The Nonlinear Effects of Fiscal Policy

Authors
Pedro Brinca, Miguel Faria e Castro, Miguel H. Ferreira, and Hans Holter

Working Paper Number
2019-015D

Revision Date
February 2022

Citable Link
https://doi.org/10.20955/wp.2019.015

Suggested Citation

Federal Reserve Bank of St. Louis, Research Division, P.O. Box 442, St. Louis, MO 63166

The views expressed in this paper are those of the author(s) and do not necessarily reflect the views of the Federal Reserve System, the Board of Governors, or the regional Federal Reserve Banks. Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate discussion and critical comment.
The Nonlinear Effects of Fiscal Policy*

Pedro Brinca† Miguel Faria-e-Castro† Miguel H. Ferreira§
Hans A. Holter¶

February 17, 2022

Abstract

We argue that the fiscal multiplier of government purchases in incomplete markets models is nonlinear in the spending shock, in contrast to the multiplier in complete markets models and what is assumed in most of the literature. In particular, the multiplier is increasing in the spending shock, with large positive shocks having the largest multiplier and large negative shocks having the smallest multiplier. The mechanism hinges on the relationship between fiscal shocks, their form of financing, and the response of labor supply across the wealth distribution. The model predicts that the aggregate labor supply elasticity is increasing in the fiscal shock, and this holds regardless of whether shocks are deficit- or balanced-budget financed. Our findings are consistent with aggregate fiscal consolidation data across 15 OECD countries over time. Furthermore, we find evidence of our mechanism in microdata for the US.

Keywords: Fiscal Multipliers, Nonlinearity, Asymmetry, Heterogeneous Agents

JEL Classification: E21; E62

*We thank our discussants Hafedh Bouakez, Pablo Cuba-Borda and Musab Kurnaz as well as Vasco Carvalho, Giancarlo Corsetti, Dirk Krueger, Fernando M. Martin, and B. Ravikumar for very helpful comments and suggestions. For questions and comments, we also thank seminar participants at CEF.UP, ISEG, the University of Minho, the University of Coimbra, the University of Oslo, the SED (St. Louis), the Royal Economic Society, the Federal Reserve System Committee on Macroeconomics (FRB San Francisco), the National Tax Association (Tampa), the Federal Reserve Bank of Philadelphia, and the Federal Reserve Bank of St. Louis. Pedro Brinca is grateful for funding provided by Fundação para a Ciência e a Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences Data-Lab, LISBOA-01-0145-FEDER-022209), POR Lisboa (LISBOA-01-0145-FEDER-007722, LISBOA-01-0145-FEDER-022209), POR Norte (LISBOA-01-0145-FEDER-022209) and CEEIND/02747/2018. Miguel H. Ferreira is grateful for financial support from the Fundação para a Ciência e a Tecnologia, grant number SFRH/BD/116360/2016. Hans A. Holter is grateful for financial support from the Research Council of Norway, grant numbers 219616 and 267428 (The Oslo Fiscal Studies program). The views expressed in this paper are those of the authors and do not reflect those of the Federal Reserve Bank of St. Louis or the Federal Reserve System. First version: November 2017.

†Nova School of Business and Economics
‡Federal Reserve Bank of St. Louis
§University of Cambridge
¶University of Oslo and Nova School of Business and Economics
1 Introduction

During the 2008-2009 financial crisis, many OECD countries adopted expansionary fiscal policies to stimulate economic activity. In many countries, these fiscal expansions were promptly followed by a period of austerity measures aimed at reducing the size of the resulting high levels of government debt (often referred to as fiscal consolidations). This era of fiscal activism inspired the economic literature to revive the classical debate on the size of the fiscal multiplier and its determinants, such as the state of the economy, income and wealth inequality, demography, tax progressivity, and the stage of development, among others. More recently, the Covid-19 crisis has led many countries to incur in unprecedented budget deficits. Thus, concerns about debt sustainability will likely spur consolidation programs of different sizes and forms of financing after the crisis.

However, most of the literature treats the effects of government interventions as being linear: small and large shocks are assumed to have the same (linear) effects. In this paper, we argue that fiscal multipliers from government spending shocks in incomplete markets models are increasing in the shock. That is, larger fiscal contractions (expansions) are associated with relatively smaller (larger) effects on output, i.e., smaller (larger) fiscal multipliers. The mechanism works through the relationship between fiscal shocks, their form of financing, and the response of labor supply across the wealth distribution. We also show that such nonlinearities are absent from the standard representative agent framework, with or without nominal rigidities, and even if we use global solution methods. Finally we show that the pattern of fiscal multipliers that are increasing in the shock is consistent with empirical evidence from fiscal consolidation programs across time in 15 OECD economies and we provide evidence for our model mechanism in U.S. micro data.

1 See for example Auerbach and Gorodnichenko (2012), Ramey and Zubairy (2018), Brinca et al. (2016), Brinca et al. (2019), Hagedorn et al. (2019), Krueger et al. (2016), Basso and Rachdi (2017), Ferrière and Navarro (2018), Ilzetzki et al. (2013), and Faria-e-Castro (2022).

2 Perhaps the most used class of models in macroeconomics.
We develop a standard incomplete markets model with heterogeneous agents. The model is calibrated to match key features of the US economy, such as the income and wealth distribution, hours worked and taxes. In our model, agents face unininsurable labor income risk that induces precautionary savings behavior. The equilibrium features a positive mass of agents who are borrowing constrained: as is well known, the elasticity of intertemporal substitution (EIS) is decreasing in wealth, with constrained agents having the lowest EIS.3 Thus the labor supply elasticity of constrained and low-wealth agents is higher (lower) and their work hours are more (less) responsive to contemporaneous (future) changes in income.

We study how the economy responds to different types of fiscal shocks: permanent or temporary, deficit-financed (i.e., consolidations) or balanced-budget financed. A decrease (increase) in government spending that leads to a reduction (rise) in government debt generates a positive (negative) future income effect, as capital crowds out government debt and increases (decreases) real wages. This positive (negative) shock to future income induces agents to reduce (increase) savings today, raising (lowering) the mass of agents at or close to the borrowing constraint. Since wealthier agents react more to shocks to future income, their labor supply falls (increases) by relatively more in response to this fiscal shock. Combining these two forces delivers our result: larger debt consolidations (expansions) increase (decrease) by more the mass of constrained agents, and these are the agents whose labor supply respond less (more) to the shock. Therefore, larger fiscal consolidations (negative shocks to government spending) elicit a relatively smaller aggregate labor supply response, which results in a smaller fiscal multiplier. For increases in government spending financed by debt, the opposite is true. For larger positive shocks, labor supply responds more and the fiscal multiplier is larger. We show that this mechanism holds for deficit-financed reductions (increases) in government spending, regardless of whether they are permanent or temporary.

We also show that balanced-budget fiscal shocks result in the same pattern of size dependence thanks to the same mechanisms. Consider the case of a fiscal contraction (expansion) that is accompanied by a contemporary increase (decrease) in transfers, so that the debt is constant: the contemporary positive income effect elicits a much larger labor supply response by constrained and low-wealth agents. This positive (negative) income effect at the same time increases (decreases) the agents’ wealth and moves some of them away from (towards) the borrowing limit. This rightward (leftward) shift in the wealth distribution therefore decreases (increases) the aggregate labor supply response, as agents further away from the constraint respond less than those at the constraint, resulting in a smaller (larger) response of output and smaller (larger) fiscal multiplier. The larger the change in the transfer, the larger the shift in the wealth distribution and the larger the reduction (increase) in the aggregate labor supply elasticity and the fiscal multiplier.

We find evidence for the size dependence of fiscal multipliers across different time periods, countries, and types of shocks. The key empirical exercises adapt the methodology and data of Alesina et al. (2015a), who use annual data on exogenous fiscal consolidation shocks (reduction of government debt), identified via a narrative approach, across 15 OECD countries over the 1981-2014 period. We find the multiplier to be significantly — both quantitatively and statistically — larger for smaller fiscal consolidation shocks, with the effect being stronger for unanticipated than for anticipated shocks. We also find the results to be similar across both spending- and tax-based consolidations.

We conclude by empirically testing the validity of our labor supply channel by inspecting micro-data. Using data from the Panel Study of Income Dynamics (PSID), we assess how the labor supply response to fiscal shocks depends on wealth and how this relationship depends on the financing of the shock. We establish that for fiscal shocks that are financed through contemporary taxes/transfers, the labor supply response is strongest for poorer agents, while for fiscal shocks that are deficit-financed, the response
is stronger for wealthier agents.

Our work is closely related to that of Krueger et al. (2016), Athreya et al. (2017), Ferrière and Navarro (2018), Andres et al. (2022), Basso and Rachedi (2017), Hagedorn et al. (2019), Brinca et al. (2016), Brinca et al. (2019) and Heathcote (2005) who also study the effects of fiscal policy in the context of incomplete markets models with heterogeneous agents. Our focus, however, is not on the state dependence of multipliers or on how different policies produce different multipliers, but rather on how the same type of policy — government spending — can generate fiscal multipliers that are size-dependent, regardless of the manner in which it is financed.

The rest of the paper is organized as follows: In Section 2 we show that standard representative agent models generate nearly linear multipliers. Section 3 introduces the main quantitative model, and Section 4 describes our calibration strategy. Section 5 presents the results from the quantitative model. Section 6 presents empirical evidence on nonlinear fiscal multipliers from data on fiscal consolidations, and Section 7 empirically tests and validates the mechanism combining micro data from the PSID with data on government spending and debt. Section 8 concludes.

