

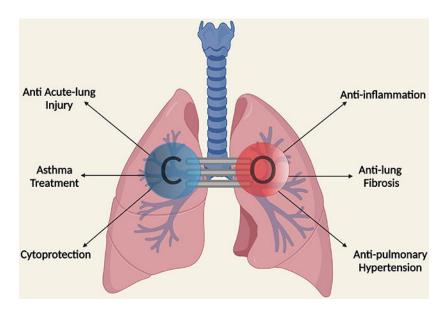
Published in final edited form as:

Curr Top Med Chem. 2021; 21(32): 2890–2908. doi:10.2174/1568026621666211116090917.

Carbon Monoxide as a Therapeutic for Airway Diseases: Contrast and Comparison of Various CO Delivery Modalities

Ravi Tripathi[†], Xiaoxiao Yang^{†,*}, Stefan W. Ryter[‡], Binghe Wang^{†,*}

[†]Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA


[‡]Proterris, Inc., Boston, MA, USA; and Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, 525 East 68th Street, Room M-522, Box 130, New York, NY 10065, USA.

Abstract

The quest to find novel strategies to tackle respiratory illnesses has led to the exploration of the potential therapeutic effects of carbon monoxide as an endogenous signaling molecule and a cytoprotective agent. Further, several studies have demonstrated the pharmacological efficacy of CO in animal models of respiratory disorders such as acute lung injury and pulmonary hypertension. Because of the gaseous nature of CO and its affinity for multiple targets, CO's controlled delivery has been a challenge. Past studies have employed different delivery modalities including CO gas, HO-1 inducers, and CO donors, sometimes leading to substantive variations of the resulting pharmacological effects for various reasons. Herein, this review summarizes and analyzes the differences among the profiles of various CO-delivery modalities in terms of their efficacy, dosing regimen, and pharmacokinetics in airways models. We believe that analysis of these issues will help in understanding the fundamental roles of CO in airways and eventually contribute to its development as a medicine for respiratory diseases.

Graphical Abstract

^{*}To whom correspondence should be addressed at xyang20@gsu.edu and wang@gsu.edu, Dr. Binghe Wang, Regents Professor and Georgia Research Alliance Eminent Scholar, Director, Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.

Keywords

Respiratory system; CO; HO-1 inducers; CO-RMs; cytokines

1. Introduction

Carbon monoxide (CO) is an endogenously produced gaseous molecule with important signaling roles in cellular physiology. ^{1, 2} CO is mainly produced during heme degradation by heme oxygenase enzymes (HO-1, HO-2), 3, 4 of which HO-1 represents the major inducible isoenzyme responsive to various forms of chemical and physical stress, whereas HO-2 is constitutively expressed. Though widely known as a poisonous gas, CO, like other recognized endogenous gaseous signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H₂S), manifests its toxicity dose-dependently at elevated non-physiological levels. Although similar in molecular weight, CO exhibits far less biological reactivity than the other known gaseous mediators, in that it binds solely to biological iron centers. Under normal physiological conditions, humans can harbor mid- to high-micromolar concentrations of CO in the form of carboxyhemoglobin (COHb, 2%) in the blood.² For smokers, this concentration can approach millimolar levels (routinely 8-9%).^{5, 6} Since the first report of the ability of CO to activate the soluble form of guanylyl cyclase (sGC) in 1994, ⁷ extensive studies over the past three decades have provided strong evidence supporting the pleiotropic effects of CO in antioxidation, 8 anti-proliferation, 9 anticoagulation, ¹⁰ anti-inflammation, ^{10, 11} antiapoptosis ¹² and organ protection. ^{2, 4, 13, 14} At the molecular level, CO exerts its effects by binding to proteins containing transition metals in specific redox states, especially hemoproteins in the ferrous state. 15 Such examples include hemoglobin (Hb), myoglobin, cytoglobin, neuroglobin, inducible nitric oxide synthase (iNOS), cytochrome c oxidase, cytochrome p-450, and nuclear receptors such as REV-ERBα/β. ^{15, 16} Other non-heme putative (and possibly indirect) targets of CO include the K_{ATP} ion channel, the epithelial sodium ion channel, Ca^{2+} -activated K^{+} (B K_{ca})

channel, and metalloproteinases containing zinc.^{3, 15} At therapeutic doses, the signaling functions of CO can lead to a variety of beneficial effects.²

Among its pleiotropic effects, the beneficial roles of CO in airway pathologies are considered very intriguing and exciting. Because of the widely known role of CO as an inhalation poison (at high levels), its beneficial effects in the pulmonary system are counter-intuitive and present unique research opportunities. Many publications have described the physiological roles¹⁷⁻¹⁹ of CO and its therapeutic functions in the respiratory system, ^{16, 17, 20} including pulmonary preservation, ²¹⁻²⁴ hyper-inflammation, ¹¹ lung ischemia-reperfusion (I/R) injury, ^{23, 25-30} lung transplantation, ^{12, 31-36} cardiopulmonary bypass (CPB),³⁷⁻⁴⁰ ventilator-induced lung injury (VILI),^{41, 42} acute lung injury (ALI) caused by infection⁴³ including sepsis and endotoxin-induced injury,⁴⁴⁻⁴⁸ ALI caused by hemorrhagic shock, ⁴⁹⁻⁵¹ and inhalation of particulate matter. ⁵² Much of the therapeutic effects of CO have been previously reviewed in different contexts. 13, 17, 20, 53-56 This review aims to provide a succinct and novel discussion of the application of CO in various delivery forms in the airways with emphasis on the comparison of doses required to elicit therapeutic effects. In the field of CO-based therapeutics, traditionally there are three methods of achieving CO delivery. First, inhaled CO (iCO) is the most widely used method to deliver pure CO. Many animal model studies based on iCO have been conducted. However, CO inhalation may have limitations related to the inconvenience of delivering a gas, which include challenges in controlling dosage and potential safety concerns to lab and clinical personnel. Second, there are CO donors available for delivering defined amounts of CO via various routes of administration, ^{13, 57} including intraperitoneal (i.p.), intravenous (i.v.), and oral (p.o.). Some of the most common CO donors used in animal model studies include metal-based CO-releasing molecules (CO-RMs) in the form of immobilized carbonyls^{13, 58-66} and organic CO prodrugs.^{13, 67-71} Third, there are known inducers of HO-1, which are used as "CO surrogates," with the assumption that HO-1 induction subsequently leads to elevated CO production. However, the functions of HO-1 are known to exceed that of CO production alone. On one hand, heme degradation also generates labile iron, which may cause redox imbalance and must be sequestered or reutilized; as well as biliverdin and its metabolite bilirubin, which have distinct biological activities including antioxidant effects. 72 Further, HO-1, in a truncated form, independently of heme degradation, can function as a transcription factor after nuclear localization. ^{73, 74} Thus, the effects of HO-1 overexpression are considered pleiotropic in that they potentially impact more processes and targets than the generation of CO alone.

Recently, there have been reports of intrinsic chemical reactivities and CO-independent activities of some of the most commonly used CO-RMs, ^{2, 75-87} which led to the proposal by Poole *et al.*, for a complete "reappraisal" of these CO donors. ⁷⁵ We have also characterized distinct chemical reactivities of select CO-RMs. ^{88, 89} Such results suggest that these molecules may have functions that transcend the delivery of CO. Given the discussions about the three modalities of "CO delivery," clearly there are substantive differences. However, in the CO field, results from the experiments using different "CO delivery" approaches often are collectively attributed to the effects of CO as the active component. In considering the development of appropriate therapeutics based on CO, it is important to analyze the similarities and differences among various approaches by comparing the

specific details, such as delivery forms, dosage, and efficacy as well as their effect on the pharmacokinetics of CO, whenever possible. Therefore, in this review, we will summarize the literature to present experimental results based on delivery approaches and analyze the data accordingly.

2. Comparison of the therapeutic effects of CO delivered by different modalities

The respiratory system is critical to sustain life owing to its primary function in gas exchange. The large surface area and delicate histological structures of the lungs render them vulnerable to various stress factors due to their direct exposure to environmental elements during the breathing process. Hazardous elements such as air pollution, 90 smoking, ^{91, 92} and pathogens ⁹³ can readily induce inflammatory pathogenesis to the airway tissues. Emphysema, chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, lung carcinoma, pneumonia, and acute respiratory distress syndrome (ARDS) rank among the common airway pathologies. There is mounting evidence showing that CO can attenuate inflammation and oxidative stress in these conditions. ¹³ Over a period of decades, CO has found several therapeutic applications in airways through studies using cell culture and animal models. ^{17, 19} Hyperoxia-induced lung injury resembles pathophysiological changes in human ARDS, such as inflammatory damage to the alveoli and apoptosis of lung cells, and is therefore often used as a model of ALI. One of the pioneering studies by Otterbein et al.⁹⁴ found that lethal hyperoxia (>98% O₂)-induced lung injury in rats was completely prevented by co-inhaling 250-500 ppm CO gas in the oxygen, while all control animals died within 72 h after exposure to hyperoxia without CO. These results suggest the potential of using CO as an anti-inflammatory and anti-apoptotic agent for therapeutic effects in ALI/ARDS. Subsequently, there have been a large number of studies using CO for treating airway pathologies. Table 1 summarizes such studies based on various CO delivery modalities.

In the following sections, we analyze the data in detail, and whenever possible, provide a contextual comparison of the activity and efficacy of different delivery forms of CO.

2.1. Studies Using CO Gas and CO-RMs

The majority of studies on the airway protective effects of CO have been conducted using CO gas, providing a high degree of assurance that the observed activities are CO-dependent. Therefore, the discussions also start with the results from CO gas inhalation followed by studies employing CO-RMs in the experiments. Such discussions can serve as good reference points for comparison against other approaches. As an intuitive and concise way to highlight research progress in this field, brief descriptions of the findings from each study are summarized in Table 1. Selected examples are described in depth in the following section.

2.1.1. Anti-Inflammatory Effects of CO—Inflammation represents a set of measures taken by the biological system in response to insults by diverse stimuli. In acute conditions, such measures help in the repair and healing of the damaged tissue and in fighting against

harmful xenobiotics.¹¹⁴ However, prolonged and uncontrolled inflammatory conditions often lead to acute and/or chronic diseases and disorders.¹¹⁵ Respiratory diseases such as COPD and asthma exhibit a high degree of inflammation, often leading to poor quality of life and death.¹¹⁵ Therefore, measures to keep inflammation in check are considered of primary importance. Anti-inflammatory effects of CO have attracted researchers to investigate the feasibility of its therapeutic application in respiratory disease (Table 1, Entry 1-16).

Respiratory infection caused by pathogens such as Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae provokes immune responses leading to the development of inflammation in the lungs. 116 In this aspect, CO has shown impressive properties in treating respiratory inflammation by preventing bacterial growth¹¹⁷ and modulating cellular signaling pathways. 118 In one study 96 of the effects of CO against Streptococcus pneumoniae-induced inflammation in a baboon (nonhuman primate) model (Table 1, Entry 2), CO (200 to 300 ppm) was administered for 60 to 90 minutes through inhalation in a manner to maintain the COHb level below 10%. CO administration was done 48 h after S. pneumoniae infection. A significant elevation was noted in the level of specialized pro-resolving mediators (SPM) such as plasma lipoxins (78.56 \pm 11.8 vs. 53.66 ± 13.2 pg/ml) and the eicosapentaenoic acid-derived resolvins (27.66 \pm 7.8 vs. 18.46 ± 5.9 pg/ml) compared to pre-CO exposure. SPMs are known for their antiinflammatory activities such as clearance of debris and prevention of PMN recruitment at the site of inflammation. 119 Further, in this study, CO also reduced the level of proinflammatory mediator TxB2 to 1.56 ± 0.2 pg/ml in comparison to 2.46 ± 0.1 pg/ml (pre-CO exposure). Thereby, CO acts in diverse ways to treat inflammation. In using CO-RMs as CO donors, one study⁹⁹ describes the effect of CORM-2 against *Pseudomonas* aeruginosa-induced inflammation in mice (Table 1, Entry 9). Pre-treatment of mice with 8 mg/kg CORM-2 for 2 h resulted in an approximately 3-fold decrease in the levels of pro-inflammatory mediators such as IL-1β, IL-6, TNF-α, and ICAM-1. At the same time, >3-fold decrease in the level of pro-inflammatory interleukin IL-8 was also noted. Of interest, a different reactivity profile of CO-RMs against *P. aeruginosa* has been reported by Motterlini et al. 117, 120 where CORM-2117 and CORM-3, 120 both ruthenium-based CO-RMs, showed significant bactericidal activity while CORM-A1¹¹⁷ (a non-ruthenium, boron-based CO-RM) elicited bacteriostatic effects. Another breakthrough study by Poole et al. 75 delineated cytotoxic activity of CORM-3 against E. coli as originating from ruthenium interaction with thiols, not from CO. Therefore, a wide range of mechanisms of action was seen among different CO delivery forms to achieve anti-inflammatory activity against pathogen-induced inflammation. However, pharmacological effects of CORM-2 in the above-discussed experiments require more thorough investigations due to the reported 75,87 reactivity of the ruthenium cations as discussed earlier.

