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ABSTRACT

This paper reexamines the small sample properties of Hansen’s (1982) Generalized Method of

Moments (GMM) and Hansen and Jagannathan’s (1989) estimation-free tests on simulated data

from a more plausible consumption based asset pricing model. Previous studies are incomplete

and misleading. A continuous distribution of consumption growth produces a near non-

identification in the GMM criterion function, severe bias in coefficient estimates, misleading

parameter confidence intervals even for very large samples and far worse overrejection problem

in GMM tests of restriction than previously thought. Further, estimation-free methods advocated

by Kocherlakota (1990) may also have very poor finite sample properties.
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1. INTRODUCTION

This paperreexamines the small sample properties of Hansen’s (1982)

Generalized Method of Moments (GMM) and estimation-free tests proposed by Hansen

and Jagannathan (1989) on simulated data from a consumption based asset pricing model.

In the environment considered here, both GMM and estimation-free tests have far poorer

properties than previously imagined. In particular, these results qualify the

recommendation by Kocherlakota (1990) who suggests estimation-free methods of

judging asset pricing models may avoid the difficulties associated with GMM.

Much research in asset pricing has centered on the representative agent framework

developed by Lucas (1978). Use of the Lucas framework permits the study ofthe

relationship between movements in output and equilibrium asset prices in a one-good,

pure exchange economy. There have been two main approaches to the use of

representative agent models in the study of asset prices. The first approach is known as

calibration and was popularized by Mehra and Prescott (1985). The second approach,

exemplified by Hansen and Singleton (1982), is to estimate the model directly from the

data and conduct formal econometric tests of overidentifying restrictions.

Calibration exercises aim to generate simulated data that have properties exhibited

by data from the real world. Mehra and Prescott (1985), for instance, calibrated the

model in an unsuccessful attempt to produce the high equity premium. More recently,

Kandel and Stambaugh (1990) describe a model economy in which the distribution of

1



consumption growth is lognormal. The outcome of a Markov chain process determines

the mean and variance of the distribution. The state of nature and consumption determine

asset prices in this economy. Kandel and Stambaugh (1990) find the model generates

simulated data which is consistent in important ways with data from the real economy.

The second approach is typified by Hansen and Singleton’s (1982 and 1984) work

describing the GMM for the estimation and testing of models using orthogonality

conditions impliedby stochastic Euler equations. They apply the GMM to the

representative agent model using various monthly measures of consumption growth and

asset returns data from the U.S. from 1959:2 to 1978:12. The data strongly reject the

overidentifying restrictions on the model. As a limited information estimator, the GMM

does not require a joint hypothesis about the nature of the underlying economy and the

stochastic environment, and therefore is the most problematic of the rejections for the use

of the representative agent framework.

The GMM rejections from formal tests of the model using real data would seem to

make the data coming from simulated representative agent economies much less relevant.

However, the size of the formal tests derived from estimators such as the GMM estimator

or the estimation-free approach are based on asymptotic results and may be strongly

prone to overrejection in small samples from these environments. Tauchen (1986) and

Kocherlakota (1990) previous scrutinized the small sample properties of the GMM in the

Mehra and Prescott (1985) asset pricing framework. Investigating the properties of two-

stage GMM, Tauchen found that use of shorter lags in the instrument set produced nearly
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asymptotically optimal parameter estimates and that the test of overidentifying

restrictions performed well in small samples. Evidence that the small sample

performance of the multi-stage estimators were superior to those of the two-stage

estimators prompted Kocherlakota (1990) to investigate multi-stage GMM. Using

different sets ofparameter values, Kocherlakota (1990, p. 285) found that “assuming that

the large sample properties of ... GMM estimators are true in small samples can lead one

to ‘overreject’ the model.”

GMM is only one member of the class of procedures that verify the restrictions

impliedby the stochastic Euler equations of the model. Another method is the

estimation-free approach suggested by Hansen and Jagannathan (1989) in which the

econometrician picks plausible values ofthe parameters a priori to see if they produce a

“reasonable” fit.1 Cochrane and Hansen (1992) used the estimation-free method (what

they call “pricing error tests”) as a point of comparison with the volatility tests of the

equity premium puzzle. Comparing the properties of the estimation-free methods to

GMM, Kocherlakota (1990) concluded (p. 287) “This paper...urges the use of Hansen and

1 The Hansen and Jagannathan (1989) estimation-free methods studied here and in

Kocherlakota (1990) should not to be confused with the variance bounds methodology

exposited in Hansen and Jagannathan (1991). The finite sampling properties of the

variance bounds methods have been investigated by Gregory and Smith (1992) and

Burnside (1994).
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Jagannathan’s (1989) procedure, which tests the implication ofeach parameter

specification separately.”

There are two potential objectives for this paper. The first is to study the small

sample properties of GMM and the estimation-free methods as econometric tests in a

specific environment. The second is to study properties ofthe representative agent

model, specifically whether the simulated data produce rejections in formal tests of the

restrictions implied by the model. This paper focuses on the first objective.

