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Abstract

Researchers have carefully studied post-meeting central bank communication and have found that it
often moves markets, but they have paid less attention to the more frequent central bankers’ speeches.
We create a novel dataset of US Federal Reserve speeches and develop supervised multimodal natural
language processing methods to identify how monetary policy news affect financial volatility and tail
risk through implied changes in forecasts of GDP, inflation, and unemployment. We find that news in
central bankers’ speeches can help explain volatility and tail risk in both equity and bond markets. Our
results challenge the conventional view that central bank communication primarily resolves uncertainty
and indicate that markets attend to speech signals more closely during abnormal GDP and inflation
regimes. Our analysis also reveals that the views of Fed members (i.e., hawkish versus dovish) tend
to play a marginal role in terms of the strength of the speech signals. Looking at the speeches by the
Fed Chair, we find that the Chair signals produce a larger tail risk compared to non-Chair signals, and
the estimated magnitude of the market responses depends on the position of the officials (i.e., the Fed
Chair or other Fed member).
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1 Introduction

A large branch of monetary policy research seeks to explain how central bank communication (CBC) steers
market dynamics and expectations (Blinder, 2018). Theory suggests that if central bank announcements
and speeches convey information on economic and monetary conditions, market participants will update
their beliefs as reflected in their portfolio choices. Central bank communication can thus contribute to
revaluing assets and stabilizing market conditions by reducing uncertainty (Bernanke et al., 2005). Em-
pirical research largely corroborates this theoretical prediction and establishes a consensus that central
bank communication influences asset prices through its effects on market participants’ expectations about
economic outlook and policy decisions (Bernanke and Kuttner, 2005; Ramey, 2016). Monetary policy
communication also appears to influence investors’ risk aversion and hence the risk premium (Hanson and
Stein, 2015; Cieslak and Schrimpf, 2019; Swanson, 2021).

Despite these findings, there are still at least two unresolved issues: (i) how to identify monetary policy
news in central bank communication, and (ii) how to identify effects of such news on market uncertainty, i.e.,
volatility and tail risk. Official central bank announcement dates, such as those of FOMC announcements,
occur rather infrequently (every 6-8 weeks). However, policy makers and researchers have suggested that
markets continually revise their understanding of central bank information as policy makers give speeches
(Neuhierl and Weber, 2019). Although recent developments in natural language processing (NLP) have
allowed economists to analyse text with machine learning methods (see e.g., Bholat et al., 2015; Hansen
et al., 2018; Ahrens and McMahon, 2021), researchers have paid only limited attention to speeches so far?,
partly because their content is difficult to quantify and the field still lacks easily accessible datasets of
central bank speeches.

In this paper, we develop a novel multimodal NLP method to identify macroeconomic news in central
bank speeches and we assess their impact on market volatility and tail risk. To the best of our knowledge,
we are the first to do so. Some earlier research has focused on how central bank communication affects
volatility in financial markets (see e.g., Bekaert et al., 2013; Cieslak and Schrimpf, 2019; Ehrmann and
Talmi, 2020; Goémez-Cram and Grotteria, 2022), while only Hattori et al. (2016) has studied tail risk.?
Moreover, there is an extensive literature that studies the effects of central bank communication about
the economic outlook on asset price surprises. Signals about the economic situation can have a multitude
of different effects. The classic channel as emphasised in, for example, Romer and Romer (2000) and
Nakamura and Steinsson (2018), is an information effect. The central bank, either explicitly or implicitly
through its policy decision, releases superior information about the economy and this information is then
incorporated in updated private sector forecasts. An alternative channel is one in which the central bank’s

information is not considered superior; releasing an alternative assessment of the state of the economy,

'Recently, Neuhierl and Weber (2019) have investigated the tone of speeches by central bank chairs and vice-chairs while
Petropoulos and Siakoulis (2021) use a mixture of machine learning and dictionary methods to calculate sentiment indices
from central bank speeches. The latter authors argue that this sentiment predicts financial turmoil. Swanson (2023) highlights
the importance of Fed Chair speeches using an event-study surprise decomposition, and Cieslak and McMahon (2023) focus
on the communication of Fed stance and its effects on the risk premium.

2We focus on measuring market uncertainty rather than uncertainty about monetary policy (see e.g., Bauer et al., 2022;
Husted et al., 2020; Ozdagli and Velikov, 2020; Tillmann, 2020), or uncertainty of monetary policy makers Cieslak et al.
(2023).



that the market do not believe, could heighten concerns about the possibility of a monetary policy mistake
which would make the economy more volatile (Caballero and Simsek, 2022; Cieslak and McMahon, 2023).
The central bank may communicate, as part of its outlook, their view of uncertainty which can influence
private views about uncertainty (Hansen et al., 2019). Finally, a cacophony of economic assessments, even
if just reflecting different views on the outlook for the economy, might itself signal greater uncertainty
surrounding the outlook which can increase the uncertainty of market participants about the economic
and the policy outlook (Ahrens and McMahon, 2021).

Our methodological framework has two parts. First, we use machine learning methods from the field
of multimodal natural language processing to infer implied macroeconomic forecast revisions from Fed
officials’ public speeches. Our training dataset consists of Greenbook texts and their respective forecasts,
which allows us to learn a mapping from central bank language to central bank forecasts (see Ahrens and
McMahon, 2021). In our test dataset, we then apply the learned mapping to central bank speeches to
infer how news signals in speeches can predict revisions of public macroeconomic forecasts. Second, we
investigate the high-frequency (intradaily) responses of market volatility and tail risk to speech-implied
revisions in CPI, GDP, and unemployment outlooks.?

Our paper contributes to the literature in several ways. Most importantly, we show that central bankers’
speeches have a statistically significant impact on volatility and tail risk in financial markets. In order to
show this, we develop a new, multimodal methodological framework for identifying monetary policy news
about GDP growth, CPI, and unemployment outlooks. We compare and contrast the performance of an
extensive array of modern machine learning methods for multimodal NLP on our empirical datasets of
Greenbook texts and forecasts as well as on FOMC members’ speeches. We show that our speech-implied
forecast revisions predict future changes in Survey of Professional Forecasters (SPF) forecasts substantially
better than models that use purely tabular data and ignore the textual content of the speeches. It is these
speech-implied macroeconomic news signals that explain a sizeable part of realized volatility and tail risk
in financial markets. Furthermore, our findings suggest that markets ‘listen’ or react more strongly to
news in central bank speeches during abnormal GDP and inflation regimes. In order to contribute to
future examinations of Federal Reserve speeches, we make our comprehensive dataset on Federal Reserve
speeches accessible to other researchers.

The remainder of the paper is organized as follows. In the next section, we review the related literature.
Section 3 describes the data and section 4 introduces our methodological framework. In section 5 and 6, we
present the empirical results pertaining to our analyses of speech-implied news and high-frequency market

responses. Section 8 concludes the paper.

3High-frequency market analysis is common in monetary research; see, for example, Gurkaynak et al. (2005); Gertler and
Karadi (2015); Nakamura and Steinsson (2018); Jarocinski and Karadi (2020) and Miranda-Agrippino and Ricco (2021).



2 Related Literature

Central Bank Communication Effects on Market Volatility and Tail Risk

Our paper is most closely related to studies of the high-frequency effects of CBC on market uncertainty
and volatility. Cieslak and Schrimpf (2019) study the high-frequency effects of the non-monetary news
component of communication on volatility. Leombroni et al. (2021) explore how CBC influences credit
risk premia through high-frequency changes in yield curve. Ehrmann and Talmi (2020) measure textual
differences between central bank announcements and find that higher levels of textual similarity to the pre-
vious announcement statement are usually associated with lower market volatility after the announcement
date. Relying on a one-day event window, Hansen et al. (2019) analyse the Bank of England’s Inflation
Reports via topic modelling and find that communication of uncertainty plays an important role in shaping
long-run interest rates. Bekaert et al. (2013) find evidence that looser policy reduces risk aversion and
uncertainty. Gomez-Cram and Grotteria (2022) explore the price discovery process for several asset classes
on FOMC announcement days. Bauer et al. (2022) develop a policy uncertainty measure based on financial
derivatives, and show that FOMC (uncertainty cycle) announcements reduce uncertainty. Finally, Hat-
tori et al. (2016) study the impact of Unconventional Monetary Policy (UMP) on stock market and bond
market tail risk. UMP increases (decreases) the realized volatility of stocks (bonds), but lowers the tail
risk in both markets. Forward guidance (and hence communication) appears to have stronger “dampening
effects”, compared to other UMP events.

We extend this line of research in two ways. First, these aforementioned studies often overlook extreme
market responses when assessing the effects of news. For example, the main result of Hattori et al. (2016)
that UMP decreases the tail risk in stock and bond markets does not appear to hold when we move
outside the cycles of FOMC press releases. Unlike Hattori et al. (2016), we focus on the intraday market
responses to speeches, which can occur at any time, rather than only the times of FOMC announcements,
and measure the realized tail risk instead of the implied tail risk from derivatives. In contrast with Hattori
et al. (2016), we find that speeches increase realized tail risk. This type of CBC does not appear to reduce
uncertainty and calm financial markets.?

Second, prior research on monetary policy news has commonly employed jump-diffusion models with
Poisson jumps to capture responses to news. The approach of Bauer et al. (2022) relies on such a rep-
resentation for “FOMC jumps”. Despite its simplicity, these jump models are not compatible with the
stylized facts of jump occurrences, as news-induced tail responses are persistent in the presence of het-
erogeneous investors interpreting the content of speeches. Consequently, these studies underestimate the
realized tail risk. Departing from this conventional approach, we consider a more flexible model that allows

for time-varying tails. This allows us to separate extreme volatility responses from the tail responses and,

“In the context of forward guidance, Ehrmann et al. (2019) put forward a model where forward guidance can amplify the
reaction of expectations to macroeconomic news. Empirically, they show that the type and horizon of forward guidance—
time-contingent, state-contingent, open-ended, short or long horizon—influences the sensitivity of bond yields to news and
degree of disagreement among forecasters. For example, while long-horizon forward guidance reduces interest rate sensitivity
to macroeconomic news, short-horizon guidance amplifies it. Similarly, state-contingent forward guidance limits bond price
responses to macro news but open-ended forward guidance essentially has no statistically significant effect on the response.



more importantly, to identify the speeches that create tail cascades. Unlike the previous studies treating
jumps as one-shot events, we accommodate the stochastic intensity of jumps that potentially occurs from
heterogeneous interpretation of news by market participants. Our high-frequency event study approach
is hence more flexible methodologically and better captures the dynamics of intradaily volatility and tail

risk.

Regime Dependence of Monetary Policy Effects

Both theory and data suggest that monetary policy is regime dependent. Mandler (2012) uses a threshold
vector autoregression (VAR) framework to analyse the effectiveness of classical monetary policy shocks,
depending on the respective inflationary regime in the US economy between 1965-2007. He finds that
monetary policy shocks have markedly different effects in low and high inflation regimes. Such inflation
regime differences can be theoretically motivated. Sizeable deviations from inflation target levels might
affect a central bank’s credibility and its ability to credibly signal. Similarly, substantial off-target inflation
levels might affect private sector inflation expectations, altering the Philips curve and inflation dynamics
(Mandler, 2012).

Tenreyro and Thwaites (2016) examine GDP regime dependence of monetary policy shock effects, de-
rived from the unexpected component of interest rate changes. The empirical results of Tenreyro and
Thwaites suggest that medium- to long-run monetary policy shock effects on the real economy strongly
depend on the state of the business cycle. GDP growth is the most consistent factor determining monetary
policy effectiveness, and shocks seem to have a more pronounced effect during economic upswings than

> They also find that contractionary shocks have greater impact than expansionary

during downswings.
ones, with both being equally represented during recessions and booms. Desired effects of policy rate
changes might be subdued during recessions and central bankers might rely more strongly on unconven-
tional monetary policy near the effective lower bound (ELB). To the best of our knowledge, we are the first
to investigate regime dependence — with regards to both inflation and GDP growth — of the effectiveness

of unconventional monetary policy and central bank communication.

Text Analysis for Monetary Policy

Lastly, we are part of a burgeoning literature that uses natural language processing to analyse monetary
policy. Various text analysis methods have been tested in this field. For example, researchers have used
topic models (Hansen et al., 2019), combined dictionary methods with classic machine learning models
such as XGBoost (Petropoulos and Siakoulis, 2021), and have deployed deep neural network models such
as transformers (Cai et al., 2021). In our work, instead of choosing a specific NLP algorithm a priori, we
decide to take a more model-agnostic, data-driven approach to reduce modeler bias. That is, we train a
variety of NLP models and choose the algorithm that works best in our validation set.

Similarly, researchers have employed various frameworks and datasets to identify monetary policy news.

In particular, researchers have often studied the market effects of central bank policy announcements. For

STenreyro and Thwaites (2016) further emphasize the historical evidence that fiscal policy measures have been more
important in times of recession, while fiscal and monetary policy have historically reinforced one another during booms.



instance, Lucca and Trebbi (2009) and Hansen and McMahon (2016) both leverage approaches from com-
putational linguistics within a VAR framework to asses the effect of the content in FOMC statements on
macroeconomic variables. Lucca and Trebbi (2009) find CBC to be a more important factor than contem-
poraneous policy rate decisions. Hansen and McMahon (2016) conclude that shocks to forward guidance
have a stronger effects on markets than communication of current economic conditions. Handlan (2020)
uses a deep neural network architecture to identify text-based shocks in FOMC announcements, assessing
their impact on Fed funds futures. She finds that shocks derived from forward guidance wording of FOMC
statements account for four times more variation in Fed funds future prices than direct announcements
of changes in the target federal funds rate. Gémez-Cram and Grotteria (2022) apply a video analysis on
words mentioned during central bank press conference videos. Nesbit (2020) proposes a word count based
instrumental variable framework to identify monetary policy shocks in FOMC transcripts. Aruoba and
Drechsel (2022) use NLP techniques to analyse FOMC meetings in order to measure the information set of
the FOMC at the time of policy decisions. They then use these measures to generate estimates of FOMC
monetary policy shocks.

Although each of these studies use different methods, they all utilise text to help us to identify effects
of monetary policy. However, official central bank announcements, such as FOMC announcements, occur
only infrequently (every 6-8 weeks). We therefore shift our focus on central bankers’ speeches which
happen in much higher frequency. Researchers have paid only limited attention to speeches, partly because
their content is difficult to quantify. At the same time, central bank deliberation and communication is
continuous (Neuhierl and Weber, 2019). Thus, it is important to frequently measure CBC effects.

A few notable papers move in this direction. Neuhierl and Weber (2019) find that the tone of US
Fed chair and vice-chair speeches, measured via word count methods, can explain stock market price
dynamics. Using a mixture of machine learning and dictionary methods, Petropoulos and Siakoulis (2021)
derive sentiment indices from central bank speeches and find that the sentiment predicts financial turmoil.
We use a two-step macroeconomic news identification framework, in which we first learn a mapping from
central bank language to central bank forecasts with Greenbook data, and then infer how FOMC member
speeches imply revisions to GDP, inflation, and unemployment forecasts — an approach which is motivated
by Ahrens and McMahon (2021).