Apart from the distinctive chemical profiles of CO-RMs, a contrast in a dose-response relationship has also been observed with CO gas in different experimental models. A study by Zhou *et al.*¹² assessed the effects of CO on brain-dead mice (Table 1, Entry 17). Abrupt and severe elevation of intracranial pressure following brain death subsequently results in ALI. ¹²¹ In such conditions, donor lungs are not suitable for transplantation. This study examined the effects of CO on brain death-induced ALI models. In the study,

brain death was produced by inflating a balloon catheter inserted into the intracranial cavity and injecting saline at 20 µl/min through it. Further, brain-death was confirmed by complete cessation of electrocerebral activity as assessed by electroencephalogram. After confirmation of brain death, inhalation of 250 ppm CO for 2 h alleviated lung injury via inhibition of pro-inflammatory (IL-6, TNF-a) and proapoptotic caspase-3 mRNA expression. Mean serum levels of IL-6 were 100 ± 26 pg/mL in the CO-treated group vs. 130 ± 34 pg/mL in the untreated group, while mean serum TNF- α levels were suppressed by CO (247 \pm 92 pg/mL) as compared with that of the air-treated group (389 \pm 109 pg/mL). In higher mammals, a study by Mitchell et al.⁹⁸ probed the anti-inflammatory role of CO in cynomolgus macaques (Table 1, Entry 6). Exposure to LPS (15 mg/m³, 5 min) led to a substantial pro-inflammatory response. Two different doses of CO (500 and 250 ppm, 6 h each) were administered (pre-treatment) to assess the therapeutic doses required to prevent animals from LPS-induced inflammatory damage. At 500 ppm, a 67% reduction in neutrophil levels was observed vs. no effect at 250 ppm. Further, 500 ppm of CO reduced the level of TNF-a by 40% in BAL, while surprisingly no significant effects were observed on the levels of IL-6 and IL-8 compared with air-exposed animals. From a basal level of ~4.4% COHb, exposure to 500 ppm CO resulted in an increase of COHb level to an average of 34%, while an increase to 25% was seen in the case of 250 ppm inhalation for 6 h. Interestingly, despite achieving 25% COHb in the systemic circulation, neither therapeutic effects nor toxicity was observed. In contrast, 250 ppm of CO showed pronounced efficacy in other experimental animals such as pigs^{37, 38} and mice⁹⁵ along with the fact that >20% COHb is known to cause certain signs of toxicity in humans. 122 Along this line, a study by Bathoorn et al. 113 applied 100-125 ppm CO to human subjects (COPD patients, Table 1, Entry 36). In this report, inhalation of 100-125 ppm CO for 2 h every day for 4 consecutive days showed no significant reduction in the number of neutrophils in sputum samples of stable-COPD patients compared with placebo group (p-value = 0.34). Interestingly, the number of sputum eosinophils decreased (p-value = 0.07) in the same studies. Both eosinophils and neutrophils belong to the class of granulocytes of white-blood cells responsible for defense against xenobiotics. As compared to the placebo group (0.2% median COHb), inhalation of 100 ppm CO led to a median COHb level of 2.6% while 125 ppm CO to 3.1%. Of course, one cannot directly compare results across species. However, these data do bring out the intricacies of variations among species in terms of dose-response relationship and efficacy.

NLRP3 (nucleotide-binding domain and leucine-rich repeat protein-3) inflammasome activation is a commonly used experimental model 123 to study pro-inflammatory changes in response to various stimuli such as microbial infections, $^{124\text{-}126}$ ATP, 127 LPS, $^{125,\ 127}$ environmental irritants such as particulate-matter (PM), 124 and silica. 128 Once activated, the NLRP3 inflammasome causes the release of pro-inflammatory interleukins 123 such as IL-18, IL-18, and pyroptosis. 129 In addition, the roles of NLRP3 in inducing pro-inflammatory responses in airway diseases such as asthma $^{130\text{-}134}$ have been studied. To understand the anti-inflammatory effects of CO in various biological systems, NLRP3 inflammasome activation has proven to be very useful. A research study by Jung *et al.* 91 describes the actions of CO in an NLPR3 inflammasome model (Table 1, Entry 5). In this study, bone marrow-derived macrophages (BMDMs) were challenged with LPS (10

ng/mL) for 6 h followed by ATP (2 mM) for 1 h with or without CO gas (250 ppm). CO treatment caused >80% reduction in the level of IL-1β and IL-18 compared to the air-treated group. In another experiment, CO treatment resulted in a decrease in the number of depolarized mitochondria (19.8%) with respect to air treatment (35.8%). As reported, pro-inflammatory stimuli elicit higher production of mtROS, which is then associated with the lowering of mitochondrial membrane potential (Ψ_{m}), and subsequent NLRP3 inflammasome activation. 135, 136 Having examined salutary effects of CO gas in NLRP3 inflammasome model, a study by Kim et al. 102 provides detail analysis of properties of CORM-2 and CO gas using the same model (Table 1, Entry 12). CORM-2 pre-treatment for 30 mins augmented LPS (1 µg/ml)-induced expression of pyrin, a negative regulator of NLRP3, in a human leukemic cell line (THP-1) in a dose- and time-dependent manner. CORM-2 at concentrations of 10, 20, and 40 µM upregulated pyrin mRNA expression. The effect of 250 ppm of CO gas was also comparable to CORM-2 (20 µM) on the level of pyrin in cell culture studies as observed by increase in pyrin mRNA expression by ~2.5-fold at the 12 h time-point. In addition, a dose- and time-dependent effect was observed on the inhibition of IL-1β secretion via induction of IL-10 mRNA transcription by CORM-2 or CO gas, individually. The effect of 20 µM CORM-2 on the secretion of IL-10 was more pronounced (~3-fold) than 250 ppm CO in the time-dependency assay. However, direct comparison can be challenging because of the untoward chemical reactivities of ruthenium cation present in the CO-RMs as discussed above. 75, 88, 89

2.1.2. Protection against Pulmonary Hypertension—Pulmonary hypertension (PH) is a clinical condition characterized by high (25 mm Hg) mean pulmonary arterial pressure (PAP) under resting conditions. 137 Commonly, patients with congenital heart disease, high blood pressure, emphysema, HIV infection, and liver disease are at an increased risk of developing PH. ^{137, 138} As a result of this condition, oxygen concentrations in blood vessels in the lungs decrease significantly. 139 Given the vasomodulatory properties ¹⁴⁰, ¹⁴¹ of CO, experiments have been conducted to treat PH using CO (Table 1, Entry 31-33). One of the earliest studies by Zuckerbraun et al. 108 demonstrated the beneficial effect of CO in hypertensive rats (Table 1, Entry 31). In this study, monocrotaline sodium-treated rats developed pulmonary arterial hypertension (PAH) over a period of 6 weeks. Ventilation with 250 ppm CO for 1 h led to an increase in basal COHb level from $1.2 \pm 0.5\%$ to $19 \pm 1.5\%$. Further, early treatment with 250 ppm CO at 1-14 days for 1 h/d significantly prevented PH as assessed by a ~57% reduction in mean PAP. Other indicators of progressive PH such as RV mass and ratio of RV to body weight (RV/BW) were also reduced by ~60% and ~67%, respectively, compared to air treatment. After the development of PAH, CO administration at 15-28 days and 29-42 days showed substantial improvement in PAH and prevented further development. In addition, histopathological analysis of the pulmonary arteriole displayed increased medial expansion of the smooth muscle indicating a remarkable decrease in pulmonary arterial hyperplasia after 6 weeks of treatment. Thereby, these results demonstrated promise of using CO in PH therapy. Recently, a study by Pak et al. 109 assessed the direct effects of CORM-2, CORM-3, and CO gas on pulmonary vasomodulation in isolated ventilated and perfused mouse lungs (Table 1, Entry 32). Under hypoxia, CO gas (10% CO, 5% CO₂, 1% O₂, balance N₂) reduced PAP significantly (~25%) when applied 5 mins prior to the hypoxic ventilation. In contrast,

pre-treatment with CORM-2 and CORM-3 showed no significant effect on PAP. However, under normoxia, CORM-2 and CORM-3 and their inactive forms (iCORM-2 and iCORM-3) caused a rise in PAP in a concentration-dependent manner. The experiments used CORM-2 and iCORM-2 at 0.5, 5, 50, and 500 μM in the study, while the doses of CORM-3 and its inactive form used were 10, 50, and 500 μM. Another study¹¹⁰ was conducted to examine the effects of CORM-3 on PH in mice subjected to hypoxia (9%) for 15 days. An oral dose of CORM-3 (50 mg/kg/day) was given to mice during hypoxia. In contrast to the results of Pak *et al.*,¹⁰⁹ this study reported strong vasomodulatory effects of CORM-3 on PAP in mice as indicated by measuring RSVP. Administration of a single oral dose of 50 mg/kg/day CORM-3 prevented the development of PH as indicated by a significant reduction in RSVP (~50%), RV hypertrophy index (~17%), and pulmonary artery muscularization (~20%) of the chronically hypoxic mice. Thereby, these data reflect contrasting pharmacological profiles of some of the commonly used CO delivery forms.

2.1.3. Application of CO in Lung Transplantation—Lung transplant is the last resort in end-stage pulmonary diseases and often involves reperfusion³¹ and surgery-related injuries as well as infection. 142 Considering the potential application of CO as an antiinflammatory and cytoprotective agent, CO has been explored widely in pre-/post-operative organ transplant care (Table 1, Entry 25-30). Earlier experiments on CO treatment of donors for the transplantation of organs such as lung, 26, 143 kidney, 144 islets, 145 and liver 146 have shown significant beneficial effects and improved graft survival. Recently, Meng et al.34 used 500 ppm CO with a mixture of 40% O₂ + remaining N₂ to inflate rat lungs before transplantation and examined pulmonary graft function under cold ischemic conditions (stored at 4 °C, 3 h). Pulmonary graft function evaluated by oxygenation showed that CO exposure enhanced oxygenation of the graft (381 ± 58 mmHg) compared to the control group (308 \pm 78 mmHg) treated with 40% O₂ and 60% N₂. Further, exposure to CO ameliorated ischemia-induced lung injury by reducing serum concentrations of IL-8 (279 \pm 46 pg/mL vs. 456 ± 63 pg/mL in the control group) and TNF- α (377 \pm 59 pg/mL vs. $520 \pm$ 91 pg/mL in the control group). CO exposure also elevated the concentration of superoxide dismutase to 64 ± 17 U/mg protein as compared to the control (40 ± 9 U/mg protein).

In another report, a 250-ppm dose instead of 500 ppm was used to examine the effects of CO in lung transplantation. In a post-operative application study, Goebel *et al.*³⁹ administered CO (250 ppm, 1 h) to study its anti-inflammatory effects in a pig model (Table 1, Entry 18). CO inhalation 1 h after CPB led to an increase of 8-10 folds in COHb level from baseline and reduced the expression of pro-inflammatory factors TNF- α (521 \pm 77 pg/mL *vs.* CPB 821 \pm 97 pg/mL) and IL-6 (304 \pm 81 pg/mL *vs.* 860 \pm 153 pg/mL). The level of IL-10 was highly elevated by CO treatment after 1 h CPB (278 \pm 40 pg/mL *vs.* CPB 63 \pm 20 pg/mL). Further, Zhou *et al.*³⁶ compared the effects of 250 ppm of CO to 500 ppm in brain-dead rat lung donors (Table 1, Entry 28). Brain-dead rats inhaled either 250 or 500 ppm of CO with 40% O₂ for 2 h. The CO treated group showed an improved anti-inflammatory response over the control group. For example, the concentration of IL-6 in the control group was 138 \pm 44 pg/ml as compared to 104 \pm 20 pg/mL and 76 \pm 17 pg/mL in groups treated with 250 ppm and 500 ppm of CO, respectively. Furthermore, a 250 ppm CO dose reduced TNF- α level to 46 \pm 8 pg/mL while a 500-ppm dose reduced TNF- α to 30 \pm 8 pg/mL as

compared to 60 ± 11 pg/mL in the control group. The concentration of anti-inflammatory IL-10 was enhanced by CO treatment– 210 ± 53 pg/mL and 297 ± 55 pg/mL in 250 ppm and 500 ppm dosing groups, respectively, compared to the control group (88 ± 26 pg/mL). The effects were more pronounced with 500 ppm than 250 ppm. These observations reflect dose-dependent effects of CO gas in pre-/post-operative lung transplant care.

