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Abstract

Female marriage probabilities were 50% higher in France in the years after World War

1, despite a large drop in the sex ratio. We develop a model of marital matching in

which composition effects in the singles pool affect post-disruption matching rates. When

calibrated to French data from World War 1, this mechanism explains 2/3 of the post-

war rise in female marriage probabilities as the result of better composition of the pool of

single men. We conclude that endogeneity issues make the sex ratio a potentially unreliable

indicator of female marriage prospects.
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Equilibrium Marriage-Rate Dynamics

1 Introduction

Finding a marriage partner takes time; as in labor markets, the empirical observation that at

any point in time parties on both sides of the market remain unmatched is often explained as

the result of matching frictions. A central feature of frictional models of two-sided matching is

that the effect of a change in the number of unmatched agents on the speed of matching is a

function only of the ratio of the number of agents on each side of the market and the effect on

each side has opposite sign. This feature, which arises from the assumption of constant returns

to scale (CRS) in the matching process, implies that workers are quicker to find jobs when the

vacancy unemployment ratio is high, and women quicker to marry when the “sex ratio,” the

ratio of men to women in the singles pool is high. Exogenous shocks to these ratios are rare

however, so the hypothesis is not easy to verify.

The population of young single men (ages 20-40) in European countries declined abruptly as

a result of World War 1; in France after the war, the sex ratio of singles in this age group was

28% lower than before the war. This decline constitutes an exogenous and unexpected shock

to the marriage market; because France and Germany had universal male military conscription,

the death rate of young males in these countries was essentially orthogonal to marital status.

What makes France unique however is the availability of annual age-specific population data,

by sex and marital status, starting from 1900. This combination of circumstances makes post-

war France a rare opportunity to learn about the aggregate dynamics of the marriage-matching

process. Previous papers, such as Vincent (1946), Henry (1966), and Abramitzky et al. (2011)

have stressed the impact of the post-war sex ratio on lifetime marital outcomes. If the sex-ratio

decline is indeed the main shock to the post-war marriage market, we should expect annual

post-war marriage probabilities (the “marriage hazard rates”) in France to be lower for women

and higher for men than before the war.

In this paper, we show that the post-war marriage hazards do not fit the predicted pattern.

We document the time path, by age and sex, of the marriage hazards in France from 1905
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to 1930. We find that these increased dramatically for both sexes after the war, and that,

contrary to the standard theory, a striking rise in the female marriage hazards accounts for a

large share of the post-war rise in per-capita marriage rates. We show that this was more than

a transitory blip in the data; five years after the war’s end, female marriage hazards were still

above the pre-war average, so the contradiction between theory and data cannot be dismissed as

an aberration driven by conditions at the end of the war. We also find that the peak in female

hazards cannot be explained away by the post-war formalization of war-time matches, as the

response of unmarried births is implausibly small.

In principle, it would be possible to explain the rise in the post-war female hazards rates

by assuming increasing returns to scale (IRTS) in the matching process. The higher-post-war

prevalence of singles would then generate higher matching hazards for both sexes, eliminating

the contradiction between theory and data. However an important drawback of IRTS would be

the loss, due to multiple equilibria, of the predictive power of the CRS model. Furthermore,

the preponderance of empirical work on matching, as documented by Pissarides and Petrongolo

(2001) (for labor markets) and Botticini and Siow (2008) (for marriage markets) supports the

CRS assumption. Finally, the fact that the peace-time marriage rate is very stable in France

over the period from 1800-1950, despite several large war-time shocks, would be difficult to

reconcile with the multiplicity of steady states implied by IRTS models.

Instead, we propose that a second war-related shock, the war-time “marriage bust,” accounts

for the post-war rise in the female marriage hazards. The per-capita marriage rate over the

1914-1918 period fell abruptly to an average 51% of the peace-time rate. Our idea is that this

prolonged interruption of the matching process resulted in a radical change in composition of the

pool of post-war singles. To simplify, suppose that singles differ in their marriage “propensity,”

which is public information. Normally, high-propensity singles would be comparatively rare

in the singles pool, because they would exit into marriage relatively quickly. Now consider

an extreme case: suppose that marriage rates fall to zero during war time. Then the high-
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propensity singles would tend to accumulate, and in the post-war singles pool would be unusually

abundant, raising the average marriage hazard. In the presence of matching frictions, it could

take considerable time for this composition effect to dissipate.

To formalize this mechanism in a more realistic context, our paper proposes a matching

model in which heterogeneity in marriage propensity is derived from age-related differences in

the utility from single life, and, among women, in the propensity to bear children. Following

recent advances in the labor-matching literature, we use the competitive-search assumption

to incorporate this heterogeneity into the matching process. We use French Census and Vital

Statistics reports to calibrate the model’s steady-state to the relevant age-specific statistics from

pre-war France: the marriage hazards by sex, the sex ratio of singles, and the birth hazards of

married women. We then model the war as a pair of unanticipated shocks of known duration, to

male mortality and to fertility, which we calibrate so that the model matches the age distribution

of military deaths and the war-time decline in marriage hazards. The empirical foundations of

these shocks are well-established; the age pattern of military deaths is based on the tabulations

of Vallin (1973), and the fertility shock reflects the war-time decline in per-capita birth rates

based on the tabulations of Mitchell (1998), which Vandenbroucke (2014) shows is likely to have

been a response to the risk of paternal mortality leading to single motherhood.

We then compute the equilibrium time path of the marriage market from the start of the

war until the post-war return to the steady state. We find that the model generates a significant

post-war increase in female marriage hazards, because the negative effect of the sex-ratio decline

is offset by a larger, positive effect due to the war-time accumulation of single males who would

normally have married much earlier. In fact our baseline calibration accounts for 66% of the post-

war peak in female marriage hazards. The model also generates a leisurely transition back to

the steady state, accounting for 38% of the half life of the post-war peak for women. Although

the model peak occurs in 1919, a year before the peak in the data, the model successfully

predicts the sex ratio of singles throughout the 1920s. Thus our baseline calibration succeeds in
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accounting for the basic features of the post-war transition dynamics in the marriage market.

Our results also suggest that the main force underlying the rise in the female marriage hazard

is the post-war abundance, per single woman, of men with a high propensity to marry. There is

no corresponding increase of high-propensity women, because the calibrated model implies that

women’s marriage propensity falls with age. Furthermore, we find that our results do not rely

on minimizing the impact of military mortality: we show that the male-mortality shock, on its

own, delivers large postwar declines in the female marriage hazard2.

Finally we ask whether the exceptional size of the female post-war peak might be due in

part to pro-natalist sentiment in the post-war, as manifested by political events such as the

post-war repudiation of feminist policies and the adoption of legislation favoring large families

(see Roberts, 1994 and Robert, 2005). We show that births per married woman increased

sharply relative to trend, a change that persisted well into the 1930s. When we augment the

model with a post-war fertility shock, recalibrated to match the post-war birth-rate bump, the

resulting transition path explains essentially all of the post-war peak in the female marriage

hazards. Thus fertility plays key roles in generating variation in marriage propensities, both in

cross-section and in time-series.

1.1 Related Literature

There is a long tradition in demography, dating from Groves and Ogburn (1928), of studying

the causal effect of the sex ratio on marriage rates. In economics, the seminal work is the Becker

(1973) model of frictionless matching. Our basic assumptions, including the assumption of

fully transferable utility within marriage, are derived from the canonical Becker (1973) model,

augmented with matching frictions, in the tradition of Shimer and Smith (2000), but with

repeated matching, so that the singles distribution evolves endogenously over time. The problem

2We also show in Appendix A that although the war increased the average age of single men, this on its own

could not have generated an increase in the female marriage hazard rates, because the number of single women

increased even more than the number of older single men.
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of finding exogenous variation in sex ratios has been addressed by economists such as Angrist

(2002), who used immigration flows, and by Bronson and Mazzocco (2018), who use variation

in the size of birth cohorts.

The effect on eventual marital outcomes of war-induced declines in the sex ratio have been

studied by Henry (1966), Vincent (1946) and Abramitzky et al. (2011) for the case of World

War 1 in France and by Brainerd (2017) for World War 2 in the Soviet Union. Henry (1966)

and Abramitzky et al. (2011) both find that lower post-war sex ratios reduce the fraction of

women in the affected birth cohorts who ever married, and change the mix of who marries whom.

However Brainerd (2017) finds that both men and women are less likely to marry. Bethmann

and Kvasnicka (2014) find that low sex ratios increase births to unmarried mothers in Germany

after the Second World War3. None of these papers are directly concerned with the time it

takes to marry, so our analysis of hazard rates and dynamics do not speak to their main results.

This distinction is critical in our view, because the fraction of people who eventually marry is a

function not only of the hazard rate, but also of the length of time singles spend in matching.

If the heterogeneity in our model were permanent, the environment would be similar to that

of Burdett and Coles (1999), who show how composition effects generate multiple steady states

in a random-matching model. That sort of multiplicity does not occur in our model, however,

due to our reliance on the competitive-search mechanism, similar to the labor-matching model of

Shimer (2005), where endogenous surplus allocation ensures uniqueness and Pareto-optimality

of the equilibrium. In this sense, our model is closely related to the matching and fertility model

of Kennes and Knowles (2015), which builds on elements of Regalia and Rı́os-Rull (1999) and

Shimer (2005).