To identify the news content of a speech, we must control for market expectations. Ellen et al. (2022),
for example, construct a monetary news series from the difference in narrative between central bank
statements and news media coverage. The results of Ellen et al. (2022) highlight the pivotal role of
news media as catalysts in the process of forming market expectations and confirm earlier findings in the
literature that monetary policy shocks cause measurable macroeconomic responses. Similarly, Cai et al.
(2021) analyse FOMC announcements using BERT (Devlin et al., 2019) and identify monetary policy and
information shocks, controlling for market expectations by analysing relevant New York Times articles

with NLP methods. Instead of inferring market expectations from noisy news media coverage, we take

6See also Gati and Handlan (2022), who use regularized regressions to map the wording of FOMC statements to Greenbook
forecasts of output growth, unemployment and the federal funds rate. They argue that the statement wording implies FOMC
expectations fairly well, with the exception of short-run inflation expectations, although these patterns have changed over
time with Fed Chairs. In addition, disagreement about the Fed’s communication rule causes beliefs to diverge.



the latest forecast measures from the widely viewed Survey of Professional Forecasters (SPF) conducted
by the Federal Reserve Bank of Philadelphia. SPF forecasts directly measure expected GDP growth,
inflation, and unemployment. We then define a macroeconomic news shock as the difference between a
speech-implied forecast revision and the most recent SPF forecast for that variable available at the time

of the speech.

3 Federal Reserve and Markets Data

The data used in our paper consists of several types: FOMC member speeches, Greenbook text, Greenbook
forecasts, SPF forecasts, and intraday volatility and tail risk measures of US stock and bond markets. We
use Greenbook forecasts and the respective Greenbook text sections that describe them to map central
bank language to central bank forecasts. We then apply our learned mapping to FOMC member speeches

and assess how speech-implied forecast revisions affect volatility and tail risk in financial markets.

3.1 Federal Reserve Speech and Forecast Data
The central bank data is split into a training and a test set. We describe these datasets below.

Training set: In the training phase, we learn the mapping of the Fed’s Greenbook texts associated
with the descriptions of GDP growth, CPI, and unemployment outlooks to the change in the Greenbook
forecasts of those variables from the previous forecast period. That is, we target the difference in a current
period’s one-quarter-ahead Greenbook forecast to the previous quarter’s forecast, such that for any of our
macroeconomic key figures of interest, y, we define Ay, = ym — Ym—1, where m indicates the date of
the Greenbook forecast. We also tested a one-year-ahead horizon, although this was less informative as
one-year forecasts tend to revert to long-run values. The training sample spans 145 Greenbook documents,
from January 1, 1995 to December 31, 2013. We only consider the 8,155 Greenbook sections that directly
relate to GDP growth, CPI, and unemployment (see Appendix D for a detailed list of section allocations).
The average Greenbook section in our dataset has about 3,000 words; the longest section consists of 31,000
words and the shortest section contains around 140 words. At any date, we concatenate all Greenbook

sections that relate to the same forecasting variable.

Test set: Training the NLP models consists of estimating complex mappings from Greenbook text on each
date, for each variable, to the associated revisions to the one-quarter-ahead Greenbook forecasts on each
date, for each variable. Once the models are trained, we apply the learned mappings to a test set consisting
of FOMC members’ speeches made from January 1, 2014 to December 31, 2021. The applied mappings
imply one-quarter-ahead forecast revisions for GDP growth, CPI, and unemployment. We assume that
central bankers’ speeches convey news from the Fed’s information set that can alter the economic outlook
of private agents. The Fed’s information set could contain private or superior information about economic
conditions, superior or alternative analysis (as in Byrne et al., 2023), or new information about the Fed’s

own preferences for monetary policy.



Figure 1: Comparison of Greenbook and SPF forecasts
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Notes: The figure displays the Greenbook and SPF forecasts over time for CPI (left panel), GDP
(middle panel) and unemployment (right panel). SPF forecasts are the mean across SPF participants.
The two forecasts match quite closely for the majority of the inspected time-series.

The target variables in the test set are the one-quarter-ahead respective changes in GDP growth, CPI,
and unemployment in the SPF forecasts. The SPF is a publicly available and widely referenced source
for economic forecasts. We use the mean SPF forecasts across SPF participants as our proxy for market
expectations, rather than the next Greenbook forecasts, because Greenbook forecasts are released to the
public with a 5-year delay. We expect that central bank speeches should have similar predictive power
for Greenbook and SPF forecast revisions. Figure 1 corroborates the assumption that the SPF forecasts
match the Greenbook forecasts quite well during 1993 to 2016. We assume that this pattern also holds post
2016, for which there was no public Greenbook data available when the data for this paper was collected.

We release our dataset of central bank speeches, time-stamped on the minute of release, on our Github
repository.”

3.2 High-Frequency Market Data

We use high-frequency transaction prices for 22 Dow Jones Industrial Average (DJIA) stocks, together with
2-year, 5-year, and 10-year U.S. Treasury note and bond futures traded on the Chicago Board of Trade
(CBOT). Appendix E lists the individual stocks and bonds. Wharton Research Data Services (WRDS)
and Tick Data LLC provide data for individual stocks and bond futures, respectively. As is standard in the
literature, we exclude U.S. holidays, Christmas periods, and weekends from our sample. We only consider
trading hours from 9:30 EST—16:00 EST and 7:30 CT—14:00 CT, for stock and bond markets, respectively.
To reduce the potential impact of market microstructure noise, we filter out bouncebacks and irregular
quotes that typically occur in ultra high-frequency data. Using our adjusted data, we create equally-
spaced 15-second observations, which is an appropriate frequency to implement our response measures.
Our sample runs from January 1, 2014 through December 31, 2021.

"github.com/MaximilianAhrens/data/tree/main/central bank speeches
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4 Methodological Framework

Our methodological framework can be broken down into two parts. Section 4.1 explains our multimodal
NLP framework used to estimate the mapping from central bank language to forecasts. We test and
compare our estimation framework with a variety of machine learning algorithms. Section 4.2 then describes

the measurements of the asset price dynamics and their relationship with the speech signals.

4.1 Multimodal NLP Framework

We seek to estimate how new information revealed in central bank speeches influences financial markets.
To do so, we map central bank language to macroeconomic forecasts, controlling for the macroeconomic
conditions at the time.

The macroeconomic conditionality is important because the effect of a given forecast revision on fi-
nancial markets depends on initial economic conditions. This economic context requires the multimodal
modelling approach. For example, a speech that raised forecast inflation would be a positive signal of
improving conditions if inflation was below its desired level. However, the same speech would convey a
negative signal if inflation was substantially above target. We employ multimodal machine learning ap-
proaches that allow us to use both text and tabular data when mapping central bank language to central

bank forecasts and then predicting output, inflation, and unemployment outlook revisions.

4.1.1 Learning Mapping from Central Bank Language to Forecasts

We learn the mapping from the Fed’s Greenbook text to the respective Greenbook forecasts. The Green-
books contain dedicated sections on the Fed’s forecasts of GDP growth, CPI, and unemployment, including
the rationales for the forecasts. These sections allow us to map the Greenbook text - ergo central bank
language - to central bank forecasts.

In the training phase, we estimate a separate mapping for each of the three variables, i.e., the one-
quarter-ahead forecast change in CPI, GDP growth, or unemployment. We measure the change from the
previous (m — 1) Greenbook to the current (m) in the one-quarter-ahead forecasts (g1). CPI is denoted
by 7, GDP growth by g, and unemployment by u. Hence, our three target variables are: Amg, m, Agqg, m.,
and Aug, . For ease of notation in the following equations of our modelling framework, let y serve as a
placeholder variable for any of the CPI, GDP growth, and unemployment variables. Hence, we denote our
placeholder target variable as Ayg, m-

To capture the economic context, we control for both change and level of the CPI, GDP, and unem-
ployment of the previous Greenbook report, denoted as X,,—1. We fit a function, f, to learn how the
respective Greenbook text maps into forecasts, controlling for macroeconomic conditions. The equations
for CPI, GDP growth, and unemployment have the same explanatory variables, except for the text input,
which is specific to the respective Greenbook forecast section. That is, 6, represents the text features for
the CPI corpus, while 6, represents GDP-related text, and 6, unemployment-related text. We use 60, as
a placeholder for any of the three text inputs. With this notation, 6, represents the k" text feature for

the respective target variable y. Let us define f as the function that takes text and tabular data as inputs



and maps them to the target output y, given parameters €2, which are to be learned. We can now write

out our regression equation as

Aygm = [ (Xm—1,0y,,: ). (1)
If we assume linearity in function f, the regression equation can be written as follows:

Aylh m = WrTgm—1 T WgGg1,m—1 + Wullgy m—1

+ wAuAuql,m—l + WAWAﬂ'ql,m—l + wAgqul,m—l
K

+ Z Wby km + €m- (2)
k=1

Here, the ws represent the regression parameters and e is the measurement error. We use the first
80% of the Greenbook dataset for training and the remaining 20% for validation. The data is furthermore
de-meaned and standardized based on training set values. We did not randomly split the training and
validation set to acknowledge the time-series characteristics (and therefore the potential for information
leakage) in the data. We then train the machine learning models to map central bank texts and control
variables to the respective target variables. We treat this as a regression problem and use a least squares

error loss function, commonly used in economics and monetary policy econometrics.

4.1.2 Identifying Information Signals in Central Bank Speeches

In the test phase, we apply the trained models for each of the macroeconomic variables (CPI, GDP growth,
unemployment) to the central bank speeches to infer macroeconomic forecast revisions. The text data is
now the central bank speech content. The tabular data points on current economic conditions are the most
recent SPF forecast levels and changes on GDP growth, CPI, and unemployment.® This procedure maps

each central bank speech into an implied revision of the forecasts for CPI, GDP growth, and unemployment.

4.1.3 Calculating News Signals

Markets should only react to relevant news that have not yet been incorporated into asset prices. If a
central bank speech does not change the expected macroeconomic path, then the speech has no news
component. We proxy market expectations with the latest public SPF forecast for each target variable.
We then calculate the difference between the most recent SPF forecast change (Aysprs) available at the
time of each speech and the implied forecast change in each speech (Afspecch,s). This difference is our

forecast revision news, v, for target variable, y, and speech event, s, such that

Vys = AySPF,s - A?)speech,s- (3)

8 As previously shown in Figure 1, the SPF forecasts track the Greenbook forecasts quite closely.



For GDP, a positive difference, v, s, is bad news, because a positive value means that the central bank
speech implies lower GDP growth than does the most recent SPF forecast. The opposite is true for
unemployment. Here, a positive difference is good news, as the speech implies that the central bank
expects unemployment rates to fall faster (or rise less quickly) than previously anticipated.

For CPI, the categorisation into good and bad news depends on the relation of the current inflation
level to the target. The Fed aims for an inflation rate of around 2%, as do most central banks of advanced
economies.” Therefore, a positive Vr,s — i.e., an implied downward forecast revision — is good news
when the forecast of inflation is above target. This means inflation will revert faster back to target than
anticipated (or won't rise as fast as anticipated). Conversely, when forecast of inflation rate is below target,
a negative v ¢ is good news. A later analysis will assess how financial market volatility and tail risk react

to these implied forecast-revisions.

4.1.4 Machine Learning Methods

We do not know, a priori, which statistical learning model would best approximates the function, f,
in equation (1). We have relatively few data points compared to many machine learning projects (e.g.
hundreds or thousands rather than millions or billions of data points). Each data point itself is rich in
information, however, consisting of a high dimensional feature set. That is, each set of text can be several
thousand words long, which presents a problem for many modern language models such as transformer
family models (e.g. BERT-based models), which can usually only handle up to around 100-1,000 tokens
per data point (Das et al., 2021). Some extensions based on sparse transformers have been proposed such
as Child et al. (2019); Zaheer et al. (2020), which can handle sequences of a couple of thousand tokens.
However, document lengths of 20,000+ words would still pose a challenge. Lacking reason to favour a
specific class of models, we deploy a range of models, to search broadly for the best model and reduce the
a priori modeler bias of favouring one model over alternatives.

We therefore deploy an extensive array of multimodal machine learning algorithms to approximate
function f and to learn parameters 2. We use the multimodal machine learning benchmark suite, Auto-
Gluon (AutoGL) (Erickson et al., 2020), and we add to it the class of multimodal supervised topic models
(Card et al., 2018; Ahrens et al., 2021).

AutoGluon

AutoGL is an automated machine learning (AutoML) framework that has been developed to fuse mul-
timodal features such as text, images, and tabular data. We chose this AutoML framework because it

outperformed competing frameworks in multimodal benchmark tasks (see Erickson et al., 2020).

Base models: AutoGL fits machine learning base models and then combines them through ensembling
and stacking to boost performance. AutoGL allows us to apply hyperparameter optimization over all

models. The base models in AutoGL span the following broad machine learning algorithm classes:

9The FOMC targets a 2% rate of change for the personal consumption expenditure price index (PCE), not the CPI. The
two inflation rates are very highly correlated, however, which makes it reasonable to use information about implied CPI
forecasts to proxy for PCE forecasts.
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1. K-nearest neighbours (Dudani, 1976): AutoGL uses two variations of k-nearest neighbours (KNN)
that differ in their weighting approaches. One allocates uniform weights to all points while the other

weights points according to the inverse of their respective distances.

2. Random forests (Breiman, 2001): AutoGL again deploys two variations of this algorithm class.
One option uses the information gain of nodes for the assessment of the split quality. The other

option uses Gini impurity instead.

3. Extremely randomized trees (Geurts et al., 2006): For the random tree class, AutoGL deploys
both an implementation resorting to information gain and another option that uses Gini impurity

for the assessment of split quality.

4. Boosted decision trees: AutoGL runs (where applicable to the task) Extreme Gradient Boost-
ing (Chen and Guestrin, 2016), Light Gradient Boosting (Ke et al., 2017), Categorical Boosting
(Prokhorenkova et al., 2018).

5. Neural networks: Figure 2 schematically outlines AutoGL’s neural network architecture, which
Erickson et al. (2020) details. The architecture has been specifically designed for the multimodal use
of categorical (text, images) and numerical data. It uses variable-specific embeddings for each of the
categorical features. These are then concatenated with the numerical features into one overall input
vector. This vector is in turn fed through a 3-layer feed-forward network as well as through a linear
skip-connection (for details see Erickson et al., 2020). Model ensembling and stacking can be applied

and are optimally chosen in the validation process.

Figure 2: AutoGL schematic neural network architecture

Output
t Dense block
N Dense block
w/o RelLU Dense & RelLU
1 )
Dense block Dropout
A 1
Dense Dense block BatchNorm
~ il
Concat
il ~
Embedding Dense & Rel.U
? A
Categorical Numerical

Notes: The figure displays the AutoGluon schematic neural network architecture, based on the design
by Erickson et al. (2020), p. 3. Layers with learnable parameters coloured in blue.
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Text representation options: We must also choose how to represent the text in machine-readable

format. We define the following approaches:

1. AutoTab: Only tabular features are used. Text is excluded. AutoTab is our tabular data baseline

next to an OLS regression that only uses tabular data.'®

2. AutoTab + tfidf: Use tf-idf weighted word counts of the text as features. Standard text cleaning

procedures of removing stopwords and punctuation have been applied.

3. AutoTab + topics: Use topic shares from supervised topic models as features (using rSCHOLAR

without tabular data for the topic estimation).

4. AutoMM transformer: Use the AutoGL’s multimodal modelling infrastructure that is based on
a large language model (we use Roberta-base (Liu et al., 2019)) for multimodal fine-tuning. Tabular

data can be fused into this process as well.!!

