

Quantum CNN Application for Image Classification:
A Comparative Study with Classical CNNs

Joanna Pedretti
New York Institute of Technology

jpedrett@nyit.edu
February 2025

Abstract

This study investigates the performance metrics and computational tradeoffs of both classical
and quantum convolutional neural networks (CNN) when given noisy input images as training

data. The experiments aim to determine whether or not quantum CNNs are more robust to noisy
data compared to their classical counterparts. The design of the experiment begins by generating
artificial Gaussian noise onto the Fashion MNIST dataset, then comparing the accuracy and other
performance metrics of each model two times: first with the clean dataset, then again when noise

is added at a high severity. The results show promise that quantum CNNs are more robust to
noisy and limited data, and that quantum machine learning techniques have the potential to
match or possibly outperform the test accuracy of classical models once the limitations of

quantum computing are solved.

Keywords CNN, Quantum Machine Learning, QCNN, Image Classification, Noisy Data

mailto:jpedrett@nyit.edu

1 Introduction
​ Quantum computers are still in their developmental stages, but have already shown
promising advantages over classical computers in certain tasks. The ability to implement
principles of quantum physics, such as superposition and quantum entanglement, allow quantum
computers to perform natural parallel processing and provide significant speedup for some
algorithms. But these machines don’t always outperform conventional methods, which is why it
is important to study the performance comparisons between quantum and classical computers
during different tasks. A good starting point for this comparison is understanding the key
differences between quantum and classical computing,

​ Classical computers, like the ones we use in our everyday lives, operate using ‘bits’
which have a binary value of either 0 or 1. Quantum computers use quantum bits, or ‘qubits’, to
perform computations; and they are able to hold a value of 0, 1, or both 0 and 1 at the same time
due to superposition. This superposition is a fundamental principle of quantum physics, and it
allows quantum computers to perform multiple computations at once by exploring multiple
inputs/solutions simultaneously [1]. Qubits can also utilize quantum entanglement: if two qubits
are entangled, the state of one qubit will directly affect the other any time it changes [2].
Between these two principles, quantum computers are able to perform parallel computations
naturally as opposed to classical computers needing multiple processors or multithreading
techniques. Quantum algorithms are created with circuits, where quantum gates are applied to
qubits in order to rotate them and manipulate their quantum state to perform computations [1].
For convolutional neural networks (CNN), where the classical CNN uses convolution layers and
pooling layers, a quantum CNN will implement those layers with quantum circuits.
Parameterized quantum gates are used to build these circuits, and the parameters are able to be
tuned to assist with minimizing the loss function for the model [3].

After understanding the potential power of quantum computers, it is clear that studying
the best use cases for quantum computing is an important area of research. Finding the tasks in
which they excel compared to conventional methods would provide valuable insights into the
possibilities of advancement in the future. Other works have proven the potential for quantum
algorithm supremacy over classical methods in tasks such as optimization, cryptography, and
simulations that are too complex for classical computers to handle [1]. Some research has also
been done to investigate the efficiency of quantum CNNs on image processing and pattern
recognition tasks, and although there are some challenges, many benefits have been discovered.
To begin the computations, classical data points must be encoded to qubits so they can be seen as
quantum states. This encoding maps the data to a higher dimension in Hilbert space (where
quantum computers can naturally operate), and allows quantum CNNs to find complex patterns
within the data [13]. The convolution layer in quantum CNNs is very strong at determining
patterns between data points that may not be detectable through classical algorithms. The
convolution circuit works by coupling pairs of qubits through rotations and entanglement [3],

which strongly correlates the data encoded into each qubit together. This allows the circuit to
generate highly complex filters for feature extraction that would be impossible for classical
convolution due to the utilization of quantum entanglement [11]. The pooling layer in quantum
CNNs is important for reducing the computational complexity and cost of the circuit, by
reducing the number of qubits on which we perform quantum gates [5]. For example, the
information on two qubits could be pooled into one qubit while retaining the most important
data, and therefore we would only need to perform gate operations on the one remaining qubit
moving forward. This method effectively cuts the dimensionality of the circuit in half and
reduces the number of parameters that the quantum CNN needs to learn on, which allows
improved speed and cost efficiency [3]. One final benefit of quantum machine learning models is
the ability to learn efficiently from small, sparse, or noisy training data. Related studies have
shown that quantum based models were able to achieve similar or higher test accuracy than
classical models when given less training data [16], and that the models were less likely to suffer
from overfitting [13]. This high accuracy continued in experiments where the training data had
some imperfections [11], demonstrating the potential for quantum computers to be more robust
to noisy data.

Other researchers have tested multiple architectures of quantum CNNs and hybrid

quantum-classical CNNs to view performance comparisons on image processing tasks. Each
study faced similar challenges during their research, mainly involving the hardware limitations
of current developmental models of quantum computers. One of the biggest challenges at the
moment is the amount of possible errors that can occur during computations, due to the difficulty
of keeping qubits stable in their environment [4]. They are sensitive to many environmental
factors such as temperature and frequencies that could affect the quantum state of the qubit
during computations. There are fields of study dedicated to quantum error correction, but as of
now it is still difficult to add more qubits into the current models of quantum computers and be
able to error correct every qubit at once [4]. Code can be simulated on classical computers
instead of run on quantum processors in an attempt to avoid errors, but the simulations may take
much longer to run. Therefore many related studies have struggled to scale their experiments on
quantum computers properly [11, 12, 14, 15], and their research has been limited by the amount
of qubits currently available for computations. But regardless of these hardware limitations,
many benefits have been observed during the experiments and the potential of utilizing quantum
computers for machine learning tasks is clear. Across almost all of the related studies researchers
have observed faster training times, more efficient model learning, enhanced hyperparameter
tuning and quick convergence on higher test accuracy compared to classical CNN
implementations for the same image classification task.