2 Fiscal Policy in Representative Agent Environments

In this section we verify that fiscal multipliers are indeed nearly linear in representative agent environments. To do so, we proceed incrementally and show that standard representative agent models are unable to generate nonlinearities of the types that we later document empirically in Section 6 and in our incomplete markets model in Section 5. Even adding standard ingredients that are known to amplify the effects of fiscal policy, such as nominal rigidities or adjustment costs of investment, is not enough to create significant nonlinearities.
2.1 Real Business Cycle Model

Set-up
We start with the textbook real business cycle (RBC) model, where preferences of the representative agent are separable in consumption and labor, and the representative firm produces according to a Cobb-Douglas function that depends on capital and labor. The framework follows Cooley and Prescott (1995), and the details of the model are presented in Appendix B.\(^4\)

We augment the model with a government that engages in socially wasteful spending. The aggregate resource constraint can then be written as

\[
C_t + K_t - (1 - \delta)K_{t-1} + G_t = z_t K_t^{\alpha}L_t^{1-\alpha} - 1 + \epsilon_t
\]

where \(C_t\) is aggregate consumption, \(K_{t-1}\) is the current stock of capital, \(N_t\) is labor, and \(G_t\) is government spending. The Ricardian equivalence ensures that the mode of financing is irrelevant for allocations. The calibration is standard and can be found in Appendix B.

Fiscal Shock
We assume that government spending follows an AR(1) in logs:

\[
\log G_t = \left(1 - \rho_G\right) \log G_{SS} + \rho_G \log G_{t-1} + \epsilon_t^G
\]

where \(\rho_G\) is assumed to be 0.9 at a quarterly frequency, consistent with the estimates of Nakamura and Steinsson (2014) for military procurement spending.

Experiment
We consider a range of values for \(\epsilon_t^G\) that correspond to changes from \(-10\%\) to \(10\%\) of steady-state government spending on impact. The resulting fiscal multipliers, at differ-

\(^4\)The main deviations from the cited benchmark are separable preferences in consumption and leisure and no trend growth for total factor productivity (TFP).
ent horizons, are plotted in Figure 1. We adopt the standard definition of discounted integral multiplier that accounts for the cumulative effects of fiscal policy on output at a given horizon h:

$$
\mathcal{M}_h = \frac{\sum_{i=0}^{h} \prod_{j=0}^{i} R_j^{-1} (Y_i - Y_{SS})}{\sum_{i=0}^{h} \prod_{j=0}^{i} R_j^{-1} (G_i - G_{SS})}
$$

(1)

This corresponds to the traditional definition of the multiplier measured at impact for $h = 0$.

![Figure 1](image)

Figure 1: Representative agent, RBC model: fiscal multipliers as a function of the size of the variation in G, at different horizons.

The figure shows that, as is well known, the basic RBC model is not able to match the size of the fiscal multipliers in the data. Additionally, the standard model implies that the fiscal multiplier is roughly constant with the change in G: the model is not able to capture the nonlinearity that we find in the data. In fact, the model predicts the multiplier to be slightly *increasing* with the size of the shock to G, violating the pattern that we find. These results hold regardless of the horizon.
2.2 Nominal Rigidities

One standard way of generating fiscal multipliers that more closely match those measured in the data is by providing a role for aggregate demand to affect economic activity, which can be achieved by including nominal rigidities. We augment the model to include quadratic costs of price adjustment for firms, which generates a Phillips curve relating output and inflation, as well as a Taylor rule for the central bank. Again, the model ingredients and calibration are standard, and can be found in Appendix B.

Figure 2 shows the outcome of the same experiment in the context of a New Keynesian model with investment: multipliers do not vary with the size of the shock in an economically meaningful way. For this particular example, we use a standard Volcker-Greenspan calibration for the Taylor rule, which is known to produce relatively low multipliers. It is well known that the level of the fiscal multiplier is very sensitive to the specific parametrization of the Taylor rule. What is important is that alternative parameterizations that raise the level of the fiscal multiplier, such as making the central bank less responsive to changes in inflation, do not alter the fact that the multiplier is essentially constant with respect to the size of the shock to G_t.

2.3 Adjustment Costs of Investment

One reason why the basic RBC and New Keynesian models with capital are unable to generate large multipliers is the high sensitivity of investment to government spending shocks via movements in the real rate. As discussed, one way that New Keynesian models partially address this is by making the central bank, who sets the real rate, less responsive to output and inflation. Still, in order to generate multipliers of empirically plausible magnitudes, one would need to parametrize the Taylor rule to be at odds with a multitude of empirical estimates (at least prior to 2007, which is the sample considered

5In particular, we assume a standard Taylor rule with interest rate smoothing:

$$\log R_t = \rho_R \log R_{t-1} + (1 - \rho_R) [\log R_{SS} + \phi_{\Pi} (\log \Pi_t - \log \Pi_{SS}) + \phi_Y (\log Y_t - \log Y_{SS})]$$

with $\rho_R = 0.80, \phi_{\Pi} = 1.50, \phi_Y = 0.50$.
in the previous section).

A direct way to address this excess sensitivity of investment is to introduce adjustment costs, which have become a standard feature of medium-scale dynamic stochastic general equilibrium (DSGE) models.

Figure 3 repeats the baseline experiment by introducing adjustment costs of investment in the New Keynesian specification. It shows that adjustment costs of investment are unable to generate empirically plausible nonlinearities in the fiscal multiplier.

An increase in government spending affects the supply of the two factors of production with opposing effects: on the one hand, real interest rates rise, which crowds out investment and causes the capital stock to fall; on the other hand, the negative income effect expands labor supply. Adjustment costs of investment dampen the sensitivity of investment to real rates, thereby curbing the first effect and raising the fiscal multipliers.
Figure 3: Representative agent, New Keynesian model with adjustment costs of investment: fiscal multipliers as a function of the size of the variation in G, at different horizons.

Still, none of this is sufficient to match the patterns that are detected in the data.\(^6\)

3 Heterogeneous Agents Model

In this section we develop our standard incomplete markets model that we will later calibrate to resemble the U.S. economy and use to study nonlinear effects of fiscal policy.

Technology

The production sector is standard, with the representative firm having access to a Cobb-Douglas production function,

$$Y_t(K_t, L_t) = K_t^a L_t^{1-a}$$

\(^6\)In the appendix, we show that the extreme case of infinite adjustment costs substantially helps in raising the levels but does not generate any meaningful nonlinearity either.
where L_t is the labor input, measured in efficiency units, and K_t is the capital input. The law of motion for capital is

$$K_{t+1} = (1 - \delta)K_t + I_t$$ \hspace{1cm} (3)

where δ is the capital depreciation rate and I_t is the gross investment. Firms choose labor and capital inputs each period in order to maximize profits:

$$\Pi_t = Y_t - w_t L_t - (r_t + \delta)K_t.$$ \hspace{1cm} (4)

In a competitive equilibrium, factor prices are paid their marginal products:

$$w_t = \frac{\partial Y_t}{\partial L_t} = (1 - \alpha) \left(\frac{K_t}{L_t} \right)^{\alpha},$$ \hspace{1cm} (5)$$

$$r_t = \frac{\partial Y_t}{\partial K_t} - \delta = \alpha \left(\frac{L_t}{K_t} \right)^{1-\alpha} - \delta.$$ \hspace{1cm} (6)

Demographics

The economy is populated by a continuum of infinitely lived households. Households differ with respect to their permanent ability levels assigned at birth, a, persistent idiosyncratic productivity shocks, u, asset holdings, k, and time discount factors that are uniformly distributed and can take three distinct values, $\beta \in \{\beta_1, \beta_2, \beta_3\}$. Agents choose how much to work, n, consume, c, and save, k', to maximize expected life-time utility.

Labor Income

The hourly wage received by an individual depends on the wage per efficiency unit of labor, w, age j, permanent ability $a \sim N(0, \sigma_a^2)$, and an idiosyncratic productivity shock u, which follows an AR(1) process:

$$u' = \rho u + \epsilon, \hspace{1cm} \epsilon \sim N(0, \sigma_{\epsilon}^2).$$ \hspace{1cm} (7)
The wage rate per hour worked of an individual, i, is thus given by

$$w_i(j, a, u) = we^{\gamma+a+u}$$ (8)

where γ is a constant used to normalize the average earnings in the economy to 17.

Preferences

Households’ utility in a given period $U(c, n)$ is standard: time-additive, separable, and isoelastic, with $n \in (0, 1]$:

$$U(c, n) = \frac{c^{1-\sigma}}{1-\sigma} - \frac{n^{1+\eta}}{1+\eta}$$ (9)

Each household maximizes it’s expected life-time utility:

$$\max_{\{c_t, n_t, k_t\}_{t=0}^\infty} \mathbb{E}_t \sum_{t=0}^\infty \beta^t \left\{ \frac{c_t^{1-\sigma}}{1-\sigma} - \frac{n_t^{1+\eta}}{1+\eta} \right\}$$ (10)

Government

Government revenues include flat-rate taxes on consumption, τ_c, and capital income, τ_k. To model the nonlinear labor income tax, we use the functional form proposed in Benabou (2002) and recently used in Heathcote et al. (2017) and Holter et al. (2019):

$$\tau(y) = 1 - \theta_0 y^{-\theta_1}$$ (11)

where θ_0 and θ_1 define the level and progressivity of the tax schedule, respectively; y is the pre-tax labor income; and $y_a = [1 - \tau(y)]y$ is the after-tax labor income.

Tax revenues from consumption, capital, and labor income are used to finance public consumption of goods, G_t; interest expenses on public debt, rB_t; and lump-sum transfers to households, g_t. Denoting tax revenues as R and the measure of households by

7Normalizing average earnings to 1 is helpful when mapping our estimated nonlinear income tax code from the data to the model. We estimate the tax function on income normalized by Average Earnings in the data y/AE. Thus a person with average earnings in the data and model will have an income of 1.
$\Phi(k, \beta, a, u)$, the government budget constraint is defined as:

$$\int g d\Phi + G + rB = R \quad (12)$$

Recursive Formulation of the Household Problem

In a given period, a household is defined by its asset position k, time discount factor β, permanent ability a, and persistent idiosyncratic productivity u. Given this set of states, household chooses consumption, c; work hours, n; and future asset holdings, k', to maximize the present discounted value of expected utility. The problem can be written recursively as

$$V(k, \beta, a, u) = \max_{c, k', n} \left[U(c, n) + \beta \mathbb{E}_{u'} [V(k', \beta, a, u')] \right]$$

s.t.: $$c(1 + \tau_c) + k' = k(1 + r(1 - \tau_k)) + g + nw(a, u)(1 - \tau_l(nw(a, u)))$$

$$n \in [0, 1], \quad k' \geq -b, \quad c > 0 \quad (13)$$

where b is an exogenous borrowing limit.

