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Abstract

Irreversible investment and the techniques associated with pricing real options have led to
significant advances many areas. We broaden this range of applications, showing how the

techniques can apply to many policy problems in finance, macroeconomics, and trade
policy. With small changes, standard techniques can handle a broad range of strategic

problems related to policy. The decision to commit is like the decision to make an
irreversible investment. Explicitly considering and correctly valuing the option to wait

makes discretion relatively more attractive, implies that increased uncertainty increases the
gain to discretion, and results in policy which displays hysteresis.



I Introduction

Irreversible investment and the techniques associated with pricing real options

have led to significant advances in capital budgeting, environmental economics, and

industrial organization. We wish to broaden this range of applications further, showing

how the techniques can apply to many game theoretic problems in finance,

macroeconomics, and trade policy. We show how, with small changes, standard

techniques can handle a broad range of strategic problems related to policy.

More specifically, we considerproblems ofcommitment. The decision to commit

is like the decision to make an irreversible investment. The previous literature on

commitment considers a once-and-for-all choice between rules and discretion, and does

not allow future agents to adopt rules. If the option to wait indeed has positive value -- as

such options often do -- it adds to the desirability ofdiscretion. Furthermore, because no

policymaker can bind itself forever, we extend the analysis to consider entry and exit; not

from production, but from commitment to a policy rule.

Our paper proceeds as follows. Section II discusses a variety of models that fit the

general framework we propose. It looks at the static games that section HI embeds in

continuous time. We choose games where commitment is sometimes useful: that is,

where the standard NCE (non-cooperative equilibrium, or nash-cournot equilibrium) leads

to a pareto inferior outcome. Section III provides a very general way of thinking about

policy, allowing costly commitment with costly reversal. Continuous time highlights the

analogy with irreversible investment problems, as well as simplifying the model. We

illustrate how decisions to commit or renege depend on the commitment and reneging

costs and on uncertainty in the environment.



In section IV we conclude by emphasizing three general results. First, the option

to wait, which we have restored to the policymaker’s decision problem, both makes

commitment less attractive and implies that increased uncertainty makes commitment even

less so. This is the “bad news principle” ofirreversible investment applied in a policy

context. Second, by allowing the commitment decision to take place in “real time,” we

note that the policy choice process displays hysteresis; the policy in force at a given time

depends on history, not just the prevailing state. Third, we show that the ability to switch

regimes means that small changes in the underlying state can induce large changes in the

relevant expectations; consequently, variables sensitive to expectations (such as asset

prices) can move quickly and asymmetrically, showing a decided non-linearity.

II. Preliminary Examples

In this section, we present several concrete examples in which commitment matters

and regret is possible. We begin with one from bank regulation. The banking focus also

indicates how to use irreversibility for policy rather than investment decisions (see Pindyck

[1991] or McDonald and Siegel [19861).

Bank Regulation

Consider the following game between a regulator and a bank (or the banking

system). The regulator may choose to be either tough (T) or weak (W). Tough

regulators do not bail out insolvent banks: weak regulators do. A bank chooses to be safe

(S) or risky (R). If banks are truly safe, the regulator prefers to relax his vigilance, take it

easy, and be weak. If banks are risky, the regulator prefers to be tough. If the regulator is
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tough, banks have an incentive to stay safe, but if the regulator is weak, they would rather

choose risky. The strategic form ofthe game then looks like (GO).

(GO) Payoffs for Game between Regulator and Banks

Banks

Safe Risky

Regulator Tough 0, 0 -8, -4

Weak 4, -8 -8, -7

(See Mailath and Mester [1994] or Kane [1989] for more sophisticated approaches to

closure policy, which do not, however, address the dynamic commitment problem.) The

NCE is (Weak, Risky) but both parties would prefer (Tough, Safe). The regulator can

accomplish this by committing to play tough, binding itself to play T no matter what

happens’. With a regulator dedicated to playing T, banks will Choose S. Hence the value

ofcommitment2.

Now let’s complicate the example by bringing in the possibility ofregret. So far,

the regulator is always happy about committing to be tough. Suppose, however, that in

some states of the world, the regulator regrets this. In good states, we prefer to have a

tough regulator who eliminates the costly wealth transfers from taxpayers to bank

‘The notion behind this game is that tough regulators will not bail-out an insolvent bank, leading the
banks to undertake safe investments, so that no bail-out is needed. A weak regulator will bail-out the
banks, and so banks choose the more profitable risky investment, some fail, and the regulator must bail
them Out.
2Those familiar with game theory may notice that this is a game in which the Row player has “staying
power.” In the standard classifications of the 78 distinct bimatrix games, it is Brams Number 68. A
similar game, Brams Number 63, would suit our purposes as well. See Brams, 1983.
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investors, but in bad states, we prefer the weak regulator. Perhaps in the bad state (say a

recession) systemic risk means that being tough leads to a financial panic.

