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Abstract
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chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical
prior, which allows us to incorporate series-level covariates that may influence and explain
how the series are grouped. Using international business cycle data, we find our country
clusters differ in important ways from those identified by geography alone. In particular,
we find that similarities in institutions (e.g., legal systems, language diversity) may be
just as important as physical proximity for analyzing business cycle comovements.
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1 Introduction

Previous studies have documented evidence of correlation in business cycles across countries

[e.g., Engle and Kozicki (1993) and Clark and Shin (2000) among many others]. But what

makes certain countries share common movements in their business cycles? In particular, do

similarities in some country characteristics (e.g., industrial similarity, proximity, language,

trade) lead to correlation in those countries’ business cycles? Empirical models comparing

business cycles across countries generally take one of two approaches to explaining this cor-

relation: (1) Country cycles are estimated separately and then compared or (2) cycles are

estimated jointly with numerous assumptions made on the correlation structure.

For the most part, these approaches are motivated by the need to reduce complexity and

potential parameter proliferation. The former approach leaves the country combinations unre-

stricted (i.e., any two countries’ cycles can be correlated), whereas the latter explicitly imposes

or excludes the correlation. Depending on the econometric techniques used to compute the

cycle, one approach may be more suitable than the other. For example, the first approach

might define a country’s cycle based on a Markov-switching model or a trend-cycle decom-

position, methods typically reserved for smaller systems of equations.1 The second approach

might define a common cycle via a factor model, where the factor loadings reflect the degree

of correlation among country cycles [e.g., Bai (2003); Bai and Ng (2002); Forni, Hallin, Lippi,

and Reichlin (2000, 2005); and Stock and Watson (2002a,b)].

In a series of recent papers, Kose, Otrok, and Whiteman (2003, 2008; henceforth KOW)

propose a factor model with a block structure for the factor loadings.2 This block structure

provides a straightforward interpretation that may be lacking in standard factor models.

Countries within a block have cycles that are correlated through a regional factor, whereas

countries in different blocks are correlated only through a global factor. The standard factor

model can emulate a block factor model if the loadings on the regional factors are close to

zero. Even in that case, however, the standard factor model allows for some cross-country

1Exceptions are Hamilton and Owyang (2012) and Kaufmann (2010), who use approaches similar to ours
in this paper in a Markov-switching environment.

2See also Boivin and Ng (2006); Onatski (2007); and Hallin and Liška (2011).
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correlation for countries outside its block, whereas a block factor model remove cross-block

correlation altogether. The significant advantage of the block factor model is that it allows

a larger number of less-pervasive (regional) factors, only a few of which affect any particular

country. Thus, correlations across a small number of countries may be identified in block

factor models but missed in standard factor models, in which the correlation is swamped by

the large cross section. The disadvantage of the block factor structure is that the blocks (or

clusters) are generally predetermined, meaning significant ex ante assumptions must be made

about which countries’ cycles are correlated.

In this paper, we adopt the block factor approach but relax the assumption that the

blocks are known ex ante. The model is similar to KOW with an additional membership

indicator determining to which block a country belongs. We assume block membership is a

multinomial choice–i.e., a country cannot belong to more than one block. This multinomial

approach to the block structure lends itself to estimation with Bayesian methods. In the

simplest execution of the multinomial approach, we can assume either a uniform or Dirichlet

prior on the membership indicator, giving the model the appearance of a clustering algorithm.

For the uniform prior, cluster membership depends solely on the business cycle characteristics

of the country’s data compared with the other members of the cluster. For the Dirichlet prior,

increasing the size of the cluster increases the ex ante probability a country is sorted to it.

On the other hand, the prior probabilities can be determined by country characteris-

tics. To that end, we adopt a multinomial logistic prior on cluster membership [see also

Frühwirth-Schnatter and Kaufmann (2008); Hamilton and Owyang (2012)] that allows us

to (1) incorporate country-specific characteristics (e.g., location, industrialization, trade pat-

terns) and (2) test competing hypotheses about which influences determine the countries that

comove. Once the ex post country groupings are determined, potential commonalities within

groups could be useful in determining important features that any successful model of the

international business cycle should possess. For example, if we find that common language is

a better determinant of cross-correlation than physical distance, models of trade may consider

common language rather than geography as the determinant of iceberg costs.
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By being agnostic about block membership, we allow the data to cluster based on both

their business cycle features and on country-specific characteristics. For example, countries

could form groups based on their proximity, coordinated policies, and/or structural innova-

tions. In this sense, we are not a priori guided by any one particular theoretical model.

In Monte Carlo experiments with simulated data, we draw an obvious conclusion: Em-

pirical results, their economic interpretation, and the degree of confidence we place in them

depend greatly on the specification of the block structure. When the clusters are known (and

correct), the standard KOW block factor model performs well. However, we find that small

ex ante misspecifications of the block structure can lead to dramatic deviations from the true

model and substantial reductions in fit.

Our empirical application extends KOW’s study of cross-country correlations. Using an-

nual gross domestic product (GDP) growth rates for 60 countries, we find that although some

regional/geographic correlation does exist, there is also evidence against the prevailing belief

that geographic proximity is the major determinant of cross-country comovements. We find

evidence of only three clusters. The first consists of many of the industrialized nations: Japan

and most of Europe, excluding the U.K. and Denmark. A second cluster is composed of the

U.K. and its former British Commonwealth countries: Australia, Canada, India, New Zealand,

and the U.S., among others. A third cluster consists of South American countries, Mexico,

and a few other countries. We find that–as opposed to physical distance–linguistic diversity

and legal institutions are among the country-level determinants of this “regional” clustering.

