Macroeconomic Implications of Uniform Pricing

Diego Daruich
University of Southern California

Julian Kozlowski
FRB of St. Louis

May 12, 2020

Abstract

We compile a new database of grocery prices in Argentina, with over 9 million observations per day. We find uniform pricing both within and across regions—i.e., product prices almost do not vary within stores of a chain. Uniform pricing implies that prices would not change with regional conditions or shocks, particularly so if chains operate in several regions. We confirm this hypothesis using employment data. While prices in stores of chains operating almost exclusively in one region do react to changes in regional employment, stores of chains that operate in many regions do not seem to react to local labor market conditions. We study the impact of uniform pricing on estimates of local and aggregate elasticities in a regional model with multi-region firms and uniform pricing. The estimated model predicts an almost one-half smaller elasticity of prices to a regional than an aggregate shock. This result highlights that some caution may be necessary when using regional shocks to estimate aggregate elasticities, particularly when the relevant prices are set uniformly across regions.

Keywords: Uniform Pricing, Price Dispersion, Regional Economics.

Contact information: daruich@marshall.usc.edu and kozjuli@gmail.com. We thank David Argente for an insightful discussion and Lorenzo Caliendo, Alberto Cavallo, Javier Cravino, Bill Dupor, Maximiliano Dvorkin, Ricardo Lagos, Virgiliu Midrigan, Andy Neumeyer, Diego Perez, Ana Maria Santacreu, and Venky Venkateswaran for helpful comments. The views expressed in this paper are solely our responsibility and should not be interpreted as reflecting the views of the Federal Reserve System or the Federal Reserve Bank of St. Louis.
1 Introduction

There is a growing and influential literature that uses regional variation to identify local elasticities (e.g., Mian and Sufi, 2011; Autor, Dorn, and Hanson, 2013), and then uses these local elasticities to understand the aggregate economy. We argue, however, that the presence of firms in multiple regions has important implications on how to use the regional variation to make inferences about aggregate elasticities. In this paper we make three main contributions to understand what the presence of multi-region firms implies for macroeconomics. First, we introduce novel data from Argentina and show that there is uniform-pricing: multi-region chains tend to set the same prices across stores both within and across regions. Second, we show that prices tend to react relatively little to local conditions, particularly so for firms that operate in multiple regions. Finally, we build a model to understand the macroeconomic implications of uniform pricing. Our key finding is that consumption aggregate elasticities (i.e., to aggregate shocks) tend to be smaller than local elasticities (i.e., to local shocks), as prices react more to aggregate than regional conditions when prices are set uniformly across regions. This result highlights that some caution may be necessary when using regional shocks to estimate aggregate elasticities, particularly when the relevant prices are set uniformly across regions.

Most empirical analysis about micro-price statistics use scanner price data from developed countries. One contribution is the creation of a new database for daily posted grocery store prices in Argentina. Since May 2016, every day, stores have to report their offline prices (i.e., prices in the store) to the Argentinean government. The data are processed and posted online in an official price-comparison website, with the objective of providing information to consumers. We have about 9 million price observations per day, totaling about 5 billion observations, which allows us to have a large panel on chains, stores, products, and prices. Having daily posted prices is crucial for our objective of studying pricing strategies since we do not rely on average prices nor do we need to aggregate time periods (as in scanner data).

Our first empirical finding, using our new data, is that there is uniform pricing—i.e., conditional on a product, there is little variation in prices across stores of the same chain. There are three pieces of evidence consistent with this fact. First, even though chains have on average over 100 stores across the country, we find that, on average, there are less than 4 unique prices for each product-chain group. Second, price changes are also consistent with uniform pricing. Focusing on products that change prices in one store, we compute the probability that other stores change the prices of the same products on the same day. The probability is 5% for stores of any chain, but it increases to almost 30% when we focus on stores of the same chain. Third, using a variance decomposition methodology, we find that around two-thirds of the relative price dispersion can be explained by chain-product fixed effects. Hence, only

1See Chodorow-Reich (2020) for a review of other reasons why the estimated impact of a shock on a single region can differ from the aggregate effect of the shock.

2The intensive margin of price changes is also similar within chains: The dispersion of these price changes within a chain is less than one-fifth of the one observed in the whole economy.

3This decomposition is done using relative prices in order to abstract from differences in product characteristics. For
one-third of the price variation can be explained by stores setting different prices within a chain.

Our second empirical finding is that prices tend to react relatively little to local conditions, particularly so for firms that operate in multiple regions. We use employment data at the province level as a proxy of local conditions. We find that prices in stores of chains operating almost exclusively in one region do react to local conditions, while stores of chains that operate in many regions do not seem to react to local labor market conditions. This result suggests that prices would not change with regional conditions or shocks, particularly so if chains operate in several regions (e.g., national chains or e-commerce), which can be important for the use of local elasticity estimates to predict aggregate elasticities.

Our third contribution is the study of the macroeconomic implications of uniform pricing for the effects of regional relative to aggregate shocks. We extend the model of multi-region firms of Bernard, Jensen, Redding, and Schott (2018) to uniform pricing and general equilibrium. Regions have three sources of heterogeneity. First, there is variation in size, which is mapped to population size, to study heterogeneous effects of regional shocks between small and large regions. Second, households have different preferences for sellers across regions, which generates variation on the sellers’ market shares as in the data. Third, there are region-specific exports to generate regional (and aggregate) exogenous shocks.

We calibrate the model in steady state. We show, as a validation, that the model is in line with the fact that firms operating mostly in one region react more to local shocks. Uniform pricing implies that consumption reacts less in response to an aggregate than to a regional shock because prices adjust more in response to aggregate conditions. The estimated model predicts an almost one-half smaller elasticity of prices to a regional shock than to an aggregate one. Thus, it is as if prices are sticky to regional shocks, but more responsive to aggregate conditions. This result highlights that some caution may be necessary when using regional shocks to estimate aggregate elasticities, particularly when the relevant prices are set uniformly across regions.

There is substantial heterogeneity in regional elasticities stemming from the variation in regions’ sizes and market structures. First, smaller regions have a smaller response to regional shocks because firms setting uniform prices assign less weight to their regional demand and marginal cost, so they react less to regional shocks. Hence, while using smaller regions sometimes is useful in empirical analyses to achieve identification, it is problematic if we want to use that local elasticity as a proxy to the aggregate one. This does not imply that the empirical estimates in the literature are not useful. The estimates are useful to calibrate or validate structural models, as we do in this paper; then, the calibrated model can be used to evaluate the aggregate elasticities (and implications) of the shocks of interest.

The regional market structure also affects the bias between regional and aggregate elasticities. When there are more multi-region firms, prices react less to regional shocks because firms assign less weight to local conditions. Hence, when analyzing empirical regional studies, one should take into account if the relevant price distribution is more likely to be set at the regional or national level, taking the

each product in a store an given day, we define a relative price as its log-price deviation from the average log-price across stores on that day.
presence of multi-region firms into account.

Uniform pricing also has additional implications. First, it leads to regional shocks having spillover effects on other regions. As firms set the same price in all regions, shocks in one region lead to national price changes. Spillovers are heterogeneous depending on where the shock takes place. Bigger regions have a larger impact on prices, hence leading to larger spillover effects. Second, uniform pricing has welfare implications, relative to the alternative of flexible pricing. Households tend to lose when moving to flexible pricing (with an average loss of 0.5%) because uniform pricing prevents firms from extracting more surplus from consumers, but welfare effects are highly heterogeneous, ranging from losses of 4.2% to gains of 0.4%. A large driver of the heterogeneity of welfare effects has to do with the firms’ heterogeneous market power across regions. In line with Adams and Williams (2019), we find that in regions where firms have higher market power, welfare losses from moving to flexible pricing are larger.

Finally, in the baseline model we imposed that firms in the grocery sector have to set uniform prices. We extend the model to incorporate a menu cost so that firms can choose between uniform or flexible pricing. We find that firms would not gain much from setting different prices across regions, so a small fixed cost of adjustment deters firms from discriminating consumers in different regions.

The rest of the paper is organized as follows. Section 2 discusses the literature. Section 3 introduces our novel price dataset and provides basic descriptive statistics. Section 4 provides our main empirical results regarding uniform pricing. Section 5 introduces the model and the macroeconomic implications of uniform pricing. The calibration and quantitative results are in Sections 6 and 7, respectively. Finally, Section 8 concludes. The Appendices contain additional details on the data and model.

2 Related Literature

This paper is related to several strands of the literature related to price-setting behavior and its macroeconomic consequences. First, there is a growing empirical literature on gathering new data on retail prices in developing countries. Cavallo and Rigobon (2016) provide a summary of this new research agenda. The novelty of our paper is that we obtain information on offline prices (i.e., prices in the store) instead of online prices as in previous research. Since February 2016, the Argentinian government has created a daily, national, publicly available report of prices (Sistema Electronico de Publicidad de Precios Argentinos). To the best of our knowledge, we are the first to collect and analyze these data. Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2018) also study micro-price statistics for Argentina, but for a different period (1988 to 1997) and with a smaller sample.⁴ Different from previous research, we have larger cross-sectional variation in stores and products, which allows us to control for observable characteristics and uncover novel empirical facts. For example, in Alvarez, Beraja, Gonzalez-Rozada,
and Neumeyer (2018) the average number of observations per month is about 81,000, whereas we have about 9 million observations per day. Similarly, they have information on 500 products, whereas we have four times as many products in our final sample selection.\(^5\)

This paper is also part of a growing literature that studies price dispersion and uniform pricing. Kaplan, Menzio, Rudanko, and Trachter (2019) find that, in the US, most of the price dispersion is across stores that are equally expensive but have different relative prices. We show that this is true also in our data but argue that in fact most of the variation is at the chain rather than store level due to uniform pricing. Empirical studies find that many store characteristics are explained by chains. For example, Hwang, Bronnenberg, and Thomadsen (2010) find that assortment gets set at the chain level, and Hwang and Thomadsen (2016) find that a large fraction of the variation of brand sales across stores is also explained at the chain level.\(^6\) We extend this evidence, showing that prices also seem to be defined at the chain level. Price variation between grocery stores of the same chain is relatively small. Using US data, Nakamura, Nakamura, and Nakamura (2011), DellaVigna and Gentzkow (2019) and Adams and Williams (2019) also show that uniform pricing strategies are common in the US.\(^7\) Previous papers, however, used scanner price data, which have the disadvantages of being at weekly frequency and of using transaction prices that mix temporary sales with list prices. A distinct feature of our data is that we observe daily list posted prices, which allow us to get a more precise measure of uniform pricing.

This paper is also part of the literature that documents that multi-region firms react less to local conditions than local firms do. Baker, Johnson, and Kueng (2017) find that prices at wholesale firms (which tend to be larger and more geographically spread) react much less to local sales tax changes than prices at retail firms (which tend to be smaller and more local). Gagnon and Lopez-Salido (2019) also show that large localized demand shocks due to labor conflicts, population displacement, and weather events translate into minimal changes in local supermarket prices. Similarly, Cawley, Frisvold, Hill, and Jones (2018) show that pass-through of a Philadelphia soda tax into supermarket prices was smaller at chain stores than at independent retailers. Beraja, Hurst, and Ospina (2016) also provide indirect evidence that local prices may not significantly react to local employment conditions, since they estimate the impact of state-level employment growth on state-level wages to be almost equal when using either real or nominal wages. Using our precise novel data, we contribute to this literature by showing that prices

\(^5\)An important difference relative to Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2018) for our purposes is that we are able to compare the same products (EAN barcodes) across stores, while they cannot precisely compare products across stores (since their analysis is on narrow categories, without barcodes).

\(^6\)Regarding price adjustments, Midrigan (2011) uses data on a single chain in the US and finds evidence of price change synchronization within stores. We confirm the finding in our data for Argentina. Moreover, we extend the analysis and also find synchronization on the extensive and intensive margins of price changes within chains.

\(^7\)Cavall, Neiman, and Rigobon (2014), Cavallo (2018), and Jo, Matsumura, and Weinstein (2018) highlight a new type of price convergence, or uniform pricing, due to e-commerce. E-retailers typically have a single-price or uniform-pricing strategy independent of the buyer’s location. Cavallo, Neiman, and Rigobon (2014) highlight that only 21 out of the top 70 US retailers (among those that sell online) potentially have prices that vary by ZIP code, and 13 of these 21 are grocery stores. Jo, Matsumura, and Weinstein (2018) show that the introduction of Rakuten (the largest Japanese e-retailer) has led to a reduction in price differentials between Japanese offline retailers (of potentially many chains). In the US, Cavallo (2018) shows that the introduction of Amazon has led to a reduction in price differentials as well, but his focus is on price dispersion within locations of a single chain (i.e., Walmart).
tend to react relatively little to local labor conditions in Argentina, particularly so for firms that operate in multiple regions, and by connecting these results to our empirical finding of uniform pricing.8

Our main contribution is the study of the macroeconomic implications of uniform pricing. We build on the quantitative literature of multiple regions and sectors (e.g., Caliendo, Parro, Rossi-Hansberg, and Sarte, 2018; Bernard, Jensen, Redding, and Schott, 2018; Hottman, Redding, and Weinstein, 2016) and extend the framework to study multi-region firms setting uniform pricing. Firms’ market power matters for price setting as in Atkeson and Burstein (2008). In addition, our uniform pricing extension implies that a firm’s local share is also crucial for price setting. Using this framework, we study the impact of regional shocks on firms with different shares of local stores, with the novel finding that under uniform pricing and multi-region firms, consumption elasticities to local shocks tend to be larger than to aggregate shocks since prices adjust more with aggregate conditions. This result relates to the literature that compares local and aggregate fiscal multipliers. Nakamura and Steinsson (2014) find that uniform monetary and tax policies (across a nation) imply that local government expenditure multipliers will be larger than an aggregate multiplier—since the latter would lead to larger monetary and tax adjustments. Dupor and Guerrero (2017) highlight other potential sources of spillovers such as movements in factors of production and trade in goods, among others. Differently from Nakamura and Steinsson (2014), Dupor and Guerrero (2017) find small spillovers, hence suggesting that differences between local and aggregate multipliers are not large. To the best of our knowledge, however, we are the first to highlight that uniform pricing has important implications for the growing literature that estimates various elasticities with respect to regional shocks (e.g., Mian and Sufi, 2011; Sufi, Mian, and Rao, 2013; Dupor and Guerrero, 2017; Beraja, Hurst, and Ospina, 2016; Yagan, 2018; Sergeyev and Mehrotra, 2018; Stroebel and Vavra, 2019). To do this, our model introduces uniform pricing and general equilibrium forces to the model of heterogeneous regions of Bernard, Jensen, Redding, and Schott (2018). Uniform pricing strategies in an economy with multi-region firms implies that elasticities to local shocks are likely to be biased estimates of elasticities to aggregate shocks.

3 Data

In February 2016, the Argentinean government passed a normative to build a national, publicly available report of prices (Sistema Electronico de Publicidad de Precios Argentinos). The objective of the policy was to reduce inflation by providing information on prices. All large retailers of massively consumed goods have to report daily prices to the government for each of their stores. The requirement was mandatory for a large set of products (typically associated with grocery stores), but retailers were allowed to include non-mandatory products as well. Large fines (of up to 3 million US dollars) are to be applied if stores do

8In line with our theory, Bonomo, Carvalho, Kryvtsov, Ribon, and Rigato (2019) finds lack of correlation between the occurrence of sales and economy activity across regions, which may be due to uniform pricing. In a recent paper, Giroud and Mueller (2019) finds that county-level employment is sensitive to shocks in distant counties linked through multi-region firms, which supports our assumption that multi-region operate jointly rather than independently across regions.
not report their prices correctly. Since May 2016, the official website www.preciosclaros.gob.ar has provided consumer-friendly access to this price information. On this website, after entering their location, consumers can search for stores and products and compare current prices. This website only contains information about the prices in the stores; i.e., consumers cannot buy online from this website. In this paper, we use data from May 2016 to March 2018.9

We obtain information on each store and product. For each store, we know its name (not just an identification code), its chain owner, the type of store, and its precise location (latitude and longitude). Chains may have different types of stores based on size or names. We do not know whether these different types of stores operate as different chains, so in parts of our analysis we define “chains” as “chain-types.” For each product (barcode), we know its name, category, and brand. Categories are composed of three levels, with the third level being the most disaggregated. For example, the first-level categories include personal care and non-alcoholic drinks. The second level of the personal care category includes hair care and oral care categories. Finally, the third level of the hair care category includes the shampoos and conditioners categories.

The prices posted on the website are the prices of products available at each (offline) store. Given that some products have special sales, we sometimes have several prices for a good in a particular store on a given day. In such cases, we know all available prices. Some of these sales are available only to some consumers—typically a percentage discount for customers with a particular credit card or membership. Some of these sales, however, also refer to discounts available to all consumers—for example, two for the price of one. In addition to the mandatory list price, each store can report one of each of these two types of sale prices. Because we can differentiate these two types of sales, we end up with a maximum of three prices per product-store-day.10 Overall, we have daily data on approximately 9 million product-store observations across the country.

