A Quantitative Theory of Relationship Lending

<table>
<thead>
<tr>
<th>Authors</th>
<th>Kyle Dempsey, and Miguel Faria e Castro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Paper Number</td>
<td>2022-033C</td>
</tr>
<tr>
<td>Revision Date</td>
<td>March 2024</td>
</tr>
<tr>
<td>Citable Link</td>
<td>https://doi.org/10.20955/wp.2022.033</td>
</tr>
</tbody>
</table>
Abstract

Borrower-lender relationships tend to be long-lasting, and borrowers switch lenders infrequently. We analyze the aggregate consequences of these facts in a model of heterogeneous banks subject to financial frictions that incorporates lending relationships as a form of customer capital for banks. The model’s loan demand system is directly estimated on administrative loan-level data to recover key parameters governing the strength and persistence of relationships. The degree of market power deriving from lending relationships is consistent with a long run reduction in total credit of 4.1% relative to a competitive benchmark. We find that financial and relationship capital are complements, and therefore correlated across banks in equilibrium. Relationship lending amplifies the negative real effects of credit supply shocks, but allows banks to rebuild their buffers faster: in response to an unanticipated 25% drop in bank net worth, loan volume drops 36% more in our baseline model than in a competitive analog with no relationships. In contrast, relationship lending mutes the contractionary real effects of negative credit demand shocks.

JEL Classification: E44, G21
Keywords: Banking, lending relationships, aggregate dynamics
1 Introduction

Banks operate in imperfectly competitive markets in their core business activities: deposit taking and loan making.\(^1\) Market power generates economic profits for banks by enabling them to lend at interest rates above the fair (risk-adjusted) cost of capital and borrow at interest rates below the prevailing risk-free rate.\(^2\) This paper studies one source of banks’ lending market power: long-lasting lending relationships between borrowers and lenders. We present a theory in which these relationships introduce dynamic incentives into banks’ loan pricing and financing decisions. Specifically, banks internalize the fact that while charging higher interest rates may generate larger profits today, it may also erode relationships and thereby worsen the bank’s lending prospects tomorrow. The central focus of this paper is to quantify the aggregate consequences of lending relationships by showing how they interact with financial frictions at the individual bank and industry levels.

We study lending relationships in a dynamic equilibrium model with heterogeneous banks subject to financial constraints, as in Corbae and D’Erasmo (2021) or Bigio and Bianchi (2022). We model lending relationships using two key features. First, a borrower may borrow from many banks, but faces costs of adjusting the share of its total lending sourced from each bank. These adjustment costs endow banks with market power in lending. The adjustment is relative to “relationship capital,” which summarizes borrowers’ prior loan sourcing decisions in a manner akin to a “deep habit” (Ravn et al., 2006). In this setup, stronger relationships generate higher levels and lower price elasticities of loan demand for individual banks. Likewise, a borrower’s total loan demand depends not only on interest rates, but on the full joint distribution of rates and relationships across lenders. Second, whether a borrower’s relationship with a given bank strengthens or weakens period-to-period depends on the bank’s pricing decision. Thus, loan market power has a dynamic component: banks extract rents commensurate with the inverse elasticity of loan demand (like static monopolists), but these rents are extracted over the life of the relationship.

This paper makes four main contributions.

First, to the best of our knowledge, our model is the first that can be used to evaluate how lending relationships shape banking industry-level and aggregate outcomes in the presence of financial constraints. Importantly, our framework nests a competitive benchmark in which borrowers do not face loan portfolio adjustment costs. In this benchmark, there is no notion of relationships, banks take prices as given, and they choose loan volumes while making the same set of financing decisions as in our baseline model. This nesting property allows us to detail quantitatively how the presence of relationships alter bank behavior.

Second, we establish that the three key parameters which govern lending relationships in the model can be directly estimated outside the model using loan-level micro-data. This proceeds in two steps. First, we apply the method of Amiti and Weinstein (2018) to estimate the bank-level

\(^1\)See, for example, Berger and Hannan (1998). Banking industry concentration and market power is well documented both internationally (Fernández de Guevara et al., 2005) and in the U.S., which has experienced a stark secular decline in the number of banks over the last several decades (Prescott and Janicki, 2006).

\(^2\)Such economic profits have long been considered a “feature, not a bug”, as they generate franchise value that curbs risk-taking by banks, thereby promoting financial stability (Demsetz et al., 1996).
demand curve implied by the model. This yields an estimate of the static interest rate elasticity of loan demand, which pins down the level of loan portfolio adjustment costs. Second, we use the residuals from the first step to estimate the law of motion for relationships at the bank level. This informs the dynamic components of relationships, particularly their persistence and responsiveness to banks’ pricing choices. This step uses the fact that, through the lens of our model, relationship capital is the key non-price shifter of loan demand. Beyond facilitating our quantitative analysis, the ability to estimate the demand system directly informs how we model relationships.

Third, we show that financial and relationship capital are complements. Fixing relationship capital, more financially constrained banks tend to charge higher interest rates and ration lending to increase profitability, which comes at the expense of relationship capital. Fixing financial capital, banks with weaker relationships tend to charge lower interest rates to boost lending and build relationships for the future, which comes at the expense of financial capital. Despite charging lower rates, though, these “relationship constrained” banks lend less in terms of quantities than banks with stronger relationships, as they face weaker demand. Therefore, banks with stronger relationships hold more financial capital to meet their stronger loan demand. These forces combine to deliver a strong positive correlation between financial and relationship capital (0.84), and smaller but positive correlations of spreads with both financial and relationship capital (0.05 and 0.10, respectively). Increasing banks’ static or dynamic market power strengthens these correlations.

We perform two key analyses to further demonstrate how the model works and assess its empirical validity along untargeted dimensions. First, we show our model matches the empirical profile of spreads over the life of a lending relationship. This ensures that our model generates realistic magnitudes for both the static and dynamic components of bank market power. In the data, on average, “switching loans” are priced below market in the first year of a new lending relationship, but then above market over the next year and a half. Our baseline model matches this pattern. Moreover, we show that this is a direct function of the estimated strength and persistence of relationships: decreasing the static demand elasticity causes banks to raise rates too quickly, while making relationships more persistent induces them to raise rates too high later in the relationship.

Next, we show that the distribution of banks’ capital buffers in our baseline economy lines up well with the empirical distribution. This matters because relationships have an ex ante ambiguous effect on capital buffers. On one hand, banks can expend relationship capital to weather financial shocks by charging high interest rates, dampening any precautionary motives. On the other, the high profits associated with lending at higher rates increase banks’ franchise values, strengthening precautionary motives. Our baseline model balances these forces in line with the data, while the alternatives we consider all err on the side of too-small capital buffers. This empirical gap is driven by lower franchise values in a more competitive economy, while it is driven by the ease with which banks can increase loan rates in the face of financial constraints in less competitive economies.

Our fourth main contribution is to show that relationship lending plays an important role in determining how the economy responds to aggregate shocks. In response to a large aggregate financial shock in which all banks lose a fraction of their equity, lending relationships amplify the initial
contraction in the credit market and slow the recovery. This is driven by a faster recapitalization in the banking sector, as banks exploit their relationship capital to rebuild their lost financial capital. This amplification is quantitatively significant: the drop in lending in response to a 25% negative shock to bank net worth in the relationship economy is over a third larger than the drop in the competitive benchmark. We also study how relationship lending impacts the response of real and financial variables to shocks to credit demand. In a competitive economy, banks react to a fall in the demand for credit by reducing the size of their own balance sheets, contracting both borrowed deposits and net worth. In the relationship lending economy, on the other hand, banks are incentivized to keep lending to prevent the erosion of relationship capital. This leads them to reduce interest rates substantially, which results in a fall in net worth that is over twice as large as that observed in the competitive economy, and significantly more persistent. Finally, we also study how relationships affect the response of the economy to shocks to bank funding costs (caused by a monetary tightening, for example). Similar to the financial shock, the presence of relationships helps mute the effects of the shock on loan volumes and the price of credit. The increase in the cost of deposits and the incentive to keep quantities of lending elevated so as to prevent relationship deterioration induces banks to substitute deposits for retained earnings as a source of financing. Thus shocks to the cost of funding cause a persistent increase in aggregate bank capital in the relationship economy.

The rest of the paper is structured as follows. The remainder of this section discusses our paper’s context in the relevant literatures. Section 2 discusses several empirical observations which motivate our approach to modeling lending relationships. Section 3 presents our model environment. Section 4 describes how we take our model to the data. Sections 5 and 6 present the main results from our quantitative model, with the former focusing on the cross-section and the latter focusing on aggregate dynamics. Section 7 concludes and describes some promising areas for future research.

Related Literature This paper contributes to three distinct literatures in macroeconomics and finance: (i) customer capital in macroeconomic models; (ii) structural models of banking; and (iii) empirical studies of the effects of bank market power.

While the dynamics of customer capital can be related to an older literature on consumption habits, Gourio and Rudanko (2014) provide a seminal formalization of customer capital in a macroeconomic model which we adapt here. In the context of nonfinancial firms, Gilchrist et al. (2017) argue that the interaction between customer capital dynamics and financial constraints was key to explain the dynamics of inflation in the U.S. during the Great Recession. We model customer capital dynamics in the context of heterogeneous agents similarly. Our focus, however, is how customer capital interacts with financial constraints that are specific to the banking industry. This is critical to understanding dynamics around recent recessions, since the aggregate capitalization of the banking sector has been argued to be a relevant state variable for macroeconomic performance (Adrian and Boyarchenko, 2012).

We study the effects of bank customer capital from a positive perspective in the context of a dynamic equilibrium model of heterogeneous banks that take deposits, make loans, and face constraints that depend on their net worth. We therefore contribute to an emerging literature that
employs the tools of heterogeneous agent macroeconomic models to study questions that are related to the banking industry. Bigio and Bianchi (2022) use a quantitative model with heterogeneous banks and liquidity frictions in the interbank market to study monetary policy implementation. Corbae and D’Erasmo (2021) use a quantitative model of heterogeneous banks where size is correlated with market power to study the effects of capital requirements. We take these requirements as given, and study how their interaction with customer capital affects the overall stability of the banking system. We use our model to study aggregate dynamics similarly to Neri et al. (2010), who introduce a monopolistically competitive banking sector in an otherwise standard monetary DSGE model to study the transmission of standard shocks. Wang et al. (2022) also develop a structural model of banking to study how market power affects the transmission of monetary policy shocks. Boualam (2018) studies how credit relationships are endogenously formed and persist in a setting with search and agency frictions.

Finally, our paper relates to a broader empirical literature that studies the efficiency and stability consequences of banking market power and concentration. Recent work on this topic has been focused on market power in the deposits market. Egan et al. (2017) use detailed branch-level data on deposit quantities and prices to estimate a demand system for secured and unsecured deposits at large U.S. banks. These estimates are then combined with a dynamic model of bank runs, which allows them to study the probabilities of counterfactual runs on these large banks during the financial crisis. Drechsler et al. (2017) argue that bank market power in the deposit markets gives rise to a new channel of transmission for monetary policy in the U.S. Our notion of customer capital in banking is also related to traditional views on bank franchise value, and the idea that regulatory barriers and market power generate enterprise value beyond the pure accounting value of bank assets and liabilities (Atkeson et al., 2019).

We focus instead on market power on the loan side of banks’ balance sheets. Lending relationships in our model are closely linked to the notion of bank customer capital, which gives individual banks a degree of market power. It has been widely documented that banks value long-lived relationships (Petersen and Rajan, 1994). For example, Berger and Udell (1995) find that banks smooth loan rates when faced with adverse shocks to their cost of funding, and that this helps them conserve relationships. There is also an extensive theoretical literature that derives conditions under which the optimal contract between a lender and a borrower shares some of those features under a variety of frictions, such as asymmetric information (Diamond, 1984; Darmouni, 2020) or search frictions and switching costs (Boualam, 2018; Payne, 2018). We instead take the lending contract and the process for customer capital dynamics as given, and study their macroeconomic implications.

2 Empirical Motivation

To motivate our model analysis, we use loan-level micro data for the U.S. to document two main facts regarding bank loans: (i) switching between banks is relatively infrequent; and (ii) there exists an interest rate life cycle for new lending relationships, featuring low interest rates in the beginning.
that rise over the length of the relationship.

2.1 Data

Our main source of data is the Commercial & Industrial loan schedule H.1 of the Federal Reserve’s FR Y-14Q dataset (Y-14 for short). This is a quarterly panel of individual loan facilities held in the books of the largest bank holding companies (BHCs) in the US.3 The Y-14 includes all loan facilities held in the books of covered BHCs with commitments larger than $1 million. It contains detailed information about the characteristics of each loan, such as the identity of the borrower, the type of loan, interest rate, purpose of loan, etc.

We restrict our loan sample along several dimensions. First, we exclude loans to non-US addresses, loans in currencies other than the US dollar, and loans to firms without a US Tax Identification Number (TIN, our main firm identifier). We also exclude loans to the financial and public administration sectors, that is, to any entity classified as a bank or with NAICS code 52 or 92.4 Due to their different nature and imperfect coverage, we also drop syndicated loans.

2.2 Facts on US Bank Loan Markets

2.2.1 Switching lenders is infrequent.

Figure 1 presents time series plots on the percentage of loans that correspond to “switches,” as a percentage of total outstanding loans. Our definition of “switch” is adapted from Ioannidou and Ongena (2010): a loan is considered a switch if it is a new loan and originates from a bank with whom the firm has had no (observable) relationship in the past year. The time series plots show that in terms of both dollar value and loan counts, switches are between 2 and 3.5% of total loans. Thus switching is relatively infrequent.

It is worth noting that due to the characteristics of the Y-14 dataset, we are likely to be overestimating the frequency of switching. First, loan observations may enter and/or leave our panel for many reasons other than origination or maturity. A loan may have been originated with a committed exposure of under $1 million, with a credit limit increase above $1 million being renegotiated at a later date. In that case, we only observe the loan after the credit limit has increased. Additionally, banks may not keep originated loans in their portfolios, for example by selling them to other financial institutions. Second, since we only observe credit facilities above $1 million dollars, we do not observe small firms that borrow lower amounts. It is well documented that large firms tend to have more relationships and switch more often than smaller ones (Petersen and Rajan, 1994). Among studies that use more comprehensive loan-level datasets, Ioannidou and Ongena (2010) find that 3% of all originations are classified as switching loans for Bolivia, while Farinha and Santos (2002) find that on average 4% of all yearly originations involve switching, using data for Portugal.

