

The Value of Foreclosed Property

Authors	Anthony Pennington-Cross			
Working Paper Number	2004-022A			
Creation Date	September 2004			
Citable Link	https://doi.org/10.20955/wp.2004.022			
Suggested Citation	Pennington-Cross, A., 2004; The Value of Foreclosed Property, Federal Reserve Bank of St. Louis Working Paper 2004-022. URL https://doi.org/10.20955/wp.2004.022			

Federal Reserve Bank of St. Louis, Research Division, P.O. Box 442, St. Louis, MO 63166

The views expressed in this paper are those of the author(s) and do not necessarily reflect the views of the Federal Reserve System, the Board of Governors, or the regional Federal Reserve Banks. Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate discussion and critical comment.

The Value of Foreclosed Property *

Anthony Pennington-Cross
The Federal Reserve Bank of St. Louis
Research Department
411 Locust Street
St. Louis, MO 63102
Anthony.Pennington-Cross@stls.frb.org

* The views expressed in this research are those of the individual author and do not necessarily reflect the official positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, and the Board of Governors.

The Value of Foreclosed Property

Abstract

This paper examines the expected price appreciation of distressed property and compares it to the prevailing metropolitan area appreciation rate. The results show that the simple fact that the property is foreclosed indicates that it will be sold at a substantial discount (appreciate less than expected). The magnitude of the discount is sensitive to loan characteristics, legal restrictions, housing market conditions, and the bargaining position of the selling institution.

Keywords: Distressed property; Foreclosure; Bargaining power; Real estate owned

property

JEL classification: R31, D83, G21

The Value of Foreclosed Property

1. Introduction

If the prices of homogeneous properties differ, arbitrage opportunities arise for opportunistic home-buyers or home-sellers. In efficient markets, arbitrage opportunities quickly dissipate and, thus, competition effectively eliminates price deviations and reinforces the market-clearing price.

With the dissipation of arbitrage opportunities, the value of all identical property should be the same, whether it is being sold by a homeowner or by a lender whose has foreclosed on it. But, the heterogeneity and thinness of housing markets can make it difficult to identify the value of house. Two methods of estimating the value of property dominate both the academic and professional spheres. The first, the hedonic method, relies on the ability to identify and value all the attributes of a house and its location. Using each of these values the expected price of any home can be estimated. The second method, the repeat sales method, relies on area wide appreciation rates to update the last available transaction price on the home.

In contrast to previous literature on the value of foreclosed property, this paper uses the repeat sales approach to estimate house price appreciation of foreclosed property and to determine if foreclosed property appreciates in a systematically different way than typical property. This approach relies primarily on a publicly available repeat sales price index and does not require detailed or timely information about the exact characteristics of the property or the location. This should make it much easier and less expensive for lenders to estimate the loss from the sale of foreclosed property. Previous literature has also been limited because of the limited geographic coverage and small sample sizes. In contrast, the sample used in this paper includes more than 12,000 sales of real estate owned (reo) property obtained through foreclosure proceedings and covers 52 states and districts in the United States.

Contrary to the efficient market theory, the results indicate that the appreciation rates for foreclosed property are much lower. This fact alone is important. Information on expected appreciation rates on distressed properties can be used by lenders to help determine loss mitigation strategies. The focus of this paper is to determine the magnitude of the different appreciation rates and identify their main determinants.

The remainder of the paper will review earlier estimates of the discount foreclosures sell for, explore potential reasons foreclosed property may appreciate less than typical property, and provide an empirical model to estimate the foreclosure discount.

2. Estimates of the Foreclosure Discount

Prior efforts to estimate the discount at which a foreclosed property sells have used very similar approaches – the hedonic model. Table 1 shows that three of the four papers find that the selling price of a foreclosed property is 22 to 24 percent lower. In contrast, consistent with the efficient market theory, the most recent paper, by Carroll, Clauretie, and Neill (1997), finds no discount associated with selling a foreclosed property.

Despite these contradictory findings, the papers are very similar to each other in terms of the method of analysis. For example, each estimates a hedonic model expressed as:

$$Ln(P) = f(X,F) \tag{1}$$

Where P is the price of the property, X is a vector of explanatory variables that describe the property and its location, and F indicates if the property is sold as a foreclosure. The estimated coefficient can then be interpreted as an indicator of how much less or more the foreclosed property will sell for.

The first paper, by Shilling, Benjamin, and Sirmans (1990) provides the basic approach, which the three other papers follow. They define the dependant variable as the natural log of the condominium price on a set of explanatory variables designed to describe the property and the location of the property. These characteristics include items such as living area, location near a swimming pool, vaulted ceilings, number of bedrooms,

Table 1: Previous Estimates in the Literature

Author	Mathad*	Duan auto Toma	Location	Estimated	Citation
Author	Method*	Property Type		Discount	
Shilling, Benjamin, and Sirmans	Hedonic	Residential condominium – 62 observed sales of which an unknown (not reported) number are reo sales.	Baton Rouge, Louisiana, 1985	24%	JRER v5 n1 1990
Forgey, Rutherford, and VanBuskirk	Hedonic – Include zip code number.	Single family residential property – 2,282 sales of which 280 are foreclosure sales.	Arlington, Texas, 7/91 - 1/93	23%	JRER v9 n3 1994
Hardin and Wolverton	Hedonic – Include city dummies.	Apartments – 90 apartment sales of which 9 are foreclosure sales.	Phoenix, Arizona, 1/93 - 11/94	22%	JRER v12 n1 1996
Carroll, Clauretie, and Neill	Include zip	Residential – 1,974 property sales of which 385 are Department of Housing and Urban Development (HUD) foreclosure sales and 19 are bank or private foreclosure sales.	Las Vegas, Nevada 1990 - 1993	None	JRER v13 n1 1997

^{*} The regressions all estimate a hedonic style model where the natural log of house price is a function of various characteristics of the property and the location as well as an indicator that the property was an reo or foreclosure sale.

location in the condominium complex (distance to mail room, trash, and parking lot), and density. Because hedonic models are sensitive to specification, the vector X should be comprehensive and in the correct functional form. In addition, a unique model is required for each location to identify the marginal contribution and value of each housing and location attribute. Therefore, hedonic models become cumbersome and expensive to maintain for any national lender who is trying to estimate expected sales prices for distressed property.

