
Enhancing Password Recollection Performance using Augmented Reality with the method of loci

Zhizhuo (George) Yang

Human memory

Three stages of memory

Associative memory

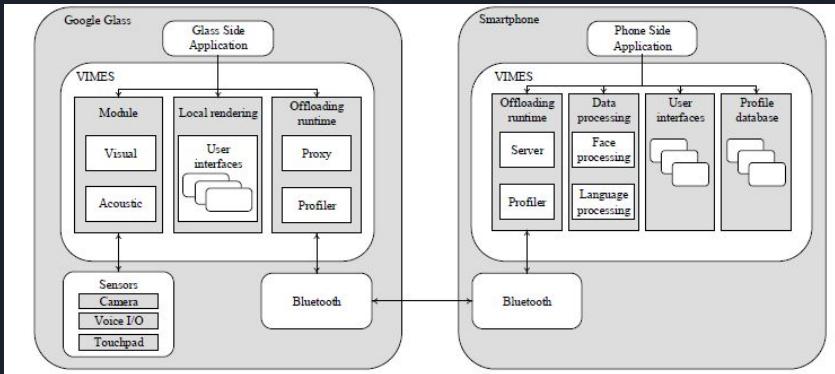
The ability to learn and remember the relationship between unrelated items. This would include, for example, remembering the name of someone or the aroma of a particular perfume.^[1]

Associative memory is a declarative memory structure and episodically based.^[2]

1. Suzuki, Wendy A. (February 2005). "Associative Learning and the Hippocampus". *Psychological Science Agenda*. American Psychological Association.
2. Dennis, Nancy A., Indira C. Turney, Christina E. Webb, and Amy A. Overman. "The Effects of Item Familiarity on the Neural Correlates of Successful Associative Memory Encoding". *Cognitive, Affective, & Behavioral Neuroscience* 15.4 (2015): 889-900.

Method of Loci

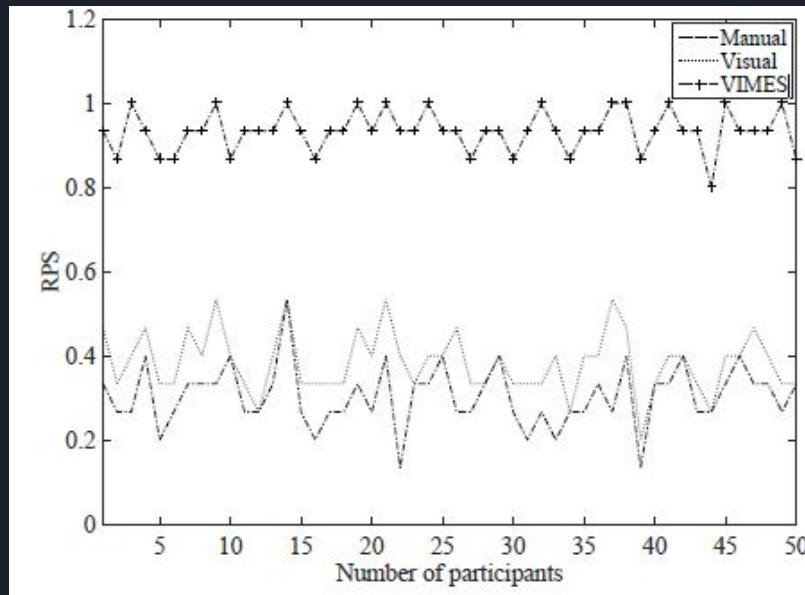



Image courtesy of WikiHow

Motivation

How can AR enhance human memory?