3Until 2019, the dataset includes all BHCs with more than $50 billion in assets. From 2019 onwards, only BHCs with more than $100 billion in assets are included.

4We also exclude loans made to companies with NAICS codes 5312 (Offices of Real Estate Agents and Brokers) or 551111 (Offices of Bank Holding Companies).
Figure 1: **Switches as a percentage of total outstanding loans**

Notes: See text for details. A loan is classified as a switch if it is (i) a new loan, and (ii) from a bank with which the firm has had no relationship in the past year.

2.2.2 **Interest rates first fall, then rise over the life cycle of a relationship.**

We next investigate how interest rates evolve over the life cycle of firm-bank relationships. We follow an approach inspired by Ioannidou and Ongena (2010): we first identify loan originations that correspond to new relationships (again, defined as the absence of an observable relationship between the borrowing firm and lending bank in the previous year), then match those with loan originations from existing relationships that have similar observed characteristics. More specifically, “matched” loans are the same with respect to the following observable characteristics: (i) loan origination date; (ii) maturity (in years); (iii) originating bank; (iv) percentile of loan size; (v) loan type (term loan, credit line, or other); (vi) interest rate variability; and (vii) percentile of default probability. Since there are more non-switching loans than switching loans in our data, we match each unique non-switching loan with a similar switching loan, meaning that some switching loans may appear multiple times in the dataset. This procedure generates 20,155 matched loan pairs.

For each pair p and date t, we compute the spread between the switching and non-switching loans, $y_{p,t}$. We then run regressions of the following type:

$$y_{p,t} = \sum_{i=1}^{13} \gamma_i [\tau_{p,t} = i] + \epsilon_{p,t}$$

(1)

where $\tau_{p,t}$ is time since origination for the matched loan pair p at time t, measured in quarters. Time since origination can alternatively be interpreted as the length of the relationship for the switching
Figure 2: **Average spread between loans for new and existing relationships**

Notes: See text for details. At each time since loan origination, the dot represents the point estimate of γ_i from (1), and the bars represent the associated 90% confidence interval.

贷款（即使构造，作为切换贷款是这样的没有关系存在的）。我们解释的估计系数 $\{\gamma_i\}$ 作为切换贷款相对于非切换贷款在时期 i 的生活周期的平均折扣或溢价。我们考虑 $i = 1, \ldots, 13$，其中 i 是自origination的季度，$i = 13$ 代表季度后12。

第2图总结了回归（1）的估计结果，描绘了估计的边际效应和90%的置信区间基于稳健的标准误差。图示显示，平均的利差在切换和非切换贷款之间在第一年中是负的，意味着切换贷款平均支付较低的利率。一年之后，利差变为正，意味着在平均上，切换贷款开始支付高于非切换者的利率。这种积极的利差在接下来的6个季度中持续，随后成为统计上不可区分于零。这种生活周期的模式与Ioannidou和Ongena (2010) 为玻利维亚检测到的模式一致：他们也发现切换者开始支付低于非切换者，但这些利率随着时间增加并最终超过非切换者的。作者使用这些发现来区分替代的理论的公司-银行关系：这些结果表明，关系受到切换成本的影响，导致了被扣押问题。因此，银行起初吸引贷款人使用一个“诱饵利率”，然后利用切换是成本来提取剩余。

需要注意的是，我们发现的利差比Ioannidou和Ongena (2010) 小得多。这可以解释为许多因素，包括平均利率在US和玻利维亚的较低，以及我们的样本中的公司可能比非切换者更大且更安全。

5We consider $i = 1, \ldots, 13$, where each i is a quarter since origination and $i = 13$ stands for quarters after 12.
those in Bolivia. Both forces lead to compression in interest rates across firms. The $1 million dollar loan cutoff effectively excludes most small enterprises from our sample.

Summary Together, these facts suggest that aversion to switching generates a specific form of market power for the lender which evolves over the lending relationship. When attracting a new borrower, the bank is at a disadvantage relative to any incumbent lenders the borrower has. Conditional on forming a relationship, though, the bank gradually develops the advantages of the incumbent, i.e. the ability to charge above-market rates. These facts motivate our parsimonious specification of lending relationships in the next section, which combines costs of adjusting how borrowers source their loans with banks’ internalization of these costs in their pricing decisions.

3 A Model of Relationship Lending

We consider a stationary economy populated by a unit continuum of monopolistically competitive banks \(j \in [0,1] \) and a continuum of identical firms \(i \in [0,1] \) who borrow from them.\(^6\) Time is discrete and infinite, and there is a single good. The risk-free rate is \(\tau \), which defines a risk-free discount price of \(\bar{q} = (1 + \tau)^{-1} \), the wage rate is \(\bar{w} \), and the user cost of capital (rental rate) is \(\bar{w}c = \tau + \delta \), where \(\delta \) is the depreciation rate. All these prices are exogenously specified.\(^7\) While the model’s focus is on bank behavior, described in Section 3.2, we first present the firms’ problem in Section 3.1 since it delivers the demand system banks face and helps introduce notation. Section 3.3 defines equilibrium. Finally, Section 3.4 discusses the motivation for and implications of the main assumptions in our framework. Proofs of all propositions are contained in Appendix A.

3.1 Firms: defining bank-specific and aggregate loan demand

Firms operate a decreasing returns production technology using labor \(n \) and capital \(k \), producing \(y = Ak^\alpha n^\eta \) units of output for \(\alpha, \eta, \) and \(\alpha + \eta \in (0,1) \) given total factor productivity \(A \). Each period, the firm chooses: (i) how much labor and capital to hire; (ii) how much to borrow; and (iii) the sourcing of its borrowing across banks \(j \). The firm is subject to a working capital constraint as in Christiano et al. (2005): total lending must be at least a fraction \(\kappa \geq 0 \) of its total costs, which include the wage bill and the costs of renting capital. The firm’s total loan demand today is \(L' \), and the distribution of borrowing across banks is \(\mathcal{L}' = \{ \ell'_j \} \), where \(\ell'_j \) is the face value of this period’s loan from bank \(j \). The discount price of a loan from bank \(j \) is \(q_j \), and we denote the set of loan prices across banks by \(\mathcal{Q} = \{ q_j \} \).

We model lending relationships as follows. For each bank \(j \), we summarize the intensity of a firm’s relationship with that bank by \(s_j \); the set of relationships across all banks is \(\mathcal{S} = \{ s_j \} \). We assume it is costly for a firm to source its loans in a way that deviates from the distribution of relationships. We implement this with a quadratic cost function with scale parameter \(\phi \geq 0 \),

\(^6\)All firms are identical and there are no idiosyncratic shocks to firms, so the model admits a representative firm.
\(^7\)It is straightforward to embed our relationship framework into a general equilibrium model. Since our primary focus is on the banking industry, however, we simplify the model by keeping these prices exogenous.
which penalizes deviations in the share of total lending sourced from bank j from the (relative) intensity of the firm’s relationship with bank j.

For tractability, we assume that borrowers take current relationships as given and do not internalize how current loan sourcing decisions affect future relationships, in the spirit of “external” habits in the literature (e.g. Ravn et al. (2006)).

Under this formulation, a firm does not directly care about the “identity” j of any bank from which it borrows; rather, it cares only about the intensity of its relationship with the bank, s, and the loan price the bank offers, q. Therefore, the decision-relevant object which defines borrowing opportunities for the firm is the joint density of prices and relationships across banks, $\mu(q,s)$, which summarizes $\{Q,S\}$. The firm’s dynamic optimization problem may then be written recursively as:

$$W(L;\mu) = \max_{n,k,L',\ell(q,s)} \left(Ak^\alpha n^\eta - \bar{w} n - \bar{w} k + L' - \int \ell(q,s) d\mu(q,s) \right)$$

subject to

- [working capital] $\kappa(wn + \bar{w}k) \leq L'$
- [loan sourcing] $L' \leq \int q\ell(q,s) d\mu(q,s)$

The firm’s flow profits in (2) sum net operating income $Ak^\alpha n^\eta - \bar{w} n - \bar{w} k$ and net borrowing (new loans less repayments), less adjustment costs. $L' \equiv \int q\ell(q,s) d\mu(q,s)$, defined in the loan sourcing constraint (4), are total funds borrowed today, and $S \equiv \int sd\mu(q,s)$ is the average relationship intensity. The firm discounts at the risk free rate and recognizes that, in a stationary equilibrium, the joint distribution of prices and relationship intensities is constant across periods, even if specific banks shift around in the distribution. Constraint (3) is the working capital constraint. Note again that the borrower does not take into account its choice of loan portfolio today on habits tomorrow, hence there is no explicit “law of motion” for s in this problem. This reflects the externality of habits: each individual firm is infinitesimally small and does not internalize the impact of its actions on relationship intensities.

Intuitively, these adjustment costs mean that, all else equal, firms would like to choose their borrowing shares at each bank in line with the relative intensity of their relationship with that bank, since this implies no adjustment costs. The quadratic functional form is not essential to our results (see Appendix A.3), but gives rise to a linear demand system that is amenable to estimation. The following proposition summarizes the loan demand system that arises from the firm’s problem:

Proposition 1. (Loan demand system) Given a joint distribution of prices and relationship intensities $\mu(q,s)$, the firm’s problem can be written recursively as:

$$W(L;\mu) = \max_{n,k,L',\ell(q,s)} \left(Ak^\alpha n^\eta - \bar{w} n - \bar{w} k + L' - \int \ell(q,s) d\mu(q,s) \right)$$

subject to

- [working capital] $\kappa(wn + \bar{w}k) \leq L'$
- [loan sourcing] $L' \leq \int q\ell(q,s) d\mu(q,s)$
intensities $\mu(q, s)$, bank-specific loan-demand $\ell'(q, s)$ and aggregate loan demand L' satisfy

$$
\frac{q\ell'(q, s; \mu)}{L'(\mu)} = 1 + (s - S) - \frac{q}{\phi} \left[r(q) - R(\mu) \right] \text{ for all } q, s
$$

(5)

$$
L'(\mu) = \kappa(\alpha + \eta) \left[\frac{A \left(\frac{1}{\alpha} \right)^{\alpha} \left(\frac{\eta}{\beta} \right)^{\eta}}{1 + \kappa(q\tilde{R}(\mu) - 1)} \right]^{\frac{1}{1-\eta}}
$$

(6)

where $r(q) = q^{-1}$ is the interest rate implied by the bank’s loan price, S is the average relationship intensity, $R(\mu) = \mathbb{E}_\mu[r(q)]$ is the average interest rate, and $\tilde{R}(\mu)$ is the effective interest rate:

$$
\tilde{R}(\mu) = R(\mu) + \mathbb{C}_\mu[r(q), s] - \frac{q}{2\phi} \mathbb{V}_\mu[r(q)]
$$

(7)

which adjusts the average interest rate for the covariance of interest rates and relationship intensities $\mathbb{C}_\mu(r, s)$, and the overall variance of interest rates $\mathbb{V}_\mu(r)$.

Equation (5) defines the demand curve faced by a bank with relationship intensity s charging price q as a function of aggregate loan demand, the average interest rate, and the average relationship intensity. The loan demand at a given bank is decreasing in the loan rate spread over the benchmark $r(q) - R(\mu)$, with elasticity governed by the risk free rate and the adjustment cost. This is a standard price effect: when a given bank’s loans are cheap relative to its competition, that bank will capture a higher share of total lending, all else equal. Steeper adjustment costs (higher ϕ) imply a lower elasticity of loan demand with respect to price. In addition, bank-level loan demand increases in the strength of the firm’s relationship with that bank s. Thus, stronger existing lending relationships simultaneously increase the level and lower the price elasticity of loan demand, endowing these banks with more effective market power.

Equation (6) determines aggregate loan demand. Conveniently, the entire joint distribution of loan prices and relationship intensities may be summarized by a single statistic: the effective interest rate $\tilde{R}(\mu)$ from equation (7). This term has three components. First, the average interest rate term $R(\mu)$ conveys that when interest rates are higher on average, aggregate loan demand is lower. Second, loan demand is dampened further when the banks with whom the firm has the strongest relationships charge the highest spreads, as indicated by the covariance term $\mathbb{C}_\mu(r, s)$. Third, holding fixed the previous two terms, greater cross-sectional interest rate variance, $\mathbb{V}_\mu(r)$, burnishes loan demand by creating scope for the firm to gravitate towards cheaper banks.

3.2 Banks: dynamic pricing with relationships and financial constraints

Each bank uses retained earnings (its net worth), newly issued equity $e < 0$, and deposits $d' \geq 0$ (investment in riskless securities if $d' < 0$) to make loans ℓ' at discount price q. Deposits are risk-free (insured) and issued at exogenous price q^d for all banks. Banks value dividends $e \geq 0$ and face costs of issuing equity: we follow the dynamic corporate finance literature and model bank preference for dividends via the increasing function $\psi(e)$. The value of positive dividends is simply $\psi(e) = e$ when
\(e \geq 0 \), but equity issuance (i.e. negative dividends) is costly, with \(\psi'(e) > 1 \) for \(e < 0 \). Banks’ resources can be shifted by a persistent idiosyncratic shock \(z \) drawn from \(\Gamma(z, z') \) which proxies excess returns on unmodeled sectors of banks’ portfolios. Finally, we assume that banks exit with exogenous iid probability \(1 - \pi \) for \(\pi \in [0, 1] \) each period. Exiting banks pay out their net worth as a dividend and are replaced with banks with no net worth and no relationships next period.

Banks face a regulatory capital constraint that specifies that total lending, scaled by a factor \(\chi \), may not exceed the total value of equity, reflecting the current period’s lending and financing decisions. We assume that each bank is monopolistically competitive, setting its loan price while taking as given the bank-specific loan demand function (5), as well as the level of aggregate demand and the key moments of the distribution \(\mu(q, s) \) described in Proposition 1. Crucially, individual banks internalize the impact of their lending choices today on their relationships tomorrow. We assume that relationships build up over time as a convex combination of the current relationship intensity (coefficient \(\rho_s \)) and the share of total loans issued today (coefficient \(\rho_q \)).