The remaining papers follow the same approach, but study different property types -condominiums, single family, multifamily (apartment), and residential. Forgey,
Rutherford, and VanBuskirk (1994) curiously add the zip code number to the model in an
attempt to control for location. Carroll, Clauretie, and Neill (1997) correct this problem
and use zip code dummies to control for location. When the zip code dummies are
included the foreclosure indicator becomes insignificant for HUD foreclosures. These
results emphasize the need for unique models to determine the value of foreclosed
property using the hedonic methodology. For example, each city will require its own
hedonic model, because it makes little sense to impose the same marginal value of an
additional square foot of living space to an apartment in New York City, NY as New
Brunswick, NJ even though they are spatially close to each other.

The papers also only focus on one location at a time and suffer from very small sample sizes. For example, Hardin and Wolverton (1996) have 9 observed foreclosure sales and Shilling, Benjamin, and Sirmans (1990) do not report how many of the 62 transactions were foreclosures.

An alternative approach is to use publicly available price indexes (see Freddie Mac and the Office of Federal Housing Enterprise Oversight, OFHEO, www.ofheo.gov, for publicly available repeat sales price indexes.). Using this index the value of any property could be updated to current values by simply using the last available transaction or appraisal price. This would allow full coverage of the United States using minimal resources. But, using the index by itself without any adjustment for the impact of selling

reo property or foreclosed property would overstate the value of the property. Therefore, it will be important to make an adjustment to the expected appreciation rate. The following empirical section details how to estimate and calculate the foreclosure discount. In addition, the repeat sales method will automatically incorporate any changing conditions of the location through time and there is no need to collect detailed information about the property itself or the surrounding location. This approach does assume that the property undergoes typical maintenance and upgrades for the location. In addition, similar to the hedonic approach, any deviations or heterogeneity in appreciation rates within the defined location will not be captured.

3. Why Would Foreclosed Property Sell at a Discount?

Just because a property was foreclosed is not enough to explain why it should sell for less than comparable or nearby property. Surely, market participants are savvy enough to identify under-priced property and make an arbitrage profit. This is especially true for institutional sellers who must have good market knowledge through years of selling distressed property.

One potential explanation for why foreclosed property would appreciate less than its neighbors may simply be that the property has not captured area wide appreciation. In this view, house price appreciation rates are distributed around a mean appreciation rate and foreclosures tend to be in the tail. This may be due to a weak incentive to maintain the property or just bad luck (an interstate is built through the back yard or a drug dealer moves next door). Foreclosures may also tend to be in the tail of the distribution because these are all loans that have defaulted. For example, when the value of a house is less then the mortgage then the borrower is in a negative equity position. Ignoring transaction costs and a lender's right of redemption, a ruthless defaulter will default exactly when the property enters a negative equity position. Once other costs, born by the borrower, of default are factored into the decision then it is necessary for the negative equity position to be larger. While other events, typically referred to as trigger events (such as employment and family structure shocks), can lead to missed payments it makes financial sense for borrowers to default, instead of prepaying the loan and becoming a renter, if

there exists a negative equity position. Therefore, it is likely that many or most of the observed foreclosure sales are loans where the borrower was in a negative equity position. Since homeowners can add more debt through second mortgages or lines of credit, negative equity does not in itself imply lower house price appreciation rates. But, negative equity and price appreciation may be negatively correlated.

Another compelling argument for why foreclosed property may sell for less is that institutional lenders/sellers are operating under a unique set of incentives that make them more likely to accept below market prices on foreclosure sales. For example, regulatory capital requirements are designed to provide incentives to remove nonperforming assets from balance sheets. In addition, there is some evidence that owning real estate purchased through foreclosures can have impacts on stock prices and credit ratings (Palmer, 1991; Downs, 1992). Also each day that a non-performing loan remains on the books the costs increase. For example, the property needs to be maintained while it is vacant. The lender is also not receiving any income from the loan and the loan is tying up funds that could be used to fund other performing assets. To sell a property the lender must also pay customary fees to an agent who markets the property.

But, in an efficient market the incentives of individual sellers and buyers are irrelevant to the market clearing price. For a homogeneous product with a large market a single price is available to all buyers and is easily identified. As shown by the literature review, house prices can be thought of as the sum of the value or price of all of its components (location description, physical characteristics, number of bedrooms, etc.). Therefore, large and fairly homogeneous new housing developments make it fairly straight forward to estimate and establish the value of individual attributes and the house as a whole.

As houses get older it becomes more difficult to accurately ascertain the market price because they become less homogeneous. For example, attributes of the house can change through time or maintenance of the property can also vary by owner. For example, if a homeowner is in a negative equity position (mortgage>house value) it may make little

sense to incur additional expenses to maintain the property because it will reduce the size of the negative equity and thus the value of the option to default on the mortgage.

In the housing market, the seller sets an asking price that is used as the starting point for any further negotiation. Before a potential buyer makes a bid and decides to enter negotiation a physical inspection of the property is typically needed (Arnold 1999). This implies that it is very difficult to adequately describe the attributes of a house and that homes with the same qualities (location, number of baths, modern electricity, etc.), such as those used in a hedonic model, may differ in subtle and important ways that could only be determined after an actual inspection of the property. In sum, it is difficult and costly to determine the attributes associated with individual houses.