2.1.4. Protection Against Lung Injury—The American Thoracic Society and the European Society of Intensive Care Medicine classify Acute Respiratory Distress Syndrome (ARDS) as a severe form of ALI. 147-149 ARDS is characterized by the acute onset of respiratory failure, severe hypoxemia (PaO₂/FiO₂ ratio 200 mmHg), hypercapnia, and increased lung permeability. 150 ALI manifests inflammatory reactions in response to diverse stimuli such as sepsis, hyperoxia, pathogens, physical and chemical agents. 151-153 CO has shown a high degree of effectiveness against ALI¹⁵³ (Table 1, Entry 17-24). One particular example worth noting is the protective effect of CO against ventilation-induced ALI (VILI). Faller et al.⁴¹ investigated pre-treatment and co-treatment of CO in mice undergoing mechanical ventilation for 6 h (Table 1, Entry 19). As a control, ventilation with air for 6 h provoked strong pulmonary inflammation, exemplified by transmigration of inflammatory cells (e.g., neutrophils), release of pro-inflammatory cytokines (e.g., IL-1β), and histological changes to the lung indicated by an increase in alveolar wall thickening. The study found that 1 h pre-treatment with spontaneous breathing of 250 ppm CO followed by 6 h of air ventilation did not attenuate VILI-related inflammation. However, co-treatment with CO during 6 h air ventilation produced a significant protective effect against VILI. Among different co-treatment regimens, continuous ventilation with 250 ppm of CO throughout a 6 h ventilation period offered the highest protective effect. In BAL, IL-1β level was the same as the non-ventilated group; neutrophil infiltration decreased by 75%. Alveolar wall thickness and VILI score also improved significantly. At the end of the persistent co-treatment during 6 h ventilation, COHb was found to be 29.7 \pm 0.6%. Apart from this, the study also included other co-treatment regimens such as CO exposure for the initial 1 or 3 h at the onset of 6 h air ventilation (early phase) or CO exposure starting at 3 or 5 h time point to the end of 6 h air ventilation (late phase). Significant protective effects were observed after these dosing regimens, though to a lesser extent than the persistent co-treatment experiment. COHb levels in the early phase co-treatment groups were similar to the background level of the non-ventilated control group (about 5%), presumably due to the short CO-exposure time and wash-out effect. In the late phase co-treatment groups, COHb levels were measured to be 29.1 \pm 0.2% and 24.6 \pm 0.6% for 1 h and 3 h CO exposure, respectively. The results demonstrated that adding low-dose CO in the air during mechanical ventilation could offer protective effects against VILI. The protective effect of short-term exposure to CO in the early phase of ventilation was almost as good as the long-term co-treatment, however, with much less systemic CO exposure dosage and presumably less systemic toxicity.

Another study by Kanagawa *et al.*⁵⁰ showed that CO was able to prevent lung injury in rats as a result of HSR (Table 1, Entry 22). In the study, rats were ventilated with 250 ppm CO for 1 h before the onset of hemorrhagic shock and 3 h post-resuscitation. The COHb level after 1 h rose to $19.40 \pm 0.88\%$ in CO-treated animals compared with 1.75%

± 0.26% in control group (air-treated). CO inhalation lessened HSR-induced injury as demonstrated by a ~4-fold reduction in the accumulation of neutrophils in the lung after HSR. CO reduced gene expression of TNF-α (~30%) and iNOS (~50%) in comparison to air-treated rats. Further, a significant elevation (~1.5-fold) in the level of IL-10 was noted in the CO inhalation HSR group. In another HSR-induced ALI model, Kumada *et al.*⁴⁹ applied CORM-3 in rats (Table 1, Entry 24). In the study, 4 mg/kg of CORM-3 was administered intravenously immediately after resuscitation. CORM-3 conferred protective effects as reflected in the reduction in the number of inflammatory cells in BAL by ~40% compared to the untreated group. Further, mRNA expression of TNF-α and iNOS were ~2-fold lower in the ~3 treated group than the control group. Expression of IL-10 mRNA was found to be elevated by ~2-fold by CORM-3 treatment. These experiments suggest effectiveness of both CO gas and CORM-3 in HSR induced ALI. However, more research involving different types of CO-RMs will help establish the relative efficacy among different CO-RMs and CO gas.

3. Upregulation of HO-1 for the treatment of airway disease

Many studies have shown the protective effects of HO-1 activation on various airway pathologies, including attenuation of lung inflammation through activation of HO-1 by rosiglitazone, ^{154, 155} endotoxin-induced lung injury through activation of HO-1 by dimethyloxalylglycine (DMOG), ⁴⁶ limb-ischemia induced lung injury through activation of HO-1 by cobalt protoporphyrin (CoPP), ¹⁵⁶ TNF-induced lung injury ^{104, 105} and LPS-induced lung injury ¹⁰¹ through activation of HO-1 by CORM-2; TNF-induced lung injury through activation of HO-1 by mevastatin; ⁵⁷ and endotoxin-induced lung injury through HO-1 activation by hemin. ^{48, 157} A concise summary of a range of HO-1 inducers along with their pharmacological effects in different experimental models is provided in Table 2. Further, selected studies are discussed in detail in the following sections.

Recently, Shi *et al.*¹⁵⁷ investigated the effect of HO-1 upregulation in LPS-challenged isolated macrophages cells and in rats (Table 2, Entry 7). In cellular studies, hemin (20 μ M) pre-treatment for 1 h enhanced viability of LPS (1 μ g/ml) treated RAW 264.7 cells to 76.7 \pm 9.3% from 54.3 \pm 6.9% of the control group. Of note, HO-1 enzymatic activity (nmol bilirubin/h/mg protein/h) was determined by monitoring the amount of bilirubin formed through heme degradation in 1 h and normalized with HO-1 protein concentration by using commercial HO-1 ELISA kits. Further, hemin administration (50 mg/kg, i.p.) in rats 1 h before LPS (5 mg/kg)-induced injury increased the survival rate of rats to 90% at 6 h as compared to 75% in the LPS-treated group. Additionally, histological analyses showed that hemin treatment attenuated lung injury in septic rats by preventing alveolar wall thickening, leukocyte infiltration, and hemorrhage.

Furthermore, a study 48 compared the effects of CORM-2 and hemin on RAW 264.7 cells and in rats (Table 2, Entry 8). In LPS (1 µg/ml)-stimulated RAW 264.7 cells, pre-treatment with CORM-2 (100 µM, 1 h) decreased the level of ROS to 116.62 \pm 3.54% of the control group without LPS stimulation as compared to 132.21 \pm 8.07% of the control group without CORM-2 treatment. In addition, hemin (20 µM, 1 h) pre-treatment reduced ROS levels to 118.08 \pm 3.48% from 133.83 \pm 7.56% in the LPS-group with respect to the control group.

The ROS suppression effects of both CORM-2 and hemin were reversed by administration of zinc protoporphyrin IX (10 µM, 0.5 h), an HO-1 inhibitor. Such results support a strong role of HO-1 in the observed pharmacological effects. Another interesting study by Zhang et al. 160 used multiple CO-RMs and a HO-1 inducer to inhibit inflammation in 16HBE14ocells (Table 2, Entry 9). In these experiments, poly-L-arginine (PLA) was employed to challenge 16HBE14o- cells to elicit a pro-inflammatory response. Cells were stimulated by PLA (1 μM) with or without hemin (10 μM). Hemin treatment (2 h prior to PLA exposure) resulted in upregulation of HO-1 by several fold. It was found that hemin attenuated apical secretion of IL-6 and IL-8 by $37.39 \pm 8.89\%$ and $70.12 \pm 7.45\%$, respectively via HO-1 upregulation. Under the same experimental setting, effects of CORM-A1, CORM-2, and CORM-3 were also evaluated. Upon incubation for 30 min prior to PLA exposure, all the CO-RMs (10, 30, and 100 µM) significantly diminished the release of IL-6, while IL-8 suppression was only significant with CORM-2 and CORM-3 treatment. It is important to mention that among the three CO-RMs used, only CORM-A1 is a transition metal-free compound. Nevertheless, the results highlight the differential reactivity of ruthenium-based and non-ruthenium-based CO-RMs in biological studies. Furthermore, in the current study it was also found that CORM-2 treatment 30 min prior to PLA exposure reduced the mRNA expression of HO-1 and HO-2 by ~50% in comparison to both PLA exposed and control groups. However, western blot studies showed that protein concentrations of both HO-1 and HO-2 remained unaffected in the cells. Surprisingly, iCORM-2 also had a similar effect in cellular studies. In contrast, there are studies that described the upregulation of HO-1 by CORM-2 (e.g., Table 1- Entry 12, ¹⁰¹ 16, ¹⁰⁴ and 17¹⁰⁵). Such results raise discussion of issues related to the inherent activity of certain CO-RMs beyond CO release alone. Further, the results also suggest the need for appropriate control compounds capable of providing results without interference from transition metals.

4. Conclusion and Future Directions

CO has been extensively studied for its beneficial properties in models of airway disease. It is clear that CO has beneficial effects at the appropriate dose. However, delivery methods seem to make quite a difference as well; and the issue goes beyond the difference in route of delivery. In this context, inhalation offers the purest form of CO, though dosage control and safety risks are of concern. Stimulation of HO-1 over-expression offers a means of enhanced endogenous CO production. However, HO-1 expression leads to more biological sequelae than CO production. Further, even in the context of CO production, the correlation of HO-1 over-expression and CO production is affected by availability of heme and location of HO-1. In using different forms of CO donors, there are known differences compared with inhaled CO and among different CO donors. For example, ¹⁰⁹ CORM-2 and CORM-3 were ineffective in reducing PAP under hypoxia, while CO gas showed significant efficacy under the same conditions. In another study, CORM-3 displayed effectiveness in controlling PH. 110 Of further concern are potential CO-independent effects coming from the "carrier" portion of various CO donors. For example, the "inactive" forms of CO-RMs have shown uncharacteristic biological effects in many studies. 109, 160 In some cases, such effects were even comparable to their CO-releasing counterparts in terms of potency. ¹⁶⁰ Such outcomes coupled with literature precedents clearly point to CO-independent effects

of certain CO-RMs.^{75, 88, 89} We hope the summary of the beneficial effects of CO in the airway and the discussions of the differential effects depending on the delivery forms in use will emphasize the therapeutic potential of CO and highlight the need for further in-depth studies to clarify potential confusion in the field. Further progress in CO donor development will require identification and full characterization of CO-dependent *vs.* CO-independent effects. Along this line, there is a clear need to think beyond CO-release alone and to take into consideration pharmaceutical developability issues for eventual human use. Continued development of iCO for clinical use awaits further safety and efficacy trials in pulmonary and non-pulmonary indications.

Acknowledgements.

We gratefully acknowledge the partial financial support of our CO-related work by the National Institutes of Health (R01DK119202), the Georgia Research Alliance through an Eminent Scholar endowment, the Molecular Basis of Disease program for a graduate fellowship to RT, and internal resources at Georgia State University.

References

- Wu L; Wang R, Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005, 57, 585–630. [PubMed: 16382109]
- 2. Yang X-X; Ke B-W; Lu W; Wang B-H, CO as a therapeutic agent: discovery and delivery forms. Chin J Nat Med 2020, 18 (4), 284–295. [PubMed: 32402406]
- 3. Hopper CP; De La Cruz LK; Lyles KV; Wareham LK; Gilbert JA; Eichenbaum Z; Magierowski M; Poole RK; Wollborn J; Wang B, Role of Carbon Monoxide in Host–Gut Microbiome Communication. Chem Rev 2020, 120 (24), 13273–13311. [PubMed: 33089988]
- 4. Yang X; de Caestecker M; Otterbein LE; Wang B, Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2020, 40 (4), 1147–1177. [PubMed: 31820474]
- 5. Hart CL; Smith GD; Hole DJ; Hawthorne VM, Carboxyhaemoglobin concentration, smoking habit, and mortality in 25 years in the Renfrew/Paisley prospective cohort study. Heart 2006, 92, 321–4. [PubMed: 15939724]
- Ernst A; Zibrak JD, Carbon monoxide poisoning. N Engl J Med 1998, 339 (22), 1603–8. [PubMed: 9828249]
- 7. Stone JR; Marletta MA, Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994, 33 (18), 5636–40. [PubMed: 7910035]
- 8. Parfenova H; Leffler CW; Basuroy S; Liu J; Fedinec AL, Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab 2012, 32 (6), 1024–34. [PubMed: 22354150]
- 9. Vítek L; Gbelcová H; Muchová L; Vá ová K; Zelenka J; Koní ková R; Šuk J; Zadinova M; Knejzlík Z; Ahmad S; Fujisawa T; Ahmed A; Ruml T, Antiproliferative effects of carbon monoxide on pancreatic cancer. Dig Liver Dis 2014, 46 (4), 369–375. [PubMed: 24433995]
- 10. Adach W; Olas B, A comparison of multifunctional donors of carbon monoxide: Their anticoagulant, antioxidant, anti-aggregatory and cytotoxicity activities in an in vitro model. Nitric Oxide 2020, 97, 20–26. [PubMed: 32006712]
- 11. Di Pietro C; Öz HH; Murray TS; Bruscia EM, Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020, 11, 1059. [PubMed: 32760278]
- 12. Zhou H; Liu J; Pan P; Jin D; Ding W; Li W, Carbon monoxide inhalation decreased lung injury via anti-inflammatory and anti-apoptotic effects in brain death rats. Exp Biol Med (Maywood) 2010, 235 (10), 1236–43. [PubMed: 20810760]
- 13. Motterlini R; Otterbein LE, The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010, 9 (9), 728–743. [PubMed: 20811383]