We also find that allowing the data to determine the clustering leads to substantially higher

contribution of the cluster (or regional) factor to the overall volatility of output. Moreover, we

find that endogenously determining the clusters improves the quasi-out-of-sample properties

of the model.

The balance of the paper is organized as follows: Section 2 presents the endogenous

clustered factor model. Section 3 outlines the Bayesian techniques we use to estimate the

model. In this section, we focus on estimation of the model with a uniform prior on cluster

membership. Section 4 presents some Monte Carlo evidence showing how well our algorithm
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identifies the clusters and the consequences of exogenously misidentifying them. Section 5

presents results from the model with international business cycle data. Section 6 summarizes

and concludes.

2 Empirical Model

Suppose that we have a panel of N series, yn = [yn1, ..., ynT ], each of length T . Correlation

in the panel can be sorted into common movements that affect all series and those that affect

only a few series. We refer to the former as global factors and to the latter as cluster factors

(or regional factors). Suppose there is a single global factor and there are M clusters for

which a series yn belongs to a single cluster i; then, ynt can be expressed as a function of the

global factor FGt; a single cluster factor Fit; an intercept βn0; and an error term, εnt:

ynt = βn0 + βnGFGt + βniFit + εnt, (1)

i = 1, . . . ,M , t = 1, . . . , T , and n = 1, . . . , N , where M � N and βnG and βni are the

factor loadings.3 We allow the error terms, εnt, to be serially correlated, following an AR(pε)

process:

εnt = ψn(L)εnt−1 + εnt,

where εnt ∼ N
(
0, σ2n

)
and E [εntεmt] = 0 for allm 6= n. We assume that each factor (including

the global factor) follows an AR(pF ) process of the form:

Fit = φi (L)Fit−1 + eit, (2)

where φi (L) is a polynomial in the lag operator and eit ∼ N
(
0, ω2

i

)
, where we normalize

ω2
i
= 1, as is common in the literature.

The restriction that each series can belong only to one cluster gives the panel description

3KOW estimate their model with a vector of country-level data, allowing them to include a country-level
factor. Adding this feature or increasing the number of global factors is straightforward. We discuss the choice
of M below.
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of (1) a block structure that can be interpreted as regions.4 For example, if the ynt’s are

country GDP, the interpretation of (1) is that country n belongs to the ith region. The

diagonality of the variance-covariance matrix implies that comovements between series not in

the same cluster arise solely from the global factor. Series within the same cluster, on the

other hand, can comove via the global factor or the cluster factor. If we believe that some

shocks affect all of the series while other shocks remain confined to the region or sector from

which they originate, the model provides a framework with which we can perform regionally-

or industrially-differentiated analysis [see Moench, Ng, and Potter (2013)].

In (1), we have imposed that series n belongs to cluster i, but what if we are unsure which

series should move together? KOW assume that countries on the same continent comove;

Moench, Ng, and Potter impose that within-sector data comove. While geographic proximity

or industrial similarity may be a reason for the comovement between two countries, other

causes (e.g., trade, demographics, level of industrialization) may also determine comovement.

We, therefore, augment (1) to allow the clusters to be determined endogenously.

In endogenous clustering, the data choose the groupings.5 We define a cluster indicator,

γni = {0, 1}, that signifies whether series n belongs to cluster i, retaining the restriction that

a series can only belong to a single cluster–i.e.,
∑
M

i
γni = 1. Then, we have

ynt = βn0 + βnGFGt +
M∑

i=1

γniβniFit + εnt. (3)

The model preserves the restrictions on the comovement of the series; series in different

clusters comove only through the global factor, while series belonging to the same cluster can

comove apart from the global factor. However, in contrast to (1), we can now estimate the

membership indicator, γni, thereby allowing the data to determine the composition of the

clusters.

4The restriction that each series belongs to a single cluster is straightforward to relax [see Frühwirth-
Schnatter and Lopes (2010) and the sparse factor model of Carvalho, Lopes, and Aguilar (2010)].

5Lin and Ng (2012) estimate a panel threshold model and define clusters by the similarity of the coefficients.
Bonhomme and Manresa (2015) use a “grouped fixed-effects” estimator that minimizes a least-squares criterion
with respect to all possible groupings of the cross-sectional units. Our method’s main idea is similar to theirs,
but does not need to visit all possible clusters. Instead, we create a dynamic mixing environment that coverges
to the highest likelihood clusters.
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While KOW imposed a geographic structure to their clusters, estimation of the cluster

membership allows us to incorporate other information that might lead countries to respond

to the same common factor. For example, Norrbin and Schlagenhauf (1996) estimated the role

of industrial similarity in international business cycles but find a limited role for industry-

specific shocks in explaining the forecast-error variance of output across countries. McKinnon