In this paper, classical CNN models are compared to simple quantum CNNs, and

performance metrics are computed for each implementation during two classification tasks.
Gaussian noise is artificially added to the Fashion MNIST dataset from TensorFlow, where a

script allows the generation of corruption at different levels of severity. All models are run twice
for each implementation, starting with a clean dataset and then again with a high severity of
corruption on the data. This allows a comparison between the original ability of each model to
accurately classify the images, and the differences when the same model encounters very noisy
input. A scaled down version of the images are used in the quantum CNN models due to the
limitation of the number of qubits able to be simulated on classical machines. One classical
implementation extracts features from the full size 28x28 pixel images, whereas the quantum
models use 4x4 pixel images while still retaining the most important identifiers for classification.
Two additional classical models also use the same 4x4 pixel images in order to perform a fair
comparison. The quantum models are simulated through classical processors, and all models are
run using the T4 GPU on Google Colab.

The results of these code experiments show promise for the future of quantum machine

learning once the development of these computers is complete. The quantum CNN model
performing binary classification obtained similar or higher performance metrics in every
category compared to its classical counterpart. When trained on the clean dataset the models
performed similarly, but when the noisy dataset was introduced, the quantum model’s test
accuracy only decreased by 3% whereas the classical model dropped by 11%. For the second
experiment performing multiclass classification, again both the quantum and classical models
performed similarly in all categories of performance metrics. The impact of noisy data caused
the quantum CNN test accuracy to decrease by 9% and the classical CNN to decrease by 13%.
Once the many limitations of quantum computing have been solved, there is a strong possibility
that future work on more complex quantum models will show even better performance.

​

2 Related Works
​ This section explores studies that investigate the performance of classical and quantum
convolutional neural networks used for different image classification situations. These machine
learning models are used in a variety of fields, for a variety of tasks, and each comes with its
pros and cons. Some common issues arise throughout all the studies, which allow us to
determine important factors to consider when doing a performance comparison. For example,
issues that occurred during training of the model will have a direct impact on the accuracy of the
classification task during testing, etc. Reviewing these related works gives a basis for factors that
are considered in this study and experiments.

2.1 Classical CNN (CCNN)

Classical CNNs have already proven to fundamentally advance the field of machine
learning, particularly in their ability to perform automatic feature extraction and efficient pattern
recognition. Many studies have explored improvements in CNN architectures, optimization
techniques, and methods of deep learning CNNs, which all contribute to the continual

improvement of these model’s accuracy and efficiency. But there are also many limitations
which are explored through research, where new methods aim to prevent issues like overfitting
from occurring. Overfitting may happen if training of a model isn’t stopped at a certain point,
and the model becomes too accustomed to the training data but is not able to accurately predict
new data that it encounters. Especially with noisy input images [7], the model might learn based
on the noise and overfit to only noisy inputs. On the other hand, CNN models can also underfit
(not learning enough) while having weakly annotated training images that lack information about
finding the object in the photo [7]. Limited or sparsely populated datasets can also cause
underfitting, but this can be counteracted by using data augmentation methods to artificially
increase the amount of training data [10]. One final issue to discuss is situations such as the
Vanishing Gradient Problem, which occur as many hidden layers are added into the architecture,
especially in deep learning. As the feature dimensions shrink after every layer of the CCNN, the
weights begin to shrink and become so low that the model does not learn anymore. Without
specific architectures and specific optimization techniques, issues like this may greatly affect the
accuracy of a CCNN model [6].

While there may be disadvantages to CCNNs, they have proven to be good for saving
time on tasks that are usually performed manually by humans or by other machine learning
models, for example in [8] and [10]. While using other machine learning models, doing manual
feature extraction sometimes proves to be difficult because of other objects in the background of
images, or effects from light/rain/other weather [10]. But the automatic feature extraction module
in CCNNs has very advantageous results over the other machine learning methods. In order for a
CNN model to learn faster, a method called transfer learning may be implemented. This allows
researchers to use pre-trained weights on their model, providing a strong advantage in learning
on a new dataset because of the model’s knowledge of a previously trained dataset [7]. Transfer
learning is very helpful to train quicker, improve accuracy, and converge on optimal
hyperparameter values faster [6]. But depending on the complexity of the dataset, there could be
multiple thousands of hyperparameters to optimize! It has been shown in [9] that using
Hyperparameter Importance Assessment methods on a CCNN model can lead researchers to save
time during tuning and only focus on the parameters which affect the model most.

In summary, there are many possible limitations of CCNNs such as overfitting or

underfitting based on the quality of the training dataset, not having the correct architecture or
optimizer for the model, and time constraints in tuning hyperparameters. Many researchers
through the years have studied and created new methods to improve accuracy, efficiency, and
speed of CCNNs. There are currently many great models of CCNNs and deep learning CNNs
which help us perform tasks in a variety of fields. Table 1 provides an overview of some
interesting papers that study classical CNNs, detailing the model architectures, dataset(s) used,
results and issues that occurred during their research.

Table 1. Overview of Classical CNN Related Works (* indicates public datasets)

Reference
Number

Model
Architecture

Dataset(s) Results Issues/Limitations

[6] VGG16, ResNet
18, ResNet 34;
with and without
transfer learning

SipakMed (pap
smear) dataset*

All CCNN models
always performed
better when using
transfer learning

Choice of optimizer
significantly affects
model performance

[7] Hover-Net model
with preactivated
ResNet 50

Simplified versions
of MoNuSAC and
PanNuke*

Having a correctly
annotated validation
set is key to avoid
overfitting

Annotation noise or
weakly annotated data
could cause underfitting
or overfitting

[8] MobileNetV2 and
VGG16

Healthy/Defective
Fruits dataset

Multi-input
architecture with both
RGB and silhouette
images had best test
accuracy

Segmentation errors in
training data

[9] N-RReliefF
hyperparameter
importance
assessment
conducted on
multiple models

10 different image
classification
datasets

Tuning only most
important
hyperparameters saves
time and resources

Needs to be tested on
more models, including
deep learning models

[10] Multiple CNN and
deep CNN models

Multiple plant and
plant disease
datasets

Using data
augmentation can help
when data is limited

Limited/sparse training
data, overfitting issue
significantly lowering
test accuracy

