Marriage Market Sorting in the U.S.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Anton Cheremukhin, Paulina Restrepo-Echavarria, and Antonella Tutino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Paper Number</td>
<td>2023-023A</td>
</tr>
<tr>
<td>Creation Date</td>
<td>September 2023</td>
</tr>
<tr>
<td>Citable Link</td>
<td>https://doi.org/10.20955/wp.2023.023</td>
</tr>
</tbody>
</table>
Marriage Market Sorting in the U.S.

Anton Cheremukhin*
Paulina Restrepo-Echavarria†
Antonella Tutino‡

Abstract

We study the multidimensional sorting of males and females in the U.S. marriage market over the past decade using a model of targeted search. We find strong vertical sorting on income and education, and horizontal sorting on race. We find that women put significant effort into targeting men at the top of the desirability scale, while men put less effort and target women with similar characteristics. We find no improvement in quality of matching and no noticeable changes in sorting patterns or individual search behavior, despite rapid improvement in search technology. Finally, we find that targeted search substantially reduces income inequality across married couples, even when compared with random matching, by producing a large number of matches between low income and high income individuals.

*Federal Reserve Bank of Dallas, 2200 N Pearl St, Dallas TX 75201, chertosha@gmail.com
†Federal Reserve Bank of St. Louis, One Federal Reserve Bank Plaza, Broadway and Locust St., St. Louis MO 63166, paulinares@me.com
‡Federal Reserve Bank of Dallas, 2200 N Pearl St, Dallas TX 75201, tutino.antonella@gmail.com
1 Introduction

The matching process involves complex, multidimensional decision-making. Whether we consider labor, product or marriage markets, a party needs to jointly evaluate several characteristics of the other side of the market to find her perfect match. For instance, in the case of the labor market, a worker may want to consider not only the salary but also the benefits and working conditions of the jobs on offer. In the product market, to make a purchase, a consumer may consider different characteristics of the good in terms of quality, size and colors. Similarly, in considering a potential romantic partner, a person takes into account different sets of socio-economic values she may wish to share with a potential partner to form a successful marriage.

To aide the decision-making process and reduce search frictions, there have been significant improvements in information and communication technology over time. However, these changes have not resulted in sizeable increases in the number and quality of matches across markets. For instance, Menzio and Martellini (2020) documented that the unemployment and vacancy rates in the labor markets have not declined much over the past century, while Kaplan and Menzio (2015) have shown that dispersion of prices for consumer products has not declined over the past half a century. An explanation proposed by Menzio (2021) is that the decline in search frictions has been undone by the endogenous rise in selectivity of workers and firms, consumers and producers respectively. How plausible is this explanation and how universal is it? More specifically, has the improvement in information technologies (e.g. proliferation and growth of matching websites) led to an increase in the quantity and quality of matches in the marriage market?

In this paper, we argue that, rather then an increase in selectivity, the multidimensional aspect of the decision-problem in matching is mostly responsible for the lack of significant improvements in the marriage market. The complexity of sorting through different characteristics of a potential partner has not changed over time, resulting in insignificant gains in quality and quantity of matches.

This paper studies the sorting of males and females in the U.S. marriage market over the 2008-2019 period, by analyzing rich data on U.S. marital patterns from the American Community Survey conducted by the Census Bureau.

To fully appreciate the multidimensionality that searching for a partner entails, we
study the data through the lens of a targeted search model developed in Cheremukhin, Restrepo-Echavarria and Tutino (2020). The model is capable of estimating sorting patterns and changes in search costs over time. Importantly, the model is capable of handling the selection criteria across different characteristics of a potential partner. The model presents three novel features that makes it uniquely suitable for the analysis of matching markets in general and marriage markets in particular. First, the model takes into consideration that rationally imperfect ability of men and women to evaluate potential marital partners when searching for a match. Second, the model does not pose any restrictions on the number of characteristics that a potential match can have and allows to estimate the impact of the joint as well as individual desirable attributes on the final selection of the mate. Third, it accounts for the strategic motives that arises from the fact that all agents know of both their own and their potential partners’ imperfect ability to evaluate each other. The combination of these three features gives rise to a host of novel sorting patterns such as reaching up the desirability ladder and targeting potential partners which are out of one’s league. Moreover, it unveils the relative strenghts of different characteristics driving the observed sorting patterns.

We analyze the sorting patterns that arize in a highly multi-dimensional setup where males and females simultaneously differ in several important attributes, such as income, education, skill, age and race. The first goal of the paper is to document these multi-dimensional sorting patterns and describe the potentially different strategies pursued by males and females that lead to these sorting patterns.

The second goal of the paper is to delve into the relative importance of each attribute and the joint consideration of all attributes as main drivers of sorting patterns. Rosenfeld (2008) documents the prevalence of endogamy (i.e., horizontal preferences) with respect to race and religion in the U.S. over the 20th century. He finds less evidence of endogamy in income and education over time. To our knowledge, no paper has studied the joint incidence of several attributes on the sorting patterns and document how much time and effort is allocated to the search of individual as well as joint characteristics of a potential match.

The third goal of the paper is to evaluate changes in the sorting patterns and the marital choices of men and women over a decade from 2008 to 2019. This period of time is notable for the fact that the ways in which men and women gather information about potential partners has changed dramatically. As documented in Rosenfeld, Thomas and
Hausen (2019), over this period the number of couples meeting online has more than doubled and as of 2017 was the most prevalent means of communication, accounting for almost half of all new couples. Given this dramatic change in search technologies, it is important to see whether and how sorting has changed as a result.

The fourth goal of the paper is to evaluate the mechanism proposed by Martellini and Menzio (2020) which emphasizes the possibility that an endogenous increase in selectivity can compensate for the decline in search costs. Through the lens of our model, we can measure selectivity in both absolute and relative terms. The overall effort expected in jointly selecting the characteristics of a potential partner determines whether the resulting number and quality of matches has improved. However, preferences among characteristics may lead to selectivity in some attributes more than others with ambiguous effect on matching outcomes.

We find that both males and females have strong vertical preferences with respect to income, education and skill. As a result, both males and females seek potential partners with higher current income, as well as higher education and higher skill which both could serve as a proxy for future income. Preferences on race seem to be horizontal, so both males and females seem to prefer partners of the same race, consistent with the findings in Rosenfeld (2008).

