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1 Introduction

In the aftermath of the 2008-2009 worldwide downturn, research in macroeconomics has em-

phasized models with financial frictions able to describe nonlinearities in how shocks to the

financial sector affect the macroeconomy.1 These models typically characterize two regimes:

a normal, low-stress regime and a high-stress regime–or high-systemic-risk regime–where

financial constraints are binding and shocks to the financial sector have stronger negative

effects on investment (He and Krishnamurthy, 2014). The financial stress literature is sup-

ported by empirical evidence on the predictive content of financial condition indexes for

financial variables (Hatzius, Hooper, Mishkin, Schoenholtz and Watson, 2010). Hubrich and

Tetlow (2015) and Hartmann, Hubrich, Kremer and Telow (2013) show how financial shocks

have larger variance and stronger transmission to macroeconomic variables in periods of

financial stress.2

A caveat of previous empirical exercises is that the measure of financial conditions is

taken as given based on a financial condition index computed by central banks and economic

institutions. Kliesen, Owyang and Vermann (2012) show that these indexes combine infor-

mation from different sets of financial variables and they have different levels of correlation

with future economic activity. This suggests two possible alternative characterizations of

financial stress: one whose effects are limited to financial markets and emphasizes regulatory

solutions and one that has consequences for macroeconomic activity that implies the use of

economic stabilization policy. Because most financial stress indexes are focused on financial

variables alone, this second, possibly important characterization has been relatively absent

in the literature.

In this paper, we use a novel econometric approach with nonlinear dynamic links between

the financial sector and the macroeconomy to compute a financial conditions factor using

1See for example, Brunnermeier and Sannikov (2014), He and Krishnamurthy (2014),Akinci and Queralto
(2014).

2Additionally, Dahlhaus (2014) examines how changes in financial stress can alter the channels through
which monetary policy acts.
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a large unbalanced panel of financial variables. The approach includes a built-in selection

mechanism such that the financial condition factor considers only the subset of financial

variables that better describe linkages between the financial sector and the macroeconomy.

The nonlinear dynamics are described by the occurrence of high- and low-stress regimes lead

by the jointly estimated financial conditional factor. Our main empirical result is that the

financial variables that are strongly linked to the macroeconomy are (i) two measures of

credit risk–such as the spread between Baa corporate bonds and 10-year Treasuries and

high-yield spread, (ii) a measure of equity market returns (Wilshire 5000) and (iii) consumer

survey data on conditions for buying large goods. Variables such as market volatility and

the slope of the yield curve are less important. Our findings are consistent with those of

He and Krishnamurthy (2014), who use credit risk spreads to characterize periods of high

systemic risk, and the results of Del Negro, Hasegawa and Schorfheide (2013), who show

that DSGE models that incorporate financial frictions and credit spreads forecast better

than models with no financial frictions in periods of financial stress. Gilchrist and Zakrajsek

(2012) explain that the information content of their credit spread index for economic activity

is mainly related to changes in the excess bond premium.

Our financial condition factor has a correlation of around 60% with alternative measures

of financial stress such as the excess bond premium in Gilchrist and Zakrajsek (2012) and fi-

nancial stress indexes published by regional Federal Reserve banks. In general, stress indexes

published by central banks and economic institutions do not take into account feedback ef-

fects between the financial sector and the macroeconomy. Hatzius et al. (2010) filter the time

series of financial variables to exclude the effect of macroeconomic conditions before building

their financial condition index (Brave and Butters (2012) also follow a similar approach).

Although we start with a similar set of variables to Hatzius et al. (2010), the use of a variable

selection mechanism to estimate a factor within a nonlinear dynamic model where macro-

economic variables are also fitted explains the low correlation between our estimates and

alternatives. As a result, our financial condition factor is able to better explain fluctuations
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in economic activity and inflation than alternatives because the model filters out events in

the financial sector that have no macroeconomic consequences. The identified stress regimes

have a stronger correlation with NBER recessions than regimes identified with alternative

published measures of financial stress.

Our modeling approach allows for dynamic responses to differ depending on the regime

at the time of the shock. A one-standard-deviation shock to financial conditions that occurs

during a high-stress regime has a significant 0.2% negative impact on inflation at a horizon

of one year. On the other hand, the dynamic effect on inflation of a shock to financial stress

occurring during a low-stress regime is statistically zero at all horizons. This highly asym-

metric response of inflation to financial conditions is one of the main empirical contributions

of this paper and supports the development of macroeconomic models with nonlinearities

from financial variables to aggregate prices.3

The response of the growth in industrial production is not as asymmetric as the response

of inflation, but the negative response is faster if the shock occurs in the high-stress regime,

with negative significant effects to a one-standard-deviation shock of 0.8% after only four

months. This weak evidence of asymmetric responses of economic activity is supported by

Ng and Wright (2013), who argue that it is hard to find nonlinearities in the dynamics

of business cycles using aggregate data. We can clearly show that our identified periods

of financial stress are strongly correlated with NBER recessions. If instead we employ a

traditional measure of financial conditions to identify regime changes in the VAR dynamics,

we find asymmetries in line with significant negative effects of financial shocks on industrial

production only in the high stress regime. This implies that our model is able to measure well

macro-financial linkages such that exogenous innovations to the estimated financial condition

3Gilchrist, Schoenle, Sim and Zakrajsek (2014) provide evidence that firms with "weak" balance sheets
increased their price during the 2008 crisis, while firms with "strong" balance sheets decreased their prices
as expected. Our results support the claim that after a negative financial shock (a type of negative demand
shock), average prices go down significantly during periods of high financial stress but do not change during
periods of low financial stress. Because we also find that financial shocks are larger in periods of high financial
stress and we only look at aggregate prices, our results are agreeable with the attenuation in price dynamics
caused by financial distortions of the model in Gilchrist et al. (2014).
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factor have usually large negative effects on economic activity in both regimes.

We evaluate our econometric modeling approach to identify periods of high-stress regimes

with macroeconomic consequences in pseudo real-time from September 2007 up to April 2010.

Our results show that we could have signalized the high-stress regime with a probability

higher than 80% from February 2008, while this probability is below a 50% threshold in

January 2010. The pseudo real-time analysis also shows that the financial variable selection

changes after January 2009. Before 2009, measures such as housing inflation, long-term

interest rates and the growth in credit stock would have been selected more than 84% of

the time based on the posterior distribution. After January 2009, the number of variables

that are frequently selected shrinks and a larger weight is given to the Baa—10-year Treasury

spread.

In this paper, we develop aMetropolis-in-Gibbs approach to estimate a Factor-Augmented

Smooth-Transition Vector Autoregressive Model (FASTVAR). The model has two regimes,

allowing for dynamics changes depending on the financial condition factor. The proposed

model augments the smooth-transition VAR model (surveyed by Van Dijk, Terasvirta and

Franses (2002) and Hubrich and Terasvirta (2013)) with an unobserved factor as in Bernanke,

Boivin and Eliasz (2005). Thus, the strength of the relation between financial conditions and

economic activity depends explicitly on the unobserved financial conditions factor linked to

a set of observed financial variables.

The unobserved factor is jointly estimated with the parameters of a smooth-transition

function that describe the weights given to each regime over time. We use the extended

Kalman filter to draw the factor conditional on all parameters. We also include a step in

the estimation that allows for covariate selection to determine the composition of the data

vector included in the financial conditions factor. A method to choose variables to enter

factors was also performed by Kaufmann and Schumacher (2012) using sparse priors in the

context of dynamic factor models and Koop and Korobilis (2014) using model averaging in

FAVAR models.
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The balance of the paper proceeds as follows: Section 2 describes the general FASTVAR

model with model indicators used for model selection. Section A outlines the Gibbs sampler

used to estimate the model parameters, the factor, and the posterior distributions for the

model inclusion indicators. Section 3 describes our dataset and presents and analyzes the

results of our empirical exercise. Section 4 summarizes and offers some conclusions.

2 The Empirical Model

In this section, we propose a method to simultaneously measure financial stress and identify

financial stress regimes. We begin by describing a VAR model that links an exogenously-

defined financial condition index to economic activity. Then, we propose a FASTVAR model

that allows for the joint estimation of a financial condition factor and the time-varying

weights for the financial stress regime.