(G 1) Payoff Functions for Game between Regulator and Banks

Banks

Safe Risky

Regulator Tough -u2, -u2 -8-u2, -4-u2

Weak +4- u2, -8-u2 -8-0.5u2
, -7-O.5u2

For small values of u, this game has the same equilibrium as (GO), to which it

reduces when u is zero. This game has a “prisoners’ dilemma” flavor about it for small

values of u, in that both parties would very much prefer the Tough, Safe, payoff. For

large shocks to the economy, however, that is, for large u, the Weak, Risky equilibrium

becomes preferable--perhaps reflecting that in a systemic crisis, we need to bail out the

banks, even if that means they make riskier investments3. In this case, the regulator would

regret any commitment to a fixed rule of being tough.

In the next section we derive the optimal policy when u follows a more general

process and when the regulator has a cost of committing and a cost ofreneging on that

commitment, but some central insights arise if we consider a simple two state example,

with u =0 or u=6.

Section III uses positive and negative shocks. In this example, it doesn’t really make sense to consider
u <0. Section III could easily accommodate one-sided shocks by using geometric Brownian Motion.
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Because the policy decision takes place in real time, we have two cases to

consider. Either the economy starts out in the good state, or it starts out in the bad state.

Suppose the economy starts out in the good state. If the regulator is weak, he gets a

payoff of -8 today and chooses whether to be weak again or tough next period. If the

regulator is tough, he gets a payoff of 0 today and remains tough forever, as the only way

to be tough is to commit forever. This immediately shows where the option value enters:

being weak today retains the option to commit tomorrow, and this option has value. The

analogy with irreversible investment is direct.

The standard time-consistency literature, however, compares rules with discretion

as a once-and-for-all choice. Unless the regulator commits to rules at the beginning of

time, the suboptimal or “weak” choice is made in each period. Making such a decision

forever seems simple-minded in this simple model, yet it is analogous to the restriction

implied by posing the rules versus discretion question in the standard way. Drawing the

analogy to investment under uncertainty highlights a flaw in the standard approach.

A striking consequence of the option value, the bad news principle, also arises in

this example. We suspect this principle lies behind a pronounced tendency we have noted

in the arguments over rules versus discretion. The rhetoric advocating discretion

accentuates the negative possibilities, the down side, a focus on the worst outcomes, of

rules.

In this example, the bad news principle arises because the regulator sometimes

regrets the commitment to be tough. The regulator never regrets an initial decision to be

weak, since it can later commit to be tough. Increasing the payoff to toughness does not
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affect the relative payoffs -- and thus the choice -- today. This illustrates the principle:

Only news about the bad outcomes affects the choice between rules and discretion.

The above formulation differs from the standard approach in a more subtle way,

necessary, but not sufficient, for irreversibility. The standard approach makes a timeless

comparison before the full state of the economy is known. By contrast, in this paper the

government operates in “real time” and knows the current state of the economy, just as in

the irreversible investment literature the investor knows today’s rate of return. Again, this

twist follows naturally from the investmentanalogy.

Continuing the example shows how the standard timeless comparison can lead to

the wrong conclusion because it ignores the information the government can use. The

standard approach gives the regulator two strategies: either commit to being tough or

allow discretion, which in our simple example amounts to playing Weak forever.

The regulator, though, has another possibility. Operating in real time, the

regulator can observe the economy and chose rules or discretion. If the good state turns

up, the regulator should be tough. If the bad state occurs the regulator chooses Weak

today, and chooses again next period.

Macroeconomic Policy

A game with a somewhat different flavor is presented in (G2)
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(G2) Payoffs for game between Fed and Treasury

Treasury

Tight Easy

Fed Tight 2-u2, I-u2 -3u2, -3u2

Easy -3u2, -3u2 O.5-O.5u2,l.5-O.5u2

This is a version of the game known as “Chicken” or “Battle ofthe Sexes.” Its

clearest macroeconomic interpretation was presented by Sargent, who argued in

“Reaganomics and Credibility” (1986) that tight monetary policy is compatible with tight

fiscal policy but not with easy fiscal policy. Who gives in and accommodates the other’s

policy, the Fed or the Treasury? In (G2), such a conflict exists for small values of u, but

easy policy is better for large shocks, and indeed forms a Nash equilibrium. This captures

the intuitive idea that for a massive real shock, easy policy is better. The Fed, by

committing to Tight, can enforce its preferred equilibrium, but it regrets this choice in

times of large shocks.

Pindyck (1977) considered such a coordination problem in more depth, analyzing a

dynamic game between the fiscal and monetary authority. Each authority has adifferent

objective in controlling the economy. He did not consider the irreversibility aspect of

policy choice.