(1982) suggested coordinated monetary policies as a factor for synchronous cross-country busi-

ness cycles, but Clark and van Wincoop (2001) found limited roles for both monetary and

fiscal policies in the synchronization of business cycles across European countries. Finally,

correlation between macroeconomic aggregates across countries could be due to unobservable

innovations–e.g., common international shocks or country-specific shocks having spillover ef-

fects. Using structural vector autoregressions, Ahmed, Ickes, Wang, and Yoo (1993) concludes

that spillovers from a country-specific labor supply shock are more important than common

shocks in generating international business cycles.6

We can incorporate this additional information by assuming a multinomial logistic prior

for the cluster membership indicator, γni. Suppose there exists a vector, zni, of variables that

may influence whether a series n belongs to cluster i. We assess the prior probability that

series n belongs to cluster i as

Pr [γni = 1|zni] =






exp
(
z
′

ni
δi

)
/
[
1 +

∑
exp

(
z
′

ni
δi

)]
i = 1, ...,M − 1

1/
[
1 +

∑
exp

(
z
′

ni
δi

)]
i =M

, (4)

for n = 1, ..., N and where we have normalized δM = 0 for identification. Note also that the

vector, zni, need not be composed of the same variables for each cluster i. As in Hamilton

and Owyang (2012), we can think of the prior hyperparameters as population parameters

signifying the clusters’ relationships.

6See Baxter and Kouparitsas (2005) for a list of other potential determinants of business cycle comovements
across countries.
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3 Estimation

The endogenously clustered factor model outlined in the preceding section can be estimated

using Bayesian techniques [see Gelfand and Smith (1990); Casella and George (1992); Carter

and Kohn (1994)]. Bayesian methods allow us to estimate cluster membership directly using

a reversible-jump Metropolis-Hastings step in the Gibbs sampler.7

The sampler is an MCMC algorithm that draws from the conditional distributions of

each parameter block conditional on the previous draws from the remaining parameters. The

sequence of draws from the conditional distributions converges to the joint posterior. Let

Y represent the data, Θ represent the full set of model parameters, and F represent the

full set of factors. The model parameters and factors can be drawn in six blocks: (1) the

group membership indicators, γ, jointly with the intercept and the factor loadings, β; (2) the

innovation variances, σ2; (3) the innovation AR parameters, ψ; (4) the factors, F; (5) the set

of factor AR parameters, φ; and (6) the logistic prior slope parameters, δ, a latent variable, ξ,

and the variance of the logistic, λ. After initializing the sampler, the posterior distributions

are computed with 10,000 iterations after 30,000 iterations are discarded for convergence.

For each series, the prior for factor loadings is normal, βn = [βn0, βnG, βni]
′
∼ N (b0,B0),

and the innovation variances are inverse gamma, σ−2n ∼ Γ (ν0,Υ0). The factor and measure-

ment error AR parameters also have normal priors, φ ∼ N
(
v0,V

−1

0

)
and ψ ∼ N

(
w0,W

−1

0

)
,

respectively. The factors are assumed to have unit innovation variances. The logistic slope pa-

rameters have normal priors, δ ∼ N (d0,D0). The hyperparameters for the prior distributions

are given in Table 1.

The primary difference between our paper and KOW lies in the joint draw of the member-

ship indicator and the factor loadings. We provide details of this draw and a brief description

of the draw of the factors. The draws of the variance, both sets of AR parameters, and all of

the logistic parameters are straightforward and included in the Appendix.

7 In principle, one could estimate each cluster combination model using classical techniques and determine
the final cluster composition via some model selection criteria. However, this would mean estimating and
comparing a very large number of possible models.
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3.1 Generating γ,β|Θ−γ,β,F,Y

For efficiency reasons, we draw βn and γn jointly for each n. The joint draw of β and γ can

be written as

q
(
β∗n, γ

∗

n|Θ−γ,β,F
)
= q (γ∗n|γn,Θ−γ,β,Y,F)π

(
β∗n|Θ−γ,β, γ

∗

n,Y,F
)
,

where we draw a candidate γ∗n from q (γ∗n|γn,Θ−γ,β,Y,F), which may or may not depend

on the past (accepted) value of γn. Then, conditional on the candidate γ
∗

n, we draw a candi-

date β∗n from its full conditional distribution π
(
β∗n|Θ−γ,β, γ

∗

n,Y,F
)
. This joint pair is then

accepted or rejected.

Formally, letX∗n = [1T ,FG, F̃γ
∗

n], where 1T is a (T × 1) vector of ones and F̃ = [F1, ...,FM ]

is the collection of cluster factors. Let X
∗

n and Y
∗

n represent the quasi-difference of X
∗

n and

Yn [see Chib and Greenberg (1994)]. Then, the candidate β
∗

n is drawn from

βn|Θ−β
n
,γ
n
, γ∗n,F,Y ∼ N (b∗n,B

∗

n) , (5)

where B∗n =
(
B0 + σ

−2
n X

∗′

nX
∗

n

)
−1

, b∗n = B
∗

n

(
B
−1

0
b0 + σ

−2
n X

∗′

nY
∗

n

)
.

Since we are drawing the βn’s from their full conditional densities — i.e., from π (β
∗

n|γ
∗

n,Θ−β,γ ,F,Y),

the value of β∗n does not appear in the acceptance probability [see Troughton and Godsill

(1997)]. In this case, for each n, the acceptance probability is

An,γ = min

{
1,
|B∗n|

1/2

|Bn|
1/2

exp
(
1

2
b
∗

nB
∗−1
n b

∗

n

)

exp
(
1

2
bnB

−1
n bn

) π (γ
∗

n)

π (γn)

q (γn|γ
∗

n)

q (γ∗n|γn)

}
, (6)

where b∗n and B
∗

n are defined as above and bn and Bn are defined for γn, the value held over

from the past draw.