The labor-market analog of our argument would be that composition effects can shift the

Beveridge curve. Our emphasis on the matching history generating composition effects also

3However Henry (1966) and Abramitzky et al. (2011) both find that the lower sex ratio was associated with
a smaller post-war age gap between new spouses, a result that our model also generates. In the steady state, our
model implies an age difference of 1.79 years, while in the mid 1920s the age difference is on average 1.12 years.
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parallels the labor-market competitive-search model of Menzio and Shi (2010); in their analysis,

the composition of vacancies shifts over the business-cycle. However, the critical component in

their model is heterogeneity that is unobserved at the time of matching, while in our model the

heterogeneity is common knowledge during the matching process.

The empirical marriage-matching literature that derives from Choo and Siow (2006) relies

on an assumption that is incompatible with our analysis: separability in the marriage-surplus

function between observed variables such asage and any other variable excluded from the anal-

ysis. This rules out the sort of composition effects we focus on here. The extension of that

literature to multi-period matching has also proven very difficult; Choo (2015) appears to be

the first paper to achieve this, but is limited to analysis of the stationary state, ruling out the

sort of dynamics that we study here.

2 Empirical Analysis

We have three reasons for focusing the analysis below on France in WW1. First, the timing

of war with Germany was unexpected, and the impact on civilian life was severe and relatively

uniform over the course of the war4. Second, the French system of universal conscription dropped

all exemptions in 1905, so all men aged 20 and over were subject to military service regardless of

marital, parental or economic status. Third, although individual-level records are not available,

we have annual Census population statistics for France, by age in years, sex and marital status,

starting in 1900; these are not available for the other countries involved in the war.

2.1 Per-capita Marriage Rates

In Figure 1, we see that per-capita marriage rates in France, over the period 1800-1950, followed

a pattern of war-time busts followed by post-war booms and then a return to a stationary

4World War 2 is much less suited for analyzing the demographic impact of war, because the attack on France

was long anticipated, and broke out in the abnormal economic environment caused by the Great Depression, and

the abnormal demographic environment caused by World War 1.
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Figure 1: Aggregate Marriage Rate in France
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peace-time baseline. This figure is based on the number of newlyweds per capita, as compiled

by Mitchell (1998) from the French Census. We take the per-capita marriage rate to be equal

to half the number of newlyweds per capita, as compiled by Mitchell (1998) from the French

Census. These cycles are large in amplitude; while the average per-capita marriage rate over

time is remarkably stable at 7.5 per thousand, we see it rise by 70% after the Napoleonic wars

and after World War 2, by 25% after the much shorter Franco-Prussian war of 1870, and by

100% after WW1. The troughs that correspond with these wars are on the order of 20% below

average for the Napoleonic and Franco-Prussian wars, 30% for World War 2, and more than 66%

for WW1. The effect of war-time shocks on per-capita marriage rates is also quite persistent.

It takes about 5 years after the Franco-Prussian war of 1870 for per-capita marriage rates to

return to normal, 10 years after WW1, and 5 years after World War 2. Figure 2 shows that

the cycle around WW1 is remarkably similar for other countries: per capita marriage rates in
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Figure 2: Aggregate Marriage Rates in Europe
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Belgium, Germany and Italy all follow the French pattern5.

The recurrence of this pattern over time and across countries suggests that institutional

idiosyncrasies are not the source of the cycle. Furthermore, it would be difficult to reconcile a

model of multiple equilibria, given the size of these shocks, with the long-run stability exhibited

in Figure 1.

The per-capita marriage rate shown in Figure 1 reflects the sum over all age groups a ∈ A.

Let the number of marriages of women of age group a in year t be M (a, t) and the size of the

age group be F (a, t). Let the population size be P (a, t). The per-capita marriage rate is given

5The pattern for England is quite different; marriage rates increase early in the war, and at no point fall
much below the peace-time rate. This may reflect the fact that while Germany, like France, had a pre-existing
system of universal conscription, England relied at first on volunteers and when conscription was first introduced,
married men were exempted.
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by the weighted sum of the “age-group” marriage rates:

Flow of marriages

Population stock
=

∑

a∈A
M (a, t)

P (a, t)
=

1

P (a, t)

∑

a∈A

F (a, t)×
M (a, t)

F (a, t)
︸ ︷︷ ︸

age-group rate

.

Our analysis will focus on the age-group marriage rate for two age groups: 20-29 years, and

30-39 years; together, these account for more than 80% of female newlyweds and 94% of male

newlyweds.

2.2 The Sex Ratio

Huber (1931) reports that military losses (killed and missing in action) amounted to 1.4 million

men; this contributed to a severe post-war deficit in the ratio of single men to single women.

Using Census data for the peace-time years, we computed the ratio of single men to single

women for each age group. In Figure 3, we see that the sex ratio in 1920 is 33% lower for the

age 20-29 group than during the pre-war years, while for the age 30-39 group it is 10% lower6.

2.3 Marriage hazard rates

Let the number of single women be S (a, t). The female age-group marriage rate can be decom-

posed via the following accounting identity:

M (a, t)

F (a, t)
︸ ︷︷ ︸

age-group rate

=
M (a, t)

S (a, t)
︸ ︷︷ ︸

hazard rate

×

S (a, t)

F (a, t)
︸ ︷︷ ︸

single share

,

where the hazard rate, the number of matches per single woman, represents the probability that

a single woman of age a gets married in a given year. Using this identity, we can compute the

hazard rate from observations of the age-group rate and the single share.

6The figure also shows the sex ratio for the war years. This was computed by the interpolation method

described in Appendix C , exploiting the availability of per-capita marriage rates during the war years.
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Figure 3: The Singles Sex Ratio
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The French Census lists population by age, sex and marital status (married, divorced, single,

widowed) as of January 1st each year, starting in 1900, with the exception of the war years 1915-

1919. In peace time, therefore, we can reconstruct hazard rates from comparing stocks of people

by age, sex and marital status in two adjacent years, subject to a few simplifying assumptions.

The details of these calculations are in Appendix C.

We apply this method to computing peace-time marriage hazards by sex and age group.

Table 1 shows pre- and post war values for the three elements in the accounting equation above.

The results reveal three important facts:

1. The post-war time paths of the age-group marriage rates of each age-sex group are similar

to those of the per-capita rates in Figure 1. For instance, the age-group rate of men 20-29

almost doubled, from an average of 5.7% before the war to 11.2% in 1919.

2. The hazard rates peak well above their pre-war average in 1919. For men aged 20-29 years,

11



Equilibrium Marriage-Rate Dynamics

Table 1: Pre- and Post-War Statistics

Men Women

20-29 30-39 20-29 30-39

Pre-war average

Marriage Hazard 0.083 0.094 0.132 0.054

Fraction Single 0.683 0.202 0.427 0.162

Marriage Rate 0.057 0.019 0.056 0.009

Year 1919

Marriage Hazard 0.157 0.182 0.174 0.085

Fraction Single 0.715 0.226 0.525 0.172

Marriage Rate 0.112 0.041 0.091 0.015

Hazard Share

0.932 0.855 0.570 0.876

Source: INSEE and authors’ calculations.

the increase is 89% above the pre-war average, and for men 30-39 the increase is 94%. For

women aged 20-29 and 30-39 years, the peaks are higher by 31% and 57%, respectively.

3. The post-war peaks in the single shares are relatively modest. The hazard rates account

for almost all of the variation in the age-group marriage rate of each male age group, 93%

and 86% respectively, and for women, 57% and 88%.

We find that the peak in female hazards cannot be explained away by the post-war formal-

ization of war-time matches. In Appendix B we show that the war-time response of the rate

of unmarried births is too small to plausibly account for a significant share of the increase in

post-war marriages. We also show that the deficit in the number of formal marriages remained

large for many years after the war, much longer than would be needed to formalize an existing

marriage. In Appendix H we show that a higher post-war fraction of widows cannot account for

the rise post-war marriage hazards: previously married women marry at a slightly lower rate

than never-married women. In Appendix A we also show that the aging of the male population

can not account for higher post-war female marriage hazards.
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Figure 4: Marriage Hazard Rates
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Source: INSEE, Mitchell (1998) and authors’ calculations. See Appendix C for details.

It is clear from these results that the hazard rates are crucial for understanding the postwar

marriage-rate dynamics; we take this to mean that an individual-level model will be essential

for understanding the effect of the war on post-war marriage rates. Furthermore, relative to

standard matching models, the correlation of the sex ratio with the female hazards appears to

have the wrong sign; we take this to be a compelling reason to study other potential effects of

the war.

Figure 4 shows the time series of hazard rates resulting from our calculations; the war-

time results are discussed in the next section. Note that it takes until the mid- to late-1920s

for female marriage hazard rates to return to their pre-war trends. For men aged 20-29, the

marriage hazards remain above trend as late as 1930, 12 years after the war’s end. Hence, the

disruption of marriage occasioned by WW1 appears to have been very persistent.
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2.4 Empirical Impact of the War

We now extend our empirical strategy to war-time marriage and birth hazards, which will be

crucial for our model of the post-war transition path: these changes will be used as targets for

the calibration of exogenous shocks that represent the effect of the war on the post-war singles

pool.