2.1 The Smooth-Transition VAR Model

Let ft represent the period−t value of a financial conditions index. For now, assume that

ft is scalar, observed, and exogenously determined. Define zt as an (Nz × 1) vector of

macroeconomic variables of interest–e.g., GDP growth, employment, inflation. Suppose

that the effect of a shock to financial conditions on macroeconomic variables is linear but

that financial conditions are also affected by macroeconomic variables–in particular, current

economic activity. In this case, the dynamic response can be evaluated in a standard VAR

framework. Define the ((Nz + 1)× 1) vector yt = [z′
t
, ft]

′, where the ordering of ft last is

intentional and provides the identifying restriction used to construct impulse responses.4

The VAR in question is then

yt = A (L)yt−1 + εt, (1)

4Our identifying assumption is that the financial stress shock does not affect the macroeconomic variables
contemporaneously. In our baseline specification, a monetary policy instrument is not included in zt.
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where A (L) is a matrix polynomial in the lag operator, εt ∼ N (0,Ω), and we have sup-

pressed any constants and trends. The matrixes A (L) drive the transmission of financial

shocks–shocks to ft–to macroeconomic variables zt. However the transmission in this

specification cannot change over time or with the level of financial stress. Suppose that the

transmission mechanism changes over time and depends on the size and sign of the financial

conditions index; then, we can write

yt = [1− πt (ft−1; γ, c)]A1 (L)yt−1 + πt (ft−1; γ, c)A2 (L)yt−1 + εt, (2)

where A1 (L) and A2 (L) are matrices of lag polynomials, εt ∼ N (0Nz+1,Ωt), and Ωt is the

variance-covariance matrix. If ft is observed, the model described in (2) is a standard smooth-

transition vector autoregression (STVAR) as in Van Dijk et al. (2002). In the parlance of the

STAR models, ft−1 is the transition variable and πt (ft−1) is the transition function, where

0 ≤ πt (ft−1) ≤ 1. The transition function πt (ft−1) determines the time-varying weights of

each set of autoregressive parameters A1 (L) and A2 (L) on the path of yt.

The transition function can take a number of forms. One example is a first-order logistic

transition function of the following form:

πt (ft−1; γ, c) = [1 + exp (−γ (ft−1 − c))]
−1
, (3)

where γ ≥ 0 is the speed of transition and c is a fixed threshold. In (3), the regime process

is determined by the sign and magnitude of the deviation of lagged financial conditions,

ft−1, from the threshold c. If ft−1 is less than c, the transition function, πt (ft−1), gives

more weight to the autoregressive parameters of the first regime, A1 (L).
5 The coefficient γ

determines the speed of adjustment: as |γ| → ∞, the transition becomes sharper and the

regime switches resemble a pure threshold model. At γ = 0, the model collapses to a linear

5This analysis implicitly assumes that the transition variable delay is equal to 1. Because financial
condition factors are typically persistent time series, the assumption that the delay is equal to 1 is not very
restrictive.
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model. Smooth-transition and threshold VARs have been employed to measure asymmetries

in the dynamic effects of monetary shocks (Weise, 1999; Ravn and Sola, 2004) and in the

effect of credit conditions on economic activity (Balke, 2000).

The advantage of using a smooth transition model instead of a threshold specification

is that we are not required to assume abrupt changes between regimes, since they can be

smooth. In comparison with Markov-Switching models (Hamilton, 1989), the advantage of

the smooth transition specification is that a model with constant transition probabilites,

as the one applied by Chauvet (1998) and Hubrich and Tetlow (2015), does not allow the

financial stress to affect the state of the world, which we view as critical in identifying stress

regimes.

We allow for regime-dependent heteroskedasticity, so the variance-covariance matrix of

the VAR equation is

Ωt = [1− πt (ft−1; γ, c)]Ω1 + πt (ft−1; γ, c)Ω2,

where Ω1 and Ω2 are ((Nz + 1)× (Nz + 1)) symmetric matrices. A STVAR specification

with regime-dependent heteroskedasticity as above but with c = 0 and a calibrated γ has

been employed to measure asymmetries over business cycles of the impact of fiscal policy

shocks by Auerback and Gorodnichenko (2012) and Bachmann and Sims (2012), and of

uncertainty shocks by Caggiano, Castelnuovo and Groshenny (2014).

In the model composed of (2) and (3), a shock propagates differently depending on the

(lagged) state of financial conditions. Shocks to macro variables have regime-dependent

effects that can be determined conditional on ambient financial conditions. Shocks to fi-

nancial conditions, on the other hand, have two effects. Conditional on the regime, the

response to a financial conditions shock can be computed as a standard (state-dependent)

impulse response. In addition, shocks to financial conditions can cause a change in future

macroeconomic dynamics by driving the economy away from one regime toward the other.
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2.2 The Factor-Augmented STVAR

The STVAR model in the preceding subsection relies on the fact that ft is observed. This

could be true if one used an observed proxy for financial stress or if one used a constant

weight measure, as in the financial condition indexes surveyed by Hatzius et al. (2010). But

how can we be sure we are properly modeling financial conditions such that we correctly

identify financial stress periods with effects in the macroeconomy? As a consequence, we

estimate the financial conditions index as a factor within a FASTVAR based on a vector of

financial variables, xt.

Let ft be the factor that summarizes the comovements across Nx demeaned financial

series, xt:

xt = βft + ut, (4)

where β is the matrix of factor loadings and uit are iid N (0, σ
2

i
). Equations (2), (3) and

(4) comprise the FASTVAR model. The factor is jointly determined by the cross-series

movements in the financial variables and the behavior of the macroeconomic variables.

One of the central issues in the literature measuring financial stress is how to determine

which financial series should comprise xt. For example, Kliesen et al. (2012) surveyed 11

different indexes constructed from 4 to 100 indicators. While some indicators are more

frequently included and appear to be more important than others, the composition of the

variables used to construct the index is important. We are interested in determining the

set of financial variables that alters the underlying dynamics of the macroeconomy–that

is, which financial variables switch the macroeconomic dynamics from A1 (L) to A2 (L) and

vice versa.

To get at this issue, we start with a baseline composition of variables (e.g., those in Hatzius

et al. (2010)) and augment (4) with a set of model inclusion dummies, Λ = [λ1, ..., λNx ]
′,

λi ∈ {0, 1}. The inclusion dummies indicate whether a particular financial series should be

included in the set of variables that make up the factor–that is, if λi = 1, xi is included in
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the set of variables that determine the factor. If λi = 0, xi is excluded of the estimation of

the factor; the effect of λi = 0 is to set the factor loading associated with the ith element of

xt to zero. We can then rewrite (4) as

xt = (Λ� β) ft + ut. (5)

The vector of inclusion indicators, Λ, can be estimated along with the other parameters in

the model.

2.2.1 Estimation and Possible Identification Issues

We estimate the model using the Gibbs sampler with three Metropolis-in-Gibbs steps. Let

Θ collect all of the model parameters. We can partition the set of model parameters into

blocks: (1) Ψ = [A1 (L) ,A2 (L)], the VAR coefficients; (2) Ω1 and Ω2, which are the

regime-specific VAR variance-covariance matrixes; (3) γ and c, the transition speed and the

threshold; (4) β, Λ and fT = {ft}
T

t=1
, the factor loadings, the inclusion indicators and the

factor, respectively; and (5) {σ2
it
}
Nx

i=1
, the variances of financial variables. The Gibbs sampler

is a Bayesian algorithm that samples from the posterior distribution of each block conditional

on past draws of the other blocks. After a suitable number of draws are discarded to achieve

convergence, the set of conditional draws forms the joint distribution of the whole model.

We assume a normal prior for the VAR coefficients and the factor loadings; the VAR

covariance matrices have an inverse Wishart prior; the financial variable innovations have

an inverse gamma prior. The inclusion indicators have a Bernoulli prior weighted a priori to

exclude variables from the model. The transition speed has a gamma prior and the threshold

has a uniform prior whose support is restricted to lie inside the extrema of the factor draws.

The draws of most of the parameters are conjugate, but the model requires three Metropo-

lis steps and a nonlinear filtering step to draw the factors. First, we follow Lopes and Salazar

(2005) and jointly draw the transition function parameters γ and c from gamma and uniform
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proposal distributions, respectively.6 Second, we jointly draw the factor loadings β and the

inclusion dummies Λ. Third, we use a Wishart proposal for Ωt, the variance-covariance

matrix of each regime, and use a decision rule based on the likelihood, prior and proposal

when considering each new draw.7 All the Metropolis steps have tuning parameters that

control the percentage of rejections over the sampling procedure. We set the tuning para-

meter values such as the acceptance rate is around 30% using 10,000 initial discarded draws.

We use 25,000 draws and discarded the initial 10,000 to compute posterior distributions.

Parameterization of the prior and details for the sampler, including our implementation of

the extended Kalman filter to draw the factors, are available in the Appendix.