In Haubrich and Ritter (1996) we analyze commitment to monetary rules in the

traditional time inconsistency setup (Barro and Gordon, 1983). A third monetary policy

application derives from observations about the fragility of fixed exchange rate regimes.

Obstfeld and Rogoff (1995) lay out the following case: (1) Maintaining a fixed exchange
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rate is technically feasible for almost any country; (2) under normal circumstances,

countries gain (or think they gain) from fixing their exchange rate; but (3) the collateral

damage caused by an attempt to defend the peg when threatened by a terms-of-trade shift

or some other shock means the government’s commitment to its rate may not be credible.

Thus, even the strongest legal commitments to fixed exchange rates---currency boards, for

example---will not always succeed (Zarazaga, 1995). Nevertheless, despite compelling

arguments that they will ultimately fail, countries continue to adopt fixed-exchange-rate

policies. We describe a framework which can provide a positive theory of the switches

between the policy regimes.

Trade Policy

Some insight into the dynamics of trade agreements might be gained from (G3). The

players are countries, say Argentina and Brazil. Each chooses between high and low

tariffs. The noncooperative equilibrium ofthe game is high tariffs in both countries. Both

countries would ordinarily gain by coordinating on low tariffs, and this outcome can be

achieved by establishing a free trade area, i.e., by committing. But when Brazil

experiences a recession, measured by its unemployment rate u, its imports from Argentina

fall, tempting Argentina to leave the free trade area and raise tariffs. Brazil responds and

raises its tariff rate as well. Brazil sees reduced imports as an advantage, so for this game

its payoffs are increasing in u. We assume that Argentina’s economy is stable, and that

Brazil always stands open to the trade pact, so that Argentina effectively decides the

extent of free trade. Clearly a fully-satisfactory model here would involve more symmetry
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and give Brazil incentives for breaking the trade pact as well. We include it to illustrate

the range of problems our approach can address.

(G3) Payoffs in Free Trade Game

Brazil

Low High

Argentina Low 8-u2, 8+u2 -2, 9+3u2

High 9-u2, -2 0,0

As mentioned before, the payoff structure of examples (Gi) , (G2) and (G3) has

more general applications. The tractability of the quadratic model makes it a natural

approximation for many commitment problems (along with many other economic

problems as well) Thus, additional examples such as adhering to the Gold Standard (with

regret in a war or depression), granting patents for the exclusive use of new technology

(with regret in cases such as AZT), or allowing constitutions to bind future legislatures

could illustrate of our main point4.

~‘ In fact, from our perspective, the tractability constraint does not bind us exclusively to quadratic payoffs.
For us, the morebinding constraint in the continuous time models was the need to posit an essentially
static underlying game. This too, we conjecture, need not be a binding constraint with sufficient
mathematical expertise.
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III. Entering and Exiting Commitment

Mechanisms to commit irrevocably are almost impossible to imagine. It is not

difficult, however, to think ofexamples of mechanisms that make it costly for a firm or a

government to alter its policy. A constitutional amendment, for example, is difficult to put

into place and difficult to remove. Ordinary legislation has lower costs at both ends. For

a firm, the corporate charter, financial agreements, and strategic plans play a similar role.

Institutions can effectively tie their hands loosely or tightly, being able to escape if they

will to bear the appropriate level ofpain. For any particular decision these costs can

usually be taken as given: passing a law, amending the constitution, issuing a regulation.

In future work we hope to make the choice of commitment mechanism endogenous.

We maintain the traditional semantics ofcommitment and discretion, but we wish

to highlight a bias in tone that creeps into the discussion when commitment is not

irrevocable. This innovation forces us into the use of words like “renege” and “weasel”

with clear negative connotations which we regard as unfortunate. We interpret the results

of this section as a model of optimal behavior and tolerate the terminology only to fit our

paper into the literature on rules and discretion.

A world in which policymakers can, at a cost, enter and exit commitment (or, more

generally, any policy regime) bears aclose similarity to Dixit’s [19891 model of the entry

and exit problem faced by competitive firms.

While a discrete time approach can sometimes handle particular versions of the

problems5 (as Lambson [19921 does for entry-exit decisions), the continuous time

~For some specialized problems the discrete time approach is more natural. One workhorse of the
dynamic inconsistency literature in macroeconomics, the unanticipated money model, does not easily
generalize to continuous time. We examine it in a companion paper (Haubrich and Ritter, 1995).
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approach, exposited in Dixit and Pindyck (1994) generally proves more convenient. A

generic quadratic payoff model captures the main points in a simple yet general context.

A Quadratic Model

We implement these ideas in continuous time as follows. The policy authority, the

Fed for example, will be following either rules or discretion. The payoff from discretion,

which depends on the state of the economy u, is

(1) pD(uyd+du+du2

The payoff from rules is

(2) pR(u) = r0 +i~u+r2u2.