Stationary Recursive Competitive Equilibrium

Let the measure of households with the corresponding characteristics be given by $\Phi(k, \beta, a, u)$. Then, we can define a stationary recursive competitive equilibrium (SRCE) as follows:

1. Taking the factor prices and the initial conditions as given, the value function $V(k, \beta, a, u)$ and policy functions $c(k, \beta, a, u)$, $k'(k, \beta, a, u)$, $n(k, \beta, a, u)$ solve the households’ optimization problems.

2. Markets clear:

$$K + B = \int k d\Phi$$

$$L = \int n(k, \beta, a, u) d\Phi$$
\[\int c \Phi + \delta K + G = K^\alpha L^{1-\alpha}. \]

3. Factor prices are paid their marginal productivity:

\[w = (1 - \alpha) \left(\frac{K}{L} \right)^\alpha \]
\[r = \alpha \left(\frac{K}{L} \right)^{\alpha-1} - \delta. \]

4. The government budget balances:

\[g \int d\Phi + G + rB = \int \left[\tau_k r k + \tau_c c + nw(a, u) \left(1 - \tau_l \left(nw(a, u) \right) \right) \right] d\Phi. \]

Fiscal Experiments and Transition

Our fiscal experiments consist of changes in government spending \(G \) (fiscal contractions or expansions) of different sizes (measured as a percentage of GDP) and under different financing regimes. This is important, as Ricardian equivalence does not hold in our model and therefore the type (and timing) of the financing of the shock can matter substantially for its effects on output.

In our experiments, we consider three different types of fiscal shocks:

1. Permanent debt consolidations (expansions), where \(G \) decreases (increases) temporarily so as to allow public debt to fall (increase). The economy then transitions to a new SRCE with lower (higher) public debt (and \(G \) returns to its original level).

2. Temporary reductions (increases) in \(G \) that are deficit financed. Initially, the reduction (increase) in \(G \) leads to a fall (rise) in debt only. Eventually, \(G \) returns to its original level and transfers adjust so that debt also returns to its original. The economy returns to the initial SRCE.

3. Temporary reductions (increases) in \(G \) that are balanced-budget financed. Transfers
increase (decrease) to clear the government budget constraint and maintain debt constant. Eventually, the economy transitions back to the initial SRCE.

We delegate the formal definition of a transition equilibrium to Appendix C. The main difference compared to the steady state is that we need an additional state variable, time, \(t \), in the dynamic programming problem of households. The policy functions and prices will be time dependent. The numerical solution of the model involves guessing on paths for all the variables that will depend on time and then solving this maximization problem backward, after which the guesses are updated. The solution method is similar to that used in Brinca et al. (2016) and Krusell and Smith (1999).

4 Calibration

We calibrate the starting SRCE of our model to the US economy. Some parameters are calibrated directly from empirical counterparts, while others are calibrated using the simulated method of moments (SMM) so that the model matches key features of the US economy. Section D in the appendix contains a table that summarizes the values for the parameters that are calibrated outside of the model.

Wages

The obtain a process for the transitory part of labor productivity, which follows an AR(1) process, (see Equations 7 and 8) we proceed as follows. We run the following fixed effects regression, using PSID yearly data (1968-1997):

\[
\ln(w_i) = \ln(w) + \gamma_1 j + \gamma_2 j^2 + \gamma_3 j^3 + \varepsilon_i \quad (14)
\]

where \(j \) is the age of individual \(i \). This regression takes out age-effects and an individual-specific fixed effect, which we calibrate in the model to match overall wage inequality. We then use the residuals of the equation to estimate the parameters \(\rho \) and \(\sigma_e \) for a yearly
periodicity. To transform the parameters from yearly to quarterly, we raise ρ to $\frac{1}{4}$ and divide σ_e by 4. σ_a is chosen using SMM to match the variance of $\ln(w)$.

Preferences
We set the Frisch elasticity of labor supply to 1, as in Trabandt and Uhlig (2011), a much used number in the literature. The disutility of work, and the three discount factors ($\chi, \beta_1, \beta_2, \beta_3$) are among the parameters calibrated to match key moments in the data. The corresponding moments are the share of hours worked, and three quartiles of the wealth distribution, respectively.

Taxes and Government Spending
We use the labor income tax function of Benabou (2002) to capture the progressivity of both the tax schedule and direct government transfers. We use the estimate of Holter et al. (2019), who estimate the parameter θ_1 for the US. Consumption and capital tax rates are set to 5% and 36%, respectively, as in Trabandt and Uhlig (2011). Finally, following Hagedorn et al. (2019), we set transfers, g, to be 7% of GDP and government spending, G, to be 15% of GDP. θ_0 is then set so that total tax revenues clear the government budget.

Parameters Calibrated Endogenously
Some parameters that do not have any direct empirical counterparts are calibrated using the SMM. These are the discount factors, borrowing limit, disutility from working, and variance of permanent ability. The SMM is set so that it minimizes the following loss function:

$$L(\beta_1, \beta_2, \beta_3, b, \chi, \sigma_a) = ||M_m - M_d||$$

(15)

where M_m and M_d are the moments in the model and in the data, respectively.

8They use OECD data on labor income taxes to estimate the function for different family types. They then weight the value of the parameter by the weight of each family type in the overall population to get an aggregate measures of tax progressivity.
We use six data moments to choose six parameters, so the system is exactly identified. The six moments we select in the data are (i) the share of hours worked, (ii-iv) the three quartiles of the wealth distribution, (v) the variance of log wages, and (vi) the capital-to-output ratio. Table 2 presents the calibrated parameters, and Table 1 presents the calibration fit.

<table>
<thead>
<tr>
<th>Data moment</th>
<th>Description</th>
<th>Source</th>
<th>Data value</th>
<th>Model value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/Y</td>
<td>Capital-to-output ratio</td>
<td>PWT</td>
<td>12.292</td>
<td>12.292</td>
</tr>
<tr>
<td>Var(ln w)</td>
<td>Yearly variance of log wages</td>
<td>LIS</td>
<td>0.509</td>
<td>0.509</td>
</tr>
<tr>
<td>(\bar{n})</td>
<td>Fraction of hours worked</td>
<td>OECD</td>
<td>0.248</td>
<td>0.248</td>
</tr>
<tr>
<td>Q_{25}, Q_{50}, Q_{75}</td>
<td>Wealth quartiles</td>
<td>LWS</td>
<td>-0.014, 0.004, 0.120</td>
<td>-0.016, 0.003, 0.130</td>
</tr>
</tbody>
</table>

Table 1: Calibration Fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_1, \beta_2, \beta_3)</td>
<td>0.991, 0.993, 0.991</td>
<td>Discount factors</td>
</tr>
<tr>
<td>(\chi)</td>
<td>14.6</td>
<td>Disutility of work</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>1.99</td>
<td>Borrowing limit</td>
</tr>
<tr>
<td>(\sigma_{\alpha})</td>
<td>0.712</td>
<td>Variance of ability</td>
</tr>
</tbody>
</table>

Table 2: Parameters Calibrated Endogenously

5 Quantitative Results

In this section, we use the calibrated model as a laboratory to study the effects of fiscal shocks of different sizes and with different forms of financing. We start by studying permanent debt consolidations: transitions where the debt level at the final steady state is different (lower or higher) than the debt level at the initial steady state. We then analyze temporary changes in \(G\) — under different financing regimes — but where the economy returns to the initial debt level.

5.1 Permanent Debt Consolidations

We start by considering the experiment that most closely resembles the real-world consolidation experiences which we later use for the empirical exercise in Section 6: perma-
nant fiscal consolidations. The experiment consists of temporary changes in G that last for 30 quarters, with no changes in taxes or transfers. At the end of those 30 periods, debt reaches its new steady-state level and G returns to its initial level, while lump-sum transfers adjust to clear the government budget constraint given the new level of debt. The economy then takes 70 quarters to reach the new steady state with a new debt-to-GDP ratio and different lump-sum transfers.

Figure 4 plots the fiscal multiplier (on impact) depending on the size of the initial G variation. The multiplier is monotonically increasing in the shock: it is larger for larger increases in G and smaller for larger decreases in G. In other words, the effects of G on Y are nonlinear: the more positive is the G shock, the larger the impact on output.

![Impact multiplier - Permanent debt changes](image)

Figure 4: This figure plots the fiscal multiplier on impact (one quarter after the shock) for the permanent change in debt experiment as a function of the size of the variation in G (as a % of GDP). The blue line corresponds to G contractions, while the red line represents G expansions.

Figures 5 and 6 shed light on the mechanism at the heart of this paper that generates this nonlinearity. Figure 5 plots the % of agents with negative wealth one year after the shock, as a function of the size of the consolidation. The mass of agents with negative wealth is decreasing in the size of the shock: more negative consolidations involve larger future reductions in public debt. This generates not only a positive wealth effect, as future lumpsum transfers (in 30 periods) will be higher, but also a future positive income
Figure 5: This figure plots the percentage of agents with negative wealth (one year after the shock) for the permanent change in debt experiment as a function of the size of the variation in G (as a % of GDP). The blue line corresponds to G contractions, while the red line represents G expansions.

Figure 6: (Relative) labor supply response to different changes in G over the asset distribution, for the permanent change in debt experiment. Left panel plots the results for positive fiscal shocks while the right panel presents the results for negative shocks.

(human wealth) effect, as debt is crowded out by capital and wages are increasing in the stock off capital. As agents internalize these positive wealth and income effects, they find it optimal to borrow more today. Thus more negative consolidations induce more agents to move towards the constraint in the short run.

Figure 6 illustrates why these changes in the percentage of constrained agents matter for aggregate dynamics. This figure plots the labor supply response as a function of the level of assets for negative and positive consolidations of three different sizes (1%, ...
5%, and 10% of GDP). Notice that the labor supply of constrained and low-wealth agents responds by less than that of wealthier agents. Wealthier agents react strongly to changes in future income and wealth, while constrained agents respond only to changes in the current state (i.e., current taxes and transfers) and not to changes in future states. For this reason, constrained agents essentially do not react to fiscal consolidations in the short run, regardless of their size. Wealthy agents perceive larger wealth effect from larger fiscal consolidations, hence reduce or increase their labor supply by more. More negative (positive) consolidations move the wealth distribution to the left (right). As more (less) agents become net borrowers, the result is a smaller (larger) aggregate labor supply response and, consequently, a relatively smaller (larger) effect on GDP. In other words, the elasticity of aggregate labor supply to fiscal shocks, G, is increasing in the size of the fiscal consolidation shock. The same pattern translates to the fiscal multiplier as well.