Our dataset has advantages and disadvantages relative to more common scanner price data. There are two main disadvantages. We do not observe prices for grocery stores that are not part of large companies (i.e., those with annual sales over approximately 50 million US dollars). According to survey information available for 2012-2013 (Encuesta Nacional de Gastos de Hogares), our data should include between 50 and 85% of grocery sales in Argentina. For that time period, grocery sales corresponded to approximately 33% of households’ expenditures. More importantly, we do not have purchase quantities or individual product weights. Therefore, our empirical analysis assigns equal weight to each product-store included in the analysis.

Balancing these disadvantages, these data has several advantages. First, scanner price data is not easily available in developing countries, so our data help fill this gap. Moreover, having daily (instead of weekly or monthly) price data for all products (not just the ones being sold or bought) is an advantage. Knowing each store’s chain provides us with new information that has not been widely exploited before.

9 Appendix A.1 shows how the website works. Appendix A.2 argues that the data represents the real prices in the stores. 10 In this paper we focus on list prices but the results are robust to incorporating sales prices; see Appendix A.5.
Similarly, our data have precise location information on each store (not just zip codes). Finally, we are able to identify both the list price and (possibly many) sales prices, which can be important when describing retailers’ pricing strategies.

3.1 Descriptive Statistics

The data includes 2313 stores of 22 chains, with around 50 thousand products. This implies about 9 millions product-store observations per day for 584 days, totaling about 5 billion observations. In our analysis, we study prices in a particular local market, Buenos Aires City (CABA), as well as in all Argentina, so we provide descriptive statistics for both here. The average province—the “region” definition for most of our empirical and quantitative analysis—in Argentina has 5 chains and 96 stores.

In order to study price dispersion and uniform pricing, we limit our attention to products that are widely sold, as is common in the literature (e.g., Kaplan, Menzio, Rudanko, and Trachter, 2019). In particular, we clean the data such that we keep products that are sold by at least two chains and present in more than 50% of stores in a given region (i.e., either CABA or Argentina). We also focus on products that are sold most of the time (i.e., we focus on product-store combinations present in over 50% of the weeks). We also drop products in the price-control program Precios Cuidados, as there is no dispersion on these prices. Finally, we drop single-store chains to be able to study uniform pricing across stores.

Table 1 shows some descriptive statistics for the data before and after cleaning, for CABA and Argentina. The data cleaning process eliminates only a few stores. Even though it does reduce the number of products studied by around 90-95%, the number of observations is reduced by only two-thirds. The products kept are the ones more common across stores and hence have a larger number of observations. The number of stores per product increases by around 500%, hence allowing us to have enough information to describe price dispersion. Finally, the average prices of the products are around 25% lower in the selected sample. More importantly, the average price dispersion—the cross-sectional standard deviation of the prices at which the same product is sold on the same day and in the same region—in the initial and final samples remains almost constant.

11 Results are robust to choosing other cities (e.g., Cordoba).
12 Figure A2 shows the location of all the stores included in the data.
13 The program Precios Cuidados consists of price controls for about 300 products. See Aparicio and Cavallo (2018) for a study of this program.
14 In the quantitative analysis of Section 6, we keep these single-store chains but this does not change the results since these chains have very small market shares.
15 It is also possible that some observations have misreported information, which implies that prices are less likely to be common across stores. These observations would also be eliminated.
Table 1: Descriptive Statistics Before and After Cleaning

<table>
<thead>
<tr>
<th></th>
<th>CABA Before</th>
<th>CABA After</th>
<th>Argentina Before</th>
<th>Argentina After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chains</td>
<td>5</td>
<td>5</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Number of stores</td>
<td>806</td>
<td>806</td>
<td>2313</td>
<td>2310</td>
</tr>
<tr>
<td>Number of products</td>
<td>26384</td>
<td>1805</td>
<td>50112</td>
<td>1773</td>
</tr>
<tr>
<td>Number of days</td>
<td>584</td>
<td>584</td>
<td>584</td>
<td>584</td>
</tr>
<tr>
<td>Number of observations per day (M)</td>
<td>2.69</td>
<td>0.90</td>
<td>9.14</td>
<td>2.37</td>
</tr>
<tr>
<td>Chains per province</td>
<td>5</td>
<td>5</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Stores per province</td>
<td>158</td>
<td>158</td>
<td>123</td>
<td>125</td>
</tr>
<tr>
<td>Products per store</td>
<td>3537</td>
<td>1178</td>
<td>4243</td>
<td>1099</td>
</tr>
<tr>
<td>Products per chain</td>
<td>9876</td>
<td>1409</td>
<td>7553</td>
<td>1097</td>
</tr>
<tr>
<td>Stores per chain</td>
<td>102</td>
<td>489</td>
<td>183</td>
<td>1324</td>
</tr>
<tr>
<td>Stores per product</td>
<td>61</td>
<td>46</td>
<td>61</td>
<td>45</td>
</tr>
<tr>
<td>Average price (AR $)</td>
<td>6.5</td>
<td>7.0</td>
<td>10.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Price dispersion (%)</td>
<td>5.0</td>
<td>7.0</td>
<td>10.0</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Notes: Price dispersion refers to the average standard deviation of log-standardized prices. This measure is explained in detail in the main text.

Finally, we use the stores’ locations to include two additional data sources. First, we use the the 2010 Census to incorporate characteristics such as education and employment of each store’s location. Second, we use official data on regional employment to study the response of prices to local shocks.\(^{16}\)

4 Empirical Results

In this section we study the role of chains (as opposed to stores) on prices. Recent literature has highlighted that price dispersion is a prevalent characteristic in many markets: The same product (defined by the EAN barcode) is sold at different prices by various stores in a local market and time period. We also find large variation in relative prices between chains. We find, however, that conditional on a product, there is little variation across stores of the same chain. We use the term “uniform pricing” to refer to this fact, i.e., that product prices do not vary within stores of a chain. We perform our analysis both using only CABA data and using all national data. In both cases, we show that prices as well as price changes are remarkably similar for all stores within a chain.

We then introduce information on the characteristics of store locations and explore which chain characteristics correlate more with uniform pricing. Even though chains that operate in many provinces tend to display less uniform pricing, we find that the relationship is not strong, particularly when chains are defined in a stricter way (i.e., according to chain-types). Chains may use subdivisions within the chain

\(^{16}\)Employment data is available at www.trabajo.gob.ar/estadisticas/oede/estadisticasregionales.asp.
(which are fixed across time) to partially discriminate prices, but it seems that, once that is done, price differentiation between locations is not particularly strong.

One implication of uniform pricing is that grocery store prices would not change with regional conditions or shocks, particularly so if chains operate in several regions. We explore this hypothesis and show that prices in stores of chains that operate in many regions do not seem to react to local labor market conditions, while stores of chains operating almost exclusively in one region do react to local conditions.

4.1 Uniform Pricing

CABA has 806 grocery stores that belong to five different chains. The number of stores per chain varies between 17 and 340. The sizes of the stores, measured by the number of products sold, also vary between approximately 1,200 and 1,800. We study how many different prices each chain set for their products across stores. The left panel of Figure 1 shows the distribution of unique prices by chain-product observations in CABA. Conditional on a chain, there are only a few prices, much fewer prices than the number of stores. We find that 35% of products have only one price across stores of the same chain and that 70% of products have less than three prices across stores of the same chain.

The right panel of Figure 1 shows that the same result holds when we look at the whole country. We find that 57% of products have only one price across stores of the same chain and that 84% of products have less than five prices across stores of the same chain. We take this result as evidence that chains set the same price across stores.\(^\text{17}\)

\(^{17}\) Appendix A3 shows some case studies of particular products on a particular day. Prices are bunched in only a few values and, more importantly, conditional on a chain, there are only a few prices (much fewer prices than the number of stores).
Figure 1: Unique prices

Buenos Aires City (CABA) — Argentina

Notes: Distribution of prices by chain-product.

More formally, Table 2 shows that uniform pricing is a general characteristic of chains in CABA. For each day-product-store observation, we define the relative price as the log-price minus the mean log-price across stores for the same day-product. Product prices are almost unique within chains. The average number of unique prices for each good across stores is between 1 and 4.5 for all chains. Given the number of stores per chain, this implies one price per 55 stores on average. Chains have up to 4 types of stores, and part of the price dispersion within chains is explained by price differences between store types. The average number of unique prices by chain-type is always under 3, implying one price per 81 stores. Moreover, price dispersion in CABA is 7% (see Table 1), while price dispersion within chains is smaller, between 0.7% and 4.7%. If we further control for store type within chains, the price dispersion is even smaller.

The last panel of Table 2 refers to the average price of each chain. The relative price of a store is defined as the average relative price across products in the store for a given day. The relative price of the chain is defined as the average across time and stores of these daily relative prices. Chain I is in general the cheapest, with a relative price 3.3% lower than the average. This contrasts significantly with the Chain V relative price, which is 3.2% higher than the average. This ranking, however, hides significant variation across products. For example, the cheapest chain sets 5% of their prices 4.3% above the market average. Similarly, the most expensive chain sets 5% of their prices 10.6% below the market average.
Table 2: Uniform Pricing in Buenos Aires City

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price dispersion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within chain</td>
<td>2.2</td>
<td>4.3</td>
<td>0.7</td>
<td>4.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Unique prices by product</td>
<td>2.95</td>
<td>1.89</td>
<td>1.03</td>
<td>4.52</td>
<td>3.85</td>
</tr>
<tr>
<td>Price dispersion by chain-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within chain-type</td>
<td>2.2</td>
<td>1.6</td>
<td>0.7</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Unique prices by product</td>
<td>2.95</td>
<td>1.11</td>
<td>1.03</td>
<td>1.85</td>
<td>1.84</td>
</tr>
<tr>
<td>Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price rank</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Relative price (%)</td>
<td>-3.3</td>
<td>-3.1</td>
<td>-0.8</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td>By product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile 5</td>
<td>-11.3</td>
<td>-18.4</td>
<td>-9.3</td>
<td>-8.0</td>
<td>-10.6</td>
</tr>
<tr>
<td>Percentile 10</td>
<td>-8.8</td>
<td>-12.9</td>
<td>-7.3</td>
<td>-4.4</td>
<td>-7.0</td>
</tr>
<tr>
<td>Percentile 25</td>
<td>-5.7</td>
<td>-6.9</td>
<td>-4.0</td>
<td>-0.2</td>
<td>-2.1</td>
</tr>
<tr>
<td>Percentile 50</td>
<td>-2.9</td>
<td>-2.4</td>
<td>-1.2</td>
<td>2.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Percentile 75</td>
<td>-0.6</td>
<td>1.4</td>
<td>1.5</td>
<td>6.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Percentile 90</td>
<td>1.5</td>
<td>6.2</td>
<td>6.0</td>
<td>9.4</td>
<td>14.6</td>
</tr>
<tr>
<td>Percentile 95</td>
<td>4.3</td>
<td>9.4</td>
<td>9.5</td>
<td>11.8</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Notes: Price dispersion refers to the average standard deviation of log-standardized prices. This measure is explained in detail in the main text.

Table 3 expands this analysis to all chains and stores in Argentina, showing that product prices are almost unique within chains not only in CABA but also within chains in Argentina. While the average number of stores per chain in Argentina is over 113, the average number of unique prices by product is only 3.9. Moreover, price dispersion in Argentina is 9.7% (see Table 1), while price dispersion within chains is on average less than one-third of that (2.9%). As in the case of CABA, if we further control for store type within chains, the price dispersion is even smaller. While for most multi-province chains the average number of unique prices is smaller if we compute unique prices by chain-province, Section 4.3 shows that the relation between price dispersion and the number of provinces a chain operates in is positive but relatively flat.

18 Table 3 shows summary statistics while Appendix Table A1 shows the chain level information. Appendix A.5 shows that the result of unique prices is robust to also including sales data.

19 The average number of provinces in which a chain operates is 5.8. The distribution, however, is right skewed, with almost 50% of chains operating in only one province and three chains operating in almost all provinces.
Table 3: Uniform Pricing in Argentina

<table>
<thead>
<tr>
<th>Chain characteristics</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of stores</td>
<td>113.4</td>
<td>181.4</td>
<td>10.5</td>
<td>27.5</td>
<td>116.6</td>
</tr>
<tr>
<td>Number of provinces</td>
<td>5.8</td>
<td>7.1</td>
<td>1.0</td>
<td>2.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Types of stores</td>
<td>1.9</td>
<td>1.4</td>
<td>1.0</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Number of products</td>
<td>1081.1</td>
<td>390.6</td>
<td>892.1</td>
<td>1104.0</td>
<td>1382.3</td>
</tr>
</tbody>
</table>

Price dispersion

<table>
<thead>
<tr>
<th></th>
<th>Within chain</th>
<th>Unique prices by product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.8</td>
<td>5.0</td>
</tr>
<tr>
<td>P25</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>P50</td>
<td>2.6</td>
<td>1.2</td>
</tr>
<tr>
<td>P75</td>
<td>5.3</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Price dispersion by chain-type

<table>
<thead>
<tr>
<th></th>
<th>Within chain-type</th>
<th>Unique prices by product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>P25</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>P50</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td>P75</td>
<td>3.7</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Price dispersion by chain-type-province

<table>
<thead>
<tr>
<th></th>
<th>Within chain-type-province</th>
<th>Unique prices by product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>P25</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>P50</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>P75</td>
<td>2.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Notes: Price dispersion refers to the average standard deviation of log-standardized prices. This measure is explained in detail in the main text.

Table 4: Uniform Price Changes

<table>
<thead>
<tr>
<th></th>
<th>CABA</th>
<th>Argentina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price changes: Unconditional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share with change</td>
<td>2.72%</td>
<td>2.88%</td>
</tr>
<tr>
<td>Share increase</td>
<td>1.80%</td>
<td>1.84%</td>
</tr>
<tr>
<td>Share decrease</td>
<td>0.92%</td>
<td>1.04%</td>
</tr>
<tr>
<td>Std. deviation of price change</td>
<td>11.92%</td>
<td>14.92%</td>
</tr>
</tbody>
</table>

Price changes: Category synchronization

| Changed other products of same category, chain level | 11.82% | 11.40% |
| Changed other products of same category, store level | 27.53% | 29.00% |

Price changes: Chain synchronization

Changed in other stores of any chain	13.04%	5.53%
Std. deviation of price change	2.32%	5.66%
Changed in other stores of same chain	37.27%	29.93%
Std. deviation of price change	1.84%	3.25%
Changed in other stores of same type and chain	60.01%	38.27%
Std. deviation of price change	1.32%	2.85%
Changed in other stores of same province and chain	37.27%	64.96%
Std. deviation of price change	1.84%	1.23%

Notes: Statistics are in daily frequency. For example, 2.72% of prices are changed everyday in CABA. "Price changes by store" refers to the share of prices that were changed by stores that changed the price of at least one product.
Price Changes Table 4 studies the intensive and extensive margins of price changes in CABA and Argentina, highlighting the large synchronization in price changes across stores of the same chain. Around 2.7–2.9% of prices are changed every day, with approximately two-thirds price increases and one-third price decreases. Midrigan (2011) highlights that price changes tend to occur at similar times for products of the same category in the US. This is also true in our data. Among products that change prices, only 13% of other stores in any chain change prices when focusing in CABA, and only 5.5% when looking at Argentina instead. For products that change prices, we observe that around 27–29% of other products in the same level-three category (the most narrowly defined) change prices in the same store. We notice, however, that price-change coordination seems stronger across chains than categories. Among products that change prices, we observe that 30–37% of other stores in the same chain change the price of the same product on the same day. The standard deviation of these price changes is approximately one-sixth of the unconditional standard deviation of price changes. Moreover, if we focus only on stores of the same type (for CABA) or in same province (for Argentina) within the same chain, the share of stores that change prices increases to over 60%, with an even smaller dispersion of changes. This evidence suggests that chains coordinate their price changes across stores.\(^{20}\)

Variance Decomposition In Appendix A.6 we introduce a statistical model to perform a variance decomposition of prices and formally highlight the role of chains in pricing. The basic statistical model proposes that the log-price \(p_{g,s,c}\) of good \(g\) in store \(s\) of chain \(c\) can be summarized by a product fixed-effect \(\alpha_g\), a chain fixed-effect \(\beta_c\), a chain-product fixed-effect \(\gamma_{g,c}\), and a residual \(\epsilon_{g,s,c}\). The variation in \(\epsilon_{g,s,c}\) comes from different stores of the same chain setting different prices for the same product:

\[
p_{g,s,c} = \alpha_g + \beta_c + \gamma_{g,c} + \epsilon_{g,s,c}.
\]

Under some assumptions specified in Appendix A.6 that allow us to simplify the estimation (which is important given the size of our sample), we can decompose relative price variation in a chain component, a chain-product component, and the residual:

\[
\begin{align*}
\text{Var} (p_{g,s,c} - \bar{\alpha}_g) &= \text{Var} (\hat{\beta}_c) + \text{Var} (\hat{\gamma}_{g,c}) + \text{Var} (\hat{\epsilon}_{g,s,c}). \\
\end{align*}
\]

Figure 2 shows that in CABA, 17% of the price variation is driven by some chains being generally more expensive than others. Once we control for average prices of products by chain, 73% (17% + 56%) of the price dispersion is explained. Using all the data from Argentina, we find that average chain prices per product explain 62% (11% + 51%) of price variation. In other words, consistent with Tables 2 and 3, price variation across stores within chains is small, driving only 27% and 38% of the total relative price variation.