Following examples (Gl) and (G2), and by analogy with the previous sections, we assume

that rules tend to be preferred when the shock is small, so that for small u,

pR (u) > p~)(u). We assume that u follows a simple Ito process

du = adt + odz

where a describes the drift of the process and ~denotes its standard deviation, with dz

describing a white noise Wiener process.

The optimal policy switches between the two quadratic payoff functions with cost

C of committing to rules, that is of moving from discretion to rules, and cost W (for

weaseling) of moving from rules to discretion6. To solve this we employ the general

methods of Dixit and Pindyck (1994). Our problem maps most naturally into an entry and

6 Allowing weaseling adds a component similar to the “escape clause” models ofFlood and Isard (1988)
and Lohinan (1992), who consider a cost to renege. In one sense we generalize those models by allowing
a positive cost ofrecommitment and allowing delay in recommitment. In another sense, those models are
more general in that they allow more general state contingent rules. We prefer to focus on the dynamics.
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exit problem. Unlike the problem for firms, where uncertainty over prices is best modeled

by geometric Brownian motion, for many problems two-sided shocks are more natural and

therefore are best modeled with Brownian motion, which may turn negative. Weather, oil

price shocks, trade flows, and interest rate shifts may all take positive or negative values.

Consequently, where Dixit and Pindyck’s problem has two boundaries, one price at which

the firm enters the market and another price at which the firm exits, our problem has four

boundaries: two above zero and two below zero.

In what follows, we derive the differential equations for the value functions, and

derive the smooth pasting and value matching conditions necessary for the optimum of this

stochastic control problem. The conditions give us the necessary equations to solve

numerically for the boundaries between the rules region and the discretion region. Full

details can be found in the appendix.

In the interior of the discretion region, the value function for the problem obeys:

rVD = pD(u)+’E[dvD]

dt

We apply Ito’s Lemma to find the differential equation for the value function

~J
2
VUUD +aV~_rVD ~pD

A similar argument for the interior of the rules region yields (subscripts denote partial

derivatives)

j~
2

VD +a1’~—rV’~ _pR

Each of these is a second order linear differential equation, and standard solution

techniques are available.

12



In the solution, there are three regions: a rules regions centered about zero for

small shocks, and discretion regions for large positive and large negative shocks. This

necessitates three solutions to the equations, depending on which region we are in. Each

solution takes the form of a general solution plus SR or ,a quadratic particular

solution to the differential equation7. For the rules region the solution is

(3) VR(u)=B,e~1u+B2e~+S~~(u),

with 131 > 0 and 1~2<0.

For the high (positive) discretion region, we have the corresponding solution

VD(u) = A,6 e~’+ ~h e~2u+ SD(u).

The particular solution S’3 (u) turns out to be the value of discretion forever, so that the

two exponential terms are the value of the option to commit. (See also Dixit and Pindyck

[1994], chapter 6 section 2.) For very large shocks u approaching infinity, it becomes

exceedingly unlikely that the regulator will ever commit (recall it prefers discretion for

large shocks) and so the value of that option approaches zero. This means the term with

the positive exponent, l3~,must vanish for large u, implying A,6 must be zero. This leads

to the simplified expression for the value function in the high (positive) discretion region:

(4) V~(u) = A21 e~2u+ SD (a).

After employing a similar argument for the lower (negative) discretion region we have

(5) VD (u) = A,, en” + SD (u)

~The particular solution is all that would change if we used a form costs other than quadratic.
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Four boundaries define the regions. Two boundaries determine when the regulator

“weasels” out ofrules and adopts discretion, one at the upper boundary u~and one at the

lower boundary u~.The other two boundaries determine when a discretionary regulator

commits to rules, entering the commitment region from above, ü~,or from below, u~.

With the general form of the value function in hand, we can find the boundary

values by imposing the value-matching and smooth-pasting conditions. For example, at

the upper commitment boundary, the value of continuing in discretion just equals the value

of adopting rules and paying the cost to commit:

(6) Vh(uC)=V(uC)-~C.

Likewise, the smooth pasting conditions impose equality on the derivatives of the value

functions:

(7) V”2(i~)=

This is repeated for each boundary, leading to eight equations (one value matching and

one smooth pasting condition for each boundary) in eight unknowns (four boundaries and

four undetermined coefficients). The appendix sets out these equations and proves the

existence and uniqueness of the solution.

Numerical Solution and Comparative Statics

As frequently happens in the stochastic control literature, closed form solutions do

not seem to exist for this problem, and we resort to numerical methods. Gauss NLSYS

was able to solve the eight simultaneous equations, though convergence of the algorithm

was sensitive to starting values. The actual numerical solutions are less interesting than

the comparative static results. Starting from a base case of C = W = 0.01, a = 0,
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2 = 0.01, and r =0.02, figures 1 through 4 depict the solutions under a variety of

parameter variations.