This paper extends the previous studies ofthe GMM by Tauchen (1986) and

Kocherlakota (1990) by examining in depth the small sample properties ofboth GMM

and estimation-free tests in a more plausible asset pricing environment. The

representative agent framework of Kandel and Stambaugh (1990) differs from those

frameworks studied previously in that consumption growth has a continuous (rather than

discrete) distribution and the calibrated model uses a much higher coefficient ofrelative

risk aversion than previous works. The new, more plausible environment confirms some

conclusions in the literature, but also makes it clear that they are incomplete and

misleading in important ways. First, continuous consumption growth produces a near

non-identification in the GMM criterion function that yields severely biased estimates and

misleading confidence intervals for the parameters ofinterest even in very large samples.

Also, the overrejection problem in GMM tests of model restrictions is far worse than

previously thought, significantly overrejecting the model even with 8,000 observations

for three of four estimators considered. The estimation-free tests of overidentifying
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restrictions advocated by Kocherlakota (1990) may also have very poor finite sample

properties, even worse than equivalent GMM estimators in some cases. Finally, the

small sample properties of two-stage GMM are found to be better than those of multi-

stage GMM in this environment.

2. THE SIMULATED ECONOMY

2.1 The Utility Function

The Kandel and Stambaugh (1990) model is based on that of Lucas (1978) who

posited an infinitely lived, representative agent who maximizes expected time-additive

utility, of the constant relative risk aversion class, subject to a budget constraint. The

solution to this problem leads to the familiar Euler equation for each asset

p+d c

13 E~[ ( t+1 t+1 - 1 = 0 (1)Pt

The parameter a is the coefficient ofrelative risk aversion; it measures the

curvature of the utility function, the agent’s tolerance for risk and the desire to

intertemporally smooth consumption. The standard assumption ofconstant relative risk

aversion ensures the equilibrium return process is stationary.
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2.2 Consumption Growth

Aggregate consumption in each period is equal to aggregate output each period.

The innovation in Kandel and Stambaugh’s version ofthis model is that the distribution

of consumption growth is continuous. The parameters depend on the state of nature

which evolves according to a finite dimension, ergodic Markov process: ln(C~+1/C~)is

normally distributed with mean ~ and variance o2~÷~,which are functions of the state of

nature at time t.

2.3 The Asset Prices

The state of nature and consumption growth determine asset prices (hence asset

returns) for each period through the Euler equation. Kandel and Stambaugh consider

three types of assets: a riskfree bond, a share of aggregate wealth, and a share of levered

equity. The payoff on the riskfree asset is one unit of the consumption good. The payoff

to one share of aggregate wealth is a claim to all consumption in perpetuity. Levered

equity is a share of aggregate wealth minus a claim on a risky bond. The Euler equation

permits closed-form solutions for all three asset returns. The appendix provides more

detailed information about the model economy, including the solutions to the asset

pricing equations. They are also discussed more extensively in Mehra and Prescott

(1985) and Kandel and Stambaugh (1988).
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2.4 Calibrating the Model

Kandel and Stambaugh chose the parameters of their model economy in order to

match the first two moments ofconsumption growth, the value-weighted New York

Stock Exchange returns and the expected T-bill return from quarterly U.S. data. The

parameter values were 13 = .9973, a = 55, and 0 = .478.2

The value of a = 55 seems extraordinarily high at first glance, but it is necessary

to produce the desired equity premium and interest rate. Objections to such a high value

of a are usually predicated on the results of thought experiments (Kandel and Stambaugh,

1988). For example, a value of a = 55 means that a person with an income of $50,000

would pay $9,483 to avoid an even bet of $10,000. The problem with these experiments

is the assumption of constant relative risk aversion. Given appropriate sizes of a bet,

almost any level ofrisk aversion could seem plausible or implausible. A value of a = 2 is

usually considered reasonable, but it means that a person with the same wealth would pay

only $1.25 to avoid an even bet of $250. A person with a = 55 would pay a more

plausible $33.96 to avoid the same bet. Kandel and Stambaugh argue the parameters

should be chosen to match the datarather than ex ante expectations about the correct

values ofthe parameters.

2 The parameter 0 governs the terms of the payoff to levered equity; it is discussed

more fully in the appendix.
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2.5 Results Using this Framework

Kandel and Stambaugh found that their simulated data exhibited the skewness and

kurtosis typical of real consumption growth and asset return data. In addition, they were

able to reproduce the “U” shaped pattern of autocorrelation of equity returns over return

horizons using the equilibrium model ofrational behavior described above. That is, the

returns exhibited low negative first-order autocorrelation for returns at short horizons,

more negative first-order autocorrelations at longer horizons and less negative first-order

autocorrelations for returns at longer horizons.

Using a similar model of the economy, Cecchetti, Lam and Mark (1990, p. 398)

point out that: “It is well known that serial correlation ofreturns does not in itself imply a

violation ofmarket efficiency. Nevertheless, there is a tendency to conclude that

evidence of mean reversion in stock prices constitutes a rejection of equilibrium models

of rational asset pricing.” The rational asset pricing model constructed by Cecchetti,

Lam and Mark (1990) produces data whose returns are negatively serially correlated.

This illustrates that negative serial correlation in long-horizon stock returns “is consistent

with an equilibrium model of asset pricing.”3

~Bonamo and Garcia (1994) argue that the Kandel and Stambaugh (1990) and

Cecchetti, Lam and Mark (1990) results are due to an improperly calibrated model.