2.2 Quantum CNN (QCNN)
​ In comparison to CCNNs, QCNNs utilize quantum circuits to create the feature
extraction/pooling modules, and classification models. Hybrid QCNNs (HQCNNs) may use
different combinations of classical/quantum features, such as quantum convolution and pooling
layers but a classical MLP for classification, or vice versa. These models may be tested through
simulations on classical computers, such as in [11, 13, 15], or run on actual quantum computers
through the cloud [12, 14]. In simulations we may receive higher accuracies during training and
testing, due to the fact that the simulations may not include real-world noise and errors that occur
on real quantum computers. The comparison between simulated results and real quantum
processor results can be seen in [14], where their QCNN model achieved 99% test accuracy
during simulation and only 63% test accuracy when run on IBM Quantum devices through the

cloud. Another issue with the current state of quantum models is that there are a limited number
of qubits in the hardware of developmental quantum computers. In order to keep the hardware
error-free and noise-free, researchers have started small and are building up to add more qubits
[4]. Therefore the current ability to program quantum circuits is limited based on the number of
qubits available during the experiment, depending on if the experiment is simulated vs. run
through the cloud, and which quantum processor they choose through the cloud. For smaller
datasets, such as the Iris dataset used in [13], algorithms can work fine using a 4-qubit circuit by
encoding one feature per qubit. But in many other classification tasks, researchers struggled to
properly define their quantum circuits due to the amount of qubits available [11, 12, 15]. Some
workarounds for now include scaling down the input image sizes or adding a fixed circuit depth
regardless of the number of qubits [14]. But as the development of quantum computers
progresses and more qubits become available for use, we will see experiments that are able to
have much larger circuits and process even more complex datasets.

Although these limitations currently exist, we are still able to witness a variety of benefits
from utilizing quantum and hybrid quantum-classical CNNs for image classification and pattern
recognition tasks. For example, quantum computers are very efficient at processing complex data
with high dimensionality. Their ability to manipulate qubits in Hilbert space allows the
possibility of testing both real and imaginary values for each feature, “potentially doubling the
number of trainable parameters with the same sample size requirements”[15]. By using
parameterized quantum circuits, where gates are composed of real-number parameters
accompanied by unitary matrices, we could also use classical optimizers on the
(hyper)parameters still if we choose [11]. Although quantum computers are very efficient at
optimization tasks due to their natural parallelism [1], utilizing classical optimization methods
could be beneficial for resource cost reduction. This advantage in parameter tuning speeds up the
training process already, but quantum machine learning models also have proven to train more
accurately off of limited/scarce data [16]. In [14], researchers trained a QCNN to search for rare
occurrences in a dataset. Along with some real labels of the rare occurrences, researchers added
superpositions of the known labels into their training data [14], which would not be possible on a
classical CNN that cannot account for superposition. Even though the number of labels for these
occurrences were small, the QCNN model still was able to learn quickly and accurately.
Evidence has shown that QCNNs can learn more efficiently on complex data sets as well. Due to
the entangling gates in the feature extraction circuits, QCNNs can generate highly complex
filters (kernels) that are impossible for CCNNs [11]. This allows for the extraction of information
and patterns that CCNNs might miss. It also makes QCNNs more robust to noisy input images
[11], and less likely to overfit on the training data [13]. Transfer learning can be used between
QCNN models for similar datasets as well, which could further increase the accuracy and speed
during training [12].

In summary, some of the main advantages seen across various papers include quicker
training times, better hyperparameter tuning, higher test accuracy/ability to prevent overfitting,
and faster convergence on optimal solutions. There are still many issues with quantum
computing hardware that researchers need to overcome in order for us to see these machines at
their full potential. Table 2 provides an overview of some impactful papers that study QCNNs
and HQCNNs, detailing the model architectures, dataset(s) used, results and issues that occurred
during their research.

Table 2. Overview of Quantum CNN Related Works (* indicates public datasets)

Reference
Number

Model
Architecture

Dataset(s) Results Issues/Limitations

[11] 4 qubits, quantum
convolution layers,
quantum max
pooling, classical
dense layers, SGD
optimizer

DICOM Brain
Tumor MRI
scans,
REM-BRANDT*

HQCNN outperformed
CNN in test accuracy,
reached optimal
accuracy in two-thirds
the epochs

Limited number of
qubits available, had to
scale down input image
sizes

[12] Classical deep
feature extraction
module, quantum
classifier

COVID-19
Radiography
Dataset (CRD)*

98.1% test accuracy
running on
IBMQ-QASM
quantum processor

Limited number of
qubits available,
quantum circuit depth

[13] 4 qubits, angle
embedding,
quantum
convolution layer,
CCNN classifier

Iris Dataset* QCNN trained over 20
epochs, obtained 100%
test accuracy by epoch
16

Iris dataset is less
complex than many
other dataset choices

[14] Fixed circuit depth
regardless of
number of qubits,
quantum
convolution,
pooling

Quantum
Many-Body Scars
(QMBS), with
added
superpositions of
known scars

QCNN achieved 99%
test accuracy in
simulations, 63% test
accuracy on IBMQ
devices

Noise/errors on quantum
computer, limited data
available, high
computational cost

[15] 16 qubits,
QCNN-LSTM,
amplitude
encoding, quantum
convolution and
pooling, quantum
dense layers,
classical classifier

Collected data of
patients
diagnosed with
MS between
2006-2023

Quantum models
showed greater
efficiency in train time,
and slightly higher
precision and recall
than classical models

Limited number of
qubits available due to
memory constraints, bias
in their collected data

2.3 Applications
​ Each of the studies above harness the power of convolutional neural networks to perform
image processing tasks and classification of images. This technology is particularly useful in
situations that require automated feature extraction in order to save time on finding results.
CCNNs are already very useful for this automation, but QCNNs are trying to make the process
even more efficient and time saving. Multiple papers involve utilizing QCNNs for medical
imaging classification tasks. This is due to the fact that medical imaging data usually has high
dimensional features, and can be very noisy (ex. If a patient is moving while a scan is being
taken) [11]. The enhancements of quantum machine learning allow models to learn more off less
data [16], be more robust to noisy inputs and less likely to overfit [11], and find complex
patterns/relationships between multiple features [13]; as stated in the previous section. Therefore,
quantum computing may be a viable choice in situations such as medical diagnosis. It is also
very beneficial for time-sensitive situations, such as detection of diseases in crops [10], food [8],
animals, humans [6, 11, 12], and even forecasting the gradual progression of illnesses [15].
Utilizing CCNNs is already helpful in these fields, but there is promise of greater advancement
with fully developed quantum computers using QCNN models. QCNNs also proved to have
higher test accuracy in every study shown in section 3.2, most of which occurred in less epochs
than their classical counterparts. When testing the model shows rapid convergence to high
accuracy, it indicates that the model efficiently captured the features of the dataset while also
ensuring optimal generalization to unseen data [13]. This generalization is very important in the
results of all machine learning models, because it allows the model to be used for real-world
applications that may have vastly different distributions in data compared to the training sample.
Some QCNN models were even able to learn with the same efficiency off of limited/sparse
training data [14, 16]. Many of the CCNN models struggled in these situations, so quantum
computing again shows promising advantages.

