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Abstract: 
 Wave phenomena is a prominent experience in our daily lives. The sun sends waves of 

electromagnetic radiation which carries energy to our planet driving life as we know it. The 

music we enjoy is because of wave phenomena. In fact, all matter in this universe can be 

explained as behaving as particles and waves. This property of matter is known as wave particle 

duality. In this project I will use the derivations and problems from University Physics with 

Modern Physics and Mathematical Methods in the Physical Sciences to show how the wave 

equation will be derived using partial differential equations. Solutions to the Wave Equation will 

be used to create wave functions with the help of the mentioned text books for mechanical and 

electromagnetic waves as well as applications in quantum mechanics. Using these properties, the 

speed of sound and light care calculated. Each topic will be followed by known worked 

examples provided by University Physics with Modern Physics. In effort to show the 

fundamentals of wave phenomena and their applications simplistic models will be used. A 

conclusion has been written to show how the mentioned topics are related. 
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Derivation of the wave equation: 
To first arrive at the wave equation, we will look at a very simple model. This model has 

certain conditions to make the derivation as simple as possible. The first limitation is that there is 

no dissipation in the wave. This means there is no friction force that is dampening the wave. 

Next the wave keeps the same shape and speed so that there is no dispersion. For the first part of 

the derivation we will look at the wave moving in the positive x-axis with two dimensions, that 

of distance and time. The reason for these limiting factors is so we know the dimensions, shape 

and speed of the wave when it is shifted in any direction.  

At time 𝑡 = 0 the shape of the wave is described by a function 𝐹(𝑥, 0) = 𝑆(𝑥). 

After a certain amount of time the wave moves along the +x-axis a unit of distance 𝑙 = 𝑥 − 𝑣𝑡 

where 𝑣 is the speed of which the wave travelled so that: 

𝐹(𝑥, 𝑡) = 𝑆(𝑥 − 𝑣𝑡) 

Next, we take partial derivatives with respect to position and time: 

𝜕𝐹

𝜕𝑥
= 𝑆′(𝑥 − 𝑣𝑡) 

𝜕2𝐹

𝜕𝑥2 = 𝑆"(𝑥 − 𝑣𝑡) 

𝜕𝐹

𝜕𝑡
= 𝑣𝑆′(𝑥 − 𝑣𝑡) 

𝜕2𝐹

𝜕𝑡2 = 𝑣2𝑆"(𝑥 − 𝑣𝑡) 

Using the second partial derivative with respect to time on the left and the second partial 

derivative with respect to position yields a general form of the wave equation with dimensions of 

distance in one direction and time: 

𝜕2𝐹

𝜕𝑡2
= 𝑣2

𝜕2𝑆

𝜕𝑥2
 

We do not need to limit ourselves to only one direction. A change in the opposite direction will 

yield the same equation. In fact, from this point it is easy to extend this equation to three-

dimensional space. 

𝜕2𝐹

𝜕𝑡2
= 𝑣2 [

𝜕2𝑆

𝜕𝑥2
+

𝜕2𝑆

𝜕𝑦2
+

𝜕2𝑆

𝜕𝑧2
] 

That was the easy part. Now we want to use the wave equation to create a wave function for 

further calculations. For the next step we will revert to only two dimensions, that of one direction 

and time. 
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Solutions to the Wave Equation: 
To find solutions to the wave equation and apply those solutions to real world problems first we 

must use deal with second order partial differential equations. 

First rearranging terms, we have: 

𝜕2𝐹

𝜕𝑥2
=

1

𝑣2

𝜕2𝑆

𝜕𝑡2
 

We now define our function as two functions. One with respect to distance and the other time: 

𝐹 = 𝑆 = 𝑋(𝑥)𝑇(𝑡) 

The wave equation then becomes: 

𝜕2(𝑋𝑇)

𝜕𝑥2
=

1

𝑣2

𝜕2(𝑋𝑇)

𝜕𝑡2
 

Since these are partial derivatives, we can pull out the constant term. This also allows us to use 

standard derivative notation instead of partial derivative notation: 

𝑇
𝑑2𝑋

𝑑𝑥
=

1

𝑣2
𝑋

𝑑2𝑇

𝑑𝑡2
 

Dividing both sides by 
1

𝑋𝑇
  

1

𝑋

𝑑2𝑋

𝑑𝑥
=

1

𝑣2

1

𝑇
 
𝑑2𝑇

𝑑𝑡2
 

Keeping one term constant would result in no change in the other terms so both terms are equal 

to some constant. We choose −𝑘2 as our constant. 