At the beginning of the period and after the realization of the exit shock, a bank’s state can be summarized by its net worth, \(n \), its relationship intensity, \(s \), and its realization of the idiosyncratic shock, \(z \). We can write the problem of an individual bank recursively as:

\[
V(n, s, z; \mu) = \max_{q, \ell' \geq 0, d', s', n'} \psi(e) + qE \left[(1 - \pi)\psi(n') + \pi V(n', s', z'; \mu) \right] \quad (8)
\]

subject to: [budget constraint] \(q\ell' + e \leq n + z + \bar{q}d' \) (9)
[capital requirement] \(\chi q\ell' \leq q\ell' - \bar{q}d' \) (10)
[relationship building] \(s' = \rho_q \frac{q\ell'}{\ell' \mu} + \rho_s s \) (11)
[market power] \(\ell' = \ell(q, s; \mu) \) (12)
[net worth accumulation] \(n' = \ell' - d' \) (13)

The optimal policies for the control variables associated with solving this problem are denoted \(g_y(x) \) for \(y \in \{q, e, \ell', d', s', n'\} \), where \(x = (n, s, z) \) summarizes banks’ state variables.

The bank’s objective function (8) reflects its valuation of the present value of dividends net of issuance costs, discounted at factor \(\bar{q} \). Banks exit with probability \(1 - \pi \), at which point they pay out their existing net worth as a dividend. Constraint (9) is the bank’s flow budget constraint: loan issuances and dividends must be financed with either net worth, adjusted for the realization of the shock \(z \), or deposits. Constraint (10) is the capital requirement: the value of the bank’s equity (loans less deposits) must exceed a pre-specified fraction \(\chi \) of the value of its assets. Equation (11) is the law of motion for the intensity of the firm’s relationship with the bank, which the bank internalizes. Aggregating this relationship across banks and applying stationarity yields the result that \(S = \frac{\pi\rho_s}{1 - \bar{q}\rho_q} \), and so the average relationship intensity is independent of policies in the model. Equation (12) imposes the relationship between loan demand, price, and relationship

\(^{10}\)Note that for the individual bank problem, expectations are taken with respect to the idiosyncratic shock \(z \); hence why we make explicit the expectation with respect to \(\mu \) in the firm problem.
intensity implied by (5), and equation (13) shows how the bank’s net worth evolves as a function of its lending and financing policies.

We can establish the following result about the bank’s problem:

Proposition 2. (Optimal lending policies) If \(\psi(e) \) is twice continuously differentiable, banks’ optimal loan prices satisfy the Euler equation

\[
\Pi_t + \overline{q}_t \rho_t \mathbb{E}_t \left[\sum_{i=0}^{\infty} \left(\overline{q}_i \pi (\rho_q + \rho_s) \right)^i \frac{L_{t+i+1}}{t+i+1} \right] = \epsilon^{-1}(q\ell, q) \tag{14}
\]

where \(\Pi_t \) is the bank’s net rate of return in period \(t \) per unit of loan and \(\epsilon^{-1}(q\ell, q) \) is the inverse price elasticity of loan demand, given respectively by

\[
\Pi_t = \overline{q}_t \mathbb{E}_t [\psi^e(e_{t+1})] - \psi'(e_t) + \lambda_t (1 - \chi) \tag{15}
\]

\[
\epsilon^{-1}(q\ell, q) = \phi q \frac{q\ell}{q} \ell' \tag{16}
\]

where \(\lambda_t = \psi'(e_t) - \overline{q}_t \pi \mathbb{E}_t [\psi^e(e_{t+1})] \geq 0 \) is the Lagrange multiplier on the capital requirement and \(\psi^e(e_{t+1}) \equiv (1 - \pi) \psi'(n_{t+1}) + \pi \psi'(e_{t+1}) \) is the expected marginal value of internal funds.

Equation (14) has an intuitive interpretation. The left-hand side represents the sum of the bank’s discounted marginal net profits associated with increasing its loan price. The choice of loan price today affects not only today’s profits (\(\Pi_t \)), but also profits in all future periods (summation term). The weight on this second term increases with the loading on current period lending in the law of motion for relationship intensity \(\rho_q \), since this indicates a stronger dynamic pricing effect. The effective discount rate for future profits is \(\overline{q}_t \pi (\rho_q + \rho_s) \): the first two terms reflect the equilibrium discount factor and the probability of bank survival, while the latter term reflects the overall persistence of relationships.\(^{11}\) The profits in each period (15) reflect the return on loans, less their financing cost, plus the marginal benefit of easing the capital requirement.

This discounted profit stream in (14) must equal the inverse price elasticity of loan demand, \(\epsilon^{-1}(q\ell, q) \), which measures the bank’s effective market power. As shown in equation (16), this term is only positive due to the relationship adjustment costs (\(\phi > 0 \)), and increases with the bank’s relative loan share. It is instructive to consider two extreme cases. First, when the bank’s discount factor is zero, expression (14) resembles the classical static monopolist pricing condition, where the optimal price is set so that the markup is equal to the inverse elasticity of demand. The same also holds if \(\rho_q \) is zero, i.e. if there is no dynamic effect of today’s loan price choice on tomorrow’s demand. Second, in the competitive limit as \(\phi \to 0 \), the price elasticity of loan demand becomes infinite, eliminating the term on the right hand side of (14). Moreover, in this limit case, there is no notion of relationships, which eliminates the second term on the left hand side. Thus, in the competitive case, we recover the standard pricing condition \(\Pi_t = 0 \).

\(^{11}\)If \(\rho_q + \rho_s = 1 \), then there is no depreciation in relationships and this term gets its maximal weight.
Evolution of bank distribution Given a current distribution of banks over states \(m(x)\), the mass of banks next period with a particular \(x'\) is

\[
m'(x';\mu) = \pi \left\{ \int 1 \left[n(x') = g_q(x';\mu) - g_d(x';\mu), s(x') = \rho_q \frac{g_q(x';\mu)g_d(x';\mu)}{L'\mu} + \rho_s s(x) \right] \times \Gamma(z(x),z(x')) dm(x;\mu) \right\} + (1 - \pi) \left\{ n(x') = 0, s(x') = 0 \right\} \Gamma(z(x'))
\]

(17)

The term in brackets in equation (17) describes state transitions for incumbent banks. For these banks, we require that next period’s net worth and relationship intensity be consistent with the policies chosen this period, and that the evolution of the idiosyncratic shocks be consistent with \(\Gamma\). The second term captures entrant banks, who begin with no net worth, no lending relationships, and idiosyncratic shocks drawn from the ergodic distribution \(\Gamma(z)\) implied by \(\Gamma(z, z')\)

3.3 Definition of equilibrium

Definition 1. A stationary recursive equilibrium consists of: (i) bank-specific and aggregate loan demand functions, \(\ell(q, s; \mu)\) for all \((q, s)\) and \(L(\mu)\); (ii) bank policy functions \(g(n, s, z; \mu)\); (iii) a stationary joint distribution of prices and relationships \(\mu(q, s)\); and (iv) a stationary joint distribution of banks over idiosyncratic states \(m(n, s, z; \mu)\) which satisfy:

1. **borrower optimality**: bank-specific and aggregate loan demand satisfy (5) and (6);
2. **bank optimality**: banks’ optimal policy functions solve the bank problem (8) – (13);
3. **stationarity of bank distribution**: the distribution of banks over idiosyncratic states is a fixed point of the operator defined in (17); and
4. **consistency of distributions**: the joint distribution of prices and relationships is consistent with the bank state distribution and banks’ optimal policies:

\[
\mu(q, s) = \int 1[q = g_q(n, s, z; \mu)] m(dn, s, dz) \quad \text{for all } q, s
\]

(18)

3.4 Discussion of assumptions

Implementation of lending relationships. Two key elements of the structure of lending relationships in our model bear further comment. First, we assume the representative firm maintains relationships with all banks, and that costs come not only from relationship formation, but more generally from relationship adjustment.\(^{12}\) This specification embodies two simple ideas: (i) all else equal, borrowers want to borrow more from banks with whom they have stronger relationships; and (ii) firm-bank relationships strengthen through exposure over time. Our specification of adjustment

\(^{12}\)Of course, relationship formation is also costly in our model; the specification of adjustment costs in (2) implies that the firm incurs costs for borrowing any positive amount from a bank with no relationships \((s = 0)\).
costs in (2) and the evolution of relationships (11) are exactly consistent with these assumptions. Exposures – and therefore relationships – shift through time for two reasons in our model. First, idiosyncratic shocks render some banks financially constrained, which leads them to charge different prices and lend different amounts than other banks with the same \(s \). Second, the exogenous exit of banks and replacement with new banks yields a natural “life cycle” structure. As banks optimally respond to their financial conditions, they may either build up or expend relationships as a form of “customer capital,” as in Gourio and Rudanko (2014).

Second, we assume that the firm does not internalize the formation of lending relationships, while banks do. The former assumption is made purely for tractability, as it is of course reasonable to expect borrowers to respond to developments in their banks’ financial conditions by altering exposures to these banks. While possible in principle to allow for the firm to internalize relationship formation, it would require costly iteration between the firm and bank problems in the solution algorithm. By contrast, the demand system in the current framework allows us to solve the model with sole focus on the heterogeneous bank block. The fact that banks do internalize relationship formation shapes their optimal pricing policies, as highlighted in Proposition 2. As will be shown in the quantitative analysis below, this has important implications for how banks respond to financial shocks both at the individual level and in the aggregate.

Specification of relationship adjustment costs. We assume quadratic adjustment costs in loan shares in our baseline model. This specification is attractive for two primary reasons. First, it delivers a simple closed form for bank-specific loan demand (5). Not only does this facilitate computation (see Appendix B), but – more importantly – it also yields a simple structural equation which we can map to the data in order to obtain an empirical estimate of the critical relationship parameter \(\phi \) (see Section 4.2.2). Second, it delivers a single sufficient statistic – the effective interest rate \(\tilde{R}(\mu) \) from equation (7) – which summarizes the key economic forces driving aggregate outcomes in the model. As we show in Appendix A.3, though, the same central economic forces still hold under a more general specification of adjustment costs.

Macroeconomic models of customer capital typically feature constant elasticity of substitution (CES) preferences that feature the relationship intensity or level of customer capital as a preference shifter within the CES aggregator, e.g. Gilchrist et al. (2017). While feasible, a CES specification raises some issues in our framework. First there is a matter of interpretation, as what is being aggregated is not utility over consumption of goods and services but rather loan dollars. Second, the CES with customer capital as a preference shifter still features a constant price-elasticity of demand, which does not vary with the intensity of the relationships. We derive the demand system under CES preferences in Appendix A.4.

One way to address the second concern is to aggregate loans across banks using the more general Kimball (1995) aggregator, which allows for a price-elasticity of demand that varies both with price and relationship intensity. This approach is still subject to the conceptual issue of aggregation of dollar loan values. Additionally, as we show in Appendix A.5, the main drawback of this specification is that the resulting bank-specific demand is no longer linear or log-linear and therefore not amenable
Credit risk. In our model, all loans are risk-less. We abstract from borrower credit risk for two main reasons. First, most firms in the sample that we use to calibrate the model have very low default risk (the median 1-year probability of default in our sample is of 0.73%). Second, default risk would complicate the model substantially by making it harder to aggregate outcomes for the borrower across banks. This assumption is not innocuous, as default risk could significantly affect banks’ pricing decisions, interacting with their own state-dependent discount factors that arise from equity issuance costs. In particular, it has been shown that ongoing relationships between banks and firms may distort pricing incentives and generate instances of overlending or insurance provision by the bank to the firm (see, for example, Faria-e-Castro et al. (2024)). To account for the fact that the model does not feature credit risk, all of our estimation exercises either include explicit controls for default risk, or factors that subsume this risk (such as firm-time fixed effects).

Customer capital in bank liabilities. Our model also abstracts from broader definitions of bank relationships, particularly its accumulation on the liability side of the balance sheet through deposit relationships. For example, Drechsler et al. (2017) argue that imperfect competition in deposit markets is a key factor that modulates the transmission of monetary policy. Polo (2021) expands on this idea and develops a quantitative macroeconomic model where banks accumulate customer capital in deposit markets, showing that this amplifies monetary policy shocks. An interesting extension of our model would feature customer capital accumulation on both sides of the balance sheet, and how the two relate to each other (i.e., whether they are substitutes or complements).

4 Mapping the Model to the Data

We parameterize our model in three steps. First, we assign values externally (i.e. outside the solution of the model) to standard parameters in the macroeconomics and banking literature. Second, we directly estimate our model’s unique relationship lending parameters – the adjustment cost \(\phi \) and the persistence parameters \(\rho_q \) and \(\rho_s \) – from the micro-data using a semi-structural approach. Third, we jointly estimate the remaining parameters so that the model’s stationary equilibrium matches a series of relevant banking industry moments. We describe each of these steps in turn. The full parameterization of the model is summarized in Table 3.

4.1 Externally set parameters

We set nine parameters externally. The risk-free quarterly discount price \(\bar{q} \) implies an annualized risk-free rate of \(r_{\text{ann}} = 2\% \), in line with recent macroeconomic data. We set the interest rate on deposits \(\bar{q}^d \) to be consistent with this risk-free rate and an annualized liquidity premium of 17 bps (van Binsbergen et al., 2022). The capital requirement is \(\chi = 8\% \), in line with current capital requirements for large bank holding companies in the US. Since all exit is exogenous in the model,
we set the bank exit rate equal to the historical average quarterly bank exit frequency, $1 - \pi = 0.72\%$. We set total returns to scale for the firm to be consistent with a profit share of 5%, a capital share of 0.4, and a labor share of 0.6. The user cost of capital is set to be consistent with an annual interest rate of 2% and depreciation rate of 7%. Finally, we normalize the wage rate \bar{w} to imply a marginal factor cost of one and the steady state level of aggregate TFP $\bar{A} = 1$.

4.2 Directly estimated parameters

Our model features three parameters that are not standard in models of banking and financial frictions: the cost of adjusting relationships, ϕ, and the parameters governing the persistence of relationships at the bank-level, ρ_q and ρ_s. We directly estimate these parameters on micro data using the relevant model demand equations. In particular, we use loan-level data from the Federal Reserve’s FR Y-14Q data to estimate the equation for bank-specific loan demand in (5) with an instrumental variables approach and obtain an estimate for ϕ. We then infer series for bank-level relationships by aggregating the residuals of that estimated equation at the bank level, and use these series to obtain estimates for ρ_q and ρ_s. We now describe the data and the procedure in detail.