14. Ryter SW; Alam J; Choi AM, Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006, 86 (2), 583–650. [PubMed: 16601269]

- 15. Motterlini R; Foresti R, Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol 2017, 312 (3), C302–c313. [PubMed: 28077358]
- 16. Kim HP; Ryter SW; Choi AM, CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 2006, 46, 411–49. [PubMed: 16402911]
- 17. Ryter SW; Ma KC; Choi AMK, Carbon monoxide in lung cell physiology and disease. Am J Physiol Cell Physiol 2018, 314 (2), C211–c227 and references cited therein. [PubMed: 29118026]
- 18. Morse D; Lin L; Choi AM; Ryter SW, Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med 2009, 47, 1–12. [PubMed: 19362144]
- 19. Ruiz J; Ameredes BT, The cellular effects of carbon monoxide in the airway. Curr Mol Med 2013, 13 (1), 94–108. [PubMed: 22834843]
- 20. Slebos DJ; Ryter SW; Choi AM, Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respir Res 2003, 4, 7. [PubMed: 12964953]
- 21. de Perrot M; Keshavjee S, Lung preservation. Semin Thorac Cardiovasc Surg 2004, 16 (4), 300–308. [PubMed: 15635534]
- 22. Fujiwara A; Hatayama N; Matsuura N; Yokota N; Fukushige K; Yakura T; Tarumi S; Go T; Hirai S; Naito M; Yokomise H, High-Pressure Carbon Monoxide and Oxygen Mixture is Effective for Lung Preservation. Int J Mol Sci 2019, 20 (11).
- Kohmoto J; Nakao A; Sugimoto R; Wang Y; Zhan J; Ueda H; McCurry KR, Carbon monoxidesaturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2008, 136 (4), 1067–75. [PubMed: 18954651]
- 24. Dong B; Stewart PW; Egan TM, Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors. J Thorac Cardiovasc Surg 2013, 146 (2), 429–436.e1. [PubMed: 23260460]
- 25. Jia XM; Zhou ZX; Huang JJ; Chu W; Guan QH, [Protective effects of the induction of heme oxygenase-1 on ischemia reperfusion lung injury: in vivo experiment with rats]. Zhonghua Yi Xue Za Zhi 2007, 87 (17), 1211–3. [PubMed: 17686245]
- Sahara H; Shimizu A; Setoyama K; Okumi M; Oku M; Samelson-Jones E; Yamada K, Carbon monoxide reduces pulmonary ischemia-reperfusion injury in miniature swine. J Thorac Cardiovasc Surg 2010, 139 (6), 1594–1601. [PubMed: 19909986]
- 27. Wang W; Wang F; Shi L; Jia X; Lin L, Role of heme oxygenase-1/carbon monoxide system in pulmonary ischemia-reperfusion injury. Interact Cardiovasc Thorac Surg 2009, 9, 159–62. [PubMed: 19477871]
- 28. Zhou JL; Ling YL; Jin GH; Zhang JL; Shi ZL; Huang XL, Endogenous carbon monoxide attenuates lung injury following ischemia-reperfusion in the hind limbs of rats. Sheng Li Xue Bao 2002, 54, 229–33. [PubMed: 12075470]
- 29. Zhou JL; Zhu XG; Lin Y; Ling YL; Shao XZ; Zhang GS, Change and role of heme oxygenase-1 in injured lungs following limb ischemia/reperfusion in rats. Chin J Traumatol 2004, 7 (3), 131–7. [PubMed: 15294108]
- 30. Zhou J; Zhu X; Zhang G; Ling T, Protective effect of hemoglobin-induced heme oxygenase-1 on injured lungs caused by limb ischemia-reperfusion in rats. Chin J Traumatol 2002, 5 (2), 86–91. [PubMed: 11904069]
- 31. Fiser SM; Tribble CG; Long SM; Kaza AK; Cope JT; Laubach VE; Kern JA; Kron IL, Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response. J Thorac Cardiovasc Surg 2001, 121 (6), 1069–1075. [PubMed: 11385373]
- 32. Kohmoto J; Nakao A; Kaizu T; Tsung A; Ikeda A; Tomiyama K; Billiar TR; Choi AM; Murase N; McCurry KR, Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 2006, 140 (2), 179–85. [PubMed: 16904967]
- 33. Kohmoto J; Nakao A; Stolz DB; Kaizu T; Tsung A; Ikeda A; Shimizu H; Takahashi T; Tomiyama K; Sugimoto R; Choi AM; Billiar TR; Murase N; McCurry KR, Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway. Am J Transplant 2007, 7 (10), 2279–90. [PubMed: 17711551]

34. Meng C; Ma L; Liu J; Cui X; Liu R; Xing J; Zhou H, Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury. Exp Biol Med (Maywood) 2015, 241 (3), 246–254. [PubMed: 26290141]

- 35. Ohtsuka T; Kaseda K; Shigenobu T; Hato T; Kamiyama I; Goto T; Kohno M; Shimoda M, Carbon monoxide-releasing molecule attenuates allograft airway rejection. Transpl Int 2014, 27 (7), 741–7. [PubMed: 24628975]
- 36. Zhou HC; Ding WG; Cui XG; Pan P; Zhang B; Li WZ, Carbon monoxide inhalation ameliorates conditions of lung grafts from rat brain death donors. Chin Med J (Engl) 2008, 121 (15), 1411–9. [PubMed: 18959119]
- 37. Goebel U; Mecklenburg A; Siepe M; Roesslein M; Schwer CI; Pahl HL; Priebe HJ; Schlensak C; Loop T, Protective effects of inhaled carbon monoxide in pig lungs during cardiopulmonary bypass are mediated via an induction of the heat shock response. Br J Anaesth 2009, 103 (2), 173–84. [PubMed: 19403594]
- 38. Goebel U; Siepe M; Mecklenburg A; Doenst T; Beyersdorf F; Loop T; Schlensak C, Reduced pulmonary inflammatory response during cardiopulmonary bypass: effects of combined pulmonary perfusion and carbon monoxide inhalation. Eur J Cardiothorac Surg 2008, 34 (6), 1165–72. [PubMed: 18829339]
- 39. Goebel U; Siepe M; Schwer CI; Schibilsky D; Brehm K; Priebe HJ; Schlensak C; Loop T, Postconditioning of the lungs with inhaled carbon monoxide after cardiopulmonary bypass in pigs. Anesth Analg 2011, 112 (2), 282–91. [PubMed: 21156982]
- 40. Sheng W; Yang H; Niu Z; Yin H, Anti-apoptosis effect of heme oxygenase-1 on lung injury after cardiopulmonary bypass. J Thorac Dis 2020, 12, 1393–1403. [PubMed: 32395277]
- 41. Faller S; Foeckler M; Strosing KM; Spassov S; Ryter SW; Buerkle H; Loop T; Schmidt R; Hoetzel A, Kinetic effects of carbon monoxide inhalation on tissue protection in ventilator-induced lung injury. Lab Invest 2012, 92 (7), 999–1012. [PubMed: 22449795]
- 42. Hoetzel A; Dolinay T; Vallbracht S; Zhang Y; Kim HP; Ifedigbo E; Alber S; Kaynar AM; Schmidt R; Ryter SW; Choi AM, Carbon monoxide protects against ventilator-induced lung injury via PPAR-gamma and inhibition of Egr-1. Am J Respir Crit Care Med 2008, 177 (11), 1223–32. [PubMed: 18356564]
- 43. Fredenburgh LE; Kraft BD; Hess DR; Harris RS; Wolf MA; Suliman HB; Roggli VL; Davies JD; Winkler T; Stenzler A; Baron RM; Thompson BT; Choi AM; Welty-Wolf KE; Piantadosi CA, Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia. Am J Physiol Lung Cell Mol Physiol 2015, 309 (8), L834–46. [PubMed: 26320156]
- 44. Jiang L; Fei D; Gong R; Yang W; Yu W; Pan S; Zhao M; Zhao M, CORM-2 inhibits TXNIP/ NLRP3 inflammasome pathway in LPS-induced acute lung injury. Inflamm Res 2016, 65 (11), 905–915. [PubMed: 27412237]
- 45. Sarady JK; Zuckerbraun BS; Bilban M; Wagner O; Usheva A; Liu F; Ifedigbo E; Zamora R; Choi AM; Otterbein LE, Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver. Faseb J 2004, 18 (7), 854–6. [PubMed: 15001560]
- 46. Li X; Yu J; Gong L; Zhang Y; Dong S; Shi J; Li C; Li Y; Zhang Y; Li H, Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway. Free Radic Biol Med 2021, 165, 243–253. [PubMed: 33493554]
- 47. Shi J; Yu J; Zhang Y; Wu L; Dong S; Wu L; Wu L; Du S; Zhang Y; Ma D, PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest 2019, 99 (12), 1795–1809. [PubMed: 31570770]
- 48. Yu J; Shi J; Wang D; Dong S; Zhang Y; Wang M; Gong L; Fu Q; Liu D, Heme Oxygenase-1/Carbon Monoxide-regulated Mitochondrial Dynamic Equilibrium Contributes to the Attenuation of Endotoxin-induced Acute Lung Injury in Rats and in Lipopolysaccharide-activated Macrophages. Anesthesiology 2016, 125 (6), 1190–1201. [PubMed: 27575447]
- 49. Kumada Y; Takahashi T; Shimizu H; Nakamura R; Omori E; Inoue K; Morimatsu H, Therapeutic effect of carbon monoxide-releasing molecule-3 on acute lung injury after hemorrhagic shock and resuscitation. Exp Ther Med 2019, 17 (5), 3429–3440. [PubMed: 30988722]

50. Kanagawa F; Takahashi T; Inoue K; Shimizu H; Omori E; Morimatsu H; Maeda S; Katayama H; Nakao A; Morita K, Protective effect of carbon monoxide inhalation on lung injury after hemorrhagic shock/resuscitation in rats. J Trauma 2010, 69 (1), 185–94. [PubMed: 20622590]

- 51. Kawanishi S; Takahashi T; Morimatsu H; Shimizu H; Omori E; Sato K; Matsumi M; Maeda S; Nakao A; Morita K, Inhalation of carbon monoxide following resuscitation ameliorates hemorrhagic shock-induced lung injury. Mol Med Rep 2013, 7 (1), 3–10. [PubMed: 23138173]
- 52. Lee C-W; Chi M-C; Hsu L-F; Yang C-M; Hsu T-H; Chuang C-C; Lin W-N; Chu P-M; Lee IT, Carbon monoxide releasing molecule-2 protects against particulate matter-induced lung inflammation by inhibiting TLR2 and 4/ROS/NLRP3 inflammasome activation. Mol Immunol 2019, 112, 163–174. [PubMed: 31153046]
- 53. Faller S; Hoetzel A, Carbon monoxide in acute lung injury. Curr Pharm Biotechnol 2012, 13, 777–86. [PubMed: 22201607]
- 54. Ryter SW; Choi AM, Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016, 167 (1), 7–34. [PubMed: 26166253]
- 55. Goebel U; Wollborn J, Carbon monoxide in intensive care medicine—time to start the therapeutic application?! Intensive Care Med Exp 2020, 8 (1), 2. [PubMed: 31919605]
- 56. Ryter SW, Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders. Antioxidants (Basel) 2020, 9.
- 57. Lin CC; Lin WN; Cho RL; Yang CC; Yeh YC; Hsiao LD; Tseng HC; Yang CM, Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med 2020, 9.
- 58. Seixas JD; Mukhopadhyay A; Santos-Silva T; Otterbein LE; Gallo DJ; Rodrigues SS; Guerreiro BH; Gonçalves AM; Penacho N; Marques AR; Coelho AC; Reis PM; Romão MJ; Romão CC, Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Dalton Trans 2013, 42, 5985–98. [PubMed: 23223860]
- 59. Jimenez J; Chakraborty I; Carrington SJ; Mascharak PK, Light-triggered CO delivery by a water-soluble and biocompatible manganese photoCORM. Dalton Trans 2016, 45 (33), 13204–13. [PubMed: 27417419]
- 60. Romanski S; Kraus B; Schatzschneider U; Neudorfl JM; Amslinger S; Schmalz HG, Acyloxybutadiene iron tricarbonyl complexes as enzyme-triggered CO-releasing molecules (ET-CORMs). Angew Chem Int Ed Engl 2011, 50 (10), 2392–6. [PubMed: 21351362]
- 61. Daniels HG; Fast OG; Shell SM; Beckford FA, Chemistry and biology of manganese carbon-releasing molecules containing thiosemicarbazone ligands. J. Photochem. Photobiol. A: Chem 2019, 374, 84–94.
- 62. Sitnikov NS; Li Y; Zhang D; Yard B; Schmalz HG, Design, synthesis, and functional evaluation of CO-releasing molecules triggered by Penicillin G amidase as a model protease. Angew Chem Int Ed Engl 2015, 54 (42), 12314–8. [PubMed: 26037072]
- 63. Jackson CS; Schmitt S; Dou QP; Kodanko JJ, Synthesis, Characterization, and Reactivity of the Stable Iron Carbonyl Complex [Fe(CO)(N4Py)](ClO4)2: Photoactivated Carbon Monoxide Release, Growth Inhibitory Activity, and Peptide Ligation. Inorg. Chem 2011, 50 (12), 5336–5338. [PubMed: 21618979]
- 64. Kawahara B; Gao L; Cohn W; Whitelegge JP; Sen S; Janzen C; Mascharak PK, Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chem Sci 2020, 11 (2), 467–473. [PubMed: 32190266]
- 65. Brückmann NE; Wahl M; Reiß GJ; Kohns M; Wätjen W; Kunz PC, Polymer Conjugates of Photoinducible CO-Releasing Molecules. Euro. J. Inorg. Chem 2011, 2011 (29), 4571–4577.
- 66. Niesel J; Pinto A; Peindy N'Dongo HW; Merz K; Ott I; Gust R; Schatzschneider U, Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem Commun. 2008, (15), 1798–800.
- 67. Ji X; Wang B, Strategies toward Organic Carbon Monoxide Prodrugs. Acc Chem Res 2018, 51 (6), 1377–1385. [PubMed: 29762011]
- 68. Soboleva T; Berreau LM, 3-Hydroxyflavones and 3-Hydroxy-4-oxoquinolines as Carbon Monoxide-Releasing Molecules. Molecules 2019, 24.