Nevertheless, the basic environment is still of considerable interest.
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3. THE GENERALIZED METHOD OF MOMENTS

AND ESTIMATION-FREE METHODS

3.1 GMM Estimation

Intuitively, the ideabehind GMM is to take a quadratic function of orthogonality

conditions implied by a model and find parameter values which make sample

counterparts of the orthogonality conditions close to zero, according to some optimal

metric.4 In this case, the orthogonality conditions are those implied by the Euler

equation:

E~1f(R~,A~,~t)}= E~1{(p.)~*R - 1)*Z~]= 0 (2)

where ‘t = { a, 13 } denotes the vector of parameters of interest, 7t* the true values of

those parameters, A~is consumption growth at time t, R~is an N-vector of gross returns,

Z~is a K-vector of instruments and “*“ denotes element by element multiplication. In

practice the instruments used are generally lagged values of R, ?~and a constant.

Define the function g~to be the NK-vector of means of the sample orthogonality

conditions

“See Hansen (1982) for the original development of GMM and Hansen and Singleton

(1982) for an application of GMM to estimate and test asset pricing models.
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= f(R~,X~,it) (3)

Then the GMM chooses the parameters it to minimize a quadratic function of the sample

orthogonality conditions

ft = argmin~g~(it)~W~g~(1t) (4)

where W is an NK by NK weighting matrix of full rank. The optimal weighting matrix

is the inverse of the variance-covariance matrix of the orthogonality conditions.

W= { E (f(R,A,it)~f(R,A,it)’) ~~i (5)

Ofcourse, (5) requires It to construct W, but W is used to construct the criterion

function (4) that is minimized to find an estimate of it. In practice, we start by using an

arbitrary matrix in (4), such as the identity matrix, to produce a consistent estimate ~ of

it~which can then be used in (5) to produce a consistent estimator of W~,WT. With the

consistent estimator WT, we can get an estimate of ic~that is both consistent and

asymptotically efficient in its class. That estimator, known as the two-stage GMM

estimator is

= argmin ~ (6)

By repeatedly iterating over (4), (5) and (6) until the weighting matrix stops

changing, we implement multi-stage GMM. Both two-stage and multi-stage GMM

estimation are used in this paper.
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3.2 Test of Overidentifying Restrictions

Hansen showed that under the null hypothesis that the model is true, the J-statistic

given by

= T [g~(ft*)/.W~(ft*).g~(ft~)] (7)

has an asymptotic chi-square distribution with NK - 2 degrees of freedom. The intuition

behind the J-statistic is that if the model fits the data well, the sample counterparts of the

orthogonality conditions can be made close to zero, the J-statistic will be small and we

will be unable to reject the null hypothesis that the model is correct.

3.3 The Estimation-Free Test of Overidentifying Restrictions

If the model was correctly specified, then, under some regularity conditions on the

pricing errors, the estimation-free statistic

JT(Ito) = T~[g~(ItØ)’.W0(It0)~g~(It0)I (8)

would be asymptotically distributed as a chi-square random variable with NK degrees of

freedom for the true parameter vector it0.

An estimation-free test of the model based on this statistic is performed by

selecting a parameter specification, a priori, and comparing the resulting statistic (8) with

the chi-square distribution with NK degrees of freedom. The distribution of this test

statistic differs from that of the statistic produced by the GMM procedure because
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parameterestimation pins down two orthogonality conditions to be degenerate random

variables.

4. RESULTS USING DATA FROM THE REAL WORLD

Hansen and Singleton (1982) test the overidentifying restrictions implied by the

representative agent asset pricing model using monthly consumption and returns data.

For many of the combinations of instrument sets and asset returns they studied, they were

able to reject the null hypothesis that the model was true. Because the GMM does not

require a complete specification ofthe economy, this rejected the Kandel and Stambaugh

model of the data generating process.

To facilitate the comparison to the Kandel and Stambaugh model economy which

is calibrated for quarterly data, the null hypothesis was retested using two-stage and

multi-stage GMM on quarterly data. The data were constructed from T-bill, consumption

(nondurables and services) and population numbers taken from Federal Reserve data

bases. Value-weighted New York stock exchange data were obtained from the Center for

Research in Securities Prices (CRSP) tapes. Nominal returns were converted to real

returns using the implicit consumption deflator. The data ran from 1959:1 to 1989:4,

providing 120 quarterly observations.

Table 1 describes the six combinations of instrument sets and returns used on the

quarterly data from the real world. The results from these combinations are shown in
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Table 2. The initial values for the coefficients were those of the hypothesized model

economy, 13 = .9973 1 and a = 55.

Consistent with Tauchen (1986) and Kocherlakota (1990), the point estimates of a

and 13 are quite sensitive to the choice of asset and/or instrument sets. The i-statistics

frequently reject the model, particularly for those combinations that included T-bill

returns. These results are consistent with those ofHansen and Singleton (1982), who

applied GMM to monthly data.

5. GMM MONTE CARLO RESULTS FROM THE MODEL ECONOMY

5.1 Estimators

To determine the properties of GMM in the Kandel and Stambaugh environment,

1,600 samples of 90, 200, 500, 2,000, and 8,000 observations were drawn from the

Kandel and Stambaugh representative agent model economy and the model was estimated

by four GMM estimators on the simulated data. The estimators are distinguished by the

asset returns and instrument set they use and by the number ofiterations over the

weighting matrix they permit. Table 3 describes the estimators used on simulated data.