The uniqueness and thinness of the housing market leads to bargaining and introduces the characteristics of the product and the characteristics of the seller and buyer, as well as the bargaining skills of the participants into market transaction prices (Harding, Rosenthal, and Sirmans 2003). For example, sellers with less equity in the home typically receive a higher than otherwise expected price. One explanation of this is that homeowners need the equity in their current home to provide a sufficient down payment on their next purchase (typically a contingent sale) (Genesove and Mayer 1997). A host of other factors can affect the bargaining position of the seller. For example, there is evidence that "out-of-country", "out-of-state", first time, and in-migrate buyers all pay premiums (Turnbull and Sirmans 1993, Watkins 1998, and McQueen and Slade 2003).

4. Getting from Default to Foreclosure Sale

It is a long road from a delinquent mortgage to the sale of foreclosed property and there are many other options available to both the lender and borrower. This paper examines the sale of property that lender has become the owner of. This type of property is typically referred to real estate owned or reo property. A lender can become the owner of property at any stage during delinquency and foreclosure proceedings. It may become the owner of the property through agreement with the homeowner or through forceful eviction. The lender may even purchase the property at an auction or through other

public proceedings. But, the purchase of foreclosed property by a lender is not topic studied in this paper. Instead, this paper examines the sale of reo property and how the appreciation of this property differs from normal homeowner sales.

Before a property becomes reo the lender and homeowner have many other options available to them. For example, the lender can encourage the owners of a home with a delinquent mortgage to sell the home in order to avoid foreclosure proceedings and the stigma of foreclosure on their credit report. These pre-foreclosure sales are also referred to as short sales if the selling price of the home is less than the outstanding debt and late fees owed the lender. Often, the lender will agree not to collect the remaining balance in a pre-foreclosure sale. This could be in the best interest of the lender because the costs and time delays of foreclosure are avoided. But, a pre-foreclosure sale is conducted by the owner of the property and therefore looks at least on the surface very similar to a typical sale. Depending on the agreement with the lender, the seller-owner may have incentives to sell the home quickly or slowly. For example, the lender may set a time limit on how long it is willing to wait for the sale to be completed. Or the lender may limit how much of a loss it is willing to absorb. These incentives could lead to higher or lower listings, times on the market, and transaction prices than typical.

Another option for the lender and borrower is for the borrower to hand over the deed to the property in lieu of foreclosure. Again, the lender avoids going through the foreclosure process, but any liens attached to the title will become the responsibility of the lender. As with a pre-foreclosure sale the lender typically forgoes the ability to collect on any unpaid principal, interest, taxes, or fees in exchange for the deed. The property is then considered reo and the lender will sell the property in the open market. Once the property becomes reo, the lender must market the property and enter into negotiations with any potential buyers.

Another option available to the lender is to proceed through foreclosure and sell the property at a foreclosure sale. The sale of foreclosed property is conducted under two broad legal regimes, the judicial foreclosure process or the power of sale or non-judicial

foreclosure process. Put simply, judicial foreclosures involve the state court system, while in non-judicial states the lender has the power to evict the defaulted borrower and sell the property on its own. Large power of sale states include California, Texas, and Michigan. In general, foreclosures in judicial states take much longer than non-judicial foreclosures. But, even within judicial states the method by which the property is sold varies widely from county to county. For example, the property could be sold at a public auction at an advertised place and location. The properties could be also auctioned at "Sheriff Sales", which will typically occur once a month. Other alternatives, which may not be auctions, include attorney sale, court appointed referee sale, or even sale at the court house or at the property itself. There are also a variety of ways that foreclosed property is sold in non-judicial foreclosure states are influenced by local legal and customary practices. But, typical power of sale foreclosure sales include auction sales or trustee sales after an advertising period.

In both regimes the lender has the opportunity to purchase the property at the foreclosure sale. If the lender does this then the property is considered reo property – the property is now owned by the lender instead of by the borrowers. A lender might purchase the property if it believes the auction price is substantially below market value or when the defaulted amount plus other fees is less than the highest available purchase price. For example, imagine an auction where only one bidder showed up and the highest bid on the property was \$100. The lender accepts the bid, though the property value is much higher. In some states the defaulted borrower will have the statutory right to then redeem the property for \$100 plus late fees, thus regaining ownership. Therefore, only bids above a sensible redemption value are accepted. Assuming no acceptable bids are found then the lender can choose to "win" the auction and purchase the property. If the lender wins the auction then the property becomes reo property. It is the sale of reo property, whether

¹ The borrower can also declare bankruptcy anytime during or before the foreclosure process. The foreclosure is stayed (cancelled or at least postponed) until lifted by the bankruptcy court. The investor or lender can then file a motion for relief, which is typically granted if the outstanding mortgage is larger then the value of the house (negative equity) (Nemeth and Van Horn, 1994).

purchased through a foreclosure sale, a deed in lieu agreement or any other form that the empirical analysis uses to estimate the foreclosure discount.

5. Empirical Test

The objective of this section is to estimate the magnitude of the foreclosure discount, measured through expected appreciation rates, as well as any additional impact caused by the weaker bargaining position of the lender when selling the property. Only the sale of reo property is considered.

In Section 3, two arguments were presented as to why foreclosed property will sell or appreciate at a discount. First, foreclosure sales are by definition loans that have defaulted and are therefore likely to have experienced a relative reduction in price. In essence, this argument is simply that the property was unlucky and had a negative shock to its price or that households which default on a loan do not do typical maintenance and therefore the price is lower. Second, when a lender owns property (reo) it is in a weak bargaining position and as a result is willing to accept a lower price to dispose of the property quickly.