\(^{20}\)Appendix Table A2 shows that price-change coordination at the chain level also holds when looking at weekly or biweekly data.
dispersion for CABA and Argentina, respectively.21

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Variance Decomposition of Prices}
\end{figure}

Notes: We perform a variance decomposition of prices to formally highlight the role of chains relative to stores in pricing. See details in Appendix A.6.

\section*{4.2 Correlation with product characteristics}

Uniform pricing is similar across products with different characteristics. First, we use the barcodes to identify the brand of the product and split brands in three size groups according to the number of products available.22 Chains set about 3.9 unique prices per product across stores. The left panel of Figure 3 shows that products from big brands have about 3.6 unique prices by chain, while products from medium and small brands have about 4 unique prices. Hence, there is very little variation across brand sizes.

We also find small variation across product categories (as defined by our data source Precios Claros). The right panel of Figure 3 shows the number of unique prices across nine categories. The range goes from...

21A simple extension to the statistical model allows us to study the role of province variation. Controlling for price differences across provinces by chain explains 19\% of the 38\% remaining price dispersion across stores in Argentina. Appendix A.6 shows additional results and verifies that the results are robust to alternative specifications. We highlight also that the results are very similar if we do the variance decomposition for Argentina, keeping only chains that are in more than one province.

22We use the first six digits of the EAN code (similar to the UPC code in the US), to do a first identification of the brand in the data. Given that these six digits may mix brands with various manufacturers codes, we manually clean the results. We have 154 brands and, on average, each brand has about 11 products. We measure the size of the brand according to the number of products in our sample, and divide the products into three groups (of equal number of products) according to their brand’s size. On average, there are about 5, 34, and 113 products per brand in the “small,” “medium,” and “large” groups, respectively.
about 3.2 unique prices for alcoholic drinks and fresh produce to about 4.5 unique prices for bathroom or cleaning categories.

Overall, while there is some variation across brands and categories, we find that uniform pricing is a general property of grocery prices and is not explained by observable product characteristics.

Figure 3: Uniform Pricing: Brands and Categories

![Graph showing uniform pricing by brands and categories](image)

Notes: The left panel shows the number of unique prices according to the brand of the products. We measure the size of the brand according to the number of products in our sample, and divide the products into three groups (of equal number of products) according to their brand’s size. On average, there are about 5, 34, and 113 products per brand in the "small," "medium," and "large" groups, respectively. The right panel shows the number of unique prices according by products’ category.

4.3 Correlation with chain characteristics

We merge information on the location of stores with 2010 Census data to describe the characteristics of each chain’s locations. We use the most precise definition of a location in the Census data (i.e., departamentos, partidos or comunas, depending on the region), with a total of 528 locations. These locations are generally large, on average 7,300km² in size with a population of 79,000 people. The median location in which stores are located, however, is smaller in size and more densely populated (186 km² with 190,000 people). More importantly, we are able to obtain information on the education, employment, and home characteristics of the people living in those areas.

Table 5 performs a simple OLS regression of uniform pricing (measured using the standard deviation of relative prices within each chain) on different chain characteristics. The standard deviation of relative price increases with the number of stores, but this becomes insignificant once we control for the num-

\(^{23}\) Means are approximately 3,500km² and 310,000 individuals.
ber of provinces in which a chain operates. The number of types of stores is also correlated with the amount of price dispersion, diminishing the explanatory power of the number of provinces. One potential hypothesis is that chains with greater variance in store-location characteristics will have higher incentives to set different prices. We find that the standard deviation of relative prices does increase with variance in store-location characteristics (either education or distance to competition) but, once again, becomes insignificant once we control for the number of types of stores and number of provinces in which a chain operates.

Table 5: Uniform Pricing and Chain Characteristics

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(number of stores)</td>
<td>1.208***</td>
<td>-0.0206</td>
<td>0.215</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.282)</td>
<td>(0.425)</td>
<td>(0.359)</td>
<td>(0.486)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(number of provinces)</td>
<td>2.049***</td>
<td>1.232**</td>
<td>1.408**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.602)</td>
<td>(0.567)</td>
<td>(0.640)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(number of types of stores)</td>
<td>1.824***</td>
<td>1.636**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.609)</td>
<td>(0.702)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var(Log(education) within chain)</td>
<td>131.0**</td>
<td>-42.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(49.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var(Log(distance) within chain)</td>
<td>1.588***</td>
<td>-0.0503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.530)</td>
<td>(0.477)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.505</td>
<td>0.706</td>
<td>0.811</td>
<td>0.283</td>
<td>0.333</td>
<td>0.819</td>
</tr>
</tbody>
</table>

Notes: Uniform pricing is measured using the standard deviation of relative prices within each chain. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The left panel of Figure 4 plots the relation between uniform pricing and the number of provinces in which a chain operates. The relation is positive but relatively flat. The number of stores, shown by the size of each circle, does not seem to affect the standard deviation of relative prices. The right panel of Figure 4 plots the same relation but defines chains in a stricter way, i.e., according to chain-types. In this case, the relation between uniform pricing and the number of provinces is even weaker, suggesting that chains may use subdivisions within the chain to partially discriminate prices. Once that is done, price differentiation between locations is not as strong.24

24Store locations are not exogenous, so we might expect that chains tend to operate stores in locations with similar characteristics (e.g., for reputation or customer demand reasons). To study this hypothesis, we compute the variance of the log of alternative characteristics for locations in which a chain operates relative to the unconditional variance. Appendix Table A6 shows that the averages across chains for alternative characteristics (e.g., education, number of children, or age of the head of household) are always under one-half, confirming that chains locate their stores in relatively similar places.
4.4 Effects of Regional Shocks

We have reported consistent evidence that firms’ pricing decisions almost do not vary with store characteristics; that is, most chains tend to have a single price per product across their stores. One potential implication of this fact is that grocery store pricing will not change with local conditions or shocks. In this section we introduce evidence on monthly employment levels for each province to evaluate whether average store prices fluctuate with local labor market conditions.\(^{25}\)

Given the evidence presented on uniform pricing, we expect that prices in stores of chains that operate in many regions will not react to local labor market conditions, while stores of chains operating almost exclusively in one region will react to local conditions. For each store \(s\) we define three measures. First, for prices, let \(\Delta p_{s,t}\) be the annual change in the average relative price in store \(s\) and month \(t\). Second, we measure the relative importance of a province for a chain by the local share. Let \(c(s)\) refer to the chain of store \(s\) and \(prov(s)\) the province of store \(s\). We define the chain’s local share \(local_{s,t}\) as the share of stores of chain \(c(s)\) that belong to province \(prov(s)\) in month \(t\). More formally,

\[
local_{s,t} = \frac{N_{c(s),t}^{prov(s)}}{N_{c(s),t}}
\]

where \(N_{c(s),t}^{prov(s)}\) is the number of stores of chain \(c(s)\) in province \(prov(s)\) and month \(t\), while \(N_{c(s),t}\) is the total number of stores of chain \(c(s)\) in month \(t\). Third, for local conditions, let \(\Delta e_{prov(s),t}\) be the annual change in log employment in the province \(prov(s)\) of store \(s\) in month \(t\). Table 6 evaluates how \(\Delta p_{s,t}\)

\(^{25}\)We would like to have more precise definitions of labor market conditions, but we are limited by data availability.
relates to $\Delta e_{prov(s),t}$ and, more importantly, how that relation depends on the local share $local_{s,t}$.

The first column of Table 6 shows that average-price growth per store is not significantly related to employment growth. We control for store fixed effects in order to control for trends in either store or local characteristics. Once we split the sample by local share, however, columns (2) and (3) show that the relation is significantly positive for stores with a local share above the median (i.e., above one-third approximately) but not for those below.

Next, we do a more formal analysis of the role of the local share by including the interaction between $local_{s,t}$ and $\Delta e_{prov(s),t}$. We estimate

$$\Delta p_{s,t} = \alpha_s + \gamma_t + \delta local_{s,t} + \rho \Delta e_{prov(s),t} + \beta local_{s,t} \times \Delta e_{prov(s),t} + \epsilon_{s,t}. \quad (1)$$

The coefficient of interest is the interaction term β. Columns (4) and (5) show that the interaction term is significant and positive, even after controlling for time fixed effects. Figure 5 plots the marginal effect of employment growth $\Delta e_{prov(s),t}$ on store price growth $\Delta p_{s,t}$ for stores with different levels of local shares $local_{s,t}$, showing that prices in stores with larger local shares covary more with local conditions. This means that a 1 percent change in employment growth ($\Delta e_{prov(s),t}$) implies a 0.5 percent change in prices ($\Delta p_{s,t}$) for chains with a local share of 100%, but almost no change for chains with a local share below 25%.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Local share < Median</td>
<td>Local share > Median</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Emp. growth ($\Delta e_{prov(s),t}$)</td>
<td>-0.0197</td>
<td>-0.124**</td>
<td>0.490***</td>
<td>-0.137**</td>
<td>-0.174***</td>
</tr>
<tr>
<td></td>
<td>(0.0625)</td>
<td>(0.0538)</td>
<td>(0.157)</td>
<td>(0.0569)</td>
<td>(0.0582)</td>
</tr>
<tr>
<td>Local share ($local_{s,t}$)</td>
<td>-0.269</td>
<td>-0.237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.189)</td>
<td>(0.144)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emp. growth \times Local share</td>
<td>0.677***</td>
<td>0.454**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td>(0.199)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>24,626</td>
<td>12,372</td>
<td>12,253</td>
<td>24,626</td>
<td>24,626</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.463</td>
<td>0.537</td>
<td>0.425</td>
<td>0.472</td>
<td>0.488</td>
</tr>
<tr>
<td>Store FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Time FE</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

Table 6: Regional Shocks and Store Prices
To build a model that can explain these findings and study their macroeconomic implications, we first need to understand which type (e.g., demand vs. supply) of shock is being captured by the regression. We find that regional employment and grocery prices move in the same direction, so productivity shocks in the grocery store sector cannot be the drivers of regional variations. If they were, we would expect to see employment and prices move in opposite directions. By contrast, a productivity shock that takes place in another sector of the economy can be the driver. Under this scenario, a positive productivity shock would lead to increased labor demand in the shocked sector, raising both total employment and wages in the region. As wages increase, so do marginal costs for grocery stores, with some pass-through to grocery prices. This is the approach we take in this paper’s baseline model. Another alternative that can help explain the price changes is a demand shock that affects the demand elasticity. In Appendix C we present a simple model following this alternative, where the changes in the demand elasticity are due to income shocks with non-homothetic preferences.

5 Model

We build and estimate a model of heterogeneous regions and sectors with multi-region firms and uniform pricing to study the economic responses to regional and aggregate shocks. We make two ex-
tensions to the framework of Bernard, Jensen, Redding, and Schott (2018). First, in the grocery retail sector we add multi-region firms that set uniform prices (i.e., the same price across stores). Second, we introduce endogenous labor supply so regional labor markets are in equilibrium.

There are \(R \) regions, \(r = 1, \ldots, R \), with three sources of heterogeneity. First, regions differ in size \(N_r \), which we map to population in the data. This allows us to study heterogeneous effects between small and large regions. Second, regional households have heterogeneous preferences across sellers, generating the variation on the market shares across regions that we see in the data. Finally, exports are region-specific and are the source of exogenous regional and aggregate shocks.

In each region there is a representative agent with a nested structure of demand as in Hottman, Redding, and Weinstein (2016). There are three sectors, denoted by \(n = 1, 2, \) and 3. Sector one corresponds to groceries and is the main focus of our analysis. Sector two aggregates all other nationally produced goods, while sector three represents imported goods. Within each sector one and two there is a continuum of symmetric categories, and within each category there are many firms selling differentiated final consumption goods.

In sectors one and two, firms set prices under monopolistic competition. Sector one has a finite number of firms, mapped directly to our grocery store data. These are multi-region firms, i.e. they sell in many regions, but they have to set the same price across regions (i.e., prices are uniform).\(^{26}\) Sector two, for simplicity, has a continuum of producers that set different prices across regions (i.e., flexible prices). In sector three, international prices are taken as given.

In this model, firms change prices due to variations in the marginal costs but our main conclusion is robust to alternative assumptions. In Appendix C we present a simple model in which price changes are driven by demand shocks, instead of marginal costs, through changes in the demand elasticity (due to non-homothetic preferences and income shocks). We find the same main qualitative results in both models: (i) firms setting uniform prices weigh each region according to their relative sizes, (ii) regional price elasticities are smaller than aggregate price elasticities, and (iii) regional elasticities are more biased measures of aggregate ones when regions are smaller or firms’ sales are more equally distributed across regions.

5.1 Households

There is a representative agent in each region \(r \) with preferences

\[
U_r = c_r - \Psi \frac{\ell^{1+\phi}}{1 + \phi},
\]

\(^{26}\)In the benchmark model, we take uniform pricing as a constraint. Appendix B.3 analyzes the implications of a menu-cost model in which firms can pay an adjustment cost to set different prices across regions. We find that for a reasonably small fixed cost firms do not want to set different prices across regions, i.e., the gains from setting different prices across regions are small.
where \(c_r \) is the final consumption and \(\ell_r \) is the labor supply. The budget constraint is

\[
P_r c_r = w_r \ell_r + \pi_r \equiv y_r,
\]

where \(P_r \) and \(w_r \) are the price index and wages in region \(r \), respectively. The household in region \(r \) is the owner of regional profits \(\pi_r \). We denote by \(y_r \) the total income in region \(r \).

The optimal labor supply is

\[
\ell_r = \left(\frac{1}{\Psi} \frac{w_r}{P_r} \right)^{\frac{1}{\delta}}.
\]

Each region is of size \(N_r \), so the total regional labor supply is \(L_r = N_r \ell_r \).

Demand across sectors Final consumption \(c_r \) combines goods from three sectors with a Cobb-Douglas aggregator

\[
\ln (c_r) = \sum_{n=1}^{3} \lambda^n \ln (c^n_r),
\]

with \(\sum_{n=1}^{3} \lambda^n = 1 \). Sector one corresponds to groceries, sector two captures the rest of nationally produced goods, and sector three represents the imported goods. The budget constraint is

\[
\sum_{n=1}^{3} P^n_r c^n_r = y_r,
\]

where \(P^n_r \) and \(c^n_r \) are the sectoral price index and consumption in sector \(n \), region \(r \), respectively. Households have constant expenditure shares across sectors, \(\lambda^n \), due to the Cobb-Douglas preferences, i.e.,

\[
c^n_r = \lambda^n \frac{y_r}{P^n_r},
\]

and the price index in region \(r \) is

\[
P_r = \prod_{i=n}^{3} \left(\frac{P^n_r}{\lambda^n} \right)^{\lambda^n}.
\]

Demand within sectors Within each sector there is a continuum of symmetric categories \(g \in [0, 1] \) with a Cobb-Douglas aggregator

\[
\ln (c^n_r) = \int_0^1 \ln c^n_{rg} dg.
\]

For each category \(g \) in sectors \(n \) there are many firms. In sectors \(n = 1, 2 \), firms set prices under monopolistic competition denoted by \(\Omega^n_r \). Sector one has a finite number of firms while sector two, for simplicity, has a continuum of firms, \(\Omega^2_r = [0, 1] \). In sector \(n = 3 \), import prices are taken as given
and normalized to one, $P^n_{rgf} = 1$, for all firms, categories, and regions. Thus, c^n_{rg} is an aggregator of consumption from sector n, category g, in region r given by

$$c^n_{rg} = \begin{cases} \left[\sum_{f \in \Omega^n_r} \left(\lambda^n_{rgf} c^n_{rgf} \right)^{\sigma^n_{-1}} \right]^{\frac{1}{\sigma^n}} & \text{for } n = 1 \\ \left[\int_{f \in \Omega^n_r} \left(\lambda^n_{rgf} c^n_{rgf} \right)^{\sigma^n_{-1}} \right]^{\frac{1}{\sigma^n}} & \text{for } n \neq 1, \end{cases}$$

where $\sigma^n > 1$ is the elasticity of substitution across goods in sector n and category g. In sector one there is a regional firm’s appeal, λ^1_{rgf}, capturing the heterogeneous preferences for firms across regions.\(^{27}\) Here, c^n_{rgf} is the consumption of goods from firm f in sector n, category g, region r. We allow firms to be large relative to the category (and hence internalize their effects on the consumption and price index for the category). But we assume a continuum of categories so that each firm is of measure zero relative to the economy as a whole (and hence takes total expenditure as given).

The total regional demand is

$$C^n_{rgf} = N_r \lambda^n_{rg} \left(P^n_{rgf} \right)^{-\sigma^n} \left(\lambda^n_{rgf} P^n_{rg} \right)^{\sigma^n-1},$$

while the price index in sector n, region r, category g is

$$P^n_{rg} = \begin{cases} \left(\sum_{f \in \Omega^n_r} \left(\frac{P^n_{rgf}}{\lambda^n_{rgf}} \right)^{1-\sigma^n} \right)^\frac{1}{1-\sigma^n} & \text{for } n = 1 \\ \left(\int_{f \in \Omega^n_r} \left(\frac{P^n_{rgf}}{\lambda^n_{rgf}} \right)^{1-\sigma^n} \right)^\frac{1}{1-\sigma^n} & \text{for } n \neq 1, \end{cases}$$

where P^n_{rgf} is the price of goods from firm f in sector n, category g, region r. As all categories g are symmetric, $P^n_{rg} = P^n_r$.