4.2.1 Data and sample selection

We use the cleaned Y-14 loan-level dataset described in Section 2 as the starting point to construct a “relationship panel” at the firm-BHC-quarter level, where the quantity of credit ℓ_{ftb} is defined as the total value of loans outstanding of firm f owed to BHC b at quarter t, and the interest rate r_{ftb} is the average rate on those loans, weighted by utilized loan value. After all sample restrictions, our final panel runs from 2013Q1 to 2022Q2 and includes 3.361 million observations, for 242,568 distinct firms and 41 distinct BHCs.

4.2.2 Estimating adjustment costs using bank-level loan demand

To estimate ϕ, we take advantage of the fact that this parameter appears in the bank-specific demand curve (5). Given data on loan quantities and interest rates, we treat the unobservable relationship intensity as a residual, and estimate this equation using linear regression. In particular, we estimate a specification of the following type:

$$\frac{\ell_{ftb}}{L_{ft}} = \beta(r_{ftb} - r_{ft}) + \alpha_f + \alpha_b + u_{ftb}$$

where $L_{ft} \equiv \sum_b \ell_{ftb}$ is total borrowing by a particular firm across all banks, and $r_{ft} \equiv \sum_b \frac{\ell_{ftb}}{L_{ft}} r_{ftb}$ is the average interest rate paid by a particular firm across all banks, weighted by the borrowing amount. The goal therefore is to regress the loan share of each bank within a given firm on the spread between the interest rate charged by the bank to that firm and the average rate paid by

13 We also impose some additional restrictions that are aimed at eliminating observations that are likely errors: we drop all loans with interest rates equal to zero or above 50%, as well as loans for which the size of the commitment is non-positive, or the utilized quantity is larger than the commitment.
Table 1: Estimating ϕ using firm- and cell-level data

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{fbt} - r_{ft}$</td>
<td>-13.850***</td>
<td>-29.976***</td>
<td>-11.924***</td>
<td>-25.346***</td>
</tr>
<tr>
<td></td>
<td>(4.015)</td>
<td>(3.694)</td>
<td>(1.651)</td>
<td>(7.851)</td>
</tr>
<tr>
<td>Firm identifier</td>
<td>TIN</td>
<td>TIN</td>
<td>ISL cell</td>
<td>ISL cell</td>
</tr>
<tr>
<td>Observations</td>
<td>57,833</td>
<td>57,731</td>
<td>221,674</td>
<td>221,637</td>
</tr>
<tr>
<td>Firm-Quarter FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bank FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Model</td>
<td>OLS</td>
<td>IV</td>
<td>OLS</td>
<td>IV</td>
</tr>
</tbody>
</table>

Standard errors in parentheses, clustered at the BHC level.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

The main challenge to estimating equation (19) directly is that it is a demand curve, and thus OLS estimates suffer from the classical problem of simultaneity bias. We address this issue by constructing an instrument for bank-specific credit supply shocks following Amiti and Weinstein (2018). Specifically, we first estimate the following regression

$$r_{fbt} - r_{ft} = \gamma_{ft} + \gamma_{bt} + v_{fbt}$$ (20)

where γ_{ft} is a firm-time fixed effect and γ_{bt} is a bank-time fixed effect. The idea is that the firm-time fixed effect controls for any factor that is related to the demand for credit, while the bank-time fixed effect absorbs all variation that is related to the supply of credit, and is by construction orthogonal to demand. We therefore use $\hat{\gamma}_{bt}$ as a valid instrument for the credit spread $r_{fbt} - r_{ft}$ in (19).

Estimation results are reported in Table 1. The relatively low number of observations (compared to the size of the full sample) is due to two factors: first, our identification strategy relies on multi-bank firms, that is, firms that borrow from multiple banks, while the vast majority of firms in our data borrow from one bank only. We elaborate on and address this issue below. Second, we estimate (19) only on loans originated in the last 4 quarters. The model features one-period debt, and so the firm can effectively adjust its demand for debt across banks every period. In reality, firms borrow at many different maturities, and it is not clear that a firm will find it advantageous or even feasible to constantly prepay debt that was contracted in the past. Older loans are likely to be priced at rates that no longer reflect aggregate credit market conditions, and so including them could bias our estimates in the direction of estimating a lower credit demand elasticity.

The first column reports the simple OLS results, while column (2) reports the estimation results
using the credit supply shock instrument. Both specifications include the full set of fixed effects. In the instrumental variables specification the point estimate $\hat{\beta} = -29.976$ implies $\hat{\phi} = 0.0332$.

One issue with our estimation method that also applies more broadly to the identification approach of Amiti and Weinstein (2018) is that it relies on firms that borrow from multiple banks in order to isolate demand from supply effects. It is well documented across space and time that the vast majority of firms borrow from a single lender; in our sample over 80% of firms maintain a relationship with a single lender. This means that our reliance on multi-lender firms for identification precludes the use of the majority of our data. Degryse et al. (2019) address this issue by defining borrowers at the industry-size-location level, instead of at the firm level. The identification assumption is that the demand for credit should be relatively stable among firms of the same industry, size, and location (I, S, and L). We apply their methodology and define “ISL cells” where industry is the 3-digit NAICS, location is the CBSA of the borrower’s address, and size is the borrower’s decile in terms of total assets. This generates a total of 82,377 unique cells in our sample.

The results for this alternative estimation procedure are reported in columns (3) and (4) of Table 1. This sample – now almost four times larger – yields a slightly larger coefficient (in absolute value): the IV estimate for the slope parameter is $\hat{\beta} = -25.346$, which implies $\hat{\phi} = 0.0393$.

4.2.3 Estimating the law of motion for relationships

Our strategy to estimate ρ_s and ρ_q, the coefficients of the law of motion for relationship intensity, follows from the estimation of ϕ. Recall that we treat the relationship intensity term in the bank-specific demand s_{fbt} as a residual when estimating (19). The idea is to treat that residual as a measure of relationship intensity and directly estimate the law of motion in (11) using OLS. We are consistent with our procedure for estimating ϕ, and map the model to the data at the representative firm-level. That is, defining $\hat{\alpha} + \hat{u}_{fbt} \equiv s_{fbt}$, we use the residuals from (19) to directly estimate:

$$\hat{u}_{fbt} = \alpha_t + \alpha_b + \alpha_f + \rho_q \frac{\ell_{fbt}}{L_{ft}} + \rho_s \hat{u}_{fbt-1} + \nu_{fbt}$$

where α_t, α_b, and α_f are time-, bank-, and firm- fixed effects, respectively. The results for the estimation are reported in column (1) of Table 2, while the results for the estimation using industry-size-location cells are reported in column (2). We obtain $\hat{\rho}_s = 0.178, \hat{\rho}_q = 0.771$ when using firm-level data and $\hat{\rho}_s = 0.141, \hat{\rho}_q = 0.791$ when using ISL cells. The standard errors reported in these tables are bootstrapped, to correct for the fact that these specifications include generated regressors.

4.3 Jointly estimated

4.3.1 Parameters and targets

The remaining parameters are jointly estimated so that the model matches a series of targets from the data, given the externally set and directly estimated parameters. These parameters and target moments are summarized in Panel C of Table 3. The working capital parameter κ determines the level of overall loan demand given the firm’s production parameters and output. Therefore, this
Table 2: Estimating \(\rho \) using firm- and cell-level data

The other three parameters describe the idiosyncratic shocks to bank net worth and the costs of equity financing. We assume that the shocks to bank net worth follow an AR(1) process with mean \(\overline{z} = 0 \), persistence \(\rho_z \), and standard deviation of innovations \(\sigma_z \).\(^{14}\) We model smooth but convex costs of issuing equity by using a piece-wise linear cost function

\[
\psi(e) = \begin{cases}
 e(1 + \overline{\psi}) & \text{if } e < 0 \\
 e & \text{if } e \geq 0
\end{cases}
\]

This specification is commonly used in the dynamic corporate finance literature (e.g. Hennessy and Whited (2005)). Further, it allows us to prove that banks’ optimal financing policies have the property that if the capital requirement is slack, then the bank does not issue equity, which is a

\(^{14}\)That is, we assume \(z' = \rho_z z + (1 - \rho_z)\overline{z} + \varepsilon_z \), where \(\varepsilon_z \sim \mathcal{N}(0, \sigma_z) \). This shock process is discretized over a grid of size \(N_z = 21 \) using the Adda-Cooper method.
Panel A: Externally Assigned Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\bar{\pi}}$</td>
<td>2%</td>
<td>Quarterly discount price $\bar{\bar{\pi}} = (1 + \bar{\bar{\pi}}_{\text{ann}})^{-\frac{1}{4}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\nu}_{\text{ann}}$</td>
<td>0.17%</td>
<td>Quarterly deposit price $\bar{\nu}^d = (1 + \bar{\nu}{\text{ann}} - \nu{\text{ann}})^{-\frac{1}{4}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ</td>
<td>8%</td>
<td>Current US bank regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td>0.9928</td>
<td>Quarterly bank exit rate of 0.72%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.38</td>
<td>Profit share of 5%, capital share of 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>0.57</td>
<td>Profit share of 5%, labor share of 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{w}c$</td>
<td>9%</td>
<td>2% interest plus 7% depreciation rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>3.78</td>
<td>Normalize factor costs to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Normalization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Directly Estimated Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>0.0362</td>
<td>Average of estimates, Section 4.2.2</td>
</tr>
<tr>
<td>ρ_q</td>
<td>0.782</td>
<td>"</td>
</tr>
<tr>
<td>ρ_s</td>
<td>0.159</td>
<td>"</td>
</tr>
</tbody>
</table>

Panel C: Internally Calibrated Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>0.750</td>
<td>Business debt to GDP ratio 71.5% 71.1%</td>
</tr>
<tr>
<td>$\bar{\psi}$</td>
<td>0.267</td>
<td>Gross equity issuance / NW 1.1% 1.5%</td>
</tr>
<tr>
<td>ρ_z</td>
<td>0.446</td>
<td>Average bank leverage 87.7% 87.7%</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.005</td>
<td>Average net interest margin 1.8% 1.3%</td>
</tr>
</tbody>
</table>

Table 3: Summary of calibration

Notes: Firm leverage and business debt to GDP are sourced from the Flow of Funds. The leverage moment corresponds to corporate firms. Gross equity issuance and net dividend payout rates are computed following Baron (2020). The net interest margin is computed using Y-14Q interest rate on new loans (originated in the last four quarters), residualized from firm 1-year probability default, and deposit expense data from the Call Reports. All moments are averaged between 2009Q1 and 2020Q3.

useful result computationally.

The parameters ρ_z, σ_z, and $\bar{\psi}$, then, are closely related to the financing choices banks make, and so we discipline them with moments of the data describing these choices. Given the costs of issuing equity and the relative cheapness of deposits, banks generally prefer to finance using deposits, and so our model replicates the high average leverage of 87.7% we observe in the banking sector. It is worth noting, however, that the capital requirement is not always binding in our model, and so we obtain a distribution of capital buffers as in the data (e.g. Corbae and D’Erasmo (2021)). Beyond deposits, banks can respond to financial shocks by retaining earnings or issuing new equity. We ensure realistic behavior along this dimension by targeting the average gross equity issuance rate of 1.1% (Baron, 2020).
4.3.2 Solving the model

Since internally calibrating the parameters described above requires iteratively solving the model for a range of potential parameter values, and since computing our model requires several non-standard steps, we describe our solution algorithm at a high level before proceeding. Appendix B contains a more detailed, formal description of our computational algorithm.

The main complication in solving for a stationary equilibrium is that equilibrium is described not by a small vector of aggregate prices, but by the entire joint distribution of prices and relationship. However, given guesses of the distribution of banks over idiosyncratic states, \(m(x) \), and bank pricing policy functions, \(g_q(x) \), we can use the consistency condition (18) to infer the implied joint distribution of prices and relationships \(\mu(q,s) \). Given this distribution, we can compute the demand-relevant summary statistics \(R(\mu) \) and \(\hat{R}(\mu) \), which are the necessary inputs to bank-specific and aggregate loan demand according to equations (5) and (6). Finally, we can use these implied demand curves to solve for updates of banks’ optimal policies, which in turn deliver an implied update to the initial guess of the distribution of banks. This procedure can be repeated until convergence on both policy functions and the distribution in order to obtain a stationary equilibrium.

5 Model Mechanics and the Role of Relationships

In this section, we use the steady state of our baseline economy and several variants to explain the key mechanisms in our model of relationship lending. This provides the underpinnings for understanding how relationship lending alters aggregate dynamics, which is the focus of the next section.

Throughout our quantitative analysis, we focus on two main versions of the model: (i) the baseline, whose calibration was described in the previous section; (ii) a competitive version of the model where banks take market interest rates as given and choose how much to lend. Details of this second economy are presented in Appendix A.6. In this model, the lack of adjustment costs in the borrower’s problem removes any meaningful notion of relationships. This implies a single equilibrium lending rate is taken as given by all banks. Banks then choose \(\ell' \) directly, and a bank’s state is fully described by \((n,z) \). The competitive version of the model features banks with no market power since they face an infinite price elasticity of loan demand at each date.

In order to understand the economic forces at play, we also report results for two other variants of the model: (iii) a “low elasticity” version, where the loan share adjustment cost \(\phi \) is greater than in the baseline, and so the elasticity of demand with respect to the spread is lower and banks have more market power; and (iv) a “low punishment” version in which \(\rho_q \rightarrow 0 \) so that banks face the same static loan demand elasticity implied by the estimated \(\phi \), but do not sever relationships by increasing prices as much as in the baseline model.\(^{15}\) Table 4 summarizes key cross-sectional statistics across these different specifications of the model.

\(^{15}\)For completeness, the low elasticity version of the model has \(\phi = 0.0724 \), double the baseline value for this parameter, and the low punishment version of the model has \(\hat{\rho}_q = 0.078 \), one-tenth the baseline value. When \(\rho_q \) is changed to \(\hat{\rho}_q \), \(\rho_s \) is also changed to \(\hat{\rho}_s \) so that \(S \) has the same value as in the baseline economy; that is, \(\hat{\rho}_s = \frac{S - \pi_{12}}{\pi S} \), and reducing \(\rho_q \) implies increasing \(\rho_s \).
Table 4: Cross-sectional and aggregate results across model variants

Notes: In Panel A, all pricing moments are expressed in annualized net percentage points. In Panel B, all net worth objects are computed using total beginning-of-period net worth, \(n + z \). See Appendix ?? for a description of the “share of switches” metric.