Terasvirta (2004) argues that it might be difficult to estimate γ in short time series

even if there is strong nonlinearity because only few observations will be available around

the threshold value c. We address this issue as follows: First, we estimate the model with

monthly series as to have a reasonable number of observations (around 372). Second, we make

the smoothing parameter γ scale free by writing the transition function as πt(ft−1; γ, c) =

[1 + exp(−(γ/σf )(ft−1 − c))]
−1 so it is easier to set priors and tuning parameters. Third,

we set the support of the prior distribution for the threshold such that at least 10% of the

observations in each regime even if γ is large. This implies that the estimation procedure

will not capture outliers as a regime.

2.2.2 Impulse Response Functions

The FASTVAR allows for asymmetric transmission of financial shocks (i.e., to the ft equa-

tion) to the macroeconomic variables. However, asymmetries will prevail only if the trans-

mission of shocks differs even though the size and sign of the shocks are invariant. We split

6Our prior differs from Bauwens, Lubrano and Richard (1999), whose prior for the autoregressive parame-
ters depend on γ. Our procedure differs from Gefang and Strachan (2010), who draw γ and c independently.
Note also that Auerback and Gorodnichenko (2012) calibrate the values of γ and c such that they guarantee
that γ is small and the transition function is smooth.

7This step differs from Auerback and Gorodnichenko (2012), who draw the variance-covariance parameters
via its lower triangular decomposition in an element-by-element Metropolis step and is motivated by the
homoscedastic case where the Wishart distribution provides closed-form posterior distribution for variance-
covariance matrix.
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the data on macroeconomic variables and a factor ft (for t = 1, ..., T ) draw into two subsets

to verify whether the dynamic transmission changes with regimes. The first subset refers

to the histories during the lower regime, πt(ft−1; γ, c) ≤ 0.5, and the other subset refers to

the upper regime, πt(ft−1; γ, c) > 0.5.8 Based on these two sets of histories, we compute

generalized impulse responses conditional on the regime as suggested by Koop, Pesaran and

Potter (1996) and applied by Galvao and Marcellino (2014). The responses measure the

effect of a one-standard-deviation shock to financial conditions on the endogenous variables,

assuming (i) a specific set of histories at the impact (either lower or upper regime) and (ii)

that the regimes may change over horizon.

We simulate data to compute the conditional expectations of yt+h with and without the

shock to compute responses:

IRFh,v,s =
1

Ts

Ts∑

t=1

{
E[yt+h|z

(s)
t , vt = v]− E[yt+h|z

(s)
t ]
}
, (6)

where Ts is the number of histories in regime s, z
(s)
t is a history from regime s (typically

including zt, ..., zt−p+1 and ft, ..., ft−p+1) and vt = v is the shock vector. In the empirical

application, we use 200 draws from the disturbances distribution to compute each conditional

expectation using a given set of FASTVAR parameters. The IRFh,v,s measures the responses

of both macroeconomic variables and the factor at horizon h from shock v that hit the model

in regime s (either the lower or the upper regime defined using the transition function as

above). This approach for computing impulse responses takes the nonlinear dynamics of the

FASTVAR fully into consideration.

In the computation in (6), we are implicitly assuming a fixed set of parameters of the

FASTVAR (A1(L), A2(L), γ, c, Ω1,Ω2) and a specific estimate of ft. In our empirical

implementation, we compute the impulse response function for many parameters and factor

draws from the posterior distribution. We use a set of equally spaced draws from the posterior

8We check the robustness of this assumption. Qualitative results in section 3.5 do not change if we the
define the upper as πt(ft−1; γ, c) > 0.9 and the lower regime as πt(ft−1; γ, c) < 0.1.
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distribution, and we plot the posterior mean for IRFh,v,s and 68% confidence intervals.

3 Empirical Results

3.1 Data

To measure financial stress through its effects on the transition dynamics of macroeconomic

variables, we require two sets of data. First, we need financial data with which we can

search for common fluctuations. Second, we need a set of macroeconomic variables. For

the former, we consider an unbalanced panel consisting of a vector of 23 financial series

also used in Hatzius et al. (2010). These financial indicators include term spreads, credit

spreads, Treasury rates, commercial paper rates and survey data. Because the series start

at different points in time, the panel is unbalanced with a start data in 1981. The data end

in September 2012. All variables are monthly and described in Table 1. The selection of

variables encompasses all subgroups described in Hatzius et al. (2010), Brave and Butters

(2012) and Kliesen et al. (2012). These variables were all demeaned before estimation.

Because the financial data are monthly, we use the year-on-year growth rate in industrial

production as our main economic indicator. We also include a monthly inflation measure,

the year-on-year rate of change of headline CPI. Both series are seasonally adjusted.

3.2 Financial Conditions Factor

Figure 1 presents the estimates of the financial conditions factor obtained with the FASTVAR

with p = 1, including the posterior mean and 68% confidence bands. We also show the

results of applying principal components to a balanced version of our dataset of 23 monthly

financial variables. Figure 1 results suggest that if large positive factor values are normally

associated with financial stress periods, then stress regimes that may be identified by the

principal-component approach may differ from those using the FASTVAR approach.

Table 2 presents the posterior means of the inclusion dummies (λi) for each financial
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variable for both the restricted. The variables selected over more than 84% of the posterior

distribution are (i) two credit spreads (baa10ysp and highyieldspread), (ii) a measure of

equity returns (wilrate) and (iii) a consumer survey measure (migoodsurv). Other credit

conditions variables also have a high probability of being selected. However, variables such as

term spreads are not very important to define financial stress regimes. Our variable selection

takes into account the link between the financial factor and future economic activity, so our

support to measures of credit conditions as measure of financial stress are in agreement with

Gilchrist and Zakrajsek (2012), who show that credit spreads lead economic activity.

We compute the correlation between the factor obtained with FASTVAR presented in

Figure 1 and alternative estimates of financial tightening and/or financial stress. First,

the correlation with the principal component estimate, also shown in Figure 1, is of 64%,

providing additional evidence that the factor estimated within a model that links financial

variables to the macroeconomy and includes a covariate selection step is not very similar

than one computed simply by principal components as in Hatzius et al. (2010). Second,

the correlation with the excess bond premium of Gilchrist and Zakrajsek (2012) is of 64%.

Although our financial condition index selects credit spread very frequently, the contribution

of other variables such as equity returns imply only a moderate correlation with the excess

bond premium measure. Finally, in comparison with financial stress indexes published by

regional Federal Reserve Banks, we find a correlation of 74% with the Kansas Fed Stress

index, of 63% with the St. Louis Fed index, 56% with the Chicago Fed index, and of

52% with the Cleveland index. As a consequence, our financial conditions factor based on

similar set of financial variables differs from others available in the literature because the

FASTVAR model extracts the information on financial variables that actually matters for

the macroeconomy.

Figure 1 indicates four peaks for the financial condition factor. These peaks are during

each one of the four recessions that have occurred during the period. The first one is in

July 1982 and it is associated with the failure of the Penn Square bank. The second one
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is in February 1991 and it is within the 1990-92 credit crunch period when the Resolution

Trust Corporation was actively dealing with bankrupt Savings and Loan associations. The

third peak is in October 2001, which is the month that the Enron scandal was first revealed.

Finally, the last peak is on April 2009, which is the month that Chrysler filed for bankruptcy.

These events all describe financial stress in the corporate environment, in agreement with

the results of our covariate selection relying mainly in corporate spreads.

3.3 Alternative Specifications

In this subsection, we compare our baseline FASTVAR specification with alternative speci-

fications. We use a Bayesian Information criterion (BIC) for the comparison. We apply the

criterion for the fit of the two macroeconomic observables (IP growth and inflation) such

that we can compare linear and nonlinear models and models with observed and unobserved

factors. We compute the BIC for each kept MCMC draw and the results presented in Table

3 are average over draws.

First, we consider specifications that impose restrictions on the baseline FASTVAR spec-

ification. The first specification is the FASTVAR_r that imposes that no direct dynamic

effects of the macroeconomic variables on the financial factor–that is, the only nonzero

coefficients in the factor equation are the factor’s own AR coefficients. This might have the

effect of giving more weight to financial variables (since VAR dynamics is restricted) in the

estimation of the financial condition factor. The second specification is a FASTVAR with

no variable selection–that is, all financial variables in Table 1 are loaded into the financial

conditions factor. Third, we consider a linear specification with no variable section–that is,

a FAVAR model estimated via Gibbs sampling.

