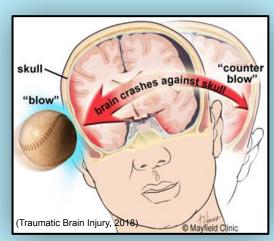
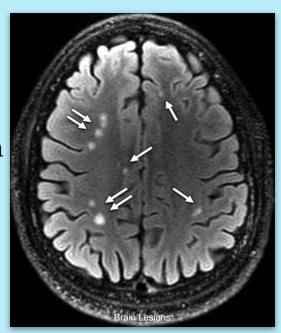

Traumatic Brain Injury

By: Lauren Griffith, Kelly Finno, and Molly Hansbarger


Overview

- Background
- Major Findings
- Methods
 - Study Design
 - o Inclusion/Exclusion Criteria
 - Statistical Analysis
- Results
 - Descriptive Statistics
 - Chi Square of Independence
 - Significant Results
- Discussion
- Recommendations for Future
- References


Background

- Traumatic Brain Injury (TBI)
 - Sudden damage to the brain caused by a blow or jolt
 - 1.5 to 2 million adults & children per year
- Brain regions associated w/ pathological aggression
 - \circ Frontal cortex \rightarrow aggressive behavior control
 - o Orbitofrontal cortex lesions → increased violence scores
 - o Neuropsychiatric abnormalities → violent criminal behavior

Major Findings of Literature Review

- Association of TBI & disruptive symptoms
 - Frontal cortex damage associated w/ neuropsychiatric behaviors & conditions
- TBI associated w/ increased risk of incarceration
 - For serious & chronic offenses in both men & women
 - High prevalence of TBI history in prison populations

Methods - Study Design

- Goal: investigate temporal relationship b/w TBI & aggressive behavior
 - Measured by *pre-injury incarceration* & *post-injury arrest*
- Cross sectional study design
 - Estimate magnitude of TBI & incarceration history
- Secondary data analysis
 - National Data and Statistical Center for Traumatic Brain Injury Model System (TBIMS)

• <u>Variables</u>:

Pre-injury Incarceration History, Post-Injury Arrest History, Gender, Age, Education,
 Employment, and Race

Methods - Inclusion/Exclusion Criteria

• <u>Data Cleaning & Recoding Variables</u>:

Gender:

- \circ 50,000 data points \rightarrow 6,492 data points
- o 7 variables

	1 = Female	1 = No	
Race:	2 = Male	2 = Yes	
1 = White	Z – Male:		

3 = Asian/Pacific Islander4 = Native American5 = Hispanic Origin

7 = Other

2 = Black

Age:	Education:
1 = 18-25 years old	1 = Less than high school diploma
2 = 26-35 years old	2 = High school diploma or GED
3 = 36-45 years old	3 = Some College Education
4 = 46-55 years old	4 = College Degree
5 = 56-65 years old	5 = Graduate Education

Pre-Injury History of Incarceration:

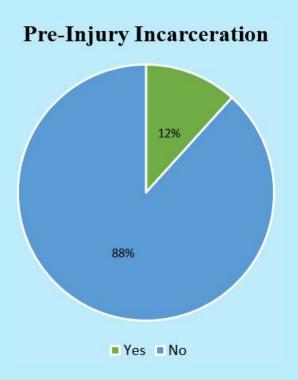
Employment:

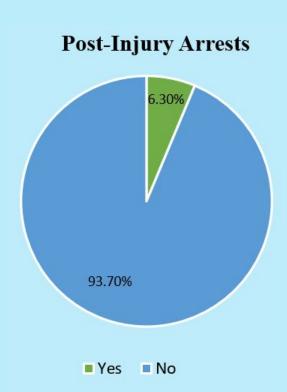
1 = No 2 = Yes

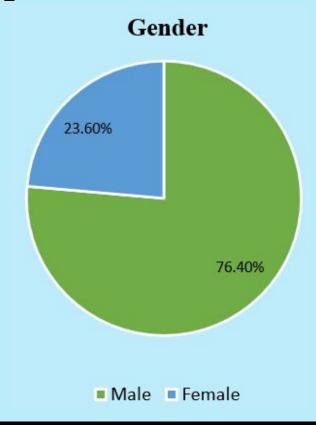
Arrests Post-Injury:

4 = Otivaland
1 = Student
2 = Employed
3 = Unemployed
4 = Retired

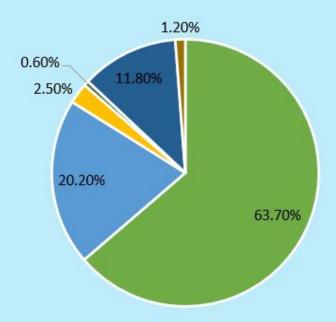
Methods - Statistical Analysis

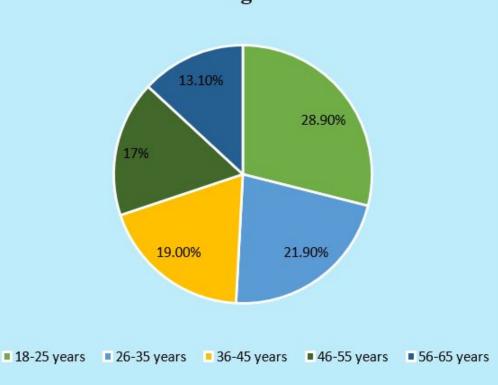


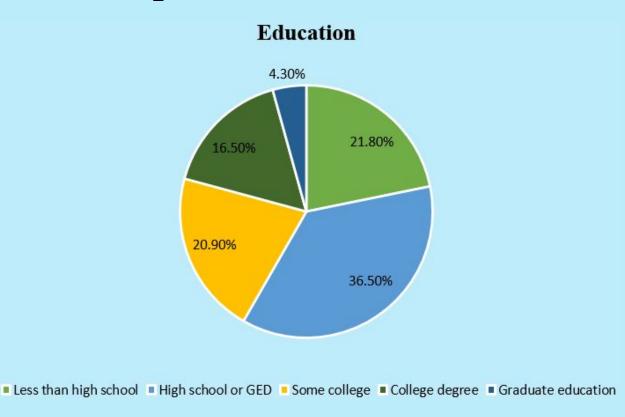

• <u>Descriptive Statistics:</u>


- Assess data frequencies for each variable
- \circ Original data vs. modified recoded data \rightarrow similar distribution

