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Abstract 143 
Fire is an integral component of ecosystems globally and a tool that humans have harnessed for 144 
millennia. Altered fire regimes are a fundamental cause and consequence of global change, 145 
impacting people and the biophysical systems on which they depend. As part of the newly 146 
emerging Anthropocene, marked by human-caused climate change and radical changes to 147 
ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on 148 
human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem 149 
that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we 150 
outline barriers and opportunities in the next generation of fire science and provide guidance for 151 
investment in future research. We synthesize insights needed to better address the long-standing 152 
challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) 153 
embrace different ways of knowing and knowledge generation; (iii) promote exploration of 154 
fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate 155 
human and natural systems into models across multiple scales. Fire science is thus at a critical 156 
transitional moment. We need to shift from observation and modeled representations of varying 157 
components of climate, people, vegetation, and fire to more integrative and predictive approaches 158 
that support pathways towards mitigating and adapting to our increasingly flammable world, 159 
including the utilization of fire for human safety and benefit. Only through overcoming institutional 160 
silos and accessing knowledge across diverse communities can we effectively undertake 161 
research that improves outcomes in our more fiery future.  162 

Significance Statement 163 

Fires can be both useful to and supportive of human values, safe communities and ecosystems, 164 
and threatening to lives and livelihoods. Climate change, fire suppression, and living closer to the 165 
wildland-urban interface have helped create a global wildfire crisis. There is an urgent, ethical 166 
need to live more sustainably with fire. Applying existing scientific knowledge to support 167 
communities in addressing the wildfire crisis remains challenging. Fire has historically been 168 
studied from distinct disciplines, as an ecological process, a human hazard, or an engineering 169 
challenge. In isolation, connections among human and non-human aspects of fire are lost. We 170 
describe five ways to re-envision fire science and stimulate discovery that help communities 171 
better navigate our fiery future. 172 

 173 

Main Text 174 
 175 
Introduction 176 
 177 

Fire is a long-standing natural disturbance and a fundamental component of ecosystems globally 178 
(1). Fire is also an integral part of human existence (2), used by people to manage landscapes for 179 
millennia (3). As such, fire - or broadly biomass burning - can take on many forms: fires managed 180 
for human benefit or ecosystem health include prescribed or cultural burning, and response 181 
management beyond suppression; fires viewed as an immediate threat to human values are 182 



1 The Anthropocene currently has no formal status in the Divisions of Geologic Time. 
https://pubs.usgs.gov/fs/2018/3054/fs20183054.pdf 

typically suppressed, and under increasingly extreme conditions have an increased chance of 183 
escaping suppression efforts. Fires can be ignited intentionally (e.g., prescribed or cultural 184 
burning and arson) or unintentionally (e.g., accidental human-caused or lightning-caused). They 185 
can happen in the wildlands and into human developed areas as in the wildland-urban interface 186 
(WUI).  In the Anthropocene1, the current era characterized by the profound influence of human 187 
impacts on planetary processes and the global environment (4), fires from lightning and 188 
unplanned human-related ignitions (including arson; henceforth referenced as wildfires) 189 
result in increasingly negative impacts on economic (e.g. loss of structures and communities), 190 
public health (e.g. loss of life, air pollution, water and soil contamination), and ecological aspects 191 
of society (e.g. shifts in vegetation, carbon storage) (5). 192 

Recent decades have seen a substantial increase globally in the length of fire seasons (6), the 193 
time of year when conditions are conducive to sustain fire spread, increased area burned in many 194 
regions, and projected increases in human exposure and sensitivity to fire disasters (7–11). Fire 195 
seasons are occurring months earlier in Arctic and boreal regions (12). In the western United 196 
States, the area burned in the 21st century has nearly doubled compared to the late 20th century, 197 
enabled by warmer and drier conditions from anthropogenic climate change, resulting in dry, 198 
flammable vegetation (13). Fire activity in the 21st century is increasingly exceeding the range of 199 
historical variability characterizing boreal (14) and Rocky Mountain subalpine (15) forest 200 
ecosystems for millennia. Unprecedented fires in the Pantanal tropical wetland in South America 201 
(16) and ongoing peatland fires across tropical Asia (17) exemplify the global scope of recent fire 202 
extremes.  203 

Shifts in wildfire patterns can come with increasingly negative human and ecological impacts. 204 
Globally, dangerous smoke levels are more common as a result of wildfires (9, 10, 18, 19). The 205 
2019-2020 Australian wildfire season produced fires that were larger, more intense, and more 206 
numerous than in the historical record (20), injecting the largest amount of smoke into the 207 
stratosphere observed in the satellite era (21, 22) and impacting water supplies for millions of 208 
residents (23). While extreme fire events capture public attention and forest fire emissions 209 
continue to rise (24, 25), the ongoing decline of burned-area across some fire-dependent 210 
ecosystems might have equally large social and environmental impacts. Global burned area has 211 
decreased by approximately 25% over the last two decades, with the strongest decreases 212 
observed across fire-dependent tropical savanna ecosystems and attributed to human 213 
interactions (26). Decreases across these systems are important, as maintaining diverse wildfire 214 
patterns can be essential for biodiversity or achieving conservation goals (27). 215 