Aside from image classification, the strong pattern recognition abilities of QCNNs can be

utilized for tasks such as quantum phase recognition and quantum error correction. These are
complex applications of QCNN, shown in [17], that are not explored as often as image
classification tasks in other related works. Nonetheless, these applications show very promising
potential for solving problems of a quantum nature that classical machine learning techniques
would have a difficult or impossible time executing. Related research has been able to provide
evidence that QCNN models can avoid overfitting and have enhanced learning from even small
datasets [18]. The QCNN circuit in [17] was only created to recognize one dimensional quantum
phases, but the model can easily learn to detect in higher dimensions in the future due to the high
generalization capabilities of quantum computers. The quantum error correcting model also
showed high potential compared to other known error correction methods, observing similar or
reduced error rates each time the QCNN method was tested [17]. These applications show that
QCNNs could have promising advantages in various tasks aside from only image classification.

3 Problem Definition
​ Compared to other works of a similar topic, this study aims to determine the specific
performance differences between classical and quantum CNN implementations for a
classification task with noisy or ‘corrupted’ input images. In theory (and observed in some
related works [11, 16, 18]), quantum computers may be more robust to noisy, limited, or poorly
annotated images and can still show high classification accuracy despite the imperfections. In
other works on classical CNNs such as in [7, 8, 10], many researchers noted that their models
struggled in situations where the input images had some level of noise, sparsity, or segmentation
errors. Aside from those limitations CCNNs perform quite well for most image classification
tasks, therefore a question is raised to determine whether or not QCNNs could potentially show a
quantum advantage when dealing with noisy data.
​
​ Many related works have used MNIST datasets as a proof of concept for the QCNN
functionality and performance, so this study focuses specifically on corrupted versions of those
input images. It aims to investigate if QCNNs are actually more robust to noise compared to
CCNNs, while also comparing the original classification accuracy between the two models using
non-corrupted images. This is to demonstrate the validity of the original models before adding
noisy inputs, to ensure that any issues that occur after the severe noise is generated is in fact due
to the noise and not the model itself. The choice to add Gaussian noise to the input images is
meant to simulate what corruption may occur in real-world data, such as in medical scans or
satellite imagery. By focusing on realistic input noise, this study contributes to the research in
finding reliable machine learning models for practical tasks.

​ There are three main research questions that guide this study. First, how is the
classification accuracy of CCNNs and QCNNs impacted by the generation of Gaussian noise
onto their training data? Both CNN models are already proven to work well by other researchers,
but it is important to view how the noise will truly impact the models. This relates to the second
question, whether or not QCNNs show increased robustness to noisy inputs compared to
CCNNs. Many studies have proposed that quantum computers have a high tolerance for noise or
imperfections in input data, therefore trying to empirically prove this case would provide insight
into the potential uses of quantum computing. Finally, this study investigates what trade offs
occur when using classical vs quantum computers for convolution tasks. There are pros and cons
to each model architecture and discovering the differences that occur during these experiments
will help determine if using these architectures is practical for real-world applications.

4 Approach
​ In this paper a CCNN architecture with three convolutional blocks is compared to a
simple QCNN implemented with 16 qubits. Both models are tested with the same dataset,
specifically the Fashion MNIST dataset from TensorFlow Keras Datasets. It contains 10 classes

of 28x28 grayscale images, with 60,000 training examples and 10,000 testing examples [19]. For
the QCNN implementation, the images were scaled down to 4x4 pixels due to the limitation of
the number of qubits able to be simulated in a reasonable time. All 10 classes were used for both
models during their respective multi-class classification tasks. A dataset with this structure was
chosen because of the image size and the one channel grayscale. Since the images are already
low resolution, scaling them down to 4x4 pixels will not lose as much information compared to
higher resolution images. The grayscale images also allow easy encoding to qubits in the QCNN
model, without needing to implement extra qubits to handle additional RGB channels.
Furthermore, artificial Gaussian noise was added to the dataset and each model is tested to
determine the specific performance differences between the clean and noisy inputs. Both CCNN
and QCNN architectures are defined through a function which was called separately to create
clean and noisy models, in order to prevent any implicit transfer learning that could occur by
running a model twice in one code file. This allows a fresh model to attempt to train on noisy
data without any previous knowledge of the images in the dataset. First each model is run with
clean data to ensure the validity of the model before adding noise, and then they are run again
with the noisy version of the dataset to compare the performance. If there are issues such as
underfitting or overfitting during the tests with clean data, that would indicate that there is a
fundamental issue with the model and the noise alone is not impacting the accuracy. If the
models are able to classify the images with decent accuracy before corruption is added, we will
be able to observe the impact such noise has on a strong model and its classification accuracy.

