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Abstract 
 

This study investigates the performance metrics and computational tradeoffs of both classical 
and quantum convolutional neural networks (CNN) when given noisy input images as training 

data. The experiments aim to determine whether or not quantum CNNs are more robust to noisy 
data compared to their classical counterparts. The design of the experiment begins by generating 
artificial Gaussian noise onto the Fashion MNIST dataset, then comparing the accuracy and other 
performance metrics of each model two times: first with the clean dataset, then again when noise 

is added at a high severity. The results show promise that quantum CNNs are more robust to 
noisy and limited data, and that quantum machine learning techniques have the potential to 
match or possibly outperform the test accuracy of classical models once the limitations of 

quantum computing are solved.  
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1   Introduction  
​ Quantum computers are still in their developmental stages, but have already shown 
promising advantages over classical computers in certain tasks. The ability to implement 
principles of quantum physics, such as superposition and quantum entanglement, allow quantum 
computers to perform natural parallel processing and provide significant speedup for some 
algorithms. But these machines don’t always outperform conventional methods, which is why it 
is important to study the performance comparisons between quantum and classical computers 
during different tasks. A good starting point for this comparison is understanding the key 
differences between quantum and classical computing,  
 
​ Classical computers, like the ones we use in our everyday lives, operate using ‘bits’ 
which have a binary value of either 0 or 1. Quantum computers use quantum bits, or ‘qubits’, to 
perform computations; and they are able to hold a value of 0, 1, or both 0 and 1 at the same time 
due to superposition. This superposition is a fundamental principle of quantum physics, and it 
allows quantum computers to perform multiple computations at once by exploring multiple 
inputs/solutions simultaneously [1]. Qubits can also utilize quantum entanglement: if two qubits 
are entangled, the state of one qubit will directly affect the other any time it changes [2]. 
Between these two principles, quantum computers are able to perform parallel computations 
naturally as opposed to classical computers needing multiple processors or multithreading 
techniques. Quantum algorithms are created with circuits, where quantum gates are applied to 
qubits in order to rotate them and manipulate their quantum state to perform computations [1]. 
For convolutional neural networks (CNN), where the classical CNN uses convolution layers and 
pooling layers, a quantum CNN will implement those layers with quantum circuits. 
Parameterized quantum gates are used to build these circuits, and the parameters are able to be 
tuned to assist with minimizing the loss function for the model [3]. 
 

After understanding the potential power of quantum computers, it is clear that studying 
the best use cases for quantum computing is an important area of research. Finding the tasks in 
which they excel compared to conventional methods would provide valuable insights into the 
possibilities of advancement in the future. Other works have proven the potential for quantum 
algorithm supremacy over classical methods in tasks such as optimization, cryptography, and 
simulations that are too complex for classical computers to handle [1]. Some research has also 
been done to investigate the efficiency of quantum CNNs on image processing and pattern 
recognition tasks, and although there are some challenges, many benefits have been discovered. 
To begin the computations, classical data points must be encoded to qubits so they can be seen as 
quantum states. This encoding maps the data to a higher dimension in Hilbert space (where 
quantum computers can naturally operate), and allows quantum CNNs to find complex patterns 
within the data [13]. The convolution layer in quantum CNNs is very strong at determining 
patterns between data points that may not be detectable through classical algorithms. The 
convolution circuit works by coupling pairs of qubits through rotations and entanglement [3], 



which strongly correlates the data encoded into each qubit together. This allows the circuit to 
generate highly complex filters for feature extraction that would be impossible for classical 
convolution due to the utilization of quantum entanglement [11]. The pooling layer in quantum 
CNNs is important for reducing the computational complexity and cost of the circuit, by 
reducing the number of qubits on which we perform quantum gates [5]. For example, the 
information on two qubits could be pooled into one qubit while retaining the most important 
data, and therefore we would only need to perform gate operations on the one remaining qubit 
moving forward. This method effectively cuts the dimensionality of the circuit in half and 
reduces the number of parameters that the quantum CNN needs to learn on, which allows 
improved speed and cost efficiency [3]. One final benefit of quantum machine learning models is 
the ability to learn efficiently from small, sparse, or noisy training data. Related studies have 
shown that quantum based models were able to achieve similar or higher test accuracy than 
classical models when given less training data [16], and that the models were less likely to suffer 
from overfitting [13].  This high accuracy continued in experiments where the training data had 
some imperfections [11], demonstrating the potential for quantum computers to be more robust 
to noisy data.  

 
Other researchers have tested multiple architectures of quantum CNNs and hybrid 

quantum-classical CNNs to view performance comparisons on image processing tasks. Each 
study faced similar challenges during their research, mainly involving the hardware limitations 
of current developmental models of quantum computers. One of the biggest challenges at the 
moment is the amount of possible errors that can occur during computations, due to the difficulty 
of keeping qubits stable in their environment [4]. They are sensitive to many environmental 
factors such as temperature and frequencies that could affect the quantum state of the qubit 
during computations. There are fields of study dedicated to quantum error correction, but as of 
now it is still difficult to add more qubits into the current models of quantum computers and be 
able to error correct every qubit at once [4]. Code can be simulated on classical computers 
instead of run on quantum processors in an attempt to avoid errors, but the simulations may take 
much longer to run. Therefore many related studies have struggled to scale their experiments on 
quantum computers properly [11, 12, 14, 15], and their research has been limited by the amount 
of qubits currently available for computations. But regardless of these hardware limitations, 
many benefits have been observed during the experiments and the potential of utilizing quantum 
computers for machine learning tasks is clear. Across almost all of the related studies researchers 
have observed faster training times, more efficient model learning, enhanced hyperparameter 
tuning and quick convergence on higher test accuracy compared to classical CNN 
implementations for the same image classification task.   