5.1 How do lending relationships shape industry-level and aggregate outcomes?

5.1.1 Loan rates decrease as competition increases.

Table 4.A presents statistics on interest rates and loan quantities, confirming basic insights about competition in our model environment. The effective interest rate \(\tilde{R} \) varies sharply with the degree of competition, dropping around 37% in the competitive model relative to the baseline. This lower effective interest rate raises loan volumes by 4.3%. Raising banks’ static market power in the low elasticity economy increases the effective interest rate by 41%. When banks’ static market power remains unchanged but becomes less sensitive to pricing decisions in the low punishment economy, effective interest rates increase by 18%.

The next three rows decompose these differences using the three components of \(\tilde{R} \) from equation (7). The bulk of the difference stems from higher average rates: banks exercise their market power by charging higher rates across the board. The positive covariance between relationships and rates behaves similarly, but with a smaller magnitude: banks with stronger relationships can charge higher rates and have the same loan volume.\(^{16}\) The covariance term is notably large (48 bps, or 13% of the total effective interest rate) for the low punishment model: in this case, not only are banks with stronger relationships inclined to charge higher rates, but the greater persistence in relationships

\(^{16}\)Of course, this effect is absent in the perfectly competitive economy, which has no notion of relationships.
induces a more unequal bank distribution. Finally, there is a small attenuation effect arising from interest rate dispersion: greater variance in loan rates provides more scope for borrowers to substitute into cheaper borrowing. This effect, however, is quantitatively small across model specifications.

5.1.2 Relationships compress the distribution of bank net worth.

Table 4.B focuses on moments related to the distribution of financial capital (net worth) and relationships in the banking industry. Net worth is both higher on average and less dispersed in the baseline economy than in the competitive economy. Figure 3 plots the partial distributions of net worth and relationships, and the joint distribution of net worth and relationships in the baseline model. Note that the latter two objects are not defined for the competitive economy. The compression of the net worth distribution shown in Figure 3(a) combines two main forces. First, bank market power generates higher franchise values and a lower optimal lending scale in the baseline model. Banks ration quantities to keep markups high, as is standard in models of imperfect competition. Thus banks tend to cluster at lower levels of net worth than unconstrained banks in the competitive case, where there is a large concentration of banks to the right of the dense part of the distribution in the baseline model. Counteracting this first effect, though, is the fact that profitability is lower – and therefore financial constraints are effectively tighter – in the competitive economy.17 Correspondingly, there are far more banks with very low net worth in the competitive economy.

The low elasticity economy features lower average, more compressed net worth than the baseline. This shows that the effects of competition on the overall level of net worth are not monotonic. This is because there are two main effects at play: on one hand, higher profitability per unit of lending

17Additionally, since each unit of lending is less profitable, the “life cycle” of net worth tends to have a much flatter profile in the more competitive economies (shown in Panel (c) of Figure 6(c) and discussed below).
induces higher net worth. On the other hand, more profitable lending means banks are better able to smooth dividends in the face of idiosyncratic uncertainty. Better insurance allows them to operate with lower levels of net worth, and this latter effect dominates as \(\phi \) becomes large enough. Increasing *dynamic* market power instead, as in the low punishment economy, yields lower average net worth but with slightly more dispersion. On the one hand, more persistent relationships give banks an incentive to accumulate more net worth to lend large quantities at high spreads. On the other, the dominance of banks with strong relationships in this model makes it hard for smaller banks to compete and grow, and so there is a long left tail of smaller banks in this case. Quantitatively, the second effect dominates.

5.1.3 Financial and relationship capital are complements.

The last rows in Table 4.B present correlations between the key state variables and interest rate spreads. In each of the less competitive models, there is a strong positive correlation between net worth and relationships. Figure 3(c) depicts the range of relationships across the distribution of net worth in the baseline economy, which visually confirms this correlation: banks with less financial capital have weaker relationships. While relationship strength increases across the entire net worth distribution, this rise is especially sharp over the bottom quartile of the distribution.

In our baseline model, the correlations of spreads with both net worth and relationships are both small but positive. This result combines two effects. First, less capitalized banks – who are constrained by the capital requirement and the prospect of having to issue equity – charge high spreads and lend small amounts, as shown in Figure 4(b). Second, banks with weak relationships tend to price competitively – even below market, with \(r - R < 0 \) – to build relationships for the future, as shown in Figure 4(c). With stronger relationships, banks can sustain lending above
market interest rates. In isolation, these two forces would lead the correlation between spreads and net worth (relationships) to be negative (positive). These forces are tempered, however, by the strong positive correlation between net worth and relationships described above. That is, the banks who are financially constrained and would like to charge high spreads tend to be the very same banks who have weak relationships and therefore would like to charge low spreads. These two effects roughly offset each other across the distribution, as highlighted in Figure 4(a), which plots the joint distribution of net worth and spreads in the baseline model.

How do changes in the competitive landscape alter these effects? With more market power (static or dynamic), constrained banks are able to charge higher interest rates while sustaining similar levels of lending. This naturally strengthens the correlation between relationships and spreads, but also strengthens the correlation between net worth and spreads.

Our model, then, sheds new light on financial constraints in banking. Measuring banks’ net worth provides information on banks’ pricing and lending decisions, but the degree to which these policy functions are actually elastic with respect to net worth, and the levels of net worth at which this elasticity manifests, can vary considerably with relationships and the competitive landscape.

Ultimately, we find that financial and relationship capital are complements. These two types of capital are complements if more net worth delivers more value to a bank with stronger relationships, i.e. if the cross-partial of the value function, \(\frac{\partial^2 V}{\partial n \partial s} \) is positive. Figure 5 plots the partial of the value function with respect to net worth over a range of bank states to confirm this point: everywhere in the state space, this object is weakly increasing as relationships strengthen. Quantitatively, the marginal valuation of net worth is bounded between 1 and \(1 + \psi \) given our specification of equity issuance costs (21). The value \(1 + \psi \) obtains towards the northwest in Figure 5, where banks are

Figure 5: Complementarity of financial and relationship capital

Notes: This figure plots a numerical approximation to the slope of the bank value function with respect to net worth with \(z \) fixed at the median level in the baseline model. The color at each point represents the marginal value of net worth at that point, with shading governed by the color bar to the right of the figure.
financially constrained but have a valuable loan franchise due to strong relationships: here, banks are in fact quite willing to issue equity. Moving down and to the right in the figure towards more financial capital and weaker relationships, banks are less likely to find it optimal to issue new equity, and so the marginal valuation of net worth moves towards 1.

5.1.4 Relationships shape banks’ life cycles.

Figure 6 investigates the life cycle of bank beginning from entry across all versions of our model. In all cases, new banks start out with no net worth (panel (c)), which does not allow for much lending (panel (a)). In the less competitive economies, banks optimally price below market (panel (b)) in order to build relationships (panel (d)). Given the persistence of relationships in the low punishment case, the required period of pricing below market is much longer. By contrast, in the competitive model, banks simply price at the market rate and increase loan volume gradually alongside net worth. Notably, the results in Figure 6 suggest that there is a “sweet spot” with regard to the accumulation of net worth: in the competitive economies, low profit margins across all banks make it hard for banks to accumulate financial capital, while in the less competitive low punishment economy the
intensity with which small, weak relationship banks must compete against more established banks renders profits similarly low. As banks accumulate financial and relationship capital, they lend more while increasing their spreads.

5.2 Empirical validation

In this section we provide empirical validation of our model along two dimensions. First, we demonstrate that our model matches how spreads evolve over the course of a lending relationship by appropriately balancing two competing forces. Second, document that our baseline model of relationships generates incentives to build up capital buffers that are more in line with the data than the alternative models we consider.

5.2.1 Evolution of spreads over a relationship

A key novelty in our framework is the link between persistent lending relationships and banks’ pricing decisions. To have confidence in our model’s predictions about how relationships affect aggregates, then, we must first provide evidence that our model delivers pricing implications given changes in relationships that are in line with the data.

Recall that Figure 2 shows the average difference in interest rates for loans from new banks (“switches”) compared to loans from banks with existing relationships. The key insights from this figure are that: (i) switching loans have are relatively cheap immediately upon and in the first year following the switch; and (ii) this pattern reverses in the second year after the switch.

Does our model deliver similar patterns? We address this question by simulating a panel of banks drawn randomly from the stationary distribution and study how they behave after a share \(\delta_s \) of their relationship capital \(s \) is destroyed. Holding the rest of the banks’ states fixed, this reduction in relationship capital accounts for differences in lending practices solely attributable to differences in relationships, as in our empirical analysis. We choose \(\delta_s \) for each model variant to match the average initial drop in spreads immediately upon switching of 5.38 bps.\(^{18}\)

Figure 7 plots the difference between switching and non-switching loan spreads for our baseline model and several variants, with the empirical relationship reproduced as the black line and shaded region. Our baseline model matches the dynamics of spreads in the data quite closely along several dimensions. In both model and data, banks price below market upon switching, but then steadily charge slightly above-market spreads thereafter. Our model correctly captures – both qualitatively and in terms of magnitudes – the gradual increase in spreads after the “honeymoon phase” following the switch; over the entire three-year span depicted in Figure 7, the relative increase in the spread hovers between 5 and 10 bps as in data.

When we repeat this exercise for the low elasticity and low punishment models, the comparison with the data is less favorable. While both match the initial drop in spreads by construction, they

\(^{18}\)It is perhaps natural to think of a true “switch” as the case \(\delta_s = 100\% \). This implementation, however, is far too extreme with a representative borrower: a bank with \(s = 0 \) faces extremely small loan demand under equation (5), and so prices extremely aggressively to build it up. Empirically, both incumbent and switching lenders have portfolios of borrowers, and so the drop in relationship intensity we implement must be more marginal.
fail to match the data in the subsequent periods in different ways. In the low elasticity model, banks leverage high switching costs to take immediate advantage of their newly captive borrower, charging much higher spreads than we observe in the data. Spreads remain persistently high over the life of the relationship. In the low punishment case, the spreads remain low for longer, but the profile does not level off as in the data. This is because banks need more time to accumulate sufficient relationship capital to increase rates without losing borrowers. Once these relationships are built, though, charging higher spreads does not erode the relationship as much as in the baseline.

5.2.2 Relationships and capital buffers

As discussed throughout Section 5.1, relationships in our model interact with financial constraints in rich ways that shape lending and financing decisions, as well as the distribution of banks across states throughout the industry. Do these interactions deliver financing policies in line with what we see in the data? A key measure of banks’ financing and lending policies – and one with important implications for financial stability – is how capitalized banks are. This is typically measured using the capital buffer, which is the ratio of a bank’s equity value to its asset value.

Figure 8 plots the distribution of capital buffers in the data, as well as across all four variants of our model. The insights here are similar to those from Table 4 and Figure 3. Clearly, our baseline model has the strongest precautionary motive for banks: the average capital buffer is 12.3% as in the data, compared with 9.8% / 10.7% / 11.3% for the competitive / low elasticity / low punishment models. Furthermore, the greatest density of banks occurs at capital buffers in the range of 12-15%
Figure 8: Capital buffers and relationships

Notes: This figure represents the distribution of capital buffers across economies. Each is depicted as a probability mass function with 50 bins between the minimum, $\chi = 8\%$, and 20\% (the share of banks with buffers above 20\% in negligible in each model). The legend includes the share of banks for whom the capital requirement actually binds. The capital buffer is defined as the ratio of book equity to book assets, $\frac{g_q(x)g_\ell'(x) - q_dg_d'(x)}{g_q(x)g_\ell'(x)}$. The data refers to the total capital ratio reported in form FR Y-9C (BHCA7205), averaged across the four quarters of 2019.

as in the data. By comparison, these clusters occur elsewhere in each alternative model. In the competitive case with smaller franchise values, the biggest cluster (nearly 50\% of banks) is directly at the capital requirement. In the low elasticity economy, high returns to lending effectively provide banks insurance against shocks, and so banks cluster between 10\% and 12\%. In the low punishment economy, banks with strong relationships retain even lower capital buffers (clustering between 8\% and 10\%), but there is a fat tail resulting from the fact that many banks have built up net worth but do not yet have strong lending relationships.

Takeaways Section 5.2 has shown that the model specification with parameters (ϕ, ρ_q, ρ_s) directly estimated from the micro data as described in Section 4.2 is better at reproducing untargeted features of the data than models with alternative values for each of these parameters. This gives us confidence that if we were to use a more traditional macro approach to parameter calibration, choosing values to target moments such as the evolution of spreads over relationships and the distribution of capital buffers, we would have likely arrived at similar values for these parameters. It is worth noting that this approach would likely have led our estimates of the persistence of lending relationships to increase (i.e. for ρ_q to decrease and ρ_s to increase). This is because the low punishment model shares key features in common with the data in both experiments: slower rate increases over the first year of the relationship in Figure 7, and a longer right tail of capital buffers in Figure 8.
6 Aggregate Dynamics

We now analyze how lending relationships shape how the economy responds to aggregate shocks. We consider three types of negative aggregate shocks: (i) a “financial crisis”, where all banks experience a proportional decline in their net worth; (ii) a shock to the deposit funding cost of banks, \bar{q}^d, and (iii) a negative shock to loan demand. We assume that these are one-time, unanticipated shocks.

6.1 Net worth or “financial crisis” shock

Figure 9 plots the response of aggregate variables to a negative aggregate shock in which the net worth of every bank unexpectedly declines by 25%. This shock is consistent with unexpected losses arising from other business lines within the bank, such as mortgage lending and/or MBS holdings during the 2007-08 financial crisis. Panels (a) through (f) present the effects of the shock on the effective interest rate, total lending, total net worth, average capital buffer, total deposits, and net dividend payouts, respectively, for the baseline and competitive economies. While the responses are qualitatively similar between the two economies, there are important quantitative differences.

Panels (a) and (b) show that the increase in the effective interest rate and corresponding decrease in lending are larger on impact and more persistent in the baseline economy than the competitive one. On impact, for example, the drop in lending is 26 bps or 36% larger. Panel (c) shows that these dynamics allow banks to recapitalize much more quickly in the baseline, despite the initial drop being the same across models by construction. These results come from banks with stronger relationships exploiting the complementarity between relationship and financial capital, which they are unable to do in the competitive case. Faced with tighter financial constraints, they take advantage of captive borrowers by raising interest rates. Since all banks respond this way, and since relationships evolve based on relative loan volume, in equilibrium there is no net erosion of relationships associated with this strategy. As a result, this advantage persists over the life of the recovery.