5. AutoTab + embed: Use AutoMM transformer as well as AutoTab models that featurize text data

as n-grams and ensemble over this zoo of models.!?
4.2  Asset Price Dynamics

4.2.1 Underlying Continuous-Time Model

We model the intraday behaviour of asset prices with the following continuous-time model: The log-price
X of each asset (stock or bond) follows an It6 semimartingale defined on a filtered space (2, Fy, (Ft)iefo,175
P) over an interval [0,7]. The Grigelionis decomposition (see e.g., Erdemlioglu and Yang, 2022; Boswijk
et al., 2018; Dungey et al., 2018) implies that X; has the following specification:

t t
Xt = Xo+ / bsds + / 0sdWs + 0 % (1 — ) + (6 — h(0)) * puy, (4)
0 0

where by is the drift term, o5 is the stochastic volatility component, W is a standard Brownian motion, §
is a predictable function, A is a truncation function (e.g., h(z) = 21y x|<1}), ¢ is the jump measure of X,

and v is its jump compensator, which adopts the decomposition

where the function, f;(z), controls the jump size distribution and A; denotes the jump intensity as in

Erdemlioglu and Yang (2022) and Boswijk et al. (2018). We focus on the tail component of this jump

Y AutoGL’s TabularPredictor approach.
1M AutoGL’s MultimodalPredictor approach.
2 AutoGL’s TabularPredictor approach with the hyperparameter option being set to multimodal.
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compensator or \;, which captures the jump intensity dynamics.'> We can specify \; as
t t t
At = Ao+ / b.ds —l—/ oldWy + / oldBs + 8 x g + 6" * MtL, (5)
0 0 0

where B is a standard Brownian motion independent of W, ,uf- is orthogonal to pu, and ¢, 6” are pre-
dictable. This model, given by equations (4) and (5), satisfies no-arbitrage conditions and leaves the
volatility and jump components unrestricted. We now present our volatility and tail risk measures from
this model.

4.2.2 High-Frequency Measurement of Volatility and Tail Risk

Given the price dynamics in equations (4) and (5), let us define the ith intradaily return on a trading
day as riy = X;+ - Xi—14. We can write the daily realized volatility (RV') as the square root of realized

variance, which is the sum of the squared intraday returns (1,..., M). That is,

It is well-known that realized variance converges to quadratic variation (see e.g., Andersen et al., 2003,
2001 and Barndorff-Nielsen and Shephard, 2002 for in-depth discussion).

Turning to the estimation of A;; in equation (5), we define the post-signal realized intensity (RI)

Af@ kn |74 of
=
RI =273 j:1g < ) (7)

measure as

where A is incremental change between observations, «A® is threshold to retain only large jumps, g(-)
admits a specific functional form, k, is a constant which admits (1/K < k,A? < K) for (0 < p < 1)
and (0 < K < o), and ; is the estimator of jump activity index that controls the vibrancy of sharp
fluctuations. In equation (7), g(-) as an auxiliary function that separates jump-type movements from the
diffusive volatility, based on an « deviation (e.g., a = 2, 3, 6) from the continuous component of the
model.'* We use RI as a proxy for time-varying (high-frequency) tail risk (TR), which is considerably
accurate at high frequency, similar to the measures adapted in Bollerslev et al. (2015).

In our context, using our tail risk measure RI (equation (7)) has several advantages. First, RI cap-
tures the tail of intradaily return distributions. We compute this quantity to estimate the tail behaviour
of returns within a window after the speeches. Second, measurement of return tails in continuous-time is

a non-trivial task because the tail-type return movements can also be attributed high-frequency volatility

13Gee Andersen et al. (2020), who exploit jump intensity process to measure tail risk and assess its equity premium
implications.

'Gee e.g., Erdemlioglu and Yang (2022), Boswijk et al. (2018) and Dungey et al. (2018) for implementation details,
particularly on the selection of the functional form for C-(kn) in (7).

B Our tail risk indicator RI is also quite similar to the estimator of Hill (1975). See also Ait-Sahalia and Jacod (2009) for
a related discussion on the role of §; in (7).
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(such as realized volatility). This challenge leads to an econometric identification problem, as realized
volatility movements and realized tail movements potentially mingle with each other at high frequency.
Consequently, it becomes a tedious task to separate different response forms (i.e., volatility versus tails).
We use RI to measure tail responses accurately and disentangle them from volatility responses. Third, RI
accounts for time-varying volatility, clustering in extreme price changes (jump clustering) and accommo-
dates tail (jump) activity of the price variation around speeches. It does not require strong assumptions
about the underlying asset pricing process and it is relatively easy to implement (see Appendix B.1 for
the estimation steps). While large values of RI computed for a given window and speech indicate that the
returns generate heavy tails, small RI values show weak evidence for tail behavior.'6

In summary, we quantify two types of responses to CBC. First, communication likely creates sudden
surges in market volatility. We assess these surges with realized volatility. Second, CBC can cause asset
price jumps and persistently elevated jump intensity. Our approach allows us to first detect the speech-
implied jumps, and then assess the ‘intensity’ of the jump responses. As Bollerslev et al. (2018) document,
heterogeneous investors often release private information as they trade in the wake of such jumps, creating

large price moves, which amplify high-frequency TR.'"

4.2.3 Identifying Association Between News and Market Reactions

The final step in our methodological framework is to measure how realized volatility and tail risk in
both equity and bond markets react to central bankers’ speeches. To this end, we regress the market
reactions on the forecast revision implied by the corresponding speech. As the forecast revision itself is
a linear combination of the central bank signal and the latest public forecast, we already control for the

18 The same holds true for all

partial correlation between the SPF forecasts and the market reactions.
control variables used in the creation of the speech signals. We do not include additional low-frequency
macroeconomic control variables because market prices should already incorporate such publicly available

information.

5 Results: Language Mapping and SPF Prediction

The first step of our method is to learn the mapping from central bank language to central bank forecasts.
We train our model on the first 80% of the Greenbook sample, holding out the last 20% of observations for
validation. In our validation set, we assess how well a model can map Greenbook language to Greenbook
forecasts. For each machine-learning class, we select the best performing model from the validation set and
then assess its performance on the test set. The test sample is the post-2013 sample of speeches in which
we assess how well the speech signals predict subsequent changes in SPF forecasts. Given the results in

the Tables 1, 2, and 3, we have reason to believe that the identified signals in the central bank speeches

16Tt is perhaps worth emphasizing that the term intensity in RI refers to the stochastic intensity of the jump process.
While RV in equation (6) is an estimator for the stochastic volatility, RI is an estimator for the stochastic intensity.

1"We aggregate the information in measures by equally weighting the stocks in the panel. We apply the measures to all
stocks, obtain the estimates of response measures, equally weight and use the cross-sectional average for a given speech.

8See e.g., Frisch and Waugh (1933) and Lovell (1963) for Frisch-Waugh-Lovel theorem.
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carry relevant information to change market expectations and hence public macroeconomic forecasts. The
tables report the R? associated with predictions of SPF forecast revisions.

For example, the second row of Table 1 indicates that the multimodal neural topic model (MM NTM
non-linear) has an R? of 0.67 in predicting CPI forecast revisions in the Greenbook training set, 0.83 in
the Greenbook validation set, and 0.735 in the test set (speeches). Appendix F presents all tested machine
learning approaches.'?

For each of the three macroeconomic target variables, the best multimodal NLP models markedly
outperform models that only use tabular data. Specifically, the multimodal neural topic model (MM
NTM) class performs best both in the validation and in the test set. For CPI, Table 1 shows that the MM
NTM (non-linear) model has an R? of 0.735 in the test set, which is 15% better than MM NTM (linear)
and 44% better than the R? of the next best method. Likewise, Table 2 shows that MM NTM (non-linear)
has an R? of 0.797 in the test set, which is right behind MM NTM (linear)’s R? of 0.825. Finally, Table 3
shows that MM NTM (non-linear) performs best again for unemployment, with an R? of 0.208, which is
markedly better than the second best R? of 0.131, achieved by AutoTab.

Interestingly, AutoGL’s models underperform an OLS regression for CPI inflation and GDP growth.
There might be several explanations for this underperformance. The datasets at hand contain relatively
few data points — a common challenge in macroeconomics and macro-finance, especially for ‘data hungry’
machine learning methods. AutoGL’s machine learning models might therefore struggle to converge or
might easily overfit on the limited training data. Second, macroeconomic forecasts (or the revisions to
them) might be well approximated by a linear model, since such models are a very common design choice
in monetary economics, macroeconomics, and macroeconometrics. Hence, perhaps the relatively strong

performance of an OLS regression compared to the AutoGL models.

Table 1: Central bank language to forecast mapping - CPI Q1

Metric: R? train (GB) val (GB) test (speeches)
OLS 0.288 0.510
MM NTM (linear) 0.600 0.650 0.640
MM NTM (non-linear) 0.670 0.830 0.735
AutoTab 0.565 0.302 0.475
AutoTab + tfidf 0.953 0.305 0.299
AutoTab + topics 0.370 0.284 0.358
AutoTab + embed 0.573 0.139 0.132
AutoMM transformer -0.155 -1 -0.292

Notes: The table reports R? for training, validation, and test sets for each of the models. Best performing
model in validation and test set in bold. t: Model only reports MSE for validation set.

190f course, it is worth highlighting that Greenbooks (speeches) are written (given) by staff and FOMC members. In fact,
it is rather plausible to think that they are not directed at the same audiences. Nevertheless, this type of feature does not
necessarily imply that the mappings from those two types of text have significantly different mappings to forecasts. The R?
values that we obtain from the test data confirm that the mappings must be indeed similar. Moreover, one may also expect
Greenbook text and speeches to have significant commonality. This is mainly because the economic topics are similar or
identical, and the two types of text use the same types of vocabulary and even phrases.
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Table 2: Central bank language to forecast mapping - GDP Q1

Metric: R? train (GB) wval (GB) test (speeches)
OLS 0.301 0.785
MM NTM (linear) 0.372 0.426 0.825
MM NTM (non-linear) 0.483 0.371 0.797
AutoTab 0.497 0.304 0.380
AutoTab + tfidf 0.752 0.240 0.268
AutoTab + topics 0.730 0.253 0.285
AutoTab + embed 0.587 0.220 0.142
AutoMM transformer 0.013 -1 -0.044

Notes: The table reports R? for training, validation, and test sets for each of the models. Best performing
model in validation and test set in bold. {: Model only reports MSE for validation set.

Table 3: Central bank language to forecast mapping - unemployment Q1

Metric: R? train (GB) wval (GB) test (speeches)
OLS 0.231 -0.377
MM NTM (linear) 0.197 0.109 0.066
MM NTM (non-linear) 0.285 0.457 0.208
AutoTab 0.191 0.058 0.131
AutoTab + tfidf 0.577 0.113 -0.045
AutoTab + topics 0.278 0.053 -0.010
AutoTab + embed 0.415 0.145 -0.044
AutoMM transformer -0.737 -1 -1.177

Notes: The table reports R? for training, validation, and test sets for each of the models. Best performing
model in validation and test set in bold. {: Model only reports MSE for validation set.

6 Results: Intraday Market Effects

We use the model that performed best in the validation set (Greenbook data) to estimate the speech-
implied information on GDP, CPI, and unemployment forecast revisions in the test set (speech data). The
news on forecast revisions, as outlined in section 4.1.3, are defined as the difference between the speech-
implied forecast for CPI, GDP, and unemployment outlook and the respective most recent SPF forecast.
We then fit an OLS regression where we use the speech-implied news as independent variables. Market
volatility and tail risk are the respective dependent variables. We first show our estimation results across
regimes in section 6.1. In section 6.2, we then segment our speech dataset into low, normal, and high
GDP and CPI regimes, respectively. Section 6.3 shows the news effect analysis by CPI regime. Section

6.4 covers the same analysis by GDP regime.
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6.1 News Effects Across Regimes

We use the estimated realized volatility (RV') and tail risk (T'R) in the 30-minute window after a speech
as as our dependent variables. We regress both RV and T'R on all absolute speech-implied news across
all regimes. That is, we expect larger forecast revision news (in absolute value) to raise volatility and tail
risk. The data is de-meaned and standardized. For each speech s, denote its CPI news component as vy g,
GDP news as v, and unemployment news as v, . The regression equations for realized volatility and

tail risk are then

RV, = 5D|V7r,s| + /81’1/975
TRS - pO|V7T,$

+ Balvus| + €rv (8)
+ p2|vys| + €Tr. 9)

+ p1lvy,s

We estimate both equations for both equity and bond markets.

Equity Markets

The positive and statistically significant coefficients in the top panel of Table 4 reveal that larger absolute
forecast revision news, i.e., larger absolute differences between the implied forecast and the most recent
SPF forecast, are associated with higher realized equity volatility. All three types of forecast revisions are
highly statistically significant at the 10% level. The bottom panel of Table 4 indicates that the magnitude
of speech-implied forecast revisions to CPI and unemployment has a statistically significant association

with higher tail risk in equity markets. GDP news have no statistically significant effect.

Table 4: Association between absolute speech-implied forecast revision news and volatility (top panel) and
tail risk (bottom panel) in equity markets across all regimes

Target variable: RV, coef std err z P> |z| [0.025 0.975]
|CPI news| 0.1675 0.022 7.585 0.000 0.124 0.211
|GDP news| 0.0780 0.043 1.800 0.072 -0.007 0.163
|U news| 0.1967 0.024 8.078 0.000 0.149 0.244
R?: 0.722 Adj. R?: 0.718 n. obs.: 191 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z| ]0.025 0.975]
|CPI news| 2.2613 0.483 4.677 0.000 1.314 3.209
|GDP news| 1.1819 0.990 1.193 0.233 -0.759 3.123
|U news| 2.4452 0.484 5.066  0.000  1.497 3.393
R?: 0.526 Adj. R?: 0.519 n. obs.: 191 Heteroscedasticity robust standard errors

Notes: The table shows the association between speech-implied forecast revision news in absolute value
about CPI, GDP, and unemployment and realized volatility (top panel) and tail risk (bottom panel).
The estimation results are reported for the U.S. equity market.

17



Bond Markets

Tables 5, 6, and 7 show the results for the 2-, 5-, and 10-year bond futures markets. The bond market
results are similar to those of the equity market. Larger absolute speech-implied forecast revision news are

strongly associated with higher realized bond price volatility and tail risk across maturities.

Table 5: Association between absolute speech-implied forecast revision news and volatility (top panel) and
tail risk (bottom panel) in bond markets (2-year maturity) across all regimes

Target variable: RV} o, coef std err z P> |z| [0.025 0.975]
|CPI news| 0.0149 0.003 5.643 0.000 0.010 0.020
|GDP news| 0.0110 0.005 2.121  0.034 0.001 0.021
|U news| 0.0166 0.003 5.412  0.000 0.011 0.023
R?: 0.672 Adj. R?: 0.667 n. obs.: 175 Heteroscedasticity robust standard errors
Target variable: TRy, o, coef std err z P> |z| [0.025 0.975]
|CPI news| 3.7368 0.809 4.619 0.000 2.151 5.322
|GDP news| 5.4056 1.022 5.288 0.000  3.402 7.409
|U news| 3.3025 0.887 3.725 0.000 1.565 5.040
R?: 0.508 Adj. R?: 0.500 n. obs.: 175 Heteroscedasticity robust standard errors

Notes: The table shows the association between speech-implied forecast revision news in absolute value
about CPI, GDP, and unemployment and realized volatility (top panel) and tail risk (bottom panel).
The estimation results are reported for 2-year maturity U.S. Treasury bond futures.