The empirical test is set up as:

$$\Delta = f(\phi, \beta, \psi) \tag{2}$$

where Δ is the foreclosure discount defined as the difference between the appreciation rate for the metropolitan area as a whole and the appreciation rate for the house being sold, ϕ is the discount associated with simply being a foreclosure, β is the discount associated with bargaining power during the marketing of the property, and ψ are other factors that could impact the value of the property.

To examine the contributing factors to the foreclosure discount, a stratified random sample of over 12,000 reo sales from two large secondary market institutions is used. The institutions primarily are involved in the prime market. To help protect the proprietary nature of the data and identity of the institutions the sample rates cannot be revealed. In addition, high cost loans, which are defined as loans with interest rates at

least 100 basis points above the prevailing prime rate as defined by the Freddie Mac Primary Mortgage Market Survey (PMMS) are over-sampled to insure their representation in the data set. The intent is to provide enough observations of these higher cost and presumably higher risk loans to identify any additional discount. The data include only single-family 30-year fixed rate mortgages originated from 1995 through 1999. The loan outcome is also only observed until the end of 1999, thus creating a truncated sample of defaulted loans. To aid interpretation of the results all continuous variables are mean deleted (the mean equals zero) during estimation.

Table 2 provides the geographic distribution of the loans. It shows that, as expected, California, Florida, and Texas are the states with the largest number of loans. In fact, together these three states account for approximately 53 percent of all reo sales in the sample. In contrast, Alaska has only one sale.

Table 2: Geographic Distribution of Loans

	Number of	Percent of		Number of	Percent of
State	Loans	All Loans	State	Loans	All Loans
AK	1	0.01	NC	170	1.38
AL	156	1.27	ND	4	0.03
AR	29	0.24	NE	10	0.08
ΑZ	340	2.77	NH	10	0.08
CA	2530	20.60	NJ	195	1.59
CO	93	0.76	NM	64	0.52
CT	70	0.57	NV	270	2.20
DC	108	0.88	NY	280	2.28
DE	13	0.11	ОН	258	2.10
FL	2622	21.35	OK	68	0.55
GA	483	3.93	OR	75	0.61
HI	45	0.37	PA	235	1.91
IA	57	0.46	RI	21	0.17
ID	30	0.24	SC	131	1.07
IL	470	3.83	SD	10	0.08
IN	173	1.41	TN	106	0.86
KS	48	0.39	TX	1405	11.44
KY	31	0.25	UT	80	0.65
LA	89	0.72	VA	289	2.35
MA	86	0.70	VT	4	0.03
MD	291	2.37	WA	210	1.71
ME	4	0.03	WI	53	0.43
MI	211	1.72	WV	9	0.07
MN	107	0.87	WY	10	0.08
MO	195	1.59			
MS	25	0.20			
MT	6	0.05			

Table 3 describes each of the variables used in the empirical analysis. The first two variables are used to define the dependant variable, the foreclosure discount (Δ). The percent house price growth of the reo sold property is denoted by $\%\Delta hp_{ist}$, where i indexes the property, s the time period in which the loan was originated (the first transaction), and t the time period in which the distressed property is sold. All percents are expressed as fractions (5%=0.05). The $\%\Delta hpi_{mst}$ is the percent change in metropolitan area house prices from the origination date of the loan through sale as measured by the metropolitan area OFHEO repeat sale house price index²; m indexes the location of the house in a metropolitan area expressed as a fraction. The difference between these two price appreciation variables ($\Delta = \% \Delta h p i_{mst} - \% \Delta h p_{ist}$) is the discount associated with being a foreclosed property. For instance, if prices for the foreclosed property went up 10 percent and metropolitan area prices went up 15 percent for the same time period then the discount was 5 percent or 0.05. Note that the average discount, as reported in Table 4, was 22 percent or, as shown in the descriptive statistics, 0.22. This should be interpreted as the discount over the whole life of the loan or cumulative appreciation discount, not the discount on the transaction price.

To help identify the marginal impact of the lenders' bargaining position or marketing position the timeline of the property can be separated into two time periods -- 1) the time period before the lender gains ownership of the property and 2) the time period when the lender becomes the owner and markets the property for sale. The first time period will represent the natural discount associated solely with being a foreclosure sale. The variable $pre-reo_{it}$ is the number of months that a loan exists prior to the property entering reo. Therefore, it will capture the baseline foreclosure discount as the loan ages (ϕ). The second time period represents any additional deviation or discount associated with the

_

² Note that the area wide appreciation rate used is the Office of Federal Housing Enterprise Oversight (OFHEO) metropolitan area repeat sales house price index. This price index includes all whole loan purchases by Fannie Mae and Freddie Mac (F&F). Therefore, it includes both home purchases and refinances, as well as some foreclosed property. Given F&Fs lending standards and the very low rate of F&F foreclosure, foreclosed property must be a very small fraction of the total volume of transactions. But, if the existence of foreclosure and other distressed property sales does bias the OFHEO price index it should drive our results toward finding no deviations between foreclosed sale price appreciation and the OFHEO price index appreciation.