We find that women reach out much further up the desirability ladder than men. Women strongly prefer men with the highest income and skill, put significantly more effort into identifying such potential partners and target their search strategies much more than do men. This is especially striking given that we explicitly assume that men and women get equal benefits from marriage and face identical shadow costs of search.

We find that taking into account multidimensionality in search matters. Both males and females spend about 40% of their search effort on the joint characteristics of a partner. That is, all attributes (skills, education, income, race) must be simultaneously taken into account in targeting a potential partner. By looking at individual characteristics, we find that while preferences appear horizontal along some dimensions, taking multidimensionality into account results in a very low level of assortative matches. These results show the importance of taking into account complexity in the decision of finding a match.

We find that education together with race are the most sought after characteristics in a partner. The search effort that both men and women put on these attributes is the
highest among attributes. Recent literature\(^1\) found evidence of more interracial marriages in online dating that partially overturns the long-lasting horizontal preferences in race. Our results show that much cognitive resources are spent by both men and women in finding a partner of the same race.

With respect to education, the evidence on assortative matching in education has been mixed.\(^2\) We find that both men and women value education highly, devoting the most effort among the attributes to this particular category. This focus on education has important implications for inequality in the U.S. and abroad.\(^3\)

We find no change in the sorting patterns or shadow costs of search despite rapid improvements in search technologies. We find no evidence of change in selectivity by men or women despite a likely increase in the benefits that good matches bring with them over time. These results apply to both joint characteristics (overall selectivity) as well as effort in searching for individual attributes over time. We think this can be explained by the fact that though each person has access to many more potential matches, their ability to properly evaluate this newly available trove of information, and their incentives to do so governed by preferences, have not improved.

In addition, we find that the strategic interactions of targeted search significantly reduce inequality across married couples compared with the benchmark of assortative matching typically assumed in the literature. Moreover, we find that strategic interactions of targeted search bring inequality a long way towards the outcome where marriages are assigned randomly. This is because targeted search produces behavior such as reaching up the desirability ladder, which generates a large number of matches between high income and low income individuals. In some cases there are more such matches than would be produced if matching was random. We find that, when compared with random matching, inequality is attributed to sorting by skill and education, with smaller contributions from current income and race.

The paper is related to the literature of multidimensional matching in a marriage market, recently surveyed in Chiappori (2020). The first investigation of frictionless matching with unobservable characteristics is due to Choo and Siow (2006). However, by assuming separability of the surplus and restrictions on the distributions of

\(^{1}\)See, e.g., Thomas (2020), Smith et al. (2014) and Lin and Lundquist (2013).

\(^{2}\)See, e.g., Mare (2016), Eika et al. (2019), Gihelb and Lang (2020).

preferences, their model is exactly identified and cannot be tested. To lessen this short-
coming, Dupuy and Galichon (2014) build on Choo and Siow’s framework with the
additional assumptions of quadratic surplus and normal distribution. They use a sur-
vey of Dutch households containing information about education, height, BMI, health,
attitude toward risk, and personality traits of the spouses. The estimates of the affinity
matrix that defines the quadratic surplus lead to two important empirical conclusions.
First, sorting occurs on several dimensions, with individuals trading-off attributes of
their spouses according to their characteristics. Second different attributes matter dif-
fently for men and women. While we confirm their results on the importance of
multidimensionality and differences in preferences between men and women, we do not
impose restrictions on the shape and distribution of the surplus. This feature of our
model allows us to fully estimate preferences and surplus and measure the contribution
of each individual characteristics on the targeting decisions and outcomes.

Using Dupuy and Galichon (2014)’s framework, Ciscato and Weber (2019) use Cur-
rent Population Survey data to study the evolution of gains from marriage in the United
States from 1964 to 2017. They find that importance of education has increased while
that of age has decreased since the 1960s as confirmed in Chiappori et al. (2017). They
also report that racial segregation on marriage markets has decreased from the 1960s
to the 1970s but recently is slightly increasing. Chiappori et al. (2020) show that
cariative matching has increased in education in the U.S. over the last decades. Our
analysis confirms the finding on education mostly for women and strong horiziontal
preferences on race. However, in our sample, preferences and search effort across at-
tributes have not significantly changed. Taking into account vertical preferences across
all the characteristics, even if individual characteristics reflect relatively high degree of
assortativeness, considering them jointly result in low assortativeness in the matching
patterns.

This paper also relates to the literature investigating the decline in search frictions
on economic outcomes over time. Ellison and Ellison (2018) show that the reduction
in trading frictions brought about by the Internet has led to better matching between
products and consumers and, in doing so, to an increase in consumer surplus. Focussing
also on matching in product markets, Menzio (2021) find that the growth rate of the
surplus depends on the rate at which search frictions decline and on the elasticity of
buyers’ utility with respect to the degree of specialization in attributes. For the labor
markets, Martellini and Menzio (2021) report that the decline in search costs has not been matched by improvements in unemployment, labor productivity growth, vacancies and transition rates. They attribute this finding to an increase in selectivity canceling out the abetting of search frictions. Flashing out the trade-off between selectivity and declining search costs in marriage markets is the recent paper of Antler, Bird and Freshtman (2022). They show that learning and search frictions have ambiguous effects on sorting patterns as more informative dating due to technological improvements leads to an endogenous increase in effort to find the best match. Different from these contributions, our paper provides a direct measure of selectivity overall and across attributes and allows us to quantify their contribution over time.

The paper proceeds as follows. Section 2 summarizes the theory used in the empirical part. Section 3 describes data and the empirical results. Section 4 discusses the effects of sorting on income inequality and welfare. Section 5 concludes.

2 Model of targeted search

In this section we briefly discuss the model we use for the analysis which we borrow from Cheremukhin, Restrepo-Echavarria and Tutino (2020). The economy contains a large finite number of females and males. Females and males are characterized by a multidimensional set of attributes, such as income, age, education, and race. We define a set of types of females and males, which contains all the combinations of attributes available. We assume F types of females indexed by x, and μ_x identical females of each type x. There are also M types of males indexed by y, and μ_y identical males of each type y. Types x and y are in general unranked indices that aggregate all attributes.