\(^{27}\)We normalize the geometric mean of firms’ appeal equal to one, $\prod_r \prod_{f \in \Omega^n_r} \lambda^n_{rgf} = 1$. Moreover, firms in sectors two and three are homogeneous, i.e., $\lambda^2_{rgf} = \lambda^3_{rgf} = 1$.

22
5.2 Price setting for multi-region firms

The multi-region firm problem is

$$\pi^n_{gf} = \max_{P^n_{rfg}} \sum_{r \in \Omega^n_{gf}} C^n_{rfg} \left(P^n_{rfg} - \delta^n_{rfg} \right),$$

subject to equations (2) and (3), where δ^n_{rfg} is the marginal cost of production. In the benchmark model, firms in sector one (i.e., the focus of our analysis) also have the constraint of uniform pricing, i.e., they have to set the same price in all regions. Firms in sector two, instead, set flexible prices, i.e., they can set different prices across regions. We solve the model both with flexible and uniform pricing to understand the additional effects of the uniform-pricing constraint in the optimal price.\(^2^{28}\)

Flexible pricing When firms can set different prices across regions there are no direct linkages across regions for a firm, so firms can solve each regional problem independently. In this case, the optimal price is

$$P^n_{gf, flex} = \frac{\left(\sigma^n - (\sigma^n - 1) s^n_{rfg} \right) \delta^n_{rfg}}{\sigma^n - (\sigma^n - 1) s^n_{rfg} - 1},$$

where s^n_{rfg} is the market share of firm f, from sector n, category g in region r, i.e.,

$$s^n_{rfg} = \frac{P^n_{rfg} C^n_{rfg}}{\sum_{f'} P^n_{rfg'} C^n_{rfg'}}.$$

This pricing formula is the standard one when market power is taken into account, as in Atkeson and Burstein (2008). If a firm does not have market power (i.e., $s^n_{rfg} = 0$), the price is just a constant markup $\frac{\sigma^n}{\sigma^n - 1}$ over marginal cost δ^n_{rfg}. Alternatively, if a firm does have market power (i.e., $s^n_{rfg} > 0$), the optimal price involves a markup $\frac{\sigma^n - (\sigma^n - 1) s^n_{rfg}}{\sigma^n - (\sigma^n - 1) s^n_{rfg} - 1}$, which is increasing in the firm’s market share s^n_{rfg}.

Uniform pricing Now consider a firm that has to set the same price in all regions. The optimal price is

$$P^n_{gf, uniform} = \frac{\sum_{r \in \Omega^n_{gf}} \gamma^n_{rfg} \left(\sigma^n - (\sigma^n - 1) s^n_{rfg} \right) \delta^n_{rfg}}{\sum_{r \in \Omega^n_{gf}} \gamma^n_{rfg} \left(\sigma^n - (\sigma^n - 1) s^n_{rfg} - 1 \right)},$$

(4)

\(^{28}\)Appendix B.3 solves a menu-cost model in which the firm has to choose between setting uniform prices or paying an adjustment cost to set different prices across regions. The menu-cost extension shows that the constraint of uniform pricing imposes small profit losses relative to an economy without the constraint, suggesting that a relatively small cost of setting flexible prices may be enough to explain why multi-region firms set uniform prices.
where γ_{rgf}^n is the local share of region r for firm f, i.e.,

$$\gamma_{rgf}^n = \frac{C_{rgf}^n}{\sum_{r' \in \Omega_{gf}^n} C_{r'rgf}^n},$$

which captures how important region r is for firm f.

If a firm is active in only one region (so $\gamma_{rgf}^n = 1$ only for region r'), the optimal price is the same as with flexible pricing, involving a markup that increases with the market power. Alternatively, if a firm is active in multiple regions, it needs to take into account the market power and the share of sales in each region. A region with a larger share of a firm’s total sales will have a larger weight on the firm’s pricing decision. This new force appears due to uniform pricing and is the key mechanism to explain the differences in responses to regional shocks across firms with different levels of local shares (as shown in Figure 5). It also generates differences between regional and aggregate shocks as well as spillover across regions.

Response to regional and aggregate shocks The key difference between flexible and uniform pricing is in how they respond to regional changes in marginal cost. Consider the partial equilibrium elasticity of prices to δ_{rgf}^n (i.e., without taking into account changes in market power or local shares). Under flexible pricing, this elasticity is given by

$$\frac{\partial P_{rgf}^{n,\text{flex}}}{\partial \delta_{rgf}^n} \frac{\delta_{rgf}^n}{P_{rgf}^{n,\text{flex}}} = 1,$$

so all the increase in marginal costs passes to prices. Under uniform pricing the elasticity is

$$\frac{\partial P_{rgf}^{n,\text{uniform}}}{\partial \delta_{rgf}^n} \frac{\delta_{rgf}^n}{P_{rgf}^{n,\text{uniform}}} = \frac{\gamma_{rgf}^n \delta_{rgf}^n \left(\sigma^n - (\sigma^n - 1) s_{rgf}^n \right)}{\sum_{r' \in \Omega_{gf}^n} \gamma_{rgf}^n \delta_{rgf}^n \left(\sigma^n - (\sigma^n - 1) s_{rgf}^n \right)}.$$

With uniform pricing, instead, the elasticity crucially depends on the local share. If the firm is active in only one region, then the responses under uniform and flexible pricing coincide. When the firm is active in more regions, and assigns less weight to each individual region, the firm responds less to regional changes in marginal costs. In particular, the response is decreasing in the local share, making prices *sticky* to regional shocks.

When the shock is aggregate (i.e., the change in marginal costs occurs in all regions), firms with either flexible or uniform pricing have a full pass-through of marginal costs to prices. Hence, with uniform pricing it is as if prices are *less responsive* to regional shocks than to aggregate conditions, particularly
for multi-region firms with small local shares. Thus, uniform pricing makes elasticities to regional shocks different from elasticities to aggregate ones.

Sector two has flexible pricing Finally, as mentioned above, we assume that in sector $n = 2$ there is a continuum of firms (i.e., no market power) setting flexible prices (i.e., one price in each region). Thus, the optimal price in this case is just a constant markup over marginal cost

$$P_{raf}^n = \frac{\sigma^n}{\sigma^n - 1} \delta_{raf}^n.$$

5.3 Production

Firms combine local labor and a continuum of intermediate inputs to produce the final consumption good as in Bernard, Jensen, Redding, and Schott (2018). Intermediate inputs are produced in every region in the spirit of Eaton and Kortum (2002). Given that many goods sold by grocery stores (as well as by firms in other sectors) are from the same producers, we allow intermediate inputs to be sourced from all regions. This introduces linkages across regions, implying that the marginal cost depends on local wages as well as wages in other regions. Together with uniform prices, this will make elasticities to regional shocks different from elasticities to aggregate ones.

Intermediate inputs Producers of intermediate inputs have a linear technology that uses labor and are under perfect competition. The cost of production for an intermediate good l sourced from region j for each firm f, in sector n, category g, in region r is

$$a^n_{jrfg} (l) = \frac{w_j}{\delta_{jrfg}^n (l)},$$

where $\delta_{jrfg}^n (l)$ is a stochastic productivity drawn independently for each buyer from a Frechet distribution

$$G^n_{jrfg} (z) = e^{-T_j z^{-\theta}},$$

where T_j is the scale parameter that determines the average productivity from source region j and θ is the shape parameter that determines the dispersion of productivity.

Final good firms choose to source intermediate inputs from the cheapest firms (i.e., those with the highest productivity). Thus, the relevant price is the minimum of all prices for each input. Because of the Frechet distribution assumption, the minimum price across all possible sources is also Frechet
Final Goods Final goods production combines intermediate inputs $Y(l)$ and local labor L, with production function

$$Q^n_{rfg} = \left(\frac{L^n_{rfg}}{\alpha_n} \right)^{\alpha_n} \left(\frac{f^1 Y^n_{rfg}(l) \frac{q-1}{\eta} \, dl}{(1 - \alpha_n) \frac{q-1}{\eta}} \right)^{(1 - \alpha_n) \eta \frac{1}{\eta - 1}},$$

where α_n is the labor share and $\eta < \theta + 1$ is the elasticity of substitution across intermediate inputs. The labor demand is

$$L^n_{rfg} = \alpha_n \frac{\delta^n_{rfg}}{w_r} Q^n_{rfg},$$

where the marginal cost δ^n_{rfg} is

$$\delta^n_{rfg} = w_r^{\alpha_n} \eta^{1-\alpha_n} \left(\Phi \right)^{\frac{1-\alpha_n}{\eta}}.$$

where $\gamma = \left(\Gamma \left(\frac{\theta+1-\eta}{\theta} \right) \right)^{\frac{1}{1-\eta}}$. Hence, the marginal cost depends not only on local wages w_r, but also on wages across the country through Φ. There are two key parameters that discipline the spillovers from wages across regions. First, $1 - \alpha_n$ captures the share of intermediate inputs in production. If the firm uses more intermediate inputs sourced from across the country, the marginal cost will depend more on national wages. Second, a larger value of θ implies a smaller dispersion of productivity across intermediate producers. Without productivity dispersion, relative wages are the only determinants of the source of intermediate inputs. Thus, when θ is larger, a small change in wages can lead to large changes in regional intermediate inputs, amplifying the spillovers across regions.

The probability that firm f (of sector n, category g) in region r buys inputs from region j is

$$\mu^n_{rfg} = \frac{T_j w_j^{-\theta}}{\sum_{j'} T_{j'} w_{j'}^{-\theta}}.$$

Note that μ^n_{rfg} also corresponds to the share of expenditures on inputs from that source country in its total expenditures on variable inputs.29
Hence, the labor demand from intermediate producers is

\[L_{n,\text{int}}^{1,\text{int}} = \mu_{n,\text{int}}^{1} \frac{(1 - \alpha_g) \delta_{rgf}^n}{w_j} Q_{rgf}^n, \]

and the total labor demand from the intermediate production sector is

\[L_r^{1,\text{int}} = \int_0^1 \left(\sum_{r=1}^R \sum_{f \in \Omega_{rg}^n} L_{jrfg}^{1,\text{int}} \right) dg \]
\[L_r^{2,\text{int}} = \int_0^1 \left(\sum_{r=1}^R \int_{f \in \Omega_{rg}^n} L_{jrfg}^{2,\text{int}} \right) dg. \]

Exportable Good Each region produces a different exportable good with technology \(z_r (L_r^x)^{\alpha_x} \). This sector takes the international price \(P^*_r \) as given, which is the source of regional shocks. The representative firm in this sector solves

\[\pi_r^x = \max_{L_r^x} P^*_r z_r (L_r^x)^{\alpha_x} - w_r L_r^x, \]

with labor demand

\[L_r^x = \left(\frac{P^*_r z_r \alpha_x}{w_r} \right)^{\frac{1}{1-\alpha_x}}. \]

A regional shock that increases \(P^*_r \) will increase the labor demand for exports in the shocked region, leading to an increase in regional wages. This will then increase marginal costs for final goods producers, which will adjust prices accordingly.

5.4 Equilibrium: Regional labor markets and profits

There are five different sources of labor demand. For each sector \(n = 1, 2 \), both final goods producers and intermediate goods producers demand labor. In addition, the exportable sector also demands labor. Hence, the regional labor market clearing condition is

\[L_{1,\text{fg}}^1 + L_{2,\text{fg}}^2 + L_r^{1,\text{int}} + L_r^{2,\text{int}} + L_r^x = L_r. \]

Finally, regional profits (distributed back to the households in the region) correspond to the regional profits generated by the three sectors in region \(r \)

\[\pi_r = \frac{1}{N_r} \left(\int_0^1 \left(\sum_{f \in \Omega_{rg}^1} \pi_{rgf}^1 \right) dg + \int_0^1 \left(\sum_{f \in \Omega_{rg}^2} \pi_{rgf}^2 \right) dg + \pi_r^x \right). \]
6 Calibration

We calibrate the model with uniform pricing in steady state in sector one, assuming that model regions represent the 24 Argentinean provinces (the smallest geographic division for which we have employment data), mapping firms in sector one to chains in our data. We calibrate most of the parameters externally (i.e., without simulating the model), except for one parameter for which we have to use a simulated method of moments. Table 7 shows the parameters together with their sources or estimated moments.

Table 7: Estimated Parameters and Moments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>1</td>
<td>Labor disutility</td>
<td>Frisch elasticity</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>σ^1</td>
<td>4.50</td>
<td>Substitutability between firms ($n = 1$)</td>
<td>Elasticity from Nielsen (Hottman 2019)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>σ^2</td>
<td>7.66</td>
<td>Substitutability between firms ($n = 2$)</td>
<td>Markup (Boar and Midrigan 2019)</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>θ</td>
<td>4</td>
<td>Int. inputs: Frechet shape</td>
<td>Productivity distribution (Simonovska and Waugh 2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>3</td>
<td>Substitutability between int. inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_1</td>
<td>0.66</td>
<td>Local labor share of production ($n = 1$)</td>
<td>Int. Inputs Share (Input-Output Tables)</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>α_2</td>
<td>0.66</td>
<td>Labor share of production ($n = 2$)</td>
<td>Labor share of costs</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>α_x</td>
<td>0.66</td>
<td>Labor share of production (exports)</td>
<td>Labor share of revenue</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>λ_i</td>
<td>(3.6, 1)</td>
<td>Consumption expenditure shares</td>
<td>CPI consumption basket shares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_r</td>
<td>See Figure 6</td>
<td>Region’s available labor</td>
<td>Provincial population shares of country (Census)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_{rF}</td>
<td>See Figure 6</td>
<td>Preferences for chains</td>
<td>Store distributions by province</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ψ</td>
<td>1.29</td>
<td>Labor disutility</td>
<td>Share of time working</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Notes: The data of price responses and local shares are based on the estimates in Section 4.4.

Following the regional economics literature (e.g., Caliendo and Parro, 2015), we use input-output tables from Argentina to estimate α_1. Intermediate inputs amount to 29% of the total output in the Argentinian retail sector. Given that we do not observe the share of profits in Argentina, we adjust for the profits observed in the US input-output tables (of 14.6%), to obtain an α_1 of 0.66. Regarding the other sectors, we also set $\alpha_2 = \alpha_x = 0.66$ so that the labor share of costs in the exporting sector and labor share of revenue in the final goods sector are equal to 0.66.

For the substitutability across firms, σ^n, we do not have information on quantities or markups for Argentina, so we use estimates from the US. In Section 7.5, however, we show that our main results are robust to variations in these (and other) parameters. Hottman (2019) estimates the elasticity of substitution across firms in the grocery retail sector, implying a value of $\sigma^1 = 4.5$. For other sectors ($n = 2$), we target a markup of 15%, i.e., the average markup in the US as summarized by Boar and Midrigan (2019). This implies $\sigma^2 = 7.66$.

The estimated model implies an average markup in sector one of 40.8%. Even though we do not have information on markups in the grocery retail sector in Argentina, we find that this markup is comparable to estimates from the US retail sector—Faig and Jerez (2005) estimate an average markup of 39%—and UK supermarkets—Thomassen, Smith, Seiler, and Schiraldi (2017) find an average markup of 45%.

30The estimated model implies an average markup in sector one of 40.8%. Even though we do not have information on markups in the grocery retail sector in Argentina, we find that this markup is comparable to estimates from the US retail sector—Faig and Jerez (2005) estimate an average markup of 39%—and UK supermarkets—Thomassen, Smith, Seiler, and Schiraldi (2017) find an average markup of 45%.
Regarding intermediate inputs, we need to calibrate the productivity distribution, as defined by Frechet shape parameter θ, as well as the substitutability between inputs, as defined by η. We set $\theta = 4$ based on recent estimates from the trade literature by Simonovska and Waugh (2014). This is also in line with the literature review by Head and Mayer (2014), who, based on the estimates of 32 papers, find an average estimate of θ of 4.5 and a median estimate of 3.2. We also set $\eta = 3$, which satisfies the condition $\eta < \theta + 1$. This value has no quantitative role in our results, as shown in Figure 9.

We measure the relative size of each province N_r using the population by province. We map the firms in sector one to the chains in our data. We use store locations in our data to estimate chains’ market share in each province. Under the assumption that each store obtains the same revenue, we estimate the market share of each chain as

$$s^n_{rgf} = \frac{\text{Chain’s # of stores in region } r}{\text{ # of stores in region } r}.$$

This share is directly mapped into the region-specific preference λ^n_{rf}. Figure 6 shows the population of each province as well as the estimated market share of each chain in each province, highlighting the heterogeneity across firms and regions in the data. Note that we have both multi-region chains that are in almost every region, as well as more local chains that are only in one or two regions. This heterogeneity is important to measure how uniform pricing across regions affects the aggregate economy.

31 θ also relates to how much labor demand for the production of intermediate inputs changes with relative wages across the country. Thus, an informative moment is how much non-export labor demand changes with wages after the regional shocks take place. Using the regional shocks explained in Section 6.1, we estimate the own-wage elasticity (i.e., the ratio of the percent change in non-export labor to the percent change in wages). In the estimated model, we find an elasticity of -0.69, which is in line with the empirical estimates as summarized by Lichter, Peichl, and Siegloch (2015). They report an average elasticity estimate of -0.55, with a standard deviation of 0.747 and 83% of estimates within the interval of minus one and zero.