69. Ji X; Damera K; Zheng Y; Yu B; Otterbein LE; Wang B, Toward Carbon Monoxide-Based Therapeutics: Critical Drug Delivery and Developability Issues. J Pharm Sci 2016, 105, 406–416. [PubMed: 26869408]

- Kueh JTB; Stanley NJ; Hewitt RJ; Woods LM; Larsen L; Harrison JC; Rennison D; Brimble MA; Sammut IA; Larsen DS, Norborn-2-en-7-ones as physiologically-triggered carbon monoxidereleasing prodrugs. Chem Sci 2017, 8, 5454–5459. [PubMed: 28970925]
- 71. Ji X; Zhou C; Ji K; Aghoghovbia RE; Pan Z; Chittavong V; Ke B; Wang B, Click and Release: A Chemical Strategy toward Developing Gasotransmitter Prodrugs by Using an Intramolecular Diels-Alder Reaction. Angew Chem Int Ed Engl 2016, 55, 15846–15851. [PubMed: 27879021]
- 72. Vítek L, Bilirubin as a signaling molecule. Med Res Rev 2020, 40, 1335–1351. [PubMed: 32017160]
- 73. Mascaró M; Alonso EN; Alonso EG; Lacunza E; Curino AC; Facchinetti MM, Nuclear Localization of Heme Oxygenase-1 in Pathophysiological Conditions: Does It Explain the Dual Role in Cancer? Antioxidants (Basel) 2021, 10 (1).
- 74. Wegiel B; Gallo D; Csizmadia E; Harris C; Belcher J; Vercellotti GM; Penacho N; Seth P; Sukhatme V; Ahmed A; Pandolfi PP; Helczynski L; Bjartell A; Persson JL; Otterbein LE, Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res 2013, 73, 7009–21. [PubMed: 24121491]
- 75. Southam HM; Smith TW; Lyon RL; Liao C; Trevitt CR; Middlemiss LA; Cox FL; Chapman JA; El-Khamisy SF; Hippler M; Williamson MP; Henderson PJF; Poole RK, A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol 2018, 18, 114–123. [PubMed: 30007887]
- 76. Nielsen VG, The anticoagulant effect of Apis mellifera phospholipase A(2) is inhibited by CORM-2 via a carbon monoxide-independent mechanism. J Thromb Thrombolysis 2020, 49, 100–107. [PubMed: 31679116]
- 77. Nielsen VG, Ruthenium, Not Carbon Monoxide, Inhibits the Procoagulant Activity of Atheris, Echis, and Pseudonaja Venoms. Int J Mol Sci 2020, 21.
- 78. Santos-Silva T; Mukhopadhyay A; Seixas JD; Bernardes GJ; Romão CC; Romão MJ, CORM-3 reactivity toward proteins: the crystal structure of a Ru(II) dicarbonyl-lysozyme complex. J Am Chem Soc 2011, 133, 1192–5. [PubMed: 21204537]
- 79. Santos MF; Seixas JD; Coelho AC; Mukhopadhyay A; Reis PM; Romão MJ; Romão CC; Santos-Silva T, New insights into the chemistry of fac-[Ru(CO)₃]²⁺ fragments in biologically relevant conditions: the CO releasing activity of [Ru(CO)₃Cl₂(1,3-thiazole)], and the X-ray crystal structure of its adduct with lysozyme. J Inorg Biochem 2012, 117, 285–91. [PubMed: 22883959]
- 80. Pontillo N; Ferraro G; Messori L; Tamasi G; Merlino A, Ru-Based CO releasing molecules with azole ligands: interaction with proteins and the CO release mechanism disclosed by X-ray crystallography. Dalton Trans 2017, 46, 9621–9629. [PubMed: 28702564]
- 81. Johnson TR; Mann BE; Teasdale IP; Adams H; Foresti R; Green CJ; Motterlini R, Metal carbonyls as pharmaceuticals? [Ru(CO)3Cl(glycinate)], a CO-releasing molecule with an extensive aqueous solution chemistry. Dalton Trans 2007, 1500–8. [PubMed: 17404651]
- 82. Santos-Silva T; Mukhopadhyay A; Seixas JD; Bernardes GJ; Romão CC; Romão MJ, Towards improved therapeutic CORMs: understanding the reactivity of CORM-3 with proteins. Curr Med Chem 2011, 18, 3361–6. [PubMed: 21728965]
- 83. Stucki D; Krahl H; Walter M; Steinhausen J; Hommel K; Brenneisen P; Stahl W, Effects of frequently applied carbon monoxide releasing molecules (CORMs) in typical CO-sensitive model systems A comparative in vitro study. Arch Biochem Biophys 2020, 687, 108383. [PubMed: 32335048]
- 84. Gessner G; Sahoo N; Swain SM; Hirth G; Schönherr R; Mede R; Westerhausen M; Brewitz HH; Heimer P; Imhof D; Hoshi T; Heinemann SH, CO-independent modification of K(+) channels by tricarbonyldichlororuthenium(II) dimer (CORM-2). Eur J Pharmacol 2017, 815, 33–41. [PubMed: 28987271]
- 85. Winburn IC; Gunatunga K; McKernan RD; Walker RJ; Sammut IA; Harrison JC, Cell damage following carbon monoxide releasing molecule exposure: implications for therapeutic applications. Basic Clin Pharmacol Toxicol 2012, 111, 31–41. [PubMed: 22269084]

86. Juszczak M; Kluska M; Wysoki ski D; Wo niak K, DNA damage and antioxidant properties of CORM-2 in normal and cancer cells. Sci Rep 2020, 10, 12200. [PubMed: 32699258]

- 87. McLean S; Begg R; Jesse HE; Mann BE; Sanguinetti G; Poole RK, Analysis of the Bacterial Response to Ru(CO)3Cl(Glycinate) (CORM-3) and the Inactivated Compound Identifies the Role Played by the Ruthenium Compound and Reveals Sulfur-Containing Species as a Major Target of CORM-3 Action. Antioxid. Redox Signal 2013, 19, 1999–2012. [PubMed: 23472713]
- 88. Yuan Z; Yang X; Ye Y; Tripathi R; Wang B, Chemical Reactivities of Two Widely Used Ruthenium-Based CO-Releasing Molecules with a Range of Biologically Important Reagents and Molecules. Anal Chem 2021.
- 89. Yuan Z; Yang X; De La Cruz LK; Wang B, Nitro reduction-based fluorescent probes for carbon monoxide require reactivity involving a ruthenium carbonyl moiety. Chem Commun (Camb) 2020, 56 (14), 2190–2193. [PubMed: 31971171]
- 90. Wong J; Magun BE; Wood LJ, Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis 2016, 11, 1391–1401. [PubMed: 27382275]
- 91. Khuder SA, Effect of cigarette smoking on major histological types of lung cancer: a metaanalysis. Lung Cancer 2001, 31 (2-3), 139–48. [PubMed: 11165392]
- Jayes L; Haslam PL; Gratziou CG; Powell P; Britton J; Vardavas C; Jimenez-Ruiz C; Leonardi-Bee J, SmokeHaz: Systematic Reviews and Meta-analyses of the Effects of Smoking on Respiratory Health. Chest 2016, 150 (1), 164–79. [PubMed: 27102185]
- Siegel SJ; Weiser JN, Mechanisms of Bacterial Colonization of the Respiratory Tract. Annu Rev Microbiol 2015, 69, 425–444. [PubMed: 26488280]
- 94. Otterbein LE; Mantell LL; Choi AM, Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 1999, 276 (4), L688–94. [PubMed: 10198367]
- 95. Chiang N; Shinohara M; Dalli J; Mirakaj V; Kibi M; Choi AM; Serhan CN, Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J Immunol 2013, 190 (12), 6378–88. [PubMed: 23650615]
- 96. Dalli J; Kraft BD; Colas RA; Shinohara M; Fredenburgh LE; Hess DR; Chiang N; Welty-Wolf K; Choi AM; Piantadosi CA; Serhan CN, The Regulation of Proresolving Lipid Mediator Profiles in Baboon Pneumonia by Inhaled Carbon Monoxide. Am J Respir Cell Mol Biol 2015, 53 (3), 314–25. [PubMed: 25568926]
- 97. Jung SS; Moon JS; Xu JF; Ifedigbo E; Ryter SW; Choi AM; Nakahira K, Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol 2015, 308 (10), L1058–67. [PubMed: 25770182]
- 98. Mitchell LA; Channell MM; Royer CM; Ryter SW; Choi AMK; McDonald JD, Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. Am J Physiol Lung Cell Mol Physiol 2010, 299 (6), L891–L897. [PubMed: 20729385]
- 99. Lee CW; Wu CH; Chiang YC; Chen YL; Chang KT; Chuang CC; Lee IT, Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells. Redox Biol 2018, 18, 93–103. [PubMed: 30007888]
- 100. Yamamoto-Oka H; Mizuguchi S; Toda M; Minamiyama Y; Takemura S; Shibata T; Cepinskas G; Nishiyama N, Carbon monoxide-releasing molecule CORM-3, modulates alveolar macrophage M1/M2 phenotype in vitro. Inflammopharmacology 2018, 26 (2), 435–445. [PubMed: 28674739]
- 101. Lin CC; Hsiao LD; Cho RL; Yang CM, Carbon Monoxide Releasing Molecule-2-Upregulated ROS-Dependent Heme Oxygenase-1 Axis Suppresses Lipopolysaccharide-Induced Airway Inflammation. Int J Mol Sci 2019, 20 (13).
- 102. Kim S-K; Joe Y; Chen Y; Ryu J; Lee J-H; Cho GJ; Ryter SW; Chung HT, Carbon monoxide decreases interleukin-1β levels in the lung through the induction of pyrin. Cell Mol Immunol 2017, 14 (4), 349–359. [PubMed: 26435068]
- 103. Tsoyi K; Nizamutdinova IT; Jang HJ; Mun L; Kim HJ; Seo HG; Lee JH; Chang KC, Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-β/JAK2/STAT-1/ INOS/NO signaling but not COX-2 in TLR-activated macrophages. Shock 2010, 34 (6), 608–14. [PubMed: 20442692]

104. Lin CC; Chiang YC; Cho RL; Lin WN; Yang CC; Hsiao LD; Yang CM, Up-regulation of PYK2/PKCα-dependent haem oxygenase-1 by CO-releasing molecule-2 attenuates TNF-α-induced lung inflammation. Br J Pharmacol 2018, 175 (3), 456–468. [PubMed: 29139546]

