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Abstract:

Wave phenomena is a prominent experience in our daily lives. The sun sends waves of
electromagnetic radiation which carries energy to our planet driving life as we know it. The
music we enjoy is because of wave phenomena. In fact, all matter in this universe can be
explained as behaving as particles and waves. This property of matter is known as wave particle
duality. In this project | will use the derivations and problems from University Physics with
Modern Physics and Mathematical Methods in the Physical Sciences to show how the wave
equation will be derived using partial differential equations. Solutions to the Wave Equation will
be used to create wave functions with the help of the mentioned text books for mechanical and
electromagnetic waves as well as applications in quantum mechanics. Using these properties, the
speed of sound and light care calculated. Each topic will be followed by known worked
examples provided by University Physics with Modern Physics. In effort to show the
fundamentals of wave phenomena and their applications simplistic models will be used. A
conclusion has been written to show how the mentioned topics are related.



Derivation of the wave equation:

To first arrive at the wave equation, we will look at a very simple model. This model has
certain conditions to make the derivation as simple as possible. The first limitation is that there is
no dissipation in the wave. This means there is no friction force that is dampening the wave.
Next the wave keeps the same shape and speed so that there is no dispersion. For the first part of
the derivation we will look at the wave moving in the positive x-axis with two dimensions, that
of distance and time. The reason for these limiting factors is so we know the dimensions, shape
and speed of the wave when it is shifted in any direction.

At time t = 0 the shape of the wave is described by a function F(x,0) = S(x).

After a certain amount of time the wave moves along the +x-axis a unit of distance [ = x — vt
where v is the speed of which the wave travelled so that:

F(x,t) =S(x —vt)

Next, we take partial derivatives with respect to position and time:

OF _ <o 9°F _ _

P S'(x —vt) o = S"(x —vt)
OF _  ¢lrn _ O%F _ 2oy _
Pl vS'(x — vt) 5z =V S"(x —vt)

Using the second partial derivative with respect to time on the left and the second partial
derivative with respect to position yields a general form of the wave equation with dimensions of
distance in one direction and time:

0%F 0%S

2
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We do not need to limit ourselves to only one direction. A change in the opposite direction will
yield the same equation. In fact, from this point it is easy to extend this equation to three-
dimensional space.

0%F %S 0%S 0°%S
— = v? +—+
at? dx? dy? 0z?

That was the easy part. Now we want to use the wave equation to create a wave function for

further calculations. For the next step we will revert to only two dimensions, that of one direction
and time.




Solutions to the Wave Equation:

To find solutions to the wave equation and apply those solutions to real world problems first we
must use deal with second order partial differential equations.

First rearranging terms, we have:
0%F _ 19°%S
0x2  v20t2
We now define our function as two functions. One with respect to distance and the other time:
F=8=XxT(t)
The wave equation then becomes:
0%(XT) 1 0%(XT)
0xz  v? 0t2
Since these are partial derivatives, we can pull out the constant term. This also allows us to use
standard derivative notation instead of partial derivative notation:

TdZX 1 XdZT
dx — v2" dt2
. e . 1
Dividing both sides by -

1d?X 114d°T
X dx  v2T dt?
Keeping one term constant would result in no change in the other terms so both terms are equal
to some constant. We choose —k? as our constant.
1d*X 11 d*T
—_—— = — — = _k2
X dx v?T dt?

We can now solve for our two functions X (x) and T (t) separately:

1d°X _ g2 1L1AT_ 42

X dx v2T dt?

First, we will find solutions for the function X (x)

1d’x
X dx
Multiplying both sides by the function X (x)
d’X 12y
dx



Then rearranging terms

X +k?X =0
dx -
Now we can create a characteristic equation using A:
P +k*=0
Solving for A:
/12 — _k2

A=+J—k?=1ki=0=ki

We now have two roots to our function X (x) in the form e*Cos(B) where « = 0 and B = k our
solutions become:

_ (e%os(kx) _ (cos(kx)
X)) = {eo sin(kx) {sin(kx)

Using the same technique for the function T'(t) we have the following roots:
A=0+ kvi
This gives the solutions for T'(t) noting that angular velocity is w = kv :