The age-specific data we relied on above is not available for the 1915-1919 interval. Instead,

we interpolate using Census data for 1914 and 1920, and per-capita measures of marriages and

births for each of the war years. Our method, described in Appendix C, incorporates the peace-

time results from section 2, adjusting for the mortality due to the Spanish Influenza in 1918,

and for the population increment due to the annexation of Alsace-Lorraine in 1919, as well as

the military mortality described below.

Table 2 summarizes the severe war-time declines in marriage and birth hazards by sex and

age groups. For both sexes and age groups the war-time marriage hazards fall to about 40%

of the pre-war averages: to 47% for men aged 20-29, to 45% for men aged 30-39, and to 45%

for women in both age groups. The annual pattern for the war-time marriage hazards was seen

above in Figure 4; the key feature is the close resemblance between the war-time patterns of

the hazards and the per-capita rates shown in Figure 2, consistent with the previous result that

variation in peace-time per-capita rates was mainly due to variation in the hazard rates. Row

2 of the table shows that the birth hazards for married women fell to about 50% of the pre-war

average.

We infer from Vallin (1973), who shows the number of dead and disappeared by their year

of incorporation into the army, that older soldiers tended to die at much lower rates than young

recruits. Figure 5 shows that the men aged 20-25 in 1914 contributed to no less than 5% of the

total death toll of the war, while men aged 40-45 contributed to no more than 1% of the total

death toll. This is consistent with Figure 3, which showed the decline in the sex ratio (as of

1920) to be largely concentrated in the younger age group.
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Table 2: Empirical War Time Changes

Men Women

20-29 30-39 20-29 30-39

1. Marriage hazard
War-time avg. / pre-war 0.47 0.45 0.41 0.41
1919 value / pre-war 1.89 1.94 1.31 1.57

2. Birth hazard
War-time avg. / pre-war - - 0.49 0.49

Note: Each statistic represents the ratio of a quantity to its pre-war (1901-1913) average.

Source: INSEE and authors’ calculations.

3 The Model

3.1 Demography

Time is represented by an infinite succession of discrete periods. The population is composed

of men and women, denoted H and F , respectively. Each period there is an inflow χi of

new individuals of sex i ∈ {H,F} who begin life as unmatched singles, and age stochastically

through 3 stages of life, denoted by ai ∈ {1, 2, 3} ; individuals in stage 3 remain there forever.

The probability that an individual in stage ai < 3 transitions into stage ai + 1 is denoted by

δi (ai).

Each period, single individuals in stage ai < 3 may be permanently assigned a spouse of the

opposite sex, according to a stochastic matching process whose description we defer. Men decide

whether to pay a stochastic cost ξ ∈ R+ to participate in the matching process7. Let µt (aH)

denote the endogenously-determined fraction of stage-aH men participating in the matching

process. We assume that ξ ∈ R+ is an iid shock realized each period, drawn from the CDF Ξ,

before the participation decision.

7This feature of the model does not influence the main results. A stochastic entry cost with unbounded support
ensures that some males choose not to participate each period, which simplifies the computation of equilibria
because men’s expected gain from participation is always determined by the indifference of the marginal male.
For further discussion of the two types of equilibria that result in the general case, see Wright et al. (2017).

15



Equilibrium Marriage-Rate Dynamics

Figure 5: Dead and Disappeared by Birth Cohorts
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Source: Vallin (1973).

The stage of a couple is given by that of the wife, aF . Married couples are initially childless,

but each period, they can choose the probability, πB, of a birth in the next period, provided

that aF < 3 and k < K, where K is the maximum number of children. The birth probability

generates a disutility σF (aF )C
(

πB, aF , k
)

, which we interpret as summarizing reproduction-

related tradeoffs that we do not model.8 The probability that a single man in stage aH dies in

a given period is σD(aH). We assume, for simplicity, that neither women nor married men face

mortality risk.

Single individuals produce a flow of utility equal to yS
i
(si) each period, where i ∈ {H,F} .

Married couples produce utility yM (k) each period, which is perfectly transferable between

8Thus, the fertility-choice aspect of our model should be seen as a reduced form model that cannot distinguish
between preference shocks and cost shocks. Shocks to the function C and/or the parameters σF (aF ) cause
variation in the strength of the incentive to have children, which we will refer to for convenience as ”fertility”
shocks.
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spouses, and is increasing in the number of the couple’s children: yM (k + 1) > yM (k) for

k < K. For married couples that can have children, the flow utility each period is yM (k) −

σF (aF )C
(

πB, aF , k
)

. Let β be the discount factor between periods, conditional on survival.

Stochastic aging, an assumption which we borrow from Regalia and Ŕıos-Rull (1999), is cen-

tral to our argument; our hypothesis is that the apparent effect of age on marriage probabilities,

taken as given in many models, is actually due to heterogeneity in variables that are omitted in

the data. In contrast to models that assume directly that gains from marriage are a function of

calendar age, in our model the mapping from age to marriage gains will evolve endogenously in

response to changes in the composition of the singles pool. Conversely, stochastic aging allows

us to track the annual ages of individuals with only a few state variables, making computation

and calibration of the model much less cumbersome.

3.2 The value of marriage

Let Y (aF , k) denote the value of a marriage in state (aF , k). Since aF = 3 and k = K are

absorbing states, the value of a marriage in either of these cases equals the present discounted

sum of the utility flow of remaining in the marriage forever: Y (3, k) = yM (k) / (1− β), and

Y (aF , K) = yM (K) / (1− β) .

The expected value of the couple with age aF next period sums over the possible number of

kids, weighted by the birth probability πB:

EπB [Y (aF , k)] = πBY (aF , k + 1) +
(

1− πB
)

Y (aF , k) .

Thus the expected continuation value sums over the value of each possible age a′
F
next period,

weighted by the couple’s aging probability δF (aF ) :

E
[

Y (a′
F
, k) |aF , k, π

B
]

≡ δF (aF )EπBY (aF + 1, k) + (1− δF (aF ))EπBY (aF , k)
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The utility flow for the couple this period is yM (k) − σF (aF )C (πb, aF , k). The value of a

marriage in state (aF , k) therefore solves the following Bellman equation:

Y (aF , k) = max
πB

{

yM (k)− σF (aF )C (πb, aF , k) + βE
[

Y (a′F , k
′) |aF , k, π

B
]}

.

The solution defines the optimal decision rule for the birth probability, πB (aF , k).

3.3 Matching and marriage hazard rates

The key feature of the competitive-search matching process, relative to random search models,

is that the surplus allocation in a marriage depends endogenously on the types of the spouses.

Thus spouse types are effectively priced by the matching mechanism, which could be described

in terms of wage posting in segmented markets, as we do below, following the tradition of Moen

(1997) and Shimer (2005), or in terms of second-price auctions, as in Julien et al. (2000), or

in terms of contracts, as in Menzio and Shi (2010). Since the Pareto-optimal allocation each

period is unique (Shimer, 2005), any Pareto-optimal mechanism will deliver the same equilibrium

matching; pecuniary externalities are eliminated, and so multiple equilibria do not arise.

3.3.1 Matching

Matching takes place in separate sub-markets for each type of single women in states aF ∈ {1, 2}.

Each period, all single women in states aF are allocated to their corresponding submarkets, and

single men choose which sub-market to search. All of the men in a given sub-market are then

assigned randomly to the women. Women who are assigned at least one man choose a husband

at random from among their suitors.

Let Pi,t (ai) denote the population of singles of sex i ∈ {H,F} and state ai at the beginning

of period t. Let Nt (aF , aH) denote the mass of men in state aH who participate in sub-market

aF . For each combination of (aF , aH), the ratio of men to women in the sub-market, referred to
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hereafter as the “queue” is given by:

(1) φt (aF , aH) =
Nt (aF , aH)

PF,t (aF )
.

A standard argument shows that the number of men assigned to each woman follows a Poisson

distribution; the probability that there are no suitors in stage aH for a woman in stage aF is

e−φt(aF ,aH).

3.3.2 Marriage hazards rates of women

Let ρt (aF , aH) denote the probability that a woman in stage aF marries a man in stage aH .

Suppose, for the sake of exposition, that the marriage surplus is higher with stage-2 men than

stage-1 men9. Optimal matching then implies that women marry a stage-2 man whenever

possible. Marriage to a stage-1 man occurs whenever a woman’s queue contains at least one

stage-1 suitor and no stage-2 suitors. This lexicographic rule (similar to Shi (2002) and Shimer

(2005)) implies the following marriage probabilities:

ρt (aF , 1) = e−φt(aF ,2)
(

1− e−φt(aF ,1)
)

,(2)

ρt (aF,2) = 1− e−φt(aF ,2).(3)

The total number of marriages by aF -women is Pt (aF )
∑

aH
ρt (aF , aH) . Thus, the marriage

hazard rate of these women is equal to

(4) πF,t (aF ) =
∑

aH

ρt (aF , aH) .

9In fact, this will turn out to be the case in our calibration results. However our model accommodates both

cases.
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3.3.3 Marriage hazards rates of men

The number of marriages between men in stage aH and women in stage aF equals ρt (aF , aH)PF,t (aF ).

This implies that the marriage probability of stage-aH men in sub-market aF is:

ρt (aF , aH)PF,t (aF )

Nt (aF , aH)
=

ρt(aF , aH)

φt(aF , aH)
.

If a woman has more than one suitor of the type she is to marry, each faces equal probability of

being selected. The probability that a man in stage aH marries, conditional on participating in

the matching process, is therefore given by:

(5) πH,t (aH) =
1∑

aF
Nt (aF , aH)

∑

aF

Nt (aF , aH)
ρt(aF , aH)

φt(aF , aH)
.