- 105. Lin CC; Hsiao LD; Cho RL; Yang CM, CO-Releasing Molecule-2 Induces Nrf2/ARE-Dependent Heme Oxygenase-1 Expression Suppressing TNF-α-Induced Pulmonary Inflammation. J Clin Med 2019, 8 (4).
- 106. Meng C; Ma L; Niu L; Cui X; Liu J; Kang J; Liu R; Xing J; Jiang C; Zhou H, Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats. Life Sci 2016, 151, 199–206. [PubMed: 26969763]
- 107. Stec David E; Drummond Heather A; Vera T, Role of Carbon Monoxide in Blood Pressure Regulation. Hypertension 2008, 51 (3), 597–604. [PubMed: 18212274]
- 108. Zuckerbraun BS; Chin BY; Wegiel B; Billiar TR; Czsimadia E; Rao J; Shimoda L; Ifedigbo E; Kanno S; Otterbein LE, Carbon monoxide reverses established pulmonary hypertension. J Exp Med 2006, 203 (9), 2109–2119. [PubMed: 16908624]
- 109. Pak O; Bakr AG; Gierhardt M; Albus J; Strielkov I; Kroschel F; Hoeres T; Hecker M; Ghofrani HA; Seeger W; Weissmann N; Sommer N, Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs. J Appl Physiol (1985) 2016, 120 (2), 271–81. [PubMed: 26586910]
- 110. Abid S; Houssaïni A; Mouraret N; Marcos E; Amsellem V; Wan F; Dubois-Randé JL; Derumeaux G; Boczkowski J; Motterlini R; Adnot S, P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension. Arterioscler Thromb Vasc Biol 2014, 34 (2), 304–12. [PubMed: 24334871]
- 111. Rosas IO; Goldberg HJ; Collard HR; El-Chemaly S; Flaherty K; Hunninghake GM; Lasky JA; Lederer DJ; Machado R; Martinez FJ; Maurer R; Teller D; Noth I; Peters E; Raghu G; Garcia JGN; Choi AMK, A Phase II Clinical Trial of Low-Dose Inhaled Carbon Monoxide in Idiopathic Pulmonary Fibrosis. Chest 2018, 153 (1), 94–104. [PubMed: 29100885]
- 112. Fredenburgh LE; Perrella MA; Barragan-Bradford D; Hess DR; Peters E; Welty-Wolf KE; Kraft BD; Harris RS; Maurer R; Nakahira K; Oromendia C; Davies JD; Higuera A; Schiffer KT; Englert JA; Dieffenbach PB; Berlin DA; Lagambina S; Bouthot M; Sullivan AI; Nuccio PF; Kone MT; Malik MJ; Porras MAP; Finkelsztein E; Winkler T; Hurwitz S; Serhan CN; Piantadosi CA; Baron RM; Thompson BT; Choi AM, A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. JCI Insight 2018, 3 (23), e124039.
- 113. Bathoorn E; Slebos DJ; Postma DS; Koeter GH; van Oosterhout AJ; van der Toorn M; Boezen HM; Kerstjens HA, Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 2007, 30 (6), 1131–7. [PubMed: 17715164]
- 114. Granger DN SE, Inflammation and the Microcirculation. San Rafael (CA): Morgan & Claypool Life Sciences; 2010. Chapter 1, Introduction. 2010.
- 115. Chen L; Deng H; Cui H; Fang J; Zuo Z; Deng J; Li Y; Wang X; Zhao L, Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9 (6), 7204–7218. [PubMed: 29467962]
- 116. Cappelletty D, Microbiology of bacterial respiratory infections. Pediatr Infect Dis J 1998, 17 (8 Suppl), S55–61. [PubMed: 9727651]
- 117. Desmard M; Foresti R; Morin D; Dagouassat M; Berdeaux A; Denamur E; Crook SH; Mann BE; Scapens D; Montravers P; Boczkowski J; Motterlini R, Differential Antibacterial Activity Against Pseudomonas aeruginosa by Carbon Monoxide-Releasing Molecules. Antioxid Redox Signal 2011, 16 (2), 153–163. [PubMed: 21864022]
- 118. Ryter SW; Choi AMK, Therapeutic applications of carbon monoxide in lung disease. Curr Opin Pharmacol 2006, 6 (3), 257–262. [PubMed: 16580257]
- 119. Fullerton JN; O'Brien AJ; Gilroy DW, Lipid mediators in immune dysfunction after severe inflammation. Trends Immunol 2014, 35 (1), 12–21. [PubMed: 24268519]
- 120. Desmard M; Davidge KS; Bouvet O; Morin D; Roux D; Foresti R; Ricard JD; Denamur E; Poole RK; Montravers P; Morterlini R; Boczkowski J, A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. Faseb J 2009, 23 (4), 1023–1031. [PubMed: 19095732]

121. Belhaj A; Dewachter L; Rorive S; Remmelink M; Weynand B; Melot C; Hupkens E; Dewachter C; Creteur J; Mc Entee K; Naeije R; Rondelet B, Mechanical versus humoral determinants of brain death-induced lung injury. PLoS One 2017, 12 (7), e0181899. [PubMed: 28753621]

- 122. Vevelstad M; Morild I, Lethal methemoglobinemia and automobile exhaust inhalation. Forensic Sci Int 2009, 187 (1), e1–e5. [PubMed: 19261402]
- 123. Swanson KV; Deng M; Ting JPY, The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019, 19 (8), 477–489. [PubMed: 31036962]
- 124. Muñoz-Planillo R; Kuffa P; Martínez-Colón G; Smith BL; Rajendiran TM; Núñez G, K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013, 38 (6), 1142–53. [PubMed: 23809161]
- 125. Gurcel L; Abrami L; Girardin S; Tschopp J; van der Goot FG, Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 2006, 126 (6), 1135–45. [PubMed: 16990137]
- 126. Ichinohe T; Yamazaki T; Koshiba T; Yanagi Y, Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A 2013, 110 (44), 17963–8. [PubMed: 24127597]
- 127. Mariathasan S; Weiss DS; Newton K; McBride J; O'Rourke K; Roose-Girma M; Lee WP; Weinrauch Y; Monack DM; Dixit VM, Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006, 440 (7081), 228–32. [PubMed: 16407890]
- 128. Hornung V; Bauernfeind F; Halle A; Samstad EO; Kono H; Rock KL; Fitzgerald KA; Latz E, Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008, 9 (8), 847–56. [PubMed: 18604214]
- Abrahams VM; Tang Z; Mor G; Guller S, NLRP3 inflammasome function and pyroptotic cell death in human placental Hofbauer cells. J Reprod Immunol 2020, 142, 103214. [PubMed: 33152658]
- 130. Im H; Ammit AJ, The NLRP3 inflammasome: role in airway inflammation. Clin Exp Allergy 2014, 44 (2), 160–72. [PubMed: 24118105]
- 131. Hirota JA; Hirota SA; Warner SM; Stefanowicz D; Shaheen F; Beck PL; Macdonald JA; Hackett TL; Sin DD; Van Eeden S; Knight DA, The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter. J Allergy Clin Immunol 2012, 129 (4), 1116–25.e6. [PubMed: 22227418]
- 132. Tran HB; Lewis MD; Tan LW; Lester SE; Baker LM; Ng J; Hamilton-Bruce MA; Hill CL; Koblar SA; Rischmueller M; Ruffin RE; Wormald PJ; Zalewski PD; Lang CJ, Immunolocalization of NLRP3 Inflammasome in Normal Murine Airway Epithelium and Changes following Induction of Ovalbumin-Induced Airway Inflammation. J Allergy (Cairo) 2012, 2012, 819176. [PubMed: 22523501]
- 133. Ather JL; Ckless K; Martin R; Foley KL; Suratt BT; Boyson JE; Fitzgerald KA; Flavell RA; Eisenbarth SC; Poynter ME, Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol 2011, 187 (1), 64–73. [PubMed: 21622869]
- 134. Besnard AG; Guillou N; Tschopp J; Erard F; Couillin I; Iwakura Y; Quesniaux V; Ryffel B; Togbe D, NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy 2011, 66 (8), 1047–57. [PubMed: 21443539]
- 135. Abais JM; Xia M; Zhang Y; Boini KM; Li P-L, Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 2015, 22 (13), 1111–1129. [PubMed: 25330206]
- 136. Lemasters JJ; Theruvath TP; Zhong Z; Nieminen A-L, Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 2009, 1787 (11), 1395–1401. [PubMed: 19576166]
- 137. Hoeper MM; Bogaard HJ; Condliffe R; Frantz R; Khanna D; Kurzyna M; Langleben D; Manes A; Satoh T; Torres F; Wilkins MR; Badesch DB, Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013, 62 (25 Suppl), D42–50. [PubMed: 24355641]
- 138. Gaine S, Pulmonary hypertension. Jama 2000, 284 (24), 3160-8. [PubMed: 11135781]
- 139. George MG; Schieb LJ; Ayala C; Talwalkar A; Levant S, Pulmonary hypertension surveillance: United States, 2001 to 2010. Chest 2014, 146 (2), 476–495. [PubMed: 24700091]

140. Motterlini R; Sawle P; Hammad J; Mann BE; Johnson TR; Green CJ; Foresti R, Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs). Pharmacol Res 2013, 68 (1), 108–17. [PubMed: 23253427]

- 141. Queiroga CS; Vercelli A; Vieira HL, Carbon monoxide and the CNS: challenges and achievements. Br J Pharmacol 2015, 172 (6), 1533–45. [PubMed: 24758548]
- 142. Ahya VN; Kawut SM, Noninfectious pulmonary complications after lung transplantation. Clin Chest Med 2005, 26 (4), 613–22, vi. [PubMed: 16263400]
- 143. Zhang X; Shan P; Otterbein LE; Alam J; Flavell RA; Davis RJ; Choi AM; Lee PJ, Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 2003, 278 (2), 1248–58. [PubMed: 12399465]
- 144. Neto JS; Nakao A; Kimizuka K; Romanosky AJ; Stolz DB; Uchiyama T; Nalesnik MA; Otterbein LE; Murase N, Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 2004, 287 (5), F979–89. [PubMed: 15292046]
- 145. Wang H; Lee SS; Gao W; Czismadia E; McDaid J; Ollinger R; Soares MP; Yamashita K; Bach FH, Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes 2005, 54 (5), 1400–6. [PubMed: 15855326]
- 146. Kaizu T; Nakao A; Tsung A; Toyokawa H; Sahai R; Geller DA; Murase N, Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 2005, 138 (2), 229–35. [PubMed: 16153431]
- 147. Costa ELV; Amato MBP, The new definition for acute lung injury and acute respiratory distress syndrome: is there room for improvement? Curr Opin Crit Care 2013, 19 (1).
- 148. Ragaller M; Richter T, Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock 2010, 3 (1), 43–51. [PubMed: 20165721]
- 149. Schuster DP, What Is Acute Lung Injury?: What Is ARDS? CHEST 1995, 107 (6), 1721–1726. [PubMed: 7781374]
- 150. Fanelli V; Vlachou A; Ghannadian S; Simonetti U; Slutsky AS; Zhang H, Acute respiratory distress syndrome: new definition, current and future therapeutic options. Journal of thoracic disease 2013, 5 (3), 326–334. [PubMed: 23825769]
- 151. Fuller CC; Nambudiri VE; Spencer-Smith C; Curtis LH; Shinde M; Cosgrove A; Johnson M; Hickok J; Honda S; Ismail H; Kaufman RM; Kennedy A; Miller KM; Mohlman DJ; Poland RE; Rosofsky R; Smith K; Surani SR; Baker MA, Medical chart validation of inpatient diagnosis codes for transfusion-related acute lung injury 2013-2015. Transfusion 2021, *n/a* (n/a).
- 152. Wheeler AP; Bernard GR, Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 2007, 369 (9572), 1553–1564. [PubMed: 17482987]
- 153. Ryter SW; Choi AM, Gaseous therapeutics in acute lung injury. Compr Physiol 2011, 1 (1), 105–21. [PubMed: 23737166]
- 154. Cho RL; Lin WN; Wang CY; Yang CC; Hsiao LD; Lin CC; Yang CM, Heme oxygenase-1 induction by rosiglitazone via PKCα/AMPKα/p38 MAPKα/SIRT1/PPARγ pathway suppresses lipopolysaccharide-mediated pulmonary inflammation. Biochem Pharmacol 2018, 148, 222–237. [PubMed: 29309760]
- 155. Cho RL; Yang CC; Tseng HC; Hsiao LD; Lin CC; Yang CM, Haem oxygenase-1 upregulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPARγ attenuates LPS-mediated lung inflammation. Br J Pharmacol 2018, 175 (20), 3928–3946. [PubMed: 30088830]
- 156. Li YY; Liu CY; Liu M; Sun KY, Protective effects of HO-1 pathway on lung injury subsequent to limb ischemia reperfusion. Kaohsiung J Med Sci 2019, 35, 417–424. [PubMed: 30977589]
- 157. Shi J; Yu J; Zhang Y; Wu L; Dong S; Wu L; Wu L; Du S; Zhang Y; Ma D, PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest 2019, 99 (12), 1795–1809. [PubMed: 31570770]
- 158. Maeshima K; Takahashi T; Uehara K; Shimizu H; Omori E; Yokoyama M; Tani T; Akagi R; Morita K, Prevention of hemorrhagic shock-induced lung injury by heme arginate treatment in rats. Biochem Pharmacol 2005, 69 (11), 1667–80. [PubMed: 15896346]