To close this portion of the algorithm, we need to supply a proposal density for γn. We

choose a symmetric density in which we draw a random element of γn and set this equal to 1

(setting all other elements equal to 0). The choice of the symmetric proposal makes the last

term in (6) identically 1.8

8Troughton and Godsill (1997) point out that the γ proposal density must allow some nonzero probability
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3.2 Generating F|Θ,Y

The factors are drawn recursively from the smoothed Kalman update densities using the

techniques described in Kim and Nelson (1999). However, the signs of the factors are not

uniquely identified from the loadings (e.g., switching the signs on both a factor and its loading

produces an observationally equivalent system). For identification, KOW normalize the sign

of the first factor loading in each group. Unlike KOW, we cannot restrict the sign of the first

factor loading in each grouping as the clusters are not a priori known. We can, however,

impose a sign on the first element (period 1) of each factor to resolve the sign identification

issue. In some cases, this is not sufficient to avoid label switching (i.e., cases in which the

sampler alternately draws F and −F ). Thus, we also impose a normalization that selects

either F or −F depending on which is closest to the previous draw in mean squared distance.

The draw of the factors is described in detail in Appendix A.

3.3 Choosing M

Choice of the optimal number of clusters is treated as a model selection problem. For a given

support of the discrete number of clusters, M ∈
{
M,M

}
, we estimate the full model and

choose M based on a minimum entropy criteria:

E =

N∑

n=1




log(σ2n) +

(
Y
∗

n −X
∗

nβn

)
′
(
Y
∗

n −X
∗

nβn

)

σ2n




 , (7)

where Y
∗

n and X
∗

n are the quasi-differenced values of the Yn and Xn, respectively.

4 The Effect of Misspecification

Allowing the data to determine the clusters rather than setting them in advance highlights

a trade-off between the estimation uncertainty and potential misspecification. One would,

therefore, want to evaluate the potential risks of each before proceeding with the difficult task

of revisiting the same model. That is, the probability that the candidate γ∗ is equal to the last iteration’s γ
must be nonzero. If γ∗ = γ, the acceptance probability is 1, but we still redraw β.
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of estimating the clusters. To this end, we perform a set of Monte Carlo (MC) experiments

designed to determine the extent to which the clusters must be misspecified to outweigh the

uncertainty of estimating them.

We conduct 1000 MC replications by sampling 60 series of T = 50 evenly divided among

5 clusters. We generate the synthetic data following the system described with equations 1

and 2 with factors and error terms following an AR(3) process. The parameters used in the

process are listed in the appendix, tables 12, 13 and 14. We begin by estimating the model

with the (exogenous) correct cluster definitions and gradually increase the level of misspecifi-

cation. We measure misspecification by the percentage of series exogenously allocated to the

wrong cluster. Thus, a 1.7 percent misspecification refers to one series allocated to the wrong

cluster with all other series correctly specified. We then estimate the clusters endogenously

and compute an entropy measure (7) for each case. Higher entropy scores reflect poorer

performance with relative entropy related to the familiar likelihood ratio statistic.9

Table 2 reports the results of the MC experiments. As expected, less misspecification is

better than more misspecification. Interestingly, knowing the truth (zero misspecification) is

statistically equivalent to estimating the truth (endogenous clustering), with the differences

in the entropy scores likely due to variations in the small sample performances.10 Thus, we

conclude that in cases in which the truth is known, imposing the cluster composition is first

best. However, if the cluster composition is not certain, allowing the data to determine the

clusters reduces the risk of misspecification. It is important to note that, in these experiments,

we give the best chance to pre-specification of the clusters by correctly setting the true number

of clusters–that is, the only source of potential misspecification is incorrectly assigning a series

n to the wrong cluster.

9The entropy measure is calculated for each Gibbs iteration and the mean over all iterations is reported.
Each MC replication is estimated with 40000 Gibbs iterations, with the first 30000 discarded for convergence.
10We also want to point out that when the simulated data was endogenously estimated for the 60 series

(Obviously we know which series truely belongs to which cluster and that’s how we conduct the comparisions.)
the series correctly picked their clusters and hence it explains why we observe such lower entropy. It was almost
equivalent to knowing the true clustering.
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5 Re-evaluating International Business Cycles

We now reconsider the model proposed in KOW, in which geography is the sole determinant of

cross-country comovements, by augmenting the model with a hierarchical prior that includes

variables that may affect trade between countries.11 By doing this, we can assess the sources

of business cycle comovements.

5.1 Data

Our measure of business cycle activity is the annual constant-price chain-weighted real GDP

growth rate (computed as the difference in the log of real GDP) from the 6.3 version of the

Penn World Tables (PWT) [Heston, Summers, and Aten (2009)]. To maintain comparability,

we choose the same 60 countries located in 7 regional blocks as in KOW.12

In addition to the real GDP data, our logistic prior requires covariate data, Zi. Our

covariate dataset includes domestic and international variables as well as indices of the dif-

ferences in legal and linguistic institutions. We have a total of seven covariates that inform

the logistic prior: (1) the degree of economic openness, defined as the ratio of imports and

exports to GDP; (2) investment share of real GDP; (3) an index of conflict resolution and

sophistication of the legal system as captured by the manner in which lower courts facilitate

landlords’ collection of checks (and remedies for bounced checks); (4) an index of language

diversity within each country; (5) an index of production dispersion relative to the rest of

the world; (6) an index of export dispersion from each country’s exporting partners; and (7)

a similar index of import dispersion from each country’s importing partners. The covariate

data are summarized in Table 3.