Table 3: Description of Variables

Variable	Source	Description
%∆hpi _{mst}	Office of Federal Housing Enterprise Oversight (OFHEO, www.ofheo.gov)	The percent change in metropolitan area house prices from the date of origination to the date the foreclosed property is sold. The percent change is expressed as a fraction so that a 95% change is reported as 0.95. This variable is used with % Δhp_{ist} to calculate the foreclosure discount.
%∆hp _{ist}	loan level data	The percent change in the selling price of the property from the date of origination to the date of sale. The percent change is expressed as a fraction so that a 95% change is reported as 0.95.
%∆ hpi _{mst} - %∆hp _{ist}	loan level data & OFHEO	The difference between the metropolitan area appreciation rate and the specific property appreciation rate from the date of origination through sale of the property. This difference, or the foreclosure discount, can be interpreted as percentage point differences expressed as fractions. Therefore, if the foreclosure discount is reported as 0.05 then the foreclosed property appreciated 5 percentage points less than the metropolitan area as a whole.
reo _{it}	loan level data	The number of months that the property has been owned by the lender/investor or been reo (real estate owned). This time period occurs after the loan has been delinquent and defaulted on. The lender typically takes physical possession of the property at the beginning of the reo time period. The lender also typically conducts maintenance to prepare the property for sale and markets the property for sale.
pre-reo _{it}	loan level data	The age of the loan in months when the default is complete and the property enters reo. The complete timeline for the property is therefore represented by the variables pre-reo and reo. The sum of pre-reo and reo will equal the total number of months from origination to sale of the foreclosed property.
Judicial _i	Pence (2003)	The loan exists in a state with a judicial foreclosure process.
SRR _i	Pence (2003)	The loan exists in a state where the borrower has the statutory right of redemption.
DJ_{i}	Pence (2003)	The loan exists in a state where the lender has the right to declare a deficiency judgment against the borrow.
ltv _i	Loan level data	The loan to value ratio of the loan at origination, expressed as a fraction.
sato _i	Freddie Mac's Primary Mortgage Market Survey (PMMS)	The spread at origination between the contract interest rate and the market interest rate on the loan divided by 10.
loan amount _i	loan level data	Loan amount is the dollar amount expressed in 100,000's that was borrowed.

Table 4: Summary Statistics

Variable	Mean	Std Dev	Minimum	Maximum
$\%\Delta$ hpi $_{ m mst}$ - $\%\Delta$ hp $_{ m ist}$	0.22	0.19	-1.29	1.24
reo _{it}	5.90	3.57	0	30
reo _{it} ≤2	0.15	0.35	0	1
2 <reo<sub>it≤4</reo<sub>	0.26	0.44	0	1
4 <reo<sub>it≤6</reo<sub>	0.24	0.43	0	1
6 <reo<sub>it≤8</reo<sub>	0.15	0.36	0	1
8 <reo<sub>it≤10</reo<sub>	0.09	0.29	0	1
10 <reo<sub>it≤12</reo<sub>	0.05	0.22	0	1
reo _{it} >12	0.06	0.23	0	1
pre-reo _{it}	27.86	10.68	4	57
pre-reo _{it} 2	890.16	631.17	16	3249
%∆hpi _{mst}	0.10	0.06	-0.17	0.44
%∆hpi _{mst} <0	0.05	0.21	0	1
Judicial _i	0.42	0.49	0	1
SRR _i	0.06	0.23	0	1
DJ_i	0.27	0.44	0	1
ltv _i	0.93	0.05	0.36	1
sato _i	0.06	0.05	-0.42	0.35
loan amount _i	0.97	0.44	0.16	3.05
(loan amount _i) ²	1.12	0.97	0.03	9.28
Number of Observations	12,280			

In the estimation pre-reo is divided by 100 and all continuous variables are mean deleted (actual value-mean value), so that the mean value during estimation is

 $\%\Delta hpi$ is the fractional change in house prices from the origination date of the loan through the date of sale as measured by the OFHEO repeat sale house price index (hpi), $\%\Delta hp$ is the fractional change in the value of the house from loan origination through sale date, $\%\Delta hpi < 1$ is a dummy variable indicating that the metropolitan area price index has decreased, reo is the number of the months the property was real estate owned until sale, pre-reo is the age of the loan in months when it became owned by the investor or entered reo, Judicial indicates that the loan exists in a state with a judicial foreclosure process, SRR indicates that the loan exists in a state where the borrower has the statutory right of redemption, DJ indicates that the loan exists in a state where the lender had the right to declare a deficiency judgment against the borrower, ltv is the loan to value ratio of the loan at origination, sato is the spread at origination between the contract interest rate and the market interest rate on the loan divided by 10, and loan amount expressed in 100,000's of dollars

marketing and bargaining time period. The variable reo_{it} indicates the number of months that the loan has been in the reo state (the time period when the property is owned by the lender/investor) until it is sold. As a result it will represent the marginal impact of the lender's reo holding period on price appreciation (β) holding all other factors constant. The expected impact for this variable is positive (a larger discount), because the longer the distressed property sits on the balance sheet the larger losses become and the more the firm can be disciplined by the market through regulatory demands or stock price declines.

Table 4 indicates that the average loan spends 5.9 months in reo and 8.9 months before entering reo. The 8.9 months will include time when the loan is current and delinquent, as well as, time during the foreclosure proceedings. Note that the maximum time that any loans are observed is slightly less than 5 years, which truncates the sample so that the observed defaults are primarily defaults that occur early in a loan's life. There is a wide variation in the number of months a loan exists prior to entering roe or in reo as well as the magnitude of the foreclosure discount. To capture the impact of other factors that may differentially affect foreclosed property other factors are also included (ψ) . These factors include measures of state level foreclosure laws, risk characteristics of the loan, and local housing market conditions. The next section will provide more detail on these factors when the empirical specification is discussed.

6. Specification

The foreclosure discount ($\Delta = \% \Delta h p i_{mst}$ - $\% \Delta h p_{ist}$,) may be functionally related to the arguments in Equation 2:

$$\Delta = \alpha_{\phi}'(\phi) + \alpha_{\beta}'(\beta) + \alpha_{\psi}'(\psi) + \varepsilon_{ist}$$
 (3)

Each symbol represents a vector of potential explanatory variables. For instance, the discount may be directly related to the time spent before entering reo (ϕ), the time spent in reo (β), and other factors (ψ). ε_{ist} is an independently normally distributed error term with a constant variance that includes all other determinants of Δ not classified

elsewhere. Estimates of the parameters α_{ϕ} , α_{β} , and α_{ψ} provide measures of how changes in the associated variables affect foreclosed property values.

