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Abstract

We develop a new framework to measure market-wide (systemic) tail risk in the cross-section of
high-frequency stock returns. We estimate the time-varying jump intensities of asset prices and in-
troduce a testing approach that identifies multi-asset tail risk based on the release times of scheduled
news announcements. Using high-frequency data on individual U.S. stocks and sector-specific ETF
portfolios, we find that most of the FOMC announcements create systemic left tail risk, but there is no
evidence that macro announcements do so. The magnitude of the tail risk induced by Fed news varies
over the business cycle, peaks during the global financial crisis and remains high over different phases
of unconventional monetary policy. We use our approach to construct a Fed-induced systemic tail risk
(STR) indicator. STR helps explain the pre-FOMC announcement drift and significantly increases
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1 Introduction

During market downturns, financial assets and portfolios often incur large losses from tail risks. The

crash of “Black Monday” (October 19, 1987), the TARP rejection of the U.S. House of Representatives

(September 29, 2008), the Flash Crash (May 6, 2010) and Covid-19 events (e.g., March 16, 2020) are

examples of abnormal equity volatility coupled with big price drops or jumps.

While Merton (1976) suggests that investors can mitigate such idiosyncratic jump risks through diver-

sification strategies, recent studies have challenged this conventional wisdom. For instance, Bégin et al.

(2020) show that idiosyncratic jump risk is priced in options and it helps explain excess equity returns.

Studies with high frequency data also support the presence of systematic cojump risk. Pelger (2020),

Bollerslev et al. (2008) and Bollerslev et al. (2013) provide strong evidence of systematic cojump risk

embedded in the cross-section of high-frequency returns. Other related works include jump dependence

tests (Bollerslev et al., 2013), cross-sectional assessments (Bibinger et al., 2019; Chan et al., 2017), and

risk diversification analyses (Gilder et al., 2014; Bollerslev et al., 2008; Todorov and Bollerslev, 2010),

among others.1

In this paper, we argue that bifurcating jumps into idiosyncratic or systematic classes is too restrictive

to adequately characterize systemic (market-wide) risk. Idiosyncratic jumps constitute the time variation

in a single security (i.e., when N = 1) while systematic cojumps determine the tail risk of an asset and

the market as a whole. In line with Caporin et al. (2017), Das and Uppal (2005), these two forms of

jumps likely overlook the magnitude of system-wise tail risk embedded in many assets but not the entire

market (i.e., when N >> 2). Even if an investor is able to diversify the risk attributed to idiosyncratic

or systematic jumps, there is no guarantee that a strategy based on N = 1 or N = 2 will also work when

many assets jump.2 Systemic cojumps and synchronized multi-asset crashes (i.e., downward cojumps)

could create heavier tail risk than that associated with idiosyncratic or systematic jumps.

In the spirit of Das and Uppal (2005) and Caporin et al. (2017), we define systemic risk as the si-

multaneous occurrence of jumps in multiple financial assets. Consistent with the direction of Das and

Uppal (2005) and Caporin et al. (2017), we thus conjecture that systemic cojumps drive synchronized

(multi-asset) systemic risk. In contrast with these two studies, however, we condition on news to identify

systemic risk and we do so by exploiting the tail component of the asset price jumps. News from Fed-

eral Open Market Committee (FOMC) meetings is typically associated with prolonged trading intensity,

1The literature on cojumps is considerably large and covers the cases beyond those only between individual assets and
aggregated market index. In this direction, see also Bandi and Renò (2016), Bandi and Renò (2016), Jacod and Todorov
(2009), Jacod and Todorov (2010), Todorov and Tauchen (2011) and Jacod et al. (2017), who study cojumps between jumps
in prices and jumps in volatility process. Further, a large number of studies detect the arrivals of cojumps across different
asset classes and markets, see e.g., Lahaye et al. (2011), Evans (2011), Dungey and Hvozdyk (2012), Winkelmann et al.
(2016), Bibinger and Winkelmann (2015), Corradi et al. (2020) and Aı̈t-Sahalia and Xiu (2016).

2Consider stocks, for example. If the volatility or price of an individual stock jumps, then a trader may mitigate the
realized risk exposure—triggered by the jump—through dynamic asset allocation. This is possible by treating the detected
jumps as risk signals and rebalancing the position as soon as a large jump occurs. In another scenario when a stock price
jumps simultaneously with the market index (or another stock), investors can protect against the market (jump) risk by
diversifying through sector rotation. The equity jump risk that is attributed to one specific sector (including, for instance,
cyclical stocks) can be offset by shifting the allocation towards defensive sectors (such as healthcare or utilities).
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volatility and extreme price changes (see Bollerslev et al., 2018; Weller, 2019).3 We develop a methodol-

ogy to quantify news-driven cojumps and assess which events create systemic reaction and tail risk, which

permits policy-makers to identify systemically important news events.

Our econometric approach, which nests existing jump tests, builds on and extends the conditional

testing approach recently developed by Erdemlioglu and Yang (2022) to a multivariate cross-sectional

setting.4 By conditioning on event times, we first estimate time-varying jump intensities that capture the

tails of return distributions. We then identify news-induced systemic cojumps, controlling for the multiple

testing bias. Finally, we quantify the associated right and left tail risk by using positive and negative

high-frequency returns, respectively. We examine which events trigger systemic (downside) risk and how

frequently these tail risk episodes occur in the marketplace.

Our empirical application to Dow Jones stocks and sector specific exchange-traded funds (ETFs) shows

that FOMC news creates systemic tail risk. We identify many instances in which almost all individual

stocks and sector ETFs crash together after FOMC news. These Fed-induced systemic common jumps

across individual stocks and sector portfolios impede diversification. The tail risk from these systemic

cojumps and crashes reflects the market’s sensitivity to policy announcements. This downside sensitivity

varies over time and is closely linked to quantitative easing periods.

We explore two implications of Fed-induced systemic tail risk: First, we revisit the pre-FOMC drift

puzzle (Lucca and Moench, 2015) and find that FOMC-induced systemic tail risk may help explain one

meeting ahead pre-FOMC announcement returns. Second, Fed-induced systemic tail risk appears to

be priced in the option market: systemic tail risk significantly increases variance risk premia around

FOMC announcements without a press conference. Investors and market participants seem to demand

compensation to bear the systemic tail risk embedded in the cross-section of U.S. equities. We find

no evidence that macroeconomic news announcements create systemic tail risk, however. This finding

strongly supports the conclusions documented in Bajgrowicz et al. (2016) on the link between macro news

and jump/cojump risks: Macro news could trigger sharp changes in volatility, but not cause jumps or

cojumps.

The rest of the paper is organized as follows. The next section discusses the contribution of our

paper to the literature. Section 3 outlines the underlying model and presents our strategy for identifying

news-induced systemic tail risk. Section 4 introduces the estimation approach and detection procedures.

Sections 5 and 6 describe the data and present our empirical analysis, respectively. Section 7 reports

robustness checks and Section 8 concludes. The Supplementary Appendix collects all proofs, technical

3FOMC statements potentially reveal insights to the public regarding the monetary policy reaction function and its
implementation. The news conveys important signals about the FOMC’s projection for macroeconomic conditions in the
future (see Cieslak and Schrimpf, 2019; Nakamura and Steinsson, 2018). The literature exploring the financial effects of
FOMC and monetary policy news typically conducts high-frequency event studies (see e.g., Cieslak and Schrimpf, 2019;
Neely, 2015; Bauer and Neely, 2014; Gagnon et al., 2011; Joyce et al., 2011). Hattori et al. (2016) conduct event study
regressions to assess the impact of unconventional Fed policy on equity market tail risk. Our event-driven high-frequency
approach hence aligns with the perspective taken in such studies. See also Fratzscher et al. (2018), who classify the Fed’s
monetary policy events, such as large-scale asset purchase (LSAP) announcements.

4Important studies on univariate jumps include Lee and Hannig (2010), Lee and Mykland (2008), Lee (2012) Andersen
et al. (2007), and Barndorff-Nielsen and Shepard (2006), Aı̈t-Sahalia and Jacod (2009b), among others. Furthermore, see
Dumitru and Urga (2012) and Maneesoonthorn et al. (2020), who compare different jump tests and provide excellent surveys
on jump studies.
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results, and additional analyses.

2 Related Literature

Compared to research on idiosyncratic and systematic jump risks (see e.g., Bégin et al., 2020; Pelger,

2020; Chan et al., 2017; Bollerslev et al., 2013, 2008), there is relatively little research on systemic cojump

risk. Among these latter studies, Das and Uppal (2005) identify systemic cojump risk in a jump-diffusion

setting and investigate portfolio implications at monthly trading scales. The authors find weak evidence

of systemic cojump risk with an international asset allocation exercise. In contrast, our high-frequency

analysis reveals strong evidence of systemic cojump (tail) risk in the cross-section of stocks. Caporin et al.

(2017) make a notable contribution in detecting systemic cojumps at high frequency.

We complement and extend Caporin et al. (2017) in several important respects. First, we detect the

intradaily systemic cojumps whereas the test of Caporin et al. (2017) is a daily test. Second, we condition

on event timing, which permits accurate quantification of the realized marketwide risk. Third, our time-

varying jump intensity specification is consistent with the regularities found by Bates (2019) and Andersen

et al. (2020). These extensions matter: we find more severe systemic risk exposure in the intradaily jumps

than do Caporin et al. (2017) with a daily test.

Our paper is also related to studies that measure tail risk using financial data (e.g., Andersen et al.,

2020; Weller, 2019; Van Oordt and Zhou, 2016; Bollerslev and Todorov, 2014 and Bollerslev et al., 2013).

For example, Bollerslev et al. (2013) exploit jump tails and characterize extreme dependencies among

high-frequency stock returns. In a market microstructure setup, Weller (2019) extends the framework of

Bollerslev and Todorov (2014) to examine tail risk at high frequency. Van Oordt and Zhou (2016) use

low-frequency (daily and monthly) data and estimate tail betas in the cross-section of stock returns.

Our objectives and methods differ from those of these studies in several important respects. First,

we identify systemic (multiple asset) tail risk while these works measure systematic (pairwise) tail risk.

Second, we follow Andersen et al. (2020), Erdemlioglu and Yang (2022) and use time-varying jump inten-

sities to capture extreme tails, not only the sizes of price jumps, and then measure systemic downside risk.

Third, we measure tail risk simultaneously across stocks, conditional on the release times of news events,

which alter jump intensities and tail risk. In contrast with the approach of Van Oordt and Zhou (2016) for

gauging systematic tail risk, we use jump activity index based on high-frequency data to quantify systemic

tail risk.

Our findings are also relevant for the literature examining the effects of scheduled news on jumps and

volatility. One recent debate in this strand of research asks whether news truly creates jumps or just the

appearance of jumps through changes in volatility. Lahaye et al. (2011) and Amengual and Xiu (2018),

respectively, find evidence that price jumps and volatility jumps occur due to FOMC news surprises. In

sharp contrast, Bajgrowicz et al. (2016) argue that most detected intradaily jumps are spurious due to

multiple testing bias and that news announcements tend to create volatility bursts, but not price jumps.

We resolve this debate with the event-based extension of Romano and Wolf (2005)’ StepM bias correction.

This procedure replaces traditional (and typically ad hoc) jump-news matching methods. Our approach
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suggests that jumps are strongly associated with FOMC announcements, but there is no clear evidence

that macroeconomic news creates real (i.e., non-spurious) systemic cojumps. Tail risk from macro news

is diversifiable.

3 Model

In this section, we present our jump-diffusion model and then describe the localized (event-based) speci-

fication of the model.

3.1 The General Form

Let X denote the N -dimensional vector, X := [X1, . . . , XN ]′, which represents the log-prices of N financial

assets. We assume that the log-prices X follow an Itô semimartingale defined on a filtered space (Ω, Ft,
(Ft)t∈[0,T ], P) over a fixed time interval [0, T ]. Under certain conditions (see Appendix A), we assume

that the stock log-returns follow the dynamics given by

dXi,t = bi,tdt+ σi,tdWi,t + ξi,tdJi,t, i = 1, . . . , N, (1)

where bt := [b1,t, . . . , bN,t]
′ is the vector of drifts, Wt := [W1,t, . . . ,WN,t]

′ is the vector of Standard Brownian

Motions and Jt := [J1,t, . . . , JN,t]
′ denotes an N -dimensional vector of jump processes of stocks with the

vector of jump sizes denoted by ξt := [ξ1,t, . . . , ξN,t]
′. We focus on the jump process Jt. To make the

model match stylized features of intradaily jumps (see e.g., Boswijk et al., 2018; Dungey et al., 2018), we

permit stochastic asset price jumps. That is,

dλi,t = α̃i(λi,∞ − λi,t)dt+ β̃idJi,t, i = 1, . . . , N, (2)

where λi,t := [λ1,t, . . . , λN,t]
′ is the vector of stochastic jump intensity process (or scale) that captures the

time-varying intensity of the extreme tail shocks. When the shocks Ji,t hit the market (due to common

news), trading activity typically surges and jump-type tail rallies of assets λi,t increase with magnitude

β̃i. As the impact of the shock subsides, jump intensity reverts to its long-run mean λi,∞, with speed

governed by α̃i.
5 The process (2) can incorporate high-frequency crashes, as emphasized in Aı̈t-Sahalia

et al. (2015) and motivated by Bates (2019) from an asset pricing perspective.

We next move from this general specification to an event-based specification by looking at λi,t of all

assets in the panel around event times.