32 In order to match the market shares observed in the data s^n_{rgf}, region-specific preferences can be backed out as

$$\lambda^n_{rf} = \left(s^n_{rgf} \right)^{\frac{1}{\eta+1}} p^n_{rgf} \left(\left\{ s^n_{rgf}, w_r \right\} \right),$$

where $p^n_{rgf} \left(\left\{ s^n_{rgf}, w_r \right\} \right)$ is the optimal price choice for each firm given the wages and market shares (and other parameters).

29
We calibrate T_j and z_r such that if regions are identical except for the size of their populations, regions also have the same equilibrium wages and sector shares. Hence, we set $T_j = \bar{T}_N$ and $z_r = z_r N_r^{1-\alpha}$. We also set \bar{z}_r such that in steady state trade is balanced at the regional level.

We set consumption expenditure shares λ_i to match the consumption basket shares in the Argentinean Consumer Price Index. This implies that the grocery store sector involves 30% of expenses while imported goods take approximately 10% of expenditures. The remainder 60% refers to nationally produced goods that do not belong to the grocery store sector.\footnote{The CPI index specifies that groceries (food and drinks) amount to 30% of expenditures. Assigning the remaining part to either non-traversable or imported goods is not as clear. We assume that expenses in housing, health, transport, communication, entertainment, education, restaurants and hotels are nationally produced goods (i.e., sector two in our model). This leaves the clothing sector (of about 10% of expenditures) that we assume refers to imported goods (i.e., sector three). Even though imports in Argentina amount to approximately 16% of GDP, many of those imports are not part of final consumption, so we believe our assumption of 10% of final goods being imported is reasonable. Nevertheless, in Section 7.5 we evaluate the sensitivity of our results to alternative estimations.} Finally, we set the Frisch elasticity of labor supply $1/\phi$ to 1 (as in Kaplan, Moll, and Violante 2018 or Blundell, Pistaferri, and Saporta-Eksten 2016) and the weight on the labor supply component of utility, Ψ, is set (using simulated method of moments) so that the share of hours worked is equal to 35% in steady state.
6.1 Validation

Section 4.4 shows that prices of firms with a lower local share react less to regional shocks. As a validation exercise, we now check that the model is in line with the empirical estimates from the data.34 We shock the model with an exogenous increase in the price of each regional exported good, one by one—i.e., we increase P^*_{r} by 4.43%, which corresponds to one standard deviation of export commodities prices in the data. This increases the labor demand for exports in the shocked region, leading to an increase in regional employment, wages and income. We then pool the changes in log-employment and relative prices after each regional shock and estimate a regression equivalent to the one done in the data (see equation 1) with store fixed effects.35

Table 8 shows that the estimated coefficients are similar in the simulated model and the data. In particular, the coefficient regarding the interaction between employment growth and local share is 0.645 in the model, very similar to the estimated value of 0.677 in the data. Figure 8 also shows that the marginal effect of employment growth on prices for chains with different levels of local shares in the model is within the 95% confidence bounds estimated in the data (see Figure 5).

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. Growth</td>
<td>-0.137</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>(0.0569)</td>
<td>(0.0081)</td>
</tr>
<tr>
<td>Local Share</td>
<td>-0.269</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.1890)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Emp. Growth x Local Share</td>
<td>0.677</td>
<td>0.645</td>
</tr>
<tr>
<td></td>
<td>(0.2160)</td>
<td>(0.0206)</td>
</tr>
</tbody>
</table>

Notes: We shock the simulated model with an exogenous increase in price of exports for each region one by one; we increase P^*_{r} by 4.43%, which corresponds to 1 standard deviation in the data. We then estimate (1) as in the data. In particular, we include store fixed effects as in Figure 5 and column 5 of Table 6. The table compares the estimates in the model to those in column 5 of Table 6.

34In the model, we define the local share as γ^n_{rqf}. In the data, we restrict the set of products such that we compare the price of similar goods across stores. Similarly, in the model, we interpret each variety g as a similar basket sold by different firms f.

35In the model, we implement store fixed effects as chain-province fixed effects.
Notes: We shock the simulated model with an exogenous increase in price of exports for each region one by one; we increase P^*_r by 4.43%, which corresponds to 1 standard deviation in the data. We then estimate (1) as in the data. In particular, we include store fixed effects as in Figure 5 and column 5 of Table 6.

7 Quantitative Results

We now quantify how the presence of uniform pricing makes regional elasticities different from aggregate ones. In Section 7.1 we show that uniform pricing is necessary to explain the empirical finding that prices in the grocery store sector react more to regional shocks when a firm’s local share is high. We also show that for aggregate shocks, the price elasticity is independent of local shares and larger than when shocks are regional. Section 7.2 summarizes our main result that the total price regional elasticity is one-half of the aggregate one and decomposes the sources behind this difference. In Section 7.3, we exploit the heterogeneity in regional elasticities to show that using regional elasticities to estimate aggregate elasticities may lead to a larger bias when regions are small or firms’ are multi-regional. Section 7.5 evaluates the parameter sensitivity of our results, while Section 7.6 provides additional results and extensions.

7.1 Uniform Pricing

We study how firms in the grocery sector (i.e., sector one), which set uniform prices, respond to aggregate versus regional shocks. A regional shock, as in the validation, refers to an increase in the price of exports...
the exportable good \(P^*_r \) for a single region \(r \). An aggregate shock, instead, refers to an increase in \(P^*_r \) for all regions \(r \). These shocks increase labor demand for exports, leading to increased employment, wages and income. We then calculate the elasticity of prices (for each firm) to the regional income:

\[
\epsilon_{P^n r g f, Y_r} = \frac{\Delta \log (p^n_{rgf})}{\Delta \log (Y_r)}.
\]

Uniform vs. Flexible Pricing We now solve a counterfactual model in which firms in sector one can set flexible prices. Figure 8 shows the elasticity \(\epsilon_{P^n r g f, Y_r} \) in sector one as a function of a firm’s local share, and compare the cases of uniform versus flexible pricing. With uniform prices, firms have to set the same prices across regions. Hence, when the local share is relatively small, the total marginal cost and total demand for that product does not change much. As a result, prices have a small reaction to shocks. On the other hand, when the local share is high, prices react more to regional shocks. By contrast, in the economy with flexible pricing, the response of prices is similar for all firms regardless of the local share. Thus, the patterns of price reactions in the uniform-pricing economy resemble the empirical findings of Figure 5, while those in the flexible-pricing model do not.

Figure 8: Regional versus Aggregate Shocks

![Figure 8: Regional versus Aggregate Shocks](image)

Notes: We shock the economy with an exogenous increase in price of exports for each region one by one; we increase \(P^*_r \) by 4.43%, which corresponds to 1 standard deviation in the data. The left panel shows the response of prices to regional and aggregate shocks under uniform pricing. The right panel shows the case of flexible pricing. The size of the circles is determined by the size of the regions (i.e., population size).

Regional vs. Aggregate Shocks The dotted line in Figure 8 shows \(\epsilon_{P^n r g f, Y_r} \) when the shocks are aggregate (i.e., the same shock takes place in all regions). In this case, the effect on firms’ prices is independent of the local share. Since all regions receive the same export price shock, marginal costs and income increase in all regions, which leads to price increases that are independent of local shares. It is also clear

36 As in the validation, we increase \(P^*_r \) by 4.43%, which corresponds to one standard deviation of export commodities prices in the data. In Section 7.5, we show that our main result is almost unchanged if we change the size of the shock.
that aggregate shocks lead to larger price changes, particularly when the regional shocks take place in regions in which firms have small local shares. For example, firms with local shares around 0.1 display a price elasticity of approximately 0.05–0.2 when the shock is regional but an elasticity of 0.9 when the shock is aggregate. For firms that are only in one region (i.e., local share of 1), the price elasticity is between 0.25 and 0.75 when the shock is regional but is 0.9 when the shock is aggregate.

Price elasticities are heterogeneous because of firms’ local shares as well as regions’ sizes. Regions’ sizes, as shown by the size of the circles in Figure 8, are particularly important due to the role of intermediate inputs. Since intermediate inputs are produced nationally, the cost in each region depends on wages in all regions. Bigger regions tend to produce more of the intermediate inputs. Hence, when wages increase in a big region, marginal costs of intermediate inputs increase more, which then generates larger price elasticities.

7.2 Regional vs Aggregate Elasticities

Our main quantitative contribution is to study how the overall economy responds to regional versus aggregate shocks in the presence of uniform pricing. To summarize these results, we study the responses of the sectoral price index P^n_r, price index P_r, and consumption C_r to shocks. We define the elasticities as

$$
\varepsilon_{P^n_r,Y_r} = \frac{\Delta \log (P^n_r)}{\Delta \log (Y_r)}, \quad \varepsilon_{P_r,Y_r} = \frac{\Delta \log (P_r)}{\Delta \log (Y_r)}, \quad \varepsilon_{C_r,Y_r} = \frac{\Delta \log (C_r)}{\Delta \log (Y_r)},
$$

and note that $\varepsilon_{P_r,Y_r} + \varepsilon_{C_r,Y_r} = 1$. Table 9 reports the population-weighted average across regions for these elasticities under different scenarios. Panel (a) shows that, under the baseline economy of uniform pricing with endogenous intermediate inputs, the price elasticity ε_{P_r,Y_r} is 0.42 when the shock is regional, but it is 0.82 when the shock is aggregate. The elasticity ratio of regional to aggregate shocks, our main measure of elasticity differences, is $\frac{0.42}{0.82} = 0.51$. In other words, the estimated model predicts an almost one-half smaller price elasticity to a regional shock than to an aggregate one.

Under uniform pricing, prices are set according to the weighted marginal cost of the total economy. If there is a regional shock, the marginal cost will not change much, and, as a result, prices will be sticky to regional shocks. Consumption, therefore, will react more in the region of the shock than under an aggregate shock in which prices do adjust more. Table 9 also reports the consumption elasticity. To compensate for the differences in the price elasticity, the consumption elasticity is 0.58 when the shock is regional, but it is 0.18 when the shock is aggregate.\(^{37}\)

The model has two forces generating regional elasticities different from aggregate ones: uniform pricing and intermediate inputs. We analyze the quantitative importance of each force. Panel (c) of Table 9 shows that when these two elements are shut down (i.e., prices are flexible, and the cost and labor

\(^{37}\)An alternative way to estimate the price elasticity is to regress $\Delta \log (P_r)$ on $\Delta \log (Y_r)$, using data from all regions. This methodology, which is closer to the analysis in empirical regional papers, is explored in Section 7.4.
demand for intermediate inputs is fixed to their baseline values), aggregate and regional shocks lead to the same elasticities. To evaluate the importance of uniform pricing relative to intermediate inputs, we evaluate a third scenario. Panel (b) of Table 9 shows that with uniform pricing but fixed intermediate inputs, the price elasticity ratio is 0.76. Given the baseline value of 0.51, this suggests that uniform pricing generates about half of the difference (i.e., $0.76 - 0.51 = 0.25$ of a total of $1 - 0.51 = 0.49$) between regional and aggregate price elasticities. Thus, uniform pricing implies that using regional heterogeneity to infer aggregate price elasticities may lead to a downward bias.

The regional price elasticity in our model is composed of the sectoral price indices P^n_r in the sectors $n = \{1, 2, 3\}$. The first three columns of Table 9 show the elasticity and elasticity ratios for each of these sectors. The elasticity ratio is 0.38 in the grocery store sector ($n = 1$), while it is 0.57 for other nationally produced goods ($n = 2$). Prices for imported goods ($n = 3$), instead, don’t change with regional or national conditions, so the elasticity is zero for both regional and aggregate shocks, and its sectoral elasticity ratio is 1 (i.e., no bias). The elasticity ratio bias is the largest in sector one since this is the only one for which we assume uniform pricing. However, it may be reasonable to expect other sectors of the economy with multi-region firms (e.g., online shopping, clothing retailers or many others) to also have uniform pricing strategies across regions. By comparing the elasticity ratios in panels (a) and (b), it is seen that intermediate inputs explain most of the elasticity differences in sector two, while uniform pricing is the main driver in sector one. Given that sector two is estimated to be about 60% of the economy, introducing uniform pricing in parts of this sector may substantially increase the differences between price elasticities to regional vs. aggregate shocks. Hence, our estimate of the elasticity bias may be interpreted as a lower bound.

38 We fix intermediate inputs by holding the component of marginal cost and labor demand from intermediate inputs at its steady state value.
Table 9: Regional versus Aggregate Shocks

<table>
<thead>
<tr>
<th>Prices</th>
<th>Groceries (P_{1r}^r)</th>
<th>Other (P_{2r}^r)</th>
<th>Imported (P_{3r}^r)</th>
<th>Index (P_r^r)</th>
<th>Consumption Aggregator (C_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Uniform pricing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>0.35</td>
<td>0.52</td>
<td>0.00</td>
<td>0.42</td>
<td>0.58</td>
</tr>
<tr>
<td>Aggregate</td>
<td>0.91</td>
<td>0.91</td>
<td>0.00</td>
<td>0.82</td>
<td>0.18</td>
</tr>
<tr>
<td>Elasticity ratio</td>
<td>0.38</td>
<td>0.57</td>
<td>1.00</td>
<td>0.51</td>
<td>3.27</td>
</tr>
</tbody>
</table>

(b) Uniform pricing + fixing intermediate inputs					
Regional	0.15	0.44	0.00	0.31	0.68
Aggregate	0.45	0.45	0.00	0.40	0.59
Elasticity ratio	0.33	0.98	1.00	0.76	1.17

(c) Flexible pricing + fixing intermediate inputs					
Regional	0.45	0.45	0.00	0.40	0.59
Aggregate	0.45	0.45	0.00	0.40	0.59
Elasticity ratio	1.00	1.00	1.00	1.00	1.00

Notes: The table evaluates the elasticity of the sectoral price index P_{n}^r for each sector $n = \{1, 2, 3\}$, price index P_r, and regional consumption C_r, to regional and aggregate shocks. Panel (a) refers to the uniform-pricing economy with endogenous intermediate inputs (baseline); panel (b) to uniform-pricing with fixed intermediate inputs; and panel (c) to flexible-pricing with fixed intermediate inputs. We define the elasticity ratio as elasticity to regional relative to aggregate shocks.

7.3 What factors generate larger biases in regional elasticities?

Figure 8 shows that firms’ price elasticities in sector one are heterogeneous because of market structure as well as regions’ sizes. We now study how the price index elasticity $\varepsilon_{P,Y,r}$ and consumption elasticity $\varepsilon_{C,Y,r}$ differ across regions and generate biases when estimating the aggregate elasticities. We regress the elasticities on the region’s size (N_r) and average local share (v_{rgf})

Regional Elasticity_r = $\alpha + \beta$Size_r + γAvg-Local-Share_r + ε_r.

Table 10 shows the results using both price and consumption elasticities.
Table 10: Regional Elasticity Heterogeneity

<table>
<thead>
<tr>
<th></th>
<th>Price</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. local share</td>
<td>0.0788 [-4.35]</td>
<td>-0.0796 [-4.34]</td>
</tr>
<tr>
<td>Market size</td>
<td>1.0206 [20.75]</td>
<td>-1.0300 [-20.69]</td>
</tr>
</tbody>
</table>

R^2 0.97 0.97
N 24 24

Notes: We shock the economy with an exogenous increase in price of exports for each region one by one; we increase P^*_r by 4.43%, which corresponds to 1 standard deviation in the data. After calculating the elasticity of the price index and total consumption to regional shocks, we regress these on the average local share and market size of each region.

Size The bias is amplified when the regional shock takes place in a smaller region. Sellers put less weight on local conditions of small regions. Hence, prices are stickier and the responses to regional and aggregate shocks become more different.

Market Structure The bias is amplified when there are more multi-region firms (i.e., the average local share is small). When firms sell in many regions, they respond less to local conditions. Hence, regional prices react less to regional variation, which increases the differences between regional and aggregate elasticities.

7.4 Replicating Empirical Studies

An alternative way to estimate the price elasticity is to regress $\Delta \log (P_r)$ on $\Delta \log (Y_r)$, using data from all regions. This methodology is closer to the analysis in regional empirical papers as in, for example, Mian and Sufi (2011) or Autor, Dorn, and Hanson (2013). Given the difficulty of identifying shocks in large regions, this methodology tends to prefer using smaller regions in order to have reasonable control groups. Using this methodology and our model-generated regional shocks, Panel (b) of Table 11 shows that we estimate an average price elasticity of 0.61. Including shock-source fixed effects (similar to time fixed effects in empirical regressions), the elasticity estimate is reduced to 0.21. The actual average elasticity in our model is 0.42, as shown in Panel (a), so within this range of regression estimates, but it is not equal to either of them. In line with Guren, McKay, Nakamura, and Steinsson (2020), who show
that time fixed effects absorb GE effects, we find that the fixed-effects regression is actually closer to the exact regional elasticity in our model for small regions (i.e., 0.25), which are the regions with the smallest spillover and aggregate effects. By contrast, the regression without time fixed effects is actually closer to both the exact regional elasticity in our model for large regions (i.e., 0.61 vs. 0.52) and the exact aggregate elasticity (i.e., 0.61 vs. 0.82), i.e., the regions with the largest spillover and aggregate effects.