 
In this paper, classical CNN models are compared to simple quantum CNNs, and 

performance metrics are computed for each implementation during two classification tasks. 
Gaussian noise is artificially added to the Fashion MNIST dataset from TensorFlow, where a 



script allows the generation of corruption at different levels of severity. All models are run twice 
for each implementation, starting with a clean dataset and then again with a high severity of 
corruption on the data. This allows a comparison between the original ability of each model to 
accurately classify the images, and the differences when the same model encounters very noisy 
input. A scaled down version of the images are used in the quantum CNN models due to the 
limitation of the number of qubits able to be simulated on classical machines. One classical 
implementation extracts features from the full size 28x28 pixel images, whereas the quantum 
models use 4x4 pixel images while still retaining the most important identifiers for classification. 
Two additional classical models also use the same 4x4 pixel images in order to perform a fair 
comparison. The quantum models are simulated through classical processors, and all models are 
run using the T4 GPU on Google Colab.  

 
The results of these code experiments show promise for the future of quantum machine 

learning once the development of these computers is complete. The quantum CNN model 
performing binary classification obtained similar or higher performance metrics in every 
category compared to its classical counterpart. When trained on the clean dataset the models 
performed similarly, but when the noisy dataset was introduced, the quantum model’s test 
accuracy only decreased by 3% whereas the classical model dropped by 11%. For the second 
experiment performing multiclass classification, again both the quantum and classical models 
performed similarly in all categories of performance metrics. The impact of noisy data caused 
the quantum CNN test accuracy to decrease by 9% and the classical CNN to decrease by 13%. 
Once the many limitations of quantum computing have been solved, there is a strong possibility 
that future work on more complex quantum models will show even better performance.  

​  
 

2   Related Works 
​ This section explores studies that investigate the performance of classical and quantum 
convolutional neural networks used for different image classification situations. These machine 
learning models are used in a variety of fields, for a variety of tasks, and each comes with its 
pros and cons. Some common issues arise throughout all the studies, which allow us to 
determine important factors to consider when doing a performance comparison. For example, 
issues that occurred during training of the model will have a direct impact on the accuracy of the 
classification task during testing, etc. Reviewing these related works gives a basis for factors that 
are considered in this study and experiments.  
 
2.1 Classical CNN (CCNN) 

Classical CNNs have already proven to fundamentally advance the field of machine 
learning, particularly in their ability to perform automatic feature extraction and efficient pattern 
recognition. Many studies have explored improvements in CNN architectures, optimization 
techniques, and methods of deep learning CNNs, which all contribute to the continual 



improvement of these model’s accuracy and efficiency. But there are also many limitations 
which are explored through research, where new methods aim to prevent issues like overfitting 
from occurring. Overfitting may happen if training of a model isn’t stopped at a certain point, 
and the model becomes too accustomed to the training data but is not able to accurately predict 
new data that it encounters. Especially with noisy input images [7], the model might learn based 
on the noise and overfit to only noisy inputs. On the other hand, CNN models can also underfit 
(not learning enough) while having weakly annotated training images that lack information about 
finding the object in the photo [7].  Limited or sparsely populated datasets can also cause 
underfitting, but this can be counteracted by using data augmentation methods to artificially 
increase the amount of training data [10]. One final issue to discuss is situations such as the 
Vanishing Gradient Problem, which occur as many hidden layers are added into the architecture, 
especially in deep learning. As the feature dimensions shrink after every layer of the CCNN, the 
weights begin to shrink and become so low that the model does not learn anymore. Without 
specific architectures and specific optimization techniques, issues like this may greatly affect the 
accuracy of a CCNN model [6].  
 

While there may be disadvantages to CCNNs, they have proven to be good for saving 
time on tasks that are usually performed manually by humans or by other machine learning 
models, for example in [8] and [10]. While using other machine learning models, doing manual 
feature extraction sometimes proves to be difficult because of other objects in the background of 
images, or effects from light/rain/other weather [10]. But the automatic feature extraction module 
in CCNNs has very advantageous results over the other machine learning methods. In order for a 
CNN model to learn faster, a method called transfer learning may be implemented. This allows 
researchers to use pre-trained weights on their model, providing a strong advantage in learning 
on a new dataset because of the model’s knowledge of a previously trained dataset [7].  Transfer 
learning is very helpful to train quicker, improve accuracy, and converge on optimal 
hyperparameter values faster [6]. But depending on the complexity of the dataset, there could be 
multiple thousands of hyperparameters to optimize! It has been shown in [9] that using 
Hyperparameter Importance Assessment methods on a CCNN model can lead researchers to save 
time during tuning and only focus on the parameters which affect the model most.  

 
In summary, there are many possible limitations of CCNNs such as overfitting or 

underfitting based on the quality of the training dataset, not having the correct architecture or 
optimizer for the model, and time constraints in tuning hyperparameters. Many researchers 
through the years have studied and created new methods to improve accuracy, efficiency, and 
speed of CCNNs. There are currently many great models of CCNNs and deep learning CNNs 
which help us perform tasks in a variety of fields. Table 1 provides an overview of some 
interesting papers that study classical CNNs, detailing the model architectures, dataset(s) used, 
results and issues that occurred during their research.  