1

𝑋

𝑑2𝑋

𝑑𝑥
=

1

𝑣2

1

𝑇
 
𝑑2𝑇

𝑑𝑡2
= −𝑘2 

We can now solve for our two functions 𝑋(𝑥) and 𝑇(𝑡) separately: 

1

𝑋

𝑑2𝑋

𝑑𝑥
= −𝑘2  

1

𝑣2

1

𝑇
 
𝑑2𝑇

𝑑𝑡2
= −𝑘2 

First, we will find solutions for the function 𝑋(𝑥) 

1

𝑋

𝑑2𝑋

𝑑𝑥
= −𝑘2 

Multiplying both sides by the function 𝑋(𝑥) 

𝑑2𝑋

𝑑𝑥
= −𝑘2𝑋 
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Then rearranging terms 

𝑑2𝑋

𝑑𝑥
+ 𝑘2𝑋 = 0 

Now we can create a characteristic equation using 𝜆: 

𝜆2 + 𝑘2 = 0 

Solving for 𝜆: 

𝜆2 = −𝑘2 

𝜆 = ±√−𝑘2 = ±𝑘𝑖 = 0 ± 𝑘𝑖  

We now have two roots to our function 𝑋(𝑥) in the form 𝑒𝛼𝐶𝑜𝑠(Β) where 𝛼 = 0 and Β = 𝑘 our 

solutions become: 

𝑋(𝑥) = {
𝑒0cos (𝑘𝑥)

𝑒0 sin(𝑘𝑥)
= {

cos (𝑘𝑥)

sin(𝑘𝑥)
 

Using the same technique for the function 𝑇(𝑡) we have the following roots: 

𝜆 = 0 ± 𝑘𝑣𝑖 

This gives the solutions for 𝑇(𝑡) noting that angular velocity is 𝜔 = 𝑘𝑣 : 

𝑇(𝑡) = {
𝑒0cos (𝑘𝑣𝑡)

𝑒0 sin(𝑘𝑣𝑡)
= {

cos (𝑘𝑣𝑡)

sin(𝑘𝑣𝑡)
  

Our final function is then: 

𝐹(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) = 𝑆𝑖𝑛(𝑘𝑥)𝐶𝑜𝑠(𝑘𝑣𝑡) 

For simplicities sake we will apply boundaries stating that both ends of the wave are fixed at the 

origin to length 𝐿. We want to satisfy the condition where 𝑥 = 𝐿 and 𝐹 = 0 

This means that sin(𝑘𝑥) = 0 and this happens at intervals of 𝑛𝜋, so it follows that: 

𝑘𝐿 = 𝑛𝜋 or 𝑘 =
𝑛𝜋

𝐿
    and  𝜔 = 𝑘𝑣 =

𝑛𝜋𝑣

𝐿
 

(Where 𝜔 is the angular velocity and 𝑘 is a constant of proportionality.) 

This yields two possible solutions: 

𝐹(𝑥, 𝑡) = 𝐹(𝑥, 𝑡) = sin (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑣𝑡

𝐿
) 

substituting  𝜔 = 𝑘𝑣 =
𝑛𝜋𝑣

𝐿
 

𝐹(𝑥, 𝑡) = sin(𝑘𝑥) cos (𝜔𝑡) 

We can say here that at any position 𝑥 the sine term containing x will be a constant and dictates 

the maximum amplitude of the wave notated as 𝐴. We can also find the displacement of 𝑥 at any 



5 
 

time 𝑡 by shifting by a unit of time 𝑥/𝑣. This makes 𝑡 become 𝑡 − 𝑥/𝑣. The sin (𝑘𝑥) is constant 

at any point 𝑥 denoted as the amplitude of the wave sin(𝑘𝑥) = 𝐴. 