5.2 Temporary Fiscal Shocks
We now consider the case of temporary fiscal shocks: sequences of shocks to G that result in the same original SRCE in the long run. We show that the same basic logic applies to this case. Additionally, we consider two types of financing regimes: (i) deficit financing, where the temporary shock is absorbed by changes in public debt until a certain point in time, after which transfers adjust to ensure that the economy returns to the initial (pre-shock) level of public debt, and (ii) balanced-budget financing, in which transfers adjust to keep public debt constant during the entire transition.

Path of the Shocks
We follow most literature on fiscal policy and assume that fiscal spending follows an AR(1) process in logs:

$$
\log G_t = (1 - \rho_G) \log G_{SS} + \rho_G \log G_{t-1} + \epsilon_t^G
$$
where ρ_G is assumed to be 0.9 at a quarterly frequency, consistent with the estimates of Nakamura and Steinsson (2014) for military procurement spending.

Deficit Financing

Figure 7 shows the multiplier as a function of the size of the shock for the case of deficit financing: the overall pattern of monotonicity is unchanged. There are some differences in magnitudes since the shock is no longer permanent and there is a larger change in the lumpsum transfer after the consolidation period. The results are, however, qualitatively and quantitatively similar to the permanent consolidation case.

![Impact multiplier - Deficit](image)

Figure 7: This figure plots the fiscal multiplier on impact (one quarter after the shock) as a function of ε_G (the initial impulse), for the deficit financing experiment. The blue line corresponds to G contractions, while the red line represents G expansions.

Figures 8 and 9 confirm that the basic mechanism still applies. Negative (positive) deficit-financed temporary fiscal shocks cause an increase (decrease) in the mass of agents with negative wealth and the larger the shock, the larger the effect. As these shocks are deficit financed, they cause a future positive wealth effect to which only unconstrained agents respond. Therefore, the more negative (positive) the shock, the larger (smaller) the mass of agents that are constrained and the smaller (greater) the responses of the aggregate labor supply and GDP become.
Balanced-Budget

Figure 10 plots the same measures of the fiscal multiplier for the case where the government runs a balanced budget and thus increases transfers when G decreases (so as to keep the level of debt constant). The qualitative results are identical, but the sizes of the multipliers are much larger with balanced budget. Again the nonlinearity arises because negative wealth agents have a lower EIS and because of shifts in the wealth distribution. This time around it is, however, the constrained agents that respond more strongly to the

![Figure 8: (Relative) labor supply response to different changes in G over the asset distribution, for the deficit financing experiment. Left panel plots the results for positive fiscal shocks while the right panel presents the results for negative shocks.](image)

![Figure 9: This figure plots the percentage of agents with negative wealth (one year after the shock) as a function of ϵ^G_t (the initial impulse), for the deficit financing experiment. The blue line corresponds to G contractions, while the red line represents G expansions.](image)
shock and a larger shock leads to more (not less) constrained agents. Balanced-budget interventions affect the income of agents contemporaneously, and constrained agents who are not forward looking consume more of this extra income today (they have a higher MPC) and enjoy more leisure today as well.

Figure 10: This figure plots the fiscal multiplier on impact (one quarter after the shock) as a function of ϵ_t^G (the initial impulse), for the balanced budget experiment. The blue line corresponds to G contractions, while the red line represents G expansions.

Figure 11: (Relative) labor supply response to different changes in G over the asset distribution, for the balanced budget experiment. Left panel plots the results for positive fiscal shocks while the right panel presents the results for negative shocks.

Figure 11 displays the labor supply responses by wealth and the size of the fiscal shock. These labor supply responses behave in the manner that we would expect, with constrained agents greatly contracting (expanding) their labor supply in response to a
negative (positive) shock, increase (decrease) in transfers. These labor supply responses can be combined with the movements in the distribution presented in Figure 12 to deliver our result: the mass of agents with negative wealth is increasing in the size of the shock. A negative (positive) fiscal shock is financed by a contemporary increase (decrease) in transfers: this moves agents away from (towards) the constraint. In this case, agents at the constraint respond more in terms of the labor supply. So, once again, larger shocks are moving the mass of the distribution towards regions where the labor supply response is strongest. This means that the aggregate labor supply response is increasing in the size of the shock, and so is the multiplier.

Thus balanced-budget fiscal contractions deliver the same qualitative result but through a slightly different mechanism that still hinges on the relationship between movements in the wealth distribution and the EIS of labor across the wealth distribution. One should note that the multipliers in this class of models tend to be lower than what is typically found in empirical exercises. Our case is no exception, for both the level and degree of nonlinearity of multipliers. Our results reinforce the need for future research to focus on amplification mechanisms that can bridge such a gap, especially in models with capital
and empirically plausible monetary rules.

6 Empirical Evidence from Fiscal Consolidation Programs

In this section we show that the finding of nonlinear fiscal multipliers in incomplete markets models is consistent with empirical evidence from fiscal consolidation programs. Using the dataset of Alesina et al. (2015a) we illustrate that larger fiscal consolidations (reductions of government debt) generate smaller fiscal multipliers. This nonlinear effect is more evident for unanticipated fiscal shocks and applies to consolidations based both on revenue increases and on spending contractions.

The Alesina et al. (2015a) annual dataset of fiscal consolidation episodes includes 15 OECD countries and ranges from 1981 to 2014. Alesina et al. (2015a) expand the original dataset of Pescatori et al. (2011) with exogenous fiscal consolidations episodes, known as IMF shocks. Pescatori et al. (2011) use the narrative approach of Romer and Romer (2010) to identify exogenous fiscal consolidations, i.e., consolidations driven uniquely by the desire to reduce budget deficits. The use of the narrative approach filters out all policy actions driven by the business cycle, guaranteeing that the identified consolidations are independent from the current state of the economy.

Besides expanding the dataset of Pescatori et al. (2011), Alesina et al. (2015a) use the methodological innovation introduced by Alesina et al. (2015b), who point out that a fiscal adjustment is a multi-year plan rather than an isolated change and consequently results in both unexpected policies and policies that are known in advance. Ignoring the link between both expected and unexpected policies may yield biased results.

Alesina et al. (2015a) define a fiscal consolidation as deviations of public expenditure relative to their level if no policy had been adopted plus expected revenue changes

9The dataset includes Australia, Austria, Belgium, Canada, Denmark, Spain, Finland, France, Japan, the United Kingdom, the US, Ireland, Italy, Portugal, and Sweden. As we only have data for Germany starting in 1991, we drop it from the baseline analysis. We then test and confirm that the results hold when including Germany, with the sample ranging from 1991 to 2014.
stemming from tax code revisions. Moreover, fiscal consolidations that were not implemented are not included in the dataset, and so all included fiscal consolidation episodes are assumed to be fully credible.

It is instructive to start with a non-parametric approach and look for signs of a nonlinear relationship between output and consolidation shocks in the data. Figure 13 shows log GDP on the y-axis, and the fiscal consolidation shocks as a percentage of GDP on the x-axis. The red line is a fitted quadratic polynomial: this line is decreasing, which implies that the fiscal multiplier is positive (larger consolidations lower GDP); moreover, the line is convex, suggesting that output decreases by relatively less for larger consolidation shocks.

Figure 13: Log GDP on the y-axis and fiscal consolidation shocks as a % of GDP on the x-axis. The red line represents the quadratic fitted polynomial between the two variables. The coefficient of the first-order term of the quadratic fitted polynomial is -1.17 (p-value < 0.01) and of the second-order term is 0.14 (p-value 0.10). We include the 15 OECD countries with data ranging from 1981 to 2014, plus Germany from 1991 to 2014.

To formally investigate the nonlinear impact of consolidation shocks on GDP, we estimate the following specification to test for the existence of nonlinear effects of the consolidation shocks:

\[
\Delta y_{i,t} = \beta_1 e_{i,t} + \beta_2 (e_{i,t})^2 + \alpha_i + \gamma_t + e_{it} \tag{16}
\]

where \(\Delta y_{i,t}\) and \(e_{i,t}\) are the output growth rate and the fiscal consolidation shock, respect-
tively, in country i and year t. α_i and γ_t are country- and time-level fixed effects, respectively. We include the squared term of the fiscal consolidation shocks $(e_{i,t})^2$ to capture the nonlinear effects of fiscal shocks. To account for simultaneous cross-country correlations of the residuals, we estimate equation (16) using the generalized least-squares method and controlling for heteroskedasticity. To control for the effects of outliers, we winsorize output variations at the 5th and 95th percentile.

The results are shown in Table 3, and they capture the negative effect of consolidation shocks on output, with β_1 being negative and statistically significant. β_2 is positive and significant, which illustrates the nonlinear effect of consolidation shocks on output: larger consolidations generate relatively smaller effects on output, i.e., smaller fiscal multipliers. Not only is β_2 statistically significant but is also economically meaningful. An increase of one standard deviation of the fiscal consolidation shock is associated with a fiscal multiplier that is 78% smaller.

Table 3: Nonlinear effects of fiscal consolidation shocks.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-0.908***</td>
<td>(0.170)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.261***</td>
<td>(0.051)</td>
</tr>
<tr>
<td>Observations</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>Number of countries</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

*** $p<0.01$, ** $p<0.05$, * $p<0.1$

Unanticipated vs. Announced Shocks

We proceed by investigating whether it matters that fiscal shocks are unanticipated or announced in advance.\(^1\)\(^0\) As before, we begin our analysis with a non-parametric approach to the nonlinear effects of both types of shocks on output. Figure 14 shows that both shocks have a negative correlation with GDP (fiscal consolidations reduce GDP,
as expected), but the nonlinearity is stronger for the unanticipated shocks. While for unanticipated consolidation shocks the quadratic term is positive (0.13) and statistically significant, for announced consolidations the quadratic term is negative (-0.12) and is not statistically significant.

