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1. INTRODUCTION

Persistence and trend reversion are two widely-documented properties of the United
States output growth rate. Reduced-form representations of time series data sug-
gest, with a fair degree of confidence, that real per capita GDP and related measures
of economic activity undergo damped oscillations in response to temporary external
shocks, as documented for instance by Taylor [32, 33|, Nelson and Plosser [22], Blan-
chard and Quah [7], Cogley and Nason [14], and Rotemberg and Woodford [25]. This
pattern appears in both the autocorrelation and impulse-response functions of simple
GDP autoregressions as well as in vector autoregressions that include investment,
employment, interest rates and other variables.

Trend-reverting motion poses a serious challenge for standard, neoclassical eco-
nomic theory. The damped oscillations documented in the empirical macroeconomics
literature suggest that complex or negative real eigenvalues may be governing the
short-term dynamics of U.S. output and other aggregate variables. But all one-sector,
complete-market models of convex growth that we know of—keeping parameter val-
ues within empirically plausible ranges—are incapable of reversing their equilibrium
motion because all their stable eigenvalues are positive and real. Vector autoregres-
sions, in short, turn out to imply adjustments to transitory disturbances which differ
strikingly from the predictions of all widely-used growth models.

One way out of this quandary is to complicate or discard some of the basic as-
sumptions underlying convex, neoclassical models of one-sector growth with complete
markets. For example, negative stable eigenvalues occur in one-sector overlapping
generations models of endogenous fluctuations if we assume certain types of large in-
come effects, as in Grandmont [16], highly elastic labor supply as in Reichlin [23], or
low elasticities of capital-labor substitution as in Benhabib and Laroque [6]. Boldrin
and Montrucchio [9] demonstrate that a multisector optimum growth model has a
negative stable eigenvalue when the rate of time preference is sufficiently high. Com-
plex eigenvalues conversely appear in representative agent models with large noncon-
vexities due to monopolistic competition, as in Gali [15], or technological increasing
returns to scale, as in Benhabib and Farmer [5], and also in non-classical growth
models with investment, gestation or production lags, such as Samuelson [26].

Another way out is to take seriously market incompleteness, especially frictions
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in financial markets which would compromise the ability of these markets to smooth
external shocks. Endogenous fluctuations emerge naturally as non-monetary equilib-
ria in both closed and open economies and also as monetary equilibria, as shown in
Azariadis and Smith [2], Boyd and Smith [10, 11}, and Cass and Shell [13]. Potential
sources of endogenous fluctuations also include activist monetary policies that tar-
get interest rates, inflation rates, or exchange rates, as in Bencivenga, Huybens and
Smith [4], Smith [30, 31|, Shell [27], Sims [29], or Woodford [34].

Simple growth models of complete markets do not do justice to trend reversion
because they do not seem to be able to predict negative or complex eigenvalues for
empirically plausible choices of taste and technology parameters. Overlapping gener-
ations models with a two-period lifecycle typically need an activist monetary author-
ity, or else elasticities of substitution in consumption or production far below one in
order to generate endogenous fluctuations. Multisector optimum growth economies
experience cyclical and chaotic dynamics at rates of time preference corresponding
to annual interest rates of 100% or more, according to Boldrin [8]. And estimates of
returns to scale in U.S. production due to Basu and Fernald [3] put in question the
scale effects required to extract complex eigenvalues from nonconvex economies with
a representative household.

It is hard to resist the conclusion that economic theory has not yet come up with
a simple and compelling explanation for output trend reversion. What mechanisms
allow an economy with complete markets to convert a temporary external shock into
a self-reversing motion? In this paper, we propose to help answer this question by
taking a careful look at the dynamics of a relatively unfamiliar class of one-sector
growth models—overlapping generations economies with finite lifecycles of three or
more periods. This set of economies is understudied relative to lifecycle models with
lifespans L = 2 or L = oo whose dynamic behavior is straightforward and typically
monotone. One reason economic theory has fixed attention on these simpler lifecycle
structures is the expectation of gaining some insight into more complicated and more
realistic economies with L = 55 years or L = 220 quarters.

This hope turns out to be partly incorrect: The dynamic behavior of economies
with finite L > 2 is qualitatively different from the cases L = 2 or L = 0o. As we will

show, economies with finite L > 3 have two properties that are unique among growth
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models: (1) equilibrium dynamics depend nontrivially on the intergenerational distri-
bution of wealth, and (2) our calculations show that many of the stable eigenvalues
turn out to be complex (or real and negative). These facts suggest that overlapping
generations models with realistic lifecycles and standard parameter configurations
may improve our ability to duplicate the short-run business cycle movements of out-
put and other macroeconomic time series.

We proceed as follows. In Section 2 we provide evidence on the eigenvalues of
the simplest autoregressive and vector autoregressive representations of quarterly ag-
gregate time series. We show that complex and/or negative characteristic roots are
a fairly robust feature of the data. In Section 3 we prove a theorem that rules out
monotone convergence to the unique steady state for endowment lifecycle economies
with and without money, and certain classes of production economies, whenever con-
sumption goods are weak gross substitutes at price vectors close to the steady state
price vector. We then turn to providing some intuition for the ubiquity of negative or
complex eigenvalues in overlapping generations economies with nontrivial lifecycles.
Accordingly, in Section 4 we provide examples of overlapping generations economies,
with and without production, for lifecycles of three periods as well as 55 periods,
in which there are complex or negative real eigenvalues. A summary and a list of

possible extensions make up the final section.