4.1 Dataset Corruption

The collection of Fashion MNIST images are artificially corrupted by a script which
creates Gaussian noise on an image with the choice of varying noise severity. Gaussian noise was
the chosen corruption method because it allows the distortions to be evenly distributed
throughout each image. For both the CCNN and the
QCNN models, images are first preprocessed
involving scaling the images to the desired size and
normalizing the pixel values. Then a function for
adding corruption is defined, where the mean value is
set to 0 and the standard deviation is determined by
the severity of noise selected in the parameters of the
function, inspired by [23]. An array of Gaussian noise
is generated in the same shape as the input image
array, and then applied by altering the input pixel
values with the chosen severity level. The modified
pixel values are also clipped to ensure that they
remain within the original normalization range from
the preprocessing step. Examples of the images are
shown, where (a) and (b) depict the 28x28 images and

(c) and (d) are samples of the 4x4 pixel versions. From the images it is evident that while the 4x4
pixel versions may look abstract, the essential features of the images are mostly preserved. The
human eye may not be able to fully distinguish between classes at such low resolution, but the
computer can still extract meaningful patterns from the data. The Gaussian noise added to the
4x4 images is much more impactful compared to the 28x28 images, but still the computers are
able to distinguish between different classes relatively well.

4.2 Model Architectures

The following sections detail the design and architecture of all classical and quantum
CNN models used in these experiments. As stated earlier, multiple models are created to use the
full size 28x28 images or a scaled down version of 4x4 images to perform multiclass or binary
classification tasks. Regardless of image size, the data is all normalized to obtain pixel values
between 0 and 1. Each model is trained over 10 epochs, using a batch size of either 128 (for the
full size classical model and 4x4 binary classification models) or 32 (for the 4x4 multiclass
classification models using subsets of the data). When subsets are taken, the original 6:1
train-to-test ratio of the dataset remains consistent. All models use the Adam optimizer for
adaptive learning rates, and either Sparse Categorical Cross Entropy (for multiclass tasks) or
Binary Cross Entropy (for binary tasks) loss functions. All models are compared with the same
performance metrics, first by graphing the training and validation accuracies and then further
computing the Precision, Recall, and F-1 score. All code for each model was compiled and run
on the T4 GPU from Google Colab. When each model is tested twice (clean vs noisy data) no
modifications are made to any of the models between the two tests.

4.2.1 Multiclass Classification, 28x28 Images
​ The first classical CNN model created for these experiments accepts 28x28 single
channel grayscale images, the full size data for Fashion MNIST. There are three convolutional
blocks, the first contains 32 3x3 filters with ReLU activation followed by batch normalization,
max pooling with a 2x2 filter and a stride of 2, and a dropout layer (50%) to help prevent
overfitting. The second and third blocks each have 64 3x3 filters with ReLU activation, and
batch normalization to add extra stability and attempt to enhance performance. The fully
connected layer begins with flattening to transition from convolutional layers to dense layers.
There is a 128 neuron dense layer and ReLU activation, followed by a dropout layer for
regularization, and finally a 10 neuron dense layer with softmax activation in order to output the
multiclass classification. A similar model can be seen in [20], which was also used for
performing classification tasks on MNIST datasets. The architecture of this model appears to be
appropriate for the given task and dataset, and similar architectures are widely used for grayscale
datasets. A deep learning model was not chosen for this experiment due to the simplicity of the
dataset, in order to prevent issues such as overfitting with a model that is too complex for the
given data. In the scope of this paper, there is no QCNN model that directly compares to this
CCNN model. In order to encode each pixel of a 28x28 single channel image to qubits, it would

require (28*28*1) = 784 qubits using the encoding method implemented in this paper. That is
outside the current amount of qubits that can be simulated on classical processors, therefore
additional CCNN models are created to have a more fair comparison with the QCNN models.

4.2.2 Binary Classification, 4x4 Images

A QCNN with 16 qubits is reasonable to simulate on classical processors, therefore 16
qubits in a 4x4 grid are mapped to 4x4 single channel grayscale images for the first binary
classification model. The qubits are encoded based on a threshold for each pixel value, where if
the normalized value is greater than 0.5, an initializing gate will be placed on that qubit. A
readout qubit is created for the classification output and initialized with Pauli-X and Hadamard
(H) gates. The circuit itself contains two parts, first a layer of entangling gates (XX and ZZ
interactions) connects the nearest-neighbor qubits. Then parameterized rotational gates (Ry and
Rz) are applied in the second layer, utilizing L-2 regularization to stabilize the model and prevent
overfitting. One final Hadamard gate is applied to the readout qubit before measurement, and
then the model outputs the result of the binary classification. This QCNN model has 67 trainable
parameters and the circuit depth is kept small in order to reduce the simulated training time. A
similar model can be found in [21], but some modifications were made to add more layers and
regularizers in the model for this paper.

​ The CCNN model for binary classification has 97 trainable parameters, which is a much
more fair comparison with the 64 parameter QCNN model. The model is very simple to keep the
number of parameters minimal. One convolutional layer with 4 2x2 filters is applied to accept
4x4 grayscale images, then flattening is performed to pass the data into dense layers. The first
fully connected dense layer has 2 neurons, followed by a 1 neuron output dense layer to get the
binary classification results. There are no pooling or dropout layers introduced in this model
because the size of the data is already very small with only 16 pixels total, so further reducing
dimensionality could have adverse effects. A similar method of comparing models by their
number of trainable parameters is shown in [22], and the model in this experiment is based on
their CCNN model with low trainable parameters. Some modifications are made to account for
Fashion MNIST being a slightly more complex dataset than MNIST, but the model overall is still
very simple in order to minimize the number of trainable parameters and provide a fair
comparison with the binary QCNN model.

4.2.3 Multiclass Classification, 4x4 Images
​ The quantum CNN performing multiclass classification has a more complex circuit with
higher depth, in order to fully encapsulate features from all 10 classes. The model uses a 16 qubit
nearest neighbor entanglement architecture with parameterized rotational quantum gates, similar
to [15] and also inspired by [18], and has 290 trainable parameters. The same binary threshold
encoding method from the previous QCNN model is also implemented here, and the structure of
the circuit is similar as well. But in this multiclass model, two additional rotational gates (Ry and

Rz) are added, as well as a full second layer of entanglement and parameterized gates. Therefore
where the previous model had one entangling layer and one set of Ry and Rz gates, this QCNN
model has two entangling layers and two sets of four parameterized gates per qubit in the circuit.
Each parameterized gate has added L-2 regularization for stability, and the PQC layer acts as a
quantum feature extractor before the output is fed to two classical dense layers for classification.
A dense layer with 8 neurons and ReLU activation is utilized to process the quantum output, and
an output layer with 10 neurons (for the 10 classes in this dataset) is used to output class
probabilities. In this QCNN model, measurements are taken for each individual qubit using the
Z-basis for classification.