Table 6: Association between absolute speech-implied forecast revision news and volatility (top panel) and
tail risk (bottom panel) in bond markets (5-year maturity) across all regimes

Target variable: RV, 5, coef std err z P> |z| [0.025 0.975]
|CPI news| 0.0298 0.006 4.866  0.000 0.018 0.042
|GDP news| 0.0238 0.013 1.852  0.064 -0.001 0.049
|U news| 0.0354 0.006 5.900 0.000 0.024 0.047
R?: 0.592 Adj. R%: 0.588 n. obs.: 175 Heteroscedasticity robust standard errors
Target variable: T'Ry 5, coef std err z P> |z| [0.025 0.975]
|CPI news| 2.3726 0.744 3.189 0.001 0.914 3.831
|GDP news| 3.6080 1.500 2.405 0.016 0.667 6.549
|U news| 1.4576 0.684 2132 0.033 0.118 2.797
R?: 0.424 Adj. R?: 0.413 n. obs.: 175 Heteroscedasticity robust standard errors

Notes: The table shows the association between speech-implied forecast revision news in absolute value
about CPI, GDP, and unemployment and realized volatility (top panel) and tail risk (bottom panel).
The estimation results are reported for 5-year maturity U.S. Treasury bond futures.
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Table 7: Association between absolute speech-implied forecast revision news and volatility (top panel) and
tail risk (bottom panel) in bond markets (10-year maturity) across all regimes

Target variable: RV}, 10, coef std err z P> |z| [0.025 0.975]
|CPI news| 0.0574 0.010 5.687 0.000 0.038 0.077
|GDP news| 0.0443 0.021 2.132  0.033 0.004 0.085
|U news| 0.0614 0.010 6.000 0.000 0.041 0.082
R?: 0.650 Adj. R?: 0.644 n. obs.: 175 Heteroscedasticity robust standard errors
Target variable: TRy 10, coef std err z P> |z| [0.025 0.975]
|CPI news| 1.8245 0.644 2.833 0.005 0.562 3.087
|GDP news| 3.0200 1.413 2.137 0.033  0.250 5.790
|U news| 1.3404 0.555 2414 0.016 0.252 2.429
R?: 0.434 Adj. R?: 0.424 n. obs.: 175 Heteroscedasticity robust standard errors

Notes: The table shows the association between speech-implied forecast revision news in absolute value
about CPI, GDP, and unemployment and realized volatility (top panel) and tail risk (bottom panel).
The estimation results are reported for 10-year maturity U.S. Treasury bond futures.

6.2 Economic Regime Definitions

We also assess whether the effects of speech-implied forecast revisions depend on the GDP and inflation
regimes. We do not separately analyse unemployment regimes. We divide our GDP and CPI datasets
into a high, normal, and low regime (see Table 8). The categorisation is based on the Federal Reserve’s
inflation target and the historic distributions of the respective variables as depicted in Figure 3. Figure 4

shows the two time-series of the regime indicators.

Table 8: Categories of economic regimes

Notes: The table presents the classification of different economic regimes (high, normal, low) for GDP

and CPI.

CPI AGDP
High T > 3% g>3%
Normal 1% <7 <3% 2% < g<3%
Low T < 1% g <2%
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Figure 3: Empirical distribution of CPI and GDP growth target variables
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Notes: The figure shows the empirical distribution of CPI and GDP regimes. CPI: low regime (light
red), normal regime (mid red), high regime (dark red). GDP: low regime (light blue), normal regime
(mid blue), high regime (dark blue).

Figure 4: Time-series of CPI and GDP growth regimes

4 CPI

3

2

1 o i
0 ‘ |

2014-01-03 2014-11-07 2015-06-24 2016-03-07 2016-10-21 2017-05-30 2018-01-19 2018-10-18 2019-04-11 2019-10-07
A GDP

I high B normal | low

I high N normal low

2014-01-03 2014-11-07 2015-06-24 2016-03-07 2016-10-21 2017-05-30 2018-01-19 2018-10-18 2019-04-11 2019-10-07

0.0

Notes: The figure displays the evolution of different economic regimes over time. CPI (upper panel):
low regime (light red), normal regime (mid red), high regime (dark red). GDP (lower panel): low
regime (light blue), normal regime (mid blue), high regime (dark blue).

Conditional on the regime classification, we categorise the speech-implied news into good and bad news
for the market. The division in the GDP-regime is straightforward. In any GDP regime, speeches that
imply higher (lower) GDP-growth than the most recent SPF forecast are good (bad) GDP news. Similarly,
lower (higher) unemployment forecast revisions are good (bad) news. The story for the CPI regime is more
complex: If a speech implies that inflation will move closer to the 2% target than the most recent SPF
forecast, it is considered good news. If a speech implies that inflation will move further from the target,
it is bad news. So, a speech that implies an increase in inflation would be good news if inflation is below

target but bad news if inflation is above target. Table 9 outlines the news classifications.
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Table 9: Central bank GDP news classification

Good news Bad news

ngh GDP gecb > Gspf geb < Gspf
Normal GDP  g.1, > gspr Geb < Gspf
Low GDP gcb > Gspf geb < Gspf

Notes: The table presents the classification of good versus bad GDP news for different levels of GDP.

Table 10: Central bank CPI news classification

Good news Bad news

High CPI Teb < Tepf Teb > Tspf
Normal CPI (slightly above target) e, < Topt|Topt > 2%  Teh, > Topt|Tspt > 2%
Normal CPI (slightly below target) mep > Topf|Tepr < 2% Teb < Tept|Tspt < 2%
Low CPI Teb > Tspf Teb < Tspf

Notes: The table presents the classification of good versus bad CPI news for different levels of CPI.

6.3 News Effects by CPI Regime

We now analyse the effects of speech-implied forecast revision news by CPI regime. We separate god news
from bad news to assess whether asymmetric speech-implied news effects exist. The regression equations

for realized volatility (RV') and tail risk (T'R) in the 30 minutes after each speech are as follows:

R‘/S = BO‘Vﬂ,s,good| + 61|Vﬂ',s,bad| + B2|Vg,s,good| + ﬁ3|yg,s,bad| + B4‘Vu,s,good| + ﬁ5|yu,s,bad| + €rv (10)

TRS = ,00|V7r,s,good| + p1|l/7r,s,bad| + p2|7/g,s,good’ + p3|Vg,s,bad| + p4‘l/u,s,good| + p5’Vu,s,bad| + €TR. (11)

The variables have the same meaning as before. That is, for each speech s, denote its CPI news component
as Vrs, GDP news as v,,, and unemployment news as v, . However, for each macroeconomic news
component, we now have a good news variable and a bad news variable (both in absolute values), denoted
by good and bad subscripts. We estimate the volatility regression for both the equity and the bond markets
for each CPI regime: low, normal, and high. The tail risk equation is estimated by CPI regime for equity

markets only, due to scope limitations of this paper.

Equity Markets

Table 11 reports the effects of speech-implied forecast revisions on realized volatility and tail risk in equity
markets, broken down by CPI regime. Appendix G details these results for each CPI regime and target

variable.
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Table 11: Association between speech-implied forecast revisions and volatility in equity markets across
CPI regimes

High CPI regime Low CPI regime Normal CPI regime

RV TR RV TR RV TR
|INews CPI good| — +*** - kK - - 4%
|[News CPI bad| Rk - RS - - -
|[News GDP good| - - R ARk - B,
|News GDP bad| - - - ¥ - B,
|[News U good| JRRE Rk - - - i
|[News U bad| L ; ST B} e ko
n. obs. 36 29 70
Notes: + = positive association. *= p < 0.1, **= p < 0.05, ***= p < 0.01. — = no statistically

significant results.

High CPI regime: When CPI is high, speech-implied forecast revisions to CPI and unemployment
forecasts have a statistically significant, positive association with realized volatility in equity markets in
the 30 minutes after the speech (see the columns labeled RV'). This holds true both for positive and
negative news. Tail risk dynamics (see the columns labeled TR) are less strongly associated with central

bank speech news signals in the high CPI regime.

Low CPI regime: A similar picture emerges in the low CPI regime. Speech-implied forecast revisions
to CPI, good and bad, are strongly associated with increased equity market volatility. Low CPI regimes
occur exclusively with normal or low GDP regimes (see Figure 4). Therefore, it is not surprising to see
that speech-implied forecast revisions to GDP have a slightly stronger association with market volatility
than during high CPI regimes, which almost exclusively co-occur with high GDP regimes. We interpret
this as indicating that when the economy is in full swing, market sentiments tend to be optimistic and less
‘attention’ might be given to central bank announcements. Tail risk in the low CPI regime seems to be

sensitive to both positive and negative speech-implied forecast revisions to GDP.

Normal CPI regime: Normal CPI times are defined as periods when the inflation rate is close to 2%.
During these periods, there are no longer statistically significant associations between speech-implied fore-
cast revisions of any kind and market volatility, except for negative unemployment news. Again, we would
interpret these results as indicating that markets ‘listen’ less attentively to central bank communication
when the economy is in normal or good times compared to periods of undesirably high or low inflation.
Table 11 shows similar patterns for the prediction of equity volatility and tail risk in the normal CPI

regime.

Bond Markets

Table 12 summarizes how speech-implied forecast revisions affect bond futures volatility across CPI regimes.

Appendix 1 details the regression tables for each CPI regime and target variable combination. Bond
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markets produce patterns similar to those in equity markets: large speech-implied forecast revisions are

more significantly associated with higher bond volatility when CPI is far from the target.

Table 12: Association between speech-implied forecast revisions and volatility in bond markets across CPI
regimes

High CPI regime Low CPI regime Normal CPI regime

2y o5y 10y 2y oy 10y 2y 5y 10y

|News CPI good| - - . QoRRR Rk kokk _ i _
|News CPI bad| - ¥ - - Lk ¥ - - -
|INews GDP good| +* - - koK - - - - .
|News GDP bad| - - - - - - - - i,
|[News U good]| n/a n/a  nj/a - - - - - i}

. sk sk sokok : * * sk seokok sokok
|News U bad| - + + + + + + +
n. obs. 33 42 52

Notes: + = positive association. *= p < 0.1, **= p < 0.05, ***= p < 0.01. — = no statistically significant

results. ‘n/a’ = no observations available.

6.4 News Effects by GDP Regime

We now estimate equations (10) and (11) by different GDP regimes: low, normal, and high.

Equity Markets

Table 13 reports speech-implied forecast revision effects on realized volatility and tail risk in equity markets,

broken down by GDP regime. Appendix H details these results for each CPI regime and target variable.

Table 13: Association between speech-implied forecast revisions and volatility in equity markets across
GDP regimes

High GDP regime Low GDP regime Normal GDP regime

RV TR RV TR RV TR
|INews CPI good| - - LSS - - Rk
|News CPI bad)| - - Rk - - ;
|INews GDP good| - - LSS Rk X _
|News GDP bad| - - koK N - .
|[News U good| - n/a KK Rk - ,
‘NeWS U bad’ +** +>l<* +>|<>l<* +** _ _
n. obs. 36 44 81
Notes: + = positive association. *= p < 0.1, **= p < 0.05, ***= p < 0.01. — = no statistically significant

results. ‘n/a’ = no observations available.
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High and normal GDP regimes: In high GDP times, negative speech-implied-forecast revisions to
unemployment raise equity RV and TR. Similarly, positive speech-implied revisions to CPI forecasts raise

TR during normal GDP periods.

Low GDP regime: In low GDP times, all speech-implied forecast revisions influence equity RV and
all GDP and unemployment revisions influence equity TR. That is, RV and TR are a substantially more

sensitive to forecast revisions during periods of low economic activity.

Overall, markets ‘listen’” most carefully in times of economic distress. In normal or good times, news

in central bank speeches have less impact on RV and TR in equity markets.

Bond Markets

Table 14 shows speech-implied forecast revision effects on realized volatility in bond futures markets,
broken down by GDP regime. Appendix J details these results for each GDP regime. Bond markets are
also most sensitive to central bank speeches in extreme GDP regimes. Low GDP regimes witness the
most significant association between GDP and unemployment forecast revisions and bond volatility. But
markets also appear to be more sensitive to central bank speeches in high GDP regimes than in periods of

normal economic growth.

Table 14: Association between speech-implied forecast revisions and volatility in bond markets across GDP
regimes

High GDP regime Low GDP regime Normal GDP regime

2y 5)% 10y 2y 5)% 10y 2y 5)% 10y
INews CPI good| — +*** - - n/a  n/a  nja  FRE i
|[News CPI bad| +-* +-* - - - - - - -
|[News GDP good| - - - SRRk kR ke ) : )
|News GDP bad| - - - - - - - - -
|[News U good| n/a n/a n/a - L T - _ .
|[News U bad| +* - 4 SRR kR ok ; _ _
n. obs. 35 42 52
Notes: + = positive association. *= p < 0.1, **= p < 0.05, ***= p < 0.01. — = no statistically significant

results. ‘n/a’ = no observations available.

7 Extensions and Discussion

In this section, we consider various extensions and robustness checks of our framework. We examine the
characteristics of speeches, implied signals and reassess the market responses, based on the speeches by

the Fed Chair versus speeches by other (non-Chair) Fed members.
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7.1 Characteristics of the Speech Data

We start by assessing the characteristics of the speeches in terms of the name of the speaker and the word

characteristics of the statements. Table 15 reports the summary statistics.

Table 15: Summary statistics of the speeches by the Fed officials

Speaker ‘ # Speeches First speech Last speech Sum # words Mean Max Min Median
Charles I. Plosser 23 1/4/2014  2/17/2015 64358 2798.17 3660 1620 2928
Daniel K. Tarullo 26 2/6/2014 4/4/2017 100563 3867.81 4698 330  4420.5
Dennis Lockhart 34 1/13/2014  2/14/2017 78053 2295.68 3197 1141 2274
Janet L. Yellen 58 2/11/2014 11/29/2017 152887 2635.98 5124 517  1984.5
Jeremy C. Stein 5 1/3/2014 5/6/2014 16631 3326.20 4842 784 3423
Jerome H. Powell 82 3/13/2014  10/6/2020 195736 2387.02 5140 462  2108.5
Lael Brainard 81 12/2/2014  12/17/2020 247136 3051.06 5014 312 3325
Michelle W. Bowman 19 2/11/2019  12/4/2020 39792 2094.32 3869 609 1899
Patrick T. Harker 80 10/2/2015  12/2/2020 155850 1948.13 3738 435  1956.5
Randal K. Quarles 48 11/30/2017 12/11/2020 136744 2848.83 4922 783  2865.5
Richard H. Clarida 30 10/25/2018 11/16/2020 81526 2717.53 5091 556  2390.5
Richard W. Fisher 18 1/14/2014 3/9/2015 47573 2642.94 4932 626 2810
Robert S. Kaplan 27 11/18/2015  9/29/2020 64639 2394.04 4698 82 2908
Sandra Pianalto 2 2/26/2014  3/27/2014 5738 2869.00 3402 2336 2869
Stanley Fischer 45 7/10/2014  9/28/2017 142387 3164.16 4878 779 3276

Notes: The table reports the summary statistics of the statements and speeches by the Fed officials (FOMC
members, Fed Chair) in our text dataset. The table presents the name of the speaker, number of speeches,
first and last speeches, sum of the number of words in the speech as well as mean, maximum, minimum
and median number of words in the statements.

Several features are worth noting. For instance, among the speeches by fifteen Fed officials over the
sample period, the speeches by Jerome H. Powell, Janet L. Yellen and Richard H. Clarida include the
maximum number of words. Jerome H. Powell gives the most speeches and his speeches are among the
longest ones in terms of the sum of the number of words in the statements. We also observe that the

periods of speeches (i.e., the time between first and last speech) vary across speakers.

7.2 Forecast Revision News and Implied Speech Signals

We now take a closer look at the link between forecast revision news and the implied speech signals. To
proceed, we compute the mean absolute values of the implied signals by speakers, measured based on our
model. We implement the analysis for all three macro factors (CPI, GDP, unemployment). Figure 5 shows

whose speech reveals the strongest and weakest signal about each macro indicator.
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Figure 5: Implied speech signals and forecast revision news
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Notes: The figure shows the mean absolute values of the implied speech signals of speakers, measured based on our model
implemented for three macro factors (CPI, GDP, unemployment). For each macro factor, horizontal bars indicate the
strength of the signal (strong versus weak) stemming from the speeches by the Fed Chair and other Fed members.

Assessing the signals across speakers, based on three main macro factors, we observe that implied
signals about inflation are significantly stronger than the signals about GDP and unemployment. This
pattern holds regardless of the name of speakers. Richard W. Fisher, Jerome H. Powell and Stanley Fisher
are the top three Fed members, sending the strongest forecast revision news among all members. While
the mean absolute signal estimates of the speeches by Janet L. Yellen and Jerome H. Powell are close
to each other (0.57 and 0.64, respectively), the speech signals by Powell on GDP and unemployment are
larger than those that come from Yellen. The figure displays that the weakest inflation signals stem from
the speeches by Sandra Pianalto, Jeremy C. Stein and Michelle W. Bowman.