Openness measures the size of trade as a fraction of GDP. This variable proxies the extent

of a country’s dependence on foreign economies and exposure to external shocks, without

controls for the types of goods traded or the identities of trading partners, allowing us to

11KOW’s business cycle data include other series in addition to real GDP, allowing them to estimate country
factors. We focus on the comovements across countries by restricting the model to a single business cycle
indicator. Extension to include country factors is left for future research.
12We use a later version of the PWT to extend our time sample. Ponomareva and Katayama (2010) discuss

the hazards of comparing studies using different versions of the PWT. Table 6 in the appendix shows the 60
countries in the estimation along with the regional groupings imposed in KOW.
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determine whether countries cluster based on the (relative) extent of their (direct) exposures

to international shocks. The investment share of GDP is meant to capture the degree of

industrialization; similar levels of industrialization may make countries susceptible to similar

shocks inducing comovements.

The indices in (3) and (4) are included to test the extent to which institutions matter for

clustering. Our institutional variables are the level of formality of the civil court system and

the degree of linguistic diversity. Djankov, La Porta, Lopez-de-Silanes, and Shleifer (2003)

construct the lower court system’s formalism index in (3) which “measures substantive and

procedural statutory intervention in judicial cases at lower-level civil trial courts” (p. 469).

We hypothesize that trade flow between countries with similar conflict resolution processes in

civil courts could be higher as individuals may prefer to form relationships in countries with

familiar legal setups.

The ethnolinguistic index in (4) is from La Porta, Lopez-de-Silanes, Shleifer, and Vishny

(1999) and measures the degree of language diversity, the probability that two randomly

selected individuals in a given country speak different languages, do not speak the official

language, or do not speak the most widely used language.

Finally, Baxter and Kouparitsas (2003) construct the indices in (5)-(7) to analyze how

the composition of a country’s production and trade differ from the rest of the world and its

trading partners. These indices are akin to variance measures with the exception that the

export and import dispersions are weighted by sectoral export and import shares. A look at

the trade dispersion indices, (6) and (7), reveals that they capture both the strengths of trading

relations with different countries and the strength in the diversity of goods traded. Baxter and

Kouparitsas find that industrialized nations have dispersions similar to the rest of the world

(the average country) for all three indices, whereas developing countries systematically have

higher values of dispersions. On the trade side, this is consistent with the fact that the bulk

of trade of an industrialized nation is with other industrialized nations, while trade relations

for developing nations are spread more evenly across developed and developing nations. By

including these indices, we are allowing for the possibility that countries form clusters based
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on the similarities in their production structures (in terms of types of goods produced) and/or

on the compositions of their trade (both in terms of the types of goods traded and the trading

partners).

5.2 Full Sample Results

We first determine the optimal number of country-level factors by estimating the model for

M = 3, ..., 7 and evaluating the average entropy for eachM . The model with the highest prob-

ability is the model with three clusters.13 The model with seven clusters–the specification

that nests the one estimated by KOW–has one of the lowest likelihoods of the alternatives

tested. In this case, the algorithm chooses nearly empty clusters at some Gibbs iterations,

suggesting that seven clusters far exceeds the optimal number. Thus, we report the results

for the specification with three regional factors and one global factor.14 Because countries do

not tend to fall into a single cluster, the data do not appear to support more than one global

factor.

Figure 1 plots the median of the global factor along with its 16th and 84th percentiles;

the shaded areas show NBER-defined recession dates defined as a year in which any quarter

was in recession. While the NBER recessions are defined only for the U.S., they serve as

reference points. The global factor roughly represents a world cycle with factor loadings for

most countries being negative; the global factor spikes around 1975, 1982, 1998, and 2001.

With the exception of 1998, these periods are roughly associated with U.S. NBER recessions.

Figure 2 shows the first cluster factor with its 68-percent probability bands and the NBER

recessions. Figure 3 shows the posterior inclusion probabilities for this cluster. The darkest

areas indicate countries which are very likely to be included in this cluster and yellow indicates

countries that are very likely not associated with the cluster. Countries in white are not

13Choosing the optimal number of clusters with Bayes factors yields identical results. In this case, we
estimated the model using a uniform prior for the clusters.
14The average acceptance rates for the MH steps across all iteration and observations are as follows: for γ

draw it is 42%, factor errors, φ, have on average 78% and observation errors, ψ, have on average 71%. Since
the (γ, β ) joint draw includes a random sample draw at each iteration for clusters, the acceptance rate is
expected to be considrably smaller than the regular MH step. In particular, the model proposes a new cluster
randomly at each iteration then accepts or rejects it. It mixes at each step unconditionally which results in
lower acceptance on average.
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included in our sample. Note, in particular, that cluster 1 does appear to demonstrate some

regional/geographic properties. The cluster includes, with high probability, Japan and many

of the countries in Europe. Other European countries–e.g., Iceland and Ireland–belong with

more than 50 percent probability. Brazil, Thailand, and Pakistan also belong with more than

50 percent probability. Not all the European countries, however, appear to belong to this

cluster. In particular, the U.K. and Denmark are excluded.

Figure 4 shows the second cluster factor. This factor clearly appears to decline around

NBER recessions. Figure 5 shows why. The U.S. belongs to this cluster with probability 1;

the cluster also includes Australia, Canada, Hong Kong, India, Malaysia, New Zealand, and

the U.K. with very high posterior probability. Also included in this cluster are Denmark and

many of the sub-Saharan African countries including South Africa.