Humans are fundamental drivers of changing wildfire activity via climate change, fire suppression, 216 
land development, and population growth (26, 28–30). Human-driven climate change is 217 
aggravating fire danger across western North America (13, 31, 32), Europe (33, 34), and 218 
Australia (35). Exacerbated by this increasing fire danger from heavy fuel loads and greater 219 
flammability from drought and tree mortality, human-caused ignitions increased wildfire 220 
occurrence and extended fire seasons within parts of the US (28), and it is these human-caused 221 
wildfires that are most destructive to homes and property (36). Concurrent with these challenges 222 
is a growing recognition that Indigenous peoples have been living with fire as an essential Earth-223 
system process (30). Although some Indigenous societies have lived in relatively low-density 224 
communities, others have lived at scales analogous to the modern wildland-urban interface for 225 
centuries, making Indigenous fire lessons relevant for the sustainability of post-industrial 226 
communities as well (e.g. 37). 227 

As wildfire danger increases, we are only beginning to understand longer-term post-fire impacts. 228 
These include regeneration failure of vegetation (38, 39), changes to biodiversity through 229 
interactions with climate change, land use and biotic invasions (27), landslides and debris flows 230 
(40), contaminated water and soil (23, 41), and exposure to hazardous air quality for days to 231 
weeks in regions that can extend thousands of kilometers from smoke sources (9, 10, 19, 42). 232 
Increasing wildfire activity and associated negative impacts are expected to continue over the 233 
21st century, as greenhouse gas emissions continue to rise (7, 43, 44).   234 



 

The rapid pace of changing fire activity globally is a significant challenge to the scientific 235 
community, in both understanding and communicating change. Even the metrics we use to 236 
quantify “fire” come up short in many instances. For example, total area burned and ecological 237 
fire severity are useful for characterizing some key dimensions of fire, but often do not capture 238 
negative human impacts. For example, the 2021 Marshall Fire in Colorado, U.S.A., was less than 239 
2,500 hectares, but was more destructive, in terms of structures lost, than the two largest wildfires 240 
in recorded Colorado history, each of which burned approximately 80,000 hectares. The 2018 241 
Mati Fire in Greece burned only 1,276 hectares, but destroyed or damaged 3,000 homes and was 242 
the second-deadliest weather-related disaster in Greece (11). While evidence suggests 243 
increasing aridity will lead to more burning (7, 32, 43, 45), the 2021 Marshall Fire and 2018 Mati 244 
Fire remind us that fire area burned is a poor indicator of the negative impacts of wildfires on the 245 
built environment.  246 

Given the shifts in wildfire activity and its increasingly devastating impacts, the need to fund 247 
research and adopt policy to address fire-related challenges continues to grow. These challenges 248 
may be best addressed with coordinated proactive and collective governance through 249 
engagement of scientists, managers, policy-makers and citizens (23). A recent United Nations’ 250 
report recognized extreme wildfires as a globally relevant crisis, highlighting the scope of this 251 
challenge (46). To address this crisis we need to recast how we study fire as an inherently 252 
transdisciplinary, convergent research domain to find solutions that cross academic, managerial, 253 
and social boundaries. As society urgently looks for strategies to mitigate the impacts of wildfires, 254 
the scientific community must deliver a coherent understanding of the diverse causes, impacts, 255 
management paths and likely future of fire on Earth that considers the integrated relationships 256 
between humans and fire. Humans are not only affected by fire, but are also fundamental to its 257 
behavior and impact through our changes to the biosphere and our values, behaviors, and 258 
conceptions of risk.  259 

The challenge of understanding the integrated role of humans and fire during the Anthropocene is 260 
an opportunity to catalyze the next generation of scientists and scientific discovery. It requires 261 
funding that develops collaborative, transdisciplinary science, dissolves disciplinary boundaries 262 
and aligns research goals across traditional academic fields and ways of knowing. This 263 
represents an opportunity to build scientific practices that are respectful and inclusive of all, by 264 
creating spaces to share and co-produce knowledge between and among all stakeholders. Such 265 
practice demands multi-scale data collection and analysis to develop models that test our 266 
understanding, support safer communities, and provide long-term projections. By reinventing the 267 
training of scientists to reflect this transdisciplinary, multi-stakeholder, data-driven approach, we 268 
can help revolutionize community practices and provide information needed by communities to be 269 
able to better live with fire - in all its forms - in our increasingly flammable world.  270 

Here we identify five key challenges as a call to action to advance the study of fire as a 271 
fundamental aspect of life on Earth (Figure 1). 272 

1. Integrate across disciplines by promoting coordination among physical, biological, and 273 
social sciences   274 

2. Embrace different ways of knowing and knowledge generation to identify resilience 275 
pathways 276 

3. Use fire as a lens to address fundamental science questions  277 
4. Capitalize on the “firehose” of data to support community values 278 
5. Develop coupled models that include human dimensions to better anticipate future fire  279 



 

These challenges are a synthesis of discussions of a group of mainly U.S.A. based researchers 280 
at the National Science Foundation’s Wildfire in the Biosphere workshop. The challenges of fire 281 
science extend beyond national borders, and our hope is that  funding agencies, land stewards, 282 
and the larger fire science research community will join to address them. Within each call-to-283 
action challenge we describe the nature of the challenge, address the social impacts, identify 284 
fundamental scientific advances necessary, and propose pathways to consider across 285 
communities as we address our place in a more fiery future (Supplementary Table 1). Acting on 286 
these challenges will assist in better addressing the immediate impacts of fire, as well as post-fire 287 
impacts (e.g., landslides, vegetation shifts). The focus on immediate needs is not meant to 288 
undermine the importance of longer-term impacts of fires, which in many ways are less 289 
understood, rather to highlight their urgency.   290 