To evaluate the role of signal direction, we further decompose the total implied speech signals into
positive and negative signals, and implement the same analysis. As we can clearly see in Figure 6, there is
a considerable amount of heterogeneity in terms of the sign of the forecast revision news. For example, the
first pattern that emerges from the figure is that “negative” inflation signals conveyed by the speeches (top
left) are, on average, stronger than the “positive” inflation signals (1.04 versus 0.36). A similar pattern
holds for the GDP signals, but not for the unemployment signals (middle left and right panels). Focusing
on the inflation signals, we also notice that the speeches by Richard W. Fisher, who is often considered
the Federal Open Market Committee’s (FOMC) most hawkish member, send the largest negative signal
(with estimated implied signal of 2.34), followed by Janet L. Yellen and Jerome H. Powell. As we compare
the signal strength of the speeches by Yellen versus Powell, the largest divergence occurs for the “negative”
implied signals with respect to GDP: the estimated negative forecast revision signals by Powell for the
GDP are, on average, larger than those by Yellen (0.87 and 0.10 in the middle-left panel).

26



Figure 6:
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Notes: The figure displays the mean absolute values of the negative and positive implied speech signals of speakers (left
and right panels, respectively). To generate the signal plots, we decompose the total implied speech signals into positive
and negative signals for each macro factor. Horizontal bars indicate the strength of the signal (strong versus weak)
stemming from the speeches by the Fed Chair and other Fed members.

By looking at these implied signals, we can also indirectly examine the heterogeneity (or potential
disagreement) among officials in terms of the implied signals that they convey through their speeches. For
each macro factor, we also compute the standard deviation of the implied positive and negative signals of
the speakers. The largest heterogeneity or disagreement occurs for the negative signals about GDP factor
(0.86) followed by negative signals on CPI (0.50). For these two factors, speeches reveal relatively more
consensus through the lens of positive signals, however. The highest level of consensus (i.e., the lowest

signal heterogeneity) occurs for the negative unemployment signals.

7.3 Hawks versus Doves

Another noteworthy analysis would be to explore whether the view of Fed members affects the strength of

speech signals. In other words, does it matter to be dovish or hawkish when sending signals via speeches?
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While we leave an in-depth investigation to future research, we examine in this section the relationship be-
tween the view of officials (hawkish, centrist, dovish) and their estimated forecast revision signals. To carry
out this analysis, we start by identifying the views and search among several sources including Reuters,
Financial Times, Business Insider, Deutsche Bank, Marketplace and Mitsubishi UFJ Financial Group,
Inc. (MUFG). For each speaker, we then rely on multiple measures of dovishness and hawkishness. Based
on this approach, we create the following categories: centrist, dove, hawk, dove/centrist, hawk/centrist,
and dove/hawk. After assigning these view labels to Fed officials, we compute the mean absolute implied

signals for each category.
Figure 7: Hawks versus doves: disaggregated implied speech signals based on the Fed views
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m implied speech signal (CPI) m implied speech signal (GDP) implied speech signal (U)
Notes: The figure illustrates the mean absolute values of the implied speech signals, based on the views of Fed members.
For the three macro news factors (CPI, GDP and unemployment (U)), vertical bars indicate the strength of the speech
signal (strong versus weak) by each Fed member. X-axis displays the views based on the hawkish, dovish, centrist
views and their combinations. From left to right in the X-axis: “Hawk™ Charles I. Plosser, “Dove”: Daniel K. Tarullo,
“Dove/Centrist”: Dennis Lockhart, “Dove”: Janet L. Yellen, “Dove/Centrist”: Jeremy C. Stein, “Dove/Centrist”: Jerome
H. Powell, “Dove”: Lael Brainard, “Dove/Hawk” Michelle W. Bowman, “Dove/Hawk™ Patrick T. Harker, “Centrist™

Randal K. Quarles, “Hawk/Centrist”: Richard H. Clarida, “Hawk” Richard W. Fisher, “Hawk™ Robert S. Kaplan,
“Centrist”: Sandra Pianalto, “Dove™ Stanley Fischer

Two main patterns emerge from this assessment (Figures 7 and 8). First, looking at the signals at the
disaggregated level (i.e., based on the names of Fed officials), we do not find clear evidence that officials with
hawkish or dovish view generate systematically the strongest or weakest signals. For example, Richard W.
Fisher, who is considered the Federal Open Market Committee’s (FOMC) most hawkish member, gives
speeches that create the largest implied inflation signals. However, other members with dovish/centrist
view (e.g., Stanley Fischer, Daniel K. Tarullo, Janet L. Yellen, Jerome H. Powell) also send considerably
high level of signals about inflation. Similar regularities hold when we consider other macro factors (GDP
and unemployment): there is no evidence that dovish view dominates the hawkish view, or vice versa, in
terms of conveying forecast revision signals. Indeed, we observe that both dovish and hawkish views could
be associated with low levels of signals, although leaning towards centrist view seems to have relatively

larger levels of signals (e.g., the speeches by Randal K. Quarles, Richard H. Clarida, Jeremy C. Stein, and
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Jerome H. Powell).

Figure 8: Hawks versus doves: aggregated implied speech signals based on the Fed views
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Notes: The figure shows the mean absolute values of the implied speech signals under different view categories (i.e.,
hawkish, dovish, centrist) and combinations. For the three macro news factors (CPI, GDP and unemployment (U)),
vertical bars indicate the strength of the speech signal (strong versus weak) when we aggregate the signals based on the
views of the Fed members.

Second, as we aggregate the signals based on the views of the Fed members, we observe similar patterns
(Figure 8). For example, both dove and hawk views tend to be associated with high level of signals for
inflation (0.58 and 0.63, respectively). For other macro factors (GDP and unemployment), the implied
signals by both dovish and hawkish members are very weak and close to each other. It is, however, worth
mentioning that the signal dispersion across three macro factors is the lowest for centrist views. In other
words, officials with centrist view are likely to convey similar level of signals about the state of the economy
based on the CPI, GDP, and unemployment factors. Overall, based on the evidence we have, it is hard
to draw a conclusion that a specific view (e.g., hawkish) dominates the other (e.g., dovish) in terms of
the strength of the speech signals. The underlying drivers of different levels of speech signals (i.e., strong,
moderate, weak) seem to be related to the macro factor (CPI versus GDP and unemployment) and the
sign of the signals (positive versus negative). Of course, we refrain from explicitly delving into the roles of
hawks and doves in the language processing stage here. We defer this intriguing avenue for exploration to

future research.

7.4 Reassessing Market Responses: To Chair, or Not to Chair?

Do the speeches by the Fed Chair speak louder than the speeches by other Fed members? As highlighted
earlier, our analysis reveals that the Chair Jerome H. Powell conveys the strongest forecast revision news
among all speakers after Richard Fisher. While the mean absolute signal estimates of the speeches by Janet
L. Yellen and Jerome H. Powell are similar, the speech signals by Powell on GDP and unemployment are
larger than those that come from Janet L. Yellen. Our results also indicate that the dispersion among

officials in terms of the strength of their signals is the largest for the negative (downward) forecast revision
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signals about GDP and CPI. Looking at the positive signals, we observe more consensus among officials.
Based on the findings of our assessment, the answer to the question of whether being a Chair matters for
conveying (stronger) speech signals seems to depend on the intended direction of the signal (i.e., negative
versus positive) and the underlying macro factors.

To explore this aspect further, we employ a regression analysis and rerun our baseline regressions by
using now Chair signals and non-Chair signals. Considering realized volatility and realized tail risk as
response measures, we carry out this analysis for both equity and bond markets. Tables 16-19 report these

regression results.

Table 16: Speech signals by the Fed Chair, equity market volatility and tail risk

Target variable: RV, coef std err z P> |z| [0.025 0.975]
|CPI news| 0.2391 0.036 6.725 0.000  0.169 0.309
|GDP news| 0.0515 0.048 1.083  0.279 -0.042 0.145
|U news| 0.1792 0.041 4.368 0.000 0.099 0.260
R?: 0.693 Adj. R?: 0.681 n. obs.: 77 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z [0.025 0.975]
|CPI news| 3.2833 0.840 3.909 0.000 1.637 4.930
|GDP news| 0.6968 1.456 0.479 0.632 -2.156 3.550
|U news| 2.4698 1.132 2.181 0.029 0.251 4.689
R?: 0.522 Adj. R?: 0.503 n. obs.: 77 Heteroscedasticity robust standard errors

Notes: The table reports the regression results for the association between speech-implied forecast
revision news (in absolute value about CPI, GDP, unemployment) and realized volatility (upper panel)
and tail risk (lower panel). We consider the speech signals by the Fed Chair. The estimation results
are reported for the U.S. equity market.

Looking at the volatility effects of “Chair signals” first (upper panel of Table 16), we find that forecast
revisions to CPI and unemployment news are still very significant (at 1% level) and they increase stock
market volatility. The results also indicate that the implied signals of Chair speeches on CPI news have
a larger effect on volatility (0.239 versus 0.167), although Chair signals for GDP news have no significant
effect in this case. Three Chair-speech signal factors, when combined, explain 0.681 of the variation in
intradaily realized volatility, which is close to the adjusted R? of our baseline volatility regression results
(0.718). Turning to the impact on equity tail risk (lower panel of Table 16), our regression results indicate
that the estimated coefficients are similar in size to those from our baseline regression results. Chair
speeches for the CPI news factor have a larger effect on tail risk, however, compared to the tail risk effects
of all speeches (3.28 versus 2.26).
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Table 17: Speech signals by the non-Chair Fed members, equity market volatility and tail risk

Target variable: RV, coef std err z P> |z] ]0.025 0.975]
|CPI news| 0.1246 0.025 5.001 0.000 0.076 0.173
|GDP news| 0.1211 0.076 1.592  0.111 -0.028 0.270
|U news| 0.1993 0.033 6.043 0.000 0.135 0.264
R?: 0.761 Adj. R?: 0.754 n. obs.: 114 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z| ]0.025 0.975]
|CPI news| 1.6157 0.538 3.001 0.003 0.561 2.671
|GDP news| 1.9146 1.135 1.688 0.092 -0.309 4.138
|U news| 2.3643 0.568 4.160  0.000  1.250 3.478
R2: 0.548 Adj. R?: 0.535 n. obs.: 114 Heteroscedasticity robust standard errors

Notes: The table reports the regression results for the association between speech-implied forecast
revision news (in absolute value about CPI, GDP, unemployment) and realized volatility (upper panel)
and tail risk (lower panel). We consider the speech signals by the Fed members and exclude those by
the Fed Chair. The estimation results are reported for the U.S. equity market.

Going one step further, we extend this assessment and compare the equity market responses stemming

from only Chair signals versus non-Chair signals (Table 16 and Table 17, respectively). Focusing on the

CPI news factor, we find that the non-Chair signals have a smaller impact on volatility (upper panel),

compared to the effects of Chair signals (0.12 versus 0.23, respectively). As the lower panel of the table

indicates, a similar pattern holds with respect to the tail risk effects (1.61 versus 3.28).

Table 18: Speech signals by the Fed Chair, bond market volatility and tail risk

Target variable: RV} 9, coef std err z P> |z [0.025 0.975]
|CPI news| 0.0246 0.005 5.102 0.000 0.015 0.034
|GDP news| 0.0090 0.008 1.205 0.228 -0.006 0.024
|U news| 0.0148 0.006 2.354 0.019 0.002 0.027
R?: 0.713 Adj. R%: 0.700 n. obs.: 70 Heteroscedasticity robust standard errors
Target variable: T'Ry o, coef std err z P> |z| [0.025 0.975]
|CPI news| 7.3717 1.616 4.561 0.000 4.204 10.539
|GDP news| 6.6960 1.847 3.625 0.000 3.076 10.317
|U news| 1.4508 1.765 0.822 0.411 -2.009 4.911
R?: 0.591 Adj. R%: 0.573 n. obs.: 70 Heteroscedasticity robust standard errors

Notes: The table reports the regressions results for the association between speech-implied forecast
revision news (in absolute value about CPI, GDP, unemployment) and realized volatility (upper panel)
and tail risk (lower panel). We consider the speech signals by the Fed Chair. The estimation results
are reported for the 2-year maturity U.S. Treasury bond futures.
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Table 19: Speech signals by the non-Chair Fed members, bond market volatility and tail risk

Target variable: RV}, 9, coef std err z P> |z| [0.025 0.975]
|CPI news| 0.0104 0.002 4.225 0.000 0.006 0.015
|GDP news| 0.0145 0.008 1.787 0.074 -0.001 0.031
|U news| 0.0167 0.004 4.046  0.000  0.009 0.025
R?: 0.673 Adj. R?: 0.664 n. obs.: 105 Heteroscedasticity robust standard errors
Target variable: TRy, o, coef std err z P> |z] [0.025 0.975]
|CPI news| 3.1841 0.923 3.448 0.001 1.374 4.994
|GDP news| 1.6228 2.233 0.727  0.467 -2.754 5.999
|U news| 4.6046 1.003 4.589 0.000 2.638 6.571
R?: 0.498 Adj. R?: 0.483 n. obs.: 105 Heteroscedasticity robust standard errors

Notes: The table reports the results for the association between speech-implied forecast revision news
(in absolute value about CPI, GDP, unemployment) and realized volatility (upper panel) and tail risk
(lower panel). We consider the speech signals by the Fed members and exclude those by the Fed Chair.
The estimation results are reported for the 2-year maturity U.S. Treasury bond futures.

As we conduct the analysis for the bond market, we find that, compared to the signals by other Fed
members, Chair signals tend to generate a larger tail risk, although the results for volatility remain quite
stable (Table 18 and Table 19). For instance, the estimated coefficient of the implied Chair signals for
assessing tail risk impact is 7.37 whereas it is 3.18 for the non-Chair signals (lower panels of Table 18 and
Table 19). These volatility and tail risk results also hold for other maturities (unreported for brevity but
available upon request), particularly for the forecast revisions pertaining to the CPI news.

In sum, reassessing the market responses by decomposing the signals into Chair and non-Chair versions,
we find evidence that considerably underpins our main results in terms of the significance of effects.
Nevertheless, the estimated magnitude of the impact in both stock and bond markets appears to depend
on the position of the speaker (i.e., Chair or not) and the “Chair effect” is particularly pronounced for the
CPI news. This analysis can be viewed in parallel with the study of Swanson and Jayawickrema (2023),
who compare high-frequency changes in interest rates after Fed Chair versus Fed Vice Chair speeches and

find that Chair speeches have a much higher impact.

8 Conclusion

We use supervised multimodal natural language processing methods to map central bank language to
forecasts of macroeconomic variables. We benchmark an extensive array of machine learning methods on
this task. Finally, we apply this approach to a dataset of time-stamped speeches from Federal Reserve
FOMC members in order to create a novel monetary policy news series by taking the difference between
central bank speech-implied forecast revisions and market expectations which we approximate with the

latest available figures from the Survey of Professional Forecasters.
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Our results indicate that news signals derived from central bank speeches can help explain volatility
and tail risk in both equity and bond markets. Speech-implied news seem to carry information to which
markets react - particularly in abnormal GDP and inflation regimes. We find no evidence that speeches
resolve uncertainty. These findings underpin the importance of analysing the continuous flow of central
bank communication with markets such as through FOMC member speeches.