Males and females are heterogeneous in their type and simultaneously search for a match. Both males and females know the distribution and their preferences over types on the other side of the market, but there is noise—agents cannot locate potential partners with certainty. However, they can pay a search cost to help locate them more accurately. We model this by assuming that each agent chooses a discrete probability distribution over types. Each element of this distribution reflects the likelihood of contacting a particular agent on the other side. Let $p_x(y)$ be the probability that a female of type x targets a male of type y, and $q_y(x)$ be the probability that a male of type y targets a female of type x. Figure 1 illustrates the strategies of males and
females. Once these are selected, both males and females make one draw from their respective distributions to determine which individual they will contact.

A match between any female of type x and any male of type y generates a non-negative payoff (surplus) Φ_{xy}. If a male and a female match, the payoff is split between them, so that the payoff appropriated by the female ε_{xy} and the payoff appropriated by the male η_{xy} sum up to the total surplus $\Phi_{xy} = \varepsilon_{xy} + \eta_{xy}$.

A more targeted search, or a probability distribution that is more concentrated on a particular group of agents (or agent) is associated with a higher cost, as the agent needs to exert more effort to locate a particular person more accurately. We assume that agents enter the search process with a uniform prior of whom to target, $\tilde{p}_x(y) = 1/\sum_{y=1}^{M} \mu_y$ and $\tilde{q}_y(x) = 1/\sum_{x=1}^{F} \mu_x$. Choosing a more targeted strategy implies a larger distance between the chosen strategy and the uniform prior and is associated with a higher search effort. A natural way to introduce this feature into our model is the Kullback-Leibler divergence (relative entropy), which provides a convenient way of quantifying the distance between any two distributions, including discrete distributions as in our model. We assume that the search effort of female of type x is defined as follows:

$$\kappa_x = \sum_{y=1}^{M} \mu_y p_x(y) \ln \frac{p_x(y)}{\tilde{p}_x(y)}.$$ (2.1)
Likewise, a male’s search effort defined as
\[\kappa_y = \sum_{x=1}^{F} \mu_x q_y(x) \ln \frac{q_y(x)}{q_y(x)}, \quad (2.2) \]

We assume that the search costs \(c_x(\kappa_x) = \theta_x \kappa_x \) and \(c_y(\kappa_y) = \theta_y \kappa_y \) are linear functions of search effort.

To capture congestion in meetings among identical agents we introduce a congestion function \(\phi_{xy} = \phi(p_x(y), q_y(x)) \), which depends in some general way on the strategies of the agents as well as the number of agents of each type. Given this, the total number of matches formed between females of type \(x \) and males of type \(y \) is given by
\[M_{x,y} = \mu_x \mu_y p_x(y) q_y(x) \phi_{xy}. \]

Both males and females maximize the expected value of their payoffs net of the search costs assuming that they take the meeting rates as given. For a female of type \(x \), the problem is
\[Y_x = \max_{p_x(y)} \sum_{y=1}^{M} \mu_y \varepsilon_{xy} q_y(x) \phi_{xy} p_x(y) - \theta_x \sum_{y=1}^{M} \mu_y p_x(y) \ln \frac{p_x(y)}{p_x(y)} \quad (2.3) \]

Likewise, a male of type \(y \) solves
\[Y_y = \max_{q_y, (x,x) \in S_{y,} \sum_{x=1}^{F} \mu_x \eta_{xy} p_x(y) \phi_{xy} q_y(x) - \theta_y \sum_{x=1}^{F} \mu_x q_y(x) \ln \frac{q_y(x)}{q_y(x)} \quad (2.4) \]

A matching equilibrium is then a Nash equilibrium in the admissible strategies for females and males, \(p_x(y) \) and \(q_y(x) \), which solve the problems in (2.3) and (2.4) for each individual male and female. We utilize the results describing the properties of the matching equilibrium which we briefly summarize below.

First, a matching equilibrium must satisfy the necessary conditions, which facilitate computation of equilibria:
\[p_x^*(y) = \exp \left(\frac{\varepsilon_{xy} q_y^*(x) \phi_{xy}^*}{\theta_x} \right) / \sum_{y'=1}^{M} \mu_{y'} \exp \left(\frac{\varepsilon_{xy'} q_{y'}^*(x) \phi_{xy'}^*}{\theta_x} \right), \quad (2.5) \]
\begin{equation}
q^*_y(x) = \exp\left(\frac{\eta_{xy}p_x^*(y)\phi_{xy}^*}{\theta_y}\right) / \sum_{x' = 1}^{F} \mu_{x'}\exp\left(\frac{\eta_{x'y}p_{x'}^* (y) \phi_{x'y}^*}{\theta_y}\right).
\end{equation}

Second, if the congestion function takes the form \(\phi_{xy} = p_x^{-\alpha}q_y^{-(1-\alpha)} \), 0 < \alpha < 1, and search costs \(\theta_x \) and \(\theta_y \) are positive, then the matching equilibrium exists, is unique, and the aggregate matching function exhibits constant returns to scale. In addition, if the the surplus is split proportionally as \(\frac{s_{xy}}{\Phi_{xy}} = 1 - \alpha \), and the parameter \(\alpha \) is the same for all pairs of types \((x, y)\), then the competitive equilibrium is constrained efficient.

In the empirical section we observe the numbers of searchers, \(\mu_x \) and \(\mu_y \), the matching rates, \(M_{x,y} \), between each pair of types \(x \) and \(y \). We use the model to recover the underlying preferences \(\Phi_{xy} \). For identification purposes, we further assume that 1) \(\alpha = 0.5 \), which implies symmetric congestion and equal split of the surplus, and 2) all agents have the same costs \(\theta_x = \theta_y = \theta \), and 3) the smallest element of the matrix \(\Phi_{xy} \) is normalized to 1. Using a computational algorithm and the properties of the model we can uniquely identify the ratios of preferences to costs \(\Phi_{xy}/\theta \) which in combination produce the empirically observed matching rates as an equilibrium of the model.

Our computational algorithm starts with an initial guess for the unknown surplus matrix \(\Phi_{xy} \), computes equilibrium strategies \(p_x(y), q_y(x) \) and matching rates which correspond to the proposed surplus, and then computes the likelihood that the empirically observed matching rates are an outcome of the proposed surplus. Several standard likelihood maximization algorithms commonly used in the literature are combined to converge to a local maximum from the initial guess. The procedure is then repeated from 1000 random initial guesses to obtain the global maximum. All the estimated surpluses reproduce the empirical matching rates very closely.