To more formally test for nonlinear effects of both unanticipated and announced consolidations, we use the same methodology as in the previous section to estimate the following specification,

$$
\Delta y_{i,t} = \beta_1 e_{i,t}^u + \beta_2 (e_{i,t}^u)^2 + \beta_3 e_{i,t}^d + \beta_4 (e_{i,t}^d)^2 + \alpha_i + \gamma_t + \epsilon_{it}
$$

where $e_{i,t}^u$ are the unanticipated shocks and $e_{i,t}^d$ are the announced shocks. Results are presented in Table 4 and validate the intuition gained from the non-parametric approach: the nonlinear impacts of consolidations on output come from unanticipated shocks and not from announced consolidations. While β_4 is not statistically significant, β_2 is positive, statistically significant, and economically meaningful. An increase of one standard deviation of unanticipated consolidations reduces the size of the fiscal multiplier by 22%.

Our results are robust to the inclusion of further lags (for both types of shocks) as well
Table 4: Non-linear effects of fiscal unanticipated and announced consolidation shocks.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-0.465**</td>
</tr>
<tr>
<td></td>
<td>(0.183)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.150***</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.547**</td>
</tr>
<tr>
<td></td>
<td>(0.215)</td>
</tr>
<tr>
<td>β_4</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
</tr>
</tbody>
</table>

Observations | 510
Number of countries | 15

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

as to the inclusion of consolidations announced in the current year to be implemented in the following three years. These results are presented in Tables 8 and 9 in Appendix A.1 and establish that the unanticipated quadratic term β_2 is positive and statistically significant across specifications.

Financing Instrument

Lastly, we test if it matters whether consolidations are spending or revenue based. We estimate the following specification,

$$
\Delta y_{i,t} = \sum_{i=0}^{3} \beta_{1,t-i} e_{i,t}^u + \sum_{i=0}^{3} \beta_{2,t-i} (e_{i,t}^u)^2 + \sum_{i=0}^{3} \beta_{3,t-i} e_{i,t}^a + \sum_{i=0}^{3} \beta_{4,t-i} (e_{i,t}^a)^2 + \sum_{i=0}^{3} \beta_{5,t-i} r_{i,t}^u + \sum_{i=0}^{3} \beta_{6,t-i} (r_{i,t}^u)^2 + \sum_{i=0}^{3} \beta_{7,t-i} r_{i,t}^a + \sum_{i=0}^{3} \beta_{8,t-i} (r_{i,t}^a)^2 + \alpha_i + \gamma_t + \epsilon_{it}
$$

where $e_{i,t}^u$ and $e_{i,t}^a$ are the unanticipated and announced expenditure-based consolidation shocks and $r_{i,t}^u$ and $r_{i,t}^a$ are revenue-based consolidation shocks. Results are shown in Table 5, and establish that the quadratic terms for both expenditure- and revenue-based (unanticipated) consolidations – β_2 and β_6, respectively – are positive and statistically significant at all horizons (up to three years).\(^{11}\) Moreover, both coefficients are econom-

\(^{11}\)To simplify presentation, we do not report the announced consolidations parameters, which are not
ically meaningful, with an increase by one standard deviation of a expenditure- and revenue-consolidation shocks lowering the respective multipliers by 26% and 20%.

Table 5: Non-linear effects of fiscal unanticipated expenditure and revenue consolidation shocks, including three lags of each shock.

<table>
<thead>
<tr>
<th></th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\beta_5)</th>
<th>(\beta_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>-0.580*</td>
<td>0.367*</td>
<td>-1.158***</td>
<td>0.571***</td>
</tr>
<tr>
<td></td>
<td>(0.344)</td>
<td>(0.205)</td>
<td>(0.346)</td>
<td>(0.170)</td>
</tr>
<tr>
<td>(t - 1)</td>
<td>-1.174***</td>
<td>0.487**</td>
<td>-1.074***</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>(0.358)</td>
<td>(0.208)</td>
<td>(0.347)</td>
<td>(0.179)</td>
</tr>
<tr>
<td>(t - 2)</td>
<td>-0.414</td>
<td>0.473**</td>
<td>-0.904***</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>(0.354)</td>
<td>(0.207)</td>
<td>(0.330)</td>
<td>(0.188)</td>
</tr>
<tr>
<td>(t - 3)</td>
<td>-1.209***</td>
<td>0.614***</td>
<td>-0.891***</td>
<td>0.578***</td>
</tr>
<tr>
<td></td>
<td>(0.361)</td>
<td>(0.219)</td>
<td>(0.332)</td>
<td>(0.201)</td>
</tr>
</tbody>
</table>

Observations 510
Number of countries 15

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 10 in Appendix A.1 shows that our results are robust to the inclusion of future consolidation-plan announcements. Finally, Tables 11 to 13 show that our results are robust to (i) including Germany and (ii) restricting the sample to the 1991-2014 period.

7 Micro Evidence of the Mechanism

The mechanism we propose hinges on three key factors: (i) the elasticity of intertemporal substitution is increasing in wealth, (ii) there is a shift in the wealth distribution, and (iii) the financing regime for the fiscal shock. Intuitively, we propose that a positive (negative) tax-financed shock shifts the wealth distribution to the left (right). This, along with the fact that the labor supply response to a current income shock is decreasing in wealth, generates a fiscal multiplier that is increasing in the shock. A positive (negative) debt-financed shock, on the other hand, shifts the distribution to the right (left), which combined with a labor supply response to a future income shock that is increasing in wealth, leads again to a fiscal multiplier that is increasing in the shock. Large positive shocks would have the largest multiplier and large negative shocks the smallest.
A number of papers have documented that the EIS is increasing in wealth, see Vissing-Jørgensen (2002) for example for the relationship between wealth and the EIS of consumption and, most notably in our context, Domeij and Floden (2006) for the relationship between wealth and the EIS of labor. Brinca et al. (2019) show that wealthier agents respond more to fiscal consolidation shocks. We here proceed to test for the dependence of the labor supply responses to fiscal shocks on wealth and whether they at all depend on the implied financing regime for the fiscal shocks. To do so we combine micro data from the PSID (1999-2015), which contains data on wealth and hours worked, with the data on government spending shocks from Ramey and Zubairy (2018).

The historical data set constructed by Ramey and Zubairy (2018) contains quarterly time series for the US economy ranging from 1889 to 2015. The data set includes real GDP, the GDP deflator, government purchases, federal government receipts, population, the unemployment rate, interest rates, and defense news. To identify exogenous government spending shocks, Ramey and Zubairy (2018) use two different approaches: (i) a defense news series proposed by Ramey (2011), which consists of exogenous variations in government spending linked to political and military events that are identified using a narrative approach and that are plausibly independent from the state of the economy, and (ii) shocks based on the identification hypothesis of Blanchard and Perotti (2002) that government spending does not react to changes in macroeconomic variables within the same quarter. Ramey and Zubairy (2018) argue that including both instruments simultaneously can bring advantages, as the Blanchard-Perotti shock is highly relevant in the short run (since it is the part of government spending not explained by lagged control

<table>
<thead>
<tr>
<th></th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ ln hours worked</td>
<td>-0.13</td>
<td>0.00</td>
<td>0.10</td>
<td>(1.96)</td>
</tr>
<tr>
<td>ΔB</td>
<td>-0.17</td>
<td>1.05</td>
<td>2.39</td>
<td>(4.42)</td>
</tr>
<tr>
<td>Gt</td>
<td>-2.16</td>
<td>0.52</td>
<td>2.00</td>
<td>(4.98)</td>
</tr>
<tr>
<td>Net wealth</td>
<td>2,019</td>
<td>36,000</td>
<td>152,680</td>
<td>(512,553)</td>
</tr>
</tbody>
</table>
variables), while defense news data are more relevant in the long run (as news happen several quarters before the spending actually occurs). We identify fiscal shocks as in Section Ramey and Zubairy (2018) (using quarterly data) and then sum these shocks over a 2-year period, which coincides with the interval between wealth-data collection in the PSID.

Table (6) provide an overview of the dataset constructed. We report the aggregate statistics for the fiscal shocks, G_t, and the variations in debt, ΔB, as well as statistics for the microdata on the change in hours worked, $\Delta \ln \text{hours worked}$, and on net wealth, defined as the net value of all assets. We consider a household to be wealthy if it is in the top quartile of the distribution of net wealth. The median for changes in hours worked is zero, with the top quartile having increases above 10% and the bottom one decreases above 13%. We also have in our sample changes in government debt of different sizes, with the median being 1% and the standard deviation above 4, which provides a good environment to test how different financing regimes affect the response of hours worked to fiscal shocks. To test this, we estimate the following equation:

$$\Delta \ln h_{it} = \beta_1 G_t + \beta_2 \Delta B_t + \beta_3 \Delta B_t \times G_t + \alpha_i + \epsilon_{it}$$

where ΔB_t is the change in government debt as a percentage of GDP, which we take as a proxy for whether fiscal shocks are deficit or tax financed. Note that fiscal shocks in this exercise can be positive or negative (recall that Section 5 only considers fiscal contractions).