_ (ecos(kvt) _ (cos(kvt)
T = {eo sin(kvt) {sin(kvt)

Our final function is then:
F(x,t) = X(x)T(t) = Sin(kx)Cos(kvt)

For simplicities sake we will apply boundaries stating that both ends of the wave are fixed at the
origin to length L. We want to satisfy the condition where x = Land F = 0

This means that sin(kx) = 0 and this happens at intervals of nm, so it follows that:

kLGnorkan—n and w=kv=%

(Where w is the angular velocity and k is a constant of proportionality.)
This yields two possible solutions:

. MIX nnut
F(x,t) = F(x,t) =51n( )cos

L L )

substituting w = kv = ==

F(x,t) = sin(kx) cos(wt)

We can say here that at any position x the sine term containing x will be a constant and dictates
the maximum amplitude of the wave notated as A. We can also find the displacement of x at any



time t by shifting by a unit of time x/v. This makes t become t — x/v. The sin(kx) is constant
at any point x denoted as the amplitude of the wave sin(kx) = A.

Changing our function from F(x, t) to y(x, t) to make it more familiar we arrive at:
X
y(x,t) = Acos(w (t — ;))

Since cosine is an even term we can rewrite as:

X
y(x,t) = Acos <w (; - t)) = Acos(kx — wt)

This is the wave function of a sinusoidal wave propagating in the positive x-direction derived
from the wave equation. This is the wave function used frequently in physics texts. Now we can
use this function to look further into applications of the wave equation and wave functions.

Wave Speed:

Since we know our wave function satisfies the wave equation, we can find the speed of the
waves we modelled by taking the second partial derivatives of the wave function and solving for
V.

dy . 0%y 2
i —wAsin(kx — wt) ST W Acos(kx — wt)

9 _ _hAsi _ %y _ _p2 _
= kAsin(kx — wt) pei k“Acos(kx — wt)

The wave equation then becomes:
1
—k?Acos(kx — wt) = — (—w?Acos(kx — wt))
v

The maximum value of cosine is one and the amplitude cancels. It follows then that:

(1)2

k% =_—
ke = 2

w? w
v = ﬁ=E

At a period of 2w, w = 2mf where f is the frequency and

k= 27” where A is the wavelength. This means wave speed is then:

2nf
T Y

A



This helps understand that the wave speed is the square root of a ratio of restoring force and
resisting force that causes the wave to propagate as well as the product of wavelength and
frequency. With that conclusion we can then look at wave speed through an ideal gas.

The Speed of Sound Through Air:

To calculate the speed of sound through air we must introduce a few more terms that we must
take as true to continue. We must consider the ratio of heat capacities denoted y, the gas constant

R =8.314 $ the temperature T in kelvin and the molar mass M of the atoms that make up
air.
The ratio of heat capacities for air at room temperature T = 293.15 K is 1.40.

Keeping in mind that the speed of a wave is dependent on the ratio of restoring force and
resisting force causing propagation we have the equation:

_ |YRT
V= ™

Plugging in these values we have:

J

(1.4)(8.314 )(293.15k)

v = m_ol * k =344 m/s
28.8(1073)kg/mol

This is the known speed of sound.

Example Problem 1:

15.3 ¢ Tsunami! On December 26, 2004, a great earthquake
occurred off the coast of Sumatra and triggered immense waves
(tsunami) that killed some 200,000 people. Satellites observing
these waves from space measured 800 km from one wave crest
to the next and a period between waves of 1.0 hour. What was the
speed of these waves in m/s and in km/h? Does your answer help
you understand why the waves caused such devastation?

Young, Hugh D., Roger A. Freedman, and A. Lewis Ford. University Physics with Modern Physics. 14th ed. Boston,
MA: Pearson Learning Solutions, 2016.

The distance from one wave crest to another is also known as wavelength denoted A. The period
is given as one hour. With this information we can use a relationship we derived earlier to
calculate the speed of the tsunami waves.

1
A=800km f ==

v=2f =2 =208 _ 800 km/hr

800 km _800(103)m
T 1 hr -

—=220m/s
3600 s




This tells us the waves are moving incredibly fast which is why it is difficult to have a warning
system for tsunami waves.