The first pair ofestimators (TS 1 and MS 1) used only the riskless bond as an asset return,

and a constant, lagged consumption growth and the lagged return on the riskless bond as

instruments. The second set of two estimators (T52 and M52) used the riskfree bond, a

share of aggregate wealth and a share of levered equity as the asset returns, and a
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constant, lagged consumption growth and all lagged asset returns as the instruments.

TS 1 and TS2 used two-stage GMM; MS 1 and MS2 used multi-stage GMM.

A maximum of 75 iterations over the weighting matrix was permitted for the

multi-stage GMM estimators. This constraint was not often binding for data sets of more

than 90 observations. Also, a maximum of 200 iterations to numerically minimize the

quadratic (equation (6)) was permitted. For all estimations, the starting values were the

values of the parameters of the model economy, 13=.9973 1 and a= 55.

5.2 Small Sample Results

The results for a sample size of 90 observations are displayed in Table 4. The

most prominent result confirms the finding of Kocherlakota that GMM is unreliable and

there is a strong tendency for tests of restrictions from all estimators to “overreject” the

model. Examining the last columns of Table 4, the actual rejection rates for the test of

overidentifying restrictions are far higher in every case than the corresponding nominal

size. In the case of estimator MS2, for example, the actual rejection rate is greater than

49 percent at a nominal 5 percent size.5 The overrejection is far stronger than that found

by Kocherlakota (1990), whose maximum rejection rate for any estimator was 28 percent

with 90 observations. Two reasons for the strong overrejections will be considered: poor

~The maximum rejection rate of 61 percent was actually observed for the samples

with 200 observations.
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estimation of the parameters and the skewed and kurtotic distribution of the pricing

errors.

Kocherlakota (1990) argued that the overrejection he found in his environment

was due to poor estimation of the parameters. This proves to be an even greater problem

in the Kandel and Stambaugh environment than it was in the Mehra and Prescott

environment. The estimates for a are strongly biased downwards and but those of 13 are

biased upwards; the confidence intervals for both parameters are highly misleading. The

nominal 95 percent confidence intervals for a estimates cover the true value of a only

14.3 to 26.7 percent of the time. The coverage for the 13 confidence interval estimates are

also poor, but not uniformly so, ranging from 3 1.1-92.8 percent. In contrast, the worst

confidence interval performance found in Kocherlakota’s environment was 41 percent for

13 and 47 percent for a. The results from this environment suggest GMM estimates of

relative risk aversion will tend to grossly understate true risk aversion and confidence

intervals will be far more misleading than previously thought.

Figure 1 illustrates the frequencies of the estimates of the pairs of parameters for

the MS 1 estimator for data sets of various lengths. The shape of the three dimensional

histograms suggests a strong nonlinear relation between the parameter estimators. To

investigate this relationship, numerical integration was used to construct the negative of

the log of a simplified criterion function and its contour plot for the riskfree asset and the

return to aggregate wealth. Figure 2 displays this function, that confirms the existence of
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a very strong nonlinear (“U-shaped”) relation between the GMM parameter estimates in

this environment.6

Investigation of the criterion function shows that the continuous distribution of

consumption growth in the Kandel and Stambaugh environment is the culprit that

generates the “U-shaped ridge.” To see this, consider the simple criterion function in

which we treat 13 and the return on the asset as constants for tractability.

CF~= 132.(E (CG~))2.R2
- ~ + 1 (9)

Recalling that consumption growth is lognormally distributed, using the moment

generating function ofa normal distribution and differentiating with respect to a, we get

= 2~13R~(13 R~exp(-a~+ .5~(-a)2~
02) -1)

aa (10)
exp(—a~i+ .5(—a)2~o2)(—ii+a~o2)

In general, the first term in the expression will have more than one value of a that sets it

equal to zero and those values will depend on the value of 13. For instance, assuming ~t =

.0049, a = .0128, 13 = .9973 1 and R~= 1.025, both a 4.74 and a = 55 will set the first

term on the right hand side of equation (10) to zero. The third term provides another

6 Figure 2 was constructed by numerical integration of the criterion function implied

by the pricing errors ofthe riskless return and the return to aggregate wealth. The identity

matrix was used as the weighting matrix. Alternatively, similar figures could be

constructed using very large samples of simulated data with any of the estimators.

16



turning point; it is set to zero if a = ~j/~2 29. If the variance ofconsumption growth

were zero - that is, if it were discrete valued as in the Mehra and Prescott environment

studied by Tauchen (1986) and Kocherlakota (1990) - the expectation of consumption

growth in equation (9) would be a constant and the derivative with respect to a would be

3CF = 2~13R~(p.R~CG~-1)~(-lnCG)CG~ (11)

For a given value of 13, there is only one value of a which sets (11) equal to zero and

hence there is no “U-shaped ridge” in the Mehra and Prescott criterion function. There is,

however, a more conventional straight ridge in this case.

Although the parameter estimates are biased and subject to near non-

identification, it is not clear to what extent the parameter estimation is causing the

overrejection. The use of estimation-free methods will shed more light on this issue.

The second factor in the overrejections may be the distributions of the pricing

errors (the orthogonality conditions implied by equation (3)) which are highly skewed and

kurtotic. (See Kocherlakota (1993) for a discussion of kurtosis in tests of asset pricing

models.) Ifthe pricing errors are kurtotic, the central limit theorem on which the J-

statistic implicitly relies will not be a good approximation in small samples, there will be

too many outliers and the statistic will tend to overreject.