The results for this specification are in Table 7 and are consistent with the predictions from our model. The marginal effect of a fiscal shock is given by $\beta_1 + \beta_3 \times \Delta B_t$. A balanced-budget fiscal shock has a marginal effect equal to β_1: our model predicts that this effect should be positive and larger for households at the bottom of the wealth distribution. Our model also predicts that deficit-financed fiscal shocks generate smaller
multipliers than balanced-budget ones, an effect that is consistent with $\beta_3 < 0$. Since wealthier households respond relatively more to deficit-financed fiscal shocks, this coefficient should be increasing in the wealth quantile (decreasing in absolute value, since it is negative). As the results in Table 7 show, all these predictions are borne by the data and for different sample splits. In Appendix F, we show that these results are robust to pooling all households in a single regression; interacting the fiscal shock and debt terms with household wealth levels and are also robust to different splits of the sample by net wealth.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Total wealth <0</th>
<th>(2) Total wealth >0</th>
<th>(3) Total wealth < Wealth Q1</th>
<th>(4) Total wealth < Wealth Q2</th>
<th>(5) Total wealth > Wealth Q2</th>
<th>(6) Total wealth > Wealth Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>1.060** (0.477)</td>
<td>0.047 (0.037)</td>
<td>0.257** (0.109)</td>
<td>0.095* (0.058)</td>
<td>0.070* (0.040)</td>
<td>0.058 (0.047)</td>
</tr>
<tr>
<td>β_2</td>
<td>6.355** (2.603)</td>
<td>0.750** (0.349)</td>
<td>1.580* (0.883)</td>
<td>1.035* (0.533)</td>
<td>0.533 (0.361)</td>
<td>0.269 (0.399)</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.315** (0.129)</td>
<td>-0.037** (0.017)</td>
<td>-0.080* (0.043)</td>
<td>-0.052** (0.026)</td>
<td>-0.027 (0.017)</td>
<td>-0.014 (0.019)</td>
</tr>
<tr>
<td>Observations</td>
<td>7,075</td>
<td>61,980</td>
<td>14,911</td>
<td>33,230</td>
<td>40,821</td>
<td>20,688</td>
</tr>
<tr>
<td>Number of ID</td>
<td>2,308</td>
<td>11,390</td>
<td>4,232</td>
<td>8,179</td>
<td>7,437</td>
<td>3,871</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

8 Conclusion

In this paper, we contribute to the analysis of the aggregate effects of government spending shocks by showing that one of the most used models in macroeconomics, the standard incomplete markets models, implies a nonlinear multiplier that is increasing in the spending shock. Large negative shocks have the smallest multiplier and large positive shocks has the largest multiplier. This is consistent with empirical evidence, however, contrasts with the results from complete markets models and what has been assumed by most of the literature.
After first showing that a standard representative-agent DSGE model generates almost constant multipliers, we develop an incomplete markets model with heterogeneous agents and uninsurable idiosyncratic income risk. We show that such a model calibrated to the US generates multipliers that are increasing in the government spending shock. This pattern is also robust to the financing regime: both tax-financed and deficit-financed fiscal shocks generate the same relationship between multipliers and underlying shocks, albeit via a slightly different mechanism. We show that the response of labor supply across the wealth distribution, along with the response of this very same distribution, are crucial in generating this pattern. The Elasticity of Intertemporal Substitution is increasing in wealth, which implies that low-wealth agents respond more to current income shocks and less to future income shocks. A positive (negative) tax-financed shock shifts the wealth distribution to the left (right). This, along with the fact that the labor supply response to a current income shock is decreasing in wealth, generates a fiscal multiplier that is increasing in the shock. A positive (negative) debt-financed shock, on the other hand, shifts the distribution to the right (left), which combined with a labor supply response to a future income shock that is increasing in wealth, leads again to a fiscal multiplier that is increasing in the shock.

We provide empirical evidence from fiscal consolidation episodes showing that larger negative shocks result in smaller effects on output. Using data on fiscal consolidation shocks across 15 OECD countries, we find that fiscal multipliers are increasing in the underlying fiscal shock (decreasing in the absolute size since these are negative shocks).

Finally, we empirically validate the proposed mechanism by combining micro data from the PSID with identified policy shocks and showing that the response of labor supply is decreasing in wealth for tax-financed fiscal shocks but increasing in wealth for deficit-financed fiscal shocks.

Recent events such as the Covid-19 crisis have led to large fiscal programs that will likely require some type of consolidation in the future. We believe our work is important
to understand how the effects of these consolidation programs vary with their size.

We see this paper as a first step to understanding how the size of fiscal shocks can have different aggregate implications depending on the distributional features of the economy. The mechanism that we illustrate may appear quantitatively small, however, there may be other models where the same mechanism could generate larger effects, for example, if wealthier consumers can also be borrowing constrained as in Kaplan and Violante (2014). This would allow larger masses of agents to be shifted to and from the constraint. Furthermore, in this paper we focused essentially on the role of heterogeneous marginal propensities to work in the transmission of fiscal policies. In future research, and in the spirit of Kaplan et al. (2018), we intend to study in greater detail the effects of the empirical joint distribution between marginal propensities to work and consume for the sign and size dependence of fiscal policy shocks.
References

A Additional empirical evidence

A.1 IMF Shocks

\[
\Delta y_{i,t} = \alpha_i + \sum_{i=0}^{3} \beta_{1,t-i} e_{i,t-i}^u + \sum_{i=0}^{3} \beta_{2,t-i}(e_{i,t-i}^u)^2 + \sum_{i=0}^{3} \beta_{3,t-i} e_{i,t-i}^a + \sum_{i=0}^{3} \beta_{4,t-i}(e_{i,t-i}^a)^2 + \alpha_i + \gamma_t + \epsilon_{it}
\]

(19)

Table 8: Nonlinear effects of fiscal unanticipated and announced consolidation shocks, including three lags of each shock.

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(\hat{\beta}_3)</th>
<th>(\hat{\beta}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>-0.645***</td>
<td>0.186***</td>
<td>-0.109</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>(0.164)</td>
<td>(0.042)</td>
<td>(0.232)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>(t-1)</td>
<td>-1.176***</td>
<td>0.163***</td>
<td>-0.561**</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td>(0.183)</td>
<td>(0.043)</td>
<td>(0.237)</td>
<td>(0.122)</td>
</tr>
<tr>
<td>(t-2)</td>
<td>-0.240</td>
<td>0.102**</td>
<td>0.257</td>
<td>-0.092</td>
</tr>
<tr>
<td></td>
<td>(0.183)</td>
<td>(0.043)</td>
<td>(0.225)</td>
<td>(0.149)</td>
</tr>
<tr>
<td>(t-3)</td>
<td>-0.803***</td>
<td>0.255***</td>
<td>-0.122</td>
<td>-0.152</td>
</tr>
<tr>
<td></td>
<td>(0.189)</td>
<td>(0.054)</td>
<td>(0.220)</td>
<td>(0.168)</td>
</tr>
</tbody>
</table>

Observations 510
Number of countries 15

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

\[
\Delta y_{i,t} = \alpha_i + \sum_{i=0}^{3} \beta_{1,t-i} e_{i,t-i}^u + \sum_{i=0}^{3} \beta_{2,t-i}(e_{i,t-i}^u)^2 + \sum_{i=0}^{3} \beta_{3,t-i} e_{i,t-i}^a + \sum_{i=0}^{3} \beta_{4,t-i}(e_{i,t-i}^a)^2 + \alpha_i + \gamma_t + \epsilon_{it} + \delta_{i,t} e_{i,t+i,0}
\]

(20)

Table 9: Non-linear effects of fiscal unanticipated and announced consolidation shocks, including three lags of each shock and controlling for announced shocks at \(t\) that will be implemented over the next three years.

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(\hat{\beta}_3)</th>
<th>(\hat{\beta}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>-0.473***</td>
<td>0.148***</td>
<td>-0.130</td>
<td>-0.087</td>
</tr>
<tr>
<td></td>
<td>(0.156)</td>
<td>(0.041)</td>
<td>(0.221)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>(t-1)</td>
<td>-0.848***</td>
<td>0.126***</td>
<td>-0.306</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.042)</td>
<td>(0.233)</td>
<td>(0.117)</td>
</tr>
<tr>
<td>(t-2)</td>
<td>-0.347**</td>
<td>0.151***</td>
<td>0.284</td>
<td>-0.134</td>
</tr>
<tr>
<td></td>
<td>(0.160)</td>
<td>(0.042)</td>
<td>(0.227)</td>
<td>(0.137)</td>
</tr>
<tr>
<td>(t-3)</td>
<td>-0.631***</td>
<td>0.189***</td>
<td>-0.234</td>
<td>-0.083</td>
</tr>
<tr>
<td></td>
<td>(0.172)</td>
<td>(0.054)</td>
<td>(0.222)</td>
<td>(0.152)</td>
</tr>
</tbody>
</table>

Observations 510
Number of countries 15

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
\[\Delta y_{i,t} = \sum_{i=0}^{3} \beta_{1,i} e_{i,t}^u + \sum_{i=0}^{3} \beta_{2,i} (e_{i,t}^u)^2 + \sum_{i=0}^{3} \beta_{3,i} e_{i,t}^d + \sum_{i=0}^{3} \beta_{4,i} (e_{i,t}^d)^2 + \sum_{i=0}^{3} \beta_{5,i} r_{i,t}^u + \sum_{i=0}^{3} \beta_{6,i} (r_{i,t}^u)^2 + \sum_{i=0}^{3} \beta_{7,i} r_{i,t}^d + \sum_{i=0}^{3} \beta_{8,i} (r_{i,t}^d)^2 + \sum_{i=1}^{3} \delta_i e_{i,t+i,0} + \alpha_i + \gamma_t + \epsilon_{it} \]

(21

Table 10: Non-linear effects of fiscal unanticipated expenditure and revenue consolidation shocks, including three lags of each shock.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(\hat{\beta}_5)</th>
<th>(\hat{\beta}_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>-0.696*</td>
<td>0.178</td>
<td>-1.484***</td>
<td>0.731***</td>
</tr>
<tr>
<td></td>
<td>(0.354)</td>
<td>(0.211)</td>
<td>(0.342)</td>
<td>(0.163)</td>
</tr>
<tr>
<td>(t - 1)</td>
<td>-1.146***</td>
<td>0.452**</td>
<td>-1.592***</td>
<td>0.417**</td>
</tr>
<tr>
<td></td>
<td>(0.365)</td>
<td>(0.212)</td>
<td>(0.339)</td>
<td>(0.172)</td>
</tr>
<tr>
<td>(t - 2)</td>
<td>-0.081</td>
<td>0.204</td>
<td>1.022***</td>
<td>0.317*</td>
</tr>
<tr>
<td></td>
<td>(0.355)</td>
<td>(0.204)</td>
<td>(0.321)</td>
<td>(0.177)</td>
</tr>
<tr>
<td>(t - 3)</td>
<td>-1.600***</td>
<td>0.651***</td>
<td>-1.127***</td>
<td>0.626***</td>
</tr>
<tr>
<td></td>
<td>(0.362)</td>
<td>(0.218)</td>
<td>(0.327)</td>
<td>(0.186)</td>
</tr>
<tr>
<td>Observations</td>
<td>510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of countries</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

A.1.1 1991-2014 period including Germany

Table 11: Non-linear effects of fiscal consolidation shocks.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>-0.593***</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>0.202***</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
</tr>
<tr>
<td>Observations</td>
<td>510</td>
</tr>
<tr>
<td>Number of countries</td>
<td>15</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table 12: Non-linear effects of fiscal unanticipated and announced consolidation shocks.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-0.302**</td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.141***</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.163</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
</tr>
<tr>
<td>β_4</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
</tr>
</tbody>
</table>

Observations 510
Number of countries 15

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 13: Non-linear effects of fiscal unanticipated expenditure and revenue consolidation shocks, including three lags of each shock.