2. EIGENVALUES IN AUTOREGRESSIVE AGGREGATE TIME SERIES MODELS

2.1. Overview. Thereis a large literature that analyzes the time series properties
of U.S. GDP and other aggregate variables, as for example in Sims [28] and subsequent
research. A widely-documented finding is that most variables are not well character-
ized as first-order linear univariate processes. Instead, the data indicate a richer form
of autocorrelation than is consistent with a first-order autoregressive (AR(1)) model,
and thus raise the possibility of complex or negative eigenvalues in empirical reduced
forms. While the autocorrelation properties of macroeconomic time series have been
analyzed in detail in the literature, less is known about the corresponding eigenvalues
in these reduced form models.

In this section, we study the eigenvalues in estimated AR models of GDP, and
VAR models of GDP and other aggregate time series. We focus on the likelihood

that there are complex or negative eigenvalues in the AR and VAR representations
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of aggregate time series that are routinely used in empirical macroeconomics. We
start by estimating simple univariate autoregressions for real GDP and report the
eigenvalues based on the point estimates from the autoregression. To assess sampling
uncertainty in the eigenvalues, we use a nonparametric bootstrap technique to build
up an empirical distribution. Following the univariate analysis, we consider VARs
between real GDP and other variables. We use postwar annual U.S. data, ranging
from 1948 to 1999. The data include real GDP, consumption, fixed investment, and

the interest rate on three-month U.S. Treasury Bills.

2.2. Eigenvalues in univariate autoregressions of GDP. We first consider
univariate models of GDP:
ALY, = & (1)

where Y is the natural log of real GDP and A is a vector of coefficients in the
lag operator L. Since there is no consensus view on how to decompose economic
time series into trend and cyclical components, we use three different approaches in
modeling trends that have been used in the literature: (1) linear time trend, (2)
linear and quadratic time trends, and (3) the Hodrick-Prescott (HP) filter. For each
model of the underlying trend, the cyclical component (y;) is defined as the difference

between the raw data (V;) and the estimated trend component (Y;) :
w=Yr— Yt (2)

Once the cyclical component of the data has been extracted, it is necessary to
choose the lag order in the autoregressions. Since several researchers have reported
that AR(1) models are rejected in favor of higher-order models, we begin by estimating
an AR(2) and an AR(3) model of the cyclical component of real GDP. We estimate
the coefficients using OLS. The two eigenvalues (A; and \y) based on the estimated
AR(2) coefficients are presented in Table 1, and the three eigenvalues based on the

estimated AR(3) coefficients are presented in Table 2.
[TABLE 1 ABOUT HERE]

For the AR(2) process, we find that both eigenvalues are real and positive for the
two deterministic trends, and complex for the HP detrending. For the AR(3) process,
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we find that all eigenvalues are either negative or complex for the quadratic and HP
trends, while one eigenvalue is negative for linear detrending.

Since the eigenvalues are functions of the estimated autoregressive coeflicients,
they are subject to sampling uncertainty. To assess this uncertainty, we use a non-
parametric bootstrap procedure to construct an empirical distribution of the eigen-
values. This involves the following steps. First, we take the residuals from the fitted
equations, and shuffle their position using randomly generated numbers from a uni-
form density. Second, we construct pseudo-data, {Qt}thl, using the reordered inno-
vations and the originally estimated autoregressive parameters. We then re-estimate
the autoregressive parameters from the pseudo-data, and use those new parameters
to calculate new eigenvalues. By repeating this resampling procedure many times,

one can construct a histogram of the empirical eigenvalues.
[TABLE 2 ABOUT HERE,|

Based on 500 replications, we found that the eigenvalues were real and positive for
the linear and quadratic trend cases for the AR(2) specification in 78 percent, and 43
percent of the bootstrap replications, respectively. For the HP filtered data, however,
eigenvalues were complex in 97 percent of the trials. For the AR(3) specification,
negative and/or complex eigenvalues were a common feature across all three trend
specifications. For the linear trend, 98 percent of the trials had at least one real nega-
tive eigenvalue or one complex conjugate pair of eigenvalues. For the quadratic trend,
96 percent of the trials had complex eigenvalues, and for the HP trend, 97 percent of
the trials had at least one real negative eigenvalue, and one complex conjugate pair
of eigenvalues. To summarize, we found that for univariate representations, complex
or negative eigenvalues are a robust feature if HP detrending is used, and are robust

for the other detrending methods for AR(3) or higher order processes.!

[TABLE 3 ABOUT HERE.]

'We also analyzed an AR(4) and an AR(5) process, and the results were very similar to the
AR(3) in terms of the characteristics of the eigenvalues.
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2.3. Eigenvalues in VAR representations of GDP. We next analyze eigen-
values in VARSs using two variable systems with one lag. The cyclical components of
the variables are extracted using the same procedure as in the univariate analysis.
The variables in the model are GDP with either (1) consumption, (2) investment,
or (3) the three-month Treasury bill rate. The eigenvalues based on the VAR coef-
ficients are presented in Tables 3, 4, and 5. The two variables systems are denoted
as Y/C, for the output-consumption system, Y /I, for the output-investment system,

and Y/R, for the output-interest rate system. We use one lag in each of the VARs.

[TABLE 4 ABOUT HERE.]

Tables 3, 4, and 5 present the eigenvalues for the three VARs. These results show
that the signs of the eigenvalues depends on both the specification of the VARs and
the detrending method. We find real and positive eigenvalues for the Y/C VAR across
all detrending procedures. For the Y/I VAR, we find real and positive eigenvalues
for the two deterministic trends, but complex eigenvalues for the HP trend. For the
Y /R VAR, we find complex eigenvalues across all detrending specifications. This last
finding is of considerable interest, given that it has become very common to specify
output-interest rate VARs.?