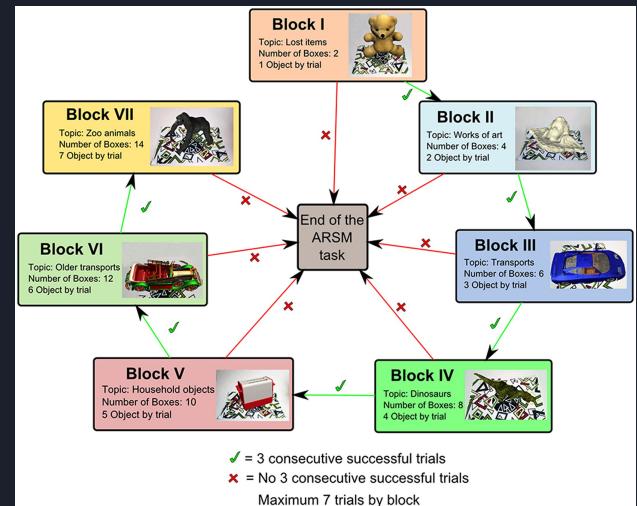
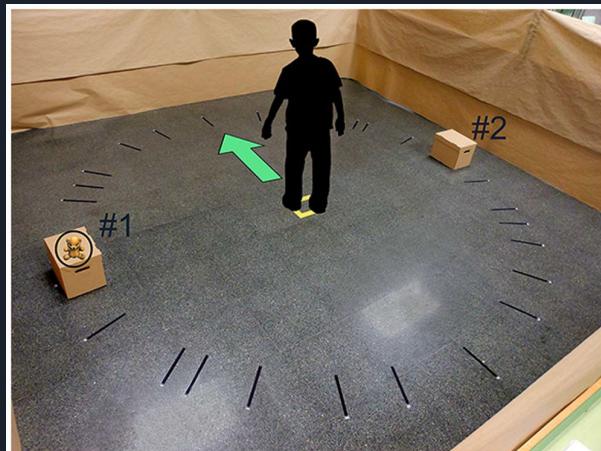
Related work



VIMES Interface

User interfaces (a) before and (b) after adding Mary's personal information to the database.

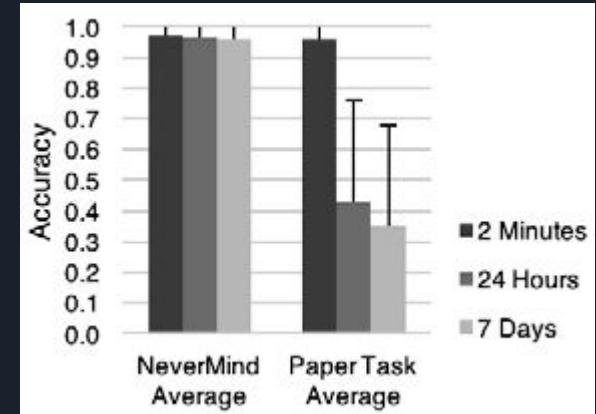
Related work

Distribution of Recall Performance Score

Memory Experience	VIMES	Manual Recall
Vividness	4.1 (0.35)	3.0 (0.71)
Coherence	4.0 (0.43)	2.7 (0.67)
Accessibility	3.8 (0.58)	3.0 (0.83)
Visual Perspective	4.1 (0.39)	2.9 (0.75)

Users' Rating of Memory Experience of 50 Participants


Related work

Related work

Nevermind Interface

Recall accuracy for the experiment task using NeverMind compared to the paper based task

Previous work from Graphics lab

Memorization Stage

Condition 1: No-Image

Condition 2: Image-Only

Condition 3: Overt-Guidance

Condition 4: Subtle-Guidance

Pass #3 3 7 7 2 6 7 3

Pass #3 5 5 0 9 7 7 8

Pass #1 8 8 5 2 6 9

Pass #1 7 0 5 9 4 1 4

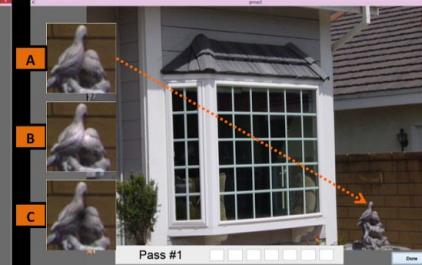
7380149	4869263
9483556	0981597
9032863	2383199
5966999	6525269
4378924	7597143
0947646	1436398
6027518	5180495
5458625	4969174
1492584	5945129

9932064	4746033
0874841	4004682
8210876	5959937
1498702	4751330
6101785	1226881
6380091	4367046
4355717	9866837
4511318	7243628
5930682	8507114

1199209	6465627
3886527	1314629
5903476	4541315
8038835	3167322
3070556	4866151
1209926	5857814
1182286	6351528
929057	6156467
7794385	4774390

4319752	1266197
0614362	1158787
6491633	8695927
6579775	1974233
5743136	8813227
3499032	6886089
5511491	4359466
1612488	7268629
2419294	0698196

Pass #3


Pass #3

Pass #1

Pass #1

Cognitive Task

Recall Stage

Methodology

Microsoft HoloLens

[Spatial Mapping](#)