Discussion 291 
 292 
1: Challenge: Integrate across disciplines by promoting coordination among physical, biological, 293 
and social sciences  294 
 295 
Wildfire is a biophysical and social phenomenon, and thus its causes and societal impacts cannot 296 

be understood through any single disciplinary lens. 297 

While studied for over a century, wildland fire science often remains siloed within disciplines such 298 
as forestry, ecology, anthropology, economics, engineering, atmospheric chemistry, physics, 299 
geosciences, and risk management. Within each silo, scientists often exclusively focus on fire 300 
from a specific perspective – fires as a human hazard, fire as a management tool, or fire as an 301 
ecological process. Collectively we have deep knowledge about specific pieces of fire science; 302 
however, to move fire science forward and answer fundamental questions about drivers and 303 
impacts of fire, we must break out of traditional silos (e.g., institutional type, research focus, 304 
academic vs management) (47) to a more holistic and integrated approach across social (48), 305 
physical, and biological sciences, and including Traditional Ecological Knowledge (49) (See 306 
Challenge 2). 307 

Fire affects every part of the Earth system: the atmosphere, biosphere, hydrosphere, and 308 
lithosphere and plays a critical role in local to global water, carbon, nutrient, and climatic cycles 309 
by mediating the transfer of mass and energy at potentially large scales and in discrete pulses. 310 
Ecosystems and fire regimes are changing; we need to be prepared to anticipate tipping points 311 
and abrupt transitions to novel or alternative states. To fully understand the causes and 312 
consequences of shifting fire regimes we must accept fire as a process with feedbacks between 313 
social and ecological systems while increasing respect among diverse communities (e.g., 50). 314 
Rethinking collaborations across disciplines provides opportunities to determine shared values 315 
and goals (51) as well as new modes of practice that dismantle inequitable and exclusionary 316 
aspects of our disciplines (52). Team dynamics are particularly important in multi-disciplinary 317 
collaborations given the varied experiences, expertise and discipline-specific language used by 318 
team members. In many cases these differences, in addition to the historical and systematic 319 
inequities within STEM (Science, Technology, Engineering and Math) fields (e.g., 53, 54) have 320 
kept disciplines siloed and some groups excluded (55). 321 

We need to build upon the adaptive, integrated knowledge and “use-inspired”  approaches, such 322 
as those put forth by Kyker-Snowman et al. (56) and Wall et al. (57), by including empiricists, 323 
modelers, practitioners and domain experts from broad disciplines where they are involved at 324 
every stage of data collection, idea development, and model integration. In this approach, the 325 
two-way exchange of ideas is emphasized in order to effectively incorporate domain expertise 326 
and knowledge into models of systems that can not only improve understanding, but eventually 327 
move towards forecasting capability (See Challenge 5).  328 



 

 329 
2: Challenge: Embrace different ways of knowing and knowledge generation to identify resilience 330 
pathways 331 
 332 
Fire is an intrinsic part of what makes humans human, such that all humans from diverse groups 333 
and perspectives can provide valuable insights; thus co-produced knowledge is a prerequisite to 334 

innovation in fire science. 335 

Given the urgent need to reduce wildfire disaster losses and to promote pathways to live 336 
sustainably with fire, it is critical to integrate knowledge from across disciplinary, organization, and 337 
community boundaries (58). Knowledge co-production offers a model that identifies and produces 338 
science needed to drive change (59) through iterative, sustained engagement with key 339 
stakeholders (60). Specifically, development of mitigation tools and strategies enables social-340 
ecological systems to transform from a resistance mindset to a resilience mindset (61).  341 

There exist millennia of knowledge by Indigenous peoples of Tribal Nations that hold Traditional 342 
Ecological Knowledge (TEK) of ancient burning practices (62–66) used to maintain healthy 343 
ecosystems. Indigenous and non-Indigenous place-based societies, such as traditional fire 344 
practitioners in Europe and elsewhere, have used fire to safeguard communities, promote desired 345 
resources and support cultural lifeways for centuries to millennia (37, 49, 67–72). Working 346 
together, scientists from diverse cultural perspectives can co-define resilience across ecocultural 347 
landscapes (73), using this knowledge to identify perspectives of resilience to wildfire (72, 74). 348 
Our fire science community needs to work with diverse communities to determine what is 349 
valuable, generating needed information on risk scenarios and potential resilience pathways in 350 
the face of a changing climate, while upholding data principles that respect Tribal sovereignty and 351 
intellectual property (75).  352 

We must accept fire as a social-ecological phenomenon that operates across multiple scales in 353 
space and time: fire acutely affects ecosystems, humans, and the biosphere; fire is a selective 354 
pressure and driver of ecological change; and humans, including various management practices, 355 
influence fire behavior and impacts. We need to understand where vulnerable communities are 356 
before wildfires occur, to build better, create defensible spaces around homes, reduce unintended 357 
human ignitions (e.g, downed power lines), and promote Indigenous management strategies and 358 
prescribed burning practices where they could mitigate disaster risk (37). Returning fire to 359 
landscapes and developing a culture of fire tailored to specific settings is increasingly seen as the 360 
most effective path forward. We repeatedly converged on the need for “sustainable” strategies for 361 
human communities to coexist with fire and smoke to become more aligned with TEK. Our 362 
authorship group, however, reflective of STEM disciplines more broadly, consists of non-363 
Indigenous scientists. This situation emphasizes the need to prioritize collaboration with 364 
Indigenous scientists and community partners in developing ways to adapt to fire in a changing 365 
world. 366 