3.4 Value functions of single agents

Let VF,t (aF ) denote the value of a woman in stage aF at the beginning of period t, and RF,t (aF )

her value of remaining single at the end of the period; the difference defines vF,t (aF ), the expected

gain from marrying during the period:

(6) VF,t (aF ) = RF,t (aF ) + vF,t (aF ) .

If aF < 3, the value of remaining single at the end of the current period comprises the utility

flow from being a single, and a discounted, expected continuation value that depends upon the

probability of transitioning into the next stage:

(7) RF,t (aF ) = ySF (aF ) + β [(1− δF (aF ))VF,t+1 (aF ) + δF (aF )VF,t+1 (aF + 1)] .

Note that RF,t (3) = VF,t (3) = ySF (3) / (1− β), since we assume that woman in stage 3 do

not participate in the marriage market, We define similar value functions for men in stage aH ,
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conditional on participation: VH,t (aH) denotes the pre-matching value, RH,t (aH) the value at

the end of the period, and vH,t (aH) the expected gain from marrying, so that:

(8) VH,t (aH) = RH,t (aH) + vH,t (aH) .

Men in stage aH participate if and only if their expected gain is at least as large as the cost

of participating: ξ ≤ vH,t (aH). Thus, the probability that a man in stage aH participates is

µt (aH) = Ξ (ξ∗t (aH)), where ξ∗t (aH) = vH,t (aH) denotes the threshold value. Since ξ is iid,

µt (aH) is also the proportion of these men participating in the marriage market at date t.

Before the realization of his participation cost ξit, the ex-ante value for each man i in period

t is:

(9) WH,t (aH) = (1− µt (aH))RH,t (aH) + µt (aH)E [VH,t (aH)− ξit |ξit ≤ ξ∗t (aH) ] .

The value of remaining single at the end of the period is then:

(10) RH,t = ySH (aH) + β [(1− δH (aH))WH,t+1 (aH) + δH (aH)WH,t+1 (aH + 1)] ,

where WH,t (3) = ySH (3) / (1− β) . That is, the ex-ante value of being single in stage 3 is the

value of remaining a single man forever.

3.5 Laws of motion

The number of single men in stage 1 at date t + 1 equals the number of date-t single men in

stage 1 who did not transition into stage 2, did not marry, and did not die, plus the flow of new
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stage 1 men who did not die:

(11) PH,t+1 (1) = (1− δH (1)) (1− σD (1)) (1− µt (1) πH,t (1))PH,t (1)

+ χH (1− σD (1)) ,

The number of single men in stage 2 at date t + 1 equals the number of single men in stage 2

who did not transition into stage 3, did marry and did not die; plus single men in stage 1 at

date t who transitioned into stage 2 but did not marry and did not die:

(12) PH,t+1 (2) = (1− δH (2)) (1− σD (2)) (1− πH,tµt)PH,t (2)

+ δH (1) (1− σD (1)) (1− µt (1) πH,t (1))PH,t (1) .

For single women in stage 1, the corresponding equations are:

(13) PF,t+1 (1) = (1− δF (1)) (1− πF,t (1))PF,t (1) + χF ,

and for single women in stage 2

(14) PF,t+1 (2) = (1− δF (2)) (1− πF,t (2))PF,t (2) + δF (1) (1− πF,t (1))PF,t (1) .

3.6 Utility Posting

In each sub-market aF the women post a utility offer wt (aF , aH) for men in stage aH . The utility

offers are common knowledge and women commit to their offers. The optimal offer wt (aF , aH)

by women in stage aF maximizes the woman’s expected gain from marrying, subject to the

constraint that participating men must receive their expected values.
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The expected gain from marriage for a man in this sub-market is

ṽH,t (aF , aH) =
ρt (aF , aH)

φt (aF , aH)
wt (aF , aH) .

If participating men in a given state aH enter both markets, they must be indifferent between

the two sub-markets:

(15) vH,t (aH) = ṽH,t (1, aH) = ṽH,t (2, aH) .

For women, the expected gain from marriage vF,t (aF ) is defined by the following optimization

problem

vF,t (aF ) = max
wt(aF ,aH)

∑

aH

ρt (aF , aH) [xt (aF , aH)− wt (aF , aH)](16)

s.t. vH,t (aH) =
ρt (aF , aH)

φt (aF , aH)
wt (aF , aH) ,(17)

where the surplus xt (aF , aH) is defined by the output of a marriage, net of the reservation values

of the husband and the wife:

(18) xt (aF , aH) = Y (aF , 0)−RH,t (aH)−RF,t (aF ) .

3.7 Equilibrium

A stationary competitive-search equilibrium is a list of equilibrium objects, constant over time:

(19) {φ (aF , aH) , ξ
∗ (aH) , vH (aH) , vF (aF ) , RH (aH) , RF (aF ) , PH (aH) , PF (aF )} .

The list comprises queue lengths, cost thresholds, expected values of marriage, reservation values,

and single populations sizes. The following conditions must be satisfied. First, given the reser-
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vation values, the surplus is defined by Equation (18). Second, women optimize taking men’s

value of marriage, vH (aH), as given. Thus, Equations (16)-(17) are satisfied. Men optimize as

well, hence the marginal man is indifferent between participating or not, i.e., ξ∗ (aH) = vH (aH) ,

and Equation (15) is also satisfied where applicable. Third, the allocation of participating men

to sub-markets is feasible, i.e.,

(20)
∑

aF

φ (aF , aH)PF (aF ) ≤ Ξ (ξ∗ (aH))PH (aH) .

Fourth, the reservation values of men and women satisfy Equations (8)-(10) and Equations

(6)-(7). Finally, the population of single satisfy Equations (11)-(14).

For the analysis of transition paths in Section 5, a more general definition of the dynamic

equilibrium is required to allow for non-stationarity; this is described in Appendix D.

4 Steady-state analysis

In this section, we calibrate the model so that the stationary equilibrium matches empirical

targets drawn from French pre-war statistics. Since the unobserved heterogeneity in the model

is age-related, we focus on age profiles of marriage and birth hazard rates as our empirical

targets, as well as the sex ratio of singles.

To interpret the model’s results in terms of age profiles, we impose that new agents in our

model are 18 years old when they first enter the singles pool, and that a model period lasts a

year. The “calendar age” of an agent is thus given by 18 plus the number of years since s/he

was a new agent, and is denoted by τ .

In the stationary equilibrium, there are four possible states a man can be in: single in stage

1, 2 or 3 and married. Let

λτ
H =

[

λτ
H,1, λ

τ
H,2, λ

τ
H,3, λ

τ
H,4

]
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represent the mass of men in each one of these states, at calendar age τ , in the steady state.

By construction, the initial condition is λ18
H

= [χH , 0, 0, 0]. Then evolution of λτ

H
then follows a

linear process given by the equilibrium transition matrix TH , defined in Appendix E:

λτ+1

H
= λτ

H
TH .

Once we have the values for {λτ

H
}τ=39

τ=18
we can easily compute statistics for men for each

calendar-age τ ≥ 18, including the distribution over marital state and the marriage hazard.

The logic is also the same for women: we derive statistics for each age given a female transition

matrix TF and distribution vector λτ

F
:

λτ+1

F
= λτ

F
TF .

Note that λτ

F
and TF are considerably larger than λτ

H
and TH , as there are more female states

the we must track: women may be single or married in stage 1, 2 or 3, and, when married, they

may have 0, 1, 2 or 3 children.

At each calendar age τ, the age-specific distributions for sex i are dictated by the rates δi (a)

at which agents transition from one stage to the next. Matching the height of the age profiles

of marriage hazard restricts the parameters governing the value of single life, yS
i
(ai) . Matching

the slope restricts, in turn, the transition rates between stages, δi (ai). Since, in addition, the

female stage accounts for all age-related birth-hazard variation, the birth-hazard profiles pin

down the fertility differences by stage, γk (k) and γa (aF ) . In this way the heterogeneity in the

model is pinned down by the pre-war empirical targets.

The computation of birth hazards is analogous to that of marriage hazards, as described in

section 2. The number of live births, by age and year and mother’s marital status, is listed in

France’s Vital Statistics starting in 190110. For each age-year group, we set the married-birth

10Source: INSEE, Etat civil.
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Figure 6: Pre-War Age Profiles
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hazard to the number of married births divided by the number of married women as of the start

of each year, obtained from the Census, as described in section 2.

Panel A of Figure 6 plots the marriage-hazard rates by sex and age, and Panel B plots

the birth hazard for married women, both averaged over the pre-war years. These profiles,

along with that of the sex ratio, constitute the principal calibration targets for the model in the

quantitative analysis below. The critical features are that:

1. Men tend to marry later than women: the peaks in marriage-hazard rates, at about 14%

for each sex, occur around 24 years old for women, and around 28 years for men.

2. The married-births-hazards grow with age at first, peaking at 30% when women are rela-

tively young, about 22 years old, and decline uniformly thereafter, to about 5% for women

in their late 30s.
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4.1 Functional forms

The output of marriage in our calibration is characterized by diminishing marginal returns to

children, with a parameter ω that can be adjusted to vary the intensity of preferences over

children:

(21) yM (k) = ω ln (1 + k) .