These results highlight a conflict between the econometrician and the macroeconomist when trying to use regional variation to estimate aggregate elasticities. To obtain identification, the econometrician requires using small regions and time fixed effects. To be closer to aggregate elasticity estimates, however, the macroeconomist requires larger regions and no time fixed effects. If we were to abstract from uniform pricing and endogenous intermediate inputs that are traded across regions, the right side of Table 11 shows that these empirical regressions actually do an almost perfect job at estimating the elasticities. The presence of cross-regional spillovers (through uniform pricing and intermediate inputs) implies that it is not possible to use regional variation to estimate aggregate elasticities. This does not imply that the empirical estimates in the literature are not useful. The estimates are useful to calibrate or validate structural models, as we do in this paper; then, the calibrated model can be used to evaluate the aggregate elasticities (and implications) of the shocks of interest.

Table 11: Empirical Regressions vs. Elasticity Estimates

<table>
<thead>
<tr>
<th></th>
<th>(1) Uniform pricing</th>
<th>(2) Flexible Pricing + Fixed int. inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Regions</td>
<td>Small</td>
</tr>
<tr>
<td>Regional Shock</td>
<td>0.42</td>
<td>0.25</td>
</tr>
<tr>
<td>Aggregate Shock</td>
<td>0.82</td>
<td>0.82</td>
</tr>
</tbody>
</table>

(a) Exact Elasticity: $\frac{\Delta \log(P_r)}{\Delta \log(Y_r)}$

(b) Based on Regression of $\Delta \log(P_r)$ on $\Delta \log(Y_r)$

<table>
<thead>
<tr>
<th></th>
<th>All Regions</th>
<th>Small</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Fixed Effects</td>
<td>0.61</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.07)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>With Fixed Effects</td>
<td>0.21</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
</tbody>
</table>

Notes: We introduce regional shocks to the economy as an exogenous increase in the price of exports for each region one by one; we increase P^*_r by 4.43%, which corresponds to 1 standard deviation in the data. We introduce an aggregate shock as an increase in the price of exports for all regions. Panel (a) shows the elasticity of the price index to regional and aggregate shocks. Panel (b) shows the estimates for the price elasticity based on regressing $\Delta \log(P_r)$ on $\Delta \log(Y_r)$, using the regional shocks from all regions and weighting regions by population size. We include shock-source fixed effects, which are similar to time fixed effects in empirical regressions. The left side (1) of the table refers to the uniform-pricing economy with endogenous intermediate inputs (baseline); the right side (2) to flexible-pricing with fixed intermediate inputs. Large regions are defined as the regions with more than 5% of the national population. These include only four regions, which amount to 62% of Argentina’s population. Small regions are defined as all the remaining provinces.
7.5 Estimation Sensitivity

The main takeaway of the model is that in an economy with multi-regional sellers, prices react less to regional shocks than to aggregate ones. This implies that using regional heterogeneity to infer aggregate price elasticities may lead to a downward bias due to uniform pricing. In particular, we estimate the regional price elasticity to be on average only one-half of the aggregate elasticity. How sensitive is this quantitative result to alternative estimations? The left and middle panels of Figure 9 show the regional and aggregate elasticities when we increase each parameter by 1%, respectively. While we find that most parameters lead to almost no changes, two set of parameters deserve mentioning. First, α_1 and α_2 measure the role of local labor in the production of final goods in sectors one and two, respectively. As the role of nationally produced intermediate inputs is eliminated (which Table 9 shows that it explains about half of the elasticity ratio), the regional elasticity increases, while the aggregate elasticity is not affected. Thus, both elasticities become more similar. Second, λ_1 and λ_2 measure the expenditure shares of sector one and two, respectively. As we increase the expenditure share of goods that use intermediate inputs, there is a larger increase in the labor demand and wages, which increases the marginal cost. This generates similar increases in both regional and aggregate elasticities, implying that the difference between the two is almost unaffected.

The right panel of Figure 9 shows, instead, how much parameters matter for the result that local firms react more to local shocks. In Section 6.1, we show that the model is in line with the data when estimating equation (1). Now, we show how much the coefficient from the effect on relative prices of the interaction between local shares and employment (β in equation 1) changes with the parameters. A few parameters deserve mentioning. First, the largest change takes place with the share of local labor. In particular, the higher α_1 (or α_2), the more marginal costs depend on local labor (and less on nationally-produced intermediate inputs), leading to larger differences between local and multi-regional producers in their price reaction. Second, the higher ϕ, the smaller the Frisch elasticity. When this happens, employment tends to increase less while wages (and, therefore, prices) tend to increase more. Thus, the regression coefficient β increases. Even though a formal analysis would require knowing the standard deviation of the parameters of interest, Figure 9 also shows that the regression coefficient β and, particularly, the elasticity ratio may be almost unaffected by sizable changes in most parameters.

39 We follow Andrews, Gentzkow, and Shapiro (2017), as implemented by Elenev, Landvoigt, and Van Nieuwerburgh (2020), and evaluate the elasticity of the moment of interest (i.e., the elasticity ratio) to each parameter in Θ as

$$\frac{\log(\text{Elasticity Ratio} | \Theta^e) - \log(\text{Elasticity Ratio} | \Theta^e-\epsilon)}{2\epsilon},$$

with $\epsilon = 0.01$ and ϵ a vector selecting the parameter of interest. We then use this to evaluate what the elasticity ratio would be if the parameter was increased by 1%.

40 Recall that $\lambda_3 = 1 - \lambda_1 - \lambda_2$. When we increase either λ_1 or λ_2 we are also decreasing λ_3.

7.6 Additional Results

Spillovers: Uniform pricing also implies that shocks in one region have spillover effects on other regions. On average, a regional shock makes prices in other regions increase by 3.9% relative to the increase in prices if the shock were an aggregate one. Similarly, consumption falls by -1.2% relative to the change due to an aggregate shock.\(^{41}\) But spillover effects are heterogeneous, depending on where the shock takes place. A shock in Buenos Aires province, the largest region, leads to an average increase in prices of approximately 37% (relative to the aggregate shock) in the other regions. This then causes an average decrease in consumption of 10% (relative to the consumption increase observed with an aggregate shock). Similar qualitative spillover effects on prices and consumption are observed when the shock takes place in other provinces. However, the magnitudes of the spillover effects are much smaller since the shocks are taking place in much smaller regions.

Welfare: To evaluate the welfare implications of uniform pricing for regional households, we compute the welfare gains (in consumption equivalent units) of moving from uniform to flexible pricing in each region. Households tend to lose when moving to flexible pricing (with an average loss of 0.5%) because uniform pricing prevents firms from extracting more surplus from consumers, but welfare effects are highly heterogeneous, ranging from losses of 4.2% to gains of 0.4%.\(^{42}\) A large driver of the heterogeneity of welfare effects has to do with the firms’ heterogeneous market power across regions. Households care about what prices would be if firms, instead of setting a uniform price, were able to set different

\(^{41}\)Appendix B.1 shows the details and also decomposes the spillovers due to uniform pricing and the presence of intermediate inputs.

\(^{42}\)See Appendix B.2 for details.
prices in each region. In our model, firms set higher prices when they have higher market power. Thus, if firms have heterogeneous levels of market power across regions, they would want to increase prices in regions where they have more market power. In line with Adams and Williams (2019), chains that operate in low-competition regions need to take into account that increasing prices may increase local profits but would also lead to large profit losses in high-competition regions.

Menu-cost: In the baseline model we imposed that firms in sector one have to set uniform prices. In Appendix B.3 we extend the model so that firms can choose between uniform or flexible pricing. There are two margins of regional heterogeneity, so, absent any adjustment cost, firms would prefer to set different prices across regions. First, there is ex-ante heterogeneity since regions have different preferences and sizes. To gauge the magnitude of the fixed cost, we consider a single firm that can adjust the price without any cost. The average firm’s profits would only increase by 1.9%. Hence, the gains from setting flexible prices for each firm are small, and a fixed cost that amounts to 2% of profits would deter firms from setting different prices across regions.

Second, there is ex-post heterogeneity across regions due to regional shocks. It might be the case that after a regional shock, regions become more different and firms would like to set different prices across regions. As the size of the regional shock increases, regions become more different and there are more incentives to set different prices across regions. However, we find that for reasonable values of the regional shock, the fixed cost does not have to increase much to compensate for regional shocks. Even with shocks up to five times larger than in our benchmark model, the fixed cost has to increase by only 6% (i.e., to about 2.1% of profits) to justify why firms set uniform prices. Hence, ex-post heterogeneity does not add substantial additional gains for setting different prices across regions.

Alternative model: The baseline model in Section 5 has price changes due to variations in marginal costs. Our main conclusions also hold when prices change due to demand shocks that affect the demand elasticity (due to non-homothetic preferences and income shocks). We find the same qualitative results as in our baseline model: (i) firms setting uniform prices weigh each region according to their sales share, (ii) regional price elasticities are smaller than aggregate price elasticities, and (iii) regional elasticities are more biased measures of aggregate ones when regions are smaller or firms’ sales are more equally distributed across regions.

8 Conclusion

This paper introduces a new database of grocery prices in Argentina, with over 9 million observations per day, to study the importance of chains relative to stores in setting prices. We show that conditional on a product, there is little variation across stores of the same chain; i.e., there is uniform pricing. Prices almost do not vary within stores of a chain and prices do not change significantly with regional conditions or shocks, particularly so for chains that operate in many regions.
We study the impact of uniform pricing on estimates of local and aggregate elasticities. We develop a model of heterogeneous regions and sectors with multi-region firms and uniform pricing. We calibrate the model and show, as a validation, that the model is in line with the fact that firms operating mostly in one region react more to local shocks. Uniform pricing implies that consumption reacts less in response to an aggregate than to a regional shock because prices are sticky to regional shocks but more responsive to aggregate conditions. The estimated model predicts an almost one-half lower elasticity of prices to a regional shock than to an aggregate one. This result highlights that some caution may be necessary when using regional shocks to estimate aggregate elasticities, particularly when the relevant prices are set uniformly across regions. Moreover, the recent rise in market-share concentration and of e-commerce (to about 10% and 15% of all retail sales in the US and worldwide, respectively, in 2018) implies that firms are more likely to be active in multiple regions, which reinforces the importance of this channel.

Why would firms set uniform prices instead of customizing prices to local customers? Traditional explanations typically focus on the cost of discriminating, including operation as well as reputation costs. Dobson and Waterson (2008) provide a different reason more closely related to collusion. They show that firms may be better off under uniform pricing even if they have larger market power in some regions. This policy, if applied by all firms under commitment, will soften competition in other markets and may sufficiently raise firm profits overall (at the cost of some local profits). Our paper does not explore this question. Instead, using the model, we take uniform pricing as an exogenous constraint and evaluate its consequences for consumers and firms. We highlight, nevertheless, that the returns to price discrimination for firms in our baseline estimation are small. Hence, we interpret this to mean that the costs of price discrimination may not need to be as large as one may imagine to justify uniform pricing.
References

Appendix

A Data Appendix

A.1 Website Example ... 48
A.2 Data Validation ... 53
A.3 Price Dispersion in All Chains .. 53
A.4 Price Change Synchronization ... 53
A.5 Uniform Pricing with Sales .. 55
A.6 Statistical Model of Price Dispersion 55
A.7 Chains’ Locations Characteristics 60

B Additional Quantitative Results ... 60

B.1 Spillovers from Regional Shocks .. 60
B.2 Welfare Implications of Uniform Pricing 62
B.3 Menu-cost model ... 63

C Alternative Model .. 64

C.1 Households ... 65
C.2 Firms ... 66
C.3 Quantitative Exploration .. 68
C.4 Aggregate Shocks ... 70
C.5 Alternative City Configurations ... 71
A Data Appendix

A.1 Website Example

Figure A1 shows an example in which we use the website to search for Coca-Cola soda. The second figure shows that after searching for Coca-Cola, many varieties of the product are available. The prices in the nearby stores are reported. After selecting one particular product (e.g., Gaseosa Coca-Cola X 2,25Lt), we obtain the list of stores and their prices. Note that these prices include list and sale prices.
Figure A1: Precios Claros Website

Step 1: Introduce Location

Step 2: Search for Product

Step 3: Select Product

Notes: We show here an example in which the website is used to search for Coca Cola soda. The last figure shows (a subset of) the different stores and prices (including sales) available nearby.
Figure A2 shows all the stores included in the data. Given that most stores are concentrated in the Buenos Aires area, the two bottom figures show in more detail Greater Buenos Aires (GBA) and Buenos Aires City (CABA).43

Figure A3 shows the distribution of prices for several products, with different colors identifying each chain’s distribution. Prices are bunched in only a few values and, more importantly, conditional on a chain, there are only a few prices (much fewer prices than the number of stores).

43Argentina has a population of approximately 44 million people. GBA and CABA account for approximately one-third and one-tenth of the country’s population, respectively. The areas of GBA and CABA are 3,830 and 203 km², respectively. As a reference, CABA is about twice as large as Manhattan, both in population and area.
Notes: Each dot refers to a store in the given region.
Figure A3: Examples of Uniform Pricing

Source: Precios Claros. Each color refers to a different chain. Data are for particular products (barcodes) on a particular day (December 1, 2016).
A.2 Data Validation

The data are self-reported by the chains, but we have several motives to believe that it actually represents the real prices. First, large fines (of up to 3 million US dollars) are applied if stores do not report their prices correctly. Second, micro-price statistics are consistent with the international evidence for countries with annual inflation around 30%. For example, the monthly frequency of price changes is 0.84 and the dispersion of relative prices is 9.7%, both of which are similar to the findings in Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2018). Third, we observe a (small) variation in prices for a specific product (barcode) across stores of the same chain and chain type, implying that retailers are not uploading exactly the same price list for all their stores. Fourth, the number of stores by province is consistent with official statistics (see Encuesta de Supermercados). Finally, the level of price changes is consistent with official statistics for monthly inflation. This evidence leads us to believe that the self-reported prices are the real ones and that there are no mistakes in the database.

A.3 Price Dispersion in All Chains

Table A1 repeats the analysis of Table 2, but for all national chains, and shows that uniform pricing is a general characteristic of chains in Argentina.

A.4 Price Change Synchronization

Table A2 shows that price-change coordination at the chain level also holds when looking at weekly or biweekly data.

<table>
<thead>
<tr>
<th>Period of analysis</th>
<th>1 day</th>
<th>1 week</th>
<th>2 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed in other stores of any chain</td>
<td>5.53%</td>
<td>17.65%</td>
<td>27.82%</td>
</tr>
<tr>
<td>Std. deviation of price change</td>
<td>5.66%</td>
<td>9.39%</td>
<td>9.46%</td>
</tr>
<tr>
<td>Changed in other stores of same chain</td>
<td>29.93%</td>
<td>47.57%</td>
<td>58.89%</td>
</tr>
<tr>
<td>Std. deviation of price change</td>
<td>3.25%</td>
<td>4.33%</td>
<td>3.97%</td>
</tr>
<tr>
<td>Changed in other stores of same type and chain</td>
<td>38.27%</td>
<td>52.95%</td>
<td>63.13%</td>
</tr>
<tr>
<td>Std. deviation of price change</td>
<td>2.85%</td>
<td>3.91%</td>
<td>3.70%</td>
</tr>
<tr>
<td>Changed in other stores of same province and chain</td>
<td>64.96%</td>
<td>75.23%</td>
<td>81.25%</td>
</tr>
<tr>
<td>Std. deviation of price change</td>
<td>1.23%</td>
<td>1.86%</td>
<td>1.96%</td>
</tr>
</tbody>
</table>

Notes: Statistics are in daily, weekly and biweekly frequency. For example, out of all products that changed prices in one store in a given week, prices also changed in 17.65% of other stores of any chain.
Table A1: Uniform Pricing in Argentina

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	
Price dispersion																					
Within chain	0.4	0.5	0.0	0.0	0.0	2.4	3.7	0.0	6.1	0.0	5.3	2.9	7.0	1.8	3.6	8.0	7.7	3.2	5.4		
Unique prices by product	1.01	1.01	1.00	1.00	1.00	1.11	3.75	1.00	9.08	1.00	3.44	1.13	2.26	2.09	5.40	15.29	18.25	1.37	6.68		
Price dispersion by chain-province																					
Within chain-prov	0.4	0.5	0.0	0.0	0.0	2.3	2.6	0.0	3.8	0.0	5.0	2.9	4.3	1.2	2.8	4.1	5.6	3.2	3.7		
Unique prices by product	1.01	1.01	1.00	1.00	1.00	1.10	2.72	1.00	2.10	1.00	2.74	1.13	1.40	1.10	3.22	3.52	5.36	1.37	2.35		
Price dispersion by chain-province-type																					
Within Chain-prov-type	0.4	0.5	0.0	0.0	0.0	2.0	2.6	0.0	2.5	0.0	2.4	2.5	0.9	1.2	2.8	2.6	3.4	3.2	3.6		
Unique prices by product	1.01	1.01	1.00	1.00	1.00	1.09	2.72	1.00	1.32	1.00	2.17	1.04	1.10	3.22	1.88	2.30	1.37	2.16			
Prices																					
Price rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Relative price (%)	-15.7	-10.0	-8.6	-6.8	-6.4	-5.6	-5.1	-3.1	-2.6	-2.3	-2.2	-2.0	-1.5	-0.6	0.1	0.7	1.7	2.2	3.6	4.4	
By product																					
Percentile 10	-32.4	-27.4	-22.6	-17.9	-25.6	-21.3	-22.2	-8.9	-12.3	-21.1	-20.8	-22.2	-17.8	-6.0	-14.1	-9.8	-8.1	-12.0	-7.4		
Percentile 25	-23.3	-17.6	-13.0	-11.7	-14.3	-12.6	-12.3	-5.8	-8.6	-5.9	-11.0	-9.2	-11.4	-6.4	-2.9	-3.7	-3.4	-2.1	-2.6	-0.7	
Percentile 50	-15.1	-8.5	-7.1	-6.1	-4.4	-5.3	-4.0	-2.7	-3.9	-1.6	-1.8	0.1	-1.5	0.5	-0.2	2.2	1.6	2.9	4.6	5.2	
Percentile 75	-7.6	-1.1	-2.0	-0.7	2.0	3.4	0.0	3.3	2.4	7.5	7.2	9.2	6.9	2.9	7.5	7.2	7.7	11.2	10.5		
Percentile 90	-0.6	5.1	2.2	4.2	8.2	8.7	10.9	2.9	7.7	7.0	16.0	13.8	18.0	13.3	6.9	12.5	13.3	11.9	18.0	15.2	
Percentile 95	3.2	9.5	5.0	7.6	13.4	13.7	16.1	5.1	12.4	10.2	20.5	17.3	25.0	17.4	9.7	15.8	17.4	14.7	22.4	18.3	

Notes: Price dispersion refers to the average standard deviation of log-standardized prices. This measure is explained in detail in the main text.
A.5 Uniform Pricing with Sales

The main results of the paper consider list prices. Table A3 shows that uniform pricing also holds if we include promotions and sales data.