In the simulated data, skewness and kurtosis are prominent features. For example,

the coefficients ofskewness and kurtosis constructed by numerical integration of the

pricing error associated with the riskfree asset are approximately -3 and 21 respectively.
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In contrast, the coefficients of skewness and kurtosis for a normal distribution are 0 and 3

respectively. The distribution of the pricing error impliedby the riskfree asset is shown

in Figure 3. Skewness and excess kurtosis are also prominent features ofpricing errors

in real data and could be contributing to rejections in the real data.

5.3 Small to Large Sample Results

Table 5 shows that the true sizes of GMM tests of overidentifying restrictions,

median point estimates and confidence intervals for a (the coefficient of risk aversion)

slowly converge to their asymptotic properties as the sample size increases. Disturbingly,

rejection rates and the point estimates of and confidence intervals for 13 remain poor even

with very large samples. In fact, the coverage rates for 13 can actually become poorer as

the sample size increases. Examination ofthe contour map of the criterion function in

Figure 2 exposes the source of the problem, however. As the sample size increases and

the median a estimates converge on their true value of 55, the 13 estimates actually move

along the U-shaped ridge away from the true value of 13. The properties of the test of

restrictions also do not move monotonically toward their asymptotic properties.

Kocherlakota (1990) noted that for some of his estimators, there is a trade-off between

parameter estimation and the performance of the J-statistics. This seems to be the case in

the Kandel and Stambaugh environment too, as reductions in the rejection rates may be

accompanied by poorer confidence interval properties for the discount factor.
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5.4 Two-Stage Versus Multi-Stage GMM

For both estimators and all samples sizes, the two-stage procedure has better

properties in terms of the tests of overidentifying restrictions and parameter estimates

than the multi-stage procedure. This contradicts work referred to in Kocherlakota (1990).

5.5 First Versus Second Estimators

The two estimators used in the Monte Carlo experiments were chosen to mimic a

cross section ofthe estimators that provided strong rejections in the real data. The first

estimators (TS 1 and MS 1) with only the riskless return and the smaller instrument set

rejected less often in small samples, in contrast to real data. The second set of estimators

(T52 and M52), that had all three asset returns and a larger instrument set, dominated the

first set both with respect to correct size and coverage of the confidence intervals around

parameter estimates as sample size increased. The two-stage procedure with the second

estimator (TS2) has the best GMM performance in terms of rejection rates and estimates

of the parameters.

Corroborating findings of Tauchen (1986) and Kocherlakota (1990), larger

instrument sets make the estimation more imprecise; overrejection of the model is more

likely for the second two estimators (TS2 and MS2) that use more information.
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6. ESTIMATION-FREE MONTE CARLO RESULTS

To combat estimation problems influencing the test ofoveridentifying restrictions,

Kocherlakota (1990) recommends the Hansen-Jagannathan (1989) estimation-free

method to test restrictions implied by the model. Hansen and iagannathan (1989) suggest

treating each parameter specification as a different model and testing whether each

specification of interest fits the data well. That is, a particular parameter set is chosen and

the estimation-free i-statistic (8) is constructed from the orthogonality conditions implied

by the data and the chosen parameter values. Because the parameters are chosen a priori,

the test statistic is distributed as a chi-square random variable with NK degrees of

freedom.

For each of the estimators, 1,600 random sample of various sizes were drawn

and the estimation-free i-statistics were constructed with the true parameter values for

various combinations of assets and instruments. Table 6 describes the estimators

(combinations of orthogonality conditions) that were used in the investigation. The first

estimator consisted of the risk-free return with a constant and lagged values of

consumption growth and the risk-free return. The second estimator used all three asset

returns with a constant and lagged values of consumption growth and the asset returns.

The third estimator used the risk-free return with all instruments. The fourth and fifth

estimator used combinations of asset returns with only a constant as an instrument.
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Table 7 shows that the rejection rates from estimation-free tests of overidentifying

restrictions greatly exceeded nominal sizes for all the estimators in moderately sized

samples. Once again, larger instrument sets exacerbate the overrejection problem, but

statistically significant levels of overrejection were observed for all the estimators. The

overrejection problem in this environment appears to be much more severe than that

examined by Kocherlakota (1990). In fact, the largest probability of rejection at a

nominal 5 percent size observed by Kocherlakota was 10 percent, whereas estimator EF2

rejects 31 percent of the time at 5 percent size. This is still much less than an equivalent

GMM estimator, MS2, which rejects 49 percent but it is more than the equivalent GMM

estimator, TS2, which only rejects 24 percent of the time.7 Kocherlakota’s prescriptive

comment on GMM (p. 303), “The distribution of the i-statistic associated with this

[estimation-free] procedure is more likely [than the GMM statistic] to be approximately

chi-squared” is not generally true.