​ The classical CNN model for multiclass classification with 4x4 pixel images is a very
simplified version of the original CCNN that classifies the full size images. The structures both
have three layers, but in this model there are only 4 filters in the first convolutional block and 8
filters in the second and third blocks. All filters have a 2x2 size to accommodate the smaller
images, and one pooling layer is implemented with 2x2 average pooling and padding to stop the
dimensionality from decreasing too much. Average pooling was used for the smaller data size
because it allows the model to retain a wider range of spatial information instead of only keeping
the maximum activation value like in max pooling. In order to keep the number of trainable
parameters to a minimum (318 total), the fully connected layer of this CCNN involves only
flattening and a 10 neuron dense layer with softmax activation for the output classification. The
dense layer has added L-2 regularization to be more comparable in stability to the QCNN.

5 Experimental Results

In order to compare machine learning models, performance metrics such as accuracy,
loss, precision, recall, and F1-score can be computed. During the training of convolutional neural
networks, the accuracy and loss for the training and validation data are shown per epoch and
updated in real time as the model trains. Afterwards it is tested once more using the test dataset
split, to determine the model’s generalization accuracy when it comes to previously unseen data.
The training and validation accuracy are graphed to visualize the outcome of how the model
learns over each epoch. Then the remaining performance metrics are computed using built-in
functions from ScikitLearn Metrics, which calculate the following:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

F1 Score = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
These values are determined by the ground truth labels of the dataset compared to the predicted
values the model outputs. True positives occur when the model correctly predicts the positive
class, and true negatives occur when the model correctly predicts the negative class. False
positives are errors where the model predicts a value of positive when the ground truth is actually
negative, and vice versa for false negatives. In a multi-class classification task, these values are
computed individually for each class. Therefore when determining the positive and negative
classes, it will consider the current class as ‘positive’ and all other classes are grouped together
as the ‘negative’ class.

5.1 Multiclass CCNN, 28x28 Images
​ It was important to first test the base case of this experiment with a CCNN using full size
28x28 images to note the effect that noisy images had on a well functioning model. From the
accuracy plot with clean data, it is evident that this
CCNN model had no problems performing the multiclass
classification on Fashion MNIST which is to be
expected. The model had 721, 354 trainable parameters
and was able to be optimized and fine tuned to obtain
high accuracy. The results showed 91.28% test accuracy,
and the other performance metrics such as precision,
recall, and F-1 score followed suit. This indicates that the
CCNN model was efficient at performing the given
classification task and that it is a good candidate to use
for this dataset. The training time for this model
completed in just under a minute. In comparison, the
same model trained on noisy data had 83.79% test
accuracy which showed a 7.49% drop, along with a
decrease in the other performance metrics. It is clear that
the CCNN model was not very robust to noisy inputs,
and although the model did not seem to overfit to the
noise within the 10 training epochs, the accuracy was still
affected by the Gaussian noise added to the images.
Despite the added noise, the training time of this model
was not affected and still completed in under a minute. These results align with the hypothesis
that noisy or limited data will negatively affect classical model performance, similar to the
results seen in [7, 10, 18]. The bar chart shows all four performance metrics for both clean and
noisy data, and we can observe a noticeable drop in all metrics for the noisy model compared to
the model trained on clean data. ​

5.2 Binary QCNN and CCNN, 4x4 Images
​ The first quantum CNN model in this experiment used 4x4 images to perform a binary
classification task with two out of ten of the dataset classes selected for training and testing. The
training time for 10 epochs took over two hours due to the fact that this quantum circuit was
simulated on classical processors (using the T4 GPU on Google Colab), which is one current
limitation of quantum computing. The model was limited to only 64 trainable parameters
because increased circuit depth leads to increased training
time. Although training seems very slow compared to
CCNNs, the quantum model's training and validation
accuracy quickly converged to 65.65% within the first few
epochs. It begins to plateau around epoch 5, therefore early
stopping could have been implemented to end training
once the model stopped significantly improving. Early
stopping was not added to this model because all CNN
models in these experiments were trained over 10 epochs
for consistency and fair comparison of results. Even
though the accuracy plateaued, overfitting was not deemed
a significant issue in this QCNN model because the
validation accuracy only begins to drop at the last few
epochs. Similar plateauing of accuracy can be found in the
results of [18], where the model reaches peak accuracy
early on and doesn’t show significant improvement over
additional epochs. When trained on the noisy dataset, the
QCNN model proved to be more robust to noise and
obtained 62.65% test accuracy, which is only 3% less than

training on clean data. The noisy model took longer to converge and only began to plateau at
around epoch 7, and no overfitting occurred. This result is impressive because the severity of
Gaussian noise added to a 4x4 image is much more impactful compared to the full size image.
When we view the sample images with and without noise, it is evident that Gaussian noise on a
4x4 image almost completely obstructs the identifying features of the image to human eyes. But
due to superposition, entanglement, and parameterized quantum gates, the QCNN model was
still able to learn with decent efficiency and show more robustness to noise than the CCNN
model with full size images. In the bar chart shown, it is noted that the largest gap between
performance metrics for the clean vs noisy QCNN models was in precision, where the clean
model had an 11.75% gap from the noisy model. This result suggests that false positives are
being affected by the added noise compared to false negatives. The clean model had less false
positive classifications overall compared to the noisy model, but for the rest of the metrics, both
models performed similarly and relatively well considering the limitations.