In both economies, these loan market outcomes also shape banks’ financing responses. On impact, banks in both economies replace their net worth with deposit financing and cut dividends, with the former effect leading to smaller capital buffers (note that the capital buffer depends on the behavior of both lending and net worth). In the baseline economy with relationships, though, the faster recovery of bank net worth promotes quicker rebuilding of capital buffers. This implies that while lending relationships amplify the real effects of the financial shock, they also promote financial stability and resilience within the banking sector in the subsequent recovery.

6.2 Funding cost or “monetary tightening” shock

Figure 10 considers a negative shock to \bar{q}^d, such that banks’ cost of funding increases from 2% to 4% (annualized). Unlike the one-time net worth shock, this shock is persistent with $\rho = 0.5$. This is a stylized way of modeling a persistent monetary policy shock and studying its transmission through

\footnote{Appendix C.3 contains the same results for the low elasticity and low punishment economies. These results are qualitatively similar to the baseline, for the most part, so we exclude them from the main text for brevity.}
the bank lending channel in the context of our model. This exercise is similar to the one performed by Wang et al. (2022), among others.

On the real side, the responses of both economies are qualitatively similar. The increased cost of funding is largely passed through to borrowers, yielding a persistent increase in loan rates and a corresponding persistent drop in loan volumes. Thus both models generate standard transmission of monetary policy to quantities of credit, which affects real activity via the working capital constraint.

While this pass-through is almost complete in the competitive case (96.5% on impact), it is muted in the relationship model (79.5%). The former result comes from the fact that net interest margins are razor thin in the competitive model: just 0.1% in steady state, or 91% lower than the baseline model. The latter result arises because, in the relationship model, well-capitalized banks – i.e. those with greater capital buffers and less direct dependence on deposit financing – seize on this shock and their relatively advantageous financial position as an opportunity to build relationships. As a result, these banks raise interest rates by less. This damps the upward pressure on the effective interest rate through both the level and covariance components.

In terms of bank financing, raising the relative cost of deposit financing promotes the build-up of capital buffers, and so banks increase their net worth in both economies. In both cases, then, banks substitute away from deposits and into retained earnings to fund their loans as long as the funding cost remains sufficiently elevated. As part of this substitution, banks cut dividends and/or issue equity (depending on their initial net worth position). Given the substantial gap in profit margins
across the two economies, though, this effect is much more pronounced in the baseline model: the increase in net worth (capital buffers) peaks at 9.4% (10.2%) above steady state, as opposed to 3.2% (6.5%) in the competitive model, and the relative drop in total dividends on impact is -2.5 pp as opposed to -0.9 pp.

Ultimately, while the pass-through of monetary policy to the credit market plays out similarly in the two economies, but is relatively muted in the baseline. The degree of competition generates stark differences in how bank net worth and capital buffers react to a tightening of monetary policy, which has natural implications for financial stability.

6.3 Loan demand shock

Figure 11 plots the effects of a persistent contraction in loan demand. We model this as a 1% drop in firm TFP A with a persistence of 0.5. The headline result from this analysis is that the presence of lending relationships sharply dampens the contraction in loan volume, and therefore total output, associated with the drop in TFP. Whereas the equilibrium loan rate drops only 0.13 pp on impact in the competitive model, it drops 1.25 pp in the relationship model (approximately 9 times more). This translates into an initial drop in total lending that is 19.5% smaller in the baseline economy. The bolstering of lending we observe in the relationship model arises from banks’ dynamic incentives: despite lending being less profitable today given the drop in aggregate demand, banks would still like
to improve their relative position by lending more to build and maintain relationships for tomorrow.

Turning to the financing side, we see that this sharp drop in profitability in the relationship model causes a much larger and more persistent contraction in banks’ net worth than in the competitive model. This drop in net worth, however, is smaller in magnitude than the drop in lending, and so capital buffers increase on net. It is telling that this drop in net worth occurs despite a large cut in deposit financing and a cut in net dividend payouts: taken together, these results imply that the drop in net worth must be driven by lending unprofitably in the early aftermath of the initial shock. By contrast, banks in the competitive model respond to the negative shock to loan demand by simply shrinking: they cut their deposit base and increase dividend payouts. Clearly this difference in response stems from the fact that the competitive banks have no reason to lend at undesirable terms absent dynamic relationship considerations. While relationships temper the impact of the shock on the real side, this happens with no appreciable cost to financial stability (as measured by capital buffers), despite the amplified contraction in bank net worth.

7 Conclusion and Directions for Future Research

This paper presents a quantitative framework with which to evaluate the aggregate consequences of lending relationships. Our model environment combines standard features from the literature on heterogeneous banks subject to financial constraints with two novel elements: (i) loan sourcing
adjustment costs for borrowers; and (ii) internalization of relationship formation by banks. These elements yield a tractable but rich model of relationships which is amenable to direct estimation of key relationship parameters and efficient computation, despite the richness of heterogeneity and financing choices within the banking sector.

Quantitatively, we present four primary results. First, our baseline model matches the profile of interest rate spreads over the life of a bank-borrower relationship that we observe in the data. Our model gets both the static and dynamic components of the market power which arises from relationships right, as model variants which vary either element struggle to match this empirical profile. Second, we show that financial and relationship capital are complements at the bank level and therefore correlated in the equilibrium distribution of banks in the model. Third, we show that the equilibrium relationship between the degree of lending relationships and the strength of banks’ capital buffers is non-monotone: our baseline model features stronger precautionary motives than both more and less competitive alternatives. Fourth, we show that relationships shape both the real and financial impacts of aggregate shocks to both credit supply and credit demand.

Our analysis suggests several promising directions for future research. First, over the past several decades the U.S. commercial banking industry has consolidated, and alternative financial intermediaries (shadow banks, “fintech”) have grown. On one hand, consolidation could make relationships matter even more, while increased competition from alternatives could counteract this effect. Our framework is well-suited to measuring the aggregate impacts of these forces along this transition. Second, the fact that different countries’ banking sectors are structured in ways very different from the U.S. might imply different interactions between relationship capital and financial frictions than those described in the present paper, which was intended to model the U.S. banking sector. For example, it is well-documented that the Canadian banking sector is considerably more consolidated than the U.S. financial sector. Third, our results on aggregate dynamics suggest a rich interplay between relationships and bank capitalization, which could have important implications for regulation and financial stability. We leave these and other avenues for future research.
References

Appendix for “A Quantitative Theory of Relationship Lending”

A Model Appendix

A.1 Proof of Proposition 1: Loan Demand System

First note that cost-minimization implies an optimal capital-labor ratio that allows us to express optimal labor as a function of the choice of capital

\[n = \frac{\bar{w} \eta k}{\bar{w} \alpha} \tag{A.1} \]

This implies that total costs can be written as \(\bar{w} k + \bar{w} k = \bar{w} \frac{k^{\alpha+n}}{\alpha} \). Begin by placing multipliers \(\lambda \geq 0 \) on constraint (3) and \(\zeta \geq 0 \) on constraint (4) and taking first order conditions in the borrower’s problem (2) – (4):

\[
\begin{align*}
[k] & \quad A \left(\frac{\alpha}{\bar{w} \alpha} \right)^{1-\eta} \left(\frac{\eta}{\bar{w}} \right)^{\eta} \frac{k^{\alpha+n-1}}{1 + \lambda \kappa} = 1 + \lambda \kappa \\
[L'] & \quad 1 - \frac{\phi}{2} \int \left(\frac{q L'(q, s)}{L'} - s + S - 1 \right)^2 d\mu(q, s) - \phi L' \int \left(\frac{-q L'(q, s)}{L'} \right) \left(\frac{q L'(q, s)}{L'} - s + S - 1 \right) d\mu(q, s) \\
+ \lambda - \zeta & = 0 \\
[q L'(q, s)] & \quad - \phi L' \frac{q L'(q, s)}{L'} - s + S - 1 \right) d\mu(q, s) + \varphi \mathbb{E} \left[V_{L'}(\ell'; \mu) \right] + \zeta q d\mu(q, s) = 0
\end{align*}
\]

With the envelope condition \(W_L(L; \mu) = -d\mu(q, s) \), we obtain the optimality conditions:

- for capital demand:
 \[
 k = \left[A \left(\frac{\alpha}{\bar{w} \alpha} \right)^{1-\eta} \left(\frac{\eta}{\bar{w}} \right)^{\eta} \frac{k^{\alpha+n-1}}{1 + \lambda \kappa} \right]^{1/1-\alpha-\eta} \tag{A.2}
 \]

Applying the binding working capital constraint (3) again, using (A.1) and (A.2) gives aggregate loan demand:

\[
L' = \kappa (\alpha + \eta) \left[A \left(\frac{\alpha}{\bar{w} \alpha} \right)^{\alpha} \left(\frac{\eta}{\bar{w}} \right)^{\eta} \right]^{1/1-\alpha-\eta} \tag{A.3}
\]

where all we need to do is solve for \(\lambda \).

- for bank-specific loan demand:\footnote{A useful result here is if \(X = \mathbb{E}[x] \), then \(\mathbb{E}[x/X] = \mathbb{E}[x]/X = X/X = 1 \), and similarly
 \[
 V\left(\frac{x}{X} \right) = \mathbb{E} \left[\left(\frac{x}{X} - \mathbb{E} \left(\frac{x}{X} \right) \right)^2 \right] = \mathbb{E} \left[\left(\frac{x}{X} - 1 \right)^2 \right] = \mathbb{E} \left[\left(\frac{x}{X} \right)^2 \right] - 2 \mathbb{E} \left(\frac{x}{X} \right) + 1 = \mathbb{E} \left[\left(\frac{x}{X} \right)^2 \right] - 1
 \]
}

\[
\zeta = \frac{q}{q} + \phi \left(\frac{q L'(q, s)}{L'} - s + S - 1 \right) \text{ for all } (q, s) \tag{A.4}
\]

Recognizing that equation (A.4) holds for all \((q, s) \), we can integrate the right hand side over...
the distribution μ to obtain:

$$\zeta = \bar{q} \int \frac{d\mu(q,s)}{q} + \phi \int \frac{q\ell'(q,s)}{L'} d\mu(q,s) - \phi \int s d\mu(q,s) + \phi(S - 1) = \bar{q}R \quad (A.5)$$

Plugging (A.5) back into (A.4) and rearranging terms gives us our bank-specific loan demand equation (5).

• for total loan demand:

$$1 + \lambda - \zeta = \frac{\phi}{2} \int \left(\frac{q\ell'(q,s)}{L'} - s + S - 1 \right)^2 d\mu(q,s) - \frac{\phi}{L} \int q\ell'(q,s) \left(\frac{q\ell'(q,s)}{L'} - s + S - 1 \right) d\mu(q,s)$$

$$= \phi \int \left(\frac{q\ell'(q,s)}{L'} - s + S - 1 \right) \left(\frac{1}{2} \left(\frac{q\ell'(q,s)}{L'} - s + S - 1 \right) - \frac{q\ell'(q,s)}{L'} \right) d\mu(q,s)$$

$$= \frac{\phi}{2} \int \left(\frac{q\ell'(q,s)}{L'} \right)^2 d\mu(q,s) - \int (s - S + 1)^2 d\mu(q,s)$$

$$= \frac{\phi}{2} \left[\nu_\mu \left(\frac{q\ell'}{L'} \right) - \nu_\mu(s) \right] \quad (A.6)$$

We can use (5) to simplify (A.6):

$$\nu_\mu \left(\frac{q\ell'}{L'} \right) - \nu_\mu(s) = \nu_\mu \left(1 + S - s - \frac{\bar{q}}{\phi}(r - R) \right) - \nu_\mu(s)$$

$$= \nu_\theta(s) + \nu_\mu \left(\frac{\bar{q}}{\phi}(r - R) \right) + 2C_\mu \left(s, - \frac{\bar{q}}{\phi}(r - R) \right) - \nu_\mu(s)$$

$$= \left(\frac{\bar{q}}{\phi} \right)^2 \nu_\mu(r) - 2 \frac{\bar{q}}{\phi} C_\mu(s, r) \quad (A.7)$$

This delivers the aggregate demand equation (6) since we now have

$$1 + \lambda - \bar{q}R - \phi(1 - S) = -\frac{\phi}{2} \left[\left(\frac{\bar{q}}{\phi} \right)^2 \nu_\mu(r) - 2 \frac{\bar{q}}{\phi} C_\mu(s, r) \right]$$

$$\Rightarrow \lambda = \frac{\bar{q}}{\phi} \left[R + C_\mu(s, r) - \frac{1}{2} \nu_\mu(r) \right] - 1$$

where the term in brackets is equal to \tilde{R} from equation (7) in the main text.