It is critical to recognize the human role in using fire in the environment, and bring that into our 367 
understanding of adapting management for a more firey world. In turn, this can inform 368 
development of coupled models (see Challenge 5) representing fire as a human-biophysical 369 
phenomenon and can be used for management. To do so, we need to understand different value 370 
systems and develop metrics through co-production, thus collectively defining what success looks 371 
like for all stakeholders. This perspective provides scientific support for adaptive management 372 
and policy in the face of continuing human-caused change, including climate change. The resist-373 
accept-direct (RAD) framework is explicitly designed to guide management through ecological 374 
transformations (76), a scenario increasingly likely with unprecedented climate change and 375 
enabled by fire. Because fire can catalyze social and ecological transformations, the RAD 376 
framework will be particularly useful for coming decades. Applying decision frameworks such as 377 
RAD requires incorporating human values, perceptions, and dynamism into fire management, 378 
within and beyond natural sciences (51, 77). Thus the process itself offers potential for 379 
transdisciplinary innovation and inclusion of different ways of knowing (e.g. TEK) by requiring 380 



 

interdisciplinary engagement, including paleo scientists, ecologists, traditional knowledge holders, 381 
cultural anthropologists, archeologists, remote sensing experts, modelers, policy scientists, and 382 
community and government partners.  383 

In addition to working across disciplines  we need to be aware of extant systems of oppression 384 
inherent in Western science(78). The lack of diversity among knowledge contributors in co-385 
produced science and among scientists themselves fundamentally limits innovation, applicability, 386 
as well as being fundamentally unjust (79). Furthermore, as fire is a global ecosystem process, 387 
the research community should reflect a similar breadth in perspectives (80). However, fire 388 
science, not unlike many STEM fields, has problems with representation across all axes of 389 
identity, including gender, race, ethnicity, LGBTQA+, and disability (e.g. 81). For example, the 390 
majority of our authorship group work at U.S. institutions, likely limiting the scope of our 391 
discussions. To change course, we need to interrogate our own practices and limit opportunities 392 
for bias. Providing clarity and transparency about and throughout decision-making processes 393 
(grants, job postings, publications), training reviewers about bias, requiring the use of rubrics for 394 
all evaluations, and anonymizing application materials whenever possible, are all effective 395 
strategies to reduce gender and racial bias (82). Given the importance of representation, as a 396 
community we need to elevate a diverse group of role models (83), e.g., highlighting notable 397 
accomplishments of women-identifying fire scientists (84). To embrace diverse knowledge 398 
requires explicit consideration of equity in stakeholder participation and fire science recruitment 399 
and training from underrepresented backgrounds. 400 
 401 
3. Challenge: Use fire as a lens to address fundamental science questions 402 
 403 

We should use fire to answer fundamental scientific questions within and across physical, 404 
biological, and social sciences. 405 

Fire is a ubiquitous and pervasive phenomenon, historically studied and tested in natural 406 
philosophy and scientific disciplines (85). It is also an ancient phenomenon with strong impacts 407 
on the Earth system and society across scales. Thus, fire is an excellent subject for asking basic 408 
questions in physical, biological, and social sciences. Here, we present three fundamental 409 
science areas that use fire to understand change: a) ecology and evolutionary biology; b) the 410 
evolution of Homo sapiens; and c) social dynamics. 411 

Fire is a catalyst for advances in ecology and evolutionary biology, providing a lens to examine 412 
how life organizes across scales and how organismal, biochemical, and physiological traits and 413 
fire-related strategies evolve. Consequently, fire ecology provides a framework for predicting 414 
effects of dramatic environmental changes on ecosystem function and biodiversity across spatial 415 
and temporal scales (27, 86), especially where fire may have previously not been present or has 416 
been absent for extended periods (e.g., 87). Research is needed that targets the synergy of 417 
theoretical, experimental, and modeling approaches exploring the fundamental evolutionary 418 
processes of how organisms and communities function in dynamic and diverse fire environments. 419 
Fire allows researchers to investigate the fundamental and relative roles of traits and strategies 420 
across plant, animal, and microbial communities (27), and evaluate the influence of smoke on the 421 
function of airborne microbial communities (88), photosynthesis (89), and aquatic systems (90). A 422 
focus on fire has advanced evolutionary theory through the understanding of the evolution of 423 
plant traits and subsequent influence on the fire regime and selective environment, i.e., 424 
feedbacks (91). Fire-vegetation feedbacks may have driven the diversification and spread of 425 
flowering plants in the Cretaceous era (92, 93). This hypothesis builds upon processes observed 426 
at shorter time scales (e.g., the grass-fire cycle, 94) and suggests flowering plants fueled fire that 427 
opened space in gymnosperm-dominated forests. This functional diversity can be parameterized 428 
into land surface models (see Challenge 5) by using phylogenetic lineage-based functional types 429 
to characterize vegetation, and could enhance the ecological realism of these models (95). 430 
Critically needed is an understanding of the reciprocal effects of fire and organismal life history 431 
characteristics and functional traits that characterize Earth’s fire regimes.   432 



 