3 Empirical Results

3.1 Data

To study the U.S. marriage market, we use data from the Integrated Public Use Microdata Series (IPUMS) available for 14 years from 2008 to 2021. We take unmarried males and females and (newly) married couples and assign both males and females to bins corresponding to types in the model.
We consider multiple discretizations in several important dimensions. We split the income distribution into tertiles, quintiles or deciles (two bottom deciles are merged representing zero income). We break by education into 3 unequal bins (school, college and post-college) or 2 bins (school, college). The 20-40 age range is broken into 3 or 9 equal bins. The data allow us to distinguish by race into 4 bins (white, asian, hispanic, black) or 2 bins (combining white with asian, and hispanic with black due to similarity of preferences). We also have data on occupations which allows us to sort occupations by average wages to obtain a mapping from occupation to skill level, which we break into 3 or 6 equal bins. The skill bins roughly correspond to white-collar workers (top bins), blue-collar workers (bottom bins) and services (middle bins). We consider uni- and multi-dimensional combinations of attributes and compute the numbers of single adults and marriage rates using the representative sample of the U.S. population for all couples married in the past year and unmarried males and females ages 21-40 for each of the 14 annual samples from 2008 to 2021.

3.2 Methodology

In order to describe the results of the estimation for each breakdown of the data into a combination of attributes, we develop some new measures, as well as employ some concepts and computational techniques proposed in the literature. First, as in Cheremukhin et. al. (2020), we employ measures of assortativeness of the equilibrium matching and of horizontality of preferences.

Let us denote by $P_{xy} = [p_x(y)]$ the matrix of all female strategies and by $Q_{yx} = [q_y(x)]$ the matrix of male strategies. Then let $\xi_x = \left| \{ \arg \max_y (P_{xy}) \}_{x \in \{1,\ldots,F\}} \right| \in \{1,\ldots,M\}$ be the number of different types of males that females target, and let $\xi_y = \left| \{ \arg \max_x (Q_{yx}) \}_{y \in \{1,\ldots,M\}} \right| \in \{1,\ldots,F\}$ be the number of different types of females that males target. The Assortativeness Index is then defined as $A(P_{xy}, Q_{yx}) = (\xi_x + \xi_y - 2) / (M + F - 2)$ representing the number of different targets of search relative to the maximum possible number of targets. For an assortative equilibrium where each type has a different target type, the assortativeness index equals 1, while for a mixing equilibrium, where all males have a single target type and all females have a single target type, the assortativeness index equals 0.

We distinguish horizontal and vertical preferences in a similar way. Let $\omega_x = \ldots$
\[
\left| \{ \arg \max_y (\varepsilon_{xy}) \}_{x \in \{1,\ldots,F\}} \right| \in \{1,\ldots,M\}
\]
be the number of different types of males who are best matches for at least one type of female. Let \(\omega_y = \left| \{ \arg \max_x (\eta_{xy}) \}_{y \in \{1,\ldots,M\}} \right| \in \{1,\ldots,F\} \) be the number of different types of females who are best matches for at least one type of male. Then the Horizontality Index is defined as \(H(\varepsilon_{xy}, \eta_{xy}) = (\omega_x + \omega_y - 2) / (M + F - 2) \) representing the number of different best matches relative to the total number of types. We define preferences to be vertical if every type’s best match is the same type, and we define preferences to be horizontal if every type’s best match is a different type. Therefore, when preferences are vertical, the horizontality index equals 0, and when preferences are horizontal, the horizontality index equals 1.

For multi-dimensional types, we naturally extend these definitions to compute assortativeness and horizontality indexes with respect to each dimension separately. For instance, when the estimation is for an intersection of income, skill and education bins, we can compute each argmax in the formulas above on the subset of bins corresponding to only e.g. the income dimension to obtain estimates of assortativeness and horizontality of preferences with respect to income alone.

Another concept we introduce into the search and matching literature is a measure of selectivity by agents with respect to attributes. The amount of search effort that each agent exerts in equilibrium, defined in equations (2.1-2.2), represents how targeted towards certain types agents’ strategies are, therefore measuring overall selectivity of agents. Using recent research on decomposition of multivariate information (see e.g. Williams and Beer, 2010) we can decompose total selectivity into selectivity with respect to each attribute, and to combinations of attributes. In each case, selectivity represents how picky an agent is with respect to an attribute, or combination of attributes. Selectivity is measured in bits of effectively processed information, reflecting the skewness of probabilistic strategies chosen by agents in equilibrium.

Finally, following Dupuy and Galichon (2014), for each estimated surplus matrix we compute an affinity matrix with respect to attributes. The affinity matrix is a quadratic form approximation of preferences with respect to attributes and captures the curvature of preferences, with diagonal elements capturing strength of mutual attractiveness based on one attribute, and off-diagonal elements capturing intensity of complementarity/substitutability between attributes of men and women.
3.3 Uni-dimensional estimates

We start by estimating preferences and equilibrium strategies for each attribute of interest separately. In each case we break down an attribute into the largest reasonable number of distinguishable bins, as shown in summary Table 2. We find that mutual attractiveness is strongest based on race and education, and a lot weaker based on age, skill and income. We find that preferences are strongly horizontal for race, mixed for education and age, and close to vertical for income and skill. Consistent with the idea that only horizontal preferences lead to assortativeness, while vertical preferences lead to looking up the desirability ladder and a mixed equilibrium, we find high levels of assortativeness by race and education, intermediate level of assortativeness by age, and low assortativeness by skill and income. Naturally, affinity and horizontality of preferences are reflected in selectivity of individual strategies which show that people are most selective based on race, and least selective based on income and skill.