3.2 The Event-Based Form

We seek to characterize the market-wide (systemic) tail risk that occurs when multiple assets jump together

in response to announcements. To this end, we extend the univariate approach of Erdemlioglu and Yang

5Under the conditions, α̃i > β̃i > 0 and λi,∞ > 0.
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(2022) to a multivariate setup, and explore the local (news-induced) tail behavior of asset returns.6

Suppose that a single FOMC announcement arrives at a known time, denoted Es=1.7 The dynamics

of jump intensities at event times can be written as

dλeventi,t = α̃i(λ
event
i,∞ − λeventi,t )dt+ β̃idJi,t, i = 1, . . . , N, (3)

where λeventi,t := [λevent1,t , . . . , λeventN,t ]′ denotes the N -dimensional vector of the stochastic jump intensities of

the N assets around each FOMC event (denoted by superscript event).8

How does news change the tail probability? If the FOMC event creates a jump with magnitude ξ, the

news-induced tail probability ratio is

P(|(λeventi,∞ + ξ)∆nJi| ≥ α∆$
n )

P(|λeventi,∞ ∆nJi| ≥ α∆$
n )

≈

(
λeventi,∞ + ξ

λeventi,∞

)βi
= (1 + ξ/λeventi,∞ )βi , i = 1, . . . , N, (4)

where the ∆n is incremental change between observations, α∆$
n is the threshold to retain only very large

jumps (to be defined later), and βi := [β1, . . . , βN ]′ is the vector of jump activity indices controlling the

vibrancy of fluctuations, serving as a tail measure similar to the estimator of Hill (1975).9 For a given

value of λevent, if the news generates a jump with large magnitude (e.g., ξ = 12), the tail probability ratio

will be around 1.8. That is, the FOMC event that induces this large jump (ξ = 12) in each asset will

increase the likelihood of extreme change (both left- and right-tails) by 80%, compared with the case of

no jumps. Such a substantial change in the tail probability implies that cojumping assets pose systemic

tail risk.

This approach has several advantages compared to specifications in prior research (e.g., Caporin et al.,

2017; Boswijk et al., 2018; Dungey et al., 2018; Aı̈t-Sahalia et al., 2015; Erdemlioglu and Yang, 2022).

First, unlike the conventional jumps-news matching analysis, our event-based approach explicitly permits

us to assess the news effect and quantify its risk at high frequency. Second, we can formally evaluate

whether apparent jumps are actually jumps or spurious jumps caused by volatility spikes (Section 4).

By conditioning on the news event, we can minimize false jump discoveries. Third, event-based testing

extends the mutual excitation models (see e.g., Boswijk et al., 2018; Dungey et al., 2018) by incorporating

the impact of a common (news) into asset price dynamics. Our framework extends the framework of

Erdemlioglu and Yang (2022) to a multi-asset setting and introduces a new test.

Having outlined the modeling framework, we next introduce our testing and detection procedures.

6Supplementary Appendix B presents several motivating examples along with a schematic representation of our model.
7Because the event time is known, the jump time is deterministic but the jump magnitudes and tail behavior are still

stochastic and are unrestricted.
8From the FOMC’s viewpoint, the objective for traders in this regard would be to examine the market-wide, possibly

adverse, consequences of the announcement.
9See the related discussion in p. 2209 in Aı̈t-Sahalia and Jacod (2009a).
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4 Methodology

This section first outlines the estimators required for the test statistics. Then Section 4.2 details our testing

framework and discusses how to detect non-spurious systemic cojumps and crashes at high frequency,

conditional on the arrival times of information events.

4.1 Estimators and Test Statistics

We estimate the latent jump intensity before presenting the tests for systemic effects. Following the

definitions in Erdemlioglu and Yang (2022), let us consider pre- and post-event estimators for the jump

intensity, λ̂event. For each stock (i = 1, . . . , N) and event (s = 1, . . . , S), we can write

λ̂i(kn)event


λ̂i(kn)pre := ∆

$β̂i
n

kn∆n

∑kn
j=1 g

(
|∆n
jX

(pre)
i |

α∆$
n

)
αβ̂

C
β̂i

(kn) =⇒ (pre-event window)

λ̂i(kn)post := ∆
$β̂i
n

kn∆n

∑kn
j=1 g

(
|∆n
jX

(post)
i |

α∆$
n

)
αβ̂

C
β̂i

(kn) =⇒ (post-event window),

where, based on an integer kn and certain functional forms g(·), C
β̂i

(see Appendix A for details), λ̂i(kn)pre

and λ̂i(kn)post are the intensity estimators before and after the information arrivals, respectively, in the

estimation windows. Note that both λ̂i(kn)pre and λ̂i(kn)post contain the high-frequency return variations

|∆n
jX

(pre)
i | and |∆n

jX
(post)
i | for the pre- and post-event windows, respectively. We seek to detect whether

or not |∆n
jX

(post)
i | jumps when the news arrives. The statistical challenge is that large and sharp changes

in returns |∆n
jX

(post)
i | may not really be jumps, either because they might result from jumps in volatility or

because they might be falsely identified large diffusion returns. We deal with this challenge by controlling

for volatility jumps and multiple testing bias.

We test for systemic cojumps (SCOJ), given the arrival of events. For all news events (s = 1, . . . , S),

we introduce the null and alternative hypotheses, respectively, as follows.

H0 : ω ∈ ΩnoSCOJ
T := Ωλevent,0

t = {ω : λ(ω)pre
i,t = λ(ω)post

i,t }, i = 1, . . . , N, (5)

vs.

Ha : ω ∈ ΩSCOJ
T := Ωλevent

t = {ω : λ(ω)pre
i,t 6= λ(ω)post

i,t }, i = 1, . . . , N,

where ω denotes a specific outcome, ω ∈ Ω, for which we need to evaluate whether the outcome belongs

to the set of “no systemic cojumps” (ω ∈ ΩnoSCOJ
T ) or is a systemic cojump, i.e., (ω ∈ ΩSCOJ

T ). Under

the null hypothesis of no systemic cojumps (5), we define our test statistics as follows, conditional on the
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timing of FOMC events (s = 1, . . . , S):

T (event)
i,t =

√
kn∆n

∆$β̂i
n

λ̂post
i,t − λ̂

pre
i,t(√

αβi Cβ(2)(λ̂post
i,t + λ̂pre

i,t )

)/
Cβ(1)

, i = 1, . . . , N, (6)

which traces how sharply λ changes after each news event.10

4.2 Detection Procedures

The estimation of repeated jump tests creates the potential for multiple testing bias and false discovery,

that is, erroneously rejecting the true null hypothesis of no jump.11 We seek to minimize such bias.

Statistically, we cope with the data snooping problem in three ways: First, we account for the depen-

dence structure of test statistics given by (6). Second, we asymptotically control for the family-wise error

rate (FWE) at a given nominal level. Third, to maximize detection power, that is, to reject as many false

null hypotheses as possible, we extend the stepwise method of Romano and Wolf (2005) to condition on

events.12 We have the following result:

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold (See Appendix). Then the following statements

concerning to Algorithm 1 are true.

(i) When the null hypothesis is false, the event-based StepM algorithm will reject the null hypothesis

with probability 1 as n → ∞.

(ii) The event-based StepM algorithm asymptotically controls the familywise error rate (FWE) at level

α; that is, limn FWEP ≤ α.

This result ensures that the bootstrap consistently estimates the limiting distribution of our test statistic

(see Appendix A and C for the proof and algorithm, respectively).13

Before conducting our empirical analysis, we evaluate the properties of our detection approach via

simulations. Overall, the results reveal that the test statistics have good power after the bias correction

(see Appendix D which details our Monte Carlo study).

10This statistic is asymptotically independent from that for volatility spikes. The conclusion still holds if we replace
the deterministic time t with any Ft-stopping time. To compute the test statistic in (6), we use the pre- and post-event

estimators, λ̂post
i,t , λ̂pre

i,t , the asset-specific jump activity index, β̂i along with certain parameters, including kn, ∆, α and Cβ .
These technical insights and implementation details are unreported for brevity yet they are available upon request.

11Bajgrowicz et al. (2016) and Romano and Wolf (2005) discuss multiple testing bias in depth.
12Our definition of power follows the notion of average power considered in Romano and Wolf (2005), which refers to the

expected number of false hypotheses rejected. See Supplementary Appendix C for the implementation details.
13It is worth mentioning that, unlike Romano and Wolf (2005), we implement the stepM procedure to each event timing

rather than considering averages (i.e., average historical returns). See Examples 2.1 and 2.2 (pp. 1240 and 1241) in Romano
and Wolf (2005), respectively. Nevertheless, our approach is still computationally tractable, although we implement the full
system via bootstrap. For instance, while Romano and Wolf (2005) use 105 test statistics, we consider 2332 test statistics in
our empirical analysis.
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5 Data

This section describes our high-frequency data and news announcements.

5.1 Stock Market Data

Our data consist of high-frequency data on twenty-two individual stocks listed in Dow Jones Industrial Av-

erage (DJIA) and nine SPDR sector ETFs. We create equally-spaced observations at 15-second sampling

frequency using raw (tick-by-tick) data from the WRDS. We assess the systemic effects of news events on

sector ETF portfolios, as investors often use them for tactical asset allocation and sector-rotation strate-

gies. The first three columns of Table 1 list the tickers, names, and industries of the stocks and sector

ETFs. The sample spans January 31, 2006 through January 30, 2019.

We adjust the data in the usual ways. We discard the sample days with excessively low trading

activity, missing price observations, empty (zero data) intervals and consecutive (unchanged) transaction

prices. As is standard, we exclude U.S. holidays (fixed/irregular), Christmas periods and weekends from

our sample. For both individual stocks and sector ETFs, we only use trading hours (9:30 EST−16:00

EST), not overnight observations. To minimize market microstructure noise, we filter out the bouncebacks

associated with bid-ask spreads and irregular quotes. This reduces spurious price spikes and the impact

of noise.

5.2 FOMC Announcements and Monetary Policy Shocks

Our event set includes scheduled announcements, which contain FOMC statements and interest rate

decisions. We crosscheck published event times with Bloomberg and media articles. Our sample contains

106 FOMC announcements from January 31, 2006 through January 30, 2019.

Table 1 reports three types of summary statistics for Dow Jones stocks (Panel I) and sector ETFs (Panel

II) from windows before and after FOMC news releases. FOMC events significantly change both stock and

ETF returns (post-X versus pre-X) and realized volatility (post-RV versus pre-RV).14 Announcements also

consistently and substantially change ETF realized skewness (see post-SK versus pre-SK). Taken together,

these empirical features appear to corroborate the view that news often prompts traders to reevaluate

their expectations and investment strategies.

To measure the news surprise associated with each FOMC event, we estimate the target factor and

path factors, as in Gürkaynak et al. (2005), and the zero-bound factor, as in Wright (2012) (henceforth

the Wright surprise).15 We also construct a fed funds target change indicator to examine the systemic

risk effects of conventional announcements. We call this variable a revision factor.

14In line with this pattern, realized volatility of all sector portfolios increases rapidly as soon as the news is released, see
Figure S.1 in Supplementary Appendix.

15The target surprise is essentially the surprise change in overnight interest rates. The path surprise is orthogonal to the
target surprise and empirically seems to be similar to the change in the 12-to-15-month forward rate. The Wright surprise
is constructed from the change in the first principal component of high-frequency yield curve movements at announcement
times. Appendix E describes the construction of these three types of monetary policy surprises. The implementation codes
are available upon request.
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Table 1: Descriptive statistics before and after the exact times of the FOMC announcements

Ticker Company name Industry Pre-X Post-X ∆X Pre-RV Post-RV RV ratio Pre-SK Post-SK

Panel I. Dow Jones stocks

AAPL Apple Tech 0.025 0.026 0.000 0.119 0.239 2.014 0.826 -0.644
AXP American Express Fin. Services 0.054 0.171 0.118 0.123 0.284 2.314 1.260 1.124
BA Boeing Aerospace -0.098 0.035 0.134 0.124 0.254 2.042 0.536 -0.045
CAT Caterpillar Construction 0.017 0.060 0.043 0.124 0.284 2.299 -1.562 0.582
CSCO Cisco Systems Tech -0.066 0.059 0.125 0.145 0.255 1.761 0.217 0.194
CVX Chevron Oil & Gas -0.017 0.044 0.061 0.111 0.239 2.155 -0.478 0.761
DIS Disney Entertainment 0.046 0.049 0.003 0.114 0.246 2.150 1.554 0.047
HD Home Depot Retail 0.047 0.206 0.159 0.114 0.253 2.223 1.654 0.846
IBM IBM Tech 0.026 0.063 0.038 0.093 0.207 2.231 -0.185 0.179
INTC Intel Tech 0.050 0.138 0.088 0.146 0.259 1.770 -0.557 -0.155
JNJ Johnson & Johnson Pharmaceuticals 0.010 0.071 0.062 0.080 0.171 2.123 -1.802 -0.504
KO Coca-Cola Food and Bev. 0.001 0.129 0.129 0.090 0.187 2.071 -0.469 -0.330
MCD McDonald’s Food 0.032 0.016 -0.015 0.085 0.182 2.145 1.157 0.307
MMM 3M Conglomerate 0.020 0.115 0.095 0.095 0.231 2.435 -0.630 0.310
MRK Merck Pharmaceuticals 0.002 0.331 0.329 0.114 0.229 2.004 -0.623 1.020
MSFT MSFT Tech 0.024 0.027 0.003 0.125 0.238 1.899 -0.440 0.493
NKE Nike Apparel -0.032 0.183 0.215 0.110 0.241 2.200 -0.016 0.369
PFE Pfizer Pharmaceuticals -0.005 0.085 0.090 0.138 0.232 1.681 0.883 0.695
UNH UnitedHealth Health Care 0.020 0.141 0.122 0.122 0.277 2.265 0.159 -0.185
VZ Verizon Telecom 0.033 -0.018 -0.052 0.107 0.215 2.008 1.412 -0.244
WMT Wal-Mart Retail 0.009 -0.064 -0.073 0.088 0.182 2.055 2.283 -0.183
XOM Exxon Mobil Oil & Gas -0.033 0.048 0.081 0.102 0.221 2.166 -1.056 0.901

Panel II. Sector ETFs

XLB . Materials 0.009 0.138 0.130 0.095 0.247 2.604 -0.156 0.168
XLE . Energy -0.040 0.150 0.190 0.107 0.258 2.415 -1.825 0.863
XLF . Financials 0.005 0.111 0.106 0.143 0.294 2.062 -2.323 0.236
XLI . Industrials 0.004 0.120 0.116 0.085 0.222 2.619 -0.728 0.809
XLK . Technology 0.001 0.133 0.133 0.094 0.222 2.353 -0.924 0.323
XLP . Consumer Staples -0.004 0.066 0.070 0.078 0.181 2.313 -1.018 0.583
XLU . Utilities 0.001 0.137 0.136 0.095 0.232 2.433 0.225 0.636
XLV . Health Care -0.006 0.109 0.114 0.077 0.189 2.456 -0.833 0.657
XLY . Consumer Disc. -0.005 0.079 0.083 0.084 0.227 2.717 -1.583 0.550

Notes: The table reports the descriptive statistics of high-frequency returns, realized volatility and skewness before and after the exact (intraday)

times of FOMC news announcements. The table presents the values for twenty-two individual Dow Jones stocks (Panel I) and nine sector ETFs

(Panel II). The sample covers the periods from January 31, 2006 to January 30, 2019, and contains 106 FOMC policy announcements. For each

Dow Jones stock and sector ETF, the summary statistics reported in table are the averages across events. The first three columns, respectively,

provide the tickers, company name and industry classifications. ∆X is the difference between post- and pre-FOMC returns, and RV ratio is the

ratio of post-FOMC realized volatility to pre-FOMC realized volatility.