Fire provides an important lens through which we interpret major processes in human evolution. 433 
For example, the pyrophilic primate hypothesis (96) leverages observations from primatology (97) 434 
and functional generalization from other fire-forager species (98) to suggest that fire was critical 435 
for the evolution of larger-brained and big-bodied Homo erectus in sub-saharan Africa by 1.9 436 
million years ago. These populations relied upon fire-created environments and may have 437 
expanded burned areas from natural fire starts, all without the ability to start fires on their own. 438 
Fire-starting became a staple technology around 400,000 years ago (99), after which human 439 
ancestors could use fire in fundamentally new ways, including to further change their own 440 
selective environment (100). For example, at least some Neandertal (Homo sapiens 441 
neandertalensis) groups in Europe used fire to intentionally change their local environment more 442 
than 100,000 years ago (101), and Middle Stone Age people (Homo sapiens sapiens) in east 443 
Africa may have done the same shortly thereafter (3). 444 

Fire illuminates social dynamics and can be a lens through which we examine fundamental 445 
issues in human societies, and even the dynamics of gendered knowledge (102). Specifically, fire 446 
questions convenient assumptions about population density and human-environmental impacts. 447 
For example, small populations of Maori hunter-gatherers irreversibly transformed non-fire-448 
adapted South Island New Zealand plant communities when they arrived in the 13th century CE 449 
(103, 104), whereas large populations of Native American farmers at densities comparable to the 450 
modern wildland-urban interface subtly changed patch size, burn area, and fire-climate relations 451 
in fire adapted pine forests over the past millennium (37). Similarly, in an ethnographic context 452 
much Aboriginal burning is done by women (105) and male uses of fire tend to have different 453 
purposes (106) with potential implications for varied social and environmental pressures on 454 
gendered fire uses, goals, and outcomes. 455 

Answering fundamental fire science questions about evolutionary biology and the dynamics of 456 
human societies could help illuminate the role of humans in cross-scale pyrogeography. This is 457 
especially important in the Anthropocene as species, communities, and ecosystems arising from 458 
millennial-scale evolutionary processes respond to new disturbance regimes and novel 459 
ecosystem responses (107). Moreover, with increasing extreme fire behavior in many regions 460 
(16, 17, 35, 108), human societies must learn to live more sustainably with fire in the modern 461 
context (109). Fire is a catalyst for exploring fundamental questions and highlights the need for 462 
interagency fire-specific funding programs to support basic science. The direct benefits to society 463 
of fire research are well acknowledged, but fire scientists are not organized as a broad 464 
community to argue for coordinated efforts to support basic science. Current fire-focused funding 465 
sources are usually limited to narrowly applied projects, while funders of basic science treat fire 466 
as a niche area. The result is duplicated efforts and competition for limited funds instead of 467 
coordination across an integrated fire science community. 468 

 469 
4. Challenge: Capitalize on the “firehose” of data to support community values 470 
 471 

We need funding to harness the data revolution and aid our understanding of fire. 472 

The volume, type, and use of data now available to study fire in the biosphere is greater than ever 473 
before - a metaphorical “firehose” delivering vast amounts of information. Multidisciplinary science 474 
campaigns to study fire behavior and emissions are data intensive and essential for improving 475 
applications from local, regional to global scales (e.g. ABoVE - 110, MOYA - 111, FASMEE - 112, 476 
FIREX-AQ - 113, MOYA/ZWAMPS - 114, WE-CAN - 115). Observation networks supported by 477 
the U.S. National Science Foundation (e.g., NEON, National Ecological Observatory Network, 478 
116) and the Smithsonian sponsored ForestGEO plots (117, 118) are uniquely valuable for the 479 
duration and intensity of data collection. Additionally, there are dozens of public satellites, and 480 
even more private ones, orbiting the planet collecting remote-sensing data related to pre-, active, 481 
and post-fire conditions and effects, thereby facilitating geospatial analysis from local, to regional 482 
and global scales (119, 120). Terabases of genome-level molecular data on organisms spanning 483 



 

from microbes to plants and animals are readily generated (121). Finally, laboratory, field, and 484 
incident data exist like never before, where in the past there was limited availability.  485 

While these data exist, there are challenges with the spatial and temporal frequency and 486 
coverage and duration of observations. Airborne flight campaigns cover a limited domain in space 487 
and time, while geostationary satellites provide high temporal resolution with relatively coarse 488 
spatial resolution and polar orbiting satellites provide higher spatial resolution, but lower temporal 489 
resolution. These tradeoffs in resolution and coverage lead to different data sources providing 490 
conflicting estimates of burned area (122, 123). We need investment in laboratory and field 491 
infrastructure for studying fire across a range of scales and scenarios (124) and continued work 492 
comparing and accounting for biases across existing data streams. We must develop 493 
infrastructure and support personnel to collect real-time observation data on prescribed or cultural 494 
fires (125) and wildfires in both wildlands and the wildland-urban interface across scales: from the 495 
scale of flames (i.e., centimeters and seconds) to airshed (kilometers and hours), to fire regimes 496 
(regions and decades).  497 

Furthermore, many measures of fire processes and impacts are inferred from static datasets 498 
(126), while fires and their effects are inherently dynamic; collecting observations that capture 499 
these dynamics, such as the response of wind during a fire event, would greatly reduce 500 
uncertainties in forecasting the impacts of fire on social-ecological systems. For fast-paced, local 501 
processes like fire behavior and the movement of water and smoke, we need more high 502 
frequency observations from laboratory and field-based studies, such as the role of flame-503 
generated buoyancy in fire spread (127), to update empirical relationships, some established by 504 
decades-old research and still used in models (128, 129).  For centennial- to multi-millennial 505 
processes covering regions and continents, we need paleoclimate and paleoecological data sets 506 
that cover the variation in fire regimes (e.g., low severity vs. high severity) across ecoregions 507 
(130, 131).  508 

