The Space Cadet Mission

Annabelle Schmitte, Jeremy Andrews

Overview

Recap of project
Physics \& Math background
The direction of force on the system
How energy affects the system
Kepler's 1st, 2nd law
Progress Coding in Python
Our Conclusions
Future Work

Recap of Project

Using classical mechanics, investigating how two objects in space interact through gravitational force.

Math and physics oriented
Derived several important equations used throughout stellar mechanics including Kepler's laws

Used Python programming for numerical integration of differential equations

Physics Background

- All matter in the universe affects space around it through a gravitational force
- Strength of gravity is proportional to the product of the masses and inversely proportional to the square of the distance between the objects

F = force
G = gravitational constant
$\mathrm{m}=$ mass
$r=$ distance

- These natural processes can be described through mathematics

Force and Velocity

- An object does not need a force to maintain velocity
- In a vacuum an object would continue on a straight path, otherwise constant velocity unless acted on by an outside force
- Voyager probes were launched in 1977 and are still traveling today without any force to continue there velocity

The Two Body Problem

- Two objects can refer to two molecules, two asteroids, or even our sun and Earth
- Both bodies act on each other through a force
- Force and angular momentum allow the two bodies to stay in orbit (Newton's 1st law)

$r=$ distance between the masses
$\mathrm{R}=$ center of mass
$\mathrm{m}_{\mathrm{i}}=$ mass of a body
$\mathrm{x}_{\mathrm{i}}=$ distance from the origin to a body

Polar Coordinates

- We started the mathematical process with Cartesian coordinates (x, y) then converted to polar coordinates
- Polar coordinates are a two-dimensional coordinate system where each point on a plane is determined by the distance from a reference point (r) and an angle from a reference direction (ϕ)
- In a circular orbit r would remain constant

Polar vs. Cartesian Coordinates. Dec. 2019.

Why was this conversion important?

$r=$ distance between the masses
$\mathrm{m}_{\mathrm{i}}=$ mass of a body

Energy within the two-body system

- Energy is split between kinetic and potential energy
- There is a trade off between these two energies as the position of the orbiting object changes
- Max kinetic energy=max velocity
- Max potential energy=minimum velocity

Kepler's 2nd Law

Kepler's 2nd Law

- In a system with periodic motion in orbit, the distance between the two bodies will sweep out an equal area over an equal time
- Area and period are directly proportional

$$
A=\frac{1}{2} \frac{L}{\mu} \tau \quad \begin{aligned}
& \mathrm{A}=\text { area } \\
& \mathrm{L}=\text { angular momentum } \\
& \mu=\text { reduced mass } \\
& \tau=\text { period }
\end{aligned}
$$

Kepler's 1st Law

Kepler's 1st Law

This states that each planet's orbit around the sun is an ellipse.

We call this elliptical orbit the eccentricity of the orbit, or how noncircular the orbit is.

Eccentricity

The eccentricity of an orbit is a ratio that describes the shape of the orbit

$$
e=\sqrt{1+\frac{2 E_{t o t} L^{2}}{\mu k^{2}}}
$$

The orbit type depends on $E_{t o t}$ in the following manner:

$$
\begin{array}{lll}
E_{t o t}=-\frac{\mu k^{2}}{2 L^{2}}, & e=0, & \text { circle } \\
E_{\text {tot }}<0, & 0<e<1, & \text { ellipse } \\
E_{\text {tot }}=0, & e=1, & \text { parabola } \\
E_{\text {tot }}>0, & e>1, & \text { hyperbola. }
\end{array}
$$

Coding Exercise

Purpose was to enter known orbital data into python to produce plots

Used numerical integration of differential equations obtained through our derivations

Two bodies in this example were Earth and the moon

Produced plots comparing position to velocity, angle to angular momentum.

Data Provided:
Mass of Earth: 5.97*10^(24) kilograms
Mass of Moon: 7.35*10^(22) kilograms
Semi major axis of moon's orbit: $3.84^{* 10 \wedge 8}$ meters
Eccentricity of moon's orbit: 0.0549 (unitless)
Gravitational constant: 6.67*10^(-11) m^3/($\left.\mathrm{s}^{\wedge} 2^{*} \mathrm{~kg}\right)$, same everywhere in the universe

Plotting Position and Velocity as a Function of t

$r(t)=$ position
$v(t)=$ velocity
Velocity is how fast the position changes
Note that one period of $r(t)$ coincides with one period of $\mathrm{v}(\mathrm{t})$

When $v(t)=0$, our orbiting body is at its turn around point We can compare this plot to our potential energy curve

Comparing Potential Energy to Position and Velocity

Our Conclusions

Built a theoretical foundation of the physical background and better understanding of the complexity of the two body problem

Gained experience applying higher level calculus to a real world influenced problem
Learned how to use python coding to visualize mathematical and physical processes

Potential Future Work

Exploring the effect that other variables have on two bodies, including atmospheric drag and solar radiation pressure

Refining Python code to model these added variables
Examining the complexities of the three body problem