​

The simple classical CNN model which also used 4x4 images for binary classification did
not perform as well when noise was introduced to the data. This model was created with 97
trainable parameters to be more fairly compared to the
binary QCNN model. For both clean and noisy models the
training time was again very fast, taking only a minute to
complete. Despite the quick training, the clean model
obtained 69.90% accuracy after 10 epochs which is very
similar to the QCNN clean model results. Slight overfitting
begins towards the end of training as we can see the
validation accuracy begin to drop, but it is not deemed a
significant problem with the model. This model took

longer to converge to its maximum accuracy, which only
occurred around epoch 9. This lower accuracy is expected
compared to the CCNN model with 28x28 images because
the dataset is now limited to 4x4 size and only 12,000
training and 2,000 testing examples since two classes are
extracted for binary classification, similar to [22]. But the
noise introduced to that data had a more significant impact
compared to the QCNN model. The noisy CCNN model
accuracy dropped to 58.75%, and the other performance
metrics were also negatively affected. There was an
11.15% difference between the clean vs noisy accuracy results on this model, which is much
larger than the QCNN model performing the same task. These results align with the information
indicating that CCNN models have a harder time learning from noisy and limited data. The bar
chart is used to further visualize the performance metric comparison, and it is clear that the
results are not as strong as the comparable QCNN model.

5.3 Multiclass QCNN and CCNN, 4x4 Images
​ In the second set of experiments, all 10 classes of Fashion MNIST were used to train new
quantum and classical models on clean and noisy data. Both models performed similarly in this
case, but the quantum CNN did show a slightly higher robustness to noise. This 290 parameter
quantum model took over two hours to train for 10 epochs while being simulated on classical
processors, which was slightly longer than the training time of the binary classification QCNN
due to the increased number of trainable parameters. The test accuracy after 10 epochs was
40.50% for clean data and 31.30% for noisy data. These results indicate that the model had a
hard time performing multiclass classification on 4x4 pixel images, and that noise did have a

significant impact on the classification task since the
severity of noise on 4x4 pixel images is higher than on a
better resolution image. The training and validation curves
converged quickly and were stable for both the clean and
noisy QCNN models, but due to the limitation of
simulating qubits this quantum circuit does not appear to
be complex enough to fully encapsulate the features of this
4x4 multiclass dataset. Nonetheless, the impact of noisy
data only caused the test accuracy to drop by 9.2%, which
is less than the comparative CCNN model. In every metric
category for noisy data this QCNN model outperformed
the comparison CCNN model, but for the clean data
metrics, the CCNN was a few percent higher. Although
neither model had high accuracy for this classification
task, the quantum robustness to noisy data is still apparent
in these results. The bar chart below shows the comparison
of the performance metrics of the QCNN model in this
experiment for reference.

The convergence of the clean and noisy classical CNN models occurred at about the same
rate as the QCNN model, but the validation curves from the CCNN appear less stable. This
classical model achieved 43.90% test accuracy on clean data, which is 3.4% higher than the
comparative quantum model, but it could be due to the CCNN having 318 trainable parameters
(28 more than the quantum model). But this higher accuracy led to a larger gap between the
clean and noisy models in all performance metrics, and the noisy CCNN metrics were lower than

the noisy QCNN metrics in every category. The CCNN
ended up with 30.60% test accuracy when trained on the
noisy dataset, which was a 13.3% decrease. This again
aligns with the theory that quantum computers have a
higher robustness to noisy inputs. The low accuracy from
both models overall is most likely caused by the size of
the dataset since subsets were taken, therefore there were
only 600 training and 100 testing examples per class (10
classes) and both the QCNN and CCNN model had a
difficult time learning from this small dataset. As seen in
the graphs and the bar charts these two models performed
very similarly and were both negatively impacted by the
addition of Gaussian noise to the data. Overfitting does
not seem to be an issue but the ability of the models to
learn on this small 4x4 dataset was not sufficient enough
to obtain higher accuracy for either clean or noisy
datasets. These models could have still benefited from
early stopping to end training before the 10 epochs were
complete since the model did not show signs of significant learning after the first few iterations.

6 Conclusions and Future Work

Based on these results, it could be assumed that if a QCNN model was created with the
same number of trainable parameters as the full size CCNN model classifying 28x28 images, it
has potential to also outperform that model in terms of robustness to noise. Due to the limitations
mentioned earlier, such a QCNN cannot currently be simulated on classical processors. But the

above results show promise that quantum computing methods for machine learning tasks can
match or even have superior accuracy in the future compared to their classical counterparts,
especially when it comes to noisy, limited, or sparse datasets. The goal for this research was not
to fully optimize any model, but to compare robustness in terms of number of trainable
parameters. If further optimization was implemented to all of the experimental models, both
CCNN and QCNN performance metrics would likely improve. But for the purpose of this
research, the results are suitable evidence to prove the hypothesis that quantum computers are
more robust to noisy input data.

​ In future work on this project, the main priority would be to scale up the number of qubits
used in the quantum circuits. This could involve running the circuits on a real quantum computer
over the cloud, or waiting until research allows an efficient method to simulate more qubits on a
classical processor. More qubits would allow for the use of datasets that contain higher resolution
images and RGB color images. At the moment, to perform binary encoding on each pixel of a
4x4 RGB (three channel) image to qubits, it would take (4*4*3) = 48 qubits which was not
feasible to simulate in a reasonable amount of time. And as the number of pixels in the images
increases, the number of qubits will continue to go up. Other encoding methods could be used to
reduce the number of qubits as well, which could be investigated in future research. As the
development of quantum computers continues to progress, more complex circuits and datasets
can be tested. Next, other methods of corruption could be added to the images and the models
could be run again in order to test robustness to different types of noisy inputs. There are some
open-source scripts on GitHub [23] for image corruption that include methods for generating
many realistic imperfections in photos such as rain, ice, or fog. They may be seen in any photos
taken outside or in situations where computer vision is used, such as the cameras on self-driving
cars. Therefore testing with these corruption methods could be useful for improving the QCNNs
ability to classify real-world data. Other CNN models could also be tested for both quantum and
classical implementations, or more adjustments could be made to the existing models to further
prevent overfitting and increase the classification accuracies. For example, early stopping could
be added to the current models to end training once validation accuracy begins to drop indicating
overfitting. More optimization techniques could be implemented to all models in this paper to
further research the robustness with different datasets. But overall, the findings of this paper
provide a baseline for experiments to compare the performance of QCNNs versus CCNNs.