It is instructive to compare our results with the existing literature shown in Table 1, also summarized in the last column of Table 2. However, at this point it is important to note a crucial difference of this paper from the existing literature. Most studies of the marriage market can be roughly divided into two groups. The first group explores overall matching rates and derives various measures of assortativeness (see an extended discussion of these in Chiappori, Dias and Meghir 2020, 2022), but cannot distinguish horizontal from vertical preferences because both lead to identical predictions of positive assortative matching based on existing models. The second group (e.g. Hirsch et al 2010, Lee 2016, Bruch and Newman 2018) explores data from online or in person dating which shows who is interested in whom, and thus sheds light on preferences, but typically does not contain data on who ended up matching whom. This paper uses a model to break the dichotomy - we are able to use aggregate matching rates to estimate both preferences and strategies - to simultaneously distinguish horizontal from vertical preferences, and infer who targets whom in equilibrium, thus, providing an internally consistent measures of horizontality and assortativeness.

The literature has largely found mixed or horizontal preferences for race, education and age, and vertical preferences for skill and income. 4

Our findings are mostly consistent with the literature on preferences. However, the

<table>
<thead>
<tr>
<th></th>
<th>Not Assortative</th>
<th>Positive Assortative</th>
<th>Horizontal Preferences</th>
<th>Vertical Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>Schwartz and Graf (2009); Smith et al (2014); Gihleb et al. (2020).</td>
<td>Ciscato et al (2020); Eika et al (2019); Ciscato and Weber (2019); Chiappori et al. (2017); Greenwood et al (2014); Jepsen and Jepsen (2002); Mare (2016); Quian (2017); Lee (2016); Hitch et al (2010)</td>
<td>Belot and Francesconi (2013); Rosenfeld (2008); Hitch et al. (2010); Skopek et al (2010); Bruch et al. (2018); Hitch et al. (2010a); Lee (2016); Lewis (2016)</td>
<td>Thomas (2020); Skopek et al (2010); Lewis (2016)</td>
</tr>
<tr>
<td>Income</td>
<td>Bertrand et al. (2015); Chiappori, Florio Galichon, Verzillo (2022); Florio, Verzillo (2018); Fagereng, Guiso, Pistaferri (2022); Jepsen and Jepsen (2002); Quian (2017);</td>
<td></td>
<td>Bruch et al. (2018); Hitch et al. (2010) and (2010a); Lewis (2016)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Ciscato and Weber (2019), CPS data 1964-2017; Chiappori et al (2017); Schwarz and Graf (2009); Smith et al. (2014)</td>
<td>Ciscato et al (2020); Ciscato et al (2020); Choo and Siow (2006); Jepsen and Jepsen (2002); Lee (2016)</td>
<td>Hitsch et al. (2010), Hitch et al. (2010a); Thomas (2020); Lee (2016)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>Jepsen and Jepsen (2002); Schwartz and Graf (2009); Ciscato et al (2020)</td>
<td></td>
<td>Lin and Lundquist (2013); Rosenfeld (2008); Bruch et al. (2018); Hitsch et al. (2010); Hitsch et al. (2010a); Lewis (2016)</td>
<td>Thomas (2020)</td>
</tr>
<tr>
<td>Skills</td>
<td>Kalmijin (1994); Mansour and McKinnish (2018); Jepsen and Jepsen (2002);</td>
<td></td>
<td></td>
<td>Hitch et al. (2010a)</td>
</tr>
</tbody>
</table>

Table 1: Horizontality and Assortativeness in the Literature
Table 2: Uni-dimensional sorting

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Bins</th>
<th>Assortativeness</th>
<th>Horizontality</th>
<th>Affinity</th>
<th>Selectivity</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>9</td>
<td>0.16</td>
<td>0.26</td>
<td>0.07</td>
<td>0.05</td>
<td>PAM, vertical</td>
</tr>
<tr>
<td>Skill</td>
<td>6</td>
<td>0.24</td>
<td>0.31</td>
<td>0.13</td>
<td>0.06</td>
<td>mixed, vertical</td>
</tr>
<tr>
<td>Age</td>
<td>9</td>
<td>0.49</td>
<td>0.53</td>
<td>0.24</td>
<td>0.18</td>
<td>PAM, horizontal</td>
</tr>
<tr>
<td>Education</td>
<td>3</td>
<td>0.75</td>
<td>0.63</td>
<td>0.85</td>
<td>0.22</td>
<td>PAM/mixed, mixed</td>
</tr>
<tr>
<td>Race</td>
<td>4</td>
<td>0.97</td>
<td>0.99</td>
<td>0.82</td>
<td>0.74</td>
<td>PAM/mixed, mixed</td>
</tr>
</tbody>
</table>

literature is largely split arguing about the degree of assortativeness in race, education and skill, and finds some assortativeness in income and age.\(^5\) Keeping in mind the differences in measures and definitions, in contrast, we document a high degree of assortativeness in race, education and age, and non-assortativeness in income and skill. These results also provide a uni-dimensional benchmark against which to evaluate multi-dimensional estimates.

3.4 Multi-dimensional estimates

Ideally we would like to estimate an intersection of the maximum number of bins for all attributes simultaneously. However, estimating a 5832 by 5832 matrix of preferences is not only infeasible, but it would make little sense since the matrix distributing a few million people into 34 million boxes would be extremely sparse. Therefore, we have to cut on the number of bins along most dimensions. Besides, although our estimation algorithm is very efficient, it has its limitations. In particular, even the BigTex supercomputer that we employ for estimation runs into memory limitations for surplus matrices exceeding 54 by 54. To go around this problem, we intersect various combinations of attributes with various breakdowns into bins and estimate surplus for each such combination.\(^6\) We average the results both across years and across different

6For instance, we consider combinations: 3income x 3education x 3skill x 2race, 3income x 3age x 3skill x 2race, 5income x 3 skill x 2race, 5income x 3 age x 2race and many others.
Table 3: Multi-dimensional sorting

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Bins</th>
<th>Assortativeness</th>
<th>Horizontality</th>
<th>Selectivity Men</th>
<th>Selectivity Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>0.33</td>
<td>0.35</td>
<td>1.18</td>
<td>1.39</td>
</tr>
<tr>
<td>Income</td>
<td>3,5</td>
<td>0.64</td>
<td>0.33</td>
<td>0.10</td>
<td>0.22</td>
</tr>
<tr>
<td>Skill</td>
<td>3</td>
<td>0.68</td>
<td>0.39</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>Age</td>
<td>3</td>
<td>0.86</td>
<td>0.51</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Education</td>
<td>2,3</td>
<td>0.62</td>
<td>0.97</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>Race</td>
<td>2,4</td>
<td>0.98</td>
<td>0.97</td>
<td>0.18</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Interactions