Figure 6 shows the final factor and Figure 7 shows the composition of its cluster. Again,

the cluster displays some regional/geographic characteristics with some notable exceptions.

The cluster includes with high probability most of the countries in South America, with the

exception of Brazil. Mexico, the Philippines, and a few African countries also belong to this

cluster with high probability.

An explanation of the third cluster can be gleaned from its factor. We see that the 1997

Asian crisis is captured by the factor with the biggest dip in the past 40 years. The 1985

downturn corresponds with Singapore’s economic crisis around that time. In 1985, Singapore

experienced a drop in the demand for its oil and electronic products. Due to Singopore’s

geographical position, serving as a port of processing and transmitting goods, this crisis

severely impacted its trading partners, such as Indonesia, Hong Kong and the Phillipines.

The 2001 slump conincided with the dot-com bust that significantly reduced the exports

which these East Asian-Pacific countries heavily relied upon (open trade and export led GDP

growth are keys to economic development of these Oceanic countries). The region experienced

lower growth rates and decelerated export during the dot-com bust. Supportive tables and

maps are available in the appendix.
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5.2.1 Variance Decompositions

One measure that can jointly capture the importance of both the factor and its loading can be

obtained through a variance decomposition. Table 5 shows the percentage of each country’s

output volatility attributable to the global and regional factors and the idiosyncratic shock.

Again, the results are not directly comparable with those of KOW, but a number of qualitative

similarities and differences highlight the effect of estimating the clusters. KOW find that, in

general, the global factor explains a greater portion of the volatility in more industrialized

countries. Moreover, they conclude that the regional factors explain only a very small portion

of macroeconomic fluctuations (about 3.6 percent, on average, of the output fluctuations of

the 60 countries). Our results suggest a much larger role for the “regional” factor if a region

is estimated by the countries’ cyclical commonality. In fact, our cluster factors explain an

average of 22.8 percent of the output fluctuations among the sample countries.

There are a few reasons this difference may not be surprising. First, KOW’s sample

differs from ours. Second, KOW’s regional factors are defined as the common component for

three series for each country. The inclusion of the additional two macroeconomic series could

potentially contaminate the ability of their regional factor to explain output fluctuations.

Third, imposing (rather than estimating) the regions may lead to the same misspecification

discussed in the previous MC experiments above. When countries are included in a region

with countries with which they do not actually share a common factor, the factor–and the

associated loadings–may be biased.

Indeed, when the KOW model (exogenous model) is estimated with only output, the

difference between the average variances explained by the regional factors in the two models

is not as large: about 1.2 percentage points. The variance explained by the global factor in the

exogenous model is about 4 percentage points lower. The largest difference, however, comes

from the countries in the former British Commonwealth. In the purely geographic model

that would place these countries in three separate regions, the regional factor would explain

36 percent of the variation in output for these countries (Australia, Canada, New Zealand,

the U.K., and the U.S.). In the endogenous model that groups them together, the regional
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factor explains 57 percent of their output variation. This increase in explanatory power is

important, especially given that these countries account for a substantial share of the total

output of the 60 countries in the sample.

5.2.2 Explaining the clusters

Table 4 shows the posterior means for the logistic covariates along with the 16th and 84th

percentiles of the posterior distributions. Our covariates are similar to the gravity variables

found in the trade and international business cycle literatures. Using simultaneous equation

methods to disentangle intra- and inter-industry trades, Imbs (2004) examined the relation

between trade openness, financial integration, specialization, and business cycle synchroniza-

tion and found that specialization has sizeable effects on business cycles. The paper used

several “gravity variables” when measuring bilateral trade intensities and financial integra-

tion. Amongst these variables were a measure of distance between countries’ capitals, an

indicator of shared border, the log products of GDP, an indicator of common language, an

assessment of accounting standards and a measure of the rule of law. Baxter and Kouparitsas

(2005) included distances between countries and common languages as gravity variables in the

investigation of business cycle comovements across countries. Finally, in the political economy

literature, Castles and Obinger (2008), used hierarchical and k-means clustering approach to

group 20 OECD countries along political, societal, and economic lines. The data used to form

clusters include demographics, ethno-linguistic fractionalization, GDP per capita, and party

system fractionalization.

In contrast to a purely continental approach such as that used in KOW, our results suggest

that a country such as Mexico is much more likely to have cycles similar to its shared-language

South American neighbors than its more geographically proximate neighbor, the U.S. These

results suggest that common culture–either through linguistic or legal similarities–matter

for cyclical commonality along with any iceberg costs usually associated with geographic prox-

imity. The relevance of countries’ legal systems and linguistic diversity is consistent with the

notion that trade flows–and, therefore, business cycle comovements–are more likely across
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countries with similar institutions. Some economic indicators are also relevant in explaining

our country clusters: The level of industrialization (proxied by a country’s investment share

of GDP) and the degrees of production, export and import dispersions all appear important

in cluster determination.

We find similar clustering for the countries common to our and the Castles and Obinger

(2008) samples. For instance, the countries in their English-speaking cluster are members of

our second cluster; while countries in their Scandinavian and Southern-Northern European

clusters comprise our first cluster. The similarities in both sets of clusters should not be much

of a surprise given their gravity variables include GDP per capita, our cluster variable, and

an indicator of common language, an important covariate that informs our clusters.