In the estimation all continuous variables are mean deleted. This is to aid interpretation of the piece-wise linear estimation of the impact of time spent in reo, which proxies for the impact of the marketing and bargaining period (reo). The time spent in reo is disaggregated into 7 cohorts. No constant is reported so that the estimated coefficient for each reo time length cohort can be directly interpreted as the average discount associated with that cohort. For example, when $2 < reo_{it} \le 4$ equals 1 this implies that a loan spends more than 2 months and up to 4 months in the reo. Otherwise $2 < reo_{it} \le 4$ equals 0. The summary statistics show that the majority of loans spend less than 6 months in reo, while approximately 6 percent of the loan spend over a year in reo.

To capture the impact of the loan aging, as opposed to the time spent marketing the property, the number of months that a loan exists prior to entering reo (*pre-reo_{it}*) is also included. To allow for any non-linear impacts the square of *pre-reo_{it}* is also included. This could be thought of as representing the baseline foreclosure discount.

Beyond the timeline associated with a loan, other factors (ψ) may also reduce or exaggerate any difference in appreciation rates between foreclosed property and typical property. These factors are grouped into Housing (H), Legal (L), and other Mortgage (M) impacts.

Housing market conditions may make it more or less difficult to dispose of distressed property. To proxy for housing market conditions, house price increases for the area as a whole are used (H). If local house prices increase, it is expected that foreclosed properties will also experience an increase in prices, but not necessarily full amount of the area increase. If $\beta_H>0$, foreclosed property price appreciation rates receive an additional discount when house prices increase in general. The metropolitan area OFHEO repeat sales house price index is used to proxy for local area "average" or "market" house price appreciation rates $(\%\Delta hpi_{mst})$. In addition, a dummy variable is

included indicating when prices for the area as a whole have declined ($\%\Delta hpi_{mst}$ <0). This may help to indicate whether the discount is larger or smaller in weak housing markets.³

Three variables are used to capture legal distinctions (L) between jurisdictions and types of foreclosure. There is some evidence that local laws (state and county) can be capitalized into house prices (Pence 2003 and Miceli, Munneke, Sirmans, and Turnball 2002). This paper measures the impact of various state level legal requirements on the appreciation rate. Since these indicators will help determine the costs of terminanting loans in default they may be more directly capitalized into the value of distressed property than normal property. $Judicial_i$ indicates that the loan exists in a state with a judicial foreclosure process. SRR_i indicates that the loan exists in a state where the borrower has the statutory right of redemption. DJ_i indicates that the loan exists in a state where the lender has the right to declare a deficiency judgment against the borrower.

Other mortgage related explanatory variables (M) may also impact the discount. If the characteristics of the borrower and the lender's identification of the risk characteristics of the borrower are related to or correlated with the propensity of the homeowner to maintain the property or the lender's bargaining power, then property appreciation rates will also be affected. To test for this effect the spread at origination between the contract rate of the mortgage and the prevailing rate for prime fixed rate mortgages ($sato_i$) is included. The prevailing rate is the interest rate reported by Freddie Mac's Primary Mortgage Market Survey (PMMS) in the relevant month. An individual unable to initially obtain a low rate mortgage may possess a lower propensity to behave responsibly with respect to other obligations, including a willingness to maintain the property values. 4 Ltv_i is the loan to value ratio of the loan at origination and is included to test for any systematic relation between equity at origination (a risk proxy) and the relative

_

³ Note that various specifications were tested. For example, a spline function (a negative price appreciation dummy interacted with the appreciation) was tested to allow more functional form flexibility, but was statistically insignificant.

⁴ Note that loans with interest rates 100 basis points or more above the prevailing prime rate are oversampled. In the estimation, weighted and unweighted ordinal least squares was tested and the specification was found to be robust.

appreciation rate. Loans with very high ltvs or little or no equity at origination will require a smaller decrease in house value to enter negative equity but once in negative equity there is little incentive to maintain the property. Therefore, ltv_i may exaggerate or depress the foreclosure discount. The $loan\ amount_i$ expressed in 100,000's of dollars and the $loan\ amount_i$ ² complete the list of variables contained in the data set that also appear in Equation 3.

7. Legal Issues and Definitions

There is substantial variation across the country in how states treat the rights of the borrowers and lenders during the foreclosure process. Capone (1996) and Pence (2003) provide a comprehensive summary of the variations in foreclosure state laws. Following Pence's (2003) definitions three foreclosure classifications are used in this paper: 1) twenty-one states require a judicial foreclosure process so that the lender must proceed through the court, while all other states allow a non-judicial procedure called power of sale which is typically simpler, cheaper and quicker; 2) nine states allow a statutory right of redemption so that up to a year after sale of the property the homeowner can redeem the property by paying the foreclosure price plus any foreclosure expenses; and 3) nine states allow a deficiency judgment to be used by the lender to collect any losses on a foreclosure from the borrower's other assets.

Previous research has focused on the relationship between how much of the outstanding balance on a loan is recovered and state foreclosure loans. For example, Wood (1997) finds evidence that Fannie Mae recovery rates are higher in right of redemption states and lower in deficiency judgment states, potentially a counter-intuitive result. Overall, the econometric evidence of the relationship between foreclosure laws and recovery on sales is mixed (for example see, Crawford and Rosenblatt (1995), Clauretie (1989), Ciochetti (1997), and Clauretie and Herzog (1990)).