<table>
<thead>
<tr>
<th></th>
<th>Skill</th>
<th>Education</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>0.18</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Income</td>
<td>0.14</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Skill</td>
<td>0.07</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We find that multidimensional results are in general agreement with uni-dimensional results on horizontality and assortativeness along all five attributes under consideration. Preferences are horizontal in race and education, mixed in age, vertical in skill and income, which produces stronger assortativeness for the more horizontal attributes. However, the selectivity measures are quite different compared with the uni-dimensional case. The multi-dimensional estimation uncovers some striking differences between men and women in their selectivity along income, skill and race. An even more striking result is the large fraction of the selectivity effort that is spent on the interaction between attributes, such as income, skill and education. This interaction, e.g. for men looking at skill and income, is larger than the total effort spent on the two attributes separately, and overall interactions account for roughly one third of the total selectivity effort. On the other hand, selectivity over race is much lower when interactions among attributes are considered, than when race preferences are estimated separately. These results demonstrate that strategies targeting combinations of attributes, such as high income, high skill and high education, play a profound role in sorting, that cannot be accounted for with uni-dimensional studies of sorting.

7The estimation results are very similar and broadly consistent across different estimation setups as can be verified in the appendix.
Table 4: Affinity matrix

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Skill</th>
<th>Age</th>
<th>Education</th>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>0.23</td>
<td>0.09</td>
<td>0.16</td>
<td>-0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Skill</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Age</td>
<td>0.17</td>
<td>0</td>
<td>0.48</td>
<td>0</td>
<td>0.21</td>
</tr>
<tr>
<td>Education</td>
<td>0.04</td>
<td>0.06</td>
<td>0</td>
<td>0.32</td>
<td>0</td>
</tr>
<tr>
<td>Race</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0.74</td>
</tr>
</tbody>
</table>

The aggregated affinity matrix in Table 4 shows curvature of preferences. The strength of preferences represented by the diagonal elements is generally consistent with uni-dimension results presented in Table 2: preferences are strongest for race, with less importance placed on age, education, income and skill, in that order. Education is apparently more important when considered separately than when evaluated in combination with other characteristics, which suggests that education often serves as a proxy for other attributes or combinations of attributes, such as income and skill (future income). The off-diagonal elements reflecting complementarities between attributes of men and women are also instructive. We can interpret elements of the table as follows: 1) returns to skill and age increase with income, 2) returns to education increase with income and skill for women and fall with income for men, 3) race and age exhibit a positive complementarity (old is paired with white).

Since the measures that we constructed are very similar and consistent both across years and across cuts of the dataset along different combinations of dimensions, in what follows we aim at estimating all the measures of preferences and strategies described above jointly for all five attributes. To achieve this, for each dataset we first perform three separate estimations each with dimensions 54x54: 1) 3income x 3education x 3skill x 2race; 2) 3age x 3education x 3skill x 2race; 3) 3income x 3age x 3skill x 2race. We then combine the results of these three estimation procedures to obtain results for a 168x168 split with dimensions 3income x 3education x 3skill x 3age x 2race. This approach allows us to evaluate assorativeness, horizontality, affinity, inequality (see below), and selectivity including interaction terms for all combinations. At this point, this approach does not allow us to fully recover the preferences, however. Therefore, when considering the counterfactuals and welfare implications, we omit age.
3.5 Changes over time

An important question often discussed in the literature is that of changes in assortativeness and preferences over time. Our estimates are uniquely tailored to answer this question. The availability of information on couples that married in the preceding year is limited, however. To further extend the time dimension we could have used all married couples, as some studies do. However, we decided not to do this because then the definition of the numbers of searchers becomes unclear, and the marriages included in each sample start to overlap between samples. As discussed in the previous section, we average indexes of assortativeness and horizontality across samples, but now for each year separately. For selectivity measures, we split the interaction terms equally between attributes, so that now total selectivity equals the sum of contributions of five attributes.

We first describe changes over the period 2008-2021. The averaged series are shown in Figure 3.1. The remarkable result is that there is no identifiable trend in the majority of the series. The degree of horizontality of preferences is stable overall and for each category. The degree of assortativeness is stable overall and for each category. The strength of preferences remained unchanged for income and skill, increased slightly for age, but reduced somewhat for race and education. The degree to which females target age increased slightly, and the degree to which males target race and education declined slightly, but other components of selectivity saw little change. Although overall selectivity of females is slightly higher than that of males, both remained unchanged throughout the period we consider. This is especially striking taking into account the fact that the methods of finding a mate changed dramatically between 2008 and 2021. In particular, in 2008 less than one in ten marriages were conceived online, while by 2018 more than half of the marriages originated online. One would expect a profound effect of such a change in the method on overall selectivity and search patterns, but we find essentially no change in how people search and who marries whom over the 2008-2021 period.

In the context of our model, the effect of online dating must show up as an overall effective decrease in the cost of search θ. Given that the sorting patterns and the shape of preferences overall do not seem to have changed over this period, we might check whether the average values of the elements of the matrix Φ_{xy}/θ has increased over time. We have tried various approaches to computing this value and employed different
Figure 3.1: Properties of preferences and sorting over time

Figure 3.2: Inverse costs and selectivity over time
statistical approaches. The resulting measures all tell the same story. Thus, we simply show quantiles of (log) matching rates and estimated surplus to cost ratios over time in Figure 3.2. We find no evidence of a significant decline in the value of costs. We find no evidence of a significant increase in selectivity, i.e. the precision with which agents are able to identify their best matches. We think this finding is compelling. By showing that improvements in the technology of matching are not paired with significant cost reduction, the results suggest that the nature of the cost of search θ is cognitive rather than technical.

Another explanation is that online dating platforms are a double-edge sword. On the one hand, the addition of low-cost tools to sort through candidates in an online platform gives agents access to a much wider range of potential matches and makes it easier to sort through them, discarding the ones they do not like. On the other hand, having access to many more potential candidates than previously available increase the complexity faced by the agent seeking the most suitable match.