<table>
<thead>
<tr>
<th></th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>-0.177</td>
<td>-0.210</td>
<td>-1.347***</td>
<td>0.748***</td>
</tr>
<tr>
<td></td>
<td>(0.183)</td>
<td>(0.128)</td>
<td>(0.190)</td>
<td>(0.094)</td>
</tr>
<tr>
<td>$t - 1$</td>
<td>-1.203***</td>
<td>0.655***</td>
<td>-0.341</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.139)</td>
<td>(0.225)</td>
<td>(0.146)</td>
</tr>
<tr>
<td>$t - 2$</td>
<td>-0.911***</td>
<td>0.024</td>
<td>-0.579***</td>
<td>0.911***</td>
</tr>
<tr>
<td></td>
<td>(0.219)</td>
<td>(0.156)</td>
<td>(0.203)</td>
<td>(0.138)</td>
</tr>
<tr>
<td>$t - 3$</td>
<td>-1.707***</td>
<td>0.875***</td>
<td>-0.043</td>
<td>0.356**</td>
</tr>
<tr>
<td></td>
<td>(0.224)</td>
<td>(0.146)</td>
<td>(0.200)</td>
<td>(0.152)</td>
</tr>
</tbody>
</table>

Observations 510
Number of countries 15

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
B Details of Representative agent Models

B.1 Real Business Cycle Model

Set-up and Equilibrium

The set-up follows closely that of Cooley and Prescott (1995). A representative household solves

\[
\max_{\{C_t, N_t, K_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t^{1-\sigma}}{1-\sigma} - \frac{\chi N_t^{1+\nu}}{1+\nu} \right\}
\]

s.t.

\[
C_t + K_t + B_t = (1 - \tau)w_t N_t + (1 + \rho^k)K_{t-1} + R_t B_{t-1} - T_t
\]

where \(C_t\) is consumption, \(N_t\) is hours worked, \(K_t\) is capital, \(w_t\) is the real wage, \(\rho^k\) is the rate of return on capital, \(B_t\) is holdings of public debt, \(R_t\) is the return on public debt, and \(T_t\) is a lump sum tax/transfer from the government. The optimality conditions for the household are standard:

\[
1 = \mathbb{E}_t \beta \left(\frac{C_t}{C_{t+1}} \right)^{\sigma} (1 + \rho^k_{t+1})
\]

\[
1 = \mathbb{E}_t \beta \left(\frac{C_t}{C_{t+1}} \right)^{\sigma} R_{t+1}
\]

\[
\chi C_t^{\sigma} N_t^{\nu} = w_t (1 - \tau).
\]

The representative firm hires capital and labor in spot markets:

\[
\max_{K_{t-1}, L_t} z_t K_{t-1}^{\alpha} L_t^{1-\alpha} - w_t L_t - (\rho^k_t + \delta) K_{t-1}.
\]
This yields the standard factor choice first-order conditions:

\[w_t = (1 - \alpha) z_t \left(\frac{K_{t-1}}{L_t} \right)^\alpha \]

\[r^K_t + \delta = \alpha z_t \left(\frac{L_t}{K_{t-1}} \right)^{1-\alpha}. \]

Finally, the government’s budget constraint is

\[G_t + R_t B_{t-1} = B_t + \tau w_t N_t + T_t. \]

Due to Ricardian equivalence, the specific fiscal rule is irrelevant for the value of the fiscal multiplier. The aggregate resource constraint is

\[C_t + K_t + G_t = z_t K_{t-1}^\alpha L_t^{1-\alpha} + (1 - \delta) K_{t-1}. \]

Calibration

We try to map the calibration of our baseline neoclassical heterogeneous agents model to the representative agent specification as closely as possible. The discount factor is chosen to yield an equilibrium real rate of 1.1% quarterly, \(\beta = 0.9891 \). Disutility of labor is \(\chi = 8.1 \), the coefficient of relative risk aversion is \(\sigma = 1.2 \), the Frisch elasticity of labor supply is \(\nu = 1 \), the depreciation rate is \(\delta = 0.015 \), and the capital share is \(\alpha = 1/3 \). \(G_{SS} \) and \(B_{SS} \) are chosen to be 20% and 43% of GDP at steady state, respectively.

B.2 New Keynesian model

We extend the basic RBC model with investment with the standard New Keynesian ingredients. We assume that production is now done by two sectors: a perfectly competitive final goods sector that produces final goods by aggregating a continuum of
intermediate varieties in a Dixit-Stiglitz fashion. These firms solve a problem of the type

$$\max_{Y_t(i)} P_t \left[\int_0^1 Y_t(i) \frac{dY_t(i)}{dP_t} \right]^{\frac{1}{\epsilon}} - \int_0^1 P_t(i) Y_t(i) dP_t.$$

This solution generates a demand curve for each variety:

$$Y_t(i) = \left[\frac{P_t(i)}{P_t} \right]^{\frac{-\epsilon}{\epsilon}} Y_t$$

where ϵ is the elasticity of substitution across varieties. Intermediate goods producers are monopolistic competitors and hire labor and capital in spot markets. Let $P_t(i)$ denote the price of the intermediate variety sold by firm i. These firms face quadratic costs of adjusting their prices à la Rotemberg. The adjustment costs of price setting for firm i are given by

$$\Xi_t(i) = \frac{\epsilon}{2} Y_t \left[\frac{P_t(i)}{P_t-1(i)} \frac{1}{\Pi - 1} \right]^2.$$

For simplicity, we assume that these costs scale with total output and it is free to adjust prices to keep track with trend inflation Π.

The firm’s value in nominal terms is

$$P_t V_t[i; X_t] = \max_{P_t(i), Y_t(i), K_t(i), L_t(i)} P_t(i) Y_t(i) - P_t w_t L_t(i) - P_t(r_t + \delta) K_t(i) - P_t \Xi_t(i)$$

$$+ \mathbb{E}_t \frac{\Lambda_{t+1} P_{t+1} V_{t+1}[P_t(i); X_{t+1}]}{\Pi_{t+1}}.$$

subject to the demand curve for variety i and the production function:

$$Y_t(i) = \left[\frac{P_t(i)}{P_t} \right]^{-\epsilon} Y_t$$

$$Y_t(i) = A_t K_t(i)^\alpha L_t(i)^{1-\alpha}.$$

where $\frac{\Lambda_{t+1}}{\Pi_{t+1}}$ is the relevant stochastic discount factor for discounting the firm’s payoffs,
adjusted for inflation. The firm’s problem can be split into a static cost-minimization component and a dynamic price-setting one. The static problem yields the standard condition for cost minimization:

\[\frac{w_t}{r_t + \delta} = \frac{1 - \alpha K_t(i)}{\alpha L_t(i)}. \] (22)

Combining this condition with the production function allows us to express total costs as a function of output and factor prices only:

\[TC_t(i) = w_t L_t(i) + (r_t + \delta) K_t(i) \]
\[= w_t \frac{Y_t(i)}{A_t} + (r_t + \delta) A_t \frac{w_t}{r_t + \delta} 1 - \alpha \frac{Y_t(i)}{A_t} \]
\[= \left(\frac{w_t}{1 - \alpha} \right)^{1-\alpha} \left(\frac{r_t + \delta}{\alpha} \right)^{\alpha} \frac{Y_t(i)}{A_t}. \]

This expression is now useful to solve the firm’s dynamic problem, just in terms of price and output choices:

\[V_t[P_{t-1}(i); X_t] = \max_{P_t(i), Y_t(i)} \frac{P_t(i)}{P_t} Y_t(i) - TC_t(i) - \Xi_t(i) + E_t \Lambda_{t,t+1} V_{t+1}[P_t(i); X_{t+1}] \]

subject to the demand function \(Y_t(i) = \left[\frac{P_t(i)}{P_t} \right]^{-\alpha} Y_t \). We can furthermore replace \(Y_t(i) \) for the demand function and solve for \(P_t(i) \) only. The first-order condition is then

\(- (\epsilon - 1) P_t(i)^{-\epsilon} p_t^{\epsilon-1} Y_t + \epsilon MC_t P_t(i)^{-\epsilon-1} p_t^{\epsilon} Y_t - \xi Y_t \left[\frac{P_t(i)}{P_{t-1}(i)\Pi} - 1 \right] \frac{1}{P_{t-1}(i)\Pi} \]
\(+ E_t \Lambda_{t,t+1} \xi Y_t + 1 \left[\frac{P_{t+1}(i)}{P_t(i)\Pi} - 1 \right] \frac{P_{t+1}(i)}{P_t(i)^2 \Pi} = 0 \)

where marginal costs are

\[MC_t \equiv \frac{\partial TC_t(i)}{\partial Y_t(i)} = \left(\frac{w_t}{1 - \alpha} \right)^{1-\alpha} \left(\frac{r_t + \delta}{\alpha} \right)^{\alpha} \frac{1}{A_t}. \]
We now invoke the symmetric equilibrium assumption to obtain the New Keynesian Phillips curve:

\[
[(\varepsilon - 1) - \varepsilon MC_t] + \xi \left[\frac{\Pi_t}{\Pi} - 1 \right] = \mathbb{E}_t \Lambda_{t+1} \xi \frac{Y_{t+1}}{Y_t} \left[\frac{\Pi_{t+1}}{\Pi} - 1 \right] \frac{\Pi_{t+1}}{\Pi}
\]

The central bank sets the nominal interest using a Taylor rule:

\[
R_t = R \left(\frac{\Pi_t}{\Pi} \right)^{\rho_{\Pi}} \left(\frac{Y_t}{Y} \right)^{\phi_Y}
\]

where \(R \) is some target rate and \((\Pi, Y)\) are output and inflation benchmarks. The real interest rate is determined via the Fisher Equation:

\[
1 + r_t = \frac{R_t}{\Pi_t}.
\]

We assume that government debt pays a real return and that all intermediate firm profits are rebated to the representative household.