As in the univariate analysis, we used the nonparametric bootstrap to assess sam-
pling uncertainty of the eigenvalues from the VARs. Table 6 summarizes these results
by presenting the fraction of draws in which there were either complex or negative
eigenvalues in the three systems we studied using the three different detrending pro-
cedures. We performed 500 draws in the bootstrap analysis. The table shows that
negative or complex roots occurred quite frequently in the bootstrap analysis for HP
detrending, and for the Y/R VAR. In particular, there were complex or negative
roots in the output-interest rate VAR between 76 and 96 percent of the bootstrap
trials. The analysis presented in this section thus suggests that some commonly-

used reduced-form models of major macroeconomic time series, detrended with con-

2Since the model economy we develop below has only real interest rates, we have also conducted
this VAR experiment with ex-post real interest rates (using the GDP deflator). The results concern-
ing the frequency of negative/complex eigenvalues are similar to those presented here with nominal
rates. We focus on the nominal rate specification, however, given that it is used almost exclusively
in the empirical literature.
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ventional procedures, produce characteristic roots that are frequently negative or

complex-valued.

[TABLE 5 ABOUT HERE.]

3. CONVERGENCE THEOREMS FOR LIFECYCLE ECONOMIES
3.1. Overview. To understand the facts summarized in the previous section, we
now turn to an analysis of a fairly large class of standard lifecycle economies, with
and without outside assets like fiat money. In every economy we consider there is
one consumption good, the trend rate of growth is exactly zero, the lifecycle is L > 3

periods, and agents are identical within each generation.
[TABLE 6 ABOUT HERE,|

If we denote total household assets held at time ¢ by A(t), then the equilibrium

condition for endowment economies

A(t) =0, (3)

At) = M(t) =0 (4)

when government liabilities have real value M (t) .

Each economy contains L asset-trading generations, from the youngest at age
¢ = 0, to the oldest at age ¢ = L — 1. Trading plans at time ¢ are conditional on the
2L — 1 dimensional price vector p* = (pi_r.41, -+, Pty -, Pror—1) Of accounting prices
for dated goods. Without loss of generality, we set p; = 1 which means that p; is the
price of date-t goods in terms of date-1 goods. Then Walras’ law and the zero-degree
homogeneity of excess demands mean that trading plans depend on just 2L — 3 price
ratios. Hence the equilibrium conditions equations (3) and (4) are nonlinear difference
equations of order 2L — 4 and 2L — 3 respectively. These are supplemented by L — 2
initial conditions in the endowment economy describing the pre-existing asset and

liability positions of households in the initial period ¢ = 0.
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3.2. Convergence in exchange economies with and without money. In a
large class of endowment lifecycle economies we have briefly described (and which are
described in more detail below), gross substitutes turns out to be inconsistent with
monotone convergence. Specifically, if all pairs of dated consumption goods are weak
gross substitutes in the neighborhood of the steady state price vector, then equilibria
near either a non-monetary or a monetary steady state exhibit damped oscillations
for all exchange economies with a lifecycle L > 3. Our main results, Theorems 4
and 5 below, extend the findings of Kehoe, Levine, Mas-Colell and Woodford [20]
who show that every endowment economy in this class admits no limit cycles; it has
instead a unique real steady state, and a unique equilibrium sequence converging to
that steady state.

More relevant for business cycle analysis is that local uniqueness holds under very
weak assumptions. Kehoe, et al., [20] prove that the equilibrium sequence is unique
near the steady state if dated consumption goods are gross substitutes at all price
ratios close to the steady state. Uniqueness means that the number of stable eigen-
values exactly equals the number of initial conditions describing the distribution of
wealth among generations at the beginning of time. This convergence result means
that lifecycle economies eventually dissipate external impulses, and cannot deviate
from their steady state for any prolonged period of time unless they are periodically
shocked from outside. Kehoe, et al., [20] however, do not examine whether conver-
gence is monotone or oscillatory.

Formal results come from studying a double-ended deterministic exchange econ-
omy with finite lifecycles of length L = T'+1 > 3, constant population, and one agent
in each cohort. Our economy is very similar to the one studied in Kehoe, et al., [20].

We denote time by ¢ = 0,1, ... and cohorts by v = -T —1,-T,...,0,1, .... Each nor-
T

=0
{e;}",, a consumption vector ¢ = {¢, (v +1)}._,, and an additive utility function

mal cohort v > 0 has a stationary, non-negative endowment vector e’ = {eZ +Z-}

U’ = Zf:_ol Bule, (v +1i)], B > 0, satisfying standard smoothness, monotonicity and
convexity properties.

The price vector relevant to the non-transitional cohort v is p” = {p; tV;T which

v+T
t=v

implies price ratios or interest rates {R; with R; = p;/piy1. Maximizing utility

subject to the budget constraint p”(¢” — e€”) < 0 leads to asset demand schedules of



TREND-REVERTING FLUCTUATIONS IN THE LIFE-CYCLE MODEL 9

the form

t

o) = (B e ©

i, \Pt
= z(p"/pst—v). (6)

These schedules satisfy standard accounting and budget constraints, that is,
a,(t) = R 10y, (t—1) + e, — (1), (7)
wheret =v+1,...,v+T —1, and
a,(v—1)=0=a,(v+1T). (8)

For each stage of the lifecycle t —v =0, ..., T, the asset demands are homogeneous of
degree zero in the vector p¥, depending only on the vector p”/p; = (pu/pt, -y DT/ Dt)
for any cohort v and any time period ¢t = v, ..., 4+ T. Since price ratios are products
of interest factors, we may rewrite real asset demands as functions of these interest
factors, that is,

a,(t)=2"(Ry,.... Rysr_1;t —1). 9)

Gross substitutability implies that each asset demand schedule is monotone in the

vector of interest factors. Specifically:

Lemma 1. (Monotonicity.) If all pairs of dated consumption goods are weak gross
substitutes for cohort v, then «,(t) is an increasing function of the vector (R,,
R, .7 1) foreacht=v,...v+T —1.

ceey

Proof. We show that asset demand «,(¢) by cohort v at time t =v,....v +T
is increasing in the interest factor R;. To do this we ask how «,(t) reacts when we
replace the price vector (p”) = (py, ..., Poir) With (5”) = (Apu, ooy APty Dttty ooy Do)
or with (p”) = (py, -, Pty P41/ A, -y Do/ A) for some fixed A > 1. Each of these two
substitutions raises the price ratio Ry = p;/p:+1 while keeping all other price ratios
constant. Weak gross substitutability means that the consumption vectors (¢”, ¢”, &)

corresponding to these price systems will satisfy

¢u(s) > cu(s) (10)
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fors=t+1,...,v+T, and
&u(s) < cu(s) (11)

for s = 1, ..., t. From these inequalities and the asset accumulation identity in equation
(7) we obtain

Cu(s) = cu(s) = Ram[Gw(s — 1) —on(s — 1)) — [au(s) —au(s)] 20 (12)
fors=t+1,...,v+T, and
cu(s) —cu(s) = Rs 1 [a(s—1) —ay(s —1)] — [au(s) —au(s)] <0 (13)

for s = v,...,t. Initial wealth is zero, and rational consumption requires terminal

wealth to be zero as well, that is, equation (8) holds and so
aw+T)=a,v+T)=a,v—-1)=a,(r—-1)=0. (14)
Inserting (14) into (12) and (13) leads to
a,(s) > ay(s) (15)

fors=t+1,...,v+ T, and
&, (s) > ay(s) (16)

for s = v,...,t. Taken together, these two inequalities show that an increase in R;
raises the entire asset profile of cohort v =t —T,....t. R
Monotonicity easily extends to the aggregate real asset demand schedule at time

t,
t

At)= Y a(t) =2 (Rieria, ooy Reyroa) (17)

v=t—T+1
which depends positively on a 2T — 2 dimensional vector of interest factors.

This economy admits a unique stationary real equilibrium but no periodic real
equilibria whatsoever. Stationary equilibria are constant interest rate sequences R; =
R* > 0, or geometric price sequences p; = po (R*)™", satisfying A(t) = 0 for ¢t > 0.
The increasingness of the schedule z* rules out multiple steady states, and Kehoe, et
al., [20, pp. 13-15] demonstrate that one such state exists by bounding z* from above

and below. We sum up in
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Lemma 2. (Uniqueness of the steady state.) Weak gross substitutes implies the

existence of a unique non-monetary steady state.

Of immediate concern to us are high-frequency adjustments to temporary external
shocks at, say, t = 0. To study the adjustment process, we look at how the economy
evolves from ¢ = 1 onward, after either an unexpected shock that disturbs a sta-
tionary equilibrium at ¢ = 0, or after an anticipated policy intervention that fixes
wealth for all generations at the end of period ¢ = 0. In either case, a nonstationary
equilibrium sequence {R;},, satisfies A(t) = 0, ¢ = 1,2,.... plus T — 1 indepen-
dent initial conditions which fix the wealth of all pre-existing generations at the end
of period ¢ = 0. These initial conditions fix {a;_r(0),...,a0(0)} and, in addition,
constrain 0_, a,(0) = 0. The last equation means that transitory generations
v=1-T,...,0 hold claims on each other only, not against cohorts born at t = 1 or
later.

Non-stationary equilibria are solutions to the difference equation A(t) = 0, which
has order 2T — 2, or 2L — 4, in the vector {R; 7.1, ..., Rey7 1}, subject to the T — 1
initial conditions. Kehoe, et al., [20, pp. 6-7 and 18] prove that there can be no more

than one such solution for each economy:

Lemma 3. (Uniqueness of equilibrium.) Under weak gross substitutability, there is
at most one equilibrium price sequence which, if it exists, converges to the steady

state.

Two corollaries of this result are that limit cycles cannot exist when consumption
goods are gross substitutes at all price ratios, and limit cycles cannot exist near the
steady state if gross substitutability obtains at prices near the steady state price
vector. More relevant for our purposes is the added implication that the steady state
R* has T' — 1 unstable eigenvalues with modulus larger than one, and 7' — 1 stable
eigenvalues with modulus less than one. Convergence to R* will take place on the
stable manifold of this economy, a 7" — 1 dimensional subspace defined near R* by
the eigenvectors which correspond to the stable roots.

The phenomenon of trend reversion requires that deviations from the steady state

should die out as damped oscillations, not as monotonically decaying motion. None
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of the preceding results say whether the T — 1 stable eigenvalues are negative or
complex, and it would seem very hard to extract such information about the nature
of these roots from first principles. The main theoretical result of this section is that

convergence to R* involves some damped oscillatory motion. Formally, we have

Theorem 4. (Convergence to the real steady state.) If dated consumption goods
are weak gross substitutes at price ratios near the stationary real yield R*, then the
unique equilibrium price sequence {R;},~, of the non-monetary economy cannot be

monotone.

Proof. Monotone convergence implies that, for all ¢ > 7, either Ry > R*
or R < R*. In view of equation (17), the first alternative means A (s) > 0 for all
s > 7+ T — 1; the second alternative means A (s) < 0 for all s > 7+ T — 1. Both
implications violate the equilibrium condition A (¢) =0. W

We conclude that some of the T — 1 stable roots associated with the steady state
R* must be negative or complex, and that adjustment in the neighborhood of R* is
dominated by these eigenvalues.