159. Sudan K; Vijayan V; Madyaningrana K; Gueler F; Igarashi K; Foresti R; Motterlini R; Immenschuh S, TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic Biol Med 2019, 137, 131–142. [PubMed: 31026585]

160. Zhang RG; Pan K; Hao Y; Yip CY; Ko WH, Anti-inflammatory action of HO-1/CO in human bronchial epithelium in response to cationic polypeptide challenge. Mol Immunol 2019, 105, 205–212. [PubMed: 30553057]

 $\label{eq:Table 1.}$ Effects of CO on airway protection (ND = not determined; NC = no change)

Entry	CO delivery form	Study description	Changes in HO-1 and CO	Experimental Observations	Other comments		
	Anti-inflammation						
1	CO gas	CO facilitates inflammation resolution ⁹⁵	HO-1:↑ COHb: ND	CO accelerated resolution of inflammation <i>via</i> the specialized pro-resolving mediator/ HO-1 axis. CO was effective at both 250 and 500 ppm.	The studies were conducted in the context of understanding the mechanisms of CO effects on airway inflammation.		
2	CO gas	Anti-inflammatory effect of CO in a baboon model. ⁹⁶	HO-1: ND COHb: ↑	CO (200-300 ppm, 60-90 min) restored levels of specialized pro-resolving mediators (SPMs) and reduced levels of pro-inflammatory mediator thromboxane B2 (TXB2) in <i>Streptococcus pneumoniae</i> -induced acute inflammation.	CO was administered in a manner to retain the COHb level below 10%.		
3	CO gas	CO and cardiopulmonary bypass (CPB)- induced inflammation in pigs ³⁸	HO-1: ND COHb: ↑	Pre-treatment with CO (250 ppm) for 1 h markedly attenuated the concentrations of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and effector caspases, factors responsible for the development of inflammation. CO caused a noticeable increase in the level of the anti-inflammatory cytokine (IL-10) and transcription factors (NF-κB and AP-1).	Combination therapy of pulmonary perfusion (20% of the systemic blood flow) and CO produced significant anti-inflammatory results in a pig model. Peak COHb levels were 10.0 ± 2.9% 1 h post-CO inhalation.		
4	CO gas	Mechanistic study of CO action against CPB-induced inflammation ³⁷	HO-1: ND COHb: ↑	Pigs receiving 250 ppm CO for 1 h prior to the CPB showed increased expression of heat shock protein (Hsp)-70 and Hsp-90a. In addition, an inhibitory effect was noted on the expression of pro-inflammatory (i.e., IL-6) cytokines.	Abolition of protective effects of CO by quercetin (an Hsp inhibitor) supports Hsp-mediated actions of CO. After 1 h CO inhalation, COHb mean baseline level elevated from 1.1 to 10.4.		
5	CO gas	CO downregulates inflammasome- mediated immune responses ⁹⁷	HO-1: ND COHb: ND	CO (250 ppm) inhibited the activation of caspase-1 and secretion of proinflammatory cytokines, IL-1β and IL-18. Further, CO also prevented mitochondrial dysfunction by decreasing mitochondrial reactive oxygen species (mtROS) generation and preventing loss of mitochondrial membrane potential. The studies were conducted in bone marrowderived macrophages and in mice.	Preservation of mitochondrial function by CO leads to anti-inflammatory effects.		
6	CO gas	Anti-inflammatory therapy in cynomolgus macaques ⁹⁸	HO-1: ND COHb: ↑	LPS exposed animals showed a 67% reduction in neutrophilia after 500 ppm CO inhalation for 6 h. Exposure at 250 ppm for 6 h did not improve inflammation significantly.	250 ppm CO showed efficacy in other animal models (e.g., Entries 4, 5, 6, and 9 in Table 1). At 500 ppm for 6 h, COHb level increased to an average of 34%, while 250 ppm for 6 h led to COHb of 25% from a basal level of ~4.4%.		
7	CO gas	LPS-induced endotoxic shock and multi-organ failure ⁴⁵	HO-1: ND COHb: ND	1 h of pre-treatment with 250 ppm CO substantially reduced the mortality rate from 14% as compared to 80% in air-exposed rats. CO attenuated the level of inducible nitric oxide synthase (iNOS) expression in lung and alveolar macrophages. Paradoxically, CO augmented iNOS expression in liver tissues.	CO conferred protection in various organs <i>via</i> differential regulation of iNOS.		
8	CO gas	Mechanistic studies of the anti- inflammatory action of CO in VILI ⁴²	HO-1:↓ COHb:↑	In mice, 250 ppm CO reversed the increase of concentration of neutrophils and total cell count in bronchoalveolar (BAL) fluid at 4 and 8 h of ventilation. Inhibitory effects on the production of IL-1β,	Surprisingly, the application of CO prevented VILI-induced expression of HO-1 in this study. CO ventilation caused an increase of the mean COHb		

Entry	CO delivery form	Study description	Changes in HO-1 and CO	Experimental Observations	Other comments
				monocyte chemotactic protein (MCP)-1, and macrophage inflammatory protein (MIP)-1β in lung cells were observed.	level to 25% from the 3% baseline.
9	CORM-2	Pseudomonas aeruginosa induced inflammation ⁹⁹	HO-1: ND COHb: ND	Pre-treatment with CORM-2 (50 μM) for 2 h exerts anti-inflammatory effects in human pulmonary alveolar epithelial cells (HPAEpiCs) by suppressing the expression of pro-inflammatory factors, including ROS generation, IL-6, and prostaglandin E2. In mice, CORM-2 (8 mg/kg) attenuated levels of pro-inflammatory cytokines such as IL-6, IL-1β, IL-8 and TNF-α.	There have been many recent studies of CO-independent effects of Ru-based CO-RMs such as CORM-2. ^{75, 88, 89} Such findings may affect the interpretation of the results.
10	CORM-3	Lung inflammation ¹⁰⁰	HO-1: ND COHb: ND	CORM-3 (0.15 mM) treatment enhanced expression of CD206 and Ym-1 while reduced expression of iNOS in cell studies. CD206 and Ym-1 are biomarkers of the anti-inflammatory alveolar macrophage (M2) phenotype.	In this study, CORM-3 did not affect TNF-α expression in contrast to Entry 24, Table 1.
11	CORM-2	LPS-induced inflammation ¹⁰¹	HO-1: ↑ COHb: ND	CORM-2 (8 mg/kg, 24 h) pre-treatment prevented the expression of intercellular adhesion molecule-1 (ICAM-1) and reduced leukocyte count in BAL in mice and in human tracheal smooth muscle cells (HTSMCs). Concentrations of 10, 25, and 50 µM CORM-2 for 1 h were used in the <i>in vitro</i> experiments.	CORM-2 (50 µM) induced gene expression of HO-1 in a time-dependent manner.
12	CORM-2 and CO gas	Anti-inflammatory effects of CO in cell culture and animal models ¹⁰²	HO-1: ND COHb: ND	In cell culture, CORM-2 stimulated pyrin production, reduced the levels of caspase-1 and IL-1 β , and increased IL-10 in response to LPS treatment. CO (250 ppm) protected mice from lung injury after LPS stimulation with increased levels of pyrin and IL-10 as well as decreased the levels of IL-1 β .	The cross corroboration between CORM-2 and CO is an important aspect.
13	CORM-2	Particulate matter (PM)-induced inflammation ⁵²	HO-1: ND COHb: ND	HPAEpiCs pre-incubated with CORM-2 (50 μM) for 24 h inhibited expression of PM-induced NLRP3 protein and caspase-1. In addition, the elevation of the level of IL-1β, mtROS, and NADPH oxidase in response to PM was attenuated by CORM-2. <i>In vivo</i> , a single, intra-tracheal dose (8 mg/kg) of CORM-2 protected lungs from the pro-inflammatory responses induced by PM by inhibiting expression and activation of NLRP3 inflammasome.	CORM-2 showed effectiveness in both <i>in vitro</i> and <i>in vivo</i> models against PM-induced inflammation.
14	CORM-2	LPS-challenged RAW 264.7 cells and septic mice ¹⁰³	HO-1: ND COHb: ND	CORM-2 reduced inflammation by preferentially downregulating the expression of iNOS over cyclooxygenases-2 (COX-2). Induction of high-mobility group box 1 (HMGB1) and iNOS is associated with the progression of sepsis.	The study focused on mechanistic investigations of CO action.
15	CORM-2	TNF-α-induced lung inflammation ¹⁰⁴	HO-1: ↑ COHb: -	CORM-2 (8 mg/kg; i.p.) administration 24 h prior to TNF-a exposure (0.25 mg/kg) accelerated recovery of inflammation in mice. In HPAEpiCs, CORM-2 (50 µM for 24 h) decreased vascular cell adhesion molecule-1 (VCAM-1) expression. CORM-2 upregulated the production of HO-1 mRNA and protein in a dose- and time-dependent fashion.	100 μM CORM-2 treatment lowered cell viability to about 60% at 72 h, as determined by MTT assay. However, there is a recent report on the effect of CORM-2 on MTT itself. 88
16	CORM-2	TNF-a-induced lung inflammation 105	HO-1:↑ COHb: ND	In mice, CORM-2 (10 mg/kg; i.p., 1 h) reduced inflammation by diminishing	This study investigates the mechanism of CORM-2-induced HO-1 expression in a

Changes CO Study in delivery Entry **Experimental Observations** Other comments HO-1 and description form CO expression of ICAM-1 and leukocytes TNF-a-triggered inflammation count in BAL. model. **Protection Against Lung Injury** 17 CO gas ALI in brain-dead HO-1: ND 250 ppm CO in 40% O2 and 60% N2 The studies were conducted to COHb: ND show the applicability of CO mice12 (2 h) alleviated lung injury via inhibition in lung transplantation in brain of pro-inflammatory (IL-6, TNF-a) and death donors. proapoptotic caspase-3 mRNA expression. HO-1: ND 18 CO gas Post-CPB, 250 ppm CO for 1 h The study showed the efficacy Postconditioning of lungs with CO post-CPB³⁹ ameliorated CPB-induced lung injury of CO in postconditioning COHb: ↑ of lungs in higher mammals. in pigs. CO application attenuated proinflammatory mediator (i.e., IL-6 and Previous studies were IL-1 β) expression in the experiments while conducted in small animals IL-10 concentrations were significantly (Entries 12, 15, and 16 of Table elevated. 1). COHb increases of 8-10 fold from the baseline were observed after 1 h inhalation. 19 CO gas VILI41 HO-1: ND In mice, 250 ppm CO administered for 6 h This study suggests that a COHb: ↑ longer exposure time to CO offered excellent protection against VILI as assessed by alveolar wall thickness, edema, was more effective than short and cytokine secretion. In contrast, 1 h preexposure. After 6 h ventilation, treatment or 3 h delayed treatment of CO COHb levels were $29.3 \pm 0.6\%$ (250 ppm) did not yield comparable results. in CO group compared to 5.9 \pm 0.3% in air-treated group. HO-1: NC 20 CO gas Pneumococcal In baboons, 200 ppm CO for 1 h alleviated In contrast to Entry 6, Table 1 ALI as examined by lung wet/dry ratio, COHb: ↑ pneumonia-induced CO produced prominent effects total cell counts in BAL, necrosis, edema, ALI⁴³ at a relatively lower dose in nonhuman primate models. COHb levels of 6-8% were achieved after a 200 ppm CO dose. 21 HO-1: ND CO gas IRI-induced graft Under cold ischemic conditions, rat CO ventilation in combination injury¹⁰⁶ COHb: ND lungs inflated with 500 ppm CO with with 3% H₂ produced or without 3% H₂ ameliorated lung more pronounced effects in comparison to CO exposure injury by alleviating oxidative stress and inflammation as monitored by wet/dry alone. lung weight ratio, arterial blood gas, and pressure-volume (PV) curves. 22 HO-1: ND CO dosing regimen in the study CO gas Hemorrhagic shock Rats treated with 250 ppm CO for 1 h COHb: ↑ led to blood COHb level of and resuscitation before the onset of hemorrhagic shock (HSR)-induced lung injury 50 and 3 h post-resuscitation attenuated the 19.40 + 0.88% compared with $1.75\% \pm 0.26\%$ in the control pro-inflammatory response by decreasing expression of TNF-a and iNOS and group (air-treated). Despite the augmenting the production of IL-10. high COHb concentration, CO did not cause hypotension in hemorrhagic shock conditions. Of note, it is well-known that CO directly or indirectly can cause vasodilation. 107 23 CORM-2 LPS-induced ALI in HO-1: ND CORM-2 pre-treatment with an i.p. dose CORM-2 conferred a protective mice44 COHb: ND of 30 mg/kg alleviated inflammation effect via suppression in ALI by modulating secretion of proof thioredoxin-interacting inflammatory cytokines (IL-1β, IL-18), and protein (TXNIP)/NLRP3 preventing PMN infiltration in BAL. inflammasome pathway in ALI. 24 CORM-3 HSR induced lung HO-1: ND CORM-3 (4 mg/kg) i.v. to rats CORM-3 did not change injury49 COHb: NC immediately after resuscitation conferred hemodynamic status during significant anti-inflammatory and anti-HSR. This study corroborates apoptotic effects. Suppression of TNF-a, results from Entry 19, Table 1. IL-1β, iNOS, caspase-3, and upregulation of IL-10 were observed in the study. **Lung Preservation in Transplantation**