A.2 Proof of Proposition 2: Bank Financing and Lending

Since $\psi'(e) > 0$, the budget constraint (9) must bind, and so we can eliminate e from the set of control variables. Mechanically, conditions (11), (12), and (13) must bind with $\ell(q, s)$ given by (5), and so we may further eliminate s', ℓ', and n'. This leaves us with a two-control-variable problem (dropping explicit dependence on μ to ease notation):

$$V(n, s, z) = \max_{q, d} \psi \left(\bar{q}d + z + n - q\ell(q, s) \right) + \bar{q}E \left[(1 - \pi)\psi(n'(q, d', s)) + \pi V(n'(q, d', s), s'(q, s); z') \right]$$

subject to $|\lambda| \leq (1 - \chi)q\ell(q, s)$
where it is understood that \(n'(q, d', s) = \ell(q, s) - d' \) and \(s'(q, s) = \rho q L s + \rho s \) (we keep these general for now). Taking first order conditions, we obtain:

\[
\frac{\partial \ell}{\partial q} \psi'(e) = q(1 - \pi) E \left[\psi'(n') \frac{\partial n'}{\partial q} \right] + q \pi \frac{\partial \ell}{\partial q} \\
+ \lambda(1 - \chi) \frac{\partial \ell}{\partial d'} \\
\psi'(e) = -q(1 - \pi) E \left[\psi'(n') \frac{\partial n'}{\partial d'} \right] - q \pi \frac{\partial \ell}{\partial q} \left[\ell'(q, s') + \ell'(s, z') \right] + \lambda q \pi
\]

The relevant envelope conditions are:

\[
V_n(n, s, z) = \psi'(e) \\
V_s(n, s, z) = q \frac{\partial \ell}{\partial s} \left[\lambda(1 - \chi) - \psi'(e) \right] + q(1 - \pi) E \left[\psi'(n') \frac{\partial n'}{\partial s} \right] \\
+ q \pi \frac{\partial \ell}{\partial q} \left[\ell'(q, s') + \ell'(s, z') \right] + \lambda q \pi
\]

In addition, the ancillary derivatives for accumulating state variables are

\[
\frac{\partial n'}{\partial q} = \frac{\partial \ell}{\partial q} \quad \text{and} \quad \frac{\partial n'}{\partial d'} = \frac{\partial \ell}{\partial d'} \\
\frac{\partial s'}{\partial q} = \rho \frac{\partial q \ell}{\partial q} \quad \text{and} \quad \frac{\partial s'}{\partial s} = \rho \frac{\partial q \ell}{\partial d} + \rho s
\]

Finally, it is useful to define the expected marginal value of funds tomorrow as

\[
\psi^e(e') \equiv \pi \psi'(n') + (1 - \pi) \psi'(e')
\]

Turning first to financing results, combining equations (A.12) and (A.10) with (A.9) yields

\[
\lambda = \psi'(e) - \frac{\bar{q}}{q} E \left[\psi^e(e') \right]
\]

If the capital requirement is slack, then the bank equates the marginal value of internal funds today to the expected marginal value of funds tomorrow. If the capital requirement is binding, then \(\lambda > 0 \) and the marginal value of funds today may exceed the expected value in the following period.

Before considering the pricing policy, it is useful to simplify the envelope condition for relationship intensity (A.11). Using (A.12) and (A.10) and switching to sequential notation, we can first write

\[
V_{s,t} = q_t \frac{\partial \ell_{t+1}}{\partial s} \left[\lambda_t(1 - \chi) - \psi'(e_t) + \frac{\bar{q}}{q_t} E_t \psi^e(e_{t+1}) \right] + \frac{\bar{q}}{q_t} \frac{\partial s_{t+1}}{\partial s} E_t \left(V_{s,t+1} \right)
\]

where the term in brackets represents the static flow profits associated with an additional unit of lending defined in (15). From equation (5) we know that \(\frac{\partial \ell}{\partial s} = \frac{L'}{q} \) which implies that \(\frac{\partial s'}{\partial s} = \rho q + \rho s \).
so this can be simplified further:

\[V_{s,t} = L_{t+1} \Pi_t + \bar{q} \pi (\rho_q + \rho_s) \mathbb{E}_t (V_{s,t+1}) \]

(A.15)

Iterating on equation (A.15) yields

\[
V_{s,t} = \sum_{i=0}^{\infty} (\bar{q} \pi (\rho_q + \rho_s))^i L_{t+i+1} \Pi_{t+i}
\]

(A.16)

Next, combine equations (A.8), (A.12), (A.13), (A.10), and the simplifications above to obtain a modified version of the pricing optimality condition

\[
\frac{\partial q_t}{\partial q} \psi'(e) = q_0 \frac{\partial q_t}{\partial q} + \ell,
\]

\[
\frac{\partial q_t}{\partial q} = \frac{\partial q_t}{\partial q} - \ell = \frac{1}{q} (1 - \epsilon^{-1}(q_t, q))
\]

where \(\epsilon(q_t, q) \) denotes the elasticity of total loan demand, \(q_t \), with respect to loan price, \(q \), so that \(\epsilon^{-1} \) is the inverse elasticity. Then, combining this expression and the simplified envelope condition (A.16), we obtain the expression from (14):

\[
\Pi_t + \bar{q} \pi \rho_q \mathbb{E}_t \left[\sum_{i=0}^{\infty} (\bar{q} \pi (\rho_q + \rho_s))^i \frac{L_{t+1} \Pi_{t+1+i}}{L_{t+1}} \right] = \epsilon^{-1}(q_t \ell_{t+1}, q_t) \frac{\bar{q}}{q_t} \mathbb{E}_t [\psi'(e_{t+1})]
\]

(A.17)

The last part of the proof is to give the form of the inverse elasticity term in equation (16). To derive this, simply compute the derivative of \(q_t \) with respect to \(q \) in equation (5):

\[
\frac{\partial q_t}{\partial q} = -L' \frac{\bar{q}}{\phi} \left(-\frac{1}{q} \right)^2 \frac{q^2}{\phi} = \epsilon(q_t, q) \equiv \frac{\partial q_t}{\partial q} \frac{q_t}{q} = \frac{1}{q} \frac{L'}{q}
\]

\[
A.3 \text{ General adjustment cost function}
\]

Assume the quadratic adjustment cost function in (2) is replaced by:

\[
L' \int \phi \left(\frac{q_t \ell(q, s)}{L'}, s \right) d\mu(q, s)
\]

where \(\phi(\cdot) \) is a generic penalty function that allows for a more general relationship between relative relationship intensity and loan share. Note that this specification still embeds that total adjustment costs scale with the total size of the loan portfolio.

Extending the same analysis from Appendix A.1 shows that this specification gives rise to the
modified demand system:

\[-\bar{q} (r - R) = \phi_1 \left(\frac{q^{\ell}(q, s)}{L'}, s \right) - \int \phi_1 \left(\frac{q^{\ell}(q, s)}{L'}, s \right) d\mu(q, s) \equiv \Phi_1 \]

\[L' = \kappa(\alpha + \eta) \left[A \left(\frac{\alpha}{n} \right)^\alpha \left(\frac{n}{\bar{n}} \right)^{\eta} \right]^{\frac{1}{1-n-\eta}} \]

where \(\tilde{\Lambda}(\mu) = \bar{q} R + \int \phi \left(\frac{q^{\ell}(q, s)}{L'}, s \right) d\mu(q, s) - \int \left(\frac{q^{\ell}(q, s)}{L'} - 1 \right) \phi_1 \left(\frac{q^{\ell}(q, s)}{L'}, s \right) d\mu(q, s) - 1 \equiv \Phi \]

Equation (A.18) is the analog of (5) in the main text; likewise, equation (A.19) is the analog of (6) in the main text. The former equation still takes the form of specifying loan demand as a function of a pricing penalty term and the marginal cost of relationship adjustment. Likewise, the latter specifies aggregate demand as a function of average interest rates, a term describing aggregate adjustment costs (akin to the covariance term in (7)), and marginal adjustment costs. In particular, assuming that \(\phi_1 \) is invertible, we can write the demand function as

\[\frac{q^{\ell}(q, s)}{L'} = (\phi_1^{-1}) \left(\Phi_1 - \bar{q} (r - R), s \right)\]

This demand function satisfies the same properties as the one that arises from quadratic adjustment costs as long as \(\phi_1^{-1} \) is increasing in both of its arguments. That is, demand rises with more relationship intensity and/or with lower interest rate spreads.

Note the change of notation from \(\tilde{R}(\mu) \) in the main text. This is because \(\Lambda \) is actually the multiplier on the working capital constraint, which measures the excess borrowing costs. The analog of \(\tilde{R} \) in this context would be such that it solves \(\tilde{\Lambda} = \bar{q} \tilde{R} - 1 \), or

\[\tilde{R} = R + \bar{q}^{-1} \left[\Phi - \Phi_1 + \int \phi_1 \left(\frac{q^{\ell}(q, s)}{L'}, s \right) \frac{q^{\ell}(q, s)}{L'} d\mu(q, s) \right]\]

A.4 CES loan demand

This subsection describes the model with CES loan demand. The firm’s problem can be written as

\[W(\mathcal{L}; \mu) = \max_{n, k, L', (\ell(q, s))} Ak^\alpha n^\eta - \bar{w}n - \bar{w}k + L' - \int \ell(q, s) d\mu(q, s) + \bar{q} \mathbb{E} [W(\mathcal{L}'; \mu)] \]

subject to

\[\kappa(\bar{w}n + \bar{w}k) \leq L' \]

\[L' \leq \left[\int (s^\theta q^{\ell}(q, s))^{\frac{1}{1-\theta}} d\mu(q, s) \right]^{\frac{1}{1-\theta}} \]

Note that we include the relationship term \(s \) directly in the CES for loan demand, in the spirit of how Gilchrist et al. (2017) interpret customer capital in product markets. \(\theta \) is a parameter that affects how the relationship intensity influences the contribution of borrowing from a particular firm to total borrowing. This is interpreted as a preference shifter in the customer capital literature.
Define \tilde{R}^{CES} as a habit-weighted geometric mean of interest rates:

$$\tilde{R}^{CES} \equiv \frac{1}{[\int (s^q)^{\epsilon-1} d\mu(q,s)]^{1/\epsilon-1}}$$ \hspace{1cm} (A.20)

Then, we can show that the two-tier demand system becomes

$$\frac{q_{\ell}'(q,s)}{L'} = s^\theta(\epsilon-1) \left(\frac{1}{\tilde{R}^{CES}} \right)^{-\epsilon}$$

$$L' = \kappa(\alpha + \eta) \left[\frac{A(\frac{\alpha}{\pi})^\alpha (\frac{\eta}{\pi})^\eta}{1 + \kappa(q\tilde{R}^{CES} - 1)} \right]^{1-\alpha-\eta}$$

As it is well known, the price-elasticity of demand with respect to $R = 1/q$ is equal to $-\epsilon$, and therefore does not vary either with price or the intensity of relationships.

We can then take logs of the individual demand function to write an estimable version:

$$\log \left(\frac{q_{\ell}'(q,s)}{L'} \right) = -\epsilon r + \epsilon \log \tilde{R}^{CES} + \theta(\epsilon - 1) \log s$$

where we use the fact that $\log(1/q) \simeq -r$. The above condition can be estimated using the techniques described in the main body of the text. In this case, while \tilde{R}^{CES} is no longer an average spread, it is subsumed in firm-time FE.

A.5 Kimball loan demand

This subsection describes a specification for loan demand following Kimball (1995). The firm’s problem can be written as

$$W(\mathcal{L}; \mu) = \max_{n,k,L',\ell(q,s)} Ak^n n^{-\nu} - \tilde{\omega}n - \tilde{\omega}k + L' - \int \ell(q,s) d\mu(q,s) + \tilde{\pi}E \left[W(\mathcal{L}'; \mu) \right]$$

subject to

$$\kappa(\tilde{\omega}n - \tilde{\omega}k) \leq L'$$

$$1 = \int G \left(s^\theta q_{\ell}'(q,s) \right) d\mu(q,s)$$

where G is a general aggregator. We follow Dotsey and King (2005) in assuming that this aggregator takes the form

$$G(x) = \frac{\omega}{1 + \omega \nu} \left[(1 + \nu)x - \nu \right]^{\frac{1 + \omega \nu}{\omega(1 + \nu)}} + 1 - \frac{\omega}{1 + \omega \nu}$$

Note that this aggregator becomes a standard CES when $\nu = 0$, with $\omega = \frac{\epsilon - 1}{\epsilon}$. The relevant effective price in this case is defined as

$$\tilde{R}^{K} = \left[\int \left(\frac{1}{s^\theta q} \right)^{\frac{1 + \omega \nu}{\omega(1 + \nu)}} d\mu(q,s) \right]^{\frac{1 - \omega}{1 + \omega \nu}}$$ \hspace{1cm} (A.21)

This allows us to write the bank-specific demand function as

$$\frac{q_{\ell}'(q,s)}{L'} = \frac{1}{1 + \nu s^\theta} \left[\frac{1}{q} \tilde{R}^{K} \left(\frac{\omega(1 + \nu)}{1 - \omega} \right) + \nu \right]$$ \hspace{1cm} (A.22)
where \(R \equiv 1/q \). The firm’s aggregate credit demand is still given by an expression of the form

\[
L' = \kappa(\alpha + \eta) \left[A \left(\frac{q}{s} \right)^\alpha \left(\frac{\eta}{s} \right)^\eta \right]^{\frac{1}{1-\alpha-\eta}}
\]

where \(\lambda \) is now given by a more involved expression:

\[
\lambda = \tilde{R}Kq \int \left\{ (1 + \nu) \frac{1}{s^\theta} \frac{q\ell'(q, s)}{L'} - \nu \right\} \frac{\omega^{(1+\nu)}}{s^\theta} \frac{1}{\omega} \frac{q\ell'(q, s)}{L'} d\mu(q, s) - 1
\]

The Kimball demand function has advantages and disadvantages over the CES specification. The main advantage is that unlike in the CES case, the price-elasticity of demand under Kimball (1995) is no longer constant and varies with both price and relationship intensity,

\[
\epsilon(q\ell, R) = \frac{\omega(1 + \nu)}{1 - \omega} \left(\frac{1}{s^\theta} \frac{R}{RK} \right)^{\frac{(1+\nu)}{1-\omega}} + \nu
\]

One disadvantage, however, is that the bank-specific demand function (A.22) no longer has a functional form that is amenable to direct estimation with linear methods. In particular, the right-hand side depends on the bank-specific interest rate, the relationship intensity term, and on the aggregate time-varying object \(\tilde{R}K \), and these terms cannot be disentangled with either linear or log-linear transformations of this expression.

A.6 Model with perfect competition

The perfectly competitive version of our model corresponds to the case in which there are no adjustment costs; that is, the case when \(\phi = 0 \) in the borrower’s objective function (2). In this case, the state variable \(s \) is completely redundant. Furthermore, there is no reason for the borrower to diversify its loan portfolio, and in fact bank-specific demand is not well-defined and so in equilibrium all banks must charge the same loan price, \(Q = R^{-1} \).