We also consider the smooth transition VAR models as described in Section 2.1 with

observed factors. These specifications do not require the estimation of the factor and factor

loadings, but they still use the steps described in the Appendix to draw the parameters of

the transition function and the regime-dependent variance-covariance matrices. We employ
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two observed financial factors that are chosen based on their monthly availability for the

1981-2012 period so obtained results are comparable with the FASTVAR results. We use

the excess bond premium by Gilchrist and Zakrajsek (2012) and the Chicago Fed Financial

Condition Index.9

Table 3 clearly indicates that the baseline FASTVAR is the modelling approach that

better fits IP growth and inflation dynamics. All alternatives raise the BIC substantially.

Interestingly, the STVAR specifications with observed factors do not improve over the linear

FAVAR specification, while our FASTVAR does. This suggests that estimating the factor

within the model improves the fit when the objective is to obtain changes in financial condi-

tions that affect macro variables. The results also suggest that to capture nonlinearity over

the 1981-2012 period, the excess bond premium (EPB) is a better transition variable than

the Chicago Fed Financial conditions index.

3.4 Regime Changes

Figure 2 presents the posterior mean of the transition function, equation (3), for the FAST-

VAR. As opposed to the Markov-switching VAR model, in the FASTVAR model, the econ-

omy can reside in the transition state between the two extreme regimes. The values of

the transition function over time represent the weights given to the high stress regime at

each date.10 Values near zero imply that the economy is in the lower stress regime; NBER

recessions are shaded in gray.

The weights on the second regime’s coefficients, which we classify as the financial stress

regime, are higher than 80% during most of the NBER recessions. The estimates in Figure

2 can also be interpreted as a time series of the posterior probability of the financial stress

regime. We have at least one month of financial stress regime (probability/weights higher

than 50%) within each one of the four recession episodes covered. Since we estimate both

9The excess bond premium is obtained from http://people.bu.edu/sgilchri/Data/data.htm and the
Chicago Fed Financial Conditions Index is obtained from the FRED database at the St. Louis Fed.
10The posterior mean estimates of the parameters of the transition function are γ̄ = 12.77 and c̄ = 0.474.
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the unobserved factor and the transition function within the FASTVAR model, the model

is able to detect financial stress regimes correlated with recessions.

Figure 3 presents the posterior mean estimate of the transition function computed using

two STVAR specifications: the first employs the Chicago FCI and the second the EBP as

transition variable. These specifications were also in the analysis in the previous section.

The stress regimes identified by the Chicago FCI show no evidence of high stress during the

2001 recession, but they classify the period from June 1987 up to February 1991 as a long

high stress regime, which includes the months following the Black Monday (October, 1987).

In contrast, stress regimes identified by the EBP are more strongly correlated with recessions

but the high stress regime is also identified in expansion periods such as from May 1986 to

May 1987 and from May 1989 to April 1990. The period just after Black Monday, however,

is not identified as high stress, as in the case of the FASTVAR.

Figure 4 represents the posterior mean of the transition function and 68% confidence

bands for the FASTVAR and also the FASTVAR_r specification that constrains the dynamic

of the factor as described in the previous section. The confidence intervals on the regime

weights are generally narrower using the restricted model. The unrestricted model allows for

3 extra parameters to change over regime, creating additional estimation uncertainty. The

fact that regime definition is not as clear-cut in the unrestricted FASTVAR specification will

have implications for the performance of the model in real time, as will be discussed later.

Figure 5 presents the square root of the posterior mean of the diagonal of Ωt, which

is the regime-dependent variance-covariance matrix of the disturbances, for the FASTVAR.

If we compare the relative size of the standard deviations in each regime, we can say that

differences are very small for industrial production innovations. However, for inflation and

financial factor innovations, the volatility of innovations in the high-stress regime are roughly

15% larger than in the low-stress regime. Because of the VAR ordering, this implies that

financial shocks have higher volatility during financial stress periods, with a sizable increase

of around 15%. If we use the posterior distribution to compute the standard deviation of
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these estimates for each regime, we find that the high-stress regime financial volatility is

one-standard deviation larger than the one in the low stress regime, while differences across

regime for the other shocks are generally smaller than one standard deviation.

3.5 Impulse Responses

Figure 6 presents the 48-month dynamic responses from a one-standard-deviation financial

shock with an assumed zero impact effect on industrial production growth and inflation.

These are generalized responses–that is, they allow for regime switching over horizons and

are computed conditional on the regime histories as described in Section 2.2.2. We use the

average variance-covariance matrix over time to set the size of the shock (ν in equation

(6)) such that the size of the shock is the same for both regimes; thus, asymmetries in the

responses are caused only by nonlinearities in the VAR dynamics and not by the changes in

the regime-conditional variances reported in Figure 5. The plots present the mean response

over 150 equally spaced draws from the parameter posterior distributions (based on 15000

draws) for the FASTVAR parameters and the factor time series, including 68% confidence

bands. Regime 2 is the financial stress regime.

The responses suggest that a negative financial shock (equivalent to an increase in the

financial factor) has a large significant negative effect on economic activity with a peak effect

of -0.8%, but the response is zero after 3 years (68% confidence bands include zero). There

is little asymmetry between regimes in the IP growth responses but substantial asymmetries

on the inflation responses. During financial stress regimes, an exogenous increase in stress

significantly decreases inflation by 0.2% nine months after the shock. A similar shock occur-

ring in the low-stress regime has no effect on inflation. The posterior mean response of IP

growth during the financial stress regime is -0.84% at a 4-month horizon and -0.74% when

not initially in the financial stress regime. The cumulative effect after four years is -11% for

IP growth and -4% for inflation in the financial stress regime. These results are, in general,

compatible with typical recession characteristics. They are also compatible with the results

17



of Caldara, Fuentes-Albero, Gilchrist and Zakrajsek (2016), who, in a constant parameter

model, found a similar sized variation in industrial production as response to a shock that

raises financial market tightening. Recall also that our high-stress regime is strongly cor-

related with recessions, so our results agree with Ng and Wright (2013) who argue that is

hard of find evidence of asymmetries over business cycles in responses of aggregate economic

activity to shocks.

If we apply the same methodology described to compute the responses in Figure 6 to a

STVAR with Chicago FCI as observed transition variable, we obtain the results in Figure

7 for full sample average standard deviation shock. They clearly indicate that negative

responses of economic activity to the financial condition shocks are stronger in the high

stress than in the low stress regime, while inflation responses are positive in the lower stress

regime and negative in the high stress regime. We investigate these differences between

the FASTVAR and the STVAR results by comparing their posterior mean VAR coefficients

estimates in each regime. The STVAR estimates suggest that the lagged coefficient of the

FCI on IP growth is very small in the low stress regime, but it is larger and negative in the

high stress regime. In the case of the FASTVAR estimates, however, the coefficient on the

lagged estimated factor is large and negative in low stress regime, and the coefficient value

is reduced further in the high stress regime, but then by a small amount. These results

support our claim that the FASTVAR performs a better job in identifying a measure of

financial conditions that is strongly linked with macroeconomic fluctuations in both low and

high stress regimes.

In summary, these results indicate that exogenous changes in the financial factor have

significant negative effects on economic activity even if they do not initially occur in the

financial stress regime. If in the high-stress regime, we find significant negative responses of

inflation to the financial shocks, while the results in Section 3.4 suggest we should expect

larger financial shocks.
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3.6 Identifying financial stress regimes during 2007-2010

One of the possible uses of the empirical model proposed in this paper is to predict financial

stress regimes with macroeconomic consequences. If the economy is in financial stress, the

likelihood of large financial shocks increases and inflation is more responsive to exogenous

variation in the financial variables–in particular, to credit spread measures. Thus, it is

important for policymakers to identify the onset of these regimes.

We evaluate the FASTVAR’s ability to detect financial stress periods from September

2007 up to April 2010. Figure 7 shows the posterior means of the regime weights for

both the restricted and unrestricted models estimated with final data for this subperiod.

The figure also presents pseudo real-time estimates computed by re-estimating the mod-

els over increasing windows of data starting from 1981M9 and ending at each month from

2007M9 to 2010M4. For each window, we re-estimate the model (20,000 draws with the

initial 5,000 draws discarded) and save the posterior mean of the transition function for the

last observation–that is, we compute real-time probabilities of being in the financial stress

regime.

As the results in Section 3.4, the unrestricted model exhibits more uncertainty in iden-

tifying the financial stress regime than the restricted model.11 Using the restricted model,

we are able to initially detect a probability of financial stress higher than 80% in February

2008, even though using data up to September 2012, the estimated probability is only 32%.

Both real-time and final measures drop to values below 50% in January 2010.