Calibration

We calibrate all common parameters to the same values as in the RBC model. For the New Keynesian parameters, we use standard values: menu costs are set so that firms change their prices once every three quarters, \(\eta = 58.10 \); the elasticity of substitution across varieties is \(\varepsilon = 6 \); and the Taylor rule parameters are \(\rho_R = 0.80, \phi_{\Pi} = 1.50, \phi_Y = 0.5 \).

B.3 Investment Adjustment Costs

We introduce quadratic adjustment costs of investment of the type

\[
\frac{\Phi}{2} K_{t-1} \left(\frac{I_t}{K_{t-1}} - \delta \right)^2.
\]
This changes the first-order condition for K_t for the representative household:

$$1 + \Phi \left(\frac{K_t}{K_{t-1}} \right) = \beta E_t \left(\frac{C_t}{C_{t+1}} \right)^{\sigma} \left\{ 1 + r_{t+1}^{K} + \frac{\Phi}{2} \left[\left(\frac{K_{t+1}}{K_t} \right)^2 - 1 \right] \right\}.$$

Calibration

We choose a standard quarterly value of $\Phi = 12.5$.

B.4 Infinite Capital Adjustment Costs

Figure 15 shows that in the extreme case of infinite adjustment costs, so that capital is fixed throughout the experiment, the level of the multiplier can be raised to match the data; but this is still not enough to generate any meaningful nonlinearities.

Figure 15: Representative agent, New Keynesian model with infinite adjustment costs of investment: fiscal multipliers as a function of the size of the variation in G, at different horizons.
C Definition of a Transition Equilibrium During the Fiscal Experiments

We define the recursive competitive transition equilibrium as follows. For a given level of initial capital stock, initial distribution of households, and initial debt, respectively, K_0, Φ_0, and B_0, a competitive equilibrium is a sequence of individual functions for the household, $\{V_t, c_t, k'_t, n_t\}_{t=1}^{\infty}$; production plans for the firm, $\{K_t, L_t\}_{t=1}^{\infty}$; factor prices, $\{r_t, w_t\}_{t=1}^{\infty}$; government transfers, $\{g_t, G_t\}_{t=1}^{\infty}$, government debt, $\{B_t\}_{t=1}^{\infty}$; and measures $\{\Phi_t\}_{t=1}^{\infty}$ such that the following hold for all t:

1. For given factor prices and initial conditions, the value functions $V_t(k, \beta, a, u)$ and the policy functions, $c_t(k, \beta, a, u)$, $k'_t(k, \beta, a, u)$, and $n_t(k, \beta, a, u)$ solve the consumers’ optimization problem.

2. Markets clear:

 $$K_{t+1} + B_t = \int k_t d\Phi_t$$

 $$L_t = \int (n_t(k_t, \beta, a, u)) d\Phi_t$$

 $$\int c_t d\Phi_t + K_{t+1} + G_t = (1 - \delta)K_t + K^\alpha L^{1-\alpha}.$$

3. The factor prices are paid their marginal productivity:

 $$w_t = (1 - \alpha) \left(\frac{K_t}{L_t} \right)^\alpha$$

 $$r_t = \alpha \left(\frac{K_t}{L_t} \right)^{\alpha - 1} - \delta$$

4. The government budget balances:

 $$g_t \int d\Phi_t + G_t + rB_t = \int [\tau_k r_t k_t + \tau_c c_t + n_t w_t (a, u) \left(1 - \tau_l (n_l w_t (a, u)) \right)] d\Phi_t.$$
5. The distribution follows an aggregate law of motion:

\[\Phi_{t+1} = Y_t(\Phi_t) \]
D Parameters Calibrated outside of the Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>1</td>
<td>Inverse Frisch elasticity</td>
<td>Trabandt and Uhlig (2011)</td>
</tr>
<tr>
<td>σ</td>
<td>1.2</td>
<td>Risk aversion parameter</td>
<td>Consistent w. literature</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.33</td>
<td>Capital share of output</td>
<td>Consistent w. literature</td>
</tr>
<tr>
<td>δ</td>
<td>0.015</td>
<td>Capital depreciation rate</td>
<td>Consistent w. literature</td>
</tr>
<tr>
<td>ρ</td>
<td>0.761</td>
<td>$u' = \rho u + \epsilon, \ \epsilon \sim N(0, \sigma^2_\epsilon)$</td>
<td>PSID 1968-1997</td>
</tr>
<tr>
<td>σ_ϵ</td>
<td>0.211</td>
<td>Variance of risk</td>
<td>PSID 1968-1997</td>
</tr>
<tr>
<td>Taxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_0</td>
<td>0.788</td>
<td>Income tax level</td>
<td>Holter et al. (2019)</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.137</td>
<td>Income tax progressivity</td>
<td>Holter et al. (2019)</td>
</tr>
<tr>
<td>τ_c</td>
<td>0.047</td>
<td>Consumption tax</td>
<td>Trabandt and Uhlig (2011)</td>
</tr>
<tr>
<td>τ_k</td>
<td>0.364</td>
<td>Capital tax</td>
<td>Trabandt and Uhlig (2011)</td>
</tr>
<tr>
<td>Macro ratios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/Y</td>
<td>1.714</td>
<td>Debt-to-GDP ratio</td>
<td>U.S. Data</td>
</tr>
<tr>
<td>G/Y</td>
<td>0.15</td>
<td>Government spending-to-GDP ratio</td>
<td>Budget balance</td>
</tr>
<tr>
<td>g/Y</td>
<td>0.07</td>
<td>Transfers-to-GDP ratio</td>
<td>Hagedorn et al. (2019)</td>
</tr>
</tbody>
</table>
E Distribution

Permanent Shock: Permanent changes in debt

Temporary Shock: Deficit Financing

Temporary Shock: Balanced Budget
Changes in wealth distribution - Lumpsum

Figure 18: Changes in the distribution in response to a permanent change in G.

F Robustness: Micro Evidence of the Mechanism

Table 14: G shock, labor supply response and financing regime by total wealth. i is the annual income of the household.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total wealth < 0</td>
<td>Total wealth > 0</td>
<td>Total wealth > $$12000$</td>
<td>Total wealth < 1/2i</td>
<td>Total wealth > 1/2i</td>
<td>Total wealth > i</td>
</tr>
<tr>
<td>β_1</td>
<td>1.060***</td>
<td>0.047</td>
<td>0.055</td>
<td>0.062</td>
<td>-0.030</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.477)</td>
<td>(0.037)</td>
<td>(0.039)</td>
<td>(0.057)</td>
<td>(0.014)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.750***</td>
<td>0.750***</td>
<td>(0.037)</td>
<td>1.548***</td>
<td>0.193</td>
<td>-0.282</td>
</tr>
<tr>
<td></td>
<td>(0.249)</td>
<td>(0.349)</td>
<td>(0.349)</td>
<td>(0.019)</td>
<td>(0.030)</td>
<td>(0.328)</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.035**</td>
<td>-0.035**</td>
<td>-0.035**</td>
<td>-0.076***</td>
<td>-0.009</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.017)</td>
<td>(0.017)</td>
<td>(0.025)</td>
<td>(0.015)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Observations</td>
<td>7,075</td>
<td>61,980</td>
<td>47,914</td>
<td>36,080</td>
<td>37,328</td>
<td>31,399</td>
</tr>
<tr>
<td>Number of ID</td>
<td>2,308</td>
<td>11,390</td>
<td>8,711</td>
<td>7,397</td>
<td>6,308</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

\[
\ln h_{it} = \beta_1 G_t + \beta_2 a_t + \beta_3 \Delta B_t + \beta_4 a_t G_t + \beta_5 \Delta B_t G_t + \beta_6 a_t \Delta B_t + \beta_7 a_t \Delta B_t G_t + \alpha_i + \gamma_t + \epsilon_{it}
\]

(23)

ΔB_t is the change of government debt as a percentage of GDP. Given that we are controlling for government debt changes and wealth, β_1 can be interpreted as the labor supply response of an agent with zero wealth when debt does not change. According
Table 15: G shock, labor supply response, total wealth and financing regime

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>0.327</td>
<td>0.068**</td>
<td>0.166</td>
<td>0.073**</td>
</tr>
<tr>
<td></td>
<td>(0.232)</td>
<td>(0.031)</td>
<td>(0.180)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>3.423</td>
<td>1.262</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.923)</td>
<td>(1.837)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>0.873***</td>
<td>0.647*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.304)</td>
<td>(0.347)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>-0.173</td>
<td>-0.069</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.096)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>-0.044***</td>
<td>-0.033*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_6)</td>
<td></td>
<td>-0.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.919)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_7)</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations: 81,678, 81,678, 81,678, 81,678
Number of ID: 17,670, 17,670, 17,670, 17,670

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

to the model predictions, \(\beta_1 \) should be positive, as agents increase their labor supply in response to a positive fiscal shock. \(\beta_4 \) captures how the labor supply response depends on wealth, given that the public debt does not change. Our model predicts this term will be negative because in a financing regime with a balanced budget, wealthier agents will respond the least to the shock. \(\beta_7 \) captures how the relation between wealth and the spending shock changes when the shock is financed with debt. To be in line with our model, this coefficient should be positive, as the labor supply of wealthier agents responds the most for deficit-financed shocks. Lastly, the coefficient \(\beta_5 \) tells us whether the financing regime affects the average labor supply response: deficit-financed shocks in the model generate smaller fiscal multipliers, due to a more muted labor supply response. This would be consistent with \(\beta_5 < 0 \).

Results in Table 15 show that the coefficient signs are all in line with what we would expect, thus validating the model’s mechanism. For a 1% fiscal spending shock, when debt does not change, an increase in wealth by one standard deviation decreases the labor supply response by 94.5%. If debt increases by 1%, the response of a household
with zero wealth decreases by 45.2%, while that for a household with wealth equal to one standard deviation increases by 800%.