Correspondingly, the problem of the borrower is simply to choose labor, capital, and total loan demand per the following problem:

\[
W(\mathcal{L}; R) = \max_{n, k, L'} Ak^{\alpha}n^\eta - wn - wc k + \frac{L'}{R} - L + \nu \mathbb{E} [W(\mathcal{L}'; R)]
\]

subject to

\[
\kappa(wn + wc k) \leq \frac{L'}{R}
\]

The objective function (A.23) is modified relative to the original objective (2) to reflect that there are no loan sourcing considerations in this model and there is only a single equilibrium loan price. As a result, the loan sourcing constraint (4) is obviated in this version of the model. Finally, observe that the working capital constraint (A.24) is the same as the original constraint (3), with the modification that discount prices are accounted for directly on \(L' \) rather than on the individual \(\ell' \). The solution to this problem yields the same aggregate demand curve as in equation (6), with the modification
that the effective interest rate $\tilde{R}(\mu)$ is replaced by the single equilibrium interest rate R:

$$L'(R) = \kappa(\alpha + \eta) \left[A \left(\frac{\alpha}{\mu} \right)^{\alpha} \left(\frac{\eta}{\mu} \right)^{\eta} \right]^{\frac{1}{\alpha + \eta}}$$ \hspace{1cm} (A.25)

The problem of the banks is similarly stripped down:

$$V(n, z; R) = \max_{e, \ell' \geq 0, d', n'} \psi(e) + \bar{q} \pi \mathbb{E} \left[V(n', z'; R) \right]$$ \hspace{1cm} (A.26)

subject to

$$q \ell' + e \leq n + z + \bar{q} d'$$ \hspace{1cm} (A.27)

$$\chi q \ell' \leq q \ell' - \bar{q} d'$$ \hspace{1cm} (A.28)

$$n' = \ell' - d'$$ \hspace{1cm} (A.29)

The only change in the objective function in (A.26) relative to the baseline (8) is the elimination of the state variable s from the value function and the removal of the loan price q from the set of control variables. Constraints (A.27), (A.28), and (A.29) are identical to their counterparts from the baseline model, (9), (10), and (13), respectively. Since banks do not face bank-specific demand curves and the state variable s has no meaning in this version of the model, constraints (12) and (11) become irrelevant in this case.

A stationary recursive competitive equilibrium for this version of the model is defined in the standard way. The main differences relative to the equilibrium definition from the main text are that now borrower optimality specifies only aggregate demand, and the distributional consistency condition is replaced by the simple market clearing condition that aggregate demand equals aggregate supply, integrated across the entire equilibrium distribution of banks.

$$L'(R) = \int \ell'(n, z)d\mathbb{m}(n, z)$$ \hspace{1cm} (A.30)

B Computational Algorithms

B.1 Bank problem

The solution to the bank problem takes the current distribution of prices and relationships, μ, as given, and so the notation in this section suppresses that argument.

1. **Compute continuation value.** Given a current guess V_0 of V, compute the expected continuation value (denoted \bar{W}) for all (n, s, z):

$$\bar{W}(n, s, z) = (1 - \pi)\psi(n) + \pi \sum_{z'} \Gamma(z, z') V_0(n, s, z')$$ \hspace{1cm} (B.1)

2. **Solve for optimal policies.** Fix (n, s, z). Solve for optimal policies and the updated value function by considering two candidate policies: (i) one with a binding capital requirement binds and unrestricted dividends; and (ii) one with a slack capital requirement and non-negative dividends. This approach leverages the result that if the capital requirement is slack, the bank will not issue equity, which follows from $\bar{q}d' > \bar{q}$ and the kink in the equity issuance cost function at 0.

In practice, this approach has three advantages. First, finding optimal policies while assuming the capital requirement binds is a straightforward univariate search, since the d' associated
with each q is determined by the capital requirement, and the dividend is determined by the flow budget constraint. Second, as will be shown below, the set of states and prices for which a slack capital requirement is feasible is much smaller than those for which a binding capital requirement is feasible, and so we can eliminate some more costly bivariate search. Third, given the kink in the equity issuance cost function at zero, this approach is more stable numerically.

(a) **Binding capital requirement:** Solve for optimal q policies using golden section search. At each candidate q, the implied loan demand $\ell(q, s)$ and next period customer capital $s'(q; s)$ via (5) and (11), respectively, the associated deposits $d'(q; s)$ are determined by the binding capital requirement (10), the associated dividend $e(q, n, s, z)$ is determined by the flow budget constraint (9), and the implied next period net worth $n'(q, d'; s)$ is given by the law of motion (13). The search range over q is bounded below by the lowest price such that loan demand is non-negative, which is computed from (5):

$$q_{\text{min}}(s) = \left[R(\mu) + \frac{\phi}{\bar{q}} (1 - S + s) \right]^{-1} \quad \text{(B.2)}$$

Set an arbitrary upper bound q_{max} to define the search area; after solving be sure to check that this does not bind. For each candidate q, given the implied d', the value of the action is given by (q, d') according to

$$v(q, d'(q; s); n, s, z) = \psi \left(\bar{q}d'(q; s) + n + z - q\ell(q, s) \right) + \psi W \left(n'(q, d'(q; s); s), s'(q; s), z \right)$$

This step requires interpolation on n' and s'. Denote the value associated with the binding capital requirement by

$$v_b(n, s, z) = \max_{q \in [q_{\text{min}}(s), q_{\text{max}}]} v(q, d'; n, s, z) \quad \text{(B.3)}$$

(b) **Slack capital requirement:** Implement nested golden section with the q choice as the outer loop and deposits d' in the inner loop. For each candidate q, we consider deposits d' in the range $[d_{\text{min}}(q; n, s, z), d_{\text{max}}(q; s)]$, where $d_{\text{max}}(q; s)$ comes from the binding capital requirement (10) and d_{min} comes from the restriction that dividends must be non-negative and the flow budget (9):

$$d_{\text{min}}(q; n, s, z) = \frac{q\ell(q; s) - n - z}{q' d'} \quad \text{(B.5)}$$

In order for this interval to be well-defined, we must have $d_{\text{min}} < d_{\text{max}}$, which occurs when $\chi q\ell(q, s) \leq n + z$, or $q \leq \hat{q}(n, s, z)$ where:

$$\hat{q}(n, s, z) = \left[R + \frac{\phi}{\bar{q}} \left(1 - S + s - \frac{n + z}{\chi L'} \right) \right]^{-1} \quad \text{(B.6)}$$

Similarly, it must be the case that for the lowest feasible non-negative dividend ($e = 0$), $\bar{q}' d' \geq 0$. Therefore we must have $q\ell(q, s) \geq n + z$, or $q \geq \bar{q}$ where:

$$\bar{q}(n, s, z) = \left[R + \frac{\phi}{\bar{q}} \left(1 - S + s - \frac{n + z}{L'} \right) \right]^{-1} \quad \text{(B.7)}$$

\[\text{ix}\]
Therefore, the optimal policy for a slack capital requirement can be determined by solving:

\[w_s(q; n, s, z) = \max_{d' \in [d_{\min}(q, s), d_{\max}(s)]} v(q, d'; n, s, z) \] \hspace{2cm} (B.8)

\[v_s(n, s, z) = \max_{q \in [\hat{q}(n, s), \hat{q}(n, s, z)]} w_s(q; n, s, z) \] \hspace{2cm} (B.9)

The implied dividend, loan demand, future net worth, and future relationships are determined exactly as in the case of the binding capital requirement. Note that a slack capital requirement is only feasible if the price interval \([\hat{q}, \hat{q}]\) is non-empty, which only occurs when \(n + z \geq 0\); otherwise, the capital requirement must bind and the bank issues equity.

(c) If both policies are feasible, set the update \(V_1\) of \(V\) to

\[V_1(n, s, z) = \max \{ v_b(n, s, z), v_s(n, s, z) \} \] \hspace{2cm} (B.10)

If only the binding capital requirement policies are feasible, set \(V_1(n, s, z) = v_b(n, s, z)\). Assign the policy functions to be those from the relevant sub-problem as well.

3. **Evaluate convergence of the value function and decision rules.** Let \(\Delta_V = \max_x |V_1(x) - V_0(x)|\), \(\Delta_q = \max_x |q_1(x) - q_0(x)|\), and \(\Delta_d = \max_x |d'_1(x) - d'_0(x)|\). If \(\max_i \in 1, q, d'\{\Delta_i\} < \varepsilon\), a pre-specified tolerance parameter, then the problem is solved; otherwise, set \(V_0 = V_1\), \(q_0 = q_1\), and \(d'_0 = d'_1\) and return to step 1.

B.2 Steady state

1. Begin with a guess of bank pricing and deposit policies \(q_0(x)\) and \(d'_0(x)\), the bank value function \(V_0(x)\), and the distribution of banks over states \(m_0(x)\).

2. Use the consistency condition (18) to obtain the \(\mu(q, s)\) implied by \((q_0(x), m_0(x))\). Use (7) to compute the implied \(\hat{R}_0\) and \(\hat{R}_0\). Given \(\hat{R}_0\), compute \(L'_0\).

3. Solve for banks’ updated policies and value function given \(R, L'\) and \(V_0(x)\) using the algorithm described above. Denote these objects by \(q_1(x)\), \(d'_1(x)\) and \(V_1(x)\).

4. Solve for the distribution of banks over idiosyncratic states implied by the policies above, \(m_1(x)\); that is, iterate to convergence on equation (17).

5. Compute the aggregates implied by \((m_1(x), q_1(x))\); denote these objects by \(\tilde{R}_1\) and \(R_1\).

6. Assess convergence of the bank policies, value, and distribution, as well as the equilibrium aggregates \(R, \hat{R}\), and \(L'\). That is, compute \(\delta_V = \max_x |V_1(x) - V_0(x)|\), \(\delta_q = \max_x |q_1(x) - q_0(x)|\), \(\delta_d = \max_x |d'_1(x) - d'_0(x)|\), \(\delta_m = \max_x |m_1(x) - m_0(x)|\), \(\delta_R = |R_1 - R_0|\), and \(\delta_{\hat{R}} = |\hat{R}_1 - \hat{R}_0|\). If \(\max_i \in \{V, q, d', m, R, \hat{R}\} \delta_i < \zeta\), a pre-specified tolerance parameter, then the model is solved. Otherwise, we set \(V_0 = V_1\), \(q_0 = q_1\), \(d'_0 = d'_1\), \(m_0 = m_1\), \(R_0 = \psi R_0 + (1 - \psi)R_1\), and \(\hat{R}_0 = \psi \hat{R}_0 + (1 - \psi)\hat{R}_1\), where \(\psi \in (0, 1)\) is a relaxation parameter, and return to step 1.

B.3 Perfect foresight transitions / impulse responses

The maintained assumption throughout these steps is that both the initial and terminal steady states are known, that the initial distribution of banks over idiosyncratic states may be computed directly given the initial steady state, and that bank policies may be solved backwards given the value function implied by the terminal steady state.
1. Update the initial distribution of banks over idiosyncratic states, \(m_0(x) \), to reflect the incidence of the shock being simulated.

2. Guess a sequence of aggregate prices \(\{\tilde{R}_t^0, R_t^0\}_{t=1}^T \). A natural initial guess is that these prices are equal to their steady state values at all dates \(t \).

3. Using the terminal value function \(V_{T+1}(x) \) and the path of aggregate prices computed in the step above, solve backwards to obtain the sequence of bank policy functions \(G = \{q_t(x), d_{t+1}(x)\}_{t=1}^T \).

4. Given the sequence of policy functions \(G \), compute the implied sequence of distributions of banks over idiosyncratic states, \(M = \{m_t(x)\}_{t=1}^T \).

5. Use the consistency condition to compute the implied sequence of aggregate prices \(\{\tilde{R}_t^1, R_t^1\} \) consistent with this sequence of distributions.

6. Assess the convergence of aggregate prices: that is, compute \(\Delta_{\tilde{R}} = \max_t |\tilde{R}_t^1 - \tilde{R}_t^0| \) and \(\Delta_R = \max_t |R_t^1 - R_t^0| \). If \(\max\{\Delta_{\tilde{R}}, \Delta_R\} < \varepsilon \), the transition path has been solved. Otherwise, update the guesses of the aggregate price via relaxation as in the steady state algorithm above and return to step 2.

C Additional Quantitative Results

C.1 Spread and lending policies across model economies

Figure C.1 is the analog of Figure 4 from the main text, except we show lending policies directly (expressed in units of relative loan volume, \(\frac{q_t(x)}{L_t} \)), rather than spreads. Panel (a) shows that the joint correlation between loan shares and net worth follows the pattern for relationships and net worth, a direct by-product of the accumulation process (11). Panel (b) shows that lending policies are elastic with respect to net worth in only the bottom quartile of the net worth distribution in the relationship models, but for the bottom 50% in the competitive case. For higher levels of net worth, these policy functions are essentially flat. Panel (c) shows that lending is very sensitive to customer capital in the bottom quartile of relationships in the baseline and low elasticity models, while it is flat for the competitive model and very sensitive to relationships over the whole range of \(s \) for the low punishment model. This last result reflects the extremely strong incentives to build up relationships in a world of highly persistent relationships.

Figure C.2 provides more detail on Figure 4 from the main text by comparing the baseline model to the low elasticity and low punishment models, rather than only the competitive model. The main result here, echoing the results from above, is that the low punishment world features much greater sensitivity of policies to relationships.

C.2 How do relationships affect individual banks’ responses to financial shocks?

One of key questions we investigate in this paper is: how does the presence of relationships affect the way banks respond to financial shocks? To this end, we investigate individual banks’ responses to a negative shock to net worth across the stationary distribution. The average responses for each variant of the model are presented in Figure C.3. Panel (a) shows that the recovery of net worth is much faster in the baseline model than the competitive model. Panel (b) explains why: in the baseline, the bank expends relationship capital to rebuild net worth. This is done by raising spreads (panel (d)) and cutting loan volume (panel (c)). In the competitive case, instead, there can be no positive spreads: banks must cut back on lending, and the reaccumulation of capital is slower with
lower interest rates. This experiment showcases how relationship capital can help serve as a buffer for banks to weather shocks to their financial capital.

Comparing the baseline to the low elasticity and low punishment versions of the model further highlights these dynamics. In each of the less competitive versions of the model with relationships, the bank has more market power and therefore more ability to lend less at higher rates. This leads the banks to recapitalize even more quickly in each of these cases. In the low elasticity case, this is accomplished through extremely high spreads on impact, whereas in the low punishment case, this is accomplished through lower but more persistent increases.
C.3 Response to Aggregate Shocks across Model Economies

Figures C.4–C.6 plot the responses of selected variables to shocks to the aggregate shocks we consider in the main text in Figures 9–11 in the baseline, low elasticity, and low punishment economies.
Figure C.4: Aggregate shock to bank net worth: alternative relationships

Figure C.5: Aggregate shock to cost of funding: alternative relationships
Figure C.6: Aggregate shock to loan demand: alternative relationships