To see this, consider the case when, prior to online dating, the agent had access to two candidates A and B. The ranking of these candidates, which constitutes the subjective state in which she operates, comprises of two states: A first and B second or vice versa. Now suppose that online dating gives access to four potential candidates. The ranking of these candidates expands the states from two potential outcomes to $4! = 24$. For a given cost of search θ, this expanded state requires exercising more cognitive effort to establish which of the candidates is the most suitable match. Thus, it may be that the introduction of online dating has proportionally increased the expected utility and cost of search, leaving Φ_{xy}/θ unchanged.

Martellini and Menzio (2021) suggested that significant improvements in search technology have not resulted in better and more numerous matches due to an increase in selectivity of the agents. Much like complexity, the increase in number of options available to the agents leads to an impasse rather than an increase in the numerosity of matches: in looking for quality candidates, agents are reluctant to settle for the better candidates and look for the best available prospect. The resulting paradox of choice manifests in fewer matches, albeit potentially better pairing. We check for evidence of this paradox in our data by measuring selectivity proxied by search effort over time and across genders and other attributes.

The bottom right panel of Figure 3.1 shows the evolution of selectivity in our data.
from 2008 to 2021 for men and women. As we discussed earlier, our measure of selectivity is based on search effort and its decomposition into components related to attributes and their pairwise interactions. There seems to be no empirical support for increased selectivity in our sample both across race and gender. In fact, selectivity appears to be generally stable throughout the sample. The overall stability portrayed by Figure 3.1 suggests that selectivity is an unlikely explanation for the lack of additional matches that the improved matching technology should have brought about.

Different from Martellini and Menzio (2021)’s selectivity argument, our explanation of increased complexity as defined above is perfectly compatible with a constant search effort throughout our sample. We have defined complexity as the expanded options given by technological improvements. In the example above, given the information-theoretical constraint in our model, going from a ranking of two options (2 rankings) to one of four (24 rankings) increases the initial uncertainty of the space that the agent faces as measured by its entropy from 1 to 3.2 bits of information required to perfectly detect the most suitable match. Thus, the same amount of information processed in a more complex environment leads to a lower reduction in uncertainty about potential matches than that afforded in a world with fewer options.

In our model, uncertainty is captured by the probability on which expected costs and gains from the search are based. So long as the differential in expected gains and costs are equalized, as it appears to be the case in Figure 3.1, our model would not predict a substantial change in matches formed in the marriage market.

Next, we document whether preferences for suitable candidates have changed between the first half (2008-2014) and the second half (2015-2021) of the sample in Figure 3.3. In particular, we estimate preferences and strategies jointly over income, education, skill and race. Income is divided into three levels: low (L), medium (M), high (H). Education also has three levels: school (S), college (C) or post-college (P). We use skills as proxy for future income and identify three skill levels from lowest (1) to medium (2) to highest (3). Race is split into white/asian (W) and black/hispanic (B) and depicted by lighter and darker color in the Figure. Red circles indicate female searchers and blue circles indicate male searchers, with the size of each circle reflecting the number of searchers. The arrows starting from each circle indicate the targets agents consider the most worthwhile and the thickness of the arrows portrays the intensity of search. For transparency, we show labels only for the most desirable candidates that become
centers of attraction.

Figure 3.3 shows that both the targets and the search intensities have remained remarkably stable from the beginning to the end of the sample. Women and men have unchanged vertical preferences for income and skills: they both prefer to target potential candidates with higher income and skills than their own. Moreover, women constantly appear to put significantly more effort into identifying richer and more skilled potential partners and target their search strategies more than men do. Horizontality in race preferences is also visible throughout the sample. The combinations of attributes that are most attractive (high income, high skill, high education) illustrate how the interaction of attributes works: people search for candidates which match certain levels for all attributes simultaneously. No significant changes in horizontality of overall preferences or preferences for attributes can be found, consistent with Figure 3.1.
4 Effects of sorting on inequality and welfare

4.1 Effects on income inequality

In this section we investigate the effect of marital sorting on household income inequality. To accurately measure household income inequality in the estimated model and for counterfactual matching patterns, for each combination of bins representing male and female attributes, we sample household incomes from the empirical distribution for that bin combination. Differences in predicted matching rates lead to differences in the number of income draws that are taken from each bin combination. Using this methodology, we compare household income inequality across married couples in the data with alternative sorting schemes, such as positive assortative matching (matches formed between partners with similar characteristics) and uniform random matching. It is natural to expect PAM to increase inequality compared with random matching. This is because more matches formed between top and bottom quintiles along each attribute lower inequality.

The model with multiple attributes and their interactions allows us to consider various additional counterfactuals, where people are blind to, i.e. cannot distinguish, particular characteristics. For instance, we can predict the matching rates that would have been observed if people had no information on income and could only base their search on education, skill, age and race. This is a unique feature of our framework that allows us to first estimate the interactions of attributes in search, and then evaluate their effects on inequality and welfare.

We evaluate income inequality using two measures used in the literature - the Gini coefficient and the coefficient of variation. We compare household income inequality in the data with seven counterfactual scenarios: positive assortative matching (preference for likes is amplified), blind on a single attribute (one of income, education, skill, age and race) and random matching (blind to all attributes).

Figure 4.1 illustrates our results for the 2008-2021 period. The ability of people to target their search increases inequality by 3 gini points compared with blind random matching. About a third of that increase is due to the ability to target based on skill and education each, 18 percent based on income itself, 15 percent based on age and only 5 percent are explained by targeting based on race. We reach a similar breakdown if we consider the coefficient of variation which is increased by 14 points due to sorting. These
counterfactuals are remarkably stable over time, another indication of little change in preferences or selectivity over time, which in turn makes the contributions to inequality stable over time.