Figure 1 highlights the importance of history. It depicts a solution and one sample

path for the shocks, the commitment and weasel boundaries, and shades the time spent

committed to rules. Because the weasel and commit boundaries differ, in some states of

the economy (levels of u) current policy depends on past policy. For anything above the

upper commit line and below the upper weasel line, a regulator committed to rules sticks

with rules and a regulator using discretion sticks with discretion. Quite apparently, then, it

is incorrect to judge policy simply on the current state ofthe economy, and particularly

inappropriate to naively contrast currentpolicy with past policies at a similar state of the

economy or stage of the business cycle. In a word, our model predicts policy hysteresis.

This shifting reemphasizes a point stressed by Flood and Garber (1984) in their work on

the gold standard: to evaluate a policy rule, the entire dynamic policy sequence must be

analyzed, including those periods where discretion reigns.

Implicit in the hysteresis is something so obvious as to possibly escape notice.

Namely, the policymaker switches from rules to discretion, and from discretion to rules,

over time. Regimes shift. Discretion, commitment, and weaseling out ofcommitment, will

all occur.

Figure 2 plots the commitment and weasel boundaries as the commitment cost

changes, keeping the weasel cost fixed at 0.01. Notice that for any particular commitment

cost, the regulator adopts rules for “small” shocks on either side of zero. For larger

shocks, the Fed adopts discretion. This is a natural consequence of the quadratic payoff

function.
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Another prominent feature is that the weasel boundary is further out than the

commit boundary. Were there no cost of switching between regimes, the boundaries

would be the same, at V,,’3 (u) = V” (u) where the expected gain from continuing discretion

just matches the expected gain from using rules8. Adding a commitment cost drives a

wedge between the two value functions and requires that the regulator gain even more

from rules. This means moving the boundary further into the area where rules are

preferred, i.e., closer to zero. Similarly a cost to backing out of rules means shifting the

boundary even further into the area where discretion is preferred, that is, away from zero.

Hence the weasel boundary is further out than the commit boundary.

Figure 2 shows that as the cost of commitment increases, the less likely the

regulator is to commit. As the cost increases, the relative benefits of rules over discretion

must also increase, and so the commitment boundary shrinks towards zero. For high

enough cost, commitment never occurs.

One other more practical advantage of the continuous time formulation lies in its

ability to allow easy exploration ofa broad range of questions such as changes in entry and

exit costs and variability of the shocks.

Figure 3 illustrates what happens when the weasel cost varies. As the cost of

switching out of rules rises, it takes an increasingly large benefit of discretion over rules to

make the switch worthwhile, and so the weasel boundary increases. Notice in both figures

2 and 3 that a rise in commitment cost primarily moves the commitment boundary and a

8 In the zero cost case, the first order conditions (valuematching and smooth pasting) have mnultiple

solutions, one of which is the solution to the original problem. For all positive costs, the solution is
unique.
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rise in weaseling cost primarily moves the weasel boundary. This reflects the relatively

low variance of u. At the commitment boundary, the probability is low that the process

will soon wander as far as the weasel boundary, and so this has little weight in the

optimization problem making the weasel boundary almost perfectly flat. When the

boundaries are close, as for small values ofC and W, both boundaries move more

noticeably with an increase in either cost. A higher variance for u makes the effect more

pronounced.

Figure 4 illustrates a different exercise, in which the variance of the Brownian

motion governing the shocks is increased. As the variance rises, the commitment

boundaries decrease and the weasel boundaries increase. This is a consequence ofthe

options component of the decision. As the variance rises, so too does the option value of

“not switching.” For example, in the discretion region, a high variance means there is a

good chance of moving deeper into that region in the near future, but also a good chance

of moving into the rules region. The bad news principle enters here. Ending up deep in

the discretion region means regretting the commitment to rules. Ending up deep in the

rules region, means committing to rules when you get there, so committing today doesn’t

help. Thus, the high variance makes commitment less likely, and correspondingly, the

commitment boundary decreases. With a high enough variance, the regulator never

commits.

Expected Time in Regime

Since we propose a model with discrete regime shifts, how long the current policy

regime is expected last is critical in applications such as asset pricing, where agents must

look into the future. For example, monetary policy conducted under discretion may result
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in a higher inflation rate than policy conducted under rules. Most bond traders--and

academics studying the term structure of interest rates---concede the influence of

monetary policy. Most would also concede frustration in understanding that influence. At

times modest increase in the Federal Funds rate lead to sharp increases in long rates; at

times modest decreases lead to sharp increases, and at other times modest changes

provoke modest changes9. Thinking about policymakers as entering and exiting

commitment, with its associated non-linearities and hysteresis, can shed some light, and

perhaps one day, some quantitative evidence, on the matter.