8. Empirical Results

Ordinary least squares is used to estimate a model of the difference between metropolitan area appreciation rates and the specific appreciation rate of the reo property from

origination through sale by the lender. This is referred to as the foreclosure discount when positive and the foreclosure premium when negative. Specification I provides an estimate of the baseline discounts associated with the age of the loan until reo and the time spent in reo prior to sale of the property. Table 5 shows that this baseline information captures almost 59 percent of the variation in the foreclosure discount. Since all continuous variables are mean deleted the expected discount can be read directly from the reo dummy variables. For example, using specification I, if a loan is the average loan in all aspects expect that it spends only one month in reo the expected discount is 15 percent (as reported by the coefficient 0.15 because the dependent variable is expressed in fractions). The discount drops to 14 percent for a reo time period of two to four months and then steadily rises to 25 percent for loans that spend a year or more in reo before being sold.

By subtracting the coefficient estimate through time the results provide estimates of the marginal impact of the loan spending more time in reo. For example, the discount increases by 3 percentage points (0.22-0.25) when the time in reo increases from 12 to 13 months. This result is consistent with the hypothesis that lenders who are selling distressed property are in a weak bargaining position and are willing to accept lower than typical prices in exchange for selling the property. Therefore, as the property spends more time in reo, losses are increasing and the pressure to liquidate the property is mounting. As a result, it becomes in the lender's interest to sell the property as quickly as possible even if this requires accepting a lower than typical price⁵.

The next sets of variables establish the baseline foreclosure discount. This is the time period before the property enters reo ($pre-reo_{it}$). In this time period the borrower still owns the property even though it may have been many months since any payment has been made on the loan. Therefore, this time period has no relation to the ability of the lender to market the property and the lender's bargaining position. Instead, it reflects the typical or baseline discount associated with a forclsure on independent of the reo

⁵ An alternative specification could include an intercept and dummy variables for the remaining categories. When $reo_{it} \le 2$ is the excluded category all categories are significant expect 4< $reo_{it} \le 6$. In other words, the marginal impact of increased time in reo is statistically significant.

Table 5: Least Squares Results

			ı		1	
	Spec I		Spec II		Spec III	
<u>Variable</u>	Coef	T-stat	Coef	T-stat	Coef	T-stat
reo _{it} ≤2	0.15	12.74	0.15	12.43	0.16	13.61
2 <reoit≤4< td=""><td>0.14</td><td>11.84</td><td>0.14</td><td>12.09</td><td>0.15</td><td>13.35</td></reoit≤4<>	0.14	11.84	0.14	12.09	0.15	13.35
4 <reo<sub>it≤6</reo<sub>	0.15	12.84	0.16	13.01	0.16	14.35
6 <reo<sub>it≤8</reo<sub>	0.18	15.51	0.19	15.37	0.19	16.77
8 <reo<sub>it≤10</reo<sub>	0.20	16.06	0.20	15.63	0.21	17.10
10 <reo<sub>it≤12</reo<sub>	0.22	16.74	0.22	16.05	0.23	17.72
reo _{it} >12	0.25	18.59	0.24	17.44	0.25	19.05
pre-reo _{it}	-0.26	-3.50	-0.34	-4.63	-0.26	-3.66
pre-reo _{it} 2	0.57	4.60	0.56	4.56	0.39	3.30
%∆hpi _{mst}			0.17	5.03	0.14	4.35
%∆hpi _{mst} <0			0.03	2.93	0.03	3.51
Judicial _i			0.03	7.45	0.03	7.32
SRR_i			0.02	2.93	0.01	1.55
DJ_i			-0.06	-13.59	-0.03	-6.56
ltv _i					-0.23	-7.97
sato _i					0.36	11.02
loan amount _i					-0.36	-22.58
(loan amount _i) ²					0.12	16.85
Adjusted R ²	0.587		0.603		0.640	

The dependent variable ($\%\Delta hpi$ - $\%\Delta hp$) is defined as the difference between percent change in the value of the house prices in the location and the percent change in the foreclosed property from loan origination through sale – expressed in fractions. This can be interpreted as the discount associated with foreclosed property. All continuous variables are mean deleted (actual value-mean value), so that the mean value during estimation is zero.

Tests to see if extreme values in the dependant variable could be impacting results showed the results to be robust. For example, if the top and bottom deciles are removed from the data, thus reducing the sample to 12,034 and the range of the dependent variable to -0.139 to 0.779, there is little or no impact on the results. The adjusted R^2 did increase to 0.679 and the SRR_i became insignificant at all levels. All other coefficients changes were not material.

time period. The quadratic specification indicates a U-shaped baseline. The smallest discount is when *pre-reo*_{it} is approximately 22.5 months. Therefore, both loans that enter reo early and late in their lives have higher foreclosure discounts. It is beyond the capacity of this paper to understand why the baseline is U-shaped, but the baseline provides at least a central tendency.

Specifications II and III introduce other factors that could affect the foreclosure discount. The introduction of housing market conditions and legal restrictions increases the adjusted R^2 to 0.603. Lastly, the introduction of other mortgage related factors in specification III increases the adjusted R^2 to 0.640.

Focusing on specification III, the appreciation of reo sales captures 86 percent of metropolitan area wide appreciation (1- $\beta_{\%\Delta hpi}$). Also, note that in locations where overall prices have decreased, the discount is slightly larger. The impacts of the foreclosure laws mostly conform to prior expectations. The discount for selling foreclosed property is 3 percentage points higher when the foreclosure must use the judicial process. This is expected because the judicial process should include more administrative costs to interact with the court system. In contrast, the fact that a loan is in a state where the borrower has a statutory right to redeem the property has no additional impact on the discount. Lenders often delay the sale of reo property until the right of redemption period has passed, because it is difficult to sell without a "clean" title, but this impact is already measures by reo_{it}. States that allow deficiency judgments against defaulted borrowers experience discounts 3 percentage points lower. This result may be related to the fact that transaction costs should be lower leading to default and reo quicker in response to price declines. In addition, the borrower in default will benefit by continuing to maintain the property even in a negative equity, because they may still be liable for any losses suffered by the lender after sale of the property.