5.3 Cross-Validation Results

The in-sample results in the preceding section verify that the model performance declines as

the degree of misspecification rises. One concern that arises is that estimating the clusters

could lead to in-sample overfitting. For example, Billio et al (2016) also find linkages between

countries but argue that for the results should be verified through forecasting experiments.

Because our data sample is short, we cannot perform standard quasi-out-of-sample experi-

ments; instead, we evaluate possible overfitting by testing the model using leave-one-out cross

validation (LOOCV). LOOCV chooses a single time period to omit, estimates the model

treating this period as missing, and evaluates the model performance in fitting the left out

period. This experiment is iterated on all time periods.

We re-estimate our model using the same annual GDP data leaving out period t̃, treating

this observation as missing. We modify both the filter and the draws of the AR parameters to

account for the fact that we do not know the data at time t̃. These modifications are detailed

in the appendix.

We then evaluate the fit of the fitted value of ŷ
t̃
relative to the true value y

t̃
using the

entropy measure above averaged across all Gibbs iterations. We sum this average for each

t̃ = 1, ..., T . We compare these results to (1) the KOW clusters and (2) 20 sets of randomly
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specified clusters that are fixed ex ante. In the latter, we set M = 7, as in KOW, but choose

the memberships randomly.

Consistent with the in-sample results, we find that the endogenously chosen clusters are

associated with considerably lower entropy than the models with exogenously chosen, fixed

clusters.15 This result obtains regardless of whether the clusters are chosen geographically

(KOW) or randomly and suggests that, at least in the PWT data, possible concerns about

overfitting are outweighed by the benefit of choosing the clusters.

6 Conclusions

Much research has been done on measuring the comovement of business cycle variables across

countries. Limited by the potential proliferation of the estimated parameters, these empir-

ical models typically (1) compare business cycles which are estimated country-by-country;

(2) use models of relatively few countries (e.g., bilateral analyses); and/or (3) impose the

structure of the correlations ex ante. One application of the third approach (that of KOW)

estimates a factor model in which the correlation structure across countries is assumed to be

determined by geographic proximity–that is, countries that share a continent also share a

common unobserved factor.

In this paper, we allow the data to determine which countries share common factors.

Our model allows for a number of possible alternative country characteristics that can affect

how countries are grouped. In MC experiments, we show that misspecifying the regions can

affect the fit of the model. In the data, we find evidence that sharing a common geographic

region is one component but not the only determinant of country groupings. These results,

therefore, verify some of the underlying rationale behind KOW’s selection of using a shared

continent as the basis of defining a region. However, while there do appear to be some

localized comovements (e.g., South America and Europe), these comovements stretch beyond

what would be narrowly considered geographic regions and exclude some countries that would

15The random assignment, on average, beats the geographic clusters by about 10%; however, we note that
the data used here differ substantially from the original KOW dataset, both in vintage of the PWT and because
we use only one business cycle indicator.
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ordinarily be associated by continent. In particular, continental Europe appears to share a

common cyclical component with Japan but not with the U.K., and the majority of South

American countries appear to share a cycle with Mexico but less so with Brazil. One cluster

consisting of the U.S., U.K., and some other former British Commonwealth countries belies

geography or proximity as the driving force behind the cyclical commonality and suggests

other fundamental forces linking the countries.
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Priors for Estimation

Parameter Prior Distribution Hyperparameters

βn N (b0,B0) b0 = 03 ; B0 = I3 ∀n

σ−2n Γ
(
ν0
2
, Υ0
2

)
ν0 = 6 ; Υ0 = 0.1 ∀n

γn Logistic ∀n

φi N (v0,V0) v0 = 0pF ,V0 =
1

2
IpF ∀i

ψn N (w0,W0) w0 = 0pε ,W0 =
1

2
I
pε

∀n

δi N (d0,D0) d0 = 07 ; D0 = 2× I7 ∀i

Table 1: Priors. Notes: n denotes the series, where N is the total number of series; i indicates
the cluster, where M is the total number of cluster factors; and the p’s denote the maximum
number of lags in the error and factor lag polynomials.

Degree of Cluster Misspecification

60% 40% 20% 6.7% 5% 3.4% 1.7% None Endogenous

Entropy 3372.2 3339.4 3302.7 3299.76 3295.30 3291.49 3289.98 3288.80 3287.45

Table 2: Monte Carlo Results. Notes: The table reports the median entropy for 1000 Monte
Carlo replications with sample size of 50 periods. Each sample contains 60 series, 5 cluster
factors, and 1 global factor. The column headings indicate the percent of the series in the
exogenous clusters that is misallocated. ’None’ indicates the exogenously clustered model with
no misspecification. 1 misallocated series (of 60) equates to 1.66 percent misspecification, and
so on. The last column shows the median entropy for the model estimated with clusters
determined endogenously.