Table A3: Uniform Pricing Including Sales

<table>
<thead>
<tr>
<th>Chain characteristics</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stores</td>
<td>113.4</td>
<td>181.4</td>
<td>10.5</td>
<td>27.5</td>
<td>116.6</td>
</tr>
<tr>
<td>Products with sale I (%)</td>
<td>4.6</td>
<td>5.4</td>
<td>0.0</td>
<td>2.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Size sale I (%)</td>
<td>25.7</td>
<td>11.4</td>
<td>14.2</td>
<td>28.4</td>
<td>34.2</td>
</tr>
<tr>
<td>Products with sale II (%)</td>
<td>18.8</td>
<td>29.9</td>
<td>0.0</td>
<td>0.1</td>
<td>34.4</td>
</tr>
<tr>
<td>Size sale II (%)</td>
<td>14.7</td>
<td>8.2</td>
<td>9.2</td>
<td>13.9</td>
<td>17.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unique prices by chain</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>List price</td>
<td>3.9</td>
<td>5.0</td>
<td>1.0</td>
<td>1.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Min(list, sale I)</td>
<td>4.0</td>
<td>5.1</td>
<td>1.0</td>
<td>1.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Min(list, sale II)</td>
<td>4.1</td>
<td>5.4</td>
<td>1.0</td>
<td>1.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Min(list, sale I, sale II)</td>
<td>4.1</td>
<td>5.5</td>
<td>1.0</td>
<td>1.2</td>
<td>4.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unique prices by chain-type</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>List price</td>
<td>2.5</td>
<td>2.1</td>
<td>1.0</td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Min(list, sale I)</td>
<td>2.6</td>
<td>2.2</td>
<td>1.0</td>
<td>1.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Min(list, sale II)</td>
<td>2.6</td>
<td>2.1</td>
<td>1.0</td>
<td>1.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Min(list, sale I, sale II)</td>
<td>2.6</td>
<td>2.2</td>
<td>1.0</td>
<td>1.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Notes: The database has up to three reported prices. All products have a list price, while a subgroup also include up to two sale prices (i.e., sale I, and/or sale II).

A.6 Statistical Model of Price Dispersion

We use a statistical model to do a variance decomposition of prices and formally highlight the role of chains behind price setting. We implement this analysis separately for each day, so the variation studied here is not related to prices changing over time—and we do not need to control for time factors. We then report average results over time as well as the autocorrelation of the different estimated components.

We propose that the log-price \(p_{g,s,c} \) of good \(g \) in store \(s \) of chain \(c \) can be summarized by a product fixed-effect \(\alpha_g \), a chain fixed-effect \(\beta_c \), a chain-product fixed-effect \(\gamma_{g,c} \), and a residual \(\epsilon_{g,s,c} \). The variation in \(\epsilon_{g,s,c} \) comes from different stores of the same chain setting different prices for the same product:

\[
p_{g,s,c} = \alpha_g + \beta_c + \gamma_{g,c} + \epsilon_{g,s,c}.
\]

In our estimation, we assume that the conditional mean \(\mathbb{E} [\beta_c] = 0 \), such that \(\alpha_g \) absorbs the average.
price effect. This standardizes prices, facilitating the comparison of prices of different goods that may be more expensive due to their characteristics (e.g., a 2.25 liter bottle of a particular soda vs a 750 milliliter bottle of a shampoo).\footnote{This is equivalent to analyzing “relative prices,” as in Kaplan, Menzio, Rudanko, and Trachter (2019).} We also assume that $\mathbb{E} [y_{g,c} | c] = 0$, such that β_c absorbs the average chain effect. This controls for some chains being on average more expensive, possibly due to their particular amenities. These assumptions simplify the estimation, which is particularly important given the size of our sample, and guarantee that the covariance terms are zero. The estimation of α_g, β_c, and $\gamma_{g,c}$ can be done by conditional sample means:

\[
\hat{\alpha}_g = \frac{1}{N_g} \sum_{s,c} p_{g,s,c}
\]

\[
\hat{\beta}_c = \frac{1}{N_c} \sum_{g,s} \left(p_{g,s,c} - \hat{\alpha}_g\right)
\]

\[
\hat{\gamma}_{g,c} = \frac{1}{N_{g,c}} \sum_s \left(p_{g,s,c} - \hat{\alpha}_g - \hat{\beta}_c\right)
\]

\[
\hat{\epsilon}_{g,s,c} = p_{g,s,c} - \hat{\alpha}_g - \hat{\beta}_c - \hat{\gamma}_{g,c},
\]

where (with a slight abuse of notation) N_g refers to the number of stores selling good g, N_c the number of price observations (i.e., good-stores observations) of chain c, and $N_{g,c}$ the number of stores selling good g in chain c.

We then abstract from the price variation due to product characteristics α_g and study dispersion in relative prices. We decompose relative price variation in a chain component, a chain-product component, and the residual:

\[
\text{Relative Price} = \text{Var} \left(p_{g,s,c} - \hat{\alpha}_g \right) = \text{Var} \left(\hat{\beta}_c \right) + \text{Var} \left(\hat{\gamma}_{g,c} \right) + \text{Var} \left(\hat{\epsilon}_{g,s,c} \right).
\]

Figure 2 in the main text shows that in CABA, 17% of price variation is driven by some chains being generally more expensive than others. Once we control for average prices of products by chains, 73% (17% + 56%) of price dispersion is explained. For the Argentinean case, we also estimate the importance of prices in chains at the province-product level. In this case, average chain prices per product explain 62% (11% + 51%) of price variation. Controlling for price differences across provinces by chain explains another 19%. In other words, consistent with Tables 2 and A1, price variation across stores within chains is small, driving only 27% and 19% of the total relative price dispersion for CABA and Argentina, respectively.
Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2018) estimate price dispersion in Argentina using a longer time series of price data, from 1988 to 1997, covering a range of monthly inflation between 0 and 200%. They have, however, only 500 products that cannot be precisely compared across stores (since products are defined as narrow categories and don’t have barcodes). Our dataset contains a substantially larger number of goods that can be precisely compared across stores since we observe their EAN barcodes. Our estimates for the standard deviation of relative prices is approximately 7% and 10% for CABA and Argentina, respectively. These estimates are near but below the estimates reported by Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2018) in periods with inflation levels close to the ones from our time period. One potential explanation for this difference is that we are actually comparing the same products (EAN barcodes) across stores, while they may be comparing different products.

Autocorrelation: Understanding the origin of this price dispersion is important to understanding store price setting as well as consumer choices. Kaplan, Menzio, Rudanko, and Trachter (2019) highlight that a large share of price dispersion comes from each store selling different sets of goods cheaper while charging similar prices on average. This situation suggests that an information problem might make consumers buy in a store selling more goods at higher prices since it is costly (or not possible) to find lower prices. If chains are the only drivers of price dispersion, the information problem seems more limited, as long as price differences between chains are persistent. Figure A4 shows the autocorrelation of the estimated components $\hat{\beta}_c$, $\hat{y}_{g,c}$, and $\hat{\epsilon}_{g,s,c}$ at different lags of days.
A.6.1 Alternative Decomposition

Table A4 shows the role of goods categories and store provinces on the variance of relative prices for Argentina. Regarding categories, 51% of the variance is explained by chains setting different relative prices across goods. Variation across categories explains 16% of the variance, while variation within goods of the same category explains the remaining 35%. Moreover, 38% of the variance of relative prices is explained by stores of the same chain setting different prices for the same good. The province of the store explains 19% of that variance, while the other 19% corresponds to different prices in stores of the same province. Finally, Table A5 shows that 19% of the variance of relative prices is explained by stores setting different prices across goods. Chains explain 11% of that variance, and different prices at stores of the same chain explain the additional 8%.
Table A4: Alternative Decomposition: Categories and Provinces

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Goods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain-good</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain-category</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain-category-good</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain-good-store</td>
<td>38</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Chain-good-province</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain-good-province-store</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Roles of goods’ categories and stores’ provinces.

Table A5: Alternative Decomposition: Stores

<table>
<thead>
<tr>
<th></th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain & Stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Chain-store</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Goods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store-good</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Chain-store-good</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Roles of stores versus chains.
A.7 Chains’ Locations Characteristics

Table A6: Relative Dispersion of Chain Location Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of education</td>
<td>0.33</td>
<td>0.39</td>
</tr>
<tr>
<td>Home characteristics</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td>Number of children</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>House ownership</td>
<td>0.40</td>
<td>0.46</td>
</tr>
<tr>
<td>Age</td>
<td>0.44</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Notes: We compute the variance of the log of alternative characteristics for locations in which a chain operates relative to the unconditional variance. This table reports the average and standard deviations of these measures across chains.

B Additional Quantitative Results

B.1 Spillovers from Regional Shocks

Uniform pricing also implies that shocks in one region have spillover effects on other regions. As firms set the same price in all regions, a shock in one region will lead to a price change in all regions. To demonstrate this, we separately simulate regional shocks in each region as before but, instead, look at the effect on other regions. Figure B5 shows the average effects of a shock in each region on the price index and total consumption of other regions, all relative to the effects from an aggregate shock.
Notes: We shock the economy with an exogenous increase in price of exports for each region one by one; we increase P^*_r by 4.43%, which corresponds to 1 standard deviation in the data. The first figure shows the average spillover effect on prices of other regions, relative to an aggregate shock. The second figure shows the consumption spillover, also relative to an aggregate shock. Regions are sorted by size.

The average spillover effect on prices is 3.9%, while the one on consumption is -1.2% (always relative to the effect from an aggregate shock). But results are very heterogeneous depending on where the shock takes place. A shock in Buenos Aires, the largest region, leads to an average increase in prices of approximately 37% (relative to the aggregate shock) in the other regions. This then causes an average decrease in consumption of 10% (relative to the consumption increase observed with an aggregate shock). Similar qualitative spillover effects on prices and consumption are observed when the shock takes place in other provinces. However, the magnitudes of the spillover effects are much smaller since the shocks are taking place in much smaller regions. Bigger regions have a larger impact on prices, hence leading to larger spillover effects.

Spillovers occur because of uniform prices as well as intermediate inputs that are nationally produced. The dashed line of Figure B5 shows that when these two elements are shut down (i.e., prices are flexible, and the cost of as well as labor demand for intermediate inputs are fixed to their baseline values), there are no spillover effects. To evaluate the importance of uniform pricing relative to intermediate inputs, Figure B5 also shows the spillover effects with uniform pricing but fixed intermediate inputs. While uniform pricing explains all of the negative consumption spillover effects, it only explains about one-third of the total price spillovers: the average price spillover effect is now 1.6% instead of 3.9%.

The existence of intermediate inputs that are nationally produced implies that when one region receives a positive export price shock, its wages increase and a larger share of intermediate inputs is now produced in other regions. This increases the income in other regions, leading to an increase in consumption that partially compensates the decrease generated by the increase in prices.
B.2 Welfare Implications of Uniform Pricing

We evaluate the welfare implications of uniform pricing. We compute the consumption equivalent units of moving from uniform to flexible pricing for each region. The left panel of Figure B6 shows that households tend to lose when moving to flexible pricing (average loss of 0.5%), but welfare effects are highly heterogeneous, ranging from losses of 4.2% to gains of 0.4%.

Figure B6: Welfare Effects of Moving from Uniform to Flexible Pricing

By Regions

By Average Net Market Power

Notes: The figure shows the welfare gains for each region of moving from uniform pricing to flexible pricing. The left panel plots the gains for each region, ordered by population size. The right panel shows the welfare gains according to the average net market power that chains in sector one have in each region. The net market power of each chain-region is calculated as the market power of a chain in a region minus the average market power of such chain in other regions in which it operates.

A large driver of the heterogeneity of welfare effects has to do with the firms’ heterogeneous market power. Households care about what prices would be if firms, instead of setting a uniform price, were able to set different prices in each region. In our model, equation 4 shows that firms set higher prices when they have higher market power. Thus, if firms have heterogeneous levels of market power across the regions, they would want to increase (decrease) prices in regions where they have more (less) market power. To capture this, we calculate the net market power of firm \(f \) in region \(r \) as the market power of firm \(f \) in region \(r \) (\(s_{rf}^n \) in the model) minus the average market power of such chain in other regions in which it operates,

\[
\hat{s}_{rf}^n = s_{rf}^n - \frac{\sum_{r' \neq r, r' \in \Omega_{sf}^n} s_{r'f}^n}{\sum_{r' \neq r, r' \in \Omega_{sf}^n} 1}.
\]

The average, within region, net market power is, therefore, a summary statistic that explains the direction in which prices would move. The right panel of Figure B6 shows, as expected, that regions where
firms would have more market power under flexible pricing tend to prefer uniform pricing. For these regions, uniform pricing is a way of reducing prices. In line with Adams and Williams (2019), chains that operate in low-competition regions need to take into account that increasing prices may increase local profits, but would also lead to large profit losses in high-competition regions.

B.3 Menu-cost model

In the baseline model, we imposed that firms in sector one have to set uniform prices. We now study how large of a restriction this is. For this purpose, we extend the model so that firms can choose between uniform or flexible pricing

$$\pi_{gf}^n = \max \left\{ \pi_{gf}^{n,uni}, \pi_{gf}^{n,flex} \right\} .$$

Under uniform pricing, the problem is as in the baseline model, i.e.,

$$\pi_{gf}^{n,uni} = \max_{p_n} \sum_{r \in \Omega_{gf}^n} C_{rgf}^n \left(p_n^r - \delta_{rgf}^n \right) .$$

We now assume, instead, that there is a per-region fixed cost F (in units of labor) to adjust regional prices such that profits under flexible pricing are

$$\pi_{gf}^{n,flex} = \max_{p_n} \sum_{r \in \Omega_{gf}^n} C_{rgf}^n \left(p_n^r - \delta_{rgf}^n \right) - F w_r .$$

The main question is for what values of the fixed cost firms would prefer uniform to flexible prices across regions. There are two margins of regional heterogeneity. First, there is ex-ante heterogeneity since regions have different preferences and sizes. We find that with a relatively small fixed cost firms prefer uniform pricing. For example, with $F = 0$, profits would only increase 1.9% on average. Hence, the gains from setting flexible prices for the firms are small. A fixed cost that amounts to 2% of profits would deter firms from setting different prices across regions.\(^{46}\)

There is also ex-post heterogeneity across regions due to regional shocks. It might be the case that after a regional shock, regions become more different and firms would like to set different prices across regions. As the size of the regional shock increases, regions become more different and there are more incentives to set different prices across regions. However, we find that for reasonable values of the regional shock, F does not have to increase much to compensate for regional shocks. Figure B7 shows how much the fixed cost would have to increase relative to the steady state as a function of the size of the regional shocks. Even with shocks up to five times larger than in our benchmark model, F only has to increase by less than 6% to justify why firms set uniform prices. Hence, ex-post heterogeneity does

\(^{46}\)We can measure F in units of labor demand. Under the minimum F such that all firms set uniform prices, firms would have to increase their labor demand by about 4.9% to pay the fixed cost, on average.
not add substantial additional gains for setting different prices across regions.

Figure B7: Menu cost model

Notes: The figure shows the minimum F such that all firms prefer uniform pricing as a function of the size of the regional shock. The red dot shows the baseline value of shock sizes, which corresponds to one standard deviation of export commodities prices in the data.

C Alternative Model

The baseline model in Section 5 has price changes due to variations on marginal costs. Our main conclusions also hold when prices change due to demand shocks that affect the demand elasticity (due to non-homothetic preferences and income shocks). We find the same qualitative results as in our baseline model: (i) firms setting uniform prices weigh each region according to their sales share, (ii) regional price elasticities are smaller than aggregate price elasticities, and (iii) regional elasticities are more biased measures of aggregate ones when regions are smaller or firms’ sales are more equally distributed across regions.