Intuition supporting the conjecture of damped oscillations is easy to conjure up
in an exchange economy with the typical single-peaked endowment pattern. Con-
sumption smoothing in this environment produces a steady state in which the young
borrow from the middle-aged, repay loans and build up assets in middle age, and draw
down these assets in old age. If the interest rate at ¢ is above its steady state value R*,
then young agents postpone consumption and reduce their liabilities. Middle-aged
agents, according to equation (22), must correspondingly reduce their asset holdings
even as they are shifting consumption away from the current period ¢. This is a con-
sistent course of action for them only if the middle-aged reduce current consumption
to repay unusually high debts carried from the previous period ¢ — 1. Unusually high
consumption in youth is rational only if the interest rate was unusually low at ¢ — 1.
Hence, R; > R* implies R;_, < R*.

Theorem 4 extends to dynamically inefficient exchange economies which permit
equilibria with positively-valued government liabilities. Suppose, in particular, that

there is a constant stock of fiat money per household, and zero government purchases
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or taxes. The central bank budget constraint is
H(t+1)= RH (t) (18)

where H (t) is per capita nominal balances, and R; = p;/pi+1 is the real yield of
money.

From equations (4) and (18) we obtain the equilibrium condition
A(t+1)=RA() (19)

in which A (¢) is the community demand for real balances. The monetary stationary
equilibrium of this economy is R; = 1 at which money demand is assumed positive,
that is,

A*=2"(1,...,1) > 0. (20)

We know that this equilibrium is a saddle which implies a unique equilibrium sequence
{R:} converging to 1. If this sequence were to converge monotonically from above
(below), then the demand for real balances would be falling (rising) over time. In
other words monotone convergence implies, for each t, either R; > R;,; > 1 and
A(t) > A(t+1) or Ry < Riy1 < 1 and A(t) < A(t+1). Each of these events
contradicts the market clearing condition (19), unless A (t) < 0 for each ¢ which in
turn violates our dynamic inefficiency assumption in (20). This proves the following

theorem:

Theorem 5. (Convergence to the monetary steady state.) If the non-monetary econ-
omy is dynamically inefficient and dated consumption goods are weak gross substi-
tutes at yields near the golden rule, then there is a unique monetary equilibrium price

sequence {R;};-, which converges non-monotonically to the golden rule.

3.3. Convergence in production economies. The equilibrium of a production
economy with a lifecycle of L > 2 periods satisfies a difference equation of order 2L.—3

which represents zero aggregate excess demand for assets,
A(t) —k(t+1) =0, (21)

where k (t + 1) represents the capital-labor ratio at 41, plus L—1 independent initial
conditions fixing the wealth of transitional generations, that is, {a;_7(0), ..., 2p(0)}
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given 9~ a,(0) = k; > 0. Despite the similarities of this economy with the
previous one, Lemma 3 and Theorem 4 do not extend directly to economies with
production. Calvo [12] and Kehoe [19], in particular, provide examples of non-unique
equilibria in economies with gross substitutability in consumption and a high degree
of complementarity in production. Calculations conducted later in the paper suggest
that the stable eigenvalue with the largest modulus could be either positive or neg-
ative, even for utility functions in which consumption goods are gross substitutes at
all price ratios. Hence gross substitutability is not sufficient to rule out monotone
convergence in overlapping generations growth models with non-trivial lifecycles.
We do not have a general result. What we offer instead is informed speculation
backed by numerical results reported later in the paper. The logic of these coun-
terexamples to uniqueness and trend reversion seems to rest on the correlation of
prices with incomes as an economy adjusts toward its steady state. For endowment
economies, incomes are fixed and uncorrelated with prices or interest rates; in produc-
tion economies, however, interest rates and wage incomes are negatively correlated
by the factor-price frontier. Deviations from the steady state affect interest rates
and wages in opposite directions, and exert two conflicting forces on savings plans:
a higher-than-normal interest rate tends to postpone current consumption and raise
asset holdings, while a lower-than-normal wage rate (and wage income) will lower as-
sets as the household borrows against future earnings to smooth out its consumption
path. Dynamic adjustment in production economies seems to depend on the balance
of these two conflicting forces, that is, on the steepness of the factor-price frontier
near the steady state. We conjecture that production economies with relatively flat

factor-price frontiers will behave like endowment economies.

4. EXAMPLE ECONOMIES
4.1. Overview. We now turn to a series of examples to illustrate our main finding
with respect to endowment economies, and to explore our conjecture with respect to
economies with production. We begin with the simplest example, and then continue
to more complicated cases, including many-period models with production. In each
case, we calculate eigenvalues, analytically in the simplest cases, and numerically for

the more complicated economies.
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4.2. Logarithmic endowment economies with three-period lives.

Without government liabilities. As a simple starting example that illustrates
Theorem 4, we use the logarithmic utility function u' = Inei(t) + Slne(t + 1) +
5%1In ci(t + 2) for each generation ¢t = 1,2, ..., where § > 0 is a discount factor, and
the endowment vector (eg, e, es) € Ri such that eg + e; + eo = 1. Equilibrium in

these economies is any solution to the second order difference equation

a(t) + oy 1(t) =0, (22)
for t = 1,2, ..., which satisfies the initial condition

ap(0) +a_1(0) =0. (23)

In each of these equations «;(t + i) denotes claims on other households held by a
household of generation ¢ at the end of period t + i, for i = 0,1, 2, .... Equation (23)
is an initial condition that specifies what the two transitional generations owe each
other; it is equivalent to fixing the interest rate at ¢ = 0. The asset accumulation

identities are given by

al(t) = ey — ci(t) (24)
a(t+1) = Riy(t)+e —a(t+1) (25)

where Ry = p;/pi41 is the real interest factor on loans made at ¢ and repaid at ¢ + 1.