Figure 1 displays the estimated values of these three shocks over time. The shocks were large during

2007-2009 and 2015-2017. Each surprise factor captures distinct empirical features, as the signs and sizes

of shocks appear to be different over time in periods of policy announcements.

6 Results

We start our assessment of the systemic risk effects of FOMC announcements by examining summary

statistics pertaining to news-driven systemic cojumps. Section 6.2 then links monetary policy shocks

to systemic jump-response of stocks to FOMC news. Section 6.3 characterizes the systemically most

important FOMC events, and Section 6.4 focuses on the role of QE announcements in downside risk. We
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Figure 1: Estimated U.S. monetary policy shocks
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Notes: The figure shows the evolution of the estimated U.S. monetary policy shocks over time. We estimate the target and

path shocks following the studies of Gürkaynak et al. (2005) and Wright (2012). In addition to these two (common) shocks

factors, we construct the third surprise factor as the change in the level of yield curve (labeled as “Wright” in the figure).

The sample contains 106 FOMC policy announcements from January 31, 2006 to January 30, 2019. All shock factors are

normalized. The Y-axis denotes the value of the shock and X-axis denotes the periods (i.e., corresponding to news release

times of FOMC meetings) in our sample. Supplementary Appendix E outlines the construction of monetary policy shocks.

The methodological documentation is available upon request.

construct Fed-driven systemic risk indicators in Section 6.5 and study two aspects of our results. First,

we examine the link between systemic tail risk and pre-FOMC announcement drift. Second, we explore

whether Fed-induced systemic tail risk increases variance risk premia (Sections 6.6 and 6.7, respectively).

6.1 Presence of News-Driven Systemic Cojumps and Crashes

We begin by identifying systemic cojumps, conditional on the times of the FOMC announcements. We

compute the cojump test statistic (given in Equation (6)) on the prices of the 22 individual stocks and 9

sector ETFs for each of the 106 FOMC announcements. We then apply the conditional StepM algorithm

(Section 4.2) to reduce spurious detection. While we use all returns for detecting systemic cojumps, we

take only negative returns in assessing whether FOMC news results in crashes and downside tail risk.

Table 2 reports the summary statistics for the detected systemic cojumps and crashes. Panel I shows

that systemic cojumps arrive very frequently. For instance, an average of 12.77 (or 58%) of Dow Jones

stocks cojump simultaneously in response to FOMC news (columns 4 and 5). Nearly half of all FOMC

events (0.48) cause at least two-third of the Dow Jones stocks to jump simultaneously (last column). Panel

II of the table shows that sector ETFs cojump much like individual stocks, suggesting that such funds

cannot diversify systemic jump risk.
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Table 2: Summary statistics for the FOMC-driven systemic cojumps and crashes

Events Assets Mean Frac Stdev Max Min Thr

Panel I. Dow Jones stocks

SCOJ 106 22 12.77 0.58 7.76 22 0 0.48
SCRA 106 22 5.75 0.26 7.61 22 0 0.20

Panel II. Sector ETFs

SCOJ 106 9 4.93 0.55 3.51 9 0 0.50
SCRA 106 9 2.08 0.23 2.91 9 0 0.18

Notes: The table reports the summary statistics for the detected systemic

cojumps (SCOJ) and crashes (SCRA), conditional on the times of the FOMC

announcements. The table shows the number of events used in the testing

procedures (“Events”), the number of assets (“Assets”), the average num-

ber of systemic cojumps for each announcement in the sample (“Mean”),

the fraction of assets that cojump together out of all assets (i.e., “Frac”

(= Mean/Assets)), standard deviation of the number of systemic cojumps

(“Stdev”) and max-min values (“Max”, “Min”). The last column (“thr”)

gives the threshold-based average, which is the fraction of periods in which

at least two-thirds of the assets cojump together. The sample covers January

31, 2006 to January 30, 2019. The sampling frequency is 15-seconds.

The “SCRA” rows in Table 2 show that FOMC news often produces crashes, i.e., downward systemic

cojumps. On average, 5.75 Dow Jones stocks (out of 22) and 2.08 ETFs (out of 9) crash together in

response to FOMC events. The high number of stocks crashing together is likely to impair hedging

cojumps from an FOMC decision, particularly if the news leads to such crashes.

6.2 FOMC Announcements, Monetary Policy and Systemic Reaction

We now ask the following questions: How do the frequency and size of FOMC-induced systemic co-

jumps/crashes evolve over time? What is the role of the surprise in triggering systemic jumps?

The middle and lower panels of Figure 2 illustrate the respective number of DJ stocks and sector ETFs

that take part in FOMC-induced cojumps and crashes. The cojump/crash statistics for stocks and ETFs

follow similar time-varying patterns. Larger monetary policy surprises induce more systemic jumps and

these occur mostly during 2008-2009, during which FOMC news commonly produces downward cojumps.

Systemic effects become rarer after 2010, with no identified crashes during 2012 and early 2013 (dashed

red lines), a period with no significant downside monetary surprises.16 Systemic cojump risk rebounded in

2014-2015 before again giving way to relative calm in 2016-2017. The news surprise (upper panel) tends

to explain the strength of identified systemic reaction.

16The “Taper Tantrum” of May-June 2013 was a significant contractionary surprise.
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Figure 2: Monetary policy shocks, systemic cojumps and crashes
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Notes: The upper panel of the figure displays the time series of estimated monetary policy shocks while the middle and lower

panels show the number of detected systemic cojumps and crashes for DJ stocks and sector ETFs, respectively. Figure 1

describes the target/path/wright factors. In the middle and lower panels, the solid (dashed) gray (red) lines with filled circles

indicate the number of systemic cojumps (crashes), respectively. Crashes are downward systemic cojumps. The sample covers

January 31, 2006 to January 30, 2019, and contains 106 FOMC policy announcements.

6.3 Systemically Important News Events

The evidence in the previous section suggests that diversifying cojump risk is likely to be more challenging

than previously thought because ETF jump characteristics are similar to those of individual stocks. With

an event-induced cojump/crash detection approach, we can uncover and rank which FOMC events create

the most widespread systemic risk.17

We compile the list of systemically important news events (SINE) as follows: First, we detect systemic

cojumps (SCOJ) and crashes (SCRA) in the data, conditional on the FOMC announcements. Then, we

compute the fraction of assets that jump (and crash) together among all assets and rank the events by

17It is worth reemphasizing that our definition of systemic risk directly follows those of Caporin et al. (2017) and Das and
Uppal (2005). High-frequency (intradaily) systemic risk occurs when more-than-two assets cojump, irrespective of the signs
or magnitudes. That is, the crashes are downward cojumps in asset prices.
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Table 3: Systemically important news events based on cojumps and crashes of Dow Jones stocks

Date Rank SCOJ Frac SCOJ SCRA Frac SCRA Target Path Wright

2008-01-30 1 22 1.00 22 1.00 -2.983 -1.134 0.321
2008-10-29 2 22 1.00 22 1.00 -1.859 -1.816 -0.383
2008-12-16 3 22 1.00 22 1.00 -3.433 -3.979 3.178
2009-01-28 4 22 1.00 22 1.00 -0.359 0.511 -0.508
2009-03-18 5 22 1.00 22 1.00 1.060 -3.904 4.991
2011-08-09 6 22 1.00 22 1.00 0.433 -0.978 1.307
2018-12-19 7 22 1.00 22 1.00 1.135 0.333 0.587
2008-09-16 8 22 1.00 21 0.95 1.802 3.438 -2.443
2011-09-21 9 22 1.00 21 0.95 0.218 1.170 0.053
2009-04-29 10 22 1.00 20 0.91 -0.072 -0.109 -0.959
2009-06-24 11 22 1.00 20 0.91 -0.106 0.431 -1.735
2015-09-17 12 22 1.00 20 0.91 -1.492 -1.033 0.979
2007-09-18 13 22 1.00 17 0.77 -5.019 -1.533 0.861
2008-03-18 14 22 1.00 17 0.77 5.490 2.195 -1.252
2013-06-19 15 22 1.00 17 0.77 0.345 0.317 -2.326
2009-08-12 16 22 1.00 15 0.68 0.157 -0.835 0.039
2010-06-23 17 22 1.00 13 0.59 -0.012 0.794 0.138
2010-08-10 18 22 1.00 13 0.59 0.179 -0.415 0.619
2009-11-04 19 22 1.00 12 0.55 0.222 -0.460 0.010
2010-11-03 20 22 1.00 9 0.41 0.219 -0.318 -0.211

Notes: The table ranks 20 FOMC events from systemically most to least important in terms of creating systemic
cojumps and crashes. The table reports the date of the event (first column), the rank (second column), the
number of assets that cojump and crash (downward cojump) together after each event (“SCOJ” and “SCRA”).
The results are based on tests applied to 22 individual stocks. The table further presents the fraction of assets
that cojump or crash together out of all 22 assets (i.e., Frac SCOJ = SCOJ/22, Frac SCRA = SCRA/22). To
construct the ranking, we sort the fractions by SCOJ and then by SCRA. In the last three columns, we provide
the normalized estimates of target, path and Wright factors (at announcements times) capturing monetary
policy shocks (see Figure 1 for details). Negative (positive) values for Wright shocks represent contractionary
(expansionary) shocks. The sample covers January 31, 2006 to January 30, 2019.

the fractions of jumping assets based on SCOJ and SCRA, respectively.

Tables 3 and 4 report our SINE ranking (top 20), based on the panels of individual stocks and sector

ETF portfolios, respectively. Several FOMC events share first place in the individual-stock ranking with

fractions that equal one (Frac SCOJ and Frac SCRA in Table 3). That is, these events spur all 22

individual stocks to jump at the same time and induce crashes. Most of the systemically important

FOMC events take place during the Great Financial Crisis and its aftermath, from 2008-2010 (fifteen

events). There is no evidence that announcements since 2011 have such systemic consequences. Only

three of the top 20 events occurred after January 1, 2012: the FOMC decisions released on December 19,

13



Table 4: Systemically important news events based on cojumps and crashes of sector ETFs

Date Rank SCOJ Frac SCOJ SCRA Frac SCRA Target Path Wright

2007-12-11 1 9 1.00 9 1.00 1.459 -1.898 2.164
2011-08-09 2 9 1.00 9 1.00 0.433 -0.978 1.307
2018-03-21 3 9 1.00 9 1.00 0.391 -0.259 -0.006
2018-12-19 4 9 1.00 9 1.00 1.135 0.333 0.587
2008-01-30 5 9 1.00 8 0.89 -2.983 -1.134 0.321
2011-09-21 6 9 1.00 8 0.89 0.218 1.170 0.053
2008-03-18 7 9 1.00 7 0.78 5.490 2.195 -1.252
2008-12-16 8 9 1.00 7 0.78 -3.433 -3.979 3.178
2009-03-18 9 9 1.00 7 0.78 1.060 -3.904 4.991
2009-11-04 10 9 1.00 7 0.78 0.222 -0.460 0.010
2016-01-27 11 9 1.00 7 0.78 -0.013 0.163 0.462
2007-08-07 12 9 1.00 6 0.67 1.361 0.414 -0.646
2008-10-29 13 9 1.00 6 0.67 -1.859 -1.816 -0.383
2009-01-28 14 9 1.00 6 0.67 -0.359 0.511 -0.508
2009-06-24 15 9 1.00 6 0.67 -0.106 0.431 -1.735
2010-11-03 16 9 1.00 6 0.67 0.219 -0.318 -0.211
2009-04-29 17 9 1.00 5 0.56 -0.072 -0.109 -0.959
2015-09-17 18 9 1.00 5 0.56 -1.492 -1.033 0.979
2015-12-16 19 9 1.00 4 0.44 0.574 0.465 -0.399
2008-04-30 20 9 1.00 3 0.33 -1.652 -1.239 1.182

Notes: The table ranks 20 FOMC news from systemically most to least important in terms of creating systemic
cojumps and crashes. The table reports the date of the event (first column), the rank (second column), the
number of assets that cojump and crash (downward cojump) together after each event (“SCOJ” and “SCRA”).
The results are based on tests applied to 9 sector ETFs. The table further presents the fraction of assets
that cojump or crash together out of all 9 assets (i.e., Frac SCOJ = SCOJ/9, Frac SCRA = SCRA/9). To
construct the ranking, we sort the fractions by SCOJ and then by SCRA. In the last three columns, we provide
the normalized estimates of target, path and Wright factors (at announcements times) capturing monetary
policy shocks (see Figure 1 for details). Negative (positive) values for Wright shocks represent contractionary
(expansionary) shocks. The sample covers the periods from January 31, 2006 to January 30, 2019.