Changing our function from 𝐹(𝑥, 𝑡) to 𝑦(𝑥, 𝑡) to make it more familiar we arrive at: 

𝑦(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔 (𝑡 −
𝑥

𝑣
)) 

Since cosine is an even term we can rewrite as: 

𝑦(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠 (𝜔 (
𝑥

𝑣
− 𝑡)) = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 

This is the wave function of a sinusoidal wave propagating in the positive x-direction derived 

from the wave equation. This is the wave function used frequently in physics texts. Now we can 

use this function to look further into applications of the wave equation and wave functions. 

 

Wave Speed: 
Since we know our wave function satisfies the wave equation, we can find the speed of the 

waves we modelled by taking the second partial derivatives of the wave function and solving for 

𝑣. 

𝜕𝑦

𝜕𝑡
= −𝜔𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

𝜕2𝑦

𝜕𝑡2 = −𝜔2𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 

𝜕𝑦

𝜕𝑥
= −𝑘𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)  

𝜕2𝑦

𝜕𝑥2
= −𝑘2𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 

The wave equation then becomes: 

−𝑘2𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) =
1

𝑣2
(−𝜔2𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)) 

The maximum value of cosine is one and the amplitude cancels. It follows then that: 

−𝑘2 = −
𝜔2

𝑣2
 

𝑣 = √
𝜔2

𝑘2
=

𝜔

𝑘
 

At a period of 2𝜋, 𝜔 = 2𝜋𝑓 where 𝑓 is the frequency and 

𝑘 =
2𝜋

𝜆
 where 𝜆 is the wavelength. This means wave speed is then: 

𝑣 =
2𝜋𝑓

2𝜋
𝜆

= 𝜆𝑓 
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This helps understand that the wave speed is the square root of a ratio of restoring force and 

resisting force that causes the wave to propagate as well as the product of wavelength and 

frequency. With that conclusion we can then look at wave speed through an ideal gas. 

The Speed of Sound Through Air: 
To calculate the speed of sound through air we must introduce a few more terms that we must 

take as true to continue. We must consider the ratio of heat capacities denoted 𝛾, the gas constant 

𝑅 = 8.314
𝐽

𝑚𝑜𝑙∗𝐾
, the temperature 𝑇 in kelvin and the molar mass 𝑀 of the atoms that make up 

air. 

The ratio of heat capacities for air at room temperature 𝑇 = 293.15 𝐾 is 1.40. 

Keeping in mind that the speed of a wave is dependent on the ratio of restoring force and 

resisting force causing propagation we have the equation: 

𝑣 = √
𝛾𝑅𝑇

𝑀
 

Plugging in these values we have: 

𝑣 = √
(1.4)(8.314

𝐽
𝑚𝑜𝑙 ∗ 𝑘

)(293.15𝑘)

28.8(10−3)𝑘𝑔/𝑚𝑜𝑙
= 344 𝑚/𝑠 

This is the known speed of sound.  

Example Problem 1:  

 

Young, Hugh D., Roger A. Freedman, and A. Lewis Ford. University Physics with Modern Physics. 14th ed. Boston, 

MA: Pearson Learning Solutions, 2016. 

The distance from one wave crest to another is also known as wavelength denoted 𝜆. The period 

is given as one hour. With this information we can use a relationship we derived earlier to 

calculate the speed of the tsunami waves. 

𝜆 = 800𝑘𝑚       𝑓 =
1

𝑇
 

𝑣 = 𝜆𝑓 =
𝜆

𝑇
=

800

1

𝑘𝑚

ℎ𝑟
= 800 𝑘𝑚/ℎ𝑟   𝑣 =

800(103)

3600

𝑚

𝑠
= 220 𝑚/𝑠 
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This tells us the waves are moving incredibly fast which is why it is difficult to have a warning 

system for tsunami waves. 