Our empirical analysis also reveals that hawkish versus dovish views do not necessarily dominate each
other in terms of the strength of the speech signals. Instead, we find that the magnitude of signals mostly
depends on the macro news factor (CPI versus GDP and unemployment) and the direction of the signals
(i.e., positive versus negative). Based on our framework, we further assess whether the speeches by the Fed
Chair produce different signals and market responses. We show that the Chair signals tend to generate
greater tail risk and volatility compared to the signals conveyed by other Fed members. In fact, this result
can be viewed in parallel with the study of Swanson and Jayawickrema (2023), who document that the
speeches of the Fed Chair have a higher market impact. Understanding the implications of Fed Chair
speeches in affecting high-order market uncertainty over the short and long horizon would be of interest,

and we leave this direction to future research.
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Appendix

A Description of the Machine Learning Models

In this section, we provide a detailed description of the machine learning models spanned by our base Au-
toGL framework. These classes are K-nearest neighbours (KNN), Random Forest, Extremely Randomized

Trees, Boosted Decision Trees and Neural Networks.

K-nearest neighbours (KNN)

The K-nearest neighbours (KNN) class that we consider is a widely-used machine learning algorithm,
belonging to the family of instance-based, non-parametric learning. It operates on the simple principle of
feature similarity, assuming that similar data points can be found near each other in feature space. In both
classification and regression, KNN works by finding the k£ closest training samples to a new data point
and then predicts the output based on these neighbours. For classification, the algorithm typically assigns
the class most common among its k nearest neighbours, while in regression, it usually takes the average
of their values. In fact, KNN is easy to implement and understand, but its performance can significantly
decline with high-dimensional data (the curse of dimensionality) and large datasets (due to computational

cost).

Random Forest

The other machine learning algorithm that we implemented for performance comparison is the technique
called Random forest. This machine learning method is versatile and powerful that operates by con-
structing multiple decision trees during training and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees. This ensemble learning technique,
particularly effective for large datasets, enhances predictive accuracy and controls over-fitting by averaging
or voting across various trees. Each tree in the forest is built from a sample drawn with replacement (i.e., a
bootstrap sample) from the training set. Furthermore, when splitting each node during the construction of
a tree, the best split is found either from all input features or a random subset of them. This randomness,
along with the ensemble approach, ensures the model’s robustness against overfitting, making Random
Forest an appealing choice for many applications in diverse domains ranging from finance to healthcare.

We utilize the Random Forest algorithm under the AutoML framework.

Extremely Randomized Trees

Extremely randomized trees (ERT), also known as extra trees, is an ensemble learning technique that
constructs a multitude of decision trees at training time. Similar to Random Forests, it operates by
averaging predictions for regression tasks or using a majority vote in classification. However, it introduces
additional randomness in the way splits are computed: instead of searching for the most discriminating

thresholds, thresholds are drawn at random for each candidate feature and the best of these randomly-
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generated thresholds is picked as the splitting rule. This randomness leads to more diversified trees and

typically faster training than Random Forest, often with comparable performance.

Boosted Decision Trees

Boosted decision trees involve an ensemble learning technique that combines multiple weak decision tree
learners to form a strong predictive model. Unlike methods like Random Forests which build trees in par-
allel, boosting builds them sequentially. Each tree is trained on the dataset with an emphasis on correctly
predicting instances that were misclassified by previous trees. This is achieved through iterative updates
to the weights of data points. The final prediction is made based on a weighted vote (in classification) or
sum (in regression) of the predictions from individual trees. This method often results in high accuracy,

especially for complex datasets, but requires careful tuning to avoid overfitting.

Neural Networks

Neural networks, as our base machine learning model that we put forward in our study, are a foundational
model in machine learning, inspired by the structure and function of the human brain. At their core, neural
networks consist of layers of interconnected nodes, or neurons, each performing simple computations. The
network typically includes an input layer to receive the data, one or more hidden layers that process the
data, and an output layer that produces the prediction. Each neuron in a hidden layer transforms the values
from the previous layer with a weighted linear summation followed by a non-linear activation function.
These weights are learned during training through a process called backpropagation, which iteratively
adjusts the weights to minimize the difference between the network’s prediction and the actual data
outcomes. Deep neural networks, with many hidden layers, can model complex patterns and relationships
in data. They are highly versatile, being applied in fields such as image and speech recognition and natural

language processing, as we adopt and extend in our study via multimodal setting.

B Procedures for the Response Measures

In this section, we present the specifics of our procedures with respect to our high-frequency market
response measures. 1o proceed, we first outline the estimation steps of the realized intensity as a high-
frequency tail risk measure. We then present a method to assess the accuracy of parameters estimates and

stability for both realized volatility and realized intensity. Finally, we present the estimated responses.

B.1 Estimation Steps of the Realized Intensity

We proceed with the details on the estimation of our RI measure (equation (7)) as follows.
Step 1: Start by defining the jump activity index [3:

B=:inf{r >0; Y  |AX|" < oo}, (12)

0<s<t
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where Ag X = X; — X, is the jump size at time s, and r is the power variation parameter.

Step 2: Compute the jump activity index 5 in equation (7):

V(w,0,9) 4

B " = log———12L /1 1
B(t,w,6,0) ogv(w,e, R w/1og(5); (13)
for which select 0 < 0 <6, 0 < w < 1/2 and
[t/An]
n. A7 X
Vo0t =3 o(Ghs ) (1)

where ¢(t) is the weight function, choose a form that needs to satisfy the condition g(z) = |z|P if |z| < a

for some constant a > 0 and even integer p > 2.
Step 3: Choose values for the tuning parameters w, k, and o in equation (7).

Step 4: Compute the g function in equation (7) to disentangle volatility component from the jump com-

ponent.
Step 5: Identify the release times (minutes and seconds) of speeches.

Step 6: For each speech, select a window length (e.g., one hour) and estimate RI in equation (7) by using
high-frequency returns in this window.
B.2 Accuracy Assessment

To evaluate the accuracy of the estimated parameters of the response measures, we proceed with the
realized intensity first. Let us use T'R for /)\\(k‘n)tp, instead of instead of A and continue from this stage. We

have

5
Fn B (TR TR) Lat, N(O,TRaCﬂ@Q),
N (Cs(1))

where
Colt) = [ (a(@)"/="* .

Therefore, the 95% confidence interval for /)\\(k:n)t is given by

r

ﬁ:l:c.v. X

TR(aAF)*Cs(2)
(Cs(1))*kn,,

)
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for which we can use critical value such as c.v. = 1.96. The average of the lower and upper bound gives us
the estimated intensity.

For spot realized volatility, we have

Jke (étr _ ctT> Lty N(0,2¢2),

and the 95% confidence interval is

ct, ECv. X [ —c,.
L ke Ly
In light of these constructed confidence intervals, we assess the fit of the estimates, considering the

lower and upper bounds.

B.3 Estimated Response Measures: Realized Volatility and Tail Risk

As we describe in the main text, we use high-frequency data and identify market responses in the forms
of realized volatility and tail risk (computed based on realized intensity). Figure 9 displays the estimates
of these quantities for each speech in our full sample for both equity and bond markets (upper and lower

panels, respectively).

Figure 9: Estimated market response measures for central bank speeches
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Notes: The figure shows the estimated response measures for each central bank speech (X-axis) in our dataset. Given
the speech release, we compute realized volatility and tail risk—based on the realized intensity (labels RV and TR in the
figure). The figure displays the quantities for the equity market (upper panels) and bond market (lower panels). For the
equity market, RV and TR estimates are the cross-sectional averages of the individual stocks. For the bond market, the
figure shows the estimated RV and TR separately for the 2-year, 5-year and 10-year bond futures.
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The figure exhibits a number of features. First, both realized volatility and tail risk vary across central
bank speeches. Second, looking at the response patterns of the bond market, we see noticeable differences
between the reactions of short- and long-term bonds. That is, while the realized volatility of 2-year bond
futures is clearly lower than the realized volatility of 5-year and 10-year bond futures (lower left panel),
the realized tail risk identified through 2-year bonds is the highest across all maturities (lower right panel).
Finally, central bank speeches tend to create distinct effects on bond and equity markets, which potentially

reflects the importance of information signals embedded in the speeches.

C Further Considerations

Remark 1. It is worth emphasizing that the speeches have a much wider content beyond those key macro
indicators (CPI, GPD, unemployment) that we rely on in our study. Nevertheless, we do not observe dif-
ferences in terms of financial market effects mainly because we train our multimodal NLP model, test its
out-of-sample performance, and construct the implied speech signals, entirely based on these three macro
factors. Our proposed model processes the topics under this setting by utilizing both tabular (macro) data
and text (speech) data. Therefore, our framework helps select the most important topics and those that do
not carry significant explanatory information are directly excluded. This approach brings an advantage,
rather than a setback, as it prevents us from incorrect measurement of market response to other generally
important yet irrelevant speeches. Of course, it is possible to extend our model and feed the model by

focusing also on other variables beyond macro factors.

Remark 2. When we identify the implied speech signals through our multimodal NLP model, we rely on
a time frame for which we evaluate the information content in the entire period. During this process, we
“synchronize” the time stamps of the speech and the SPF releases so that when we create the signal, the
signal utilizes the information up to the same calendar time. Regardless of the time difference between the
SPF release time and the speech release time, the time stamp of the signal is the time stamp of the speech
and it remains the same as long as both SPF release and speech release fall in the same time frame. In
fact, proceeding this way ensures that the process is a martingale. That is, the “speech release time” is the
time that conditional expectations will be formed, based on all available information (including SPF news)
up to speech time. This holds regardless of the past values and the time distance between SPF release and
speech release.

Our high-frequency approach allows us to examine the impact of speech immediately after the public
release by quantifying the changes in market volatility and market tail risk withing seconds and minutes.
When a central bank speech is released a few weeks after an SPF release, investors still tend to use the
most updated information available to them, perhaps related to market efficiency, so they wait for the
release of the central bank speech. As soon as the speech is released and it becomes publicly available, we
quantify the market response through our measures. So, the response already incorporates the information
content in the SPF news, as investors wait for the new SPF release. As another situation, even if a speech

is released, for example, two days after an SPF release, the reaction time that we rely on remains the same
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and hence it is still the speech release time. In this situation, while it is true that investors have relatively
short period of time to digest the content of the SPF release, the period is sufficient for those monitoring

markets at intradaily levels.

Remark 3. One argument would be that only relevant speeches matter and hence irrelevant speeches
should not convey important signals. To test this conjecture, we conduct a simple, yet insightful, robustness
check. We first rank the speeches in our database in order of their implied signal levels. We then identify
the speeches that have the highest and lowest signal estimates (i.e., top ten and bottom ten). We observe
that the highest implied signals often derive from the statements about topics on monetary policy, financial
stability, economic conditions, and economic outlook. In contrast, the signals with the lowest values are
often associated with statements that are indirectly related to macro environment, financial markets, or
monetary policy. For example, these low signal speeches are about the situation of middle-income families
(unemployment factor), consumer behavior in credit and payment markets, and small business (GDP
factor). Of course, these statements are not necessarily redundant, as they are made by the Fed members
and the Chair. However, they are not directly relevant and hence their signal levels that we measured
using our model turn out to be low.

In light of this assessment, we also find that the name of the speaker (e.g., Chair or not) does not play
an important role, as we see that Chair speeches can be associated with both lowest and highest signals.
This regularity holds for all three news factors (CPI, GDP, unemployment) and for all other Fed members.
Therefore, it is our understanding that, by looking at the name and whether the speaker is Chair, it is hard
to draw a direct conclusion about which signals should matter. This is largely in line with our additional
analyses on speech characteristics. Statements that look similar in terms of the speaker name, time, title

of the talk have different levels of implied forecast revision signals.

Remark 4. One may also argue that forecasts at different horizons are potentially correlated. In fact,
it is rather unlikely that there will be one trend for three months, but it will reverse four months from
now. To assess the role forecast horizon further, we conduct an analysis for the horizon assessment, which
suggests that the choice does not play a critical role (e.g., one-quarter forecast versus one year forecast),
as we achieve steady state in both horizon choices.

Furthermore, regarding the policy implications of forecast horizon, our results indicate that the signals
embedded in the language that central bankers use actually seem to generate similar market response for
relatively short and long horizons (such as one-year-ahead forecasts). There might be several potential
explanations for this result. First, words do not systematically carry a specific signal about the interest
rate policy (such as potential changes in Fed Fund rates). In other words, while actions may allow to
separate the short-term (policy) versus long-term (real economy) effects, for example, in the context of
term structure or yield curve, words do not help unravel such asymmetric effects. Another reason could
be related to the signals that we seek to identify. In fact, even though we can modify the horizon for the
forecast revisions (e.g., monthly, quarterly, yearly), our focus is on three macro factors: CPI, GDP growth

and unemployment. For these three macro indicators, we find no clear evidence that the horizon selection
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of the speech-implied forecast revision is critical. However, the evidence may change substantially for other
important indicators, such as policy rates. We believe this would be an important line of research, as an

extension of our framework.

D List of Relevant Greenbook Sections

Table 20: Considered Greenbook sections per economic indicator

GDP CPI Unemployment

Ec.GDP Ec.Prices Ec.Labor
For.Ec.Overview For.CostPrice For.Labor
For.Ec.Summary Ec.Wages

For.Outlook

For.HH

For.G

For.Inven

For.BusInvest

For.Trade

Notes: In the table, EC = Economic Conditions Section, For = Forecasts Section.

E  Lists of Stocks and Bonds

Table 21: Stock tickers and names

AAPL Apple AXP  American BA Boeing CAT Caterpillar
CSCO  Cisco CVX  Chevron DIS Disney HD Home

IBM IBM INTC Intel JNJ  Johnson KO Coca-Cola
MCD  McDonald’s MMM 3M MRK Merck MSFT MSFT
NKE  Nike PFE Pfizer UNH UnitedHealth VZ Verizon

WMT Wal-Mart XOM  Exxon

Notes: The table lists the tickers and descriptions of the individual stocks used in our empirical analysis.