 



Table 1. Overview of Classical CNN Related Works (* indicates public datasets) 

Reference 
Number 

Model 
Architecture  

Dataset(s) Results Issues/Limitations 

[6] VGG16, ResNet 
18, ResNet 34; 
with and without 
transfer learning 

SipakMed (pap 
smear) dataset* 

All CCNN models 
always performed 
better when using 
transfer learning  

Choice of optimizer 
significantly affects 
model performance 

[7] Hover-Net model 
with preactivated 
ResNet 50 

Simplified versions 
of MoNuSAC and 
PanNuke* 

Having a correctly 
annotated validation 
set is key to avoid 
overfitting  

Annotation noise or 
weakly annotated data 
could cause underfitting 
or overfitting  

[8] MobileNetV2 and 
VGG16 

Healthy/Defective 
Fruits dataset 

Multi-input 
architecture with both 
RGB and silhouette 
images had best test 
accuracy 

Segmentation errors in 
training data 

[9] N-RReliefF 
hyperparameter 
importance 
assessment 
conducted on 
multiple models  

10 different image 
classification 
datasets  

Tuning only most 
important 
hyperparameters saves 
time and resources  

Needs to be tested on 
more models, including 
deep learning models  

[10] Multiple CNN and 
deep CNN models 

Multiple plant and 
plant disease 
datasets  

Using data 
augmentation can help 
when data is limited  

Limited/sparse training 
data, overfitting issue 
significantly lowering 
test accuracy 

 
 
2.2 Quantum CNN (QCNN) 
​ In comparison to CCNNs, QCNNs utilize quantum circuits to create the feature 
extraction/pooling modules, and classification models. Hybrid QCNNs (HQCNNs) may use 
different combinations of classical/quantum features, such as quantum convolution and pooling 
layers but a classical MLP for classification, or vice versa. These models may be tested through 
simulations on classical computers, such as in [11, 13, 15], or run on actual quantum computers 
through the cloud [12, 14]. In simulations we may receive higher accuracies during training and 
testing, due to the fact that the simulations may not include real-world noise and errors that occur 
on real quantum computers. The comparison between simulated results and real quantum 
processor results can be seen in [14], where their QCNN model achieved 99% test accuracy 
during simulation and only 63% test accuracy when run on IBM Quantum devices through the 



cloud. Another issue with the current state of quantum models is that there are a limited number 
of qubits in the hardware of developmental quantum computers. In order to keep the hardware 
error-free and noise-free, researchers have started small and are building up to add more qubits 
[4]. Therefore the current ability to program quantum circuits is limited based on the number of 
qubits available during the experiment, depending on if the experiment is simulated vs. run 
through the cloud, and which quantum processor they choose through the cloud. For smaller 
datasets, such as the Iris dataset used in [13], algorithms can work fine using a 4-qubit circuit by 
encoding one feature per qubit. But in many other classification tasks, researchers struggled to 
properly define their quantum circuits due to the amount of qubits available [11, 12, 15]. Some 
workarounds for now include scaling down the input image sizes or adding a fixed circuit depth 
regardless of the number of qubits [14]. But as the development of quantum computers 
progresses and more qubits become available for use, we will see experiments that are able to 
have much larger circuits and process even more complex datasets.  
 

Although these limitations currently exist, we are still able to witness a variety of benefits 
from utilizing quantum and hybrid quantum-classical CNNs for image classification and pattern 
recognition tasks. For example, quantum computers are very efficient at processing complex data 
with high dimensionality. Their ability to manipulate qubits in Hilbert space allows the 
possibility of testing both real and imaginary values for each feature, “potentially doubling the 
number of trainable parameters with the same sample size requirements”[15]. By using 
parameterized quantum circuits, where gates are composed of real-number parameters 
accompanied by unitary matrices, we could also use classical optimizers on the 
(hyper)parameters still if we choose [11]. Although quantum computers are very efficient at 
optimization tasks due to their natural parallelism [1], utilizing classical optimization methods 
could be beneficial for resource cost reduction. This advantage in parameter tuning speeds up the 
training process already, but quantum machine learning models also have proven to train more 
accurately off of limited/scarce data [16]. In [14], researchers trained a QCNN to search for rare 
occurrences in a dataset. Along with some real labels of the rare occurrences, researchers added 
superpositions of the known labels into their training data [14], which would not be possible on a 
classical CNN that cannot account for superposition. Even though the number of labels for these 
occurrences were small, the QCNN model still was able to learn quickly and accurately. 
Evidence has shown that QCNNs can learn more efficiently on complex data sets as well. Due to 
the entangling gates in the feature extraction circuits, QCNNs can generate highly complex 
filters (kernels) that are impossible for CCNNs [11]. This allows for the extraction of information 
and patterns that CCNNs might miss. It also makes QCNNs more robust to noisy input images 
[11], and less likely to overfit on the training data [13]. Transfer learning can be used between 
QCNN models for similar datasets as well, which could further increase the accuracy and speed 
during training [12].  
 



In summary, some of the main advantages seen across various papers include quicker 
training times, better hyperparameter tuning, higher test accuracy/ability to prevent overfitting, 
and faster convergence on optimal solutions. There are still many issues with quantum 
computing hardware that researchers need to overcome in order for us to see these machines at 
their full potential. Table 2 provides an overview of some impactful papers that study QCNNs 
and HQCNNs, detailing the model architectures, dataset(s) used, results and issues that occurred 
during their research.  