We need technologies that collect data relevant for better understanding fire impacts on 509 
ecosystems and humans. New technology (e.g., ground-, air-, and space-borne lidars, radars, 510 
[hyperspectral] spectrometers, and [multispectral] radiometers) would enable measurements to 511 
help characterize surface and atmospheric structure and chemistry and better understand human 512 
land cover and land use in conjunction with fire impacts on air and water quality, ecosystems, and 513 
energy balance. We must use molecular techniques to capture the direct and indirect effects of 514 
soil heating on soil organic matter composition (132), belowground biological communities (133, 515 
134), organism physiology (135), and ecosystem function processes (136). Finally, laboratory 516 
work can help better understand the mechanisms of heat transfer (137, 138), firebrand ember 517 
generation, behavior and transport (139, 140), atmospheric emissions (141) and transformation of 518 
fire plumes (115). 519 

One challenge is that these data are not well integrated for studying fire disturbance, as many 520 
were not specifically designed to examine the causes or effects of fire within an integrated social-521 
ecological construct. For example, the use of diverse sets of multi-scale (tree, patch, local and 522 
regional landscape) and multi-proxy records (pollen and charcoal, tree-ring fire scars, tree cohort 523 
analysis, inventories, photographic imagery, surveys, and simulation modeling) can be used to 524 
determine structure, tree-species composition and fire regimes (72, 142) and departures from 525 
historical ranges of variability (15, 143). However, this type of integrated historical data across a 526 
spatiotemporal continuum is not readily accessible to fire scientists, policymakers and 527 
communities. Current capabilities of remote sensing measurements of vegetation properties (144) 528 
are also not easily ingested as relevant information for more traditional fire models (145). Finally, 529 
there is limited access to global datasets of research-quality event-based data (24, 146–149), 530 
which is necessary to advance the understanding of human and biophysical processes of fire. 531 

Many of these data are housed in disciplinary databases, such as the International Multiproxy 532 
Paleofire Database (150), which can be challenging for non-specialists to access and use. We 533 
need to compile and merge these diverse data across spatial (m2 to Earth System) and temporal 534 



 

(milli-seconds to millennia) scales to support integration across disciplines, research groups, and 535 
agencies. Previous work provides an extensible framework for co-aligned airborne and field 536 
sampling to support ecological, microbiological, biogeochemical and hydrological studies (112, 537 
151). This work can be used to inform integration and coordination of data collection across 538 
platforms (field and remotely sensed), scales (flame to airshed), and systems (atmosphere, 539 
vegetation, soil, geophysical), to establish a network that will produce long-term, open-access, 540 
and multi-disciplinary datasets related to fire science. This effort requires a reevaluation of how 541 
we collect data, ensuring we do so in ways that address key societal needs (e.g., aiding in human 542 
adaptability and maintenance of biodiversity). It highlights the need to coordinate across 543 
laboratory, field and model-based research in designing future campaigns to develop, not only a 544 
common platform, but also a common language and coordinated data management across 545 
disciplines. Standardized data collection (e.g., observables, units, etc.) and protocols for quality 546 
control, archiving and curation will be essential to merge existing datasets (90) and create new 547 
ones.  548 

In support of increased utility, we need to establish and use common metadata standards and a 549 
community of practice for open algorithms and code, informed by the FAIR data principles making 550 
data and code Findable on the web, digitally Accessible, Interoperable among different computing 551 
systems, and thus Reusable for later analyses (152) and data literacy communities such as 552 
PyOpenSci (https://www.pyopensci.org/) and ROpenSci (https://ropensci.org/). Implementation of 553 
FAIR principles are complemented by the CARE (Collective Benefit, Authority to Control, 554 
Responsibility, and Ethics) principles that protect Indigenous sovereignty and intellectual property 555 
(75). This requires not only building coordination among federal agencies, but also with state, 556 
local and Tribal governments and institutions. Such a community of practice, exemplary of ICON 557 
(Integrated, Collaborative, Open, Networked) science principles and practices (153), would 558 
facilitate more frequent collaborations across disciplines and lead to convergent research and 559 
data-intensive scientific discovery. 560 

By compiling and merging diverse datasets, we can remove barriers to searching, discovering, 561 
and accessing information across disciplines, thereby accelerating scientific discovery to 562 
understand drivers and impacts of fire, helping support the development of more fire-resilient 563 
communities. There is considerable potential to harness this data revolution and explore cross-564 
disciplinary research in the form of biomimicry adapted from long-term parallels from flora, fauna, 565 
and Indigenous peoples’ responses to fire (154), management planning with Potential 566 
Operational Delineations (PODs; 155), and digital twins (156) that use coupled models including 567 
human dimensions (see Challenge 5) to adapt and test historical parallels and potential solutions 568 
for human communities and broader social-ecological systems.   569 

 570 
5: Challenge: Develop coupled models that include human dimensions to better anticipate future 571 
fire 572 
 573 

To better anticipate future fire activity and its impacts on and feedback with social-ecological 574 
systems, we must develop coupled models that integrate human- and non-human dimensions. 575 

We need modeling frameworks that better represent fire in a social-ecological system, and that 576 
can be applied across multiple spatial and temporal scales spanning wildland-rural-urban 577 
gradients (8, 11, 20). Such frameworks should capture differences between managed and 578 
unmanaged fire as they relate to: preceding conditions, ignition sources (28), fire behavior and 579 
effects on ecosystems, humans, and the biosphere. Making this distinction between managed 580 
and unmanaged fire in modeling is essential to characterizing changes in the natural system due 581 
to the influence from human behavior (26). Fire has been a primary human tool in ecosystem 582 
management (30), and thus unraveling the variability in human-fire interactions over space and 583 
time (see Challenges 2 and 3) is necessary for understanding fire in the biosphere (26, 30, 69). 584 
There are multiple types of models that can benefit from better accounting for human interactions.  585 