References
[1] The IoT Academy. (2024, July 16). Classical computing vs quantum computing.
https://www.theiotacademy.co/blog/classical-computing-vs-quantum-computing/

[2] Garisto, D. (2022, June 8). What is quantum entanglement? IEEE Spectrum.
https://spectrum.ieee.org/what-is-quantum-entanglement

[3] Qiskit Community. Quantum convolutional neural networks. Qiskit. Retrieved January 20, 2025, from
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/11_quantum_convolutional_neural_networks.ht
ml

[4] Swayne, M. (2023, March 24). What are the remaining challenges of quantum computing? The Quantum Insider.
https://thequantuminsider.com/2023/03/24/quantum-computing-challenges/

[5] Oh, S., Choi, J., & Kim, J. (2020). A tutorial on quantum convolutional neural networks (QCNN). arXiv.
https://arxiv.org/pdf/2009.09423

[6] Khozaimi, A., & Mahmudy, W. F. (2024). New insight in cervical cancer diagnosis using convolution neural
network architecture. arXiv. https://doi.org/10.48550/arXiv.2410.17735

[7] Gálvez Jiménez, L., & Decaestecker, C. (2024). Impact of imperfect annotations on CNN training and
performance for instance segmentation and classification in digital pathology. arXiv.
https://doi.org/10.48550/arXiv.2410.14365

[8] Chuquimarca, L., Vintimilla, B., & Velastin, S. (2024). Classifying healthy and defective fruits with a multi-input
architecture and CNN models. arXiv. https://doi.org/10.48550/arXiv.2410.11108

[9] Wang, R., Nabney, I., & Golbabaee, M. (2024). Efficient hyperparameter importance assessment for CNNs.
arXiv. https://doi.org/10.48550/arXiv.2410.08920

[10] Lu, J., Tan, L., & Jiang, H. (2021). Review on convolutional neural network (CNN) applied to plant leaf disease
classification. Agriculture, 11(8), 707. https://doi.org/10.3390/agriculture11080707

[11] Ajlouni, N., Özyavaş, A., Takaoğlu, M., & et al. (2023). Medical image diagnosis based on adaptive hybrid
quantum CNN. BMC Medical Imaging, 23, 126. https://doi.org/10.1186/s12880-023-01084-5

[12] Eswara Rao, G. V., Rajitha, B., Srinivasu, P. N., Ijaz, M. F., & Woźniak, M. (2024). Hybrid framework for
respiratory lung diseases detection based on classical CNN and quantum classifiers from chest X-rays. Biomedical
Signal Processing and Control, 88, 105567. https://doi.org/10.1016/j.bspc.2023.105567

[13] Iqbal Tomal, S. M. Y., Shafin, A. A., Afaf, A., & Bhattacharjee, D. (2024). Quantum Convolutional Neural
Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification. arXiv.
https://arxiv.org/abs/2410.16344

[14] Chen, S., & Yao, N. (2023). Uncovering Quantum Many-body Scars with Quantum Machine Learning. arXiv.
https://arxiv.org/abs/2409.07405

https://www.theiotacademy.co/blog/classical-computing-vs-quantum-computing/
https://spectrum.ieee.org/what-is-quantum-entanglement
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/11_quantum_convolutional_neural_networks.html
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/11_quantum_convolutional_neural_networks.html
https://thequantuminsider.com/2023/03/24/quantum-computing-challenges/
https://arxiv.org/pdf/2009.09423
https://doi.org/10.48550/arXiv.2410.17735
https://doi.org/10.48550/arXiv.2410.14365
https://doi.org/10.48550/arXiv.2410.14365
https://doi.org/10.48550/arXiv.2410.11108
https://doi.org/10.48550/arXiv.2410.08920
https://doi.org/10.3390/agriculture11080707
https://doi.org/10.1186/s12880-023-01084-5
https://doi.org/10.1016/j.bspc.2023.105567
https://arxiv.org/abs/2410.16344
https://arxiv.org/abs/2410.16344
https://arxiv.org/abs/2409.07405
https://arxiv.org/abs/2409.07405

[15] Mayfield, J. D., & El Naqa, I. (2024). Evaluation of QCNN-LSTM for Disability Forecasting in Multiple
Sclerosis Using Sequential Multisequence MRI. arXiv. https://arxiv.org/abs/2401.12132

[16] Hibat-Allah, M., Gyurik, C., Coyle, B., Aboussalam, M., Romero, J., & Killoran, N. (2024). A framework for
demonstrating practical quantum advantage: Comparing quantum against classical generative models.
Communications Physics, 7(1), 68.

[17] Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15(12),
1273–1278. https://doi.org/10.1038/s41567-019-0648-8

[18] Mordacci, M., Ferrari, D., & Amoretti, M. (2024). Multi-class quantum convolutional neural networks. arXiv.
https://arxiv.org/pdf/2404.12741

[19] TensorFlow. Fashion MNIST. TensorFlow. Retrieved January 20, 2025, from
https://www.tensorflow.org/datasets/catalog/fashion_mnist

[20] Chollet, F. (2020). Classifying MNIST images with a convolutional neural network. Keras.
https://keras.io/examples/vision/mnist_convnet/

[21] Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near-term processors. arXiv.
https://arxiv.org/pdf/1802.06002

[22] TensorFlow Quantum. (n.d.). MNIST classification. TensorFlow. Retrieved January 20, 2025, from
https://www.tensorflow.org/quantum/tutorials/mnist#3_classical_neural_network

[23] Hendrycks, D. (2019). Robustness: A repository for testing the robustness of neural networks. GitHub.
https://github.com/hendrycks/robustness/blob/master/README.md

https://arxiv.org/abs/2401.12132
https://doi.org/10.1038/s41567-019-0648-8
https://arxiv.org/pdf/2404.12741
https://arxiv.org/pdf/2404.12741
https://www.tensorflow.org/datasets/catalog/fashion_mnist
https://www.tensorflow.org/datasets/catalog/fashion_mnist
https://keras.io/examples/vision/mnist_convnet/
https://arxiv.org/pdf/1802.06002
https://arxiv.org/pdf/1802.06002
https://www.tensorflow.org/quantum/tutorials/mnist#3_classical_neural_network
https://www.tensorflow.org/quantum/tutorials/mnist#3_classical_neural_network
https://github.com/hendrycks/robustness/blob/master/README.md