 
Table 2. Overview of Quantum CNN Related Works (* indicates public datasets) 

Reference 
Number 

Model 
Architecture  

Dataset(s) Results Issues/Limitations 

[11] 4 qubits, quantum 
convolution layers, 
quantum max 
pooling, classical 
dense layers, SGD 
optimizer  

DICOM Brain 
Tumor MRI 
scans, 
REM-BRANDT* 

HQCNN outperformed 
CNN in test accuracy, 
reached optimal 
accuracy in two-thirds 
the epochs  

Limited number of 
qubits available, had to 
scale down input image 
sizes  

[12] Classical deep 
feature extraction 
module, quantum 
classifier  

COVID-19 
Radiography 
Dataset (CRD)* 

98.1% test accuracy 
running on 
IBMQ-QASM 
quantum processor 

Limited number of 
qubits available, 
quantum circuit depth  

[13] 4 qubits, angle 
embedding, 
quantum 
convolution layer, 
CCNN classifier 

Iris Dataset* QCNN trained over 20 
epochs, obtained 100% 
test accuracy by epoch 
16 

Iris dataset is less 
complex than many 
other dataset choices  

[14] Fixed circuit depth 
regardless of 
number of qubits, 
quantum 
convolution, 
pooling 

Quantum 
Many-Body Scars 
(QMBS), with 
added 
superpositions of 
known scars  

QCNN achieved 99% 
test accuracy in 
simulations, 63% test 
accuracy on IBMQ 
devices  

Noise/errors on quantum 
computer, limited data 
available, high 
computational cost  

[15] 16 qubits, 
QCNN-LSTM, 
amplitude 
encoding, quantum 
convolution and 
pooling, quantum 
dense layers, 
classical classifier  

Collected data of 
patients 
diagnosed with 
MS between 
2006-2023 

Quantum models 
showed greater 
efficiency in train time, 
and slightly higher 
precision and recall 
than classical models   

Limited number of 
qubits available due to 
memory constraints, bias 
in their collected data  



2.3 Applications  
​ Each of the studies above harness the power of convolutional neural networks to perform 
image processing tasks and classification of images. This technology is particularly useful in 
situations that require automated feature extraction in order to save time on finding results. 
CCNNs are already very useful for this automation, but QCNNs are trying to make the process 
even more efficient and time saving. Multiple papers involve utilizing QCNNs for medical 
imaging classification tasks. This is due to the fact that medical imaging data usually has high 
dimensional features, and can be very noisy (ex. If a patient is moving while a scan is being 
taken) [11]. The enhancements of quantum machine learning allow models to learn more off less 
data [16], be more robust to noisy inputs and less likely to overfit [11], and find complex 
patterns/relationships between multiple features [13]; as stated in the previous section. Therefore, 
quantum computing may be a viable choice in situations such as medical diagnosis. It is also 
very beneficial for time-sensitive situations, such as detection of diseases in crops [10], food [8], 
animals, humans [6, 11, 12], and even forecasting the gradual progression of illnesses [15]. 
Utilizing CCNNs is already helpful in these fields, but there is promise of greater advancement 
with fully developed quantum computers using QCNN models. QCNNs also proved to have 
higher test accuracy in every study shown in section 3.2, most of which occurred in less epochs 
than their classical counterparts. When testing the model shows rapid convergence to high 
accuracy, it indicates that the model efficiently captured the features of the dataset while also 
ensuring optimal generalization to unseen data [13]. This generalization is very important in the 
results of all machine learning models, because it allows the model to be used for real-world 
applications that may have vastly different distributions in data compared to the training sample. 
Some QCNN models were even able to learn with the same efficiency off of limited/sparse 
training data [14, 16]. Many of the CCNN models struggled in these situations, so quantum 
computing again shows promising advantages.  

 
Aside from image classification, the strong pattern recognition abilities of QCNNs can be 

utilized for tasks such as quantum phase recognition and quantum error correction. These are 
complex applications of QCNN, shown in [17], that are not explored as often as image 
classification tasks in other related works. Nonetheless, these applications show very promising 
potential for solving problems of a quantum nature that classical machine learning techniques 
would have a difficult or impossible time executing. Related research has been able to provide 
evidence that QCNN models can avoid overfitting and have enhanced learning from even small 
datasets [18]. The QCNN circuit in [17] was only created to recognize one dimensional quantum 
phases, but the model can easily learn to detect in higher dimensions in the future due to the high 
generalization capabilities of quantum computers. The quantum error correcting model also 
showed high potential compared to other known error correction methods, observing similar or 
reduced error rates each time the QCNN method was tested [17]. These applications show that 
QCNNs could have promising advantages in various tasks aside from only image classification. 
 



3   Problem Definition 
​ Compared to other works of a similar topic, this study aims to determine the specific 
performance differences between classical and quantum CNN implementations for a 
classification task with noisy or ‘corrupted’ input images. In theory (and observed in some 
related works [11, 16, 18]), quantum computers may be more robust to noisy, limited, or poorly 
annotated images and can still show high classification accuracy despite the imperfections. In 
other works on classical CNNs such as in [7, 8, 10], many researchers noted that their models 
struggled in situations where the input images had some level of noise, sparsity, or segmentation 
errors. Aside from those limitations CCNNs perform quite well for most image classification 
tasks, therefore a question is raised to determine whether or not QCNNs could potentially show a 
quantum advantage when dealing with noisy data.  
​  
​ Many related works have used MNIST datasets as a proof of concept for the QCNN 
functionality and performance, so this study focuses specifically on corrupted versions of those 
input images. It aims to investigate if QCNNs are actually more robust to noise compared to 
CCNNs, while also comparing the original classification accuracy between the two models using 
non-corrupted images. This is to demonstrate the validity of the original models before adding 
noisy inputs, to ensure that any issues that occur after the severe noise is generated is in fact due 
to the noise and not the model itself. The choice to add Gaussian noise to the input images is 
meant to simulate what corruption may occur in real-world data, such as in medical scans or 
satellite imagery. By focusing on realistic input noise, this study contributes to the research in 
finding reliable machine learning models for practical tasks.  
 