The birth-probability cost function has two free parameters for each state (aF , k) in which

women can give birth, γa (aF ) and γk (k):

(22) σF (aF )C (π, aF , k) = σF (aF ) γk (k) π
γa(aF ).

The utility of single life is set to a separate value for each single state (i, ait). The distribution

of the male participation cost is assumed to be log-normal, so that ln (ξ) ∼ N (µξ, σξ). More

general functional forms, such as a beta distribution, could be used without affecting the main

results, provided that the support is unbounded.

4.2 Parameter Selection

Some of the parameters are set to values outside the calibration loop: the annual discount factor

is set to β = 0.96, a standard value in the macro literature; the maximum number of children per

family to K = 3; and the inflow rate of men to χH = 1, a normalization. The set of remaining

parameters is denoted by Θ:

Θ =
(

ω, γk (k) , γa (aF ) , µξ, σξ, δF (aF ) , δH (aH) , y
S
F (aF ) , y

S
H (aH) , χF

)

.

Let mτ
i (Θ) and bτ (Θ) represent the model’s steady-state marriage and birth hazards (respec-

tively) for people of calendar age τ and sex i, and let SRτ (Θ) be the corresponding sex ratio.
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The corresponding empirical target values are denoted by bold face. The values of the free

parameters are set to minimize the Euclidean score function:

min
Θ

{

45
∑

τ=20

∑

i=H,F

(mτ
i (Θ)−mτ

i )
2 +

45
∑

τ=20

(bτ (Θ)− bτ )2 +
45
∑

τ=20

(SRτ (Θ)− SRτ )2
}

,

Figure 7 shows that the age profiles implied by the model match the two critical features of

the empirical marriage hazard profile : it is lower for men in their early 20s than for men in their

late 20s, and it is higher for women in their early 20s than for women in their late 20s11. The

model achieves this by imposing a relatively high utility of single life for women with aF = 2,

and a relatively low utility of single life for men with aH = 2. For men, ySH (1) = 16.52, while

ySH (2) = 0.79, but for women, ySF (1) = −.02, while ySF (2) = 1.45. The transition rates between

life stages are similar for both sexes: roughly δ (1) =0.14 and δ (2) =0.02, so that young people

age quickly into the middle stage, and remain there for a relatively long time. The complete list

of parameter values is shown in Table 6 in Appendix F.

5 The Impact of the War

This section describes the baseline experiment, which incorporates the war into our equilibrium

analysis by subjecting the calibrated model to exogenous military-mortality and fertility shocks.

We start from the steady-state equilibrium and assume the economy is hit by two unanticipated

shocks, and compute the perfect-foresight transition path back to the steady state. We also

assume, throughout the experiments, that the sex ratio of entrants into the single pool follows

the empirical age-18 sex ratio from the Census, shifting exogenously until 1940. The perfect

foresight assumption implies that agents are aware of all current and future equilibrium variables

throughout the transition, from the arrival of the initial (unanticipated) shocks until the economy

11An improved fit for marriage hazards of the young agents could be obtained by increasing the number of life

stages, but as the age profile for the sex ratio of singles is almost exactly matched, the additional complication

appears unjustified.
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Figure 7: Baseline Calibration: Age Profiles
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Table 3: The Baseline Experiment

Marriage hazard

Men Women Birth hazard

20-29 30-39 20-29 30-39 20-29 30-39

War-time decline (model/data) 1.09 1.01 0.99 1.04 1.09 1.01
1919 peak (model/data) 0.42 0.61 0.66 0.74 0.12 0.29
1920 peak (model/data) 0.21 0.36 0.18 0.26

Months to 50% of peak
(model/data) 0.52 1.01 0.38 0.38

Note: Statistics computed from calibrated model, relative to empirical analogs from Table 1.

arrives back at the steady state12.

5.1 The Shocks

The male-specific mortality parameter, σD (aH), and the fertility cost parameter σF (aF ) jump

to their war-time values in the first period of the transition and remain at these values for 4

more periods; they and return to their pre-war values in period 6.

We choose the war-time male-specific mortality to match the data on military casualties

discussed in Section 2 (Figure 5). This turns out to imply that the death toll in the model

is concentrated on men in stage aH = 1, so we set σD (1) = 0.075, and σD (2) = 0. We

choose the two fertility shocks to minimize the Euclidean distance between the model-generated

average war-time decline in marriage hazard rates for the four age-sex groups, and their empirical

counterparts. This requires σF (1) = 8.25, and σF (2) = 5.25.
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5.2 War-time Results

The first row of Table 3 reports the decline in marriage and birth hazards in the model relative

to the decline measured in the data (reported in the first part of Table 2). Take the case of

20-29 year-old men for instance. In the model, their marriage hazard declines, on average, to

42% of its steady state value during the war. In the data the decline is slightly smaller, as the

first part of Table 2 indicates that the marriage hazard declines to 47% of its pre-war average.

The model result therefore exceeds the actual decline, but by less than 10% of the empirical

change. The remainder of the first row of Table 3 shows that the model-generated declines in

average marriage and birth hazards, across sex and age groups, are much closer to the actual

declines. This should not be taken however as a metric of the model’s performance; the key

result of this exercise is that we have disciplined the magnitude of the shocks that will drive the

post-war dynamics.

5.3 The Post-war Transition Path

Figure 8 compares the predicted and empirical transition paths of average marriage hazards by

sex and age groups. As in the data, the model generates large and persistent peaks in these

hazard rates. The female marriage hazards in the model rise by 20% and 42% for the younger

and older age groups respectively, despite the severe decline in the sex ratio in each of these age

groups13.

To understand the post-war response of marriage hazards, consider the how the post-war

distribution of singles deviates from the steady state. Figure 9 shows that the war-time marriage

bust results in a relative abundance of stage-2 singles of both sexes. Because the calibration

implies that aging reduces the marriage propensity for women but increases it for men, this

has conflicting implications for the post-war marriage hazards of single men and women. We

12The solution method used to compute the transition path is described in Appendix D.
13The timing of the peak is a year earlier in the model than in the data; this year-long delay could be driven

by higher matching frictions due to the chaos of demobilization that is not modeled here.
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can distinguish three separate composition effects in the diagram: the post-war abundance of

stage-2 men as a share of single men (panel A), the post-war abundance of stage-2 women as a

share of single women (panel B), and the post-war abundance of stage-2 men per single woman

(panel C).

It is the third effect that turns out to be critical; this makes it easier for women to find a

match and so raises the marriage hazards of both stage-1 and stage-2 women, generating the

post-war peak in female marriage hazards. On its own, the second effect would cause post-war

marriage rates, both male and female, to fall below the steady state14. Our calibration implies

that the third effect is larger than this second effect, and so women’s marriage hazards rise

sharply when the war ends.

The first effect causes post-war male marriage hazards to rise above the steady-state rate.

This is reinforced by two empirical features of the male age profiles: the military-death profile

forces all of the model mortality onto the stage-1 men, and the marriage-hazard profile forces

the marriage rate of the stage-1 men to zero. The first effect is also stronger than the second

effect, accounting for the peak in men’s marriage hazards after the war.

The model does more than explain the qualitative responses. Table 3 shows that the female

marriage-hazards peaks generated by the model account for most of the peaks in the empirical

hazards: 66% for the 20-29 year-old age group and 74% in the age 30-39 group. For men, the

model also accounts for a significant, but more modest share. In the case of 20-29 year-old men

for instance, the empirical marriage hazard peaks at 89% above its pre-war value in 1919—see

Table 2. The model implies a peak at 37% above the steady state. Hence, the baseline model

accounts for 37/89 = 42% of the post-war peak for these men. Similarly, the model accounts

for 61% of the peak for men in the older group15.

14This is due to the fact that the war-time marriage rate drops much further (to 17% of its steady-state value)
for stage-2 women than for stage-1 women (to 42%). This asymmetry arises because because stage-2 women,
having a higher autarky value than stage-1 women, marry mainly for the chance to raise children, so the value
of marriage for these women is much more reduced by the war-time fertility bust.

15In Appendix G we show that, holding the calibration fixed, the empirical variation in the initial (Age-18)
sex ratio accounts for a small but significant share (about 18%) of the post-war increase in the female marriage
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Figure 8: Marriage Hazards During the Transition
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Note: Marriage hazards on the transition path, relative to their pre-war average; data (−) and model (◦).

Source: INSEE, Mitchell (1998) and authors’ calculations.

The last row of Table 3 indicates the model’s ability to reproduce the persistence of the

war-time shock. At first, a portion of the post-war peaks dissipates fairly quickly. Consider the

half-life of the marriage-rate peaks, defined as the time it takes for the gap between the post-war

peak and the pre-war averages to fall to 1/2 of its peak in 1919-20; by analogy, we define the

“quarter-life”as the time it takes for the gap to fall to 1/4 of its peak. For the marriage hazard

of 20-29 year-old men, the observed half-life is about 32 months. The remainder persists much

longer; as late as 1930, more than 25% of the hazard deviation remains. In the model, the half-

life is about 17 months, about 52% of that in the data, and the quarter-life is 30 months. The

reason for this persistence is that the aH = 2 share of single males for 1930, as shown in Figure

9.A, remains well above the steady-state level. For 30-39 year-old men, the model generates a

half-life almost identical (1% higher) to what is measured in the data. For women, the model

hazard. While we take this as exogenous variation in the current analysis, we found that recalibration of the
model with this variation excluded yielded similar results to our baseline calibration.
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Figure 9: Post-war Single Population
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Note: Post-war singles population in the baseline model, relative to the stationary equilibrium.

generates 38% of the observed half-life for both age groups, although the persistence in the data

is more modest. The baseline model therefore succeeds in generating substantial persistence.