Derivation of the Electromagnetic Wave Equation: 
This derivation is like the derivation for the wave function. However, some new terms and 

conditions must be met. 

First, we must imagine a plane wave. A plane wave is where a plane, in cartesian coordinates in 

three-space, is perpendicular to the x-axis. One side has no activity and the other side has a 

uniform magnetic field 𝑀⃗⃗  in the +z-direction and a uniform electric field 𝐸⃗  in the +y-direction. 

The fields move with the plane in a direction with constant speed. A plane wave is a wave with 

uniform fields with a perpendicular plane to the direction of propagation. 

Now consider letting the magnetic and electric fields vary in their respective directions denoted 

𝑀𝑧 and 𝐸𝑦 along the x-axis. This means they are both a function of position on the x-axis and of 

time. Containing the field between two planes at 𝑥 and 𝑥 + ∆𝑥 means that the wave must satisfy 

the wave equation. 

Wave Equation: 

𝜕2𝐹

𝜕𝑥2
=

1

𝑣2

𝜕2𝑆

𝜕𝑡2
 

Using Faraday’s Law and Ampere’s Law to show the relationship between magnetic and electric 

fields. 

Faraday’s Law: 

∮𝐸⃗ 𝑑𝐿⃗ = −𝐸𝑎 = −
𝑑Φ𝑀

𝑑𝑡
 

Where 𝑎 is constant of proportionality  and Φ𝑀 is magnetic flux. 

Evaluating the integral from 𝑥 to 𝑥 + ∆𝑥 yields: 

∮ 𝐸⃗ 
𝑥+∆𝑥

𝑥

𝑑𝐿⃗ = −𝐸𝑎 = [𝐸𝑦(𝑥, 𝑡)−𝐸𝑦(𝑥 + ∆𝑥, 𝑡)]𝑎 

Ampere’s Law: 

∮𝑀⃗⃗ 𝑑𝐿⃗ = 𝑀𝑎 = 𝜇0𝜖0

𝑑Φ𝐸

𝑑𝑡
 

Where 𝑎 is constant of proportionality and Φ𝐸 is electric flux. 

Evaluating the integral from of Ampere’s Law from 𝑥 to 𝑥 + ∆𝑥 yields: 

∮ 𝑀⃗⃗ 
𝑥+∆𝑥

𝑥

𝑑𝐿⃗ = 𝑀𝑎 = [𝑀𝑧(𝑥 + ∆𝑥, 𝑡)−𝑀𝑧(𝑥, 𝑡)]𝑎 

Now imagining ∆𝑥 is very small makes the magnetic flux Φ𝑀 take form: 
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𝑑Φ𝑀

𝑑𝑡
=

𝜕𝑀𝑧(𝑥, 𝑡)

𝜕𝑡
𝑎∆𝑥 

Inserting this information into Faraday’s Law yields a relationship between the derivative of 

magnetic flux and the electric field: 

𝜕𝑀𝑧(𝑥, 𝑡)

𝜕𝑡
𝑎∆𝑥 = −[𝐸𝑦(𝑥, 𝑡)−𝐸𝑦(𝑥 + ∆𝑥, 𝑡)]𝑎 

Simplifying yields: 

−
𝑑Φ𝑀

𝑑𝑡
= [𝐸𝑦(𝑥, 𝑡)−𝐸𝑦(𝑥 + ∆𝑥, 𝑡)]/∆𝑥   

Allowing ∆𝑥 → 0 shows that: 

−
𝜕𝑀𝑧

𝜕𝑡
=

𝜕𝐸𝑦

𝜕𝑥
 

For every component of the magnetic field there must be a component of the electric field. 