Figure 4 illustrates the overrejection problems and the convergence of the

estimation-free test statistics to their asymptotic properties with the order statistics of the

p-values from the observed i-statistics produced by estimator EF2, which uses all three

asset returns and all five instruments. If the estimation-free i-statistics are truly chi-

~ A GMM estimator is said to be “equivalent” to an estimation-free method if they use

the same combination oforthogonality conditions. Hence, estimation-free estimator EF1

is equivalent to TS 1 and MS 1 while EF2 is equivalent to TS2 and M52.
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square NK, the order statistics from their p-values should lie on the 45 degree line, P-

values under the forty-five degree line indicate overrejection while the p-values that lie

above the forty-five degree evidence underrejection. Although the asymptotic behavior

is not as poor as that obtained using multi-stage GMM, there is a strong tendency to

overreject in moderate sample sizes. Partly confirming the findings of Kocherlakota,

estimation of the parameters does exacerbate the problem of severe overrejections in

small samples.

7. CONCLUSIONS

Kandel and Stambaugh (1990) and Cecchetti, Lam and Mark (1990) have created

models of the financial economy that illustrate some valuable lessons about the type of

dataconsistent with rational asset pricing models. This paper has extended the literature

on tests of asset pricing models by investigating the properties of GMM and

estimation-free methods in such an environment. Confirming the results of Kocherlakota

(1990), GMM procedures overreject the model and provide poor estimates of the

parameters ofinterest. This work reveals that results from previous studies are

incomplete and misleading in three ways. First, there is a near non-identification in the

criterion function that induces very severe bias in estimates of the coefficient of relative

risk aversion and misleading parameter confidence intervals even for very large samples.

This near non-identification was not discovered in earlier studies because the authors
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used a discrete rather than a continuous consumption growth specification. Second, the

overrejection problem in GMM tests of model restrictions can be far worse than

previously thought, more than 60 percent for one multi-stage estimator at a nominal 5

percent size. Finally, the estimation-free methods advocated by Kocherlakota (1990) may

also have very poor finite sample properties, worse than those of two-stage GMM

estimates for some estimators. The strong tendency to overreject the true model means

that we should view the rejections of such models with real data with circumspection.

The near non-identification in the GMM criterion function produces a U-shaped

ridge in the criterion function that leads to poor parameter estimation, including

significantly biased estimates for a, consistent with Kocherlakota’s results. Such bias

supports Kandel and Stambaugh’s claim that it is reasonable to contemplate a value of the

coefficient of relative risk aversion that is substantially higher than commonly considered.

In addition, because of the peculiar shape of the criterion function, the confidence

intervals for the parameters remain misleading even at very large sample sizes.

Poor parameter estimation is not the whole story behind the overrejections of the

model, as examination of the Hansen and iagannathan estimation-free i-statistics show.

Even with the true parameter values, the i-statistic still tends to overreject the model in

small samples. Contrary to Kocherlakota’s findings, however, some estimation-free J-

statistics may be more prone to overrejection than their two-stage GMM counterparts.

The overrejections of the model from the estimation-free methods must be caused by the
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skewness and kurtosis of the pricing error data. This feature of the simulated data is

shared by data from the real world.
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APPENDIX A: THE KANDEL AND STAMBAUGH MODEL ECONOMY

A. 1 The Utility Function

The agent chooses consumption and a portfolio of N assets in each period to

solve:

(1-a) 1
max~E ( ~ 13t~t.C~ (1)

(1-a)

where 0 < 13 < 1 and 0< a <co. The agent is subject to a budget constraint at time t:

c~+ p’q~ p~’q~1+ w~ (2)

where Pt’ d~and q~are N-vector vectors of asset prices, dividends paid and asset quantities

held at time t. w~is labor income at time t. Maximization of (1) subject to (2) produces

the following first-order necessary condition for each asset

1 = 13 E~[ (Pt+l d1~1 ).(~)-a] (3)

A.2 Consumption Growth

Aggregate consumption in each period is equal to aggregate output each period.

Denote consumption growth in period t by A,. The state of nature evolves according to a

Markov process that determines the parameters ofthe continuous distribution of
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consumption growth. That is, ln(A,) is normally distributed with mean R and variance ~2,,

where ji~and a, are a function of the state ofnature at time t. There are s discrete states

of nature which evolve according to a finite dimension, ergodic Markov chain. The

transition matrix for the state of nature is denoted by phi (4).

Table A. 1 - Markov Transition Probability Matrix for the State ofNature

State 1 2 3 4

1 .845 J13 .042 .000

2 .107 .750 .054 .089

3 .067 .067 .800 .067

4 .026 .079 .105 .789

Table A.2 - Parameters ofthe Distribution of Consumption Growth for Each
State of Nature

State ~t a

1 .0049 .0128

2 .0041 .0128

3 .0049 .0131

4 .0041 .0131

In each period, the state of nature is chosen by a Markov process, then the

realization of consumption growth for that period is drawn from the appropriate

distribution (dependent on the realized value for the state). The state of nature and

consumption growth determine asset prices (hence asset returns) for that period.
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A.3 The Asset Prices

The asset prices in each period are given by functions of the state of nature and

consumption growth. The infinite future discounted stream of asset dividends depend

only on the current state and current consumption. Therefore, a sufficient statistic for the

state of the economy in any period is the pair (c,i), where c is the consumption in the

period and i indexes the state of nature.

Kandel and Stambaugh consider three types of assets, a riskfree bond, a share of

aggregate wealth, and a share oflevered equity. Levered equity is a share of aggregate

wealth minus a claim on a risky bond. To derive closed-form solutions for asset returns,

one uses the property that the price of an asset is equal to the present value of the

expected discounted future dividend stream and the Euler equation (3). The solutions to

the asset pricing equations presented below are discussed extensively in Mehra and

Prescott (1985) and Kandel and Stambaugh (1988). They will be presented below with

minimal explanation.