​ There are three main research questions that guide this study. First, how is the 
classification accuracy of CCNNs and QCNNs impacted by the generation of Gaussian noise 
onto their training data? Both CNN models are already proven to work well by other researchers, 
but it is important to view how the noise will truly impact the models. This relates to the second 
question, whether or not QCNNs show increased robustness to noisy inputs compared to 
CCNNs. Many studies have proposed that quantum computers have a high tolerance for noise or 
imperfections in input data, therefore trying to empirically prove this case would provide insight 
into the potential uses of quantum computing. Finally, this study investigates what trade offs 
occur when using classical vs quantum computers for convolution tasks. There are pros and cons 
to each model architecture and discovering the differences that occur during these experiments 
will help determine if using these architectures is practical for real-world applications.  
 
 
4   Approach 
​ In this paper a CCNN architecture with three convolutional blocks is compared to a 
simple QCNN implemented with 16 qubits. Both models are tested with the same dataset, 
specifically the Fashion MNIST dataset from TensorFlow Keras Datasets. It contains 10 classes 



of 28x28 grayscale images, with 60,000 training examples and 10,000 testing examples [19]. For 
the QCNN implementation, the images were scaled down to 4x4 pixels due to the limitation of 
the number of qubits able to be simulated in a reasonable time. All 10 classes were used for both 
models during their respective multi-class classification tasks. A dataset with this structure was 
chosen because of the image size and the one channel grayscale. Since the images are already 
low resolution, scaling them down to 4x4 pixels will not lose as much information compared to 
higher resolution images. The grayscale images also allow easy encoding to qubits in the QCNN 
model, without needing to implement extra qubits to handle additional RGB channels. 
Furthermore, artificial Gaussian noise was added to the dataset and each model is tested to 
determine the specific performance differences between the clean and noisy inputs. Both CCNN 
and QCNN architectures are defined through a function which was called separately to create 
clean and noisy models, in order to prevent any implicit transfer learning that could occur by 
running a model twice in one code file. This allows a fresh model to attempt to train on noisy 
data without any previous knowledge of the images in the dataset. First each model is run with 
clean data to ensure the validity of the model before adding noise, and then they are run again 
with the noisy version of the dataset to compare the performance. If there are issues such as 
underfitting or overfitting during the tests with clean data, that would indicate that there is a 
fundamental issue with the model and the noise alone is not impacting the accuracy. If the 
models are able to classify the images with decent accuracy before corruption is added, we will 
be able to observe the impact such noise has on a strong model and its classification accuracy.  
 
4.1 Dataset Corruption 

The collection of Fashion MNIST images are artificially corrupted by a script which 
creates Gaussian noise on an image with the choice of varying noise severity. Gaussian noise was 
the chosen corruption method because it allows the distortions to be evenly distributed 
throughout each image. For both the CCNN and the 
QCNN models, images are first preprocessed 
involving scaling the images to the desired size and 
normalizing the pixel values. Then a function for 
adding corruption is defined, where the mean value is 
set to 0 and the standard deviation is determined by 
the severity of noise selected in the parameters of the 
function, inspired by [23]. An array of Gaussian noise 
is generated in the same shape as the input image 
array, and then applied by altering the input pixel 
values with the chosen severity level. The modified 
pixel values are also clipped to ensure that they 
remain within the original normalization range from 
the preprocessing step. Examples of the images are 
shown, where (a) and (b) depict the 28x28 images and 



(c) and (d) are samples of the 4x4 pixel versions. From the images it is evident that while the 4x4 
pixel versions may look abstract, the essential features of the images are mostly preserved. The 
human eye may not be able to fully distinguish between classes at such low resolution, but the 
computer can still extract meaningful patterns from the data. The Gaussian noise added to the 
4x4 images is much more impactful compared to the 28x28 images, but still the computers are 
able to distinguish between different classes relatively well.  
 
4.2 Model Architectures 

The following sections detail the design and architecture of all classical and quantum 
CNN models used in these experiments. As stated earlier, multiple models are created to use the 
full size 28x28 images or a scaled down version of 4x4 images to perform multiclass or binary 
classification tasks. Regardless of image size, the data is all normalized to obtain pixel values 
between 0 and 1. Each model is trained over 10 epochs, using a batch size of either 128 (for the 
full size classical model and 4x4 binary classification models) or 32 (for the 4x4 multiclass 
classification models using subsets of the data). When subsets are taken, the original 6:1 
train-to-test ratio of the dataset remains consistent. All models use the Adam optimizer for 
adaptive learning rates, and either Sparse Categorical Cross Entropy (for multiclass tasks) or 
Binary Cross Entropy (for binary tasks) loss functions. All models are compared with the same 
performance metrics, first by graphing the training and validation accuracies and then further 
computing the Precision, Recall, and F-1 score. All code for each model was compiled and run 
on the T4 GPU from Google Colab. When each model is tested twice (clean vs noisy data) no 
modifications are made to any of the models between the two tests.  
 