The consumer’s first-order conditions yield

a(t +1) = BRi(t) (26)
and e e
eg+ & + —2—
a(t) = 2T R T Rl (21)
1+58+0
Substitution into (22) and (23) yields the second-order equation
Tiy1 = Rt (28)
(&
Riy1 = __ e (29)

f (xtv Rt)
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where v = and

1
14+6+6%”

fz,R)=(1—-7)eR+ [l - (1+B)7]ei R+
eo[l—(1+0)vy]zR—~v[e1+ (14 5)es]. (30)

Equation (30) turns out to have a unique steady state R*, just as predicted by
Kehoe, et al., [20]. Uniqueness of the steady state R* follows from the monotonicity
of the expression R — ves/f(R, R), which is derived from equation (28). It also has

a characteristic polynomial

T(A\) =N ~-TA+D (31)
with
AR?
T = —(762+D><0, (32)
D — Reo[l—ve(l—i-ﬁ)ﬂ’ (33)
A= (1=7e+[1-(1+3)]e. (34)

Since (R*)* > vey/A, 7 (\) has a positive discriminant, 7(—1) = 1+ 7T + D < 0, and

there are two negative eigenvalues which straddle —1:
Ao < —1< A <O (35)

Combining the initial condition (23) with the single stable eigenvalue (35) we con-
clude that real equilibrium is unique in this economy. If the initial distribution of
claims {ag (0),a—1 (0)} happens to deviate slightly from its steady state configura-
tion, the interest rate will also differ from its stationary value R*. Dynamic adjustment

to R* can be locally approximated by the linear equation
R — R* =)\ (Ri—1 — RY) (36)

in which —1 < A\; < 0. Therefore, for a given initial condition Ry # R*, the equilib-
rium follows a damped oscillatory path toward the steady state.
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With valued government liabilities. To illustrate Theorem 5, we again use a
logarithmic preferences three-period endowment economy, but this time with a valued
outside asset in fixed supply. For this example, we set the discount factor 3 = 1 so
that utility is given by u’ = In¢;(¢) +In¢;(t + 1) + In ¢, (¢ +2). The endowment vector
is again (eg, e1,€9) € Ri such that ey + e; + es = 1. Solving the households’ problem
indicates that aggregate holdings of the outside asset is given by

1

€1 €9
Alt) =eg— = °
O=co=g ot 5" TR,

+

2 €1 €9
e1+ Ri_1e0 — Ri—1= |eo + + .
1 t—1€0 t 13 0 Rtfl RtflRt

(37)

At the monetary steady state value R* = 1, inspection reveals that the condition for
A > 0is ey > ey. The equilibrium condition is given by (19), and we can write the
implied dynamic system as a third-order difference equation

€2
—(e1+e2) +2Riy1 (eg + €1+ e2) — Ry Ry (eg +€1) — Ry 1RiRi—1eg

Riyo = (38)

The eigenvalues associated with this equation at R; = R* Vt are the solutions to

2 2
p()\)z)ﬁ_,_(w))\?_(ﬂ))\_@:o, (39)

€9

We deduce that P (0) = =2 < 0, P(—1) >0, and P (1) = 3(626%;60) < 0 under the
maintained hypothesis that the demand for the outside asset is positive at R* = 1.
Since limy_ ;o P (A) = oo and limy_,_,, P (\) = —o0, we conclude that the three
eigenvalues are real and are arranged as Ay < —1 < A\ < 0 < 1 < Ag. There
is one initial condition corresponding to the stable negative real eigenvalue, hence

equilibrium is unique and adjustment toward the steady state is nonmonotonic.

4.3. CRRA utility endowment economies with three period lifetimes. If
we allow significant curvature in preferences, the gross substitutes property does not
necessarily hold and the uniqueness of steady state equilibrium can be lost. However,
we would like to explore how our results from the previous subsection would change
under CRRA preferences. We use numerical methods in this case. Accordingly, we

view an economy in the set F; as a list (3,7, eg, €1, €2) € Fy, in which (eg, e1, e2) is the
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endowment vector, u [c; (£)]+8u [c; (t + 1)]+5%u [c; (¢ + 2)] is the utility function, with
A=
1—y
risk aversion v € (0,3) from a uniform distribution, which implies intertemporal

u(c) = for v # 1 and u (¢) = Inc for v = 1. We chose the coefficient of relative
elasticities of substitution as small as % The discount factor is chosen from a uniform
distribution on (.5, 2), corresponding to rates of time preference that might be viewed
as realistic given the length of the time period. The endowment sequence is restricted
to be hump-shaped, with ey = e5, and the middle endowment chosen from a uniform
distribution with e; € (eg, 3eg). This pattern corresponds roughly to data sometimes
used to calibrate larger models, in which the peak endowment is about 1.7 times the
first endowment and the final endowments are of about equal magnitude as the initial
endowments. We maintain the restriction that ey + e; + eo = 1. We randomly select
1,000 economies from Fj, and calculate the steady state as well as the associated

eigenvalues.
[FIGURE 1 ABOUT HERE,]