We also look at the selection of the financial variables into the financial factor during the

period. Figure 9 presents the posterior mean of the λis for each window of data finishing

at the indicated date, computed using the restricted specification (results are similar for the

unrestricted one). For data windows up to January 2009, many variables are selected more

11For some windows of data, the estimates of the factor loadings are, in general, negative instead of
positive, as in the case of the full sample. This means that the factor and regimes flip. If this was the case,
we flip the obtained estimates such that transition function values near 1 are associated with the financial
stress regime.
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than 80% of the time. The figure shows the selection by categories. When looking at interest

rates and term spread, only the long-term interest rate is frequently selected before 2009.

Both housing and equity prices changes are also selected, while the oil price is not. We

consider many different measures of credit spreads and almost all of them are highly selected

in the earlier period. Consumer survey measures and measures of growth of credit stock are

also selected. After January 2009, with stronger evidence of a financial-related recession,

the only variable that is selected more than 80% of the time is the Baa—10-year Treasury

spread. Recall that when looking at the full sample, we find also three additional variables

that are typically selected. These results support the development of macroeconomic models

able to explain why credit spreads vary over time and how large credit spreads amplify the

transmission of shocks, particularly to inflation.

In summary, the restricted FASTVARmodel is adequate to detect financial stress regimes

in real time. The flexibility from selecting the financial variables into the financial factor for

a specific window of data is one of the key elements in this good performance.

3.7 Robustness Exercises

The financial variables in Table 1 might be strongly related to monetary policy. One way to

be sure that our dynamic responses are computed for financial shocks that are not caused

by unexpected changes in monetary policy is to add a measure of monetary policy in the

VAR vector zt in equation (2). While the fed funds rate can be used as the measure of

monetary policy for the period prior to 2008, it does not account for the unconventional

policy implemented by the Fed after the nominal funds rate hits the zero lower bound. This

explains why we did not include the fed funds rate in our baseline specification, differing from

the specification of Bernanke et al. (2005) and Hubrich and Tetlow (2015). As a robustness

check, we estimate an unrestricted FASTVAR model with the fed funds rate in addition to

growth in industrial production and CPI inflation in the vector zt.

Figure 10 presents the posterior mean of the transition function in the upper-left panel
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and responses from exogenous changes in financial stress computed as in Section 3.5. The

identification of the financial stress regime does not change qualitatively with the inclusion

of the monetary policy measure. Responses of IP growth and inflation are also qualitatively

similar. The response of the fed funds rate is negative and persistent. The monetary policy

reaction is weaker during the financial stress regime. This relative shallowness might explain

why the response of inflation is stronger if the shock hits in the financial stress regime.

However, it may also be related to zero lower bound constraints in the latter part of the

sample.

We also check if the covariate selection and regime histories change if we use data only

up through 2007–that is, if we exclude the Great Recession. Table 4 suggests that there

are more variables that are frequently selected but these variables are still mainly related

with corporate credit conditions. Figure 11 indicates the identification of additional high

stress periods in particular during the 1983-1990 period that do not overlap recessions. As

consequence, the identification of high stress regimes when excluding the recent financial

crisis resembles the identification obtained when the EBP is employed as observed transition

variable.

4 Conclusions

The financial crisis emphasized the importance of identifying periods of high financial stress

as these periods can have important and detrimental effects on the macroeconomy. In this

paper, we construct a measure of the probability of a financial stress regime which–by

design–includes only financial variables that alter the economic dynamics between financial

conditions and macroeconomic variables such as industrial production and inflation. We find

evidence that credit spread measures help to detect nonlinear dynamics from the financial

sector to the macroeconomy. We also find that exogenous increases in the financial conditions

factor have not only large negative effects on economic activity as in Caldara et al. (2016),
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but also amplification effects on inflation responses and the variance of financial shocks.

These empirical results based on our novel modeling approach support the development

of models that describe amplifying effects from financial shocks to the macroeconomy during

periods of large credit spreads, negative stock returns and low consumer confidence. The

amplifying effect is relevant particularly when looking at aggregate inflation.

References

Akinci, O. and Queralto, A. (2014). Banks, capital flows and financial crisis, Board of

Governors of the Federal Reserve System, International Finance Discussion Papers n.

1121 .

Auerback, A. J. and Gorodnichenko, Y. (2012). Measuring the output responses to fiscal

policy, American Economic Journal: Economic Policy 4: 1—27.

Bachmann, R. and Sims, E. R. (2012). Confidence and the transmission of government

spending shock, Journal of Monetary Economics 59: 235—249.

Balke, N. S. (2000). Credit and economic activity: Credit regimes and nonlinear propagation

of shocks, Review of Economics and Statistics 82: 344—349.

Bauwens, L., Lubrano, M. and Richard, J.-F. (1999). Bayesian Inference in Dynamic Econo-

metric Models, Oxford University Press.

Bernanke, B. S., Boivin, J. and Eliasz, P. (2005). Measuring the effects of monetary pol-

icy: A factor-augmented vector autoregressive (FAVAR) approach, Quarterly Journal

of Economics 120(1): 387—422.

Brave, S. and Butters, R. A. (2012). Diagnosing the financial system: Financial conditions

and financial stress, International Journal of Central Banking June 2012: 191—239.

22



Brunnermeier, M. K. and Sannikov, Y. (2014). A macroeconomic model with a financial

sector, American Economic Review 104: 379—421.

Caggiano, G., Castelnuovo, E. and Groshenny, N. (2014). Uncertainty shocks and unem-

ployment dynamics in U.S. recessions, Journal of Monetary Economics 64: 78—92.

Caldara, D., Fuentes-Albero, C., Gilchrist, S. and Zakrajsek, E. (2016). The macroeconomic

impact of financial and uncertainty shocks, NBER Working Paper n. 22058 .

Chauvet, M. (1998). An econometric characterization of business cycle dynamics with factor

structure and regime switching, International Economic Review 39: 969—96.

Chib, S. (1993). Bayes estimation of regressions with autoregressive errors: A Gibbs sampling

approach, Journal of Econometrics 58: 275—294.

Chib, S. and Greenberg, E. (1996). Markov chain monte carlo simulation methods in econo-

metrics, Econometric Theory 12: 409—431.

Clements, M. P. and Krolzig, H.-M. (1998). A comparison of the forecasting performance

of markov-switching and threshold autoregressive models of US GNP, Econometrics

Journal 1: C47—C75.

Dahlhaus, T. (2014). Monetaring policy transmission during financial crisis: an empirical

analysis, Bank of Canada, Working Paper n. 2014-21 .

Del Negro, M., Hasegawa, R. B. and Schorfheide, F. (2013). Dynamic prediction pools: An

investigation of financial frictions and forecasting performance, University of Pennsyl-

vania, mimeo .

Galvao, A. B. and Marcellino, M. (2014). The effects of the monetary policy stance on the

transmission mechanism., Studies on Nonlinear Dynamics and Econometrics 18: 217—

236.

23



Gefang, D. and Strachan, R. (2010). Nonlinear impacts of international business cycles on

the u.k. - a bayesian smooth transition var approach, Studies on Nonlinear Dynamics

and Econometrics 14.

Gilchrist, S., Schoenle, R., Sim, J. W. and Zakrajsek, E. (2014). Inflation dynamics during

the financial crisis, Boston University (mimeo) .

Gilchrist, S. and Zakrajsek, E. (2012). Credit spreads and business cycle fluctuations, Amer-

ican Economic 102: 1692—1720.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time

series and the business cycle, Econometrica 57: 357—84.

Hartmann, P., Hubrich, K., Kremer, M. and Telow, R. J. (2013). Melting down: systemic

financial instability and the macroeconomy, mimeo .

Hatzius, J., Hooper, P., Mishkin, F. S., Schoenholtz, K. L. and Watson, M. W. (2010).

Financial conditions indexes: A fresh look after the financial crisis, NBER Working

Paper n. 16150 .

He, Z. and Krishnamurthy, A. (2014). A macroeconomic framework for quantifying systemic

risk, NBER Working Paper n. 19885 .

Hubrich, K. and Terasvirta, T. (2013). Thresholds and smooth transition in vector autore-

gressive models, in T. Fomby, L. Kilian and A. Murphy (eds), VAR models in Macro-

economics - New Developments and Applications: Essays in Honor of Christopher A.

Sims (Advances in Econometrics, volume 32), Emerald Group Publishing Limited.

Hubrich, K. and Tetlow, R. J. (2015). Financial stress and economic dynamics: the trans-

mission of crisis, Journal of Monetary Economics 70: 100—115.