Covariate Data

Purpose Variable Mnemonic

Trade Openness OPEN
Industrialization Investment Share of GDP KI
Formalism Index Collection of Bounced Checks CHECK
Linguistic Diversity within a Country Ethnolinguistic Fraction LIN
Production Dispersion Production Dispersion versus World ProDisp

Export Dispersion versus Export Partners ExDisp
Import Dispersion versus Import Partners ImDisp

Table 3: Covariate Data.
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Logistic Coefficients

Variable Cluster 2 Cluster 3

Openness -0.19 0.46
(-0.77 0.39) (-0.11 1.01)

Investment Share of GDP -0.49 -1.21

(-1.12 0.14) (-1.82 -0.54)
Collection of Bounced Checks -1.86 2.47

(-2.47 -1.24) (1.82 3.09)
Ethnolinguistic Fraction 0.99 -0.89

(0.29 1.71) (-1.48 -0.31)
Production Dispersion versus World -1.61 -1.24

(-2.89 -0.34) (-2.48 -0.03)
Export Dispersion versus Export Partners -1.47 -0.93

(-2.82 -0.16) (-2.26 0.41)
Import Dispersion versus Import Partners -1.90 -1.42

(-3.21 -0.61) (-2.76 -0.07)

Table 4: Posterior means for each covariate in clusters 2 and 3. Notes: The first cluster
(Cluster 1) covariate coeffients are normalized to zero. Values in bold indicate coefficients
for which zero is not within the 68 percent coverage interval. The numbers in parentheses
indicate the 16th and 84th percentiles of the posterior distributions.
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Variance Decompositions: Posterior Means (%)

Global Cluster Idio. Global Cluster Idio.

Argentina 0.1 21.7 78.2 Japan 22 8.9 69.1

Australia 6.5 49.7 43.8 Kenya 0 4.4 95.6

Austria 21.4 49.2 29.3 Korea 60.3 0.9 38.7

Bangladesh 0.6 0.1 99.3 Luxembourg 7.9 36.9 55.2

Belgium 21.6 66.2 12.2 Malaysia 72.3 0.7 27

Bolivia 3.1 19.5 77.4 Mexico 7.1 19 73.8

Brazil 5 24.8 70.3 Morocco 0 0.2 99.8

Cameroon 7.4 3.7 88.9 Netherlands 12.4 44.3 43.3

Canada 6.5 77.9 15.6 New Zealand 0.9 25.2 73.9

Chile 20.6 11.8 67.6 Norway 3.9 21.8 74.2

Colombia 22.2 27.3 50.5 Pakistan 0.2 11.6 88.2

Costa Rica 0.9 28 71.2 Panama 3.9 9.3 86.8

Ivory Coast 0.7 2.5 96.8 Paraguay 0 7.8 92.2

Denmark 9.6 33.4 57 Peru 0.6 16.5 82.9

Dom. Republic 4.7 10.2 85.1 Philippines 11.9 15 73.1

Ecuador 1.1 25.5 73.5 Portugal 23.8 34.3 42

El Salvador 0.6 23.1 76.3 Senegal 15.7 0.1 84.2

Finland 5.5 40.8 53.7 Singapore 55.1 0.3 44.5

France 12.5 73.2 14.3 South Africa 1 0.1 98.9

Germany 31.9 16.7 51.4 Spain 0.7 22.1 77.2

Greece 14 18.5 67.5 Sri Lanka 5.2 16.9 77.9

Guatemala 30.9 18.1 51 Sweden 8.6 59.6 31.8

Honduras 0.5 19.3 80.2 Switzerland 4.8 69.9 25.3

Hong Kong 36.4 7 56.5 Thailand 57 3.9 39.2

Iceland 0 14.1 85.9 Trinidad & Tobago 10.2 5.7 84.1

India 1.5 7.1 91.4 United Kingdom 14.5 52.5 32.9

Indonesia 58.8 0.3 40.9 United States 24.6 64.3 11.1

Ireland 21.8 14.6 63.6 Uruguay 2.3 18.6 79.1

Italy 22.6 53.4 24 Venezuela 0.4 21 78.5

Jamaica 2.5 0 97.5 Zimbabwe 0 0.6 99.4

Table 5: Variance Decompositions. Notes: Each row shows the variation in GDP growth that

is attributable to the global, cluster and idiosyncratic factors. In calculation of the variance

share of clusters, members are assumed to belong to a cluster if they pick the said cluster

majority of the Gibbs run. In other words, the modal values for the indicator function are

used to determine the cluster to which a country belongs, then the variance attributable to

that specified cluster is calculated.
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Figure 1: Global Factor. The red solid line is the median of the posterior distribution of the

global factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are annual NBER

recessions, where a recession is defined as a year in which any quarter was in recession according to

the Business Cycle Dating Committee turning points.
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Figure 2: Cluster 1 Factor. The red solid line is the median of the posterior distribution of Cluster

1’s factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are annual NBER

recessions, where a recession is defined as a year in which any quarter was in recession according to

the Business Cycle Dating Committee turning points.
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Figure 3: Cluster 2 Factor. The red solid line is the median of the posterior distribution of Cluster

2’s factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are annual NBER

recessions, where a recession is defined as a year in which any quarter was in recession according to

the Business Cycle Dating.
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Figure 4: Cluster 3 Factor. The red solid line is the median of the posterior distribution of Cluster

3’s factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are annual NBER

recessions, where a recession is defined as a year in which any quarter was in recession according to

the Business Cycle Dating Committee turning points.
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Figure 5: Cluster 1 Composition. The map shows the posterior probabilities of countries included

in Cluster 1. Countries in white are omitted from the sample.

Figure 6: Cluster 2 Composition. The map shows the posterior probabilities of countries included

in Cluster 2. Countries in white are omitted from the sample.
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Figure 7: Cluster 3 Composition. The map shows the posterior probabilities of countries included
in Cluster 3. Countries in white are omitted from the sample.
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