The average age of women at marriage increased in France in the aftermath of the war, as

documented by previous empirical work, such as Henry (1966) and Abramitzky et al. (2011).

In the model, the average age also increases: the pre-war average is 25 years old, the post war

average about 25.6 years; the age gap for new marriages in the year 1924 in the model is lower

by 6 months, a decline of about 25% relative to the steady-state.

The most significant gap between model and data is in the post-war response of the marital

birth rate. Table 3 shows that the 1919 peak generated by the model accounts for only 12% of

the observed peak for the 20-29 year-old married women, and 29% for the 30-39 year-old married

women. Stage-1 women, who, as noted earlier, have a lower birth hazard than stage-2 women,

account for a higher share of marriages after the war, further reducing the post-war birth-rate
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Figure 10: Sex-Ratio Dynamics
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Note: Sex ratios (single men per single women) on the transition path: baseline model v. Census statistics.

Source: INSEE and authors’ calculations.

response.

Figure 10 shows the sex ratio of singles, by age group. We note that the model reproduces

well the decline in the sex ratio of single as well as its recovery until at least the middle of

the 1920s. This implies that the model results are not driven by unrealistic movements of the

post-war sex ratio.

The cause of the war-time marriage bust is not the subject of our paper. Yet, it is interesting

to see that the two shocks described earlier, i.e. the male-mortality shock and the fertility shock,

are sufficient to explain all the war-time decline in marriage and married births, with two simple

shocks whose magnitudes can be set directly from empirical observations. Of course this baseline

exercise does not explain all of the post-war female marriage-hazard peaks, but we will return to

this in a later section where we consider another demographic shock, to post-war birth incentives.
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Figure 11: Transition-Path Experiments
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6 Mortality vs. Fertility Shocks

To assess the contribution of each shock individually, we present the results of two variations

on the baseline experiment with the calibrated model: the fertility-shock experiment and the

mortality-shock experiment. Each consists of recomputing the transition path with only one of

the two calibrated shocks from the baseline experiment. Figure 11 compares the behavior of the

composition of the singles population in the baseline and in each experiment.

Consider first the size of the marriage-hazards peaks in 1919. The first three panels of Figure

11 show that the fertility-shock results are very close to the baseline results: all of the ratios of

stage-2 singles to singles population are much further from baseline for the case of the mortality-

shock series. Despite the post-war increase in the calendar age of single males, the mortality

shock fails to generate any increase in the proportion of stage-2 singles relative to same sex; in
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particular, the number of stage-2 men per single woman remains below its steady state value in

1919. This implies in turn a lower matching rate for women after the war, the opposite of the

empirical pattern described in Section 5.3.

Table 4 summarizes the quantitative results of the two experiments. The male-mortality

experiment implies significant declines of the marriage hazards of women in 1919; their marriage

hazards now drop by a magnitude equivalent to a fifth of the actual peak. This confirms that the

mortality shock in our model is very strong, as suggested by previous work on the sex ratio, such

as Abramitzky et al. (2011). Indeed the last two panels of Figure 11 show that the mortality

shocks generate virtually all of post-war variation in the sex ratio. Thus we have not assumed

away the impact of the sex ratio; the positive composition effects that generate the post-war

peaks in the female marriage rates are simply much stronger than the negative effect of the

mortality shocks. From this, we conclude that, even though male mortality is the key to the

changing sex ratio of singles, the role of the sex ratio is relatively modest in the determination

of the post-war marriage hazards.

The last two columns of Table 4 reveal that, as with marriage rates, post-war birth hazards

are reacting to the war-time fertility shock much more than to the male-mortality shock. As

in the data, the overall response is positive, but the post-war fertility peaks remain relatively

small: 13% of the actual percent change for 20-29 year-old married women, and 37% for 30-39

year-old married women. This suggests the possibility that a shock to post war birth incentives

may have caused part of the increase in marriage hazards.

7 Post-War Birth Rates

The politics of post-war France was transformed by a strong pro-natalist movement arising

from the fear that low fertility was jeopardizing France’s military strength (see Roberts, 1994

and Robert, 2005). By 1920, the pro-natalist movement was sufficiently powerful that the

Conservative government enacted significant financial incentives to increase birth rates, as well

37



Equilibrium Marriage-Rate Dynamics

Table 4: Experiments

Marriage hazard

Men Women Birth hazard

20-29 30-39 20-29 30-39 20-29 30-39

War-time decline
(model/data)

Baseline 1.09 1.01 0.99 1.04 1.09 1.01
Fertility shock 1.14 1.05 0.98 0.97 1.09 1.00
Mortality shock -0.11 -0.11 0.00 0.02 -0.00 -0.00

1919 peak
(model/data)

Baseline 0.42 0.61 0.66 0.74 0.12 0.29
Fertility shock 0.26 0.41 0.98 1.10 0.13 0.37
Mortality shock 0.11 0.15 -0.22 -0.22 0.01 0.10

Months to 50% of peak
(model/data)

Baseline 0.52 1.01 0.38 0.38 - -
Fertility shock 0.55 0.95 1.63 1.53 - -
Mortality shock 0.37 0.79 - - - -

as legislation against abortion and contraception, and employers were pressured to offer family

allowances to workers with more than two children16.

During this period, the birth rate to married mothers rose to well above trend and remained

high throughout the 1920s. The per-capita birth rate in panel A of Figure 12, as computed

from Mitchell (1998), reveals a war-related cycle similar to that of the aggregate marriage rates.

War-time tends to be associated with abnormally low birth rates and the post war with birth-

rate booms. At first glance, marital birth hazards after WW1, shown by age group in Panel

B of Figure 12, appear to follow this pattern: in 1920 they peaked at roughly 65% above their

16La loi d’encouragement aux familles nombreuses was passed in 1923; incentives included maintenance pay-
ments to large families, baby bonuses, reductions in the price of bread and train fares for families of three or
more children, and social assistance to defray the cost of child care. In the 1920s, the Médaille de la famille

Française was awarded to mothers of large families. As described in Roberts (1994), several of these measures
pre-date the passage of the bill.
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Figure 12: Births
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pre-war trends. However the birth hazards per married woman differ from the per-capita birth

rates in an unexpected and revealing way: rather than returning to trend, the birth hazards

remained 25% above their trends well into the 1930s. This is a large and persistent shift in

marital birth-hazard rates that, particularly in the later years, extends to women too young to

be directly affected by the war-time births deficit.

Higher post-war fertility incentives would in our model generate an increase in marriage sur-

plus and thus generate higher post-war marriage rates. Our baseline results, described above,

showed a much smaller birth-rate shift after the war; could the magnitude of the rise in married

birth hazard rates account for the portion of the post-war marriage hazard peaks that remain

unexplained in our model? To answer this, we recompute the calibrated model with an addi-

tional shock: a post-war shock to fertility incentives. Instead of letting the fertility preference

parameters, σF (aF ), return to steady state values after the war, we calibrate the two post-war

values so that the model matches the increase in the birth hazard. At the same time, we re-

calibrate the war-time shock, so that, as in the baseline experiment, the model matches the

war-time marriage-rate decline.

The results, shown in Table 5, confirm the impact of the post-war fertility shock, not just for

39



Equilibrium Marriage-Rate Dynamics

Table 5: Results, Post-War Natality Shock

Marriage hazard

Men Women Birth hazard

20-29 30-39 20-29 30-39 20-29 30-39

War time decline (model/data) 1.11 1.03 1.02 1.02 0.99 0.96
1919 peak (model/data) 0.57 0.77 1.01 1.04 0.80 0.17
1920 peak (model/data) 0.31 0.46 0.32 0.39

Months to 50% of peak
(model/data) 0.44 0.79 0.47 0.42

Note: Analysis based on model recalibrated with post-war natality shock.

the birth hazards, but also for marriage.The post-war increase in birth hazards for young women

rises, from the baseline 12%, to 80% of the actual peak. The effect on female marriage hazards

is equally dramatic: the model now accounts for roughly 100% (versus the baseline of 66% for

ages 20-29 and 74% for ages 30-39) of the post-war peaks in marriage hazard for women. Figure

13 shows the transition paths for marriage hazards in this experiment. The model also accounts

for larger shares of the male marriage hazards, 57% and 77% of the post-war peaks (versus 42%

and 61% in the baseline)17. Thus, augmenting the baseline model with the post-war fertility

shock, namely a 70% reduction in the cost of children, can account for all of the post-war peaks

in marriage hazards for women, as well as 80% of the post-war birth-rate peak of young women.

8 Conclusion

This paper documented a recurring pattern in marriage rates; they increase sharply after wars,

despite the reduction in the male-female ratio caused by military mortality. For the case of

France after World War 1, we were able to show that this was due largely to an anomalous and

persistent rise in the female marriage hazard, contrary to the implication of standard matching

17The asymmetry by sex in the explained share of the hazard rate appears to be due in part to a post-war rise

in marriage rates among teenage females, which is not accounted for in our calibration.
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Figure 13: Marriage Hazards During the Transition with Post-War Natality Shock
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Note: Marriage hazards during the transition, relative to their pre-war average; data (−) and model (◦).