Changes CO Study in delivery Entry **Experimental Observations** Other comments HO-1 and description form CO 25 CO gas CO in organ HO-1: ↑ Rat lungs ventilated 1 h post-mortem with Parameters monitored include preservation²⁴ COHb: ND CO (500 ppm) in 60% O_2 (1 h), followed oxygenation level after transplantation, and HO-1 by 15 min of warm perfusion after 1 h cold expression level, IL-6, IL-1β, storage and 1 h after transplantation. CO ventilation group showed less injury. 26 CO gas HO-1: NC High-pressure CO Rat and canine grafts were either ventilated The recipient canine with CO (1.5 atm) and O_2 (2 atm) COHb: NC transplanted with high-pressure for graft preservation²² CO/O₂ gas mixture preserved mixture or air to compare the effect in preventing alveolar hemorrhage and lungs did not show significant alleviating IRI. Expression of IL-6 and changes in COHb level. IL-1β of the CO/O₂-ventilated lungs were significantly lower than the air-ventilated lungs, indicating protective effects. CO gas HO-1: NC Anti-inflammatory and anti-27 Lung transplant33 250 ppm CO exposure to donor and COHb: ↑ recipient rats starting 1 h before procedures apoptotic effects of CO were and continuous till post-transplantation abrogated by administration improved graft function. CO exposure of the selective p38 reduced the levels of IL-6, TNF-α, IL-1β, MAPK inhibitor, SB203580, COX-2, iNOS, and ICAM-1 compared to suggesting mediation by p38 the air-treated group. The IL-10 mRNA MAPK in the therapeutic effects of CO. Following CO level was unaltered. exposure for 1 h, COHb level reached 20.5 \pm 3.0% from 1.6 \pm 0.4% HO-1: ND CO gas Lung transplant 250-500 ppm CO inhalation for 2 h This study corroborates COHb: ND from brain dead rat prior to lung procurement augmented findings from the report in anti-inflammatory responses and decreased Entry 27, Table 1 as the donors36 apoptosis. CO inhibited levels of IL-6, protective effects of CO are TNF-a, caspase-3, and augmented the level mediated by MAPK. of IL-10 in the study. 29 CO gas Application of HO-1: ND Mouse grafts preserved at 4 °C for Ex vivo application of CO COHb: ND 6 h in the University of Wisconsin in this experimental setting CO in lung $preservation^{23} \\$ (UW) solution bubbled with either 5 or opens up new ways of applying CO without considering safety 100% of CO improved graft functions. CO suppressed the expression of proconcerns associated with its inflammatory mediators such as IL-6, inhalation. TNF- α , IL-1 β , and inhibited neutrophil infiltration in the study. HO-1: ND CORM-2 30 Allograft rejection35 Mice pre-treated with CORM-2 (10 CORM-2 protects from COHb: ND mg/kg, i.p.) for 1 h before and bronchiolitis obliterans in 1, 3, and 6 days after orthotopic airway graft transplant. trachea transplantation showed decreased infiltration of macrophages into graft (number of cells per slice, 103 ± 53) in comparison to vehicle-treated allografts $(301 \pm 128; P < 0.01)$. However, differences in the number of neutrophils were not statistically significant (P = 0.79) among the two groups (number of cells per slice, 151 ± 144 vs. 173 ± 107 ; P = 0.79). Pulmonary Hypertension (PH) 31 CO gas CO reverses PH108 HO-1: ND Mechanistic studies suggested CO (250 ppm, 1 h/d) inhalation for 2 COHb: ↑ weeks reverses pulmonary hypertension NO-dependent therapeutic in rats as indicated by reduction in effects of CO in this model. pulmonary arterial pressure (PAP), vascular Inhalation of 250 ppm CO for wall thickness, right ventricular (RV) 1 h elevated basal COHb level hypertrophy. $1.2 \pm 0.5\%$ to $19 \pm 1.5\%$ 32 CO gas, Effect of CO HO-1: ND This is one of the few studies Isolated and perfused mice lungs ventilated CORM-2, gas and CO-RMs COHb: ND with 10% CO markedly reduced hypoxiathat provided direct comparison on pulmonary vasculature¹⁰⁹ CORM-3 induced PAP. The vascular tone during of the effects of CO gas vs. CO-RMs. normoxia decreased, as well. In contrast, CORM-2 and CORM-3 exhibited a dosedependent rise in PAP in normoxia.

Changes CO Study in Entry delivery **Experimental Observations** Other comments HO-1 and description form CO Importantly, there was no effect by CORM-2 and CORM-3 seen on hypoxiainduced vasoconstriction. 33 CORM-3 HO-1: ND Hypoxia-induced CORM-3 (50 mg/kg) was administered In addition to a COHb: ND PH in mice¹¹⁰ to mice 1 h and 3 h prior to the p53-dependent mechanism, CORM-3 alleviated hypoxic hypoxic challenge. I h pre-treatment partially reduced PH as monitored by right vasoconstriction-induced PH ventricular systolic pressure (RVSP), while by increasing cGMP levels in 3 h pre-treatment completely eliminated the lung cells. hypoxia-induced increase in pressure. **Clinical Trials in Humans** 34 HO-1: ND CO gas Phase II clinical IPF patients were administered 100-200 CO dosing resulted in only trials in idiopathic COHb: ↑ ppm CO, 2 h, twice weekly for 12 weeks. a modest increase in COHb pulmonary fibrosis Measurement of changes in the serum levels than the control group (IPF) patients¹¹¹ concentration of matrix metaloproteinase-7 $(1.75\% \pm 1.78\% \text{ to } 2.62\%)$ \pm 2.70%). The percentage (primary study endpoint), a biomarker for the progression of IPF, did not indicate of respiratory adverse effects significant differences between CO-treated in CO-treated and placebo groups were 37% and 38%, and control groups. respectively. The study showed the tolerability of the discussed dosing regimen in humans. CO gas Phase I clinical HO-1: ND 35 CO administered in mechanically CO ventilation resulted in COHb: ↑ ventilated ARDS patients at dose of increased COHb level i.e., 3.48 trials in ARDS $\pm\,0.7\%$ at 100 ppm while 4.9% $\pm\,0.28\%$ at 200 ppm inhalation compared to 1.97 $\pm\,0.39\%$ in patients112 100 or 200 ppm for 90 min, up to 5 consecutive days. On day 2 of the treatment schedule, an 11% increase in mean plasma mitochondrial DNA (mtDNA) was the placebo group. No adverse observed after 100 ppm CO ventilation or severe adverse events were compared to 400% in air-treated (placebo) observed in this study after CO group. In the 200 ppm CO dosing group, mean mtDNA level decreased by 88%. This administration in the patients. trend continued on subsequent days of the treatment. Further, there was no significant change in the level of IL-1 β , IL-6, IL-8, IL-10, and IL-18 among all the treatment groups. COPD treatment in HO-1: ND 36 CO gas CO at 100 and 125 ppm was administered No difference in effects was to separate groups of COPD patients, 2 h $humans ^{113} \\$ COHb: ↑ noted between 100 and 250 per day for 4 consecutive days. Reduction ppm CO dose groups. The in the percentage of eosinophils in sputum median COHb values after samples but not neutrophils was observed. exposure to 100 ppm and 125 ppm CO were 2.6% and 3.1%, respectively. Comparatively, the placebo group showed 0.2% median COHb.

Table 2.

Effects of HO-1 induction on airway protection

Entry	HO-1 Inducer	Study Description	Changes in HO-1 and CO	Experimental Observations	Other comments
1	DMOG	LPS-induced lung injury ⁴⁶	HO-1:↑ COHb: -	Stimulation with DMOG activated HIF-1/ HO-1 signaling pathways, reduced Golgi stress, and attenuated ROS production as well as associated lung inflammation and injury as a result of LPS exposure.	Such results are consistent with what has been observed with CO gas treatment.
2	Hemin	HSR-induced lung injury ¹⁵⁸	HO-1: ↑ COHb: -	Heme arginate (30 mg of hemin/kg, i.v.) treatment for 18 h prior to HSR markedly reduced inflammation in lungs, kidney, and liver as assessed by measuring parameters such as TNF-α, iNOS, and dry/wet weight ratio (for lungs only) in rats.	The protective effect was more prominent in the lungs, where HSR-induced injury was more serious than liver and kidney due to relatively low HO-1 and high TNF-a expression.
3	Rosiglitazone	Rosiglitazone application in LPS- mediated lung inflammation ¹⁵⁴	HO-1:↑ COHb: -	Rosiglitazone rescued LPS-challenged HPAEpiCs (30 µM dose) and murine (0.1 mg/kg, i.p.) by attenuating VCAM-1 expression and leukocyte secretion in BAL.	The study was conducted in the context of understanding the mechanism of rosiglitazone-induced HO-1 expression.
4	Rosiglitazone	LPS-induced inflamamtion ¹⁵⁵	HO-1: ↑ СОНь: -	Rosiglitazone relieved inflammation by acting against ICAM-1 expression and monocyte adhesion in the lung. Experiments were conducted both HPAEpiCs and in murine models.	Mechanistic study.
5	СоРР	Limb ischemia- reperfusion (LIR)- induced lung injury ¹⁵⁹	HO-1:↑ COHb:-	CoPP (5 mg/kg) injection protected mice from inflammatory damage due to ischemia. Parameters monitored were histological examinations, alveolar wall thickening, presence of red blood cells, and neutrophil in BAL. Expression of HO-1, nuclear factor erythroid 2-related factor (Nrf-2), BTB, and CNC homology 1 (Bach1) was also examined.	CoPP strengthens the anti- inflammatory response by upregulating Nrf2.
6	Mevastatin	Application of statins in pulmonary inflammation ¹⁰⁵	HO-1: ↑ COHb: -	Mevastatin (MVS) (0.1 mg/kg, 1 h) attenuates ICAM-1 expression and leukocyte concentration in BAL in murine models stimulated by TNF-α. Further, MVS (30 μM) treatment <i>in vitro</i> also produced anti-inflammatory effects in a similar manner.	MVS stimulates HO-1 expression in HPAEpiCs via generation of ROS in an NADPH oxidase (Nox)-dependent manner.
7	Hemin	Endotoxin-induced ALI ¹⁵⁷	HO-1:↑ COHb:-	Hemin (50 mg/kg) pre-treatment 1 h before LPS challenge conferred protective effects in mice through reduction of hemorrhage, alveolar wall thickening, and leukocyte infiltration. Hemin pre-treatment improved survival rate of LPS-challenged mice (~90%) compared to the group without hemin administration (75%).	HO-1 induction controls mitochondrial dynamics to protect from ALI.
8	Hemin	LPS-induced ALI ⁴⁸	HO-1:↑ COHb: -	Pre-treatment of RAW 264.7 cells with either CORM-2 (100 μM) or hemin (20 μM) for 1 h reduced ROS production stimulated by LPS. Further, hemin (50 mg/kg) ameliorated inflammation by reducing alveolar wall thickening, inflammatory cell infiltration, and hemorrhage in rats.	This study examined the effect of a HO-1 inducer and CORM-2 on ALI. A detailed description is provided in the text.
9	Hemin,	Polypeptide- induced inflammation ¹⁶⁰	HO-1:↑ COHb: ND	Hemin (10 μM) administration produced an anti-inflammatory effect by suppressing IL-6 and IL-8. Further, in the same study, CORM-A1, CORM-2, CORM-3 inhibited the level of IL-6 and IL-8 induced by poly-L-arginine (PLA) exposure in the human bronchial epithelial cell line 16HBE14ο	Hemin and PLA increased the expression of HO-1 in cells. CORM-2 suppressed mRNA expression of HO-1 induced by PLA, whereas protein

Entry	HO-1 Inducer	Study Description	Changes in HO-1 and CO	Experimental Observations	Other comments
				CORM-2 was the most potent. The effect was concentration-dependent (10, 30, and 100 µM).	expression of HO-1 remained unaltered.