The payoff on the riskfree asset is one unit of the consumption good. Substituting

this in equation (3) for Pt+i + d,÷1 and using the property ofthe Markov transition matrix

for the state of nature. It may be shown that the gross return on the riskfree asset when

the economy goes from state i to statej is given by
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R~= 1 = 1

13E 4~.E[A(i)_a1 13’E[A(i)~”)I (4)

where ~ denotes the ith row, jth column ofthe Markov transition matrix for the states.

A(i) is consumption growth if the state of nature is i.

The payoff to one share of aggregate wealth is, of course, a claim to all

consumption in perpetuity. Using the same sort of reasoning used to derive the riskfree

return above, the return on aggregate wealth (going from state ito statej) is given by

(1 +w.)
= A(ft (5)

Wi

where w~is the ith element of the s vector w given by

w = (I - H)~H1~ (6)

In equation (6), H is an s x s matrix with (i,j)th element

= 13.~.E[A(i)l-a ] (7)

and i~is an s x 1 vector of ones.

Levered equity is an asset consisting of a share of aggregate wealth net of a risky

bond. That is, the holder ofa share of levered equity has sold a bond to purchase a share
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of aggregate wealth and will pay off according to the realization of the return to aggregate

wealth. The payoff on a risky bond bought at time t is a fraction (0) of aggregate wealth

at time t+1 if aggregate wealth at time t+1 is greater than or equal to 0 times the value of

aggregate wealth at time t. If aggregate wealth at time t+1 is less than 0 times the value

of aggregate wealth at time t, then the risky bond holder receives all wealth at time t.

The return on levered equity is a complicated nonlinear function due to the nature of its

risky payoff. Before defining the return on levered equity, first define the s x 1 vector

g = Y15 (8)

where the Y is the s x s matrix with (i,j)th element

= 13 . 4~.E[min[A(i)ltt.(1 + wi). A(~y”0•W~]1 (9)

Then the gross return on levered equity may be given by

max[0 , A(i)~l + W.) — 0’w1 I
= (10)

(w~- g1)
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Table 1: Model Descriptions for GMM Estimation on Real Data

Estimator Asset Returns Instrument Set Maximum
Iterations
OverW

TR1 T-bill constant, CG1 & T-bill1 2

MR1 T-bill constant, CG1 & T-bilL1 75

TR2 VWNYSE constant, CG1 &
VWNYSE1

2

MR2 VWNYSE constant, CG1 &
VWNYSE1

75

TR3 T-bill &
VWNYSE

constant, CG1,T-bill1 &
VWNYSE~1

2

MR3 T-bill &
VWNYSE

constant, CG~1,T-bill1&
VWNYSE,

75
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Table 2: Results from GMM Estimation on Real Data

Estimator sample
size

d.f. Alpha
(s.e.)

Beta
(s.e.)

J statistic
(p-value)

TR1 120 1 -2.95 (0.71) 0.97 (0.00) 7.98 (0.00)

MR1 120 1 -2.94 (0.66) 0.97 (0.00) 8.70(0.00)

TR2 120 1 -4.35 (5.49) 0.95 (0.03) 2.89 (0.09)

MR2 120 1 -4.58 (4.85) 0.95 (0.03) 2.33 (0.13)

TR3 120 6 1.23 (20.87) 0.97 (0.12) 5.99 (0.42)

MR3 120 6 -2.68 (0.57) 0.97 (0.00) 16.12 (0.01)

Estimator descriptions are provided in Table 1.
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Table 3: Model Descriptions for GMM Estimation on Simulated Data

Estimator Asset Returns Instrument Set Maximum
Iterations
OverW

TS 1 Risk Free constant, CG1 &
Risk Free1

2

MS 1 Risk Free constant, CG1 &
Risk Free1

75

T52 Risk Free, constant, CQ1, Risk Free1
Aggregate Wealth Aggregate Wealth1 &
and Levered Levered Equity1
Equity

2

MS2

~

Risk Free, constant, CG1, Risk Free1
Aggregate Wealth Aggregate Weaith1 &
and Levered Levered Equity1
Equity

75
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Table 4: GMM Small Sample Results

Sample
Size Estimator DF

Median
Alpha

%of95%
confidence
intervals
covering
true alpha

Median
Beta

%of95%
confidence
intervals
covering
true beta

Monte Carlo Critical Values

10% 5% 1%

Model Rejection Rates

10% 5% 1%

90 TSI 1 2.86 21.69 1.01 92.75 4.76 9.24 32.84 16.37 12.69 6.88

90 MS1 1 2.99 17 1.01 85.44 16.65 22.95 34.51 35.81 30.44 22.75

90 TS2 13 30.58 24.69 1.02 50.56 30.5 37.97 56.52 33.06 24.06 13.19

90 MS2 13 10.07 14.31 1.01 31.06 42.44 48.21 68.4 60.19 49.25 34.38

This table summarizes the results of applying GMM estimators, described in Table 3 to 1600 samples from the
Kandel/Stambaugh model economy. The economy is described in Appendix A. Standard errors for the model
rejection rates and confidence intervals are given by \/((p( i-p))Il600).
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Table 5: GMM Small to Large Sample Results