Source: INSEE, Mitchell (1998) and authors’ calculations.

models that the fall in the sex ratio should reduce the female marriage hazard.

To resolve this tension between theory and data, we proposed that composition effects gen-

erated by the war-time marriage bust could explain the post-war rise in the female marriage

hazard. We formalized this idea in a dynamic model of two-sided matching. In our model,

stochastic aging plays a central role; heterogeneity in marriage rates arises from changes in

preferences and fertility over the life cycle, but the link between preferences and age is indirect

and endogenous; the composition effect that we study is due to the war distorting the usual

age-composition relationship.

We calibrated the model so that the steady state marriage and birth age profiles resembled

those of pre-war France. The marriage-rate data implies an important asymmetry by sex: aging

in the model tends to increase the marriage rates of young men and reduce those of young women.

To represent the impact of the war, we replicated in the calibrated model the war-time marriage
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bust along with increased male mortality. The result was, for any given age group, a large

post-war abundance of men in a high-marriage-gains state. This caused the female marriage

hazards to increase, despite a lower post-war sex ratio. When combined with the post-war rise

of pro-natalism, our mechanism can explain all of the rise in female marriage hazards.

Our results do not conflict with previous work on the decline in the sex ratio. To the extent

that local sex-ratio variation is independent of the composition effect, we would expect our

model—augmented to include social-status heterogeneity—to match the results of Abramitzky

et al. (2011): in areas with low-post-war sex ratios, women in our model would be less likely to

marry, would marry lower-ranked men, and marry more slowly. However to the extent that the

local sex ratio is negatively correlated with the length of marriage-market disruption, then our

results would suggest an alternative interpretation of the finding that women marry down; the

husbands are likely to have been better on dimensions unobservable in the data.

A more general point is that variation in the sex ratio is of singles is not necessarily a

reliable indicator of marriage-market conditions; to the extent that such variation reflects the

recent history of the matching process, the composition of the market can undermine or even

overwhelm the direct effect of the sex ratio.
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A The Aging Hypothesis

One effect of the war-time marriage bust was to shift the age distribution of single men to the

right. We show this in Panel A of Figure 14 where the fraction of single men who are aged

30-39 is seen to increase from 0.28 to 0.32 postwar. Since older single men are more likely to

marry, could this account for some of the post-war boom in the female marriage hazard? Panels

B and C show why this cannot be: the number of single women postwar increased more than

the population of older males, and so the ratio of single older men to single women was actually

much lower in the post-war aftermath. The ratio of older single men to single women aged 20-29

fell from 0.35 to 0.32 and the ratio of of older men to single women aged 30-39 fell from 0.30 to

0.25. The positive effect of the rise in age of single males would be swamped therefore by the

negative effect of the increase in the number of single women.

Figure 14: Aging of the Single Male
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Source: INSEE and authors’ calculations.
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B The Deferred Marriage Hypothesis

In this section we consider the “deferred-marriage” hypothesis. This is the notion that matches

between men and women kept forming during the war as they did before, but that they were

not registered as marriages right-away. An abundance of de-facto marriages and their sudden

registration at the war’s end could explain, according to this hypothesis, the post-war peaks

in marriage hazard rates. We argue below that this hypothesis does not provide a plausible

account of the post-war peak in marriage hazards. We present three different arguments:

1. The matching between spouses was different after the war. Henry (1966) shows that

women after the war were more likely than before to marry younger men as well as wid-

owed/divorced men. Similarly, Abramitzky et al. (2011) show that women after the war

were more likely to marry lower-status men particularly in areas that had been more

strongly affected by the war. If matches formed during the war as they did in peace time,

and only their registration got delayed, it is not clear why the type of matches should have

changed.

2. The marriage deficit persisted throughout the entire 1920s. Panel A of Figure 15 shows

the cumulative deviations of the number of marriages from its pre-war mean. A deficit of

900,000 marriages had accumulated by the end of the war, and it took until 1930 for these

missing marriages to be replaced. If the missing marriages were all de-facto marriages that

only needed registration, then why should replacement need 10 years?

3. The number of out-of-wedlock births also sheds light on the issue. The idea exploits the

fact that de-facto marriages are generally accompanied by out-of-wedlock births. Consider

out-of-wedlock fertility, that is the number of out-of-wedlock births per single women aged

15-45. Denote it by ot/st, where ot is out-of-wedlock births and st is the number of single

women. Out-of-wedlock fertility can be decomposed as: ln (ot/st) = ln (ot/dt) + ln (dt/st),

where dt is the number of single women in de-facto marriages. Thus, variations in ot/st
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may result from variations in the birth rate of women in de-facto marriages, ot/dt, and

from variations in the proportion of single women in de-facto marriages, dt/st. We do not

observe the birth rate of women in de-facto marriages, but assuming that it is proportional

to the birth rate of married women, we can evaluate its contribution to changes in out-of-

wedlock fertility. To this end, we estimate the following model:

ln

(

ot
st

)

= α0 + α1 × t+ α2 × ln

(

ℓt
mt

)

+ ǫt,

where ℓt denote legitimate births and mt denote the number of married women. Panel B of

Figure 15 shows that almost all (96%) the variation in out-of-wedlock fertility is explained

by this model. The remaining variation can be attributed to changes in the proportion of

single women in de-facto marriages, and possibly other missing factors.

How many out-of-wedlock births can be attributed to changes in the proportion of single

women in de-facto marriages? Between 1914 and 1919 there was a total of 362,948 out-

of-wedlock births. The model implies a total of 361,444. The difference between these

figures results from changes in the proportion of single women in de-facto marriages (and

possibly other missing factors) and is not significantly different from 0. We conclude that

there was no significant changes in the proportion of single women in de-facto marriages

during the war.

C Computation of Hazard Rates

In this section we derive cohort- and age-specific birth, marriage, divorce and death hazard rates.

We show that, under some assumptions, a linear combinations of these flow rates determine the

growth rate of the stocks of single, married, divorce and widow. Since these stocks are reported

in the French Census for each year and age, from 1905 to 1935 (excluding 1914-1919), we can

solve this linear system to compute the flow rates. For 1914-1919, which includes both the
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Figure 15: Cumulative deviations in the number of marriages and out-of-wedlock fertility
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war and one post-war year, we use additional assumption that we describe later. Our basic

assumptions are:

1. Hazard rates do not depend on an individual’s history.

2. Death probability of spouses are independent of each other.

3. The probability of any two events happening at the same time to the same person is zero.

A person might, for instance, divorce or die in a given year, but not both.

4. The ages of spouses are equal. The probability that a married woman becomes a widow

is equal to the death probability of a man her age.

Since the calculations below are identical for any birth cohort b at age a (therefore in calendar

year b + a), we omit cohort and age indexes in our notation. We use the notation Ns (m) to

denote the stock of population (of a particular birth cohort at a particular age) that is of sex

s ∈ {H,F} and is in marital status m ∈ {S,M,D,W} at the beginning of the calendar year t.

The marital status can be single (S), married (M), divorced (D) and widow (W ). Single (S) is

restricted to never-married. Since our notation is specific to a particular cohort, it is understood
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that whenever Ns (m) refers to birth cohort b at age a in date t, the notation N
′

s
(m) refers to

the same cohort at age a + 1 in date t + 1. We denote the marriage hazard by ms, the death

hazard by ds, the immigration hazard by is and the divorce hazard by xs. We use ∼ s to denote

the sex opposite to sex s. There are 4 unknown hazard rates to compute each year for each age

and each sex.

C.1 Peace-time Computations

For convenience, define ks ≡ 1 − ds + is. A widow in the next period may be a widow in the

current period and survive but not marry; immigrate as a widow and not marry; or be married

in the current period and have a spouse who dies. This translates into the law of motion for the

stock of widows of sex s:

(23) N
′

s
(W ) = Ns (W ) (ks −ms) +Ns (M) d∼s.

A person who will be married in the next period may already be married in the current period

and survive along with his/her spouse, but must not have divorced in the current period. Al-

ternatively, a married person in the next period may have been single, widowed or divorced in

the current period and marry. The couple may also have immigrated to France already married.

This translates into the law of motion for the stock of married people of sex s:

(24) N
′

s
(M) = Ns (M) (ks − d∼s − xs) +ms (Ns (S) +Ns (D) +Ns (W )) .

A person who will be single (never-married) in the next period must be single in the current

period, not die and not marry. Alternatively the person could have immigrated as a single. This

translates into the law of motion for the stock of single people of sex s

(25) N
′

s
(S) = Ns (S) (ks −ms) .
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Finally, a divorced person in the next period must be divorced (or immigrate already divorced)

in the current period, not die and not marry. Alternatively, a divorced person in the next period

could be married in the current period and divorce. This translates into the law of motion for

the stock of divorced people of sex s:

(26) N ′

s
(D) = Ns (D) (ks −ms) +Ns (M) xs.

These equations can be written as

N ′

s
(W )

Ns(W )
− 1 = −ds + is −ms +

Ns(M)

Ns(W )
d∼s,

N ′

s
(M)

Ns(M)
− 1 = −ds + is − d∼s − xs +

Ns(S) +Ns(D) +Ns(W )

Ns(M)
ms,

N ′

s
(S)

Ns(S)
− 1 = −ds + is −ms,

N ′

s
(D)

Ns(D)
− 1 = −ds + is −ms +

Ns(M)

Ns(D)
xs.