The Experiment

Participants

Total number: 90

Groups: 3, 30 participants per group

Source: university student with age from 18 to 25 years old

Experiment Design

Participant groups

1. Control Group (using traditional repetition method)
2. Group of the *method of loci*
3. Group of AR-enhanced *method of loci*

Password generator: generate passwords that make use of all 0-9 digits in a given task for all groups for unbiased results

Procedure

1. Memorization Stage (10 minutes, five 10-digit passwords)
2. Cognitive Task Stage (read 10 random 15-digit passwords aloud)
3. Recall Stage (try to recall original passwords and type into an iPad after the memorization process)
4. Recall after 24 hours

Evaluation

Objective Evaluation

Recollection Accuracy with Metrics:

1. Levenshtein distance
2. Damerau-Levenshtein distance

*Maximum Recollection capacity
(extra)

Subjective Evaluation

1. Did the AR-enhanced interface work as you expected?
2. Do you think the AR-enhanced interface helped you perform better?
3. For the AR-enhanced interface, please indicate your level of mental stress?
4. For the AR-enhanced interface, please indicate your level of physical stress?
5. How intuitive was the AR-enhanced interface?
6. Do you have any other feedback on the experiment?

Extra test (work in progress)

In the current experiment, we have tested the performance on recollection of password of certain length and number, we plan to test the **upper bound** for participants to remember using our interface.

We plan to see if additional **audio information** for the AR-enhanced method of loci will further help improve the performance or ease the memorization process.

Do **alphanumeric passwords**

Include **additional information** such as orientation cues (compass displayed in user's FOV) in AR, visualize arrows for shortest path dynamically, and measure how much overall time it takes.

Objects memorization

Future work

Help remember words in sequence or objects in sequence. In case of objects, the system could perhaps generate more vivid animations and visualizations to help the participants form stronger memories.

Possible direction of improvement in real-life application scenarios:

1. Most familiar locations for individual users for more effective memorization
2. Storation of different loci with corresponding spatial map
3. User defined items for memorization and off-line association editing

Citations

1. C.-H. Chien, C.-H. Chen, and T.-S. Jeng. An interactive augmented reality system for learning anatomy structure. In proceedings of the international multiconference of engineers and computer scientists, volume 1. International Association of Engineers Hong Kong, China, 2010.
2. K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards wearable cognitive assistance. In Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys '14, pages 68–81, New York, NY, USA, 2014. ACM.
3. P. Hutton. History as an Art of Memory. University of Vermont, 1993.
4. M.-C. Juan, M. Mendez-Lopez, E. Perez-Hernandez, and S. Albiol-Perez. Augmented reality for the assessment of children’s spatial memory in real settings. *PLOS ONE*, 9(12):1–26, 12 2014.
5. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In *Soviet physics doklady*, volume 10, pages 707–710, 1966.
6. V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones. *Problems of Information Transmission*, 1(1):8–17, 1965.
7. G. Navarro. A guided tour to approximate string matching. *ACM computing surveys (CSUR)*, 33(1):31–88, 2001.
8. J. O’Keefe and L. Nadel. The hippocampus as a cognitive. map. Clarendon Press, 1978.
9. S. Sridharan, B. John, D. Pollard, and R. Bailey. Gaze guidance for improved password recollection. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, pages 237–240. ACM, 2016.
10. J. Yang. Towards cognitive assistance with wearable augmented reality. PhD thesis, 2016.
11. O. Roscello, M. Exposito, and P. Maes. Nevermind: Using augmented reality for memorization in Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 215-216 ,ACM, 2016

Citations

1. Richard C Atkinson and Richard M Shiffrin. Human memory: A proposed system and its control processes. *Psychology of learning and motivation*, 2:89–195, 1968
2. Richard C Atkinson and Richard M Shiffrin. The control processes of short-term memory. Citeseer, 1971.
3. Dennis, N.A., Turney, I.C., Webb, C.E. and Overman, A.A. The effects of item familiarity on the neural correlates of successful associative memory encoding. *Cognitive, Affective, & Behavioral Neuroscience*, 15(4): 889-900, 2015.
4. Legge, E. L., Madan, C. R., Ng, E. T., & Caplan, J. B. Building a memory palace in minutes: Equivalent memory performance using virtual versus conventional environments with the Method of Loci. *Acta psychologica*, 141(3), 380-390, 2012.