24



Kaufmann, S. and Schumacher, C. (2012). Finding relevant variables in sparse bayesian

factor models: economic applications and simulations results, Deutsche Bundesbank

Discussion Paper 29/2012.

Kliesen, K. K., Owyang, M. T. and Vermann, E. K. (2012). Disentagling diverse measures: a

survey of financial stress indices, Federal Reserve Bank of St. Louis Review 94: 369—97.

Koop, G. and Korobilis, D. (2014). A new index of financial conditions, European Economics

Review 71: 101—116.

Koop, G., Pesaran, M. H. and Potter, S. M. (1996). Impulse reponse analysis in nonlinear

multivariate models., Journal of Econometrics 74: 119—147.

Lopes, H. F. and Salazar, E. (2005). Bayesian model uncertainty in smooth transition

autoregressions, Journal of Time Series Analysis 27: 99—117.

Ng, S. and Wright, J. H. (2013). Facts and challenges from the great recession for forecasting

and macroeconomic modelling, Journal of Economic Literature 51: 1120—54.

Ravn, M. O. and Sola, M. (2004). Asymmetric effects of monetary policy in the united

states, Federal Reserve Bank of St. Louis Review 86: 41—60.

Terasvirta, T. (2004). Smooth transition regression modelling, in L. H. and M. Kratzig (eds),

Applied Times Series Econometrics, Cambridge University Press, chapter 6, pp. 222—

242.

Van Dijk, D., Terasvirta, T. and Franses, P. H. (2002). Smooth transition autoregressive

models - A survey of recent developments, Econometric Reviews 21: 1—47.

Weise, C. L. (1999). The asymmetric effects of monetary policy: A nonlinear vector autore-

gression approach., Journal of Money, Credit and Banking 31: 95—108.

25



A FASTVAR Estimation

We estimate the model using the Gibbs sampler with a Metropolis-in-Gibbs step. Let Θ

collect all of the model parameters. We can partition the set of model parameters into blocks:

(1) Ψ = [A1 (L) ,A2 (L)], the VAR coefficients; (2) Ω1 and Ω2, which are the regime-specific

VAR variance-covariance matrixes; (3) γ and c, the transition speed and the threshold; (4) β,

Λ and fT = {ft}
T

t=1
, the factor loadings, the inclusion indicators and the factor, respectively;

and (5) {σ2
it
}
Nx

i=1
, the variances of financial variables. The algorithm samples from each block

conditional on the other blocks. After a suitable number of draws are discarded to achieve

convergence, the set of conditional draws forms the joint distribution of the whole model.

A.1 The State-Space Representation

The state-space form of the model consisting of (2), (3), and (4) summarizes the assumptions

behind the FASTVAR model that we have made thus far. For exposition, we assume that

p = 1 and Nz = 2. The measurement equation is





zt

xt




 =





I 0

0 (Λ� β)










zt

ft




+





0

ut




 ;ut ∼ iidN(0, σ2i ). (7)

This differs from the FAVAR specification of Bernanke et al. (2005) by excluding the macro-

economic variables zt as observable factors in the measurement equation of the financial

variables xt.
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The state equation is






z1,t

z2,t

ft





=






a10

a20

a30





+






a11 a12 a13

a21 a22 a23

a31 a32 a33











z1,t−1

z2,t−1

ft−1






(8)

+πt(ft−1; γ, c)





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+
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
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




z1,t−1

z2,t−1

ft−1








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+






ε1t

ε2t

εft





,

where εt ∼ N(0,Ω), πt(ft−1; γ, c) = [1+ exp(−γ(ft−1− c))]
−1 and dij = a2,ij − a1,ij measures

the change in the autoregressive coefficients across regimes. Note that the intercepts are

allowed to change with the regime as they have an important role to characterize business

cycle regimes in Clements and Krolzig (1998).

Formally, we estimate the model using the specification in (8) so that the sampler does not

fail even if γ is small while imposing that γ ≥ 0. Similar strategies have also being employed

by Gefang and Strachan (2010). The state-space representation of the FASTVAR model

above is helpful to understand identification requirements for estimating the parameters in

the transition function πt(ft−1; γ, c). Based on equation (8), it is clear that if there is no

nonlinearity–that is, the parameters do not change across regimes–then γ and c are not

identified. However, if we find strong evidence of nonlinearity, that is, the dij parameters are

typically nonzero, as it is the case with our application, then we should be able to estimate γ

and c. Because the dij are nuisance parameters when γ = 0, we cannot employ the posterior

distribution of γ to assess evidence of nonlinearity.
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A.2 Priors

Table A: Priors for Estimation

Parameter Prior Distribution Hyperparameters

vec (Ψ) N (m0,M0) m0 = 0N ; M0=10IN N = 2Nz (Nz + 1)P + 2Nz + 2P

Ω−1

1
,Ω−1

2
W
(
ν0
2
, D0
2

)
ν0 = 1000 ; D0 = IN ∆Ω1

= ∆Ω2
= 150

γ Γ (g0,G0) g0 = 6 ; G0 = 3 ∆γ = 0.01

c Unif (cL, cH) cL = f0.10 ; cH = f0.90

σ−2n Γ (ω0,W0) ω0 = 1 ; W0 = 1 ∀n

βn N (b0,B0) b0= −100 ; B0=0.01 ∀n

λn ρ0 ρ0 = 0.01 ∀n

We assume a proper normal—inverse-Wishart prior for the VAR(P ): Each regime-dependent

coefficient matrix has a multivariate normal prior; the regime-dependent covariance matrix

is inverse Wishart. The threshold in the transition function has a uniform prior bounded

by the 10th and 90th quantiles of the distribution of the factors; the transition speed has

a gamma prior. We adopt a normal—inverse-gamma prior for the factor equation: Each of

the factor loadings has a normal prior and each variance is inverse gamma. The prior for

the inclusion indicator is set such that more weight is assigned to excluding variables. This

makes the factor estimated over, ex ante, as parsimonious a vector of financial indicators as

possible. Table A presents the prior hyperparameters. We describe the tuning parameters

∆γ, ∆Ω1
and ∆Ω2

below. The values of these tuning parameters in Table A are set such that

the acceptance rate of both Metropolis steps is around 10% after 10,000 initial (discarded)

draws out of total 25,000 draws.

A.3 Drawing Ψ conditional on Θ−Ψ, fT , zd,T and xT

Conditional on πt (ft−1), a draw from the posterior distributions for the VAR parameters is

a straightforward application of Chib (1993) and Chib and Greenberg (1996). Rewrite the

28



VAR of yt = [z
′

t, ft]
′ as follows:

yt = θtΨ̃+ εt, (9)

where Ψ̃ is the (2 (Nz + 1)NzP + 2Nz + 2P × 1) stacked vector of parameters,

θt =



INz ⊗ ŷt−1 02P

0 f̂t−1


 ,

ŷt−1 =
[
πt (ft−1)y

p
t−1, (1− πt (ft−1))y

p
t−1

]
,

y
p
t−1 =

[
1,y′t−1, ...,y

′

t−p

]
,

f̂t−1 =
[
πt (ft−1) f

p
t−1, (1− πt (ft−1)) f

p
t−1

]
,

and fpt−1 =
[
f ′t−1, ..., f

′

t−p

]
′

. Then, given the prior N (m0,M0), the (stacked) joint parameter

vector can be drawn from

Ψ ∼ N (m,M) ,

where

M =

(
M−1

0
+

T∑

t=1

θ
′

tΩ
−1

t θt

)−1

and

m =M

(
M−1

0
m0 +

T∑

t=1

θ
′

tΩ
−1

t yt

)
.

A.4 Drawing c̃, γ̃ conditional on Θ−[c̃,γ̃], fT , zd,T and xT

The prior on the parameters of the transition equation is jointly Normal-Gamma. Given the

prior, the posterior is not a standard form; γ, however, can be drawn using a Metropolis-in-

Gibbs step (Lopes and Salazar, 2005). To do this, we first draw the candidates, γ∗ and c∗,
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separately from gamma and normal proposal densities, respectively:

γ∗ ∼ G

((
γ[i−1]

)2

∆γ

,
γ[i−1]

∆γ

)

and

c∗ ∼ Unif (cL, cH) ,

where the superscript [i− 1] represents the values retained from the past Gibbs iteration and

∆γ is a tuning parameter and the bounds of the uniform distribution are chosen such that

the proposed threshold always lies on the interior of the distribution of the factors for the

current factor draw. The joint candidate vector is accepted with probability a = min {A, 1},

where

A =

∏
t φ (zt|πt (ft−1|γ

∗,c∗) ,Ψ, ft)∏
t φ (zt|πt (ft−1|γ

[i−1],c[i−1]) ,Ψ, ft)

×
dUnif (c∗|cL, cH)

dUnif (c[i−1]|cL, cH)

dG
(
γ∗|
(
γ[i−1]

)2
/∆γ, γ

[i−1]/∆γ

)

dG
(
γ[i−1]| (γ[i−1])

2
/∆γ, γ[i−1]/∆γ

) ,

γ[i] represents the last accepted value of γ, dUnif (.) is the uniform pdf, and dG (.) is the

gamma pdf.