2018, September 17, 2015, and June 19, 2013 (see Table 3).18

6.4 Systemic Effects of Unconventional Monetary Policy Announcements

Having identified the key systemic FOMC events, we now evaluate whether or not unconventional monetary

policy (UMP) news spark systemic effects.19 We evaluate whether or not UMP announcements spark

systemic effects. Fratzscher et al. (2018) is the source of our list of UMP events, which are related to the

18The December 19, 2018 statement was not as dovish as markets expected. The FOMC unexpectedly declined to raise
rates at its September 17, 2015 meeting, which would have been its first federal funds rate increase since the Great Financial
Crisis. Finally, June 19, 2013 was the date of the “taper tantrum”.

19Practitioners and researchers have long sought to understand the financial and economic impact of UMP policies, see e.g.,
Di Maggio et al. (2020); Hayashi and Koeda (2019); Fratzscher et al. (2018); Rodnyansky and Darmouni (2017); Kapetanios
et al. (2012); Christensen and Rudebusch (2012) and Joyce et al. (2012).
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Fed’s QE1 and QE2 programs.20 Table 5 reports the test results.

Table 5: Unconventional monetary policy announcements, systemic cojumps and crashes

Dates Time Type Description of event G2011 W2012 SCOJ-stat SCOJ SCRA-stat SCRA RV ratio DRV ratio

2008-11-25 8:15 QE1 FOMC statement – Expansion of QE.
Initial LSAP announcement. The Fed announces purchases
of $100 billion in GSE debt and up to 500 billion in MBS.
Creation of the Term Asset-Backed Security Loan Facility
(TALF)

-22 0.75 NA NA NA NA NA NA

2008-12-01 13:45 QE1 Bernanke Speech – Expansion of QE. Chairman Bernanke
mentions that the Fed could purchase long-term Treasuries.

-19 0.84 5.24 22 4.06 20 1.41 1.44

2008-12-16 14:15 QE1 FOMC statement – Expansion of QE.
The FOMC “evaluates” the potential benefits of purchasing
longer-term Treasury securities. Also FED funds target rate
reduced to the range 0- 0.25

-26 2.22 (11.80) 22 (7.92) 22 2.78 2.86

2009-01-28 14:15 QE1 FOMC statement – The FOMC disappointed markets by fail-
ing to actually expand asset purchases, although it said that
it stood ready to do so. As a result, yields rose.

14 -0.23 8.35 22 6.09 22 2.27 2.45

2009-03-18 14:15 QE1 FOMC statement – Expansion of QE.
The Fed will purchase an additional $750 billion in agency
MBS and an additional $100 billion in Agency Debt. More-
over, the FOMC decided to purchase up to $300 billion of
longer-term Treasury securities over the following six months.

-47 3.41 (11.05) 22 (7.78) 22 2.53 2.45

2009-08-12 14:15 QE1 FOMC statement – Phase out of QE.
The Fed will slow the pace of the LSAP by purchasing the
full amount by the end of October instead of mid- September.

5 0.15 5.57 22 4.23 21 2.11 2.30

2009-09-23 14:15 QE1 FOMC statement – Phase out of QE.
The Fed will slow the purchases of agency MBS and agency
debt, finishing the purchases by the end of 2010Q1. Treasury
purchases will still be finished by October 2009.

-3 0.85 5.14 21 3.73 20 2.23 2.26

2009-11-04 14:15 QE1 FOMC statement– Phase out of QE.
The amount of agency debt will be halted at $175 billion,
instead of $200 billion.

6 0.12 6.52 22 4.38 20 2.40 2.27

2010-08-10 14:15 QE2 FOMC statement – Expansion of QE.
The Fed will reinvest principal payments from agency debt
and agency mortgage-backed securities in longer-term Trea-
sury securities. Holdings of Treasury securities will be rolled
over as they mature.

NA 0.57 5.85 22 4.14 22 2.62 2.55

2010-08-27 10:00 QE2 Bernanke speech – Expansion of QE.
Bernanke mentions potential policy options for further eas-
ing, including additional purchases of long term securities.

NA -0.83 NA NA NA NA NA NA

2010-10-15 14:15 QE2 Bernanke speech – Expansion of QE.
The Fed is prepared to provide additional accommodation if
needed to support the economic recovery.

NA -0.21 [1.88] 8 [1.01] 3 1.32 1.26

2010-11-03 14:15 QE2 FOMC statement – Expansion of QE.
The Fed will purchase a further $600 billion of longer-term
Treasury securities by the end of the second quarter of 2011,
a pace of about $75 billion per month.

NA -0.05 5.55 22 3.81 22 2.37 2.11

Notes: The table reports the detected systemic cojumps (SCOJ) and crashes (SCRA), conditional on the timing of Fed’s QE announcements between 2008 and 2010. We apply our testing
procedures by using the list of announcements considered in Fratzscher et al. (2018). These QE announcements are related to the first and second LSAP programs of the Fed. Fratzscher et al.
(2018) consider twelve announcements in their analysis. To avoid timing problem, we discard two announcements from their list because these two QE announcements are released outside the
trading hours of our stocks data. The table reports the release date, time of the event, announcement type (QE1 or QE2), the type of the event and the description of the event. “G2011” and
“W2011” denote the estimated impact in Gagnon et al. (2011) and Wright (2012), respectively. In addition to the detected number of systemic cojumps and crashes, we further present the values
of the corresponding test statistics, pre-/post-event realized volatility ratio (RV ratio) and pre-/post-event downside realized volatility ratio (DRV ratio). The table reports the two largest and
smallest values of test statistics in parenthesis and square brackets, respectively.

Two UMP announcements stand out for producing very large crash statistics: the FOMC statements

on December 16, 2008 (third row) and March 18, 2009 (fifth row). The December 16 announcement

included a federal funds target cut, a suggestion that the Fed might purchase Treasuries and forward

guidance that the FOMC expects low rates “for some time”. The March 18, 2009 statement announced

very large Fed purchases of $300 billion in long-term Treasuries and $750 and $100 billion in MBS and

GSE debt, respectively. In addition, the FOMC strengthened its forward guidance to expect low rates

“for an extended period” (column 4 in the table). The evidence for systemic cojumps after these events

is very strong; the average SCOJ statistics for these two news releases are 11.80 and 11.05, respectively,

the largest among all listed QE announcements (SCOJ-stat). Individual stocks co-crash immediately in

response to these two events (i.e., SCRA-stats of 7.92 and 7.78, respectively).

20The results with sector ETFs resemble those with individual stocks. For brevity, we discuss the findings with respect to
individual stocks only.
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Of all these events, Bernanke’s speech of October 15, 2010 (penultimate row in Table 5) has the weakest

systemic effect. The cross-sectional averages of the SCOJ and SCRA statistics for this QE event are 1.88

and 1.01, respectively, the lowest among all statistics while realized volatility changes little (news-driven

RV and DRV ratios in Table 5).

To facilitate comparison of jump statistics and volatility across the 10 events, Figure 3 plots the SCOJ

and SCRA test statistics, the RVOL and downside RVOL for each of the 22 stocks for each of the ten

events. Each line in the upper panels represents one type of test statistic for one event for each of the

22 stocks. For example, the blue line in the upper left panel shows the SCOJ statistics during event

E2, i.e., December 16, 2008, for each of the 22 stocks. Stock 20 has the largest SCOJ statistic for E2.

The two critical QE events (blue and pink dashed lines labeled as E2 and E4) produce the largest jump

and volatility statistics while Bernanke’s October 15, 2010 speech (a green dashed line labeled E9) has a

very small systemic impact. Realized volatility also remains almost unchanged following the speech; see

post-E9 versus pre-E9 in the lower panels of the figure. The evidence holds across assets, which supports

the conjecture that Fed news is likely to be a common asset pricing factor.

How do our measures of systemic cojumps correlate with measures of UMP surprises? The UMP-

driven systemic tail risk patterns corroborate those revealed by Gagnon et al. (2011) and Wright (2012).

The two events for which we find the strongest systemic response, i.e., December 16, 2008 and March

18, 2009, generate the largest impact according to the estimates of Gagnon et al. (2011) and Wright

(2012) (third and fifth lines in the table). There are some differences with respect to the features of

least influential UMP events, however. For instance, the Wright surprise for November 3, 2010 FOMC

statement is slightly negative (contractionary) and very weak (-0.05). Our test, however, suggests that

this event has non-negligible influence, as all 22 individual stocks cojump drastically downward in response

to news. Other examples of such events include the announcements of January 28, 2009, August 12, 2009,

and November 4, 2009, with Wright estimates of -0.23, 0.15 and 0.12, respectively. In contrast, these

events create strong systemic cojumps (SCOJ, SCOJ-stat, SCRA, SCRA-stat) and substantial increases

in downside (“bad”) realized volatility (see DRV ratio in Table 5). These differences with Wright (2012)

and Gagnon et al. (2011) are very likely due to the fact that we exploit the information in the cross-section,

rather than in a time series of bond yields or a stock index.
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Figure 3: Unconventional monetary policy, realized volatility and systemic cojumps
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Notes: The figure shows the value of the computed test statistics of systemic cojumps (SCOJ) and crashes (SCRA), conditional

on the timing of Fed’s QE announcements. We apply our testing procedures by using the list of announcements considered in

Fratzscher et al. (2018) (see Table 1 therein). These QE announcements are related to the first and second LSAP programs

of the Fed. Fratzscher et al. (2018) consider twelve announcements in their analysis. To avoid timing problem, we discard

two announcements from their list because these two QE announcements are released outside the trading hours of our stocks

database, thus we use ten announcements (labeled as E1, E2,...,E10 in the upper panels of the figure). Table 5 describes these

QE events and the results are based on the high-frequency data on 22 DJ stocks (see X-axis in all panels). In the lower panels,

we display the values of realized volatility before and after the release of three events that are E2, E4 and E9 (pre-/post-RV).

We compute pre-/post-event (downside) realized volatility by using only negative high-frequency returns (lower-right panel).

Table 1 details the description of the Dow Jones stocks. The sample covers the periods from January 31, 2006 to January

30, 2019.
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Table 6: Third round of quantitative easing announcements, systemic cojumps and crashes

Dates Time Type Description of event SCOJ-Stat SCOJ SCRA-Stat SCRA RV ratio DRV ratio

2012-09-13 1230 QE3 QE3 announced: Fed will purchase $40 billion of
MBS per month as long as “the outlook for the
labor market does not improve substantially. . . in
the context of price stability.” FOMC expects low
rates “at least through mid-2015.”

3.81 18 2.50 11 2.04 1.88

2012-12-12 1230 QE3 QE3 expanded: Fed will purchase $45 billion of
long-term Treasuries per month but will no longer
sterilize purchases through the sale of short-term
Treasuries. FOMC expects low rates to be appro-
priate while unemployment is above 6.5 percent,
and inflation is forecast below 2.5 percent.

1.35 1 0.71 0 1.32 1.27

2013-06-19 1400 QE3 FOMC will purchase “additional agency mortgage-
backed securities at a pace of $40 billion per month
and longer-term Treasury securities at a pace of $45
billion per month.” Statement indicates no funds
target increases in 2013.

5.89 22 4.42 21 2.92 3.13

2013-12-18 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$35 billion and $40 billion. Unemployment lift-off
threshold of 6.5 % abandoned.

5.25 22 3.17 15 2.67 2.79

2014-01-29 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$30 billion and $35 billion.

4.51 20 3.14 15 2.19 2.16

2014-03-19 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$25 billion and $30 billion; Expand the information
assessed in determining lift-off date.

4.49 21 3.52 16 2.47 2.66

2014-04-30 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$20 billion and $25 billion.

2.78 16 1.88 3 1.83 1.78

2014-06-18 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$15 billion and $20 billion.

3.37 15 2.24 6 2.06 1.97

2014-07-30 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$10 billion and $15 billion.

2.61 15 1.96 4 1.87 2.15

2014-09-17 1400 QE3 Cut monthly purchases of MBS and Treasuries to
$5 billion and $10 billion

3.54 19 2.57 11 2.17 2.15

2014-10-29 1400 QE3 End of QE 3.74 19 2.75 13 2.11 2.12

Notes: The table reports the detected systemic cojumps (SCOJ) and crashes (SCRA), conditional on the timing of Fed’s QE announcements during the
QE3 period. We apply our testing procedures by using the list of announcements in the table (eleven events). The table reports the release date, time
of the event, announcement type (QE3), the type of the event and the description of the event. In addition to the detected number of systemic cojumps
and crashes, we further present the values of the corresponding test statistics, pre-/post-event realized volatility ratio (RV ratio) and pre-/post-event
downside realized volatility ratio (DRV ratio).
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We complete our analysis by investigating the effects of UMP announcements on cross-asset tail risk

during QE3. Table 6 reports the results based on 11 UMP announcements between September 13, 2012

and October 29, 2014 (first column). In line with the QE1 and QE2 results, there is strong evidence

of systemic (simultaneous) cojumps: QE3 announcements produce many stock price cojumps. The tail

reaction to QE3 news is relatively weak, however, Compared to reactions to QE1 and QE2 news. The

average tail risk score (i.e., the average SCOJ-stat) across events during QE3 is around 3.76, which is lower

than that during QE1 and QE2 (6.69, average SCOJ-stat, Table 5). During QE3, the “taper tantrum”

of June 19, 2013 creates the most severe tail reaction with a SCOJ-stat of 5.89, and the least influential

news is released on December 12, 2012 with a SCOJ-stat of 1.35.