To obtain an idea ofhow the expected time in a regime behaves, we set up the

following simulation. We let the underlying shock follow Brownian motion with a

variance of 0.1. We sampled this process 120 times at monthly intervals, assuming

commitment boundaries of +2 and -2 and weasel boundaries of +3 and -3. This is meant

to capture the ideathat the policymaker periodically, but not continually, reviews policy

based on the indicators of the underlying economy. For a given starting point, we

generated 1000 runs ofthe Brownian motion path, keeping track (by month) when the

path was in the rules and the discretion region (which is obviously path dependent).

Averaging over the 1000 runs gives an estimate of the expected fraction of time spent in

each region over the next 10 years. Figure 5 reports the results. The X-axis reports the

starting value for the simulation and the Y-axis reports the fraction of time spent in

discretion. For example, if the current value of the underlying shock is 1.5, the expected

fraction of time in discretion is only 0.04 ( or 4.8 months out of 10 years). In other words,

‘~See Goodfriend, 1993, orCampbell 1995 for amplification of this point.
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the amount of time expected to be spent in discretion over the next ten years is trivial

given a starting point this far into the rules region. The figure reports two numbers for

starting values between 2 and 3, depending on whether the starting value is assumed to be

in the rules or the discretion region.

If, as mentioned above, the discretion regime results in a higher inflation rate, the

data shown in figure 5 can easily be translated into a numerical inflation premium. Say

that rules produce zero inflation and discretion produces constant inflation of 10 percent.

Then the average expected inflation over the next ten years is 0.4 percent when the

underlying state is 1.5 but rises rapidly thereafter.

Three lessons emerge from figure 5. It emphasizes and quantifies the importance

of hysteresis forforward-looking variables. For a starting value of 2.5 in the rules region,

the policy maker expects to be in discretion only about one third of the time over the next

ten years. If that same value of2.5 is in the discretion region, the corresponding number

is about two-thirds. This implies that expectations are asymmetric during increases and

decreases ofthe shocks. Equally important, expectations can change quickly once the

shocks approach a boundary. The expected time in discretion changes from 0.001 to

0.009 in moving from 0 to 1, but changes from 0.16 to 0.86 in moving from 2 to 3. The

relation between the underlying shock and the result is decidedly non-linear.

These results imply that inflationary expectations, and thus long term interest rates,

can change dramatically without a shift in policy, as people anticipate that a new policy

regime is more likely. These shifts depended sensitively on the underlying state of the

economy, and what policy regime currently obtains.
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Conclusion

Viewing commitment as irreversible investment has two major advantages. It

provides a new perspective on questions ofcommitment, rules, and discretion, clearing up

some troubling aspects of the literature. Equally important, that perspective represents a

new and useful direction for the irreversible investment literature. It applies quite naturally

to strategic interactions-- games-- without the need for drastic revision. Though we don’t

wish to downplay the difficulties arising in each specific case, such as dealing with

different stochastic processes or multiple boundaries, the basic concepts and techniques of

investment under uncertainty gain a wider applicability.

Thus, along with providing new answers to old questions, this approach also raises

new questions. By making the commitment versus discretion problem more amenable to

attack by the techniques of financial economics, a new set of tools, and problems, naturally

arises. For example, policy commitment should matter for asset prices--consider a shift in

monetary policy, a poison pill being activated, or shift in bank closure policy. Conversely,

asset prices may allow us to estimate commitment probabilities and other fundamentals of

the model.

This means that a powerful set of techniques stands ready to address significant

questions in banking, finance, and economics.
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Appendix A: Theoretical Solution

1. Solving for the Value Functions

This part of the appendix solves the differential equations of section III to find the

value functions. For reference, those two equations are

!~2VD+aVD_rVD _pD

for the interior of the discretion region and

V~+a1’~_rVR _pR

for the interior of the rules region.

Both are equations of the form

ay”(x) + by’ (x) + cy(x) = qo + q1x + q2x2 Q(x)

The solutions to the homogenous part are

y(x) = A1e~+ A2e~~x

where 13, are solutions to the characteristic equation

a?~2+ bX + c = 0.

Since c <0 in our application, we have one positive and one negative root. Let

132 <0 < 131. The particular solution can be a quadratic:

y(x) = so + s,x + 52~

y’ (x) = s, + 2s2x

y”(x) = 2s2

Substituting yields

qo + q1x + q2x2
= a(2s2) + b(s, + 2s2x) + c(so + s1x + 52X2)

= (2as2 + bs1 + cso) + (2bs2 + csi)x + (cs2)x
2

Matching coefficients yields

q2
c

= q, —2bs2
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— q2 —bs, —2as2So
c

Since Q(x) is either ~pJ) or -P”, we have one particular solution for discretion and one for

rules, call them ~ D and S R

There are three regions: high-u discretion, low-u discretion, and rules. Take these

in order. For high-u discretion the solution is

V D(u) = A,,,e~”+ e~2u+S ‘3(u).