4.2.1 Multiclass Classification, 28x28 Images 
​ The first classical CNN model created for these experiments accepts 28x28 single 
channel grayscale images, the full size data for Fashion MNIST. There are three convolutional 
blocks, the first contains 32 3x3 filters with ReLU activation followed by batch normalization, 
max pooling with a 2x2 filter and a stride of 2, and a dropout layer (50%) to help prevent 
overfitting. The second and third blocks each have 64 3x3 filters with ReLU activation, and 
batch normalization to add extra stability and attempt to enhance performance. The fully 
connected layer begins with flattening to transition from convolutional layers to dense layers. 
There is a 128 neuron dense layer and ReLU activation, followed by a dropout layer for 
regularization, and finally a 10 neuron dense layer with softmax activation in order to output the 
multiclass classification. A similar model can be seen in [20], which was also used for 
performing classification tasks on MNIST datasets. The architecture of this model appears to be 
appropriate for the given task and dataset, and similar architectures are widely used for grayscale 
datasets. A deep learning model was not chosen for this experiment due to the simplicity of the 
dataset, in order to prevent issues such as overfitting with a model that is too complex for the 
given data. In the scope of this paper, there is no QCNN model that directly compares to this 
CCNN model. In order to encode each pixel of a 28x28 single channel image to qubits, it would 



require (28*28*1) = 784 qubits using the encoding method implemented in this paper. That is 
outside the current amount of qubits that can be simulated on classical processors, therefore 
additional CCNN models are created to have a more fair comparison with the QCNN models.  
 
4.2.2 Binary Classification, 4x4 Images 

A QCNN with 16 qubits is reasonable to simulate on classical processors, therefore 16 
qubits in a 4x4 grid are mapped to 4x4 single channel grayscale images for the first binary 
classification model. The qubits are encoded based on a threshold for each pixel value, where if 
the normalized value is greater than 0.5, an initializing gate will be placed on that qubit. A 
readout qubit is created for the classification output and initialized with Pauli-X and Hadamard 
(H) gates. The circuit itself contains two parts, first a layer of entangling gates (XX and ZZ 
interactions) connects the nearest-neighbor qubits. Then parameterized rotational gates (Ry and 
Rz) are applied in the second layer, utilizing L-2 regularization to stabilize the model and prevent 
overfitting. One final Hadamard gate is applied to the readout qubit before measurement, and 
then the model outputs the result of the binary classification. This QCNN model has 67 trainable 
parameters and the circuit depth is kept small in order to reduce the simulated training time. A 
similar model can be found in [21], but some modifications were made to add more layers and 
regularizers in the model for this paper.  
 
​ The CCNN model for binary classification has 97 trainable parameters, which is a much 
more fair comparison with the 64 parameter QCNN model. The model is very simple to keep the 
number of parameters minimal. One convolutional layer with 4 2x2 filters is applied to accept 
4x4 grayscale images, then flattening is performed to pass the data into dense layers. The first 
fully connected dense layer has 2 neurons, followed by a 1 neuron output dense layer to get the 
binary classification results. There are no pooling or dropout layers introduced in this model 
because the size of the data is already very small with only 16 pixels total, so further reducing 
dimensionality could have adverse effects. A similar method of comparing models by their 
number of trainable parameters is shown in [22], and the model in this experiment is based on 
their CCNN model with low trainable parameters. Some modifications are made to account for 
Fashion MNIST being a slightly more complex dataset than MNIST, but the model overall is still 
very simple in order to minimize the number of trainable parameters and provide a fair 
comparison with the binary QCNN model.  
 
4.2.3 Multiclass Classification, 4x4 Images 
​ The quantum CNN performing multiclass classification has a more complex circuit with 
higher depth, in order to fully encapsulate features from all 10 classes. The model uses a 16 qubit 
nearest neighbor entanglement architecture with parameterized rotational quantum gates, similar 
to [15] and also inspired by [18], and has 290 trainable parameters. The same binary threshold 
encoding method from the previous QCNN model is also implemented here, and the structure of 
the circuit is similar as well. But in this multiclass model, two additional rotational gates (Ry and 



Rz) are added, as well as a full second layer of entanglement and parameterized gates. Therefore 
where the previous model had one entangling layer and one set of Ry and Rz gates, this QCNN 
model has two entangling layers and two sets of four parameterized gates per qubit in the circuit. 
Each parameterized gate has added L-2 regularization for stability, and the PQC layer acts as a 
quantum feature extractor before the output is fed to two classical dense layers for classification. 
A dense layer with 8 neurons and ReLU activation is utilized to process the quantum output, and 
an output layer with 10 neurons (for the 10 classes in this dataset) is used to output class 
probabilities. In this QCNN model, measurements are taken for each individual qubit using the 
Z-basis for classification.  
 
​ The classical CNN model for multiclass classification with 4x4 pixel images is a very 
simplified version of the original CCNN that classifies the full size images. The structures both 
have three layers, but in this model there are only 4 filters in the first convolutional block and 8 
filters in the second and third blocks. All filters have a 2x2 size to accommodate the smaller 
images, and one pooling layer is implemented with 2x2 average pooling and padding to stop the 
dimensionality from decreasing too much. Average pooling was used for the smaller data size 
because it allows the model to retain a wider range of spatial information instead of only keeping 
the maximum activation value like in max pooling. In order to keep the number of trainable 
parameters to a minimum (318 total), the fully connected layer of this CCNN involves only 
flattening and a 10 neuron dense layer with softmax activation for the output classification. The 
dense layer has added L-2 regularization to be more comparable in stability to the QCNN.  
 