Having assessed the UMP events during different phases of QE, we next discuss the use of our test

statistics to measure systemic tail risk.

6.5 News-Driven Systemic Tail Risk Indicator

Traders and policymakers want to know how events change tail risk. We can construct a systemic risk

indicator with our test statistics as follows: We first apply our tests to pre- and post-FOMC (high-

frequency) data on the stocks and ETFs to identify the systemic cojumps/crashes for each event. We

then calculate the cross-sectional averages of the standardized test statistics from the estimated jump

intensities. For each event, we measure news-driven systemic risk with the product of that average test

statistic and the fraction of detected systemic cojumps.

The lower panel of Figure 4 displays the tail risk scores over time, for each of the 22 individual Dow

Jones stocks. The average market stress (thick solid line) tends to rise during the periods of global

financial crisis (2007-2008) and decreases after 2009. Market movements are relatively sensitive to the

FOMC announcements during 2008Q4-2009Q1. FOMC decisions generate relatively little market tension

from 2010 until the first quarter of 2011, but tail risk scores dramatically increase in the second half of

2011, and even exceed the levels of late 2008, during which Lehman Brothers collapsed. The three surprise

factors (target, path, and Wright surprise) fail to capture the spike in the market stress sparked by the

Fed in 2011 (upper panel). FOMC decisions also generated elevated market movements during the runup

to the liftoff from zero short rates in late 2015 and near the end of the tightening cycle in December 2018.

None of the three benchmark shock factor series exhibit that high level of policy-driven realized tail risk.

The risk scores extracted from sector ETFs are similar to those of individual stocks.21

In the next sections, we ask whether this measure of Fed-induced systemic tail risk explains the pre-

FOMC drift and variance risk premia.

6.6 Fed-Induced Systemic Tail Risk and Pre-FOMC Announcement Drift

Asset pricing theory predicts that investors should demand higher returns as compensation for holding

undiversifiable risk. In the context of the capital asset pricing model (CAPM), for instance, covariance

with market returns determines expected stock returns. However, Lucca and Moench (2015) (henceforth

21See Figure S.2 in our Supplementary Appendix.
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Figure 4: News-driven tail risk scores based on Dow Jones stocks
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Notes: The figure illustrates the estimated monetary policy shocks (upper panel) and news-driven realized tail risk (RS) scores

(lower panel) of each of the 22 Dow Jones stocks in our sample. The RS scores are the standardized test statistics of each

Dow Jones constituent for each FOMC news announcement. In the lower panel, the light blue solid line is the cross-sectional

average tail risk. The sample covers January 31, 2006 to January 30, 2019, and contains 106 FOMC policy announcements.

LM) show that stocks earned significant excess returns in the 24 hours before the release of the FOMC

statements, but not after. This anomaly has been difficult to explain as it is not obviously related to

any risk. We revisit the evidence on pre-FOMC drift and conjecture that systemic tail risk from the

previous FOMC meeting might predict pre-FOMC drift. Investors may expect compensation to hold

stocks immediately prior to the next meeting if the Fed’s previous decision at time t–1 produced a volatile

market with high tail risk.

In considering whether volatility and/or tail risk predicts FOMC drift, we must consider time variation

in the pre-FOMC drift and in FOMC procedures, however. The original LM sample extended from 1994

through March 2011, but the pre-FOMC drift is only predominantly positive through mid-2010. Starting

in 2011, the drift became predominantly negative through 2018. So, there is time variation in the pre-

FOMC drift. Time variation in FOMC procedures might also affect reactions to FOMC volatility. Starting

in April 2011, the FOMC started to hold press conferences, which were held every other meeting until
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2019, when the FOMC began to hold them every meeting.22

To account for these changes in the data generating processes, we allow for changes in the predictive

coefficients after 2010 and for differences in predictive coefficients for meetings that had press conferences.

The following specification allows for a break in coefficients at the time that the LM drift starts to

be persistently negative, in January 2011 and for different coefficients for meetings with/without press

conferences (PC).

r
(pre)
t = β0 + β1Xt−1I(t < 2011) + β2Xt−1I(t > 2010 & PC) + β3Xt−1I(t > 2010 & no PC) + εt, (7)

where t is the announcement time of the FOMC news release, r
(pre)
t is the cumulative pre-FOMC return,

Xt−1 is one of four risk measures from the previous FOMC meeting, and I(t < 2011), I(t > 2010 & PC),

and I(t > 2010 & no PC) are indicator functions that respectively take the value one for observations

before 2011, observations after 2010 with a press conference and observations after 2010 without a press

conference.

We assess the impact of four measures of lagged tail risk on pre-FOMC cumulative returns: the

lag of the log of realized volatility, the lagged realized tail risk indicator (TRt−1), lagged systemic tail

risk indicator (STRt−1), and the fraction of assets that cojumped at the previous FOMC announcement

(SCOJt−1). Realized volatility includes the total impact (i.e., both volatility and possibly single jumps) of

the announcements but not the systemic component embedded in jump intensity and tails. TRt−1 is the

lagged cross-sectional median of systemic cojump test statistics computed conditional on the FOMC news

event, and STRt−1 is the weighted version of the TRt−1, based on the fraction of stocks that previously

cojumped as the weight (i.e., SCOJt−1). We interpret STR as a gauge of Fed-induced systemic tail risk. To

compare the coefficients more easily across equations, we scaled the dependent variable, r
(pre)
t and the four

risk measures (Xt−1) to have unit variance. That is, a coefficient describes how many standard deviations

of pre-FOMC drift occur due to a one standard deviation increase in each risk measure. We emphasize

that these predictors are lagged about 6 weeks before the stock drift they predict, not contemporaneous

with the dependent variable, i.e., pre-FOMC drift.

The top panel of Table 7 reports the regression results of Equation (7) with positive, statistically

significant estimates of the coefficients β1 and β3. The estimates of β1 and β3 are of very similar magnitudes

for each of the four risk measures and Wald tests cannot reject the restriction that β1 = β3. The Wald

tests are in the last rows of Table 7). In other words, the risk factors are strong predictors of pre-FOMC

drift in the original LM sample, and again in the post-2010 sample, for meetings without press conferences,

but not for other meetings. We cannot reject that the risk factors predict the same FOMC drift either for

the pre-2011 sample or the post-2010 sample for meetings without press conferences. One cannot reject

that the risk factors fail to predict post-2010 pre-FOMC drift at meetings with press conferences. That

is, we cannot reject that β̂2 equals zero.

Because Wald tests cannot reject the restriction that β1 = β3 and theory provides no reason that these

22The FOMC held press conferences at the April, June, and November 2011 meetings, and at the January, April, June,
September, and December 2012 meetings. From 2013 through 2018, the FOMC held press conferences at the March, June,
September, and December meetings.
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Table 7: Lagged regressions for pre-FOMC announcement returns

Panel A. Unrestricted log(RV post
t−1 ) TRt−1 STRt−1 SCOJt−1

Xt−1 (pre-2011) 0.36 0.39 0.36 0.19
(t-stat) (2.38) (2.69) (2.46) (1.07)
Xt−1 (post-2010/PC) -0.01 -0.09 -0.12 0.02
(t-stat) (-0.07) (-0.42) (-0.58) (0.11)
Xt−1 (post-2010/no PC) 0.40 0.38 0.33 0.35
(t-stat) (2.12) (2.20) (1.82) (2.11)
constant -0.05 -0.06 -0.07 -0.02
(t-stat) (-0.48) (-0.62) (-0.69) (-0.18)

R2 0.10 0.11 0.09 0.06
R̄2 0.08 0.09 0.07 0.03
F -stat 3.94 4.33 3.41 2.01
F -stat (p-value) 0.01 0.01 0.02 0.12
Wald stat, b1 = b3 0.03 0.00 0.02 0.43
Wald p-value 0.87 0.97 0.88 0.51

Panel B. Restricted log(RV post
t−1 ) TRt−1 STRt−1 SCOJt−1

Xt−1 (pre-2011/post-2010/no PC) 0.38 0.39 0.35 0.28
(t-stat) (3.41) (3.57) (3.15) (2.34)
Xt−1 (post-2010 PC) -0.02 -0.09 -0.12 0.01
(t-stat) (-0.10) (-0.42) (-0.57) (0.04)
constant -0.06 -0.06 -0.07 -0.05
(t-stat) (-0.62) (-0.65) (-0.69) (-0.44)

R2 0.10 0.11 0.09 0.05
R̄2 0.08 0.09 0.07 0.02
F -stat 5.95 6.56 5.16 2.82
F -stat (p-value) 0.00 0.00 0.01 0.06

Notes: The table reports results of regressing pre-FOMC high-frequency returns on tail risk measures,
as in Equation (7). These independent variables include the lagged realized volatility (log(RV postt−1 )),
lagged realized tail risk indicator (TRt−1), lagged systemic tail risk indicator (STRt−1) and the
fraction of assets that cojump together (systemically) at the previous event’s testing time (t − 1)
(SCOJt−1). Panel A reports the unrestricted version of Equation (7) while Panel B restricts β1 = β3.
The results are based on the high-frequency data on 22 stocks listed in the Dow Jones index. Table
1 details the description of the Dow Jones stocks. The sample covers the periods from December
16, 2008 to January 30, 2019, and contains 82 FOMC policy announcements. Structural instability
prompts us to omit the first 24 observations in the sample.

coefficients should differ, we impose that restriction and estimate the following regression:

r
(pre)
t = β0 + β1Xt−1I(t < 2011 or (t > 2010 & no PC)) + β2Xt−1I(t > 2010 & PC) + εt. (8)
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The lower panel of Table 7 strengthens the evidence that policy-induced tail risk predicts pre-FOMC

returns. The β̂1 coefficients are highly statistically significant for all four lagged risk measures and finan-

cially relevant. A one standard deviation rise to a risk measure increases the pre-FOMC returns by about

0.28 to 0.38 standard deviations. In both the upper and lower panels, the best fit comes from the TRt−1

risk measure and the weakest results come from the fraction of cojumps (SCOJ). All four risk measures

produce fairly similar results, however.

6.7 The Impact of Fed-Induced Systemic Tail Risk on Variance Risk Premia

Finally, we investigate whether Fed-induced systemic tail risk impacts variance risk premia. If Fed-induced

systemic tail risk matters, then investors may demand compensation for exposure to this form of risk.

The variance risk premium (VRP) at time t is the difference between the risk-neutral (ex-ante) expec-

tation and the physical (statistical) expectation of an asset return variance over the time interval [t, t+1].

That is,

V RPt ≡ EQt (Vart,t+1)− EPt (Vart,t+1), (9)

where the asset return variance Vart,t+1 corresponds to, for instance, quadratic variation (see e.g., Caporin

et al., 2017). We follow the literature and use a proxy for the latent V RPt.

V̂ RPt ≡ IVt,t+1 − RVt−1,t, (10)

where IVt,t+1 and RVt−1,t are the implied variance and lagged realized variance at time t, respectively.

The squared VIX index approximates the implied variance IVt,t+1 so that

V̂ RPt ≡ VIX2
t,t+1 − RVt−1,t, (11)

and the realized variance is computed in a standard way as the sum of squared intradaily returns. To

assess the effects of our systemic tail risk indicator on variance risk premia, we estimate the following

regression specification:

V̂ RPt = θ0 + θ1
̂V RPt−1 + θSTRSTRt + εt, (12)

where STRt is our systemic tail risk (STR) indicator associated with the FOMC announcements at time t

and εt is the error term. If FOMC announcements amplify tail risk, investors may demand compensation

for bearing such systemic tail risk. We thus expect a positive estimated coefficient, θSTR.

We begin our analysis by investigating the structural stability of Equation (12). Structural break test

statistics for Equation (12) are significant at any conventional level around December 2008, which was the

break between the Fed’s use of conventional and purely unconventional monetary policy.23 We therefore

began our sample in December 2008, which left 82 observations.

We consider two models of the variance risk premia starting in December 2008. The first is Equation

23The first Federal Reserve unconventional asset purchase announcement was November 25, 2008, while the FOMC meeting
on December 16, 2008 would feature the last change in the federal funds target—down to a 0-to-25 bp range—until it was
raised in 2015.
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(12). The second model follows the logic used in the construction of Table 7 and allows for 3 separate

coefficients for the lagged VRP and lagged TR variables: (1) pre-2011 sample; (2) post-2010 meetings

with press conferences; (3) post-2010 meetings without press conferences. Equation (13) below shows the

functional form of the second model.

V̂ RPt = θ0 + θ1 ̂V RPt−1I(t < 2011) + θ2 ̂V RPt−1I(t > 2010 & PC) + θ3 ̂V RPt−1I(t > 2010 & no PC)

+ θ4 ̂STRt−1I(t < 2011) + θ5 ̂STRt−1I(t > 2010 & PC) + θ6 ̂STRt−1I(t > 2010 & no PC) + εt.
(13)

We estimated both sets of models and found mixed evidence about the better fit. The AIC selected the

second (larger) model for each of the 7 specifications while the SC selected the second (larger) model for

3 of the 7 specifications, although one specification was nearly a tie. The mixed evidence with respect to

the better model fit prompts us to present results from both models.