Now applying the same method using Ampere’s Law: 

−𝐸𝑎 = [𝐸𝑦(𝑥, 𝑡)−𝐸𝑦(𝑥 + ∆𝑥, 𝑡)]𝑎 = −
𝜕𝐸𝑦

𝜕𝑡
𝑎∆𝑥 

Plugging this information into Ampere’s Law: 

[𝑀𝑧(𝑥 + ∆𝑥, 𝑡)−𝑀𝑧(𝑥, 𝑡)]𝑎 = −𝜇0𝜖0

𝜕𝐸𝑦

𝜕𝑡
𝑎∆𝑥 

Simplifying and allowing ∆𝑥 → 0 yields: 

 
𝜕𝑀𝑧

𝜕𝑥
= 𝜇0𝜖0

𝜕𝐸𝑦

𝜕𝑡
 

Taking the partial derivatives of both sides with respect to 𝑥 and then again with respect to 𝑡 

shows: 

𝜕2𝑀𝑧

𝜕𝑥2
= 𝜇0𝜖0

𝜕2𝐸𝑦

𝜕𝑡2
 

This takes the form of the wave equation: 

𝜕2𝐹

𝜕𝑥2
=

1

𝑣2

𝜕2𝑆

𝜕𝑡2
 

The Speed of Light: 
From here we can see that the coefficient terms on the right side are equal: 

1

𝑣2
= 𝜇0𝜖0 
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Solving for wave speed we find: 

𝑣 =
1

√𝜇0𝜖0

 

Plugging in the known values of permittivity and permeability of space in a vacuum: 

𝑣 =
1

√(
8.85(10−12)𝐶2

𝑁𝑚2 )(
4𝜋(10−17)𝑁

𝐴2 )
= 3(108)𝑚/𝑠 

This is the known speed of light. 

 

Example Problem 2: 
 

 

 

 

Young, Hugh D., Roger A. Freedman, and A. Lewis Ford. University Physics with Modern Physics. 14th ed. Boston, 

MA: Pearson Learning Solutions, 2016. 

Using the relationship that velocity v is equal to the ratio of distance d and time t 

𝑑 = 384,000 𝑘𝑚 = 3.84(108)𝑚        𝑣
1

√𝜇0𝜖0

= 3(108)𝑚/𝑠 =
𝑑

𝑡
 

𝑡 =
𝑑

𝑣
=

3.84(106)

3(108)

𝑚
𝑚
𝑠

= 1.28𝑠 

𝑣 =
𝑑

𝑡
     𝑑 = 𝑣𝑡 

𝑑 = 3(108)𝑚/𝑠(
10−3𝑘𝑚

𝑚
)(8.61)𝑦𝑒𝑎𝑟𝑠(3.154 (

107𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑦𝑒𝑎𝑟
) = 8.15(1013)𝑘𝑚 

This solution tells us that it only takes light approximately 1.28 seconds to travel 384,000 km 

from the earth to the moon. If that isn’t impressive enough, if we know how long it takes light to 

travel from the star Sirius we can calculate that it is approximately 81.5 trillion km from our 

planet! 
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One Dimensional Particle Waves: 
For this section we are going to already assume the relationship proven that 𝑣 = 𝜆𝑓. We must 

also introduce The de Broglie relationships which relate energy to angular velocity 𝜔 and 

momentum 𝑝 to the wave number. 

𝐸 = ℎ𝑓 = ℏ𝜔   where ℏ = ℎ/2𝜋 and 𝜔 = 2𝜋𝑓 

𝑝 =
ℎ

𝜆
= ℏ𝑘   where ℏ = ℎ/2𝜋 and 𝜆 =

ℎ

𝑝
 

Taking these relationships into account and creating a model where we have a particle with no 

forces acting on it is moving in the +x-direction and neglecting potential energy, we substitute 

these new relationships into the kinetic energy equation. 

𝐸 =
1

2
𝑚𝑣2 =

𝑝2

2𝑚
  where 𝑝 = 𝑚𝑣 

ℏ𝜔 =
ℏ2𝑘2

2𝑚
 

Now for this section we are assuming a wave function. One wave moving in the +x-direction 

with amplitude A and another wave moving in the +x-direction with Amplitude B. 