A.5 Drawing β, and Λ conditional on Θ−β,Λ, zd,T , ft and xT

In a standard FAVAR, the factors can be drawn by a number of methods including the

Kalman filter and the factor loadings are conjugate normal. In our case, we have two

issues that can complicate estimation. First, because the composition of the vector of data

determining the factor is unknown, we must sample the inclusion indicators, loadings and

factors jointly. This joint draw requires a Metropolis step. Second, because the factors also

affect the regimes through the transition equation, the state-space representation is nonlinear

and a standard Kalman filter cannot be used.
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The joint draw proceeds as follows. Our plan is to draw Λ via a reversible-jumpMetropolis

step; however, a new candidate Λ∗ invalidates the β from the previous draw. Thus, it is more

efficient to draw β and Λ jointly. Define the joint proposal density, q (β∗,Λ∗), as

q (β∗,Λ∗) = q (β∗|Λ∗) q (Λ∗) .

First, we draw a set of inclusion candidates, Λ∗, from q (Λ∗). Then, conditional on these

candidates, we draw a candidate factor loading, β∗, from q (β∗|Λ∗). This allows us to simplify

the acceptance probability of the joint candidate.

A.5.1 Drawing the Inclusion Indicator Candidate

The financial factor may be sensitive to small shocks in the financial variables because of the

nonlinearities in the transition function, making variable selection important. Let Λ[i−1] =
[
λ
[i−1]
1 , ..., λ

[i−1]
Nx

]
represent the last iteration’s draw of the matrix of inclusion indicator with

λ[i−1] ∈ {0, 1}. We draw an index candidate, n∗, from a discrete uniform with support 1 to

Nx. The candidate Λ
∗ is then

Λ∗ =
[
λ
[i−1]
1 , ..., λ

[i−1]
n−1 , 1− λ

[i−1]
n

, λ
[i−1]
n+1 , ..., λ

[i−1]
Nx

]
,

which essentially turns the n∗ switch on and off.

A.5.2 Drawing the Loading Candidate

Conditional on the factors and variances, the factor loadings can be drawn from a normal

posterior given the normal prior, N (b0, B0). Moreover, because the x
′s are assumed to be

orthogonal conditional on the factors, we can draw the candidate loadings one at a time:

β∗
n
∼ N (bn,Bn), where

bn = B
−1
n

(
B−10 b0 + σ

−2
n
f ′
T
xnT

)
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and

B−1n = B−10 + σ−2n f
′

TfT .

A.5.3 Accepting the Draw

Once we have a set of proposals, we accept them with probability

An,γ = min

{

1,
|B∗|1/2

|B|1/2
exp

(
1
2
b∗B∗−1b∗

)

exp
(
1
2
bB−1b

) π (Λ∗)

π (Λ[i−1])

q
(
Λ[i−1]

)

q (Λ∗)

}

, (10)

where b∗ and B∗ are defined and bn and Bn are defined for Λ
[i−1] and π (.) is the value of

the prior.

A.6 Drawing the Factor

To implement the extended Kalman filter, we rewrite the model in its state-space represen-

tation. The state variable is ξt = y
p
t as defined above; let Yt = [z

′

t,x
′

t]
′. Then,

Yt = Hξt + et,

ξt = G
(
ξt−1

)
+ vt,

where

H =






INz+1 0Nz×1 0Nz×Nc

0Nx×Nz+1 Λ� β 0Nx×Nc




 ,

et =
[
0′Nz×1,u

′

t

]
′

, vt =
[
ε′t,0

′

(Nc+1)×1

]
′

, Nc = (Nx + 1) (P − 1), Ete
′

tet = R and Etv
′

tvt = Q.

Note that, in general, both Q and R will be singular. The function G (.) is

G
(
ξt−1

)
= [1− πt (ft−1; γ, c)]A1 (L) + (πt (ft−1; γ, c))A2 (L)]yt−1,
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which is nonlinear in the state variable.

We can then draw ξ
T
∼ p

(
ξ
T |T ,PT |T

)
which is obtained from the extended Kalman filter

(EKF). The EKF utilizes a (first-order) approximation of the nonlinear model. The EKF,

then, uses the familiar Kalman prediction and update steps to generate the posterior distri-

butions for the state variable, ξ
t
∼ p

(
ξ
t|t,Pt|t

)
. The distribution ξ

T−1 ∼ p
(
ξ
T−1|T ,PT−1|T

)

is obtained via smoothing and preceding periods are drawn recursively.

A.7 Drawing σ2 conditional on Ψ−σ2,ZT and XT

Given the inverse gamma prior, the measurement variances can be drawn from an inverse

gamma posterior, σ−2
i
∼ Γ (ωi,Wi), where

ωi =
1

2
(ω0 + T ) ,

Wi =
1

2

(
W−1
0
+ uitu

′
it

)
,

and

uit = xit − Λift.

A.8 Drawing Ω1 conditional on Θ−Ω1, fT , zd,T and xT

Under the assumption of homoskedasticity, Ωt = Ω is constant and can be drawn from a

conjugate inverse Wishart distribution with scale and shape determined, in part, by the

number of observations and the sum of squared errors.

Under the assumption of regime-dependent heteroskedasticity, the draws of Ω1 and Ω2

are no longer conjugate and each requires Metropolis-in-Gibbs steps. Here, we describe

the draw for Ω1; the draw for Ω2 is similar and can be inferred. To obtain a draw for

Ω1 conditional on Ω2 and the other parameters, we draw a candidate Ω̂1 from an inverse
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Wishart distribution. Rewrite (2) in terms of the residual as

εt = yt − [(1− πt (ft−1))A1(L) + πt (ft−1)A2(L)]yt−1.

Then, given the priorW (ν0, D0) forΩ
−1
1 , the candidate is drawn fromΩ

−1
1 ∼ W

(
D
2∆Ω1
2
, ν

2∆Ω1

)
,

where

ν = ν0 +
∑

t

I(ft−1 < c) ,

D = D0 +
∑

t

(
1− πt

(
ft−1; γ

(i), c(i)
))
εtε

′

t
,

and ∆Ω1 is a tuning parameter. The draw is then accepted or rejected similar to the step

above.
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Table 1. Financial Variables included in the FASTVAR estimation

Description Sample
10y annual growth rate of the 10-year treasury rate 1981M9-2012M9

FFR3msp fed fund rates — 3-month tbill rates 1981M9-2012M9

2y3msp 2-year treasury rates — 3-month tbill rates 1981M9-2012M9

10y3msp 10-year treasury rates — 3-month tbill rates 1981M9-2012M9

baa10ysp Baa corporate rates — 10-year treasury rates 1981M9-2012M9

30mort10ysp 30-year mortgage rates — 10-year treasury rates 1981M9-2012M9

tedsp TED spread 1981M9-2012M9

creditsp Citibank corporate credit spread 1981M9-2012M9

exchrate annual growth rate of the exchange rate 1981M9-2012M9

wilrate annual growth rate of the Wilshire 5000 1981M9-2012M9

houseinf annual growth rate of the national house index 1981M9-2012M9

creditrate annual growth rate of bank credit of commercial banks 1981M9-2012M9

compaperrate annual growth rate of commercial paper outstanding 1981M9-2012M9

moneyrate annual growth rate of money stock (zero maturity) 1981M9-2012M9

nfibsurv %credit was harder to get than last time 1981M9-2012M9

migoodsurv %good-%bad conditions for buying large goods 1981M9-2012M9

mihousesurv %good-%bad conditions for buying a house 1981M9-2012M9

miautosurv %good-%bad conditions for buying a car 1981M9-2012M9

vix VIX (monthly average) 1990M1-2012M9

jumbospread Jumbo rates — 30-year conventional rates 1998M6-2012M9

OIS spread 3-month libor rates — overnight index swap rates 2001M12-2012M9

highyieldspre High-yield corporate rates — Baa corporate rates 1997M1-2012M9

oil price price of oil relative to a 2-year moving average 1981M9-2012M9

Note: The table lists the data used in the estimation of the factor, eq. (5). Sources: 1 FRED 2 Citi Global