Note that the first equation for sex s involve the death rate d∼s. In order to compute the 8

unknown rates, the systems for each sex must be solved simultaneously. The hazard rates for a

given cohort and age are given by:
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where the X matrix is defined below. There is a special case when an age-sex group has no

married people: Ns (M) = 0. This can be the case for young people. Then the divorce rate xs

is undefined (say 0). In this case we have

N
′

s
(S) = Ns (S) (1− ds + is −ms)

N
′

s
(M) = ms (Ns (S) +Ns (D) +Ns (W ))

The last equation can be used to compute the marriage rate. The death and immigration rates,

however, cannot be separately identified. In practice this case occurs only with the youngest

ages 14 and 15, so it is reasonable to set the death rate to zero for these age groups, given their

low natural mortality. Then the immigration rate follows from the first equation.

X =













































−1 1 −1 0 NH(M)
NH(W )

0 0 0

−1 1 NH(S)+NH(D)+NH(W )
NH(M)

−1 −1 0 0 0

−1 1 −1 0 0 0 0 0

−1 1 −1 NH(M)
NH(D)

0 0 0 0

NF (M)
NF (W )

0 0 0 −1 1 −1 0

−1 0 0 0 −1 1 NF (S)+NF (D)+NF (W )
NF (M)

−1

0 0 0 0 −1 1 −1 0

0 0 0 0 −1 1 −1 NF (M)
NF (D)













































.

C.2 War-time Computations

The period during which the population stocks by marital status are not observed extends from

January 1915 to January of 1920. Thus, we cannot use the method described above to compute

hazard rates for these years. We then proceed as follows. First, we use cohort-specific military

death rates reported by Vallin (1973) for mortality during the war. Second, we assume that

age-specific marriage hazards during the war are multiplied by a set of shifters that remain
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constant for the duration of the war. Third, we are missing one-post-war year, 1919, so we allow

the marriage shifters in 1919 to take on a different set of values. Fourth, the age-specific divorce

and immigration rates are assumed to remain at their average for 1910-1913, as derived from

the peace-time procedure described above.

There is a total of 8 shifters to determine. One marriage shifter common to all men between

the age of 20 and 29 during the war, and one for 1919; one marriage shifter common to all men

30-39 during the war, and one for 1919; and similarly for women.

Under these assumptions, and for a guess of the marriage shifters during the war and in 1919,

we can compute the population stocks by age, sex and marital status in 1920 by starting from the

population at the start of 1914. The predicted 1920 population requires one modification: the

population of France in the post war was increased 4% by the addition of Alsace-Lorraine. We

increase the 1919 population by 4% in our calculation (implicitly assuming that the composition

of the Alsace-Lorraine population was the same as that of the rest of France).

We choose the 8 shifters to minimize a score function that consists of the distance between

the predicted 1920 population by age and marital status and its empirical counterpart, plus the

distance between the observed per-capita marriage rate (Mitchell, 1998) and that predicted by

the shifters.

D Equilibrium: Definition and Computation

A dynamic competitive-search equilibrium of our model is a sequence of:

1. Value functions

(a) for men, {RH,t (aH) ,WH,t (aH) , VH,t (aH) , vH,t (aH)} ,

(b) for women, {RF,t (aF ) , VF,t (aF ) , vF,t (aF )},

2. utility offers, {wt (aF , aH)}, participation thresholds, {ξ∗t (aH)},
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3. queue lengths, {φt (aF , aH)},

4. populations of single men, {PH,t (aH)} , and single women, {PF,t (aF )} ,

such that at each date t:

1. Men and women are optimizing:

(a) Women solve problem (16)-(17).

(b) The marginal man is indifferent between participating or not: ξ∗t (aH) ≤ vH,t (aH).

(c) participating men are indifferent between sub-markets, Equation (15).

2. The assignment of agents to sub-markets is feasible, Equation (20).

3. The population of singles follows the laws of motion in Equations (11)-(14).

D.1 Computations

1. Choose

(a) Initial conditions PH,1 (aH) and PF,1 (aF ).

(b) Terminal conditions WH,T (aH) and VF,T (aF ) .

2. Guess a path {φt (aF , aH) , vH,t (aH)}

3. At date t = 1, 2, . . . T − 1

(a) Use φt (aF , aH), PH,t (aH), and PF,t (aF ) to compute marriage rates πH,t (aH) and

πF,t (aF ). Use Equations (2)-(5).

(b) Use πH,t (aH) , πF,t (aF ), and vH,t (aH) to compute PH,t+1 (aH) and PF,t+1 (aF ) . Use

Equations (11)-(14).

4. At date t = T − 1, T − 2, · · · , 1

51



Equilibrium Marriage-Rate Dynamics

(a) Compute RH,t (aH) and RF,t (aF ). Use Equations (10) and (7).

(b) Compute xt (aF , aH). Use Equation (18).

(c) Solve the static problem given {xt (aF , aH) , PF,t (aF ) , PH,t (aH)} . This yields updated

values φnew
t (aF , aH) and vnewH,t (aF ).

(d) Compute WH,t (aH). Use Equation (9).

5. Compare
{

φnew
t (aF , aH) , v

new
H,t (aH)

}

to the initial guess. Update if the difference is larger

than a tolerance threshold, and go to step 3.

E Calendar-Age Statistics from the Model

Consider men in steady state. There are four possible states a man can be in: single in stage 1,

2 and 3 and married (the 4th state). Let

λτ
H =

[

λτ
H,1, λ

τ
H,2, λ

τ
H,3, λ

τ
H,4

]

represent the mass of men in each one of these states, at calendar age τ , in the steady state. By

definition λ18
H = [χH , 0, 0, 0]: an initial condition. Then we have

λτ+1

H = λτ
HTH

where the transition matrix TH is

TH =



















(1− δH (1)) (1− πH (1)µ (1)) δH (1) (1− πH (1)µ (1)) 0 πH (1)µ (1)

0 (1− δH (2)) (1− πH (2)µ (2)) δH (2) (1− πH (2)µ (2)) πH (2)µ (2)

0 0 1 1

0 0 0 1



















.

This computation allows us to build statistics that are calendar-age specific in steady state.
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During the transition the matrix TH varies every year, but the logic remains the same. The

logic is also the same for women, but there are more possible states since the life-stage of woman

determines her ability to have children. Thus, women may be single or married in stage 1, 2 or

3, and, when married, they may have 0, 1, 2 or 3 children.

F Calibrated Parameter Values

Table 6: Calibrated Parameters

Demography
Discount factor β = 0.96
Male transition δH(aH) = (0.14, 0.03)
Flow of stage-1 men χH = 1.00
Female transition δF (aF ) = (0.13, 0.01)
Flow of stage-1 women χF = 1.00

Single
Male output ySH(aH) = (16.52, 0.79, 0.00)
Female output ySF (aF ) = (−0.02, 1.45, 0.51)

Participation cost
Mean µξ = 4.18
Std. dev. σξ = 0.65

Marriage
Output param. ω = 6.86
Cost elasticity γA(aF ) = (2.79, 3.11)
Cost fixed γK(k) = (118.47, 60.30, 80.48)

G The initial sex ratio

In all of the above transition-path analysis, the sex ratio of entrants (i.e. 18-year olds) is

exogenously set each year at the empirical value computed from the census data, while in the

steady-state value it is set to 1.0, approximating the pre-war average. To see how this affects our

main results, we run a new experiment in which we compute the transition of the model holding
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Figure 16: Sex Ratios of Single
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Source: Authors’ calculations.

the sex ratio of entrants constant at its steady-state value. Figure 16 shows that allowing the

sex ratio of entrants to change permits a better match of the observed sex ratios of singles for

20-29 and 30-39 age groups. It turns out that this also contributes to the ability of the model

to explain the 1919 peak of marriage hazards for 20-29 year-old women; holding the sex ratio

constant reduces the explained share of the peak from 66% to 48%, and for the older group

from 74% to 48%. There is virtually no corresponding impact on the male hazards. Since it

is likely that similar forces are operation on the under-18s as on the older women, this tell us

that incorporating the under-18 population into the matching market would likely increase the

fraction of the female marriage-hazard explained by composition effects18.

18On their own, however, the initial sex ratios do not account for higher female hazards: when the initial sex
ratio of entrants is the only changing variable in the transition, we find that the model generates little to no
changes in marriage hazards. The results of this experiment are available upon request.
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H Widows

The war increased the fraction of widows, particularly in the age 30-39 group. If widows have

a higher re-marriage rate, this could partially explain the post-war peak in female marriage

hazards. The data allows us to distinguish unmarried (including widows and divorced spouses)

from never-married individuals. So, in Figure 17 we show that marriage hazards are very similar

for previously married singles. Hence, neither the existence nor the magnitude of the post-war

peaks in marriage hazards can be explained by an increase in the previously-married share of

singles.

Figure 17: Postwar Marriage Hazards for Never-married and Unmarried
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Note: The hazards are computed by dividing the flow of marriages for an age-sex group in a given period, as

reported by Bunle (1954), by the stock of never-married, or unmarried at the begining of the period, as reported

in the Census. The figures are normalized by their pre-war averages.

Source: Bunle (1954), INSEE and authors’ calculations.
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