 
5   Experimental Results 

In order to compare machine learning models, performance metrics such as accuracy, 
loss, precision, recall, and F1-score can be computed. During the training of convolutional neural 
networks, the accuracy and loss for the training and validation data are shown per epoch and 
updated in real time as the model trains. Afterwards it is tested once more using the test dataset 
split, to determine the model’s generalization accuracy when it comes to previously unseen data. 
The training and validation accuracy are graphed to visualize the outcome of how the model 
learns over each epoch. Then the remaining performance metrics are computed using built-in 
functions from ScikitLearn Metrics, which calculate the following: 
 

Accuracy =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Precision =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

F1 Score =  2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 



Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 
These values are determined by the ground truth labels of the dataset compared to the predicted 
values the model outputs. True positives occur when the model correctly predicts the positive 
class, and true negatives occur when the model correctly predicts the negative class. False 
positives are errors where the model predicts a value of positive when the ground truth is actually 
negative, and vice versa for false negatives. In a multi-class classification task, these values are 
computed individually for each class. Therefore when determining the positive and negative 
classes, it will consider the current class as ‘positive’ and all other classes are grouped together 
as the ‘negative’ class.  
 
5.1 Multiclass CCNN, 28x28 Images 
​ It was important to first test the base case of this experiment with a CCNN using full size 
28x28 images to note the effect that noisy images had on a well functioning model. From the 
accuracy plot with clean data, it is evident that this 
CCNN model had no problems performing the multiclass 
classification on Fashion MNIST which is to be 
expected. The model had 721, 354 trainable parameters 
and was able to be optimized and fine tuned to obtain 
high accuracy. The results showed 91.28% test accuracy, 
and the other performance metrics such as precision, 
recall, and F-1 score followed suit. This indicates that the 
CCNN model was efficient at performing the given 
classification task and that it is a good candidate to use 
for this dataset. The training time for this model 
completed in just under a minute. In comparison, the 
same model trained on noisy data had 83.79% test 
accuracy which showed a 7.49% drop, along with a 
decrease in the other performance metrics. It is clear that 
the CCNN model was not very robust to noisy inputs, 
and although the model did not seem to overfit to the 
noise within the 10 training epochs, the accuracy was still 
affected by the Gaussian noise added to the images. 
Despite the added noise, the training time of this model 
was not affected and still completed in under a minute. These results align with the hypothesis 
that noisy or limited data will negatively affect classical model performance, similar to the 
results seen in [7, 10, 18]. The bar chart shows all four performance metrics for both clean and 
noisy data, and we can observe  a noticeable drop in all metrics for the noisy model compared to 
the model trained on clean data. ​  
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Binary QCNN and CCNN, 4x4 Images 
​ The first quantum CNN model in this experiment used 4x4 images to perform a binary 
classification task with two out of ten of the dataset classes selected for training and testing. The 
training time for 10 epochs took over two hours due to the fact that this quantum circuit was 
simulated on classical processors (using the T4 GPU on Google Colab), which is one current 
limitation of quantum computing. The model was limited to only 64 trainable parameters 
because increased circuit depth leads to increased training 
time. Although training seems very slow compared to 
CCNNs, the quantum model's training and validation 
accuracy quickly converged to 65.65% within the first few 
epochs. It begins to plateau around epoch 5, therefore early 
stopping could have been implemented to end training 
once the model stopped significantly improving. Early 
stopping was not added to this model because all CNN 
models in these experiments were trained over 10 epochs 
for consistency and fair comparison of results. Even 
though the accuracy plateaued, overfitting was not deemed 
a significant issue in this QCNN model because the 
validation accuracy only begins to drop at the last few 
epochs. Similar plateauing of accuracy can be found in the 
results of [18], where the model reaches peak accuracy 
early on and doesn’t show significant improvement over 
additional epochs. When trained on the noisy dataset, the 
QCNN model proved to be more robust to noise and 
obtained 62.65% test accuracy, which is only 3% less than 



training on clean data. The noisy model took longer to converge and only began to plateau at 
around epoch 7, and no overfitting occurred. This result is impressive because the severity of 
Gaussian noise added to a 4x4 image is much more impactful compared to the full size image. 
When we view the sample images with and without noise, it is evident that Gaussian noise on a 
4x4 image almost completely obstructs the identifying features of the image to human eyes. But 
due to superposition, entanglement, and parameterized quantum gates, the QCNN model was 
still able to learn with decent efficiency and show more robustness to noise than the CCNN 
model with full size images. In the bar chart shown, it is noted that the largest gap between 
performance metrics for the clean vs noisy QCNN models was in precision, where the clean 
model had an 11.75% gap from the noisy model. This result suggests that false positives are 
being affected by the added noise compared to false negatives. The clean model had less false 
positive classifications overall compared to the noisy model, but for the rest of the metrics, both 
models performed similarly and relatively well considering the limitations.  
 
 
 
​  
 
 
 
 
 
 

 
 
 
 

 
 

The simple classical CNN model which also used 4x4 images for binary classification did 
not perform as well when noise was introduced to the data. This model was created with 97 
trainable parameters to be more fairly compared to the 
binary QCNN model. For both clean and noisy models the 
training time was again very fast, taking only a minute to 
complete. Despite the quick training, the clean model 
obtained 69.90% accuracy after 10 epochs which is very 
similar to the QCNN clean model results. Slight overfitting 
begins towards the end of training as we can see the 
validation accuracy begin to drop, but it is not deemed a 
significant problem with the model. This model took 