Markets via Haver Analytics 3 CoreLogic via Haver Analytics 4 NFIB via Haver Analytics 5 University of

Michigan via Haver Analytics 6 Bloomberg/ Haver Analytics7 FRED/ Bank of England via Haver Analytics
8FRED/ Merrill Lynch via Haver Analytics
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Table 2. Posterior Inclusion Probabilities for Covariates (full sample)

FASTVAR
10y 0.65

FFR3msp 0.43

2y3msp 0.40

10y3msp 0.40

baa10ysp 0.97
30mort10ysp 0.82

tedsp 0.62

creditsp 0.70

exchrate 0.48

wilrate 0.89
houseinf 0.65

creditrate 0.39

compaperrate 0.71

moneyrate 0.49

nfibsurv 0.69

migoodsurv 0.84
mihousesurv 0.55

miautosurv 0.44

vix 0.74

jumbospread 0.66

OIS spread 0.67

highyieldspre 0.96
oil price 0.49

Note: The table shows the posterior inclusion probabilities based on 15,000 draws of the posterior distrib-

ution (25,000 draws with 10,000 discarded) for each of the data series listed in Table 1 for the factor estimated

from eq. (5), jointly with eq’s (2) and (3), the baseline FASTVAR model. Bold numbers represent series
with posterior probability of inclusion greater than 84 percent.
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Table 3. Bayesian Information Criteria for Different Specifications

BIC
FASTVAR 3760.8

FASTVAR_r 4004.3
FASTVAR no cov selection 4508.4
FAVAR 5136.2
STVAR with Chicago FCI 7591.2
STVAR with EBP 7361.2
Note: The table shows the values of the average BIC across the 15,000 saved Gibbs iterations for altern-

tative specifications. In each case, the likelihood is computed with the VAR equations for IP growth and

inflation to ensure that it is comparable across specifications. Penalization changes across specifications

depending on the number of parameters required to describe IP growth and inflation dynamics. The FAST-

VAR is the baseline model with variable selection, eq. (2), (3), and (5). FASTVAR_r is the same model
with zero restrictions on the feedback from the macro variables to the factor. FASTVAR no cov selection

is the baseline model estimated with all variables in Table 1 included with probability 1, eq. (2), (3), and
(4). FAVAR is the linear VAR with an estimated factor and no variable selection, eq. (1) and (4). STVAR
with Chicago FCI and STVAR with EBP are the smooth transition VARs (eq (2) and (3)) estimated with
observed factors. Bold number represent the lowest BIC.
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Table 4. Posterior Inclusion Probabilities: Alternate Samples

FASTVAR_2007 FASTVAR
10y 1.00 0.65

FFR3msp 0.30 0.43
2y3msp 0.00 0.40
10y3msp 0.00 0.40
baa10ysp 1.00 0.97

30mort10ysp 1.00 0.82
tedsp 0.40 0.62
creditsp 0.96 0.70
exchrate 0.00 0.48
wilrate 1.00 0.89
houseinf 0.80 0.65
creditrate 1.00 0.39

compaperrate 1.00 0.71
moneyrate 0.00 0.49
nfibsurv 1.00 0.69

migoodsurv 1.00 0.84
mihousesurv 0.78 0.55
miautosurv 0.36 0.44

vix 0.96 0.74
jumbospread 0.89 0.66
OIS spread 0.86 0.67
highyieldspre 1.00 0.96
oil price 0.00 0.49

Note: The table shows the posterior inclusion probabilities based on 15,000 draws of the posterior dis-

tribution (25,000 draws with 10,000 discarded) for each of the data series listed in Table 1 for the factor

estimated from eq. (5), jointly with eq’s (2) and (3), the baseline FASTVAR model. In this table, we use
two samples: FASTVAR is the baseline full sample and FASTVAR_2007 is the sample ending in 2007M12.

Bold numbers represent series with posterior probability of inclusion greater than 84 percent.

38



Figure 1: Financial Factor Estimates. The figure shows estimates using the unrestricted

FASTVAR model, eq. (2), (3), and (5), estimated using an unbalanced panel, 1981M9 to 2012M9.
The principal components factor is estimated with a balanced panel, leading to a shorter sample,

2001M12 to 2012M9. The 68-percent error bands for the unrestricted FASTVAR are shaded in

gray. The figure also marks four significant financial stress events.
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Figure 2: Transition Function over time and NBER recessions. The figure shows the

values of the transition function, eq. (3), for the baseline FASTVAR. The NBER recessions are

shaded in gray.

40



Figure 3: Alternative Financial Stress Regimes. The figure shows the values of the

transition function, eq. (3), estimated from the STVAR model with an exoegenous factor: the

Chicago FCI (top panel) or the EBP (bottom panel). The NBER recessions are shaded in gray.
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Figure 4: Posterior Values of the Financial Stress Regime Weights. The two panels
show the mean value of the posterior distributions of the transition function, eq. (3), for the
baseline unrestricted FASTVAR (top panel) and the restricted FASTVAR (bottom panel), where

the VAR coefficients on the lagged macro variables in the factor equation are set to zero. The

68-percent error bands are shown shaded in grey.
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Figure 5: Time-varying Volatilities. The figure shows the square root of the diagonal el-

ements of the posterior mean of the variance-covariance matrix for the FASTVAR (std) and the

restricted FASTVAR (std_rest) specifications. The first panel shows the value for the IP growth

equation, the second panel shows the value for the CPI inflation equation, and third is for the factor

equation.
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Figure 6: Impulse responses to a financial factor shock. The figure shows the generalized
impulse responses, eq. (6), to a shock to the financial factor that occurs in the low stress regime
(denoted by “_1” in black with light grey error bands) and that occurs in the high stress regime

(denoted by “_2” in grey with dark grey error bands). The responses are computed from the

baseline FASTVAR, eq. (2), (3), and (5). The responses of IP growth are shown in the top

panel and the responses of CPI inflation are shown in the bottom panel. The generalized impulse

responses are computed with 200 draws from the historical shock distribution for every hundredth

draw from the Gibbs sampler.
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Figure 7: Impulse responses to a exogenous financial shock. The figure shows the

generalized impulse responses, eq. (6), to a shock to an exogenous financial factor that occurs in
the low stress regime (denoted by “_1” in black with light grey error bands) and that occurs in

the high stress regime (denoted by “_2” in grey with dark grey error bands). The responses are

computed from the STVAR, eq. (2) and (3), using the Chicago FCI as an exogenous financial
factor. The responses of IP growth are shown in the top panel and the responses of CPI inflation

are shown in the bottom panel. The generalized impulse responses are computed with 200 draws

from the historical shock distribution for every hundredth draw from the Gibbs sampler.
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Figure 8: Probabilities of Financial Stress Regime during 2007-2010. The figure

shows in-sample (F) and pseudo-out-of-sample (RT) estimates of the transition function, eq. (3),
of the financial stress regime for the Great Recession period starting September 2007 and ending

April 2010. The solid lines are the in-sample estimates of the transition function for the restricted

(black line) and the unrestricted (grey line) models. The dashed lines are the pseudo-out-of-sample

estimates of the transition function for the restricted (black dashed) and the unrestricted (grey

dashed) models. In the pseudo-out-of-sample estimates, the line reports the value of the weights

for period t estimated with all data prior to period t.
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Figure 9: Posterior Inclusion Probabilities for Covariates during 2007-2010. The

figure shows the posterior inclusion probabilities estimated from eq. (5) for select variables for
samples ending in the period from 2007M9 to 2010M4. The posterior inclusion probability is the

mean of the estimate of the inclusion dummy across Gibbs iterations computed using data up to t.
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Figure 10: Results for the FASTVAR model with the Fed rate. Panel A shows the

posterior means of the transition function for the FASTVAR model, eq. (2), (3), and (5), for the
benchmark model (black line) and for the model where the fed fund rates is included in the VAR

(grey line). The NBER recessions are shaded in grey. Panels B-D show the generalized impulse

responses, eq. (6), of IP growth (panel B), CPI inflation (panel C), and the fed funds rate (panel
D) to a shock to the factor that occurs in the low stress regime (denoted by “_1” in black with

light grey error bands) and that occurs in the high stress regime (denoted by “_2” in grey with

dark grey error bands). The generalized impulse responses are computed with 200 draws from the

historical shock distribution for every hundredth draw from the Gibbs sampler.
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Figure 11: Transition Function over time computed with data up to 2007M12 and
NBER recessions. The figure shows the values of the transition function, eq. (3), for the
baseline FASTVAR estimated with data ending before the Great Recession (1981M9 to 2007M12).

The NBER recessions are shaded in gray.
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