Derivation of the Electromagnetic Wave Equation:

This derivation is like the derivation for the wave function. However, some new terms and
conditions must be met.

First, we must imagine a plane wave. A plane wave is where a plane, in cartesian coordinates in
three-space, is perpendicular to the x-axis. One side has no activity and the other side has a

uniform magnetic field M in the +z-direction and a uniform electric field E in the +y-direction.
The fields move with the plane in a direction with constant speed. A plane wave is a wave with
uniform fields with a perpendicular plane to the direction of propagation.

Now consider letting the magnetic and electric fields vary in their respective directions denoted
M, and E,, along the x-axis. This means they are both a function of position on the x-axis and of

time. Containing the field between two planes at x and x + Ax means that the wave must satisfy
the wave equation.

Wave Equation:
0°F 1 9%S
0x2  v20t?

Using Faraday’s Law and Ampere’s Law to show the relationship between magnetic and electric
fields.

Faraday’s Law:

3€EdL = Fq=-——2X2
dt

Where a is constant of proportionality and &,, is magnetic flux.

Evaluating the integral from x to x + Ax yields:
x+Ax_) N
ff; EdL = —Ea = [E)(x,t)—E,(x + Ax, t)]a
X

Ampere’s Law:

MdL = Ma = pye

f Ho€o dt
Where a is constant of proportionality and & is electric flux.

Evaluating the integral from of Ampere’s Law from x to x + Ax yields:

x+Ax_) N
% MdL = Ma = [M,(x + Ax, t)—M,(x,t)]a

X

Now imagining Ax is very small makes the magnetic flux @,, take form:



ddy  0M,(x,t) A
a ot X

Inserting this information into Faraday’s Law Yyields a relationship between the derivative of
magnetic flux and the electric field:

oM, (x,t)
Tan = —[E,(x,t)—E,(x + Ax,t)]a
Simplifying yields:
do
_d—tM = [E,(x,t)—E,(x + Ax, t)]/Ax
Allowing Ax — 0 shows that:
oM, OE,
ot ox

For every component of the magnetic field there must be a component of the electric field.

Now applying the same method using Ampere’s Law:

OE,

ot

Plugging this information into Ampere’s Law:
dE,

[M,(x + Ax, t)—M,(x,t)]a = —uy€y Wan

Simplifying and allowing Ax — 0 yields:

oM, JE,

ox Hoo ot

Taking the partial derivatives of both sides with respect to x and then again with respect to ¢
shows:

02M,  0%E,
axz  Hofo52

This takes the form of the wave equation:
0°F 1 09%S

9x2  vZot?
The Speed of Light:

From here we can see that the coefficient terms on the right side are equal:

1
ﬁ = Up€p



Solving for wave speed we find:
1

v Ho€o

Plugging in the known values of permittivity and permeability of space in a vacuum:

1

\/'(8.85(137(;1—212)6'2)(471'(12;17)1\/)

This is the known speed of light.

v =

= 3(10%)m/s

v =

Example Problem 2:

32.1 ¢ (a) How much time does it take light to travel from the
moon to the earth, a distance of 384,000 km? (b) Light from
the star Sirius takes 8.61 years to reach the earth. What is the
distance from earth to Sirius in kilometers?

Young, Hugh D., Roger A. Freedman, and A. Lewis Ford. University Physics with Modern Physics. 14th ed. Boston,
MA: Pearson Learning Solutions, 2016.

Using the relationship that velocity v is equal to the ratio of distance d and time t

d
d = 384,000 km = 3.84(105)m v =3(10%)m/s =~

Ho€o
d_3.84(106)m_128
Ty 308 mo e
S
v=— d=uvt

107 3km

107 seconds
d = 3(10%)m/s( )(8.61)years(3.154 ~ear = 8.15(103)km
This solution tells us that it only takes light approximately 1.28 seconds to travel 384,000 km
from the earth to the moon. If that isn’t impressive enough, if we know how long it takes light to
travel from the star Sirius we can calculate that it is approximately 81.5 trillion km from our
planet!