Table 8: The impact of systemic tail risk on variance risk premia

1 2 3 4 5 6 7

V RPt−1 0.098** 0.172** 0.151** 0.169** 0.165** 0.175** 0.167**
(s.e.) (0.060) (0.053) (0.054) (0.054) (0.055) (0.052) (0.054)
TRt−1 0.306**
(s.e.) (0.057)
STRt−1 0.276**
(s.e.) (0.058)
LTRt−1 0.295**
(s.e.) (0.058)
LSTRt−1 0.279**
(s.e.) (0.060)
RTRt−1 0.318**
(s.e.) (0.056)
RSTRt−1 0.298**
(s.e.) (0.059)
constant 0.138** 0.158** 0.155** 0.157** 0.151** 0.160** 0.157**
(s.e.) (0.066) (0.057) (0.059) (0.058) (0.059) (0.056) (0.058)

R2 0.034 0.299 0.252 0.281 0.245 0.317 0.272
R̄2 0.022 0.281 0.233 0.263 0.226 0.300 0.254
F -stat 2.793 16.862 13.295 15.451 12.834 18.354 14.753
p-value 0.099 0.000 0.000 0.000 0.000 0.000 0.000
SC -77.471 -98.369 -93.007 -96.289 -92.288 -100.512 -95.242
AIC -82.284 -105.589 -100.227 -103.510 -99.508 -107.732 -102.462

Notes: The table reports the results of estimation of Equation (12). We regress the time series of
estimated (standardized) VRP on the lagged tail risk (TR) and systemic tail risk (STR) indicators,
controlling for the autoregressive effect (Equation (12)). The table presents the estimated regression
coefficients for both tails, based on the indicators for left tails (LTR, LSTR) and right tails (RTR,
RSTR), respectively. The TR indicator is the cross-sectional median of systemic cojump test statistics
computed conditional on the FOMC news events. The STR indicator weights the TR indicator by
the fraction of stocks that systemically cojump for a given event. We obtain the left and right tail
indicators, respectively, by using the jump intensity estimates based on the negative and positive high-
frequency returns. The sample covers the periods from January 31, 2006 to January 30, 2019. The
table reports the coefficient estimates and standard errors (s.e.) in parentheses. ∗∗ denotes statistical
significance at 5%.

Table 8 presents the results from the simpler model (Equation (12)) of the VRP regressions when
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we construct our regressors using both tails (columns 2 and 3) or left and right tails (columns 4 and 5

and 6 and 7, respectively). The estimated coefficients of the tail risk (TR) and systemic tail risk (STR)

indicators are positive and very significant (0.306, 0.276, respectively) in columns 2 and 3, even after we

control for the lagged VRP effect (0.172/0.151). The model including our systemic tail risk indicator has

a high R2 of 25.2% (column (3)). Upside and downside tail risk components have similar effects; the

estimated coefficients are quite similar (in Panels B and C). The standardized systemic tail risk indicators

have much larger coefficients than the standardized lagged VRP in all models.

Table 9 reports the results from the more elaborate model that allows for different treatment of data

before and after 2011 and different treatment of press conferences. The more flexible model delivers

somewhat different inference. First, the coefficients on the standardized regressors are generally much

larger than in the first model. Second, the coefficient on the lagged VRP is positive and significant before

2011—that is, before the LM drift changed—but negative and significant after the start of 2011 for dates

with no press conference. Third, the coefficients on the TR variables are all positive for the meetings

before the start of 2011 and after the start of 2011 without press conferences. These two sets of TR

coefficients are similarly sized between these subsamples. The coefficients from symmetric, left-hand and

right-hand TR are very similar.

In summary, the VRP regression results in Table 9 reveal that Fed-induced systemic tail risk sub-

stantially increases risk premia prior to the start of 2011 and during meetings without press conferences

after the start of that year. This finding implies that the Fed-induced, extreme-downside risk is priced in

options, particularly when there is no press conference. During these periods, investors demand compen-

sation for bearing systemic cojump tail risk triggered by monetary policy announcements.

7 Extensions and Robustness Checks

We carry out four types of robustness checks and extensions. First, we assess whether or not macroeco-

nomic news announcements create systemic tail risk. Second, we examine whether the sign of monetary

shocks influences tail effects. Third, we evaluate the tail risk patterns for sector ETFs. Finally, we consider

the threshold selection (i.e., fixed versus time-varying) for applying the tests. In particular, we outline

how to account for the event-driven periodic volatility when implementing localized detection based on

high-frequency data. For brevity, we only discuss the main robustness checks and extensions but our

Supplementary Online Appendix contains full results.

Macroeconomic News Announcements. We obtain the time stamps of several important types of

macro news events from Bloomberg Analytics, then implement our approach by using these scheduled

macroeconomic news announcements.

The systemic response of stocks to the release of macro events appears to be very weak, producing test

statistics around 2 in absolute terms, suggesting a modest reaction. Between years 2006 and 2012, the

systemic effects of macroeconomic news announcements become more noticeable for ISM Manufacturing

and New Home Sales. With controls for the multiple testing bias, however, we find no evidence of macro-

driven systemic cojumps risk. In contrast, the systemic effects of FOMC events are very strong with
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Table 9: Systemic tail risk effects on variance risk premia for meetings with and without press conferences

1 2 3 4 5 6 7

V RPt−1 (pre-2011) 0.166** 0.258** 0.237** 0.259** 0.252** 0.256** 0.246**
(s.e.) (0.058) (0.054) (0.054) (0.054) (0.055) (0.053) (0.054)
V RPt−1 (post-2010/PC) -0.018 -0.017 -0.015 -0.017 -0.005 -0.018 -0.013
(s.e.) (0.181) (0.154) (0.160) (0.155) (0.160) (0.152) (0.158)
V RPt−1 (post-2010/no PC) -0.938** -0.489** -0.655** -0.525** -0.496** -0.470** -0.524**
(s.e.) (0.253) (0.262) (0.259) (0.260) (0.288) (0.258) (0.277)

TRt−1 (pre-2011) 0.408**
(s.e.) (0.091)
TRt−1 (post-2010/PC) 0.012
(s.e.) (0.103)
TRt−1 (post-2010/no PC) 0.315**
(s.e.) (0.101)
STRt−1 (pre-2011) 0.399**
(s.e.) (0.093)
STRt−1 (post-2010/PC) 0.001
(s.e.) (0.108)
STRt−1 (post-2010/no PC) 0.232**
(s.e.) (0.102)
LTRt−1 (pre-2011) 0.414**
(s.e.) (0.093)
LTRt−1 (post-2010/PC) 0.006
(s.e.) (0.099)
LTRt−1 (post-2010/no PC) 0.303**
(s.e.) (0.102)
LSTRt−1 (pre-2011) 0.368**
(s.e.) (0.087)
LSTRt−1 (post-2010/PC) -0.045
(s.e.) (0.110)
LSTRt−1 (post-2010/no PC) 0.309**
(s.e.) (0.124)
RTRt−1 (pre-2011) 0.414**
(s.e.) (0.091)
RTRt−1 (post-2010/PC) 0.017
(s.e.) (0.105)
RTRt−1 (post-2010/no PC) 0.323**
(s.e.) (0.097)
RSTRt−1 (pre-2011) 0.383**
(s.e.) (0.090)
RSTRt−1 (post-2010/PC) -0.022
(s.e.) (0.115)
RSTRt−1 (post-2010/no PC) 0.291**
(s.e.) (0.113)
constant 0.122** 0.083 0.067 0.083 0.085 0.085 0.077
(s.e.) (0.060) (0.058) (0.061) (0.059) (0.060) (0.058) (0.061)

R2 0.223 0.463 0.424 0.458 0.429 0.473 0.432
R̄2 0.193 0.420 0.378 0.415 0.383 0.430 0.386
F -stat 7.470 10.787 9.196 10.565 9.391 11.203 9.501
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SC -84.477 -98.347 -92.546 -97.564 -93.279 -99.800 -93.689
AIC -94.104 -115.194 -109.393 -114.411 -110.126 -116.647 -110.536

Notes: The table reports the results of estimation of Equation (13). We regress the time series of estimated (standardized) VRP
on the lagged tail risk (TR) and systemic tail risk (STR) indicators, controlling for the autoregressive effect (Equation (13)).
Coefficients are allowed to differ before and after the start of 2011. After the start of 2011, coefficients are allowed to differ for
meetings with and without press conferences. The table presents the estimated regression coefficients for both tails, based on
the indicators for left tails (LTR, LSTR) and right tails (RTR, RSTR), respectively. The TR indicator is the cross-sectional
median of systemic cojump test statistics computed conditional on the FOMC news events. The STR indicator weights the
TR indicator by the fraction of stocks that systemically cojump for a given event. We obtain the left and right tail indicators,
respectively, by using the jump intensity estimates based on the negative and positive high-frequency returns. The table reports
the coefficient estimates and standard errors (s.e.) in parentheses. ∗∗ denotes statistical significance at 5%.

test statistics around 10 and above. This analysis strongly corroborates the results of Bajgrowicz et al.

(2016) in two respects. First, we confirm that the link between macro news and jumps is spurious. Second,
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because jumps and macro events are “disconnected”, the risk ascribed to macro news could be diversifiable.

Departing from the results of Bajgrowicz et al. (2016), however, we find that the jump impact of FOMC

news is highly significant, non-spurious and systemic. FOMC announcements appear to convey more

information about the exposure of investment strategies to tail risks than do macro releases.

Negative versus Positive Monetary Policy Shocks. Caporin et al. (2017) show that systemic

cojumps driven by good FOMC news tend to decrease the variance risk premium. From a monetary

policy perspective, the definition of good versus bad news may not be immediately clear and/or difficult

to measure, however. We take an alternative route: we separate the FOMC events that create positive

shocks from those that create negative shocks.24 We find no clear evidence that systemic cojump risk

are associated with only negative monetary policy shocks. Both positive and negative shocks of all three

types contribute to systemic cojumps.

Sector ETFs and Systemic Tail Risk. We apply our approach to sector ETF portfolios to assess

how systemic tail risk affects sector portfolio indices. We first compute realized volatility of each sector

index before and after each FOMC announcement. For each sector index, post-FOMC realized volatility is

higher than pre-FOMC realized volatility (see Figure S.1). In the second step, we generate the news-driven

tail risk indicators—computed from standardized test statistics (Figure S.2). Systemic tail risk measures

for the sectors vary similarly over time. This regularity is consistent with our results from individual

stocks and suggests that sector rotation strategies may not diversify the tail risk due to Fed news.

Threshold Adjustment for Periodic Volatility. When asset prices jump simultaneously in response to

FOMC announcements, diffusive volatility of each asset could also jump, making large diffusive movements

appear to be price jumps. We employ a threshold adjustment to prevent this problem so that high levels

of post-event volatility in the panel of assets will not be erroneously identified as systemic cojumps or

crashes. Therefore, we adjust the post-announcement thresholds that separate systemic cojumps from

diffusive volatility. That is, we generate two event-based thresholds: one value for the pre-event window

and another for the post-event window. We confirm larger values of the post-event threshold fail to change

the arrival times of systemic cojumps and crashes detected at high frequency.25

8 Concluding Remarks

It is well known that extreme fluctuations or jumps in asset prices create idiosyncratic and systematic

(tail) risk (e.g., Bégin et al., 2020; Pelger, 2020; Weller, 2019; Bollerslev et al., 2008, 2013). While the

former concerns the temporal behavior of individual asset prices, the latter involves market risk, the joint

risk of security prices with the market index. Measurement of tail risk matters for asset pricing, risk

premia estimation, and diversification strategies.

24Recall that positive (negative) Wright shocks are expansionary (contractionary) while positive (negative) target and path
shocks are contractionary (expansionary). The reason for this inconsistency in normalization is that Wright (2012) uses bond
futures prices while Gürkaynak et al. (2005) worked with yields.

25These findings and our implementation procedures are available upon request.
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Extending this line of research, we study systemic tail risk created by cojumps and news arrivals. Our

methodology identifies systemic (synchronized, multi-asset) tail risk conditional on the timing of informa-

tion events. We use this event-based approach to uncover the systemic effects of FOMC announcements

on a panel of individual stocks and ETF portfolios: FOMC news often yields significant systemic jumps.

The episodes of systemic tail risk occurred disproportionately during the Great Financial Crisis and its

aftermath (2008-2010), but recur over the business cycle and coincide with large monetary policy sur-

prises. The evidence here suggests that diversifying jump risk is likely to be more difficult than previously

thought, especially when the risk is associated with monetary policy news rather than macro news.

Our methods generate systemic tail risk indicators that have two useful properties. First, systemic tail

risk seems to explain the variation in pre-FOMC announcement drift ahead of the future (upcoming) Fed

meeting. A one standard deviation increase in systemic tail risk raises the pre-FOMC returns by about

0.33 standard deviations on average. In line with the discussion of Cieslak et al. (2019) regarding the Fed

news premium, the stock market appears to price the Fed-induced systemic tail risk that we quantify.

Second, Fed-induced systemic tail risk significantly increases variance risk premia. Investors demand

compensation to bear the systemic tail risk due to Fed news during meetings without press conferences.

References

Aı̈t-Sahalia, Y., Cacho-Diaz, J., Laeven, R.J.A., 2015. Modeling financial contagion using mutually

exciting jump processes. Journal of Financial Economics 117, 585–606.