The introduction of loan information in specification III again provides a series of compelling results. For example, loans with higher ltvs have lower discounts. This is consistent with the theory that borrowers with little equity require smaller declines in

house values to trigger a default. The spread between the contract rate on the mortgage and the market rate at origination ($sato_i$) is also systematically associated with the discount of foreclosed properties. For example, if a home buyer is paying a rate of 10 percent when the prevailing market rate is 8 percent then the discount on a foreclosed property would be 0.72 percent higher. This result may proxy for the behavior of the borrower during delinquency and default prior to eviction. Lastly, larger loans also have lower discounts until the loan amount reaches approximately \$150,000. After this point the discount increases. This may reflect the higher transaction costs associated with selling a lower priced home.

9. Conclusion

Using metropolitan area repeat sales price indexes this paper finds evidence that foreclosed property appreciates more slowly than typical property. The proposed method is simple, is easy to replicate, and uses information available to any lender. Unlike the hedonic models this approach does not require detailed information about the property itself, its neighbors, or the characteristics of the location and can be used by lenders and investors to estimate the expected sale price of property if the borrower becomes delinquent.

In addition, this paper extends the literature by examining the pricing patterns of foreclosed property over the entire United States and includes a sample of over 12,000 sales of reo property. The empirical results find that foreclosed property appreciates on average 22 percent less than typical property. But, the expected appreciation rate is sensitive to housing conditions, legal constraints, and loan characteristics. In addition, the longer a lender owns a property the larger the foreclosure discount is. This result is consistent with the theory that housing is a unique good that sells in thin markets and as a result seller characteristics can impact the transaction price during marketing and negotiation. In this paper, the seller is unique because it is an institution that obtained the property through foreclosure proceedings and is trying to dispose of the property to minimize any losses. This motive and the high cost of carrying nonperforming real estate

assets leads to larger foreclosure discounts the longer the property is institutionally owned.

References

Arnold, M., Search, Bargaining and Optimal Asking Prices, *Real Estate Economics*, 1999, 27(3): 453-481.

Capone, Jr. C. A., Providing Alternatives to Mortgage Foreclosure: A Report to Congress, Washington, D.C.: United States Department of Housing and Urban Development, 1996.

Carroll, T., T. Clauritie, and H. Neill, Effect of Foreclosure Status on Residential Selling Price: Comment, *Journal of Real Estate Research*, 1997, 13(1), 95-102.

Ciochetti, B. A., Loss Characteristics of Commercial Mortgage Foreclosure, *Real Estate Finance* Spring, 1997, 14(1), 53-69

Clauretie, T.M., 1989, State Foreclosure Laws, Risk Shifting, and the PMI Industry, *Journal of Risk and Insurance* 56(3), 544-554.

Clauretie, T.M., and T. Herzog, The Effect of State Foreclosure Laws on Loan Losses: Evidence from the Mortgage Insurance Industry, *The Journal of Money, Credit and Banking*, 1990, 22(2), 221-233.

Crawford, G. W., and E. Rosenblatt, Efficient Mortgage Default Option Exercise: Evidence from Loss Severity, *The Journal of Real Estate Research*, 1995, 10(5), 543-555.

Downs, A., Who's Running U.S. Banks Anyway? *National Real Estate Investor*, 1992, 34(6), 22-24.

Forgey, F., R. Rutherford, and M. VanBuskirk, Effect of Foreclosure Status on Residential Selling Price, *Journal of Real Estate Research*, 1994, 9(3), 313-318.

Genesove, D. and C. Mayer, Equity and Time to Sale in the Real Estate Market, *The American Economic Review*, 1997, 87(3), 255-269.

Harding, J., S. Rosenthal, and C.F. Sirmans, Estimating Bargaining Power in the Market for Existing Homes, *The Review of Economics and Statistics*, 2003, 85(1), 178-188.

Hardin, W. and M. Wolverton, The Relationship Between Foreclosure Status and Apartment Price, *Journal of Real Estate Research*, 1996, 12(1), 101-109.

Nemeth, Charles, P., and Grayson P. Van Horn, *Real Estate Foreclosure: Paralegal Practice and Procedure*, New York: Wiley Law Publications, John Wiley & Sons, Inc., 1994.

McQueen, G. and B. Slade, Do Out-Of-State Buyers Pay More For Real Estate? An Estimation of Anchoring-Inducing Bias and Search Cost" American Real Estate and Urban Economics Association International Conference, 2003.

Miceli, T., H. Munneke, C. F. Sirmans, G. Turnbull, Title Systems and Land Values, *Journal of Law and Economics*, 2002, 45(2), 565-82.

Palmer, J., Great Performers and Bad Actors, Barron's, October 7, 1991, 14-15.

Pence, K. M., Foreclosing on Opportunity: State Laws and Mortgage Credit, Presented at the Allied Social Science Association Conference in the American Real Estate and Urban Economics Association Session, January, 2003.

Shilling, J., J. Benjamin, and C.F. Sirmans, Estimating Net Realizable Value for Distressed Real Estate, *The Journal of Real Estate Research*, 1990, 5(1), 129-140.

Turnbull, G., and C.F. Sirmans, Information, Search, and House Prices, *Regional Science and Urban Economics*, 1993, 23(4), 545-557.

Watkins, Are New Entrants to the Residential Property Market Informational Disadvantaged? *Journal of Property Research*, 1998, 15(1), 57-70.

Wood, C., The Impact of Mortgage Foreclosure Laws on Secondary Market Loan Losses, Ph.D. Thesis, Cornell University, 1997.