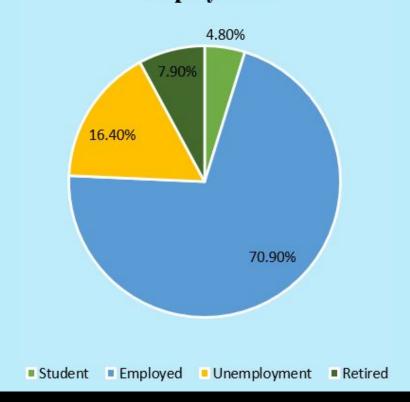
• Chi Square Test of Independence:


- Assess association b/w categorical variables
- \circ Cross Tabulation \rightarrow indicate which categories in each variable are significant
 - Pearson Chi Square
 - Bonferroni Correction





Race



Results - Descriptive Statistics Employment

α = 0.05

Significance by Pre-Injury Incarceration

- Race
 - White & Black participants significantly associated w/ a TBI after incarceration
- Gender
 - All categories significantly associated w/ a TBI after incarceration
- Education
 - All categories significantly associated w/ a TBI after incarceration
- Age
 - o <u>18-45 years old</u> & <u>56-65 years old</u> significantly associated w/ a TBI after incarceration
- Employment
 - o <u>Employed</u> & <u>unemployed</u> significantly associated w/ a TBI after incarceration

* NOTE: Post-Injury Arrests x Race (p = 0.052)

Discussion

Significance associated with Pre-Injury History of Incarceration →
association w/ sustaining a TBI while in prison or after being in prison

• Strengths:

- Quick & low cost w/ minimal ethical implications
 - De-Identified data

• Limitations:

- Unable to analyze deleted subjects
- No control over collection & inconsistency in variable definition
 - Pre-injury and post-injury
- o Only access to last 2 years of data & no geographical info

Discussion - Prison Reform Intervention

• <u>Aim</u>:

- o possibility of sustaining a TBI for previously/currently incarcerated individuals

Prison Staff Reform

- Common misconceptions about TBI (CM-TBI) questionnaire assesses TBI knowledge of prison staff
 - Identify barriers in identification & rehabilitation of offender TBI
- Intervention: require TBI training to improve awareness of TBI outcomes
 - Identify injuries & ensure offender receives care
 - Headway: The Brain Injury Association digital Seminar/Course

Discussion - Prison Reform Intervention

- Prison Health Education Reform
 - Health-promoting prison concept
 - The settings-approach useful in school & workplace environments in Europe
 - Focus on organization → not just individual
 - i.e. the "captive population"
 - Adoption of community education
 - Promotes TBI education in prison population

Recommendations for Future

- Scale up current study
 - Larger sample → arrests x race significant?
- Extrapolate missing data
 - Predict future data based on historical data
- Dataset for IRB approved research comprehensive
 - o Include geographic location

• <u>Interventions</u>:

- \circ Use CM-TBI questionnaire \rightarrow assess prison staff TBI education in US
- \circ Run pilot studies \rightarrow effective forms of education in the prison population

References

- Beasley, T. M., & Schumacker, R. E. (1995). Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. The Journal of Experimental Education, 64(1), 79-93.
- Durand, E., Chevignard, M., Ruet, A., Dereix, A., Jourdan, C., Pradat-Diehl, P. (2017). History of traumatic brain injury in prison populations: A systematic review. Annals of Physical and Rehabilitation Medicine, 60(2), 95-101. Retrieved from: https://www-clinicalkey-com.gcsom.idm.oclc.org/#!/content/journal/1-s2.0-S1877065717300258.
- O'Rourke C, Linden MA, Lohan M. (2018). Misconceptions about traumatic brain injury among probation services. Disabil Rehabil. May;40(10):1119-1126. doi: 10.1080/09638288.2017.1288274. Epub 2017 Feb 23. PMID: 28637141.
- Smith, D., Smith, R., & Misquitta, D. (2016). Neuroimaging and Violence. Psychiatric Clinics of North America, 39(4), 579–597. Retrieved from:
- Stéfan, A., & Mathé, J.-F. (2016). What are the disruptive symptoms of behavioral disorders after traumatic brain injury? A systematic review leading to recommendations for good practices . Annals of Physical Medicine and Rehabilitation, 59(1), 5–17. Retrieved from
 - https://www-clinicalkey-com.gcsom.idm.oclc.org/#!/content/journal/1-s2.0-S1877065715005783
- Traumatic Brain Injury. (2018). Mayfield Brain and Spine. Retrieved from: https://mayfieldclinic.com/pe-tbi.htm.
- Woodall J, Dixey R. Advancing the health-promoting prison: a call for global action. Glob Health Promot. 2017 Mar;24(1):58-61. Doi: 10.1177/1757975915581760. Epub 2016 Jul 9. PMID: 26156580