Aı̈t-Sahalia, Y., Jacod, J., 2009a. Estimating the degree of activity of jumps in high frequency data. The

Annals of Statistics 37, 2202–2244.

Aı̈t-Sahalia, Y., Jacod, J., 2009b. Testing for jumps in a discretely observed process. The Annals of

Statistics 37, 184–222.

Aı̈t-Sahalia, Y., Xiu, D., 2016. Increased correlation among asset classes: Are volatility or jumps to blame,

or both? Journal of Econometrics 194, 205–219.

Amengual, D., Xiu, D., 2018. Resolution of policy uncertainty and sudden declines in volatility. Journal

of Econometrics 203, 297–315.

Andersen, T.G., Bollerslev, T., Diebold, F.X., 2007. Roughing it up: Including jump components in the

measurement, modelling and forecasting of return volatility. The Review of Economics and Statistics

89, 701–720.

Andersen, T.G., Fusari, N., Todorov, V., 2020. The pricing of tail risk and the equity premium: Evidence

from international option markets. Journal of Business and Economic Statistics 38, 662–678.

Bajgrowicz, P., Scaillet, O., Treccani, A., 2016. Jumps in high-frequency data: Spurious detections,

dynamics, and news. Management Science 62, 2149–2455.

28
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Supplementary Online Appendix to

“Systemic Tail Risk:
High-Frequency Measurement, Evidence and Implications”

This supplementary document contains the appendices that present the technical results, proofs, additional

simulation assessments and various empirical extensions.

Appendices

A Proofs

Remarks and Assumptions

Remark 1 (Grigelionis decomposition). We follow Erdemlioglu and Yang (2022) and consider that X

(Equation 1) is an Ito semimartingale taking the form,

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + x ∗ (µt − νt) + (x− h(x)) ∗ µt, (A.1)

where the drift term b = (bt) and the volatility component σ = (σt) are locally bounded, W is a standard

Brownian motion, µ is the jump measure of X and ν is its jump compensator. This representation is

simply the N -dimensional extension of the univariate and bivariate forms considered in Boswijk et al.

(2018) and Dungey et al. (2018), respectively.

Assumption 1. As in Erdemlioglu and Yang (2022), we assume that ν has the following decomposition

νt(dt, dx) = Ft(x)dt.

The predictable random measure Ft has two parts:

Ft(dx) = ft(x)λt− dx, (A.2)

where the predictable function ft(x) controls the jump size distribution and λ− = (λt−) is the stochastic

jump intensity that has the following representation:

λt = λ0 +

∫ t

0
b′sds+

∫ t

0
σ′sdWs +

∫ t

0
σ′′sdBs + δ′ ∗ µt + δ′′ ∗ µ⊥t , (A.3)



where B is a standard Brownian motion independent of W , µ⊥t is orthogonal to µt, and δ′, δ′′ are pre-

dictable.

Assumption 2. We follow Erdemlioglu and Yang (2022) and assume that the drift and volatility processes

bt and σt in (A.3) are locally bounded. There are three (nonrandom) numbers β ∈ (0, 2), β′ ∈ [0, β) and

γ > 0, and a locally bounded process Lt ≥ 1, such that, for all (ω, t),

Ft = F ′t + F ′′t , (A.4)

where

(a) F ′t(dx) = ft(x)λt−dx with λ = (λt) given by (A.3), λt ≤ Lt and

ft(x) =
1 + |x|γh(t, x)

|x|1+β
, (A.5)

for some predictable function h(t, x), satisfying

1 + |x|γh(t, x) ≥ 0, |h(t, x)| ≤ Lt. (A.6)

(b) F ′′t is a measure that is singular with respect to F ′t and satisfies∫
R

(|x|β′ ∧ 1)F ′′t (dx) ≤ Lt. (A.7)

Assumption 3. The function g(·) needs to satisfy the condition

(i) g(x) = |x|p if |x| ≤ a for some constant a > 0 and even integer p > 2, and further g(x) is

considered even, non-negative, bounded and smooth with a bounded and Lipschitz-continuous first-

order derivative. The following forms can then be taken:

g1(x) =

{
|x|p |x| ≤ 1,

1 |x| > 1,

for an even integer p > 2 and (x := |∆n
jX|/α∆$

n ). Alternatively,

g2(x) =


c−1|x|p |x| ≤ a,
c−1(ap + pap−1

2(b−a)((b− a)2 − (|x| − b)2) a ≤ |x| ≤ b,
1 |x| > b,

where 0 < a < b <∞ and c = ap + pap−1(b− a)/2.
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A.1 Proof of Theorem 1

Proof. According to Theorem 3.1 of Romano and Wolf (2005), we only need to prove that the distributions

of √
kλn∆n

∆$β̂
n

(
λ̂(β̂, kλn)∗t − λ̂(β̂, kλn)t

)
and

√
kλn∆n

∆$β̂
n

(
λ̂(β̂, kλn)t+ − λt+

)
are asymptotically the same, which is the key assumption (i.e., Assumption 3.1) therein. Note that the

proof of the pre-event case is essentially the same.

Let P∗ be the bootstrap probability measure, which assigns equal probability to the k∗n number of local

observations, and E∗ be the expectation under P∗. Furthermore, denote by λ̂(β̂, kλn)∗t the bootstrapped

estimate, which is given by

λ̂(β̂, kλn)∗t =
∆$β̂
n

kλn∆n

∑
j∈I+λ,t

αβ

Cβ(1)
gn(∆n

jX
∗),

where ∆n
jX
∗ is the bootstrapped increments.

According to the bootstrap algorithm, it is easy to see that, for j ∈ I+
λ,t, we have

∆$β̂−1
n

αβ

Cβ(1)
E∗[gn(∆n

jX
∗)] =

∆$β̂
n

kλn∆n

∑
j∈I+λ,t

αβ

Cβ(1)
gn(∆n

jX) = λ̂(β̂, kλn)t.

For notation simplicity, let

Z∗j =

√
∆$β̂−1
n

αβ

Cβ(1)
gn(∆n

jX
∗).

Then, we can obtain √
kλn∆n

∆$β̂
n

(
λ̂(β̂, kλn)∗t − λ̂(β̂, kλn)t

)
=

1√
kλn

∑
j∈I+λ,t

(
Z∗j − E∗(Z∗j )

)
.

Under the bootstrap probability measure, the sequence {Z∗j −E∗(Z∗j )}j∈I+λ,t is independent and identically
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distributed. The variance of Z∗j under the bootstrap measure P is given by

Var∗(Z∗j ) =E∗[(Z∗j )2]−
(
E∗[Z∗j ]

)2
=

∆$β̂
n

kλn∆n

α2β

[Cβ(1)]2

∑
j∈I+λ,t

[gn(∆n
jX)]2 −∆1−$β̂

n [λ̂(β̂, kλn)t]
2

=
∆$β̂
n

kλn∆n

α2β̂

[C
β̂
(1)]2

∑
j∈I+λ,t

[gn(∆n
jX)]2 − oP(1)

P−→
α2βCβ(2)

[Cβ(1)]2
λt+,

where the last line follows from the proof of Boswijk et al. (2018), by treating g2
n as the function gn therein.

It then follows that

1√
kλn

∑
j∈I+λ,t

(
Z∗j − E∗(Z∗j )

) L∗−→ N
(
0, V ∗

)
.

The limiting variance is given by

V ∗ = Var∗(Z∗j )
P−→ λt+α

β Cβ(2)

[Cβ(1)]2
.

Therefore, the desired result readily follows.

B Motivating Examples and Schematic Representation

To describe our detection mechanism in mind, let us provide a schematic diagram (Figure S.5) that

presents a system-wise representation. The idea is as follows. Suppose that we have N financial assets

(Asset 1, Asset 2, ..., Asset N) (i.e., the horizontal axes in the figure). Let us consider that investors and

traders closely monitor market developments, they enter the market particularly in periods of important

information events (e.g., FOMC news, macro news, earning announcements). The investor can trace a

certain category of scheduled news events (E), such as FOMC press release events, denoted by category

m. The vertical axis of the figure displays the intradaily arrival times of all FOMC news events over the

horizon [0, T ], which we fully synchronize across all assets. For each event time (Ems=1,Ems=2,...,Ems=S), we

take the testing time points (empty blue circles) and rely on the corresponding pre-/post-event windows

(dashed red rectangles) to design our formal tests and associated inference. We do so by looking at

the simultaneous (hence systemic) sudden ups-and-downs: we are interested in figuring out which assets

cojump together in response to events, when and how frequently we observe these patterns in the data.

To motivate the practical usefulness of this mechanism, we take three systemically important news

events: (i) FOMC announcement on interest rate cut (2:15 p.m. EST on December 11, 2007), (ii) the

bailout decision news of the U.S. House of Representatives (1:40 p.m. EDT on September 29, 2008) and

(iii) the flash crash of May 6, 2010 (also known as the crash of 2:45 p.m.).26 In this particular example

26We follow Caporin et al. (2017) and choose this particular FOMC news event. Of course, the flash crash event is an
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with three events, we can test for systemic cojumps conditional on only one event (i.e., S = 1), two events

(i.e., S = 2), or alternatively, by combining all events (i.e., S = 3).

We take these three events and apply our procedure to a panel of twenty-two individual Dow Jones

stocks (i.e., N = 22) and nine Sector ETFs (i.e., N = 9). The results (unreported for brevity) clearly con-

firm the fact that these three events are indeed systemically important, as they create systemic cojumps.27

A soon as the event time arrives, all individual Dow Jones stocks cojump simultaneously within about

15-seconds following the news and the evidence holds also for sector ETFs. It is also worth emphasizing

that these event-induced systemic cojumps are downside, very sharp price declines, that is, they are in

the form of event-induced sudden crashes.28 Using our detection approach, we are able to tell how often

crashes occur and which specific events trigger their arrivals.

C StepM Method and Computation of Quantiles with Bootstrap

We implement the event-based version of our stepM method by using the following algorithm.

Algorithm 1. Event-Based StepM Method:

1. For each event (s = 1, . . . , S), use high-frequency data to estimate λ̂pre
i and λ̂post

i for all assets

(i = 1, . . . , N).

2. Compute the test statistic T (event)
i,t in Equation (6) conditional on time (t) of each event (s = 1, . . . , S)

for all assets (i = 1, . . . , N). Analogous to Romano and Wolf (2005) (p. 1239 and 1247), the statistic

measures the post-event tail riskiness of each asset relative to the each asset’s benchmark (i.e., pre-

event risk). The testing data matrix is N × S.

3. Relabel the assets (for a given event) in descending order of all test statistics T (event)
i,t : asset r1

corresponds to the largest test statistic and asset ri to the smallest.

4. Set j = 1 and R0 = 0 (the number of null hypothesis initially rejected).

5. For R(j−1) + 1 ≤ i ≤ N , if 0 /∈ [T (event)
ri,t

- ĉj , ∞), reject the null hypothesis H
(ri)
0 .

6. (a) If no (further) null hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the total number of hypotheses rejected so far and, afterward, let

j = j + 1. Then, return to step 5.

where ĉj denotes the bootstrapped quantiles that we compute directly from the estimated (probability)

distribution under the null.

unscheduled event. We use this event only for illustrative purpose in order to highlight the accuracy of our approach in terms
of detecting events that result in systemic collapses in the prices of financial assets.

27These results are available upon request.
28Our systemic crash (SCRA) detection approach directly builds on the systemic cojump (SCOJ) detection. Specifically,

while the former utilizes only negative high-frequency returns (before and after the events), the latter takes into account all
high-frequency returns in even windows without any sign restriction (negative or positive).
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We describe below the procedure regarding how to compute the ĉj in Algorithm 1 by using bootstrap.

Algorithm 2. Computation of quantiles:

1. The labels r1, . . . , ri and the numerical values of the number of null hypotheses rejected in each step;

R0, R1,... are given in Algorithm 1 (main text).

2. Recall there are N assets and S events. Generate M ≥ 1000 bootstrap (N × S)∗,1, . . . , (N × S)∗,M

data matrices.

3. From each bootstrap data matrix (N × S)∗,m, 1 ≤ m ≤ M , compute the individual test statistics

T (event),∗,m
1,t , . . . , T (event),∗,m

N,t by using high-frequency data, as described in Algorithm 1.

4. (a) For 1 ≤ m ≤ M , compute the maximum of individual differences (between test statistics and

true parameter); max∗,mj = maxRj−1+1≤i≤N (T (event),∗,m
ri,t

- θ
(event),∗
ri,t

).

(b) Compute ĉj as the 1− α empirical quantile of the M values max∗,1j , . . . , max∗,Mj .

D Monte Carlo Study

Data generating process (DGP): We simulate an N -dimensional jump-diffusion process where the

stochastic intensity process is allowed to jump with the arrival of the news events. In line with our

discussion in the main text (see Section 3.2), we allow the stochastic volatility process to exhibit jumps.

For each stock (i = 1, . . . , N), the underlying DGP for log-returns is as follows.

dXi,t = σi,tdWi,t + λ∞dJi,t (D.8)

dσ2
i,t = κ(θ − σ2

i,t) + ησi,t(φdWi,t +
√

(1− φ2)dBi,t) + θ1{S=JT} (D.9)

dλi,t = κλ(λi,∞ − λi,t)dt+ ηλdB
′
i,t + ξ 1{S=JT}, (D.10)

where the vector of Brownian motion (Wi,t, Bi,t, B
′
i,t) and the vector of β-stable jump processes Ji,t

are independent from each other. In (D.10), we use λ∞ to capture a tail probability of 0.25% (see our

discussion in the main text in Section 3.2). We choose α = 5 to separate the diffusion component from

the jumps (see Equation (4) in the main text).