longer to converge to its maximum accuracy, which only 
occurred around epoch 9. This lower accuracy is expected 
compared to the CCNN model with 28x28 images because 
the dataset is now limited to 4x4 size and only 12,000 
training and 2,000 testing examples since two classes are 
extracted for binary classification, similar to [22]. But the 
noise introduced to that data had a more significant impact 
compared to the QCNN model. The noisy CCNN model 
accuracy dropped to 58.75%, and the other performance 
metrics were also negatively affected. There was an 
11.15% difference between the clean vs noisy accuracy results on this model, which is much 
larger than the QCNN model performing the same task. These results align with the information 
indicating that CCNN models have a harder time learning from noisy and limited data. The bar 
chart is used to further visualize the performance metric comparison, and it is clear that the 
results are not as strong as the comparable QCNN model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3 Multiclass QCNN and CCNN, 4x4 Images 
​ In the second set of experiments, all 10 classes of Fashion MNIST were used to train new 
quantum and classical models on clean and noisy data. Both models performed similarly in this 
case, but the quantum CNN did show a slightly higher robustness to noise. This 290 parameter 
quantum model took over two hours to train for 10 epochs while being simulated on classical 
processors, which was slightly longer than the training time of the binary classification QCNN 
due to the increased number of trainable parameters. The test accuracy after 10 epochs was 
40.50% for clean data and 31.30% for noisy data. These results indicate that the model had a 
hard time performing multiclass classification on 4x4 pixel images, and that noise did have a 



significant impact on the classification task since the 
severity of noise on 4x4 pixel images is higher than on a 
better resolution image. The training and validation curves 
converged quickly and were stable for both the clean and 
noisy QCNN models, but due to the limitation of 
simulating qubits this quantum circuit does not appear to 
be complex enough to fully encapsulate the features of this 
4x4 multiclass dataset. Nonetheless, the impact of noisy 
data only caused the test accuracy to drop by 9.2%, which 
is less than the comparative CCNN model. In every metric 
category for noisy data this QCNN model outperformed 
the comparison CCNN model, but for the clean data 
metrics, the CCNN was a few percent higher. Although 
neither model had high accuracy for this classification 
task, the quantum robustness to noisy data is still apparent 
in these results. The bar chart below shows the comparison 
of the performance metrics of the QCNN model in this 
experiment for reference.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

The convergence of the clean and noisy classical CNN models occurred at about the same 
rate as the QCNN model, but the validation curves from the CCNN appear less stable. This 
classical model achieved 43.90% test accuracy on clean data, which is 3.4% higher than the 
comparative quantum model, but it could be due to the CCNN having 318 trainable parameters 
(28 more than the quantum model). But this higher accuracy led to a larger gap between the 
clean and noisy models in all performance metrics, and the noisy CCNN metrics were lower than 



the noisy QCNN metrics in every category. The CCNN 
ended up with 30.60% test accuracy when trained on the 
noisy dataset, which was a 13.3% decrease. This again 
aligns with the theory that quantum computers have a 
higher robustness to noisy inputs. The low accuracy from 
both models overall is most likely caused by the size of 
the dataset since subsets were taken, therefore there were 
only 600 training and 100 testing examples per class (10 
classes) and both the QCNN and CCNN model had a 
difficult time learning from this small dataset. As seen in 
the graphs and the bar charts these two models performed 
very similarly and were both negatively impacted by the 
addition of Gaussian noise to the data. Overfitting does 
not seem to be an issue but the ability of the models to 
learn on this small 4x4 dataset was not sufficient enough 
to obtain higher accuracy for either clean or noisy 
datasets. These models could have still benefited from 
early stopping to end training before the 10 epochs were 
complete since the model did not show signs of significant learning after the first few iterations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6   Conclusions and Future Work 

Based on these results, it could be assumed that if a QCNN model was created with the 
same number of trainable parameters as the full size CCNN model classifying 28x28 images, it 
has potential to also outperform that model in terms of robustness to noise. Due to the limitations 
mentioned earlier, such a QCNN cannot currently be simulated on classical processors. But the 



above results show promise that quantum computing methods for machine learning tasks can 
match or even have superior accuracy in the future compared to their classical counterparts, 
especially when it comes to noisy, limited, or sparse datasets. The goal for this research was not 
to fully optimize any model, but to compare robustness in terms of number of trainable 
parameters. If further optimization was implemented to all of the experimental models, both 
CCNN and QCNN performance metrics would likely improve. But for the purpose of this 
research, the results are suitable evidence to prove the hypothesis that quantum computers are 
more robust to noisy input data. 

 
​ In future work on this project, the main priority would be to scale up the number of qubits 
used in the quantum circuits. This could involve running the circuits on a real quantum computer 
over the cloud, or waiting until research allows an efficient method to simulate more qubits on a 
classical processor. More qubits would allow for the use of datasets that contain higher resolution 
images and RGB color images. At the moment, to perform binary encoding on each pixel of a 
4x4 RGB (three channel)  image to qubits, it would take (4*4*3) = 48 qubits which was not 
feasible to simulate in a reasonable amount of time. And as the number of pixels in the images 
increases, the number of qubits will continue to go up. Other encoding methods could be used to 
reduce the number of qubits as well, which could be investigated in future research. As the 
development of quantum computers continues to progress, more complex circuits and datasets 
can be tested. Next, other methods of corruption could be added to the images and the models 
could be run again in order to test robustness to different types of noisy inputs. There are some 
open-source scripts on GitHub [23] for image corruption that include methods for generating 
many realistic imperfections in photos such as rain, ice, or fog. They may be seen in any photos 
taken outside or in situations where computer vision is used, such as the cameras on self-driving 
cars. Therefore testing with these corruption methods could be useful for improving the QCNNs 
ability to classify real-world data. Other CNN models could also be tested for both quantum and 
classical implementations, or more adjustments could be made to the existing models to further 
prevent overfitting and increase the classification accuracies. For example, early stopping could 
be added to the current models to end training once validation accuracy begins to drop indicating 
overfitting. More optimization techniques could be implemented to all models in this paper to 
further research the robustness with different datasets. But overall, the findings of this paper 
provide a baseline for experiments to compare the performance of QCNNs versus CCNNs.  
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