 

First, an improved forecasting system is needed to project both managed (e.g., prescribed burn 586 
and wildfire response) and unmanaged (i.e., wildfire) fire spread and smoke behavior, transport 587 
and transformation (112). This can aid society’s strategic and managed response to fire in terms 588 
of community resilience (47, 74). Models of fire behavior and effects span spatial and temporal 589 
scales, but fundamental to each is the consideration of fuels, vegetation, and emissions. We must 590 
work to capture fuel heterogeneity, including the physiological dynamics that influence vegetation 591 
fuel loading (157), fuel moisture (158, 159), and the flammability of live and dead vegetation (160, 592 
161). Fuel moisture and its variation in space and time have the capacity to alter fire behavior 593 
(162) and ecosystem vulnerability to wildfire (163). Currently, most models do not capture both 594 
these types of fuels and plant physiological dynamics, despite both influencing fire behavior, 595 
effects and subsequently land surface recovery. Several wildfire propagation models exist 596 
ranging from empirical to process-based (127, 164), but they either entirely focus on wildlands 597 
(112, 164) or pertain to limited aspects to wildfire behavior in communities focusing on 598 
interactions among a group of structures (165) and not on the heterogeneous landscapes of the 599 
wildland-urban interface (166, 167). We are making significant advances in capturing the impacts 600 
of fire on winds during an event (164) as well as on local weather conditions (168, 169), which 601 
both have the capacity to alter fire behavior and path. Advances in analytical approaches are 602 
making it possible to model community vulnerability (170) and risk (171) from a fire propagation 603 
perspective while accounting for the interaction between structures (172). However, to date, we 604 
do not have consensus on a model to assess the survivability of individual structures from wildfire 605 
events, as available urban fire spread models are not designed for these communities and 606 
underestimate the fire spread rate in most cases (172). Developing such models is vital for 607 
determining how to manage wildfire risk at the community level.  608 

Second, land surface models, which simulate the terrestrial energy, water and carbon cycle) often 609 
represent fire occurrence and impacts, but omit key aspects or are parameterized in a simple 610 
manner (173). As such, there is a need to develop fire models within land surface models that 611 
integrate fire behavior and effects representative of the social-ecological environment within 612 
which humans interact with fires and subsequently influence impacts to terrestrial energy, water, 613 
and carbon cycles. The current generation of fire-enabled land surface models demonstrate that 614 
a lot of uncertainty is due to how the human impact on fires is currently represented, and 615 
exemplifies the need for a better representation of human dimensions within global fire models 616 
(174–177). Relationships between people and fire are driven by interactions between the social 617 
environment in which humans act (e.g. livelihood system, land tenure, land use), the physical 618 
environment (e.g., background fire regime, landscape patterns, land management legacies) and 619 
the policy sphere. The current generation of fire-enabled land surface models are not able to 620 
represent fire in this social-ecological environment, and thus struggle to represent both historical 621 
changes in global fire occurrence (26), as well as how these changes have impacted ecosystems 622 
and society with sufficient regional variability in the timing and type of human impacts on fires 623 
(174, 175). Additionally, current land surface models do not represent mixed fuel types between 624 
natural vegetation, managed land, and the built-environment, which influence fire spread, 625 
characteristics and impact directly. Land surface models rarely represent the effects of fire on 626 
organic matter (i.e., pyrogenic organic matter production (178), or the non-linear effects of 627 
repeated burning on soil carbon stocks (179). As this likely plays an important role in the net 628 
carbon balance of wildfires (178), these omissions may represent oversights in estimates of the 629 
impact of fires on carbon stocks (180). While land surface models often include simplified post-630 
fire vegetation dynamics for seed dispersal and tree seedling establishment, competition during 631 
succession, formation of large woody debris, and decomposition (e.g., 157, 181), they exclude 632 
the influence humans have on these processes through land management.  633 

Third, fire-enabled Earth system models, which seek to simulate the dynamic interactions and 634 
feedbacks between the atmosphere, oceans, cryosphere, lithosphere and land surface (as such 635 
incorporate land surface models), use a simplistic representation of fire simulating aggregate 636 
burned area rather than the spread and perimeters of individual fires (182). This is a challenge for 637 
projecting the broad scale impacts of fire on ecosystem resilience and functioning, because the 638 
temporal and spatial patterns of fire that vary as a function of managed versus unmanaged fire, 639 



 

underpin whether and how ecosystems recover (183, 184). This further affects smoke emission 640 
speciation, formation and behavior of greenhouse gases, aerosols, and secondary pollutants that 641 
affect the climate system (185, 186) through the absorption and scattering of solar radiation and 642 
land surface albedo changes. Our limited understanding is due in part to challenges related to 643 
representing this complexity and the resulting processes and impacts within and across 644 
interacting model grid cells..  645 