The results are summarized in Figure 1. These economies turned out to always
have a unique steady state, and they continued to possess a single stable eigenvalue.
This stable eigenvalue, however, can now sometimes be positive. In the Figure, we
plot the value of the stable eigenvalue for each of our 1,000 sample economies against
four characteristics of the economy. In panel A, the value of the stable eigenvalue
is plotted against e;, which can be interpreted as the peakedness of the endowment
pattern. It is clear that flatter endowment sequences tend to preserve the negative
sign on the stable eigenvalue. Similarly, panels B and D show that discount factors
less than unity and curvature parameters less than 2 tend to preserve the negative sign
on the stable eigenvalue, regardless of other parameters. Panel C relates the value of
the stable eigenvalue to the steady state gross interest rate. Here, we see that it is the
inefficient economies, those with gross interest rates less than unity, which may be
characterized by a positive stable eigenvalue. These results suggest that oscillatory
adjustment to transitory shocks may characterize efficient economies with empirically
plausible features: positive rates of time preference, relatively flat endowment profiles,

and relatively high elasticities of intertemporal substitution (above 3).
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4.4. Production economies with three-period lifecycles. In economies with
three period lifecycles and production, the dimension of the associated dynamic sys-
tem increases by one. Initial conditions are now the holdings of capital owned by the
agents who have been alive for one and two periods respectively. For determinacy to
hold, we expect two stable eigenvalues in these systems. Labor supply is inelastic and
normalized to unity. We use the same CRRA utility function, along with a standard

CES production function given by

y () =0 [{ak(®) "+ (1-a)} "], (40)

for p # 0, and

y (t) =0k (t)" (41)
for p = 0, where y (¢) is output, « is capital share when p = 0,® p governs the inverse
of the elasticity of substitution between capital and labor, and 6 is a scale factor.
An economy in the set Fs is a list (3,7, eg, 1, €2, @, p,6) in which ¢ is the net rate of
depreciation for physical capital. For the preference parameters we choose 5 € (.5,2)
and v € (.5,3) from uniform distributions. We use the hump-shaped (interpreted
as labor productivity) endowment pattern described in the previous section. For the
production parameters, we choose, again from uniform distributions, a € (.25, .4),
p € (—.5,.5), and 6 € (.8,1). We set the scale parameter 6 to 10, which is sufficient

to guarantee existence. We calculate the steady state and the associated eigenvalues.
[FIGURE 2 ABOUT HERE,]

The 1,000 economies in Fs always possessed a unique, determinate steady state.
In each case, we found that one stable eigenvalue was real and positive, and the other
was real and negative. The modulus of the two eigenvalues was of similar magnitude
in most cases, but the positive eigenvalue was larger in absolute value in about 85%
of the economies. Figure 2 summarizes our findings, and relates the characteristics
of the economies to the magnitude of the two stable eigenvalues. The results here

are much less ambiguous than those for the economies in F;. Here, the negative

3When p # 0, capital share is given by ak™" [ak™" + (1 + oc)rl, where k is the steady state
capital-labor ratio.
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eigenvalue is always present, and can be dominant under many different parameter

configurations.

4.5. Production economies with 55-period lifecycles. We ultimately wish
to understand the local dynamics of lifecycle economies with many periods, in which
agents are allowed to make decisions, and thus react to shocks, at many points in their
lifetimes. Accordingly, we study economies with L = 55, an “annual” model.? Here we
calibrate the economies much more sharply in order to reduce the number of cases we
need to calculate. Our calibration proceeds as follows. We use a productivity profile
based on Hansen [17].> We set the following parameters at annualized values: 3 = .98,
6 = .065. We set a = .33. That leaves two parameters, curvature in preferences and
capital-labor substitutability, which might be viewed as the most interesting ones
for dynamic adjustment. We explored nine cases based on the following (p,y) pairs:
A= (=-511), B=(-.5,2),C = (-.5,5),D = (0,1.1), E = (0,2), F = (0,5),
G = (.5,1.1), H = (.5,2), and I = (.5,5). Accordingly, case D is close to a log-log
specification, where preferences are logarithmic and production is Cobb-Douglas.
For each case A, ..., I, we calculated the steady state of the system. In principle,
uniqueness of the steady state is not guaranteed, but multiple steady states did not
occur for these parameter configurations. There is also the question of whether the
calculated steady states are efficient or inefficient. The gross steady state growth rate

in these economies is one, so any gross interest rate greater than one indicates the

4Calibrated examples of production economies with adjustment costs are studied by Auerbach
and Kotlikoff [1], and Huang, Imrohoroglu, and Sargent [18]. Rios-Rull [24], on the other hand,
examines the sample moments of a calibrated stochastic overlapping generations economy with a
55-period lifecycle and compares them with the corresponding predictions of real business cycle
models.

5The Hansen data is collected from samples taken in 1979 and 1987. The data separate males
from females. We average the data from the two years, and we also average the data across males
and females using weights of 0.6 and 0.4. The resulting profile is a step function, because the data
are collected for age groupings. We fit a fifth-order polynomial to this step function. This yields the
smooth profile e;_oq = mg + mii + mai® + msi® +myai* + msi® for i = 21, ..., 76, with the vector
of coefficients m = [—4.34, 0.613, —0.0274, 0.0063, —0.717 x 107>, 0.314 x 10~7]. This profile peaks
at agent age 28 (figurative age 48), when productivity is about 1.6 times its level at agent age 1
(figurative age 21). Productivity in the final year of life is virtually the same as in the first year of
life.

6To avoid special programming code we did not allow the case where v is exactly equal to unity.
This makes little difference for the results.
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equilibrium is efficient. Steady state interest rates were always greater than one for

each of the nine cases A, ..., I, and so we are only looking at efficient economies.
[FIGURE 3 ABOUT HERE,]

We study the local dynamics of these economies. In Figure 3 we plot for case
H the associated eigenvalues in the complex plane. Each square plotted represents
an eigenvalue associated with the unique steady state. There are exactly 54 stable
eigenvalues indicating that equilibrium is determinate. Perhaps more importantly for
our purposes, nearly all the roots are complex and of about equal modulus.” Thus
one expects the local dynamics of these systems to be characterized by fluctuating
motion. The qualitative features of this figure were the same for the other nine cases
we studied—we always found two groups of eigenvalues, one group lying roughly
evenly spaced on an ellipse outside the unit circle, and the other lying roughly evenly
spaced on an ellipse inside the unit circle. The idea that the eigenvalues are roughly
evenly spaced can be documented if we translate to polar coordinates and measure
the distance between eigenvalues in degrees; in this metric, the stable eigenvalues are
all about 360/54 degrees apart, the only substantial exceptions occurring near the
point (1,0) in the diagram, where the roots are slightly farther apart. Of the two
stable real roots, one has modulus comparable to the complex roots, and the other is

relatively small and negative. We summarize the results for the nine cases in Table
7.

