ESTIMATING PROPERTY VALUE

USING MORTGAGE-EQUITY ANALYSIS

1

IN THIS SESSION:

- General Valuation Model: V = I / R
- Overall Property Value: $V_0 = I_0 / R_0$
- Overall Property Value; $V_O = V_M + V_E$
- Mortgage Value: $V_M = I_M / R_M$
- Equity Value: $V_E = I_E / R_E$

ESTIMATING PROPERTY VALUE BASED ON ITS CAPITAL COMPONENTS

- The property can be divided into Mortgage Loan Value and Equity Value
- Lenders underwrite a Mortgage Loan using three criteria:
 - 1. Debt Coverage Ratio $Debt \ Coverage \ Ratio \ (DCR) = \frac{\textit{Net Operating Income } (I_0)}{\textit{Annual Mortgage Payments } (Im)}$
 - 2. Loan to Value Ratio
 - 3. Borrower Character

ESTIMATING PROPERTY VALUE BASED ON ITS CAPITAL COMPONENTS

• With a given Debt Coverage Ratio, the Annual Debt Payment (I_m) is determined by dividing the Net Operating Income (I_0) by the required DCR.

Annual Debt Payment(Im) =
$$\frac{I_0}{DCR}$$

ESTIMATING MORTGAGE LOAN VALUE

SPECIAL SKILLS

ESTIMATING MORTGAGE LOAN VALUE

• The Mortgage Loan Value (V_m) is calculated by dividing the Annual Debt Payment (I_m) by the Annual Mortgage Constant (R_m)

$$V_m = \frac{I_m}{R_m}$$

- The Annual Mortgage Constant ($R_{\rm m}$) is equal to the periodic mortgage payment times the payments per year.
- The Period Mortgage Constant (mc) is equal to the periodic interest rate plus a sinking fund factor based on the interest rate and the amortization term:

$$R_m = (mc) \times (Payments \ per \ Year)$$

ESTIMATING MORTGAGE LOAN VALUE (VM)

How much money can the Developer borrow?

Net Operating Income (I₀)

- Debt Coverage Ratio (DCR)
- = Annual Debt Payment (I_m)
- \div Annual Mortgage Constant (R_m)
- = Mortgage Value (V_m)

*Based on 6% annual interest, 30 year amortization term, with monthly payments (.006)x(12)=.071946

ESTIMATING MORTGAGE LOAN VALUE (VM)

How much money can the Developer borrow?

	Estimating Mortgage Value (V _M): Internation	onal Plaza
	Net Operating Income (I ₀)	4,554,680
÷	Debt Coverage Ratio (DCR)	1.3
=	Annual Debt Payment (I _m)	3,503,600
÷	Annual Mortgage Constant (R _m)	.071946*
=	Mortgage Value (V _m)	48,697,592

^{*}Based on 6% annual interest, 30 year amortization term, with monthly payments (.006)x(12)=.071946

ESTIMATING EQUITY VALUE

SPECIAL SKILLS

EQUITY VALUE (V_E) = AFTER FINANCING CASH FLOW (I_E) / EQUITY DIVIDEND RATE (R_E)

THE EQUITY DIVIDEND RATE IS ALSO KNOWN AS THE LEVERAGED CASH-ON-CASH RETURN

ESTIMATING EQUITY VALUE (VE)

• The Equity Value (V_E) is calculated by dividing the After Financing Cash Flow (I_E) by the Equity Dividend Rate (I_E).

•
$$V_E = \frac{I_E}{R_E}$$

• The Equity Dividend Rate is commonly referred to as the "Required Levered Cash-on-Cash Return".

ESTIMATING EQUITY VALUE (VE)

	nating Equity Value (V _E): Interna	tional Plaza
Net	Operating Income (I _O)	4,554,680
- Ann (I _M)	ual Mortgage Payment	(3,503,600)
= Ann	ual Cash Flow (I _E)	1,051,080
÷ Equ	ity Dividend Rate (R _E)	.05
= Equ	ity Value (V _E)	21,021,600

ESTIMATING PROPERTY VALUE (V_O)

Mortgage Value (V_m)

+ Equity Value (V_E)

= Property Value (V₀)

ESTIMATING PROPERTY VALUE (VO)

Estimating Property Value (V _o): International
Plaza Example	

Mortgage Value (V _m)	48,697,592
----------------------------------	------------

+ Equity Value (V _F)	21,021,600
----------------------------------	------------

=	Property Value (V ₀)	69,719,192
	() ()	• · /· · · / · · —

ESTIMATING RETURN AFTER FINANCING

SPECIAL SKILLS

ESTIMATING RETURN AFTER FINANCING CASH FLOWS

- What if the Sales price is 75,000,000?
- What is the Leveraged Cash-on-Cash Return?

	Sales Price	75,000,000
-	Mortgage Value (V _m)	48,697,592
=	Required Equity	26,302,408
۰	Annual Cash Flow (I _E)	1,051,080
÷	Required Equity	26,302,408
=	Levered Cash-on-Cash Return	.03996

ESTIMATING RETURN AFTER FINANCING CASH FLOWS

• If the Equity Dividend Rate (RE) is .05, do you buy?

	Sales Price	75,000,000
-	Mortgage Value (V _m)	48,697,592
=	Required Equity	26,302,408
	Annual Cash Flow (I _E)	1,051,080
÷	Required Equity	26,302,408
=	Leveraged Cash-on-Cash Return	.03996

NO

*Decision Rule: If the cash–on-cash return is less than the required Equity Dividend Rate (RE), then don't buy!