Sample
Size Estimator DF

Median
Alpha

% of 95% confidence
intervals covering
true alpha

Median
Beta

% of 95% confidence
intervals covering true
beta

Model

10%

Rejection Rates

5% 1%

200 TS1 1 5.45 27.13 1.02 87.38 19.63 14.56 9.19
500 TS1 1 10.89 37.75 1.03 70.81 20.50 15.06 9.75

2000 TS1 1 25.42 59.31 1.05 53.56 18.75 14.19 8.94
8000 TS1 1 40.78 78.81 1.04 61.75 13.44 8.31 3.75

200 MS1 1 5.52 18.81 1.02 77.25 39.75 34.44 27.69
500 MS1 1 10.91 29.37 1,03 56.88 37.75 31.94 25.19

2000 MS1 1 25.31 50.44 1.05 48.13 32.19 26.06 19.88
8000 MS1 1 40.84 73.94 1.05 59.00 22.50 18.00 10.94
200 TS2 13 37.01 31.81 1.03 54.56 33.44 23.56 11.69
500 TS2 13 40.98 48.56 1.04 59.38 20,31 13.44 5.44

2000 TS2 13 45.76 70.81 1.03 62.56 9.13 5.19 1.69
8000 TS2 13 51.58 86.06 1.01 81.44 8.25 4.06 0.69
200 MS2 13 7.89 15.19 1.01 29.44 68.06 60.75 48.50
500 MS2 13 14.89 20,38 1.02 26.44 60.00 53.75 43.50

2000 M52 13 42.20 52.69 1.04 46.63 31.38 23.19 13.63
8000 MS2 13 51.20 83.06 1.01 77.50 14.88 8.88 2.69

This table summarizes the results of applying GMM estimators, described in Table 3 to 1600 samples from the
Kandel/Stambaugh model economy. The economy is described in Appendix A. Standard errors for the model
rejection rates and confidence intervals are given by ~((p(1-p))~1600).
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Table 6: Model Descriptions for Estimation Free Methods on Simulated Data

Estimator Asset Returns Instrument Set

EF1 Risk Free constant, CG1 & Risk Free1
EF2 Risk Free, Aggregate Wealth

& Levered Equity
constant, CG1, Risk Free1 Aggregate
Wealth.1 & Levered Equity,1

EF3 Risk Free constant, CG1, Risk Free.1 Aggregate
Wealth1 & Levered Equity.1

EF4 Risk Free& Aggregate Wealth constant

EF5 Risk Free, Aggregate Wealth &
Levered Equity

constant
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Table 7: Properties of the Estimation-Free Methods

Model Rejection Rates at Nominal
Size of

Estimator Sample Size 10% 5% 1%

EF1 90 16,25 10.13 3.41

EF1 200 13.38 7,41 2.63

EF1 500 10.63 5.78 1.41

EF1 2000 10.84 5.59 1.13

EF1 8000 9.97 5.28 1.06

EF2 90 43.38 31.44 15.75

EF2 200 43.44 32.88 15.81

EF2 500 30.94 21.19 9.88

EF2 2000 20.19 12.62 5.31

EF2 8000 13.06 7.44 1.94

EF3 90 14.42 8.56 2.33

EF3 200 17.46 10.75 3.08

EF3 500 13.06 7.42 2.02

EF3 2000 11.96 6.90 1.65

EF3 8000 10.94 5.10 1.38

EF4 90 14.58 9.44 3.48

EF4 200 12.04 6.77 1.92

EF4 500 10.23 4.98 1.33

EF4 2000 10.54 5.21 1.21

EF4 8000 9.54 4.79 0.96

EF5 90 16.25 10.13 3.41

EF5 200 13.38 7.41 2.63

EF5 500 10.63 5.78 1.41

EF5 2000 10.84 5.59 1.13
EF5 8000 9.97 5.28 1.06

This table summarizes the results of applying estimation free methods, described in
Table 6 to 1600 samples from the Kandel/Stambaugh model economy. The economy
is described in Appendix A. Stand~rderrors for the model rejection rates and
confidence intervals are given by V((p(1 -p))/1600).
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Figure 1: The frequencies of the parameter estimates from estimator MS 1 on
simulated data for various sample lengths. Note the strong nonlinear
relationship between the parameter estimates.
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Figure 2: The log ofthe negative criterion function and its contour plot shows
the “U-shaped” ridge creating the nonlinear relationship between the parameter
estimates. The figure was constructed by numerical integration of the pricing
errors implied by the risk free bond and the return to aggregate wealth.
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Population Density of Pricing Errors

Figure 3: The population density of the pricing errors ofthe risk free asset
overlaid by a normal density of the same mean and variance to highlight the
skewness and kurtosis of the pricing error distribution. The distribution was
constructed by numerical integration of the pricing error of the riskiess bond.
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Figure 4: Sorted p-values from the “true” i-statistics, from estimator EF2,
created from 1600 simulated data sets of length 90, 200, 500, 2000 and 8000
observations. The i-statistics are constructed from the “true” parameter values
of the model economy. If the statistic is truly chi-square with NK degrees of
freedom, the sorted p-values should lie along the 45 degree line. The
horizontal lines at .05 and .1 may be used to find the degree of overrejection
for each sample size. For example, the actual rejection rate for a sample size of
90 observations at a 10 percent nominal size is approximately 33 percent.

43