[TABLE 7 ABOUT HERE.]

5. CONCLUSIONS
Convex lifecycle economies with pure exchange, or with production under constant
returns to scale are the simplest class of models consistent with the trend-reverting
behavior of U.S. output. This behavior is documented by reduced-form VAR’s in their
response to temporary impulses and in their characteristic roots, which tend to be

overwhelmingly negative or complex. Complex eigenvalues also occur in overlapping

"Laitner [21] calculates eigenvalues for a small sample of alternatively parameterized large lifecycle
economies with taxes and transfers. Eigenvalues were typically complex in these economies.
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generations economies with pure exchange when dated consumption goods are gross
substitutes near the steady state, and aggregate saving depends non-trivially on the
distribution of household wealth among successive cohorts of individuals. We conjec-
ture that an array of complex eigenvalues is a likely feature of all lifecycle economies
with a reasonably large number of decision points in the lifecycle. These complex
eigenvalues are of comparable modulus to the largest real root.

The qualitative similarity between lifecycle economies and vector autoregressions
in their dynamic adjustment paths naturally brings to the fore the question of quan-
titative fit. Are there empirically plausible parameterizations of overlapping genera-
tions economies whose eigenvalues, autocorrelation functions, and responses to tem-
porary productivity or liquidity shocks match quantitatively those of fitted vector

autoregressions? We think this question clearly deserves further research.
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Table 1
Eigenvalues, GDP AR(2) Model

Detrending Method
Eigenvalue | Linear Quadratic Hodrick-Prescott

A 0.806 0.544 0.201 + 0.506¢

A2 0.107 0.285 0.201 — 0.5062

Table 1: Eigenvalues for the AR(2) univariate model for GDP.
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Table 2

Eigenvalues, GDP AR(3) Model

Detrending Method

Eigenvalue | Linear Quadratic Hodrick-Prescott
A1 0.727 | 0.484 4+ 0.210¢ | 0.363 + 0.586¢
A2 0.217 | 0.484 —0.210¢ | 0.363 — 0.586¢
A3 —0.041 —0.151 —0.370

Table 2: Eigenvalues for the AR(3) univariate model for GDP.
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Table 3
Eigenvalues, Y/C VAR Model

Detrending Method
Eigenvalue | Linear Quadratic Hodrick-Prescott

A 0.953 0.819 0.507

A2 0.583 0.558 0.203

Table 3: Eigenvalues for the VAR with GDP and consumption.
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Table 4
Eigenvalues, Y/I VAR Model

Detrending Method
Eigenvalue | Linear Quadratic Hodrick-Prescott

A 0.884 0.789 0.212 + .01744

A2 0.228 0.252 0.212 — 0.1744

Table 4: Eigenvalues for the VAR with GDP and investment.
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Table 5
Eigenvalues, Y/R VAR Model

Detrending Method
Eigenvalue Linear Quadratic Hodrick-Prescott
A1 0.843 + 0.1567 | 0.677 + 0.1352 | 0.404 + 0.427:
A2 0.843 — 0.156¢ | 0.677 — 0.135¢ | 0.404 — 0.427:

Table 5: Eigenvalues for the VAR with GDP and an interest rate.

30



TREND-REVERTING FLUCTUATIONS IN THE LIFE-CYCLE MODEL

Table 6

Frequency of Negative or
Complex Eigenvalues in VARs

Detrending Method
System | Linear Quadratic Hodrick-Prescott

Y/C | 14.6%
Y/I | 3.6%
Y/R | 92.0%

21.8%

2.8%

76.4%

45.0%
67.0%

95.8%
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Table 6: Frequency of negative or complex eigenvalues in VAR estimates, based on boot-

strap estimates of sampling uncertainty.
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Table 7

Comparison of cases A, ..., I.

Economy Modulus
(p,7) Smallest 2" Smallest Largest
A=(-511)| 0153 0.856 0.944
B =(-.5,2) 0.049 0.881 0.956
C =(-.5,5) 0.003 0.833 0.993
D =(0,1.1) 0.163 0.837 0.930
E =(0,2) 0.104 0.855 0.939
F =(0,5) 0.017 0.777 0.981
G=(511) | 0164 0.759 0.932
H=(52) | 0122 0.797 0.937
I =(.5,5) 0.033 0.744 0.973

Table 7: Summary of eigenvalues for cases A, ..., I.
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Figure 1. How the negative stable eigenvalue relates
to properties of endowment economies.
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Figure 1: How the negative stable eigenvalue relates to properties of endowment
economies. The stable eigenvalue for the 1,000 economies in Fj is typically negative.
The four panels relate the stable eigenvalue to characteristics of these economies.
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Figure 2. How the stable eigenval ues of
3-period production economies rel ate to economic characteristics
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Figure 2: How the stable eigenvalues of three-period production economies relate to
economy characteristics.
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Figure 3

Eigenvalues, 55-period model
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Figure 3: The eigenvalues for a 55-period production economy. The heavy black line
denotes the unit circle. There are 54 eigenvalues inside the unit circle, so that equi-
librium is determinate. The cases A, ..., I all produced qualitatively similar diagrams.