Substituting So, s1, and 52 into the quadratic particular solution makes it clear that S ‘3(u)

turns out to be the value of discretion forever, so the other terms are the value of the

option to commit. (See Dixit and Pindyck [1984] chapter 6 section 2.) As u—~oo this

option becomes worthless, so we need to have A1,, 0 (since 13~> 0). So the solution we

have (equation 4 of the paper) is

V ~(u)=A ,,e~2u+S ‘3(u)

For low-u discretion we need A2, = 0. Otherwise the value option to commit explodes as

we get farther in the negative direction from the point at which we would want to commit.

So in the low-u discretion region we have equation (5) of the paper

V ~‘3(u)=A,,e~+S D(u)

The rules region is bounded, so neither option term drops out, and the solution is equation

(3) of the paper:

V ‘‘(u) =B,e~+B2e~2t~+ 5 R(u)

The value function must also satisfy the following value-matching and smooth-

pasting conditions:

V ~(u) = v R (ut) — C

V ~(u~)= V”(~~)~C

v R(u) V~(u~)—W

V~(u~)=VR(u~)
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V~(u~)=VR(u~)

VR(u~)=V~(u~)

VR(u~)=V~(u~)

We have 8 equations and 8 unknowns, A,,, A26, B,, B2,u~,u~,u~,and u~.

2. Existence and Uniqueness of Solutions

To establish the existence and uniqueness of the solution, we use a variation on the

approach used by Dixit (1989, unpublished appendix).

Preliminaries

First we define two functions which measure the difference between the value

functions (analogues of Dixit’s G(P) function) for the upper and lower boundary pairs:

= B,e~°~+ B2e~2u+ 5R (u) — e~2u— S’3(u)

=B1e~+D2e~2lC+Q(u)

L(u) = VR(u) — V’2(u)

= B,e~+ B2e~2u+ S”(u) — A11e~— S’3(u)

=D1e~+B2e~2~4+Q(u)

where D1 = B, - A11, D2 = B2 - A26, and Q(u) = S”(u) — S’3(u). 5R and 51) are the

particular solutions for the differential equations that lead to the value functions.

Next, we need to establish that Q(u) is convex. Convexity follows from our

assumption that the rules loss function is more convex than the discretion loss function

and from the formulae for 5” and ~

The introduction ofD, separates theproblem of finding the upper boundaries from

that offinding the lower boundaries. Without loss of generality we consider only the

upper boundaries, concentrating on the function H(u;B,,D2). Where there is no chance of

confusion, we suppress the dependence ofH on its parameters and write H(u).
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Existence

Consider the upper boundaries. We define a sequence of functions H, (and

corresponding B~and D~)which converge to a function H which satisfies the smooth-

pasting and value-matching conditions. Let

Ho(u) = Q(u)

Keeping D2 = 0, set B,’ so that

H,(u) = B1
1e~”+H0(u)

is tangent to the horizontal line at +W. This can be accomplished by some B,’ <0 because

H,’(u) increases without bound as we increase B,’ and decreases without bound as we

decrease Bj’. This produces a local maximum since B,’ <0 (Note: We can not start with

D2 because Q may not intersect -C.)

Now let

H2(u) = D~eP2L’+ H1 (u)

H2 is increasing in D~and H2’ is decreasing (since 132 <0) without bound in D~.

Increase D~to make I~i2tangent to -C. This will be a local minimum. Notice that this

puts H2 above H, at the point where H, is tangent to +W.

Now let

113(u) = B~e~°’+ H2(u)

Decrease B,3 to restore tangency with +W. Continue this process, thus generating the

sequence.

Note that H, goes off to +oo to the left of the tangencies and off to -oo to the right;

as illustrated in figure Al. At each stage of this construction, there is an increasing

segment of H, to the right of the local minimum and to the left of the local maximum. Let

(B,1, D,,~be the accumulation of the B and D~in H,. We have shown that this sequence

is always moving northwest in B, - D2 space. This sequence cannot, by construction, go

into a region where H1’(u) <0 for all u.

To show convergence we need to bound the (B,1, D21} sequence. Notice that both

exponential terms are downward-sloping, so we can find bounds on B,, and D2, separately.
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The only interval on which H could possibly be increasing on the B, steps (that is, H for

odd i) is between the minimum of Q, denoted u0 and the largest solution to

H~(u)= 13,B~e~”+Q’(u) = 0, denoted by u”~. (There are generally 2 solutions because

Q’(u) is linear while —f3 ,B~’e~’is convex. See figure A2.) We know u~<u * because

13 ,B,’e~”>0 and B,’ was chosen so that H,’(u*)=O. Hence 13,B,’e~’intersectsQ’(u).

See figure Al.