Table 22: Bond names and maturities

US Treasury Note Futures: 2-Year 5-Year 10-Year

Notes: The table lists the tickers and descriptions of the U.S. Treasury bond futures used in our empirical analysis.
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F  Additional Results: Language to Forecast Mapping

Table 23: CPI mapping and fit performance

Model \Predictive R? score test score val score train data source

MM Neural Topic Model (non-lin) 0.735 0.830 0.670 joint MM tabular + topics
MM Neural Topic Model (linear) 0.640 0.650 0.600 joint MM tabular + topics
ExtraTreesMSE BAG Ll 0.588 0.084 0.880 tabular
RandomForestMSE_BAG L1 0.584 0.052 0.622 tabular + topics
ExtraTreesMSE BAG Ll 0.584 0.089 0.595 tabular + topics
RandomForestMSE _BAG L1 0.568 0.047 0.876 tabular
KNeighborsUnif BAG L1 0.559 0.141 0.460 tabular + topics
KNeighborsDist  BAG L1 0.549 0.128 0.798 tabular + topics
KNeighborsUnif BAG L1 0.520 0.152 0.439 tabular + tfidf
KNeighborsDist  BAG L1 0.519 0.146 1.000 tabular + tfidf
KNeighborsUnif BAG L1 0.516 0.142 0.442  tabular
NeuralNetFastAI BAG_ L1 0.515 0.233 0.251 tabular + topics
KNeighborsDist  BAG_L1 0.513 0.121 1.000 tabular

OLS 0.512 0.288 tabular
NeuralNetFastAI BAG_ L1 0.494 0.272 0.594 tabular
RandomForestMSE BAG L1 0.482 0.103 0.883 tabular + tfidf
WeightedEnsemble L2 0.475 0.302 0.565 tabular

CatBoost  BAG L1 0.386 0.200 0.698 tabular

CatBoost_ BAG_L1 0.384 0.170 0.905 tabular + tfidf
XGBoost_ BAG_L1 0.377 0.169 0.595 tabular + topics
XGBoost_ BAG_L1 0.374 0.155 0.937 tabular + tfidf
LightGBMXT_ BAG_L1 0.373 0.126 0.295 tabular

XGBoost_ BAG L1 0.368 0.152 0.770  tabular
WeightedEnsemble L2 0.358 0.284 0.370 tabular + topics
LightGBMLarge BAG L1 0.357 0.080 0.646 tabular + tfidf
LightGBM BAG L1 0.327 0.136 0.294 tabular
WeightedEnsemble L2 0.299 0.305 0.953 tabular + tfidf
LightGBM_ BAG L1 0.289 0.138 0.245 tabular + topics
NeuralNetTorch  BAG L1 0.269 0.210 0.128 tabular + topics
NeuralNetTorch  BAG L1 0.262 0.247 0.401 tabular

XGBoost BAG L1 0.260 0.056 0.783 tabular + embeddings
LightGBMXT BAG L1 0.252 0.092 0.348 tabular + tfidf
LightGBM_BAG_L1 0.252 0.131 0.368 tabular + tfidf
LightGBMLarge BAG L1 0.251 0.139 0.302 tabular
LightGBMLarge BAG L1 0.202 0.156 0.323 tabular + topics
ExtraTreesMSE BAG L1 0.193 0.143 0.889 tabular + tfidf
LightGBMLarge BAG L1 0.191 0.074 0.440 tabular + embeddings
CatBoost  BAG L1 0.177 0.250 0.525 tabular + topics
LightGBMXT BAG L1 0.162 0.140 0.192 tabular + topics
NeuralNetFastAI BAG L1 0.148 0.280 0.912 tabular + tfidf
WeightedEnsemble 1.2 0.132 0.139 0.573 tabular + embeddings
CatBoost  BAG L1 0.126 0.116 0.633 tabular + embeddings
LightGBMXT BAG L1 0.116 0.001 0.520 tabular + embeddings
LightGBM BAG L1 0.112 -0.018 0.338 tabular + embeddings
NeuralNetTorch  BAG L1 0.095 0.153 0.500 tabular + tfidf
NeuralNetTorch  BAG L1 -0.030 0.076 0.161 tabular + embeddings
AutoGluon Multimodal Transformer -0.292 -0.155 multimodal embeddings

Notes: The table reports the performance (predictive R?) of different models for the language mapping analysis of the CPI.
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Table 24: GDP mapping and fit performance

Model \Predictive R? score test score val score train data source

MM Neural Topic Model (lin) 0.825 0.426 0.372  joint MM tabular + topics
MM Neural Topic Model (non-lin) 0.797 0.371 0.483 joint MM tabular + topics
WeightedEnsemble 1.2 0.380 0.304 0.497 tabular

OLS 0.785 0.301 tabular
NeuralNetFastAl BAG L1 0.480 0.270 0.443 tabular
WeightedEnsemble 1.2 0.285 0.253 0.730 tabular + topics
WeightedEnsemble 1.2 0.268 0.240 0.752 tabular + tfidf
WeightedEnsemble 1.2 0.142 0.220 0.587 tabular + embeddings
CatBoost  BAG L1 0.249 0.211 0.552 tabular
RandomForestMSE _BAG L1 0.302 0.204 0.892 tabular + tfidf
RandomForestMSE BAG L1 0.348 0.202 0.892 tabular + topics
ExtraTreesMSE BAG L1 0.408 0.193 0.891 tabular
ExtraTreesMSE BAG L1 0.381 0.192 0.890 tabular + topics
ExtraTreesMSE BAG L1 0.111 0.188 0.891 tabular + tfidf
CatBoost  BAG L1 0.207 0.187 0.671 tabular + tfidf
LightGBMXT BAG L1 0.203 0.178 0.322 tabular

LightGBM BAG L1 0.154 0.172 0.367 tabular

XGBoost BAG_ L1 0.141 0.171 0.580 tabular + topics
CatBoost  BAG L1 0.006 0.169 0.531 tabular + topics
CatBoost  BAG L1 0.101 0.169 0.552 tabular + embeddings
LightGBM BAG L1 0.099 0.162 0.704 tabular + embeddings
NeuralNetTorch  BAG L1 0.461 0.160 0.341 tabular

LightGBM BAG L1 0.101 0.159 0.734 tabular + tfidf
KNeighborsUnif BAG L1 0.253 0.158 0.402 tabular + tfdf
LightGBMLarge BAG L1 0.245 0.155 0.598 tabular
KNeighborsDist BAG L1 0.256 0.151 1.000 tabular + tfidf
NeuralNetTorch BAG L1 0.049 0.150 0.553 tabular + tfidf
LightGBMXT BAG L1 0.120 0.150 0.348 tabular + tfidf
RandomForestMSE BAG L1 0.394 0.150 0.885 tabular
LightGBMLarge BAG L1 0.111 0.149 0.536 tabular + topics
LightGBMLarge BAG L1 0.181 0.149 0.665 tabular + embeddings
XGBoost BAG L1 0.119 0.142 0.567 tabular
NeuralNetFastAl BAG L1 0.060 0.136 0.797 tabular + tfidf
KNeighborsDist BAG L1 0.255 0.132 1.000 tabular
KNeighborsUnif BAG L1 0.248 0.130 0.407 tabular

LightGBM BAG L1 0.111 0.126 0.496 tabular + topics
LightGBMXT BAG L1 0.105 0.125 0.505 tabular + embeddings
NeuralNetTorch BAG L1 -0.071 0.123 0.275 tabular 4 embeddings
NeuralNetTorch BAG L1 0.151 0.108 0.497 tabular + topics
XGBoost . BAG L1 -0.015 0.107 0.663 tabular + embeddings
LightGBMLarge BAG L1 0.108 0.095 0.581 tabular + tfidf
XGBoost  BAG_ L1 0.041 0.083 0.564 tabular + tfidf
KNeighborsUnif BAG Ll 0.286 0.081 0.400 tabular + topics
KNeighborsDist BAG L1 0.274 0.074 1.000 tabular + topics
LightGBMXT BAG Ll 0.097 0.049 0.318 tabular + topics
TextPredictor BAG L1 -0.077 -0.123 -0.103 tabular + embeddings
NeuralNetFastAl BAG L1 0.407 -0.126 0.438 tabular + topics
AutoGluon Multimodal Transformer -0.044 0.013 multimodal transformer

Notes: The table reports the performance (predictive R?) of different models for the language mapping analysis of the GDP.
47



Table 25: Unemployment mapping and fit performance

Model \Predictive R? score_test score val score train data source

MM Neural Topic Model (non-lin) 0.208 0.457 0.285 joint MM tabular + topics
WeightedEnsemble L2 -0.044 0.145 0.415 tabular + embeddings
NeuralNetTorch BAG L1 -0.152 0.122 0.313 tabular + embeddings
WeightedEnsemble L2 -0.045 0.113 0.577 tabular + tfidf

MM Neural Topic Model (linear) 0.066 0.109 0.197 joint MM tabular + topics
CatBoost  BAG L1 -0.055 0.104 0.690 tabular + tfidf
LightGBMXT BAG L1 -0.068 0.074 0.336 tabular + tfidf
NeuralNetTorch  BAG L1 -0.029 0.070 0.394 tabular + tfidf
WeightedEnsemble L2 0.131 0.058 0.191 tabular
WeightedEnsemble 1.2 -0.010 0.053 0.278 tabular + topics
NeuralNetFastAl BAG L1 0.124 0.047 0.237 tabular

CatBoost BAG L1 0.021 0.041 0.411 tabular + embeddings
NeuralNetTorch  BAG L1 0.106 0.033 0.098 tabular

LightGBM BAG L1 0.006 0.027 0.349 tabular + embeddings
LightGBM_BAG L1 -0.035 0.025 0.316 tabular + tfidf
CatBoost BAG L1 -0.003 0.021 0.260 tabular + topics
CatBoost  BAG L1 0.019 0.010 0.095 tabular
RandomForestMSE BAG L1 -0.072 0.008 0.868 tabular + tfidf
NeuralNetTorch BAG L1 -0.004 0.006 0.022 tabular + topics
XGBoost  BAG_ L1 -0.112 0.006 0.883 tabular + tfidf
LightGBMLarge BAG L1 -0.001 0.001 0.594 tabular + embeddings
LightGBMLarge BAG L1 0.002 -0.003 0.109 tabular + topics
ExtraTreesMSE BAG L1 -0.045 -0.003 0.868 tabular + tfidf
LightGBMXT BAG L1 -0.001 -0.005 0.084 tabular

LightGBMXT BAG L1 0.000 -0.006 0.009 tabular + topics
LightGBM BAG L1 0.000 -0.007 0.015 tabular + topics
LightGBMXT BAG_ L1 -0.005 -0.024 0.292 tabular + embeddings
XGBoost  BAG L1 -0.043 -0.027 0.495 tabular + topics
LightGBM_ BAG_ L1 -0.002 -0.028 0.170 tabular
LightGBMLarge BAG L1 0.013 -0.034 0.094 tabular
NeuralNetFastAl BAG L1 0.002 -0.036 0.565 tabular + tfidf
XGBoost  BAG L1 -0.061 -0.041 0.624 tabular + embeddings
LightGBMLarge BAG L1 -0.045 -0.044 0.519 tabular + tfidf
NeuralNetFastAl BAG L1 -0.016 -0.058 0.025 tabular + topics
RandomForestMSE BAG L1 -0.005 -0.101 0.855 tabular + topics
XGBoost  BAG L1 -0.048 -0.126 0.277 tabular
ExtraTreesMSE BAG L1 0.008 -0.144 0.849 tabular
ExtraTreesMSE BAG L1 0.049 -0.163 0.848 tabular + topics
KNeighborsUnif BAG L1 -0.013 -0.185 0.188 tabular + tfidf
KNeighborsUnif BAG L1 -0.004 -0.187 0.186 tabular
KNeighborsUnif BAG L1 -0.048 -0.187 0.195 tabular + topics
TextPredictor BAG L1 -0.067 -0.190 -0.070 tabular + embeddings
KNeighborsDist  BAG L1 -0.003 -0.191 1.000 tabular + tfidf
RandomForestMSE BAG L1 -0.034 -0.192 0.842 tabular
KNeighborsDist  BAG L1 -0.030 -0.210 1.000 tabular + topics
KNeighborsDist BAG L1 0.003 -0.215 1.000 tabular

OLS -0.377 0.231 tabular

AutoGluon Multimodal Transformer -1.177 -0.737 multimodal transformer

Notes: The table reports the performance (predictive Rz) of different models for the language mapping analysis of the

unemployment.
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G  Additional Results: Equity Market, CPI Regimes

G.1 High CPI Regime

Table 26: Association between news, market volatility, and tail risk: equity market, high CPI regime

Target variable: RV, coef std err z P> |z]  [0.025 0.975]

| CPI news pos. | 0.2740 0.070 3.936  0.000 0.138 0.410

| CPI news neg. | 0.1437 0.052 2.780  0.005 0.042 0.245

| GDP news pos. | 0.0820 0.164 0.499 0.618 -0.240 0.404

| GDP news neg. | 0.0118 0.087 0.136  0.892  -0.159 0.183

| U news pos. | 9.1621 2.098 4.368  0.000  5.051 13.273

| U news neg. | 0.1683 0.076 2215 0.027  0.019 0.317

R?: 0.917 Adj. R%: 0901 n. obs.: 36 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P>|z| [0.025 0.975]

| News CPI pos. | 3.1074 2.184 1.423  0.155  -1.173 7.388

| News CPI neg. | 2.7033 1.791 1.509  0.131  -0.808 6.215

| News GDP pos. | -1.5404 4.349 -0.354 0.723 -10.064 6.983

| News GDP neg. | 0.8172 1.466 0.557  0.577  -2.056 3.690

| News U pos. 187.3136 13.601 13.772  0.000 160.657 213.970

| News U neg. | 2.3664 2.479 0.955  0.340  -2.492 7.225

R?: 0.683 Adj. R%: 0.619 n. obs.: 36 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility and tail risk regressions (upper panel and
lower panels, respectively) for the equity market under the high CPI regime.

G.2 Low CPI Regime

Table 27: Association between news, market volatility, and tail risk: equity market, low CPI regime

Target variable: RV, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 0.1657 0.048 3.457 0.001 0.072 0.260
| News CPI neg. | 0.1305 0.064 2.046  0.041  0.005 0.256
| News GDP pos. | 0.4317 0.170 2.546  0.011  0.099 0.764
| News GDP neg. | 0.1279 0.158 0.812 0.417 -0.181 0.437
| News U pos. | 0.1730 0.160 1.084 0.278 -0.140 0.486
| News U neg. | 0.1008 0.029 3.459  0.001  0.044 0.158
R%: 0.774 Adj. R?: 0.748 n. obs.: 59 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 1.5924 1.068 1.491  0.136 -0.500 3.685
| News CPI neg. | 1.2883 1.368 0.942 0.346 -1.393 3.970
| News GDP pos. | 10.3541 3.365 3.077 0.002 3.759 16.949
| News GDP neg. | 4.6929 2.575 1.823  0.068 -0.354 9.740
| News U pos. | 3.5833 3.297 1.087  0.277 -2.880 10.046
| News U neg. | -0.2576 0.663 -0.388 0.698 -1.557 1.042
R?: 0.622 Adj. R%: 0.580 n. obs.: 59 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility and tail risk regressions (upper and lower
panels, respectively) for the equity market under the low CPI regime.

49



G.3 Normal CPI Regime

Table 28: Association between news, market volatility, and tail risk: equity market, normal CPI regime

Target variable: RV, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 0.1013 0.070 1.447  0.148  -0.036 0.238
| News CPI neg. | 0.2412 0.161 1.494 0.135 -0.075 0.558
| News GDP pos. | 0.2766 0.199 1.392 0.164 -0.113 0.666
| News GDP neg,. | 0.1507 0.243 0.620 0.536  -0.326 0.627
| News U pos. | 0.7982 0.909 0.878 0.380 -0.984 2.580
| News U neg. | 0.1983 0.059 3.369 0.001  0.083 0.314
R?: 0.771 Adj. R%: 0.749 n. obs.: 70 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | 1.5422 0.892 1.729  0.084 -0.206 3.291
| News CPI neg. | 5.2256 3.888 1.344  0.179 -2.395 12.847
| News GDP pos. | 2.6501 2.156 1.229 0219 -1.576 6.876
| News GDP neg. | -0.1986 2.686 -0.074 0941  -5.463 5.066
| News U pos. | 4.6007 14.375 0.320 0.749 -23.574 32.775
| News U neg. | 2.6626 0.624 4264 0.000 1.439 3.886
R?: 0.593 Adj. R?: 0.555 n. obs.: 70 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility and tail risk regressions (upper and lower
panels, respectively) for the equity market under the normal CPI regime.

