaze shifts.
- **Principal Component Analysis** (with R functions *prcomp* and *PCAtest*) identified the axes of the largest variation in the data and tested their significance.
- **Exploratory linear regression** analysis evaluated the contribution of principle components to infants' attention.

Conclusion

- Children's sustained attention to the screen, rather than their gaze shifts among the stimuli, is predicted by language and SES.
- Language competency has the largest effect on attention to the screen in children from a lower-SES background.
- Limitations: (1) the SES in the sample is skewed towards the higher end; more work is needed to generalize these findings beyond our sample; (2) this investigation is exploratory, future work will conduct hypothesis testing.

Results

• PCA identified two significant principal components (Table 2).

39 (2)

34 (15)

2 (0.3)

34 (5)

3% 19%

2%

64%

1%

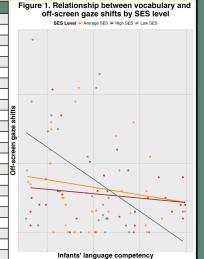
32%

24%

22%

11%

1%


2-vear college degree

Other Country

- Gaze shifts among images (M=6.3, SD=3.5) were not predicted by either component.
- Off-screen shifts (M=3.3, SD=3.2)
 were predicted by the language
 component, SES component, and
 their interaction (Fig. 1, Table 3).

Table 3. Regression coefficients; DV: off-screen gaze shifts				
	Estimate	SE	T- value	P-value
(Intercept)	9.96	1.92	5.18	<.001 ***
Language	-6.7	2.23	-3.09	.003 **
SES	-5.17	1.83	-2.83	.006 **
Language*SES	4.87	2.06	2.37	.02 *

Table 2. PCA Factor Loadings Gestational age, weeks 0.44 0.04 0.93 * 0.03 MCDI: Adjectives MCDI: Total Vocabulary 0.96 * 0.03 -0.17 0.03 0.12 arent's Age Parent's Education 0.07 0.68 * -0.01 0.4 Northeastern States -0.32 0.13 0.48 0.17 -0.32 -0.54 * Native American 0.15 Another Ethnicity

Future work: Clinical Extension

- We aim to identify risk and protective factors of learning from screen media among children with ADHD and ASD.
- The double dissociation between ADHD and ASD (language and attention deficits) is instrumental in exploring factors predicting success in learning from screens among clinical populations.
- It is key that all children in the sample are recruited from the same SES pool to ensure that any observed differences are attributable to diagnoses and not SES.