Selection of parameters and thresholds. We follow Jing et al. (2012) and choose the parameter

values as follows: κ = 5, θ = 1/16, η = 0.5, φ = −0.5 (i.e., the leverage effect between between prices

and volatility), ηλ = 50 and κλ = 80 which controls for the persistence of jumps or speed of decay (i.e.,

mean-reversion) of jump-type tail shocks. Increasing κλ implies lower persistence or higher speed of decay.

Further, we consider a set of β (jump activity index) values. In all simulations, T = 1/252, $ = 1/3,

ρ = 0.6, as in Aı̈t-Sahalia and Jacod (2009a), Jing et al. (2012) and Dungey et al. (2018). We use 6.5 hours

of trading during the day. We evaluate the performance of the tests based on 15-seconds and 1-minute

sampling frequencies (i.e., which corresponds to number of intraday observations per day M = 1560,

M = 390, respectively).
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Implementation. Given the selected parameters and calibration values, we generate data based on the

dynamics given in (D.35)−(D.10). For each replication, we simulate testing time points (representing

event times S) that are same for all N assets. We then allow each asset to jump at these pre-determined

time points, that is, when jump times (JT ) coincide with event times (see the indicator function for S

= JT in (D.10)). After determining the pre- and post-event window, (by realistically setting as within

hour before and after the event times), we compute the estimators (see Section 4.1). The final stage of

the implementation of our Monte Carlo study is to apply the procedures presented in Algorithms 1 and 2

(see Sections 4.2 and Appendix C, respectively).

Simulation results and discussion. Table S.1 reports the frequency of rejections in the presence of

systemic cojumps conditional on news arrival times (i.e., when S = JT ). The simulation case that is

consistent with our empirical setup is reported in Panel B (i.e, N = 20 and S = 10 at the yearly basis).

The results indicate that the base test (labeled as “uncorr”) has a detection rate which is around 97%

at the 5% level. Once we control for multiple test bias via Step-M, however, the power is relatively

stable at 1-min frequency while it declines to 87% at 15-seconds frequency. It is worth mentioning that

87% rejection rate does not directly indicate low detection power (or poor performance), compared to

base test. Rather, the Step-M rejection rates account for false discovery and hence provide power that is

more conservative (implying lower probability of rejecting false hypotheses). Thus, Step-M rates are more

reliable. The results also show that Step-M has a higher power than one-step-only correction (labeled as

“Step-1” in the panel). Nevertheless, when we consider only one event (S = 1 instead of S = 10), the

power of Step-M increases in simulations.

In addition these results, Panel A of Table S.1 reports the rejection rates when N = 200. The tests

overall generate quite reasonable power, although the power of Step-M based on 1-min sampling has a

power around 73%. As a final assessment, we rely on the simulation setup reported in Panel B, but lower

the jump size by about half. In other words, we consider a situation in which news arrives but creates

a small jump. As the rejection rates in Panel C reveal, we observe significant power loss in all tests,

irrespective of S or sampling frequency (1 min or 15-seconds). This pattern suggests that our tests require

a very large jump to generate reasonable detection power (Panel B versus Panel C). If the jump size is

small in response to news, perhaps not surprisingly, the tests are not able to identify systemic cojumps,

as tests fail to disentangle jumps from extreme volatility.

E Construction of Monetary Policy Shocks

To estimate monetary policy shocks, we take the steps described in Fawley and Neely (2014).

E.1 Target and Path Surprises

Let F denote the unobserved monetary factors, as in Chordia et al. (2005). We identify monetary policy

shocks from the model

Y = FΦ + η (E.11)
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Table S.1: Power of the uncorrected and bias-corrected tests based on StepM

S = 1 S = 10

Panel A. Uncorr Step-1 Step-M Uncorr Step-1 Step-M

(N = 200) 15-sec 99.95% 99.70% 99.95% 99.91% 95.77% 99.61%
1-min 99.20% 92.15% 96.85% 95.51% 69.53% 73.67%

Panel B.
(N = 20) 15-sec 100.00% 99.70% 100.00% 97.37% 74.20% 87.19%

1-min 98.10% 93.30% 98.20% 97.87% 94.40% 97.54%
Panel C.
(N = 20) 15-sec 85.70% 71.20% 76.10% 92.86% 62.52% 79.70%

1-min 94.50% 82.40% 89.70% 76.94% 34.86% 45.58%

Notes: The table reports the frequency of rejections in the presence of news-driven systemic
cojumps. The test statistic that we use in simulations is given by Equation (6) in the main text.
We consider three versions of the detection procedure: the uncorrected test without accounting
for the multiple test bias (labeled as “Uncorr”), the bias-corrected version based on one-step
correction (labeled as “Step-1”) and the bias-corrected version based on M -step correction (la-
beled as “Step-M”). We provide the details of the simulation setup and parameter selection in
Supplementary Appendix D. The table presents the simulation results when there is only one
event (i.e., S = 1) and when there are ten events (S = 10). We report the rejection rates for
15-seconds and 1-minute sampling frequencies. We set the jump sizes as ξ = 100 in Panels A
and B, and ξ = 50 in Panel C in order to assess the impact of jump size on detection power.

Table S.2: Macroeconomic news announcements

News type News ticker Release time Frequency Relevance Events

GDP Annualized QoQ CQOQ 8:30 Quarterly 96.81 54
Unemployment Rate USURTOT 8:30 Monthly 89.28 163
CPI MoM CPI CHNG 8:30 Monthly 95.41 163
ISM Manufacturing NAPMPMI 10:00 Monthly 95.83 163
New Home Sales NHSLTOT 10:00 Monthly 90.44 163

Notes: The table presents the description of the macroeconomic news announcements that we used for the
implementation of systemic cojump tests. We obtain the time stamps of all macro news from Bloomberg
and follow Cieslak and Schrimpf (2019) to choose the type of our macroeconomic news announcements
(see page 302 therein). The table provides the news type (first column), the Bloomberg ticker of the
event (second column), the release time (third column), the release frequency (fourth column), Bloomberg
relevance scores (fifth column) and the number of news events in our sample (last column). In addition to
GDP/Unemployment/Inflation announcements considered in Cieslak and Schrimpf (2019), we also include
ISM Manufacturing and New Home Sales, as these type of macro news events have very high Bloomberg
relevance scores (90% and above). The sample covers the periods from January 3, 2006 to July 24, 2019.
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where Φ denotes the factor loadings on the variable Y and η is a white noise process. We follow Gürkaynak

et al. (2005) and include five variables in Y : (I) the surprise to the federal funds target measured from

current-month federal funds futures; (2) the surprise change in expectations of the federal funds target

two FOMC meetings ahead; and the price change in (3) 6-month, (4) 9-month, and (5) 12-month eu-

rodollar futures contracts. Note that we measure the surprise component in variable (2) directly from the

appropriate fed funds future contract.

The next step is then to construct the target and path factors as a linear transformation of the first

two principal components (Z) of Y . That is,

F = ZL (E.12)

where Z contains the first two principle components of Y , and L is a 2×2 matrix. We identify the

elements of L by imposing three restrictions: (1) the columns of L have unit length, (2) the columns of

F are orthogonal, and (3) F2, the second column of F, does not influence the current federal funds shock.

The third restriction provides the structural interpretation of F1 and F2 as the target and path surprise,

respectively. While the target factor F1 contains all information from the first two principal components,

the path factor F2 accommodates the information in residuals. To ease comparison, when needed, we

normalize these two factors.

E.2 Wright (2012) Surprises

We follow Wright (2012) and estimate the third form of monetary shock as the first principal component

of high-frequency yield curve changes. We use data on the 2, 5, 10 and 30-year Treasury bond futures

prices in 2-hour windows around monetary policy decisions. The windows start 15 minutes before each

announcement and end 1 hour and 45 minutes after. It is worth mentioning that this window length is

quite compatible with that we use in our detection analysis. As in Wright (2012), we further rescale the

principal component and sign shocks so that falling (rising) yields produce positive (negative) shocks.

F Results of Robustness Checks

In this section, we present the results of our robustness checks and additional empirical assessments. We

begin by presenting additional results and patterns for sector ETFs (Section F.1). Section F.2 explores

the role of negative versus positive MP shocks in driving the systemic response of markets to FOMC news.

In Section F.3, we examine whether macroeconomic news announcements lead to systemic cojumps. We

generate heat maps for visualizing the systemic response of assets to macro news and compare the reaction

maps with that of FOMC news.

F.1 Additional Results for Sector ETFs

We plot in Figures S.1 and S.2 the pre-/post-FOMC realized volatility and news-driven risk scores for

sector ETFs, respectively.
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Figure S.1: Pre- and post-FOMC realized volatility of sector ETFs
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Notes: The figure shows the realized volatility of each sector ETFs, computed before and after the release of each FOMC

announcement in the event windows. The dark gray (blue) lines indicate the post-event (pre-event) realized volatility,

respectively. The sample covers the periods from January 31, 2006 to January 30, 2019, and contains 106 FOMC policy

announcements. Table 1 details the description of each sector ETF that we used in our analysis. The sampling frequency is

15-seconds.
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Figure S.2: News-driven tail risk scores computed from standardized test statistics based on sector ETFs
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Notes: The figure demonstrates the news-driven realized tail risk (RS) scores of each sector ETF in our sample, compared to

cross-sectional average. For each ETF, the RS scores are the values of standardized test statistics that we compute conditional

on the release time of each FOMC news announcement. The sample covers the periods from January 31, 2006 to January

30, 2019, and contains 106 FOMC policy announcements. See Figure 1 for the details of the shock estimation approach and

target/path/wright factors displayed on the upper panel. Table 1 details the description of each sector ETF that we used in

panels. The sampling frequency to compute test statistics is 15-seconds.
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F.2 Negative versus Positive Monetary Policy Shocks

We plot the number Fed-induced systemic cojums in Figure S.3, based on the most extreme (i.e., ordered)

negative versus positive monetary policy shocks (left versus right panels).

Figure S.3: Negative versus positive monetary policy shocks and systemic cojumps of Dow Jones stocks
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Notes: The figure shows the number of systemic cojumps detected based on the release times of the most surprising FOMC

policy decisions. We consider three monetary policy shock factors (target/path/wright) and separate positive shocks from

negative shocks. We then apply our testing procedures to only positive shocks (right-panels) and only negative shocks (left-

panels) ranked from the largest to smallest. The results are based on the high-frequency data on 22 stocks (X-axis) listed

in the Dow Jones index. Table 1 details the description of these Dow Jones stocks. The sampling frequency is 15-seconds.

To ease visualization, we display the patterns only for the top 20 news events (Y-axis) yet the full testing results and jump

counts are available upon request. The sample covers the periods from January 31, 2006 to January 30, 2019.

F.3 Macroeconomic News Announcements

A natural extension of our study is to explore the link between macroeconomic news announcements and

systemic cojumps. This assessment can allow us to evaluate whether or not macro news causes many asset

to jump contemporaneously.
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Table S.2 provides the description of the macroeconomic news announcements that we use in this

analysis. In addition to GDP, Unemployment and Inflation announcements used in Cieslak and Schrimpf

(2019), we also include ISM Manufacturing and New Home Sales, as these two announcement types have

very high Bloomberg relevance scores (90% and above). To facilitate the evaluation of possible systemic

effects, we generate heat maps conditional on each macro news for all individual stocks. Figure S.4 displays

these systemic reaction maps. The metric on the top-left of each panel further provides the range of the

statistics, which helps examine the severity of the tail risk levels conditional on the macro news.
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Figure S.4: Systemic reaction heat maps for news announcements

Notes: The figure displays the heat maps of the systemic cojump test statistics conditional on different macroeconomic news announcements. In the upper

panels, we construct the maps by computing the test statistics based on the release times of GDP news (left), Unemployment news (middle) and Inflation news

(left). In the lower panels, we use ISM Manufacturing announcements (left), New Home Sales announcements (middle) and also FOMC announcements (right)

to ease comparison between macro-driven versus Fed-driven systemic responses. In each panel, the X-axis denotes the events and Y-axis indicates the stock. The

metric on the top-left of each panel provides the range of the statistics, thereby reflecting the severity of the tail risk levels, given the news event. We obtain the

time stamps of all macro news from Bloomberg and follow Cieslak and Schrimpf (2019) to choose the type of our macroeconomic news announcements (see page

302 therein). In addition to GDP/Unemployment/Inflation announcements considered in Cieslak and Schrimpf (2019), we also include ISM Manufacturing and

New Home Sales, as these type of macro news events have very high Bloomberg relevance scores (above 90%). The sample covers the periods from January 3,

2006 to July 24, 2019. Table S.2 provides the description of the news announcements and implemented data adjustments.
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Figure S.5: Schematic diagram of event-driven systemic cojump and crash testing framework
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Notes: The figure displays the schematic diagram of the event-based systemic cojump and crash testing approach. We place

the N financial assets (1, 2,...,N) horizontally and the arrival times of a certain category of scheduled news events (such

as FOMC news with factor classification of “m”) are given on vertical axes (i.e., Ems=1,Ems=2,...,Ems=S). For each event, the

diagram further indicates the testing time points (empty blue circles), the representative pre-/post-event windows (dashed

red rectangles) which we rely on for estimations to detect systemic cojumps. The systemic crash (SCRA) detection approach

relies on the systemic cojump (SCOJ) detection. While the former utilizes only negative high-frequency returns before and

after the events, the latter takes all high-frequency returns without any sign restriction (i.e., negative or positive). In the

diagram, all events arrive over the global time horizon (i.e., [0,T ]) that represents trading days that we fully synchronize

across assets.
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