Another interesting finding is that in the data inequality is significantly lower than what would be produced by PAM and only marginally larger than what would be achieved by random matching. The reason for this is the mixing equilibrium of targeted search. When preferences are vertical, a lot of males and females target partners a lot wealthier than themselves (today or in the future). This increases the number of matches between high and low income individuals, in some cases more than would be produced even by matching people randomly.
4.2 Effects on welfare

Using the same counterfactuals used for study of inequality, we can evaluate the distributional impacts on expected welfare, expected matching rates, and expected income across the unmarried individuals. In Figure 4.2 we show distributions of changes in these variables aggregated across all years. Extreme assortativeness increases welfare slightly, with about two thirds of the population gaining, but reduces expected incomes and matching rates with a similar amount of people incurring a loss. Random matching reduces welfare by 7 percentage points, with 95 percent of the population experiencing a loss, but increases incomes and matching rates for about two thirds of the population. The results of a policy that makes people race-blind (resembling diversity policies at universities and workplaces) shows a 4 percentage point deterioration in welfare and an increase in expected incomes and matching rates for more than half the population. It is notable that highly-desirable white types (e.g. high income, post-college, high-skill white women) lose the most in welfare, income and matching rate from a highly assortative allocation, but gain the most from diversity policies as well as from random matching. At the same time, the main losers from the diversity policies are high-income, high-skill non-white individuals. Because preferences for race are strong and horizontal, diversity policies, by producing more inter-racial marriages, reduce welfare of the otherwise highly-desirable non-white individuals and increase welfare of the otherwise highly-desirable white individuals.

5 Long-term changes

In order to look at longer-term changes in excess of our 14-year consecutive sample we have been able to construct a comparable dataset on demographic characteristics and simultaneously identify the couples married in the current or past year from the 1960 and 1980 census data. One important difference of these two samples compared with the more recent period is the occupational coding and therefore the set of occupations that produce higher wages and are thus considered high- or low-skill. As a result of this, it seems that in 1960 the high education low skill (P1), low education medium skill (S2), and medium education high skill (C3) types are among the most attractive, while in the later periods the most desirable candidates have a strong correlation between
education with skill (S1, C2, P3). Apart from that, the earlier samples are aggregated using the exact same methodology. In order to compare the earlier and later periods and show the results in a transparent way, we average the two halves of the more recent subperiod into two years 2010 and 2020. Thus, all the figures that follow show four observations: 1960, 1980, 2010 and 2020.

Figure 5.1 illustrates the changes in matching rates, surplus to cost ratios, assortativeness, horizontality, affinity, selectivity and inequality, together with their components as described earlier in Sections 3 and 4. When looking at the long-term changes, a number of observations stand out. First, the matching rates have trended down over time, consistent with the decline in overall marriage rates in the US, and so have most of the quantiles of the distribution of matching rates. Consistent with that, the surplus to cost ratios declined across the board between 1960 and 1980, but remained stable ever since. This result suggests that, if anything, search costs have increased rather than declined over the long term, strengthening our conclusions from Section 3.5 regarding the importance of cognitive constraints. Another possibility is highlighted by the substantial trend decline in the strength of preferences for race and education also reflected in the decline in selectivity over both attributes by males and females alike. Moreover, while strength of selectivity on income and skill increased over the longer term, espe-
cially for females, total selectivity declined from 1960 to 1980 and stayed largely flat since then. Interestingly, while in the earlier periods males were more selective overall, females being more selective is a recent phenomenon.

Preferences show quite dramatic changes over the longer term. Interestingly, although the strength of preferences has declined markedly, their horizontality increased for all attributes. While in 1960 preferences for education and age could be described as in between vertical and horizontal, they became completely horizontal later on. At the same time preferences for income and skill remained vertical. The increase in horizontality has led to a substantial increase in assortativeness for all attributes, including race and education. This could be related to the near equalization of effort devoted to sorting on different attributes, which was largely focused on race and education at the expense of income in the earlier periods. The increase in assortativeness and the equalization of importance of different attributes may be one reason for the substantial increase in inequality shown in the bottom left panels of Figure 5.1. Indeed, while inequality in the random matching case increased over the long term as well, reflecting changes in factors exogenous to our model, the gap between the data and random matching outcome expanded dramatically over time explaining approximately half of the change in inequality. This implies that our inequality decomposition computed in the previous section can shed light on the causes of half of the increase in inequality. It seems that sorting on skill and education are the main culprits jointly explaining two thirds of the increase in inequality due to changes in sorting, which itself accounts for approximately half of the overall increase in inequality.

Figure 5.2 shows changes in the sorting structure for 1960, 1980 and the most recent period. We can see an increase in the number of clusters of attraction from 5 to 6 and then 7 in the most recent period, reflecting the increase in horizontality and assortativeness over time. We observe an even larger increase in the number of clusters for other combinations of attributes. Another interesting observation related to the increase in horizontality of preferences is the substantial overlap in matching across education levels in 1960 and 1980. Targeting across education levels becomes less frequent in the subsequent periods.
Figure 5.1: Long-term changes in preferences, sorting and inequality

Figure 5.2: Long-term changes in strategies over income, education, skill and race.
6 Conclusions

We have successfully applied the model of targeted search to analyze preferences and sorting of men and women in the U.S. marriage market. For the first time using only aggregate data, we document strong horizontal preferences for race and age, mixed preferences for education, and vertical preferences for income and skill. Our analysis of multidimensional sorting reveals targeting of combinations of vertical characteristics, such as income, skill and education. Effort that is put into identifying such combinations exceeds the effort applied to horizontal characteristics.

We study the evolution of preferences and search strategies over the period from 2008-2021, when large changes in the search technology and methods of search have been documented. We find no change in strength or structure of preferences, or change in overall selectivity of individuals over this period. This suggests cognitive constraints as the main determinant of selectivity by individuals, and is in stark contrast with theories predicting increased selectivity as a result of technological improvements in labor and product market search, suggested in the literature.

We find that income inequality is mainly accounted for by sorting on vertical characteristics, such as skill, education and income. Nevertheless, verticality of preferences over these characteristics implies reduced assortativeness and much lower inequality than would have prevailed if preferences over the same characteristics were horizontal. We find that diversity policies would reduce welfare for two-thirds of the population, with the main losers from the policy being the otherwise highly-desirable non-white individuals, and the main beneficiaries - the otherwise highly-desirable white/asian individuals.

We find that over the longer term, preferences have become weaker, yet more horizontal across the board, which led to near equalization of effort allocated to different attributes and a substantial increase in assortativeness which has led to an increase in inequality. A large part of the increase in inequality is attributed to increased assortativeness by skill, education and income. However, overall selectivity of individuals has decreased and the shadow cost of search has increased over the longer term, contrary to existing theories, strengthening cognitive constraints as the main theory of the costs of search.
References

[34] **Rosenfeld, M. J. (2008).** "Racial, Educational, and Religious Endogamy in Comparative Historical Perspective", Social Forces volume 87, issue 1, pages 1-32