This alternative model has the fewest possible components such that while it is consistent with the data it is also tractable, allowing us to easily identify the key trade-offs across alternative pricing schemes.
We extend the standard model of monopolistically competitive firms with a continuum of goods in three key dimensions. First, we add non-homothetic preferences so that prices change with income shocks. We assume preferences similar to Simonovska (2015), as this preference structure allows for analytical tractability. Second, we include multiple regions and variation in market shares across varieties. We assume there are two regions with heterogeneous preferences across varieties to generate variation on market shares. Third, we assume that there is uniform pricing, i.e., the seller has to set the same price in both markets.\footnote{The model is studied here in partial equilibrium. Our results are robust to extending the model to general equilibrium, with endogenous labor supply and the disutility of labor being the source of shocks (available upon request).}

Time is discrete and infinite, \(t = 0, \ldots, \infty \). There are two cities \(j = 1, 2 \) with population size \(M_j \) and a continuum of differentiated goods \(\omega \in [0, 1] \). Each product is sold by a national monopolistic firm that chooses to sell in either one or both cities. Throughout the analysis, we interpret City 1 as the local economy and City 2 as the rest of the economy.

\section*{C.1 Households}

There is a representative consumer in each city with period utility

\[u_{j,t} = \int_{\omega \in \Omega_{j,t}} s_j(\omega) \log (q_{j,t}(\omega) + \bar{q}_j) \, d\omega, \tag{5} \]

where \(\Omega_{j,t} \) is the set of goods consumed in city \(j \) and period \(t \), \(q_{j,t}(\omega) \) is the individual consumption of variety \(\omega \) in city \(j \) and period \(t \), and \(\bar{q}_j > 0 \) is a city-specific constant. There are city-specific tastes, \(s_j(\omega) \), such that the demand functions are heterogeneous across goods and cities. Without loss of generality we assume that \(\frac{\partial s_1(\omega)}{\partial \omega} \geq 0 \) and \(\frac{\partial s_2(\omega)}{\partial \omega} \leq 0 \). Thus, consumers in City 1 prefer goods closer to \(\omega = 1 \), while those in City 2 prefer goods closer to \(\omega = 0 \).

Preferences are non-homothetic, so the demand elasticity changes with income, as in Simonovska (2015). With these preferences the model can be consistent with the empirical findings in Section 4, which show that prices change with income shocks.\footnote{With CES preferences, prices are equal to a constant markup over the marginal cost and therefore prices do not react to income shocks. For more general preferences, see Jung, Simonovska, and Weinberger (2019) or Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019), among others.} Moreover, the presence of heterogeneous tastes and non-homotheticity implies that in equilibrium some goods are sold only in City 1, some goods only in City 2, and some in both cities. This characterization is important to capture the empirical finding that some chains are national (i.e., sell in many cities), while others are local (sell only in one city) and can have different responses to regional or aggregate shocks.
The household’s problem reads

\[U^j = \max_{q_{j,t}(\omega)} \beta^t u(u_{j,t}) \quad \text{s.t.} \quad \int_{\omega \in \Omega_{j,t}} p_{j,t}(\omega) q_{j,t}(\omega) \leq y_{j,t} \quad \forall t. \]

The demand for variety \(\omega \) in city \(j \) and period \(t \) is given by

\[q_{j,t}(\omega) = \max\left\{ 0, \frac{s_j(\omega) y_{j,t} + p_{j,t}q_j}{S_{j,t}} - \bar{q}_j \right\}, \quad (6) \]

where \(S_{j,t} = \int_{\omega \in \Omega_{j,t}} s_j(\omega) d\omega \), and \(P_{j,t}(\omega) = \int_{\omega \in \Omega_{j,t}} p_{j,t}(\omega) d\omega \). The marginal utility from consuming a variety \(\omega \) is bounded from above at any level of consumption. Hence, a consumer may not have positive demand for all varieties.

C.2 Firms

Firms have a linear technology with marginal cost \(c_{j,t} \). We compare the solution of two alternative price settings: uniform and flexible pricing. Under uniform pricing, the firm has to set the same price in both cities; i.e., \(p_{1,t}(\omega) = p_{2,t}(\omega) = p_t(\omega) \). Alternatively, under flexible pricing, producers can set different prices in each city.

C.2.1 Flexible Pricing

In the case of flexible pricing, firms can set different prices in each city. The problem of the firm is

\[\max_{p_{j,t}(\omega)} \sum_{j=1}^{J} (p_{j,t}(\omega) - c_{j,t}) q_{j,t}(\omega) M_j \]

taking the demand function (6) as given. The solution is

\[p_{j,t}(\omega) = \left[c_{j,t} \frac{s_j(\omega)}{S_{j,t}} \frac{y_{j,t} + P_{j,t}}{q_j} \right]^{1/2}. \quad (7) \]

Given the demand function (6) and pricing (7), we can find the set of goods consumed in each city. It is easy to show that this set is characterized by a threshold such that \(q_{j,t}(\omega) \geq 0 \) if and only if
The threshold is defined as the taste such that consumption is equal to zero; that is,

\[s_j(\omega) \geq s_{j,t}. \]

Recall that \(s_1(\omega) \) is increasing in \(\omega \). Hence, there exists \(\omega_1 \in [0, 1] \) such that \(q_{1,t}(\omega) \geq 0 \) if and only if \(\omega \geq \omega_1 \) and \(\omega_1 = s_1^{-1}(s_{1,t}) \). Similarly, as \(s_2(\omega) \) is decreasing in \(\omega \), there exists \(\omega_2 \in [0, 1] \) such that \(q_{2,t}(\omega) \geq 0 \) if and only if \(\omega \leq \omega_2 \) and \(\omega_2 = s_2^{-1}(s_{2,t}) \).

C.2.2 Uniform Pricing

Under uniform pricing, each variety \(\omega \) has the same price in both cities. Therefore, each seller has to choose whether to sell only in City 1, only in City 2, or in both locations. If the seller chooses to sell only in one location, the price function is the same as with flexible pricing. If he sells in both locations, the problem is

\[
\max_{p_t(\omega)} \sum_{j=1}^{J} M_j q_{j,t}(\omega) \left(p_t(\omega) - c_{j,t} \right),
\]

taking the demand functions (6) as given. The solution is

\[
p_t(\omega) = \left[\sum_{j=1}^{2} \frac{M_j}{M_1 + M_2} c_{j,t} \left(\frac{s_j(\omega)}{q_j} \right) \left(\frac{y_{j,t}}{q_j} + p_{j,t} \right) \right]^{1/2}.
\]

To solve for the set of goods consumed in each city, note that prices are increasing in the taste preference \(s_j \) regardless of whether a variety is sold in either one or both cities. This implies that in equilibrium there are thresholds \(s_{j,t} \) such that in city \(j \) the consumption of variety \(\omega \) is positive if and only if \(s_j(\omega) \geq s_{j,t} \). Moreover, \(s_1(\omega) \) increasing implies that there exists \(\omega_1 \) such that \(\Omega_{1,t} = [\omega_1, 1] \). Similarly, as \(s_2(\omega) \) is decreasing, then \(\Omega_{2,t} = [0, \omega_2] \). As a result, the price of variety \(\omega \) is

\[
p_t(\omega) = \begin{cases}
\left[\sum_{j=1}^{2} \frac{M_j}{M_1 + M_2} c_{j,t} \left(\frac{s_j(\omega)}{q_j} \right) \left(\frac{y_{j,t}}{q_j} + p_{j,t} \right) \right]^{1/2} & \text{if } \omega \leq \omega_1 \\
\left[\sum_{j=1}^{2} \frac{M_j}{M_1 + M_2} c_{j,t} \left(\frac{s_j(\omega)}{q_j} \right) \left(\frac{y_{j,t}}{q_j} + p_{j,t} \right) \right]^{1/2} & \text{if } \omega_1 \leq \omega \leq \omega_2 \\
\left[\frac{s_1(\omega)}{q_1} \left(\frac{y_{1,t}}{q_1} + p_{1,t} \right) \right]^{1/2} & \text{if } \omega \geq \omega_2
\end{cases}
\]

Finally, the thresholds are defined by

\[
\frac{s_1(\omega)}{\tilde{S}_{1,t}} \frac{y_{1,t} + P_{1,t} \tilde{q}_1}{p_t(\omega)} = \tilde{q}_1 \quad \text{and} \quad \frac{s_2(\omega)}{\tilde{S}_{2,t}} \frac{y_{2,t} + P_{2,t} \tilde{q}_2}{p_t(\omega)} = \tilde{q}_2.
\]

\[49\] To see this, replace the equilibrium price (7) on the demand function (6) and note that it is increasing in \(s_j(\omega) \).
C.3 Quantitative Exploration

In this section we quantitatively evaluate the implications of uniform versus flexible pricing.

C.3.1 Calibration

We calibrate the model with uniform pricing in steady state, assuming that City 1 is a representative province of our data and City 2 is the rest of the country. To measure the relative size of a representative province, we use information on the number of stores by provinces. We estimate that the average share of stores that a chain has in a province is 20%. We interpret this as \(M_1 = 0.2 \) and \(M_2 = 0.8 \) since those estimates reflect the relative size of the different markets available to a typical chain. We further assume consumers in each city are symmetric, so we set \(y_1 = y_2 = 1 \) and \(\bar{q} = q_1 = q_2 \), and without loss of generality we normalize \(c_1 = c_2 = 1 \). Moreover, we set the taste parameters \(s_1(\omega) = (\omega)^\alpha \) and \(s_2(\omega) = (1 - \omega)^\alpha \). In Section C.5 we evaluate the role of some of these assumptions in our results.

We calibrate the two preference parameters \(\alpha \) and \(\bar{q} \) targeting three moments from the empirical results. First, in the data, on average, 7% of stores that sell in a province sell only in that province. In the model, City 1 consumes varieties \(\Omega_1 = [\omega, 1] \) out of which varieties \([\bar{\omega}, 1] \) are sold only in City 1. Hence, we target this moment as \((1 - \bar{\omega}) / (1 - \omega) = 0.07 \).

Section 4.4 shows that prices of firms with a lower local share react less to regional shocks. In the model we define the local share as \(local(\omega) = M_1 q_1(\omega) / (M_1 q_1(\omega) + M_2 q_2(\omega)) \).\(^{50}\) We shock the economy with an exogenous increase in income for City 1—we increase \(y_1 \) by 1.7%, which corresponds to one standard deviation in the data. We target the response of firms with local shares of 0.5 and 1. Despite its simplicity, the model does a good job at matching the three target moments. Table C7 shows the estimated parameters and target moments.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1.23</td>
<td>Taste curvature</td>
<td>Local share</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>(\bar{q})</td>
<td>0.01</td>
<td>Demand constant</td>
<td>Price response p50</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Price response p100</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Notes: The data of price responses and local shares are based on the estimates of Section 4.4.

Response to regional shocks In the calibration we target the response of prices to regional shocks for firms with a local share of 50% or 100%. We now compare the response for uniform versus flexible pricing. The first panel of Figure C8 shows the responses of prices to income shocks as a function

\(^{50}\)In the data, we restrict the set of products such that we compare the price of similar goods across stores. Similarly, in the model, we interpret each variety \(\omega \) as a similar basket sold by different stores.
of the local share. In the economy with flexible pricing, the response of prices is equal to 0.47 for all products regardless of the local share. In the uniform pricing economy, firms have to set the same prices across cities. Hence, when the local share is relatively small, the total demand for that product does not change much. As a result, prices have a small reaction to income shocks. On the other hand, when the local share is high, prices react more to income shocks in City 1. The patterns of price reactions in the uniform-pricing economy resemble the empirical findings of Figure 5, while those in the flexible-pricing model do not.

Uniform versus flexible pricing We model uniform pricing as an exogenous constraint to the firm for tractability. We can quantify how costly this constraint is by comparing the profits of firms in this economy with firms in the flexible-pricing economy. The second panel of Figure C8 shows the change in profits when we move from the uniform to the flexible pricing economy. First, the blue solid line shows the change in profits for an individual deviation of only a specific variety ω. In this case the firm can only be better off. Note that for varieties close to $\omega = 0$ and $\omega = 1$ the gains are almost zero. Similarly, at $\omega = 0.5$ the demand elasticities are equivalent in City 1 and 2 and, therefore, there are no gains for firms. The red dotted line shows the change in profits when all firms move to the flexible-pricing equilibrium, and so the demand functions also change. In this case there are some winners, those close to the thresholds $\underline{\omega}$ and $\overline{\omega}$ because for those firms the constraint is more costly, while there are some losers, those away from the thresholds. On average, however, the increase in profits is only about 0.35%.
C.4 Aggregate Shocks

We study the responses of prices and consumption to aggregate versus regional income shocks. We define total consumption in city j as $Q_{jt} = \int_0^1 q_{jt}(\omega)\,d\omega$ and a price index p_{index}^{jt} such that $p_{index}^{jt} Q_{jt} = \int_0^1 p_{jt}(\omega) q_{jt}(\omega)\,d\omega$. With this decomposition an increase in income y_j is accounted by changes in Q_{jt} and p_{index}^{jt}. We define the elasticities as

$$\varepsilon_{P,j} = \frac{\Delta p_{index}^{jt}}{\Delta y_{jt}} \quad \varepsilon_{Q,j} = \frac{\Delta Q_{jt}}{\Delta y_{jt}}$$

and note that $\varepsilon_{P,j} + \varepsilon_{Q,j} = 1$. With flexible pricing, regional and aggregate shocks have similar effects on prices and quantities. Table C8 shows that the elasticity of prices and consumption are 0.46 and 0.53, respectively, regardless of the type of shock being regional or aggregate.

Under uniform pricing, however, regional and aggregate shocks have different effects. An aggregate shock has almost the same effect as in the flexible-pricing economy. A regional shock, however, has a lower effect on prices and a larger effect on quantities in the uniform-pricing economy. The intuition is that under uniform pricing prices are set accordingly to the total demand of the aggregate economy. If there is a regional shock, the aggregate demand will not change much, and, as a result, prices will be sticky to regional shocks. Consumption, therefore, will react more in the region of the shock than under an aggregate shock in which prices do adjust more. Table C8 shows that when household income increases only in City 1, prices increase by 0.28, while prices increase by 0.44 for an aggregate shock. Thus, consumption increases by 0.71 from a regional shock, while it increases only by 0.55 from an aggregate shock. The estimated model predicts an almost one-third larger elasticity of consumption to a regional income shock than to an aggregate one. This result implies that using regional heterogeneity to infer aggregate elasticities may lead to an upward-bias due to uniform pricing.

Table C8: Regional versus Aggregate Shocks in City 1

<table>
<thead>
<tr>
<th></th>
<th>Price index</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform pricing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional shock</td>
<td>0.28</td>
<td>0.71</td>
</tr>
<tr>
<td>Aggregate shock</td>
<td>0.44</td>
<td>0.55</td>
</tr>
<tr>
<td>Elasticity ratio</td>
<td>0.64</td>
<td>1.29</td>
</tr>
<tr>
<td>Flexible pricing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional shock</td>
<td>0.46</td>
<td>0.53</td>
</tr>
<tr>
<td>Aggregate shock</td>
<td>0.46</td>
<td>0.53</td>
</tr>
<tr>
<td>Elasticity ratio</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: The table compares the elasticity of the price index and quantities consumed to regional and aggregate shocks in City 1, in the uniform- and flexible-pricing economies. We define the elasticity ratio as elasticity to regional relative to aggregate shocks.
C.5 Alternative City Configurations

We consider alternative setups to study the quantitative importance of each assumption. We evaluate the effects of city sizes, income, and preferences. We find that the amplification of the response of consumption to regional relative to aggregate shocks is robust to all the alternative specifications.

City Sizes As City 1 becomes larger, prices will follow more the demand of City 1 and the response of regional and aggregate shocks will become more similar. Figure C9 shows the ratio of the elasticity of consumption to a regional relative to an aggregate shock. In the limit, when $M_1 = 1$ and $M_2 = 0$, the ratio is equal to 1. However, the figure shows that for a wide range of values the ratio is between 1.2 and 1.4 and that when M_1 is sufficiently small the ratio can be as high as 1.6. We model the economy as two regions, while in the real world there are many regions, so each city looks like a small region. Hence, this exercise shows that the results would likely be stronger in a larger model that takes geographical heterogeneity into account.

Heterogeneous Income When City 1 becomes richer the elasticity ratio increases. We vary y_1, which proxy for the income in City 1. The intuition is that under uniform pricing, the seller takes the demand in the richer city more into account and therefore react less to shocks in the poor city. Hence, prices react more to regional shocks in richer than in poorer cities, which decreases the elasticity ratio.

Preference Heterogeneity When both cities have more similar preferences (lower α), the elasticity ratio increases. The intuition is that for products close to $\omega = 1$ (those with higher preference in region one), the demand from City 1 increases when α decreases. Hence, the prices of those goods will react less to a regional shock, which increases the elasticity ratio.

![Figure C9: Alternative City Configurations](image)

Figure C9: Alternative City Configurations

Notes: The figure shows the change in the ratio of the elasticity of consumption to regional relative to aggregate shocks under alternative parameter configurations.