There is a need for the infrastructure to implement and nest models across multiple scales, 646 
linking from fine to coarse temporal and spatial scales and including a two-way coupling to allow 647 
interaction between models. This would, for example, allow Earth system models to better 648 
capture changing vegetation and fuels through time, as modeled in land surface models; this in 649 
turn would help modelers capture finer-scale dynamics such as interactions between fire and 650 
weather and human interactions with individual fire events (e.g., suppression efforts). Reducing 651 
uncertainties across scales provides an opportunity to use data-assimilation to benchmark 652 
against multiple types of data at sites, for various scales, fires (prescribed/cultural and wild), and 653 
under variable conditions (see Challenge 4). Advanced analytics in machine learning and artificial 654 
intelligence can help ease computational complexity (187–189) in such an integrated framework.   655 

Nested, coupled modeling frameworks that integrate across physical, biological, and social 656 
systems will not only enhance our understanding of the connections, interactions and feedbacks 657 
among fire, humans, and the Earth system, but also enable adaptation and resilience planning if 658 
we create metrics to gauge the response of social-ecological systems to fire (e.g., 126, 190). 659 
These metrics would include fire impacts on ecosystem services, human health, ecosystem 660 
health, and sustainable financing through policies on fire suppression, air and water quality, and 661 
infrastructure stability. Recent progress in understanding the characteristics of western United 662 
States community archetypes, their associated adaptation pathways, and the properties of fire-663 
adapted communities (191, 192) should be explored across a diverse set of communities and 664 
used to inform such metrics.  665 

Metrics for risk and resilience would need to be incorporated in these nested, coupled models 666 
that include human dimensions so that projections before, during, and after a fire could allow for 667 
informed decision making. Risk includes not only the hazard, or potential hazard, of fire, but the 668 
exposure (directly by flame or indirectly from smoke) and vulnerability, as susceptibility, to be 669 
negatively impacted by the hazard; all of which are different for managed versus unmanaged fire 670 
(20, 108, 143). Using models to quantify risk could, for example, guide planned management 671 
shifts from fire suppression to increased use of prescribed burning as an essential component for 672 
managing natural resources (143, 193, 194), but is currently challenging to implement due to 673 
smoke effects (195). Next-generation, integrated human-fire models are necessary to help 674 
managers both locally, those who use prescribed fire near communities (125, 196), and regionally 675 
or nationally, those who report emissions. While such a comprehensive framework would address 676 
the specific needs of different stakeholders and policy makers, it would also be accessible and 677 
broadly comprehensible to the general public (e.g., fire paths forecast), similar to existing national 678 
warning systems for hurricanes and tornadoes. A focus on community resilience to wildfires 679 
expands the definition of risk beyond human impact to consider ecological and biological risk 680 
more holistically, as well as their role in a coupled social-ecological system. Integrating human 681 
behavior and decision dynamics into a nested modeling framework would allow for another 682 
dimension of feedback and interactions. Thus, integration of data and processes across scales 683 
within a nested, coupled modeling framework that incorporates human dimensions creates 684 
opportunities to both improve understanding of the dynamics that shape fire-prone systems and 685 
to better prepare society for a more resilient future with increased fire danger. 686 

 687 
Conclusion 688 

Now in the emerging era of the Anthropocene, where climate change and decoupling of historical 689 
land management have collided, society needs large-scale investment in the next generation of 690 



 

fire science to help us live more sustainably in our increasingly flammable world. Fire is a 691 
complex phenomenon that has profound effects on all elements of the biosphere and impacts 692 
human activities on a range of spatial and temporal scales. We need a proactive fire research 693 
agenda. Fire science has been reactive in that it responds to agency opportunities and conducts 694 
research in response to past fires. It is essential that we transition from this reactive stance to 695 
proactively thinking about tomorrow’s needs by acknowledging and anticipating future fire activity. 696 
This next generation of fire science will require significant new investment for a center that 697 
synthesizes across disciplines (Challenge 1), is diverse and inclusive (Challenge 2), innovative 698 
(Challenge 3), and data-driven (Challenge 4), while integrating coupled models that consider 699 
human dimensions and values (Challenge 5) (Figure 1, Supplementary Table 1).  700 

One cause of current fragmentation within the U.S.A is the narrow focus of major funding 701 
sources. Funding currently targets short term goals, on small, single-Principal Investigator-led 702 
research, usually aimed at one aspect of fire science; it should target a holistic reimagination of 703 
our relationship with fire entirely, across academic, managerial, and social boundaries. This will 704 
create a broader and deeper understanding of the multifaceted nature of fire, with less focus on 705 
case studies and more focus on case integration. International projects funded by the European 706 
Commission have implemented a multi- and interdisciplinary approach, but can still be improved. 707 
Support for applied research will be most effective by aiming at both short- and long-term 708 
applications and solutions. There are active and prominent discussions on the need to fund fire 709 
science across government, local and Indigenous entities that are all vested in understanding fire. 710 
These investments will be critical to advancing our ability to generate new insights into how we 711 
live more sustainably with fire. Fire will continue to have enormous societal and ecological 712 
impacts, and accelerate positive feedbacks with climate change over the coming decades. 713 
Understanding, mitigating, and managing those impacts will require addressing the presented five 714 
challenges to inform how we serve environmental and social justice by sustainably living and 715 
interacting with fire in our natural world.  716 

 717 
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Figure 1. We need a proactive fire research agenda to support human values and create safe 1194 
communities as impacts from lightning and unplanned human-caused wildfires increase in the 1195 
Anthropocene. Such an agenda will span multiple disciplines and translate understanding to 1196 
application while answering fundamental science questions, incorporating diverse and inclusive 1197 
partnerships for knowledge co-production, capitalizing on the wealth of new and existing data, 1198 
and developing models that integrate human dimensions and values. 1199 
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