H Additional Results: Equity Market, GDP Regimes

H.1 High GDP Regimes

Table 29: Association between news, market volatility, and tail risk: equity market, high GDP regime

Target variable: RV, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 0.1078 0.068 1.586 0.113 -0.025 0.241
| News CPI neg. | 0.0011 0.089 0.012  0.990 -0.173 0.175
| News GDP pos. | 0.3347 0.292 1.148 0.251 -0.237 0.906
| News GDP neg. | 0.1446 0.106 1.358 0.174 -0.064 0.353
| News U pos. | 0.2226 0.216 1.032  0.302 -0.200 0.645
| News U neg. | 0.2192 0.100 2.200 0.028 0.024 0.414
R%: 0.578 Adj. R?: 0.545 n. obs.: 36 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 0.9807 1.686 0.582 0.561 -2.324 4.286
| News CPI neg. | 0.1379 1.242 0.111 0912 -2.297 2.573
| News GDP pos. | 2.0496 3.835 0.534 0.593 -5.467 9.566
| News GDP neg. | 0.9372 2.394 0.391 0.695 -3.756 5.630
| News U neg. | 4.2181 1.666 2,531 0.011  0.952 7.484
R?: 0.652 Adj. R%: 0.596 n. obs.: 36 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility and tail risk regressions (upper and lower
panels, respectively) for the equity market under the high GDP regime.
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H.2 Low GDP Regime

Table 30: Association between news, market volatility, and tail risk: equity market, low GDP regime

Target variable: RV, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 0.2141 0.049 4.330 0.000 0.117 0.311
| News CPI neg. | 0.1031 0.035 2.980 0.003 0.035 0.171
| News GDP pos. | 0.5916 0.060 9.840 0.000 0.474 0.709
| News GDP neg,. | 0.1953 0.071 2.767 0.006 0.057 0.334
| News U pos. | 0.5219 0.272 1.918 0.055 -0.011 1.055
| News U neg. | 0.1513 0.026 5.795 0.000 0.100 0.202
R?: 0.796 Adj. R%: 0.778 n. obs.: 44 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | -0.4354 1.289 -0.338  0.735 -2.962 2.091
| News CPI neg. | 0.2284 1.619 0.141 0.888 -2.944 3.401
| News GDP pos. | 7.3587 1.744 4219  0.000 3.940 10.777
| News GDP neg. | 5.0831 2.958 1.718 0.086 -0.715 10.881
| News U pos. | 8.7712 4.091 2.144 0.032  0.752 16.790
| News U neg. | 1.7789 0.894 1.991  0.047 0.028 3.530
R?: 0.565 Adj. R?: 0.517 n. obs.: 44 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility and tail risk regressions (upper and lower
panels, respectively) for the equity market under the low GDP regime.

H.3 Normal GDP Regime

Table 31: Association between news, market volatility, and tail risk: equity market, normal GDP regime

Target variable: RV, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 0.1482 0.095 1.560 0.119 -0.038 0.334
| News CPI neg. | 0.1780 0.183 0.974 0.330 -0.180 0.536
| News GDP pos. | 0.5693 0.335 1.700  0.089 -0.087 1.226
| News GDP neg. | 0.3184 1.055 0.302 0.763 -1.749 2.386
| News U pos. | 0.8327 0.593 1.405 0.160 -0.329 1.994
| News U neg. | 0.1523 0.179 0.853 0.394 -0.198 0.502
R?: 0.858 Adj. R?: 0.811 n. obs.: 81 Heteroscedasticity robust standard errors
Target variable: TR, coef std err z P> |z| [0.025 0.975]
| News CPI pos. | 2.4965 1.133 2.204 0.028 0.276 4.717
| News CPI neg. | 1.3217 2.863 0.462 0.644 -4.290 6.934
| News GDP pos. | 6.0009 5.160 1.163 0.245 -4.112 16.114
| News GDP neg. | 2.0084 5.287 0.380 0.704 -8.354 12.370
| News U pos. | 2.6617 3.787 0.703 0.482 -4.760 10.084
| News U neg. | 1.9410 2.169 0.895 0.371 -2.311 6.193
R?%: 0.546 Adj. R?: 0.496 n. obs.: 81 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility and tail risk regressions (upper and lower
panels, respectively) for the equity market under the normal GDP regime.
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I Additional Results: Bond Market, CPI Regimes

I.1 High CPI Regime

Table 32: Association between news and market volatility: bond market, high CPI regime

Target variable: RV} 9, coef std err z P> |z] [0.025 0.975]

| News CPI pos. | 0.0008 0.008 0.101  0.920 -0.015 0.017

| News CPI neg. | -0.0069 0.008 -0.862 0.389 -0.023 0.009

| News GDP pos. | 0.0730 0.039 1.849 0.064 -0.004 0.150

| News GDP neg. | 0.0014 0.021 0.066 0.947 -0.039 0.042

| News U pos. | 0 0 nan nan 0 0

| News U neg. | 0.0242 0.012 2.042 0.041 0.001 0.047

R?: 0.830 Adj. R?: 0.802 n. obs.: 33 Heteroscedasticity robust standard errors
Target variable: RV}, 5, coef std err zZ P> |z| [0.025 0.975]

| News CPI pos. | -0.0378 0.027 -1.418 0.156  -0.090 0.014

| News CPI neg. | -0.0383 0.023 -1.668 0.095 -0.083 0.007

| News GDP pos. | 0.1472 0.118 1.245 0.213 -0.085 0.379

| News GDP neg. | -0.0155 0.052 -0.299 0.765 -0.117 0.086

| News U pos. | 0 0 nan nan 0 0

| News U neg. | 0.0876 0.039 2.248 0.025 0.011 0.164

R?: 0.715 Adj. R?: 0.655 n. obs.: 33 Heteroscedasticity robust standard errors
Target variable: RV}, 19, coef std err z P> |z] [0.025 0.975]

| News CPI pos. | -0.0410 0.036 -1.126  0.260 -0.112 0.030

| News CPI neg. | -0.0499 0.037 -1.335 0.182  -0.123 0.023

| News GDP pos. | 0.2627 0.179 1.465 0.143 -0.089 0.614

| News GDP neg. | -0.0118 0.087 -0.136  0.892 -0.182 0.158

| News U pos. | 0 0 nan nan 0 0

| News U neg. | 0.1311 0.057 2.309  0.021  0.020 0.242

R?: 0.799 Adj. R%: 0.733 n. obs.: 33 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility regressions for the bond market (2-year, 5-year,
10-year bonds) under the high CPI regime.
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1.2 Low CPI Regime

Table 33: Association between news and market volatility: bond market, low CPI regime

Target variable: RV} o, coef std err zZ P> |z| [0.025 0.975]
| News CPI neg. | -0.0161 0.015 -1.075  0.283 -0.045 0.013
| News GDP pos. | 0.0334 0.007 4.882  0.000 0.020 0.047
| News GDP neg. | 0.0115 0.014 0.850  0.395 -0.015 0.038
| News U pos. | 0.0468 0.031 1.508 0.131 -0.014 0.108
| News U neg. | 0.0250 0.006 4.519 0.000 0.014 0.036
R?: 0.70 Adj. R?: 0.660 n. obs.: 42 Heteroscedasticity robust standard errors
Target variable: RV 5, coef std err z P> |z] [0.025 0.975]
| News CPI neg. | -0.0360 0.030 -1.186 0.236  -0.095 0.023
| News GDP pos. | 0.0789 0.015 5.352  0.000  0.050 0.108
| News GDP neg. | 0.0342 0.031 1.106  0.269 -0.026 0.095
| News U pos. | 0.1268 0.063 2.005 0.045 0.003 0.251
| News U neg. | 0.0521 0.012 4.296  0.000 0.028 0.076
R?: 0.691 Adj. R%: 0.649 n. obs.: 42 Heteroscedasticity robust standard errors
Target variable: RV}, 19, coef std err z P> |z| [0.025 0.975]
| News CPI neg. | -0.0657 0.043 -1.511  0.131 -0.151 0.020
| News GDP pos. | 0.1629 0.026 6.207  0.000 0.111 0.214
| News GDP neg. | 0.0695 0.048 1.448  0.148 -0.025 0.164
| News U pos. | 0.2607 0.102 2.550  0.011  0.060 0.461
| News U neg. | 0.0835 0.018 4.598  0.000 0.048 0.119
R?: 0.767 Adj. R?: 0.735 n. obs.: 42 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility regressions for the bond market (2-year, 5-year,
10-year bonds) under the low CPI regime.
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1.3 Normal CPI Regime

Table 34: Association between news and market volatility: bond market, normal CPI regime

Target variable: RV} o, coef std err zZ P> |z| [0.025 0.975]
| News CPI pos. | 0.0069 0.006 1.165 0.244 -0.005 0.019
| News CPI neg. | 0.0112 0.018 0.624 0.533 -0.024 0.046
| News GDP pos. | 0.0102 0.013 0.785 0.433 -0.015 0.036
| News GDP neg. | 0.0088 0.028 0.319  0.750 -0.045 0.063
| News U pos. | 0.0719 0.063 1.140 0.254 -0.052 0.196
| News U neg. | 0.0221 0.006 3.702  0.000 0.010 0.034
R?: 0.811 Adj. R?: 0.716 n. obs.: 52 Heteroscedasticity robust standard errors
Target variable: RV}, 5, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | 0.0155 0.017 0.910 0.363 -0.018 0.049
| News CPI neg. | 0.0356 0.041 0.878 0.380 -0.044 0.115
| News GDP pos. | 0.0160 0.035 0.457 0.648 -0.053 0.085
| News GDP neg. | 0.0248 0.081 0.305 0.760 -0.134 0.184
| News U pos. | 0.1808 0.204 0.887 0.375 -0.219 0.580
| News U neg. | 0.0409 0.011 3.712  0.000 0.019 0.062
R?: 0.737 Adj. R%: 0.703 n. obs.: 52 Heteroscedasticity robust standard errors
Target variable: RV}, 10, coef std err zZ P> |z| [0.025 0.975]
| News CPI pos. | 0.0324 0.025 1.276 0.202 -0.017 0.082
| News CPI neg. | 0.0752 0.059 1.276  0.202 -0.040 0.191
| News GDP pos. | 0.0473 0.052 0.908 0.364 -0.055 0.150
| News GDP neg. | 0.0316 0.124 0.255 0.799 -0.211 0.274
| News U pos. | 0.2868 0.349 0.822 0411 -0.397 0.970
| News U neg. | 0.0705 0.019 3.744 0.000 0.034 0.107
R?: 0.767 Adj. R?: 0.735 n. obs.: 52 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility regressions for the bond market (2-year, 5-year,
10-year bonds) under the normal CPI regime, based on 20 basis point buffer to each extreme regime.
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J Additional Results: Bond Market, GDP Regimes

J.1 High GDP Regime

Table 35: Association between news and market volatility: bond market, high GDP regime

Target variable: RV} 9, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | 0.0130 0.005 2.653 0.008  0.003 0.023
| News CPI neg. | 0.0142 0.008 1.865 0.062 -0.001 0.029
| News GDP pos. | 0.0250 0.028 0.890 0.373 -0.030 0.080
| News GDP neg. | 0.0034 0.024 0.145 0.885 -0.043 0.050
| News U neg. | 0.0156 0.009 1.734  0.083 -0.002 0.033
R?: 0.783 Adj. R?: 0.747 n. obs.: 35 Heteroscedasticity robust standard errors
Target variable: RV}, 5, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | 0.0162 0.014 1.135 0.257 -0.012 0.044
| News CPI neg. | 0.0358 0.020 1.825 0.068 -0.003 0.074
| News GDP pos. | 0.0327 0.060 0.546  0.585 -0.085 0.150
| News GDP neg. | 0.0015 0.052 0.028 0.977 -0.099 0.102
| News U neg. | 0.0335 0.024 1.394 0.163 -0.014 0.081
R?: 0.641 Adj. R%: 0.581 n. obs.: 35 Heteroscedasticity robust standard errors
Target variable: RV}, 19, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | 0.0242 0.021 1.161 0.246 -0.017 0.065
| News CPI neg. | 0.0486 0.032 1.505 0.132 -0.015 0.112
| News GDP pos. | 0.0834 0.111 0.753 0.452 -0.134 0.301
| News GDP neg. | 0.0079 0.096 0.082 0.934 -0.181 0.197
| News U neg. | 0.0710 0.039 1.797 0.072 -0.006 0.148
R?: 0.731 Adj. R%: 0.687 n. obs.: 35 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility regressions for the bond market (2-year, 5-year,
10-year bonds) under the high GDP regime.
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J.2 Low GDP Regime

Table 36: Association between news and market volatility: bond market, low GDP regime

Target variable: RV} o, coef std err zZ P> |z| [0.025 0.975]
| News CPI neg. | -0.0161 0.015 -1.075  0.283 -0.045 0.013
| News GDP pos. | 0.0334 0.007 4.882  0.000 0.020 0.047
| News GDP neg. | 0.0115 0.014 0.850  0.395 -0.015 0.038
| News U pos. | 0.0468 0.031 1.508 0.131 -0.014 0.108
| News U neg. | 0.0250 0.006 4.519 0.000 0.014 0.036
R?: 0.700 Adj. R?: 0.660 n. obs.: 42 Heteroscedasticity robust standard errors
Target variable: RV 5, coef std err z P> |z] [0.025 0.975]
| News CPI neg. | -0.0360 0.030 -1.186 0.236  -0.095 0.023
| News GDP pos. | 0.0789 0.015 5.352  0.000  0.050 0.108
| News GDP neg. | 0.0342 0.031 1.106  0.269 -0.026 0.095
| News U pos. | 0.1268 0.063 2.005 0.045 0.003 0.251
| News U neg. | 0.0521 0.012 4.296  0.000 0.028 0.076
R?: 0.691 Adj. R%: 0.649 n. obs.: 42 Heteroscedasticity robust standard errors
Target variable: RV}, 19, coef std err z P> |z| [0.025 0.975]
| News CPI neg. | -0.0657 0.043 -1.511  0.131 -0.151 0.020
| News GDP pos. | 0.1629 0.026 6.207  0.000 0.111 0.214
| News GDP neg. | 0.0695 0.048 1.448  0.148 -0.025 0.164
| News U pos. | 0.2607 0.102 2.550  0.011  0.060 0.461
| News U neg. | 0.0835 0.018 4.598  0.000 0.048 0.119
R?: 0.767 Adj. R?: 0.735 n. obs.: 42 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility regressions for the bond market (2-year, 5-year,
10-year bonds) under the low GDP regime.
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J.3 Normal GDP Regime

Table 37: Association between news and market volatility: bond market, normal GDP regime

Target variable: RV} o, coef std err zZ P> |z| [0.025 0.975]
| News CPI pos. | 0.0212 0.006 3.432  0.001  0.009 0.033
| News CPI neg. | 0.0032 0.014 0.220 0.826 -0.025 0.031
| News GDP pos. | 0.0406 0.035 1.154  0.248 -0.028 0.110
| News GDP neg. | 0.0215 0.037 0.579 0.563 -0.051 0.094
| News U pos. | 0.0051 0.017 0.301 0.763 -0.028 0.038
| News U neg. | 0.0162 0.015 1.058 0.290 -0.014 0.046
R?: 0.658 Adj. R?: 0.613 n. obs.: 52 Heteroscedasticity robust standard errors
Target variable: RV}, 5, coef std err z P> |z] [0.025 0.975]
| News CPI pos. | 0.0163 0.013 1.245 0.213 -0.009 0.042
| News CPI neg. | 0.0010 0.034 0.030  0.976 -0.065 0.067
| News GDP pos. | 0.0247 0.094 0.264 0.792 -0.159 0.208
| News GDP neg. | 0.0459 0.081 0.567 0.571 -0.113 0.205
| News U pos. | 0.0345 0.039 0.874 0.382 -0.043 0.112
| News U neg. | 0.0486 0.041 1.180 0.238 -0.032 0.129
R?: 0516 Adj. R%: 0.453 n. obs.: 52 Heteroscedasticity robust standard errors
Target variable: RV}, 10, coef std err zZ P> |z| [0.025 0.975]
| News CPI pos. | 0.0415 0.026 1.607 0.108 -0.009 0.092
| News CPI neg. | 0.0005 0.056 0.009 0.993 -0.110 0.111
| News GDP pos. | 0.0595 0.153 0.390 0.696 -0.239 0.358
| News GDP neg. | 0.0811 0.143 0.566 0.572 -0.200 0.362
| News U pos. | 0.0600 0.073 0.821 0.412 -0.083 0.203
| News U neg. | 0.0808 0.067 1.205 0.228 -0.051 0.212
R?: 0.543 Adj. R?: 0.483 n. obs.: 52 Heteroscedasticity robust standard errors

Notes: The table reports the estimation results of volatility regressions for the bond market (2-year, 5-year,
10-year bonds) under the normal GDP regime, based on 20 basis point buffer to each extreme regime.
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