One Dimensional Particle Waves:

For this section we are going to already assume the relationship proven that v = Af. We must
also introduce The de Broglie relationships which relate energy to angular velocity w and
momentum p to the wave number.

E =hf = hw where h = h/2m and w = 2nf
p=73=hk wherehzh/Znand/lzg

Taking these relationships into account and creating a model where we have a particle with no
forces acting on it is moving in the +x-direction and neglecting potential energy, we substitute
these new relationships into the kinetic energy equation.

2

E=im?2 =L where p = mv
2 2m
h2k?
Ao =
@ 2m

Now for this section we are assuming a wave function. One wave moving in the +x-direction
with amplitude A and another wave moving in the +x-direction with Amplitude B.

Y(x,t) = Acos(kx — wt) + Bsin(kx — wt)
Now and taking first and second partial derivatives of the wave function with respect to position:

LY
dx?2

¥ k[—Asin(kx — wt) + Bcos(kx — wt)]

ax

Bsin(kx — wt)]

= —k?[Acos(kx — wt) +

It follows then that:

02W(x,t
6_:2( ) = —k?[Acos(kx — wt) + Bsin(kx — wt)]
92¥(x, 1) ,
gz = —k“W(x,t)

Multiplying both sides by — %:

h? 0?W(xt)  h?
Tam oz omk P&t

21,2
Plugging in known relationship Aw = hz:l :

h? 92¥(x,t
- —ﬁ = hw[Acos(kx — wt) + Bsin(kx — wt)]
2m  0x2

Looking at the first partial derivative with respect to time yields:

10



¥
= hw[Asin(kx — wt) — Bcos(kx — wt)]

at
It is advised in the text to use a “fudge factor” denoted F, to make sure calculations come out
correctly:
o¥Y _
T hw[Asin(kx — wt) — Bcos(kx — wt)]

= hw[FAsin(kx — wt) — Fcos(kx — wt)]
Setting the two right sides of the equations together yields:
hwl[Acos(kx — wt) + Bsin(kx — wt)] = hw[FAsin(kx — wt) — FBcos(kx — wt)]
Acos(kx — wt) + Bsin(kx — wt) = wAsin(kx — wt) — wBcos(kx — wt)

The coefficients for the sine and cosine terms must be the same on both sides so it follows then
that:

A=-FB  B=FA
A=—F(FA) = —F?4
F?=-1
F=+v-1=i
And B = iA
This gives us Schrodinger’s Equation for a one-dimensional free particle:
h? 0?29 (x,t)  0¥(x,t)
Tam oz M Tar
Finding the complex coefficient changes our original wave function to:
Y(x,t) = Acos(kx — wt) + iAsin(kx — wt)
We can rewrite the formula using Euler’s formula e?® = cosé + isin8:
W(x,t) = Aelkx—00) = goikxp—ivt

So now if we take the absolute value of the square of the wave function, we can find the most
probable position of a particle moving in the +x-direction at any time t within the range of x and
x + dx. The particle is most likely to be found at the maximum value of |¥|%dx.

11



Conclusion:

Using the wave equation, we can derive components such as wave functions. These
components have proven themselves to be invaluable to science in understanding our reality as
well as compensating for these physical phenomena. We have seen that we can calculate the
speed of tsunami waves using satellite data. We can also use mechanical wave functions to
understand seismic activity such as earthquakes.

We were also able to see, by creating electromagnetic wave functions, that we can
determine the speed of light in a vacuum and determine approximately how far away celestial
bodies are from us. Understanding electromagnetic waves have helped us create imaging
services and allow us to see inside the human body as well as ancient ruins. Understanding
electromagnetic radiation helps us harness energy from the sun. Because electromagnetic waves
carry energy they have endless applications in our lives. Lasers, radio transmitters and even our
microwaves use electromagnetic waves.

On a quantum scale wave functions can be used to track particles by using a probability
factor based on wave functions. They have also helped us understand quantum entanglement
which paves the way for creating super computers capable of predicting climate patterns and the
effects of drugs on the human body without testing on living creatures. From the macro scale of
celestial bodies to the quantum universe the wave equation and functions.
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