Ψ(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

Now and taking first and second partial derivatives of the wave function with respect to position: 

𝜕Ψ

𝜕𝑥
= 𝑘[−𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)] 

𝜕2Ψ

𝜕𝑥2 = −𝑘2[𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) +

𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)] 

It follows then that: 

𝜕2Ψ(x, t)

𝜕𝑥2
= −𝑘2[𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)] 

𝜕2Ψ(x, t)

𝜕𝑥2
= −𝑘2Ψ(𝑥, 𝑡) 

Multiplying both sides by −
ℏ2

2𝑚
: 

−
ℏ2

2𝑚

𝜕2Ψ(x, t)

𝜕𝑥2
=

ℏ2

2𝑚
𝑘2Ψ(𝑥, 𝑡) 

Plugging in known relationship ℏ𝜔 =
ℏ2𝑘2

2𝑚
 : 

−
ℏ2

2𝑚

𝜕2Ψ(x, t)

𝜕𝑥2
= ℏ𝜔[𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)] 

Looking at the first partial derivative with respect to time yields: 



11 
 

𝜕Ψ

𝜕𝑡
= ℏ𝜔[𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) − 𝐵𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)] 

It is advised in the text to use a “fudge factor” denoted 𝐹, to make sure calculations come out 

correctly: 

𝜕Ψ

𝜕𝑡
= ℏ𝜔[𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) − 𝐵𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)] 

= ℏ𝜔[𝐹𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) − 𝐹𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)] 

Setting the two right sides of the equations together yields: 

ℏ𝜔[𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)] = ℏ𝜔[𝐹𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) − 𝐹𝐵𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)] 

𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) = 𝜔𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) − 𝜔𝐵𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) 

The coefficients for the sine and cosine terms must be the same on both sides so it follows then 

that: 

𝐴 = −𝐹𝐵 𝐵 = 𝐹𝐴 

𝐴 = −𝐹(𝐹𝐴) = −𝐹2𝐴 

𝐹2 = −1 

𝐹 = √−1 = 𝑖 

And 𝐵 = 𝑖𝐴 

This gives us Schrodinger’s Equation for a one-dimensional free particle: 

−
ℏ2

2𝑚

𝜕2Ψ(x, t)

𝜕𝑥2
= 𝑖ℏ

𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
 

Finding the complex coefficient changes our original wave function to: 

Ψ(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝑖𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

We can rewrite the formula using Euler’s formula 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃: 

Ψ(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝐴𝑒𝑖𝑘𝑥𝑒−𝑖𝜔𝑡  

So now if we take the absolute value of the square of the wave function, we can find the most 

probable position of a particle moving in the +x-direction at any time 𝑡 within the range of 𝑥 and 

𝑥 + 𝑑𝑥. The particle is most likely to be found at the maximum value of |Ψ|2𝑑𝑥. 
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Conclusion: 
 

 Using the wave equation, we can derive components such as wave functions. These 

components have proven themselves to be invaluable to science in understanding our reality as 

well as compensating for these physical phenomena. We have seen that we can calculate the 

speed of tsunami waves using satellite data. We can also use mechanical wave functions to 

understand seismic activity such as earthquakes.  

We were also able to see, by creating electromagnetic wave functions, that we can 

determine the speed of light in a vacuum and determine approximately how far away celestial 

bodies are from us. Understanding electromagnetic waves have helped us create imaging 

services and allow us to see inside the human body as well as ancient ruins.  Understanding 

electromagnetic radiation helps us harness energy from the sun.  Because electromagnetic waves 

carry energy they have endless applications in our lives. Lasers, radio transmitters and even our 

microwaves use electromagnetic waves.  

On a quantum scale wave functions can be used to track particles by using a probability 

factor based on wave functions. They have also helped us understand quantum entanglement 

which paves the way for creating super computers capable of predicting climate patterns and the 

effects of drugs on the human body without testing on living creatures. From the macro scale of 

celestial bodies to the quantum universe the wave equation and functions. 
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