A simple bounding argument will eliminate the possibility of an increasing H even

on this interval. For u~[u0, u*j, we have that H,’(u) <0 for u > u* and i> 1:

H,’(u) = ~ + ~2D21e~2M+ Q’(u)

< [i3,B~e~+ Q’(u)]+ 132D 2ie~2

<13,B,’e~+Q’(u)

<13,B,leI3~~~*+Q’(u*)

= H~(u*)=0

The first inequality comes from the fact that the {B,, } is a decreasing sequence ofnegative

numbers. The second follows from the fact that D21 > 0 with 132 < 0. The third from the

fact that —13,B,’e~’°’cuts Q’(u) from below at u’~,so that both increase on [up, u*]. Again,

see figure A2. On ~ u*], e~and e~2”are minimized and maximized, respectively, at

u~,since both are monotonic. Similarly, the slope of Q is maximized at u~.

Hence, there can be no increasing portion ofH~(u)if

13 ,B,e~+ Q’(u*) <0

for all u E [u~,u*}. This condition holds if

_Q’(u*) _Q’(u*)
B < < = negative constant

f3,e~” 3,e~1u

Similarly, for the D2 steps (H, for even i) there can be no increasing portion of

H(u) on [u0, u*] if

132D2e~2u+ Q’(u*) <0

or
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D <_Q/(u*) Q’(u*) = positive constant2 13
2
e~2” 13

2
e~2l~°

Therefore the sequence (which is moving northwest) is bounded in the region 0>

B, > negative constant, 0 <D2 <positive constant.

Uniqueness

Recall that the definition of D2 above reduced the problem to separate sets of 4

equations and 4 unknowns, two boundaries (two values of u) and two undetermined

constants. The uniqueness proof first shows that, for any given value of the constants, the

boundaries are unique, and then shows that the constants are unique.

Define u~(B, ,D2) and u~(B,, D2) as the respective values of u where the local

minimum and maximum ofH(u;B,,D2) occur. First we show that there can be only one

minimum u,, (B,, D2), and one maximum u~(B,, D2) for H given B, and D2.

Lemma: For given values of B, <0 and D2 >0, H‘(u; B,, D2) =0 has at most 3

solutions.

Proof: Write H’ = 0 as

—Q’(u) = 13,B,e~”+ 132D2e~2u

Since Q is convex, the LHS is a decreasing line. The RHS is downward-sloping, convex

to the left and concave to the right -- like a cotangent function. Obviously there will be no

more than 3 solutions. ~

Given the shape of H (that is, lim~~H(u) = +oo, lim~~H(u) = —oo, again see

figure Al), solutions to H’(u)=O come in pairs. To have more than one minimum and one

maximum, then, we would need at least 4 solutions to H’ = 0. But the lemma shows that

we can have at most three, and since we have already proven existence, we know exactly

two solutions exist, a unique maximum and a unique minimum. This implies that

u~(B,,D2) and u~(B1,D2)are well defined, single-valued, functions.

Now to complete the proof, we show that B, and D2 are unique. The proof

proceeds by contradiction.

Define
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lT~(B, ,D2) ~ ~ + D2e~2~~)+ Q(u~(B,, D2))

F~(B,,D2) B,e~~~’)2)+ D2e~’~’)2)+ Q(u~(B,,D2))

In this notation the value-matching conditions are

F~(B,,D2)= —C

F,~(B,,D2)=W

Also,

~—~-=H ~-~‘-~--+H
~B, U~JJ~

= H8

= e~1”r(1.’
3

2)

H~= 0 because u~(B~,D2) and u~(B,,D2)are chosen so that the smooth-pasting

conditions hold when H is evaluated at u~(B,,D2) or u~(B,,D2).Similarly,

aD2

aFw =e~1B~2)

=e~2~~’32)

aD2

Now we show that a second solution cannot exist. Note that if (B1’,D~)is a

second solution to the value-matching and smooth-pasting conditions with B’> B,, we

must have D~<D2 to maintain the value-matching conditions: [‘~(B[, D~)= —C and

[‘~,,(B,’,D2’)=W.

Let b = B[—B, >0 and d = D,’ —D2 <0. The line segmentjoining the solutions

is (B, +tb,D2 +td). We have

~F(B +tb,D
dt C 2 aid, aD2

= ~ +

Given our hypothesis that F~(B,,D2) = F~(B~,D~)= C,
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0 = ‘~C(Bt~D2)F~(B,,D2)

= 5’ (be~h1tb~1)2±t~)+ ~

Similarly,

0 = F~(B,’,D)—F~(B,,D2)

=5 ~ ~

Again, because ofthe shape of H,

u~(B,,D2) <u~(B, ,D2) ~ e~1~D2) <e~1 ~ and e~2~~’32)> e~’~

Recall that b > 0 and d < 0. Subtracting the two integrals, we get

0 = 5’ [b(e~1~~t1)2)— e~1u~~81~’32))+d(e~’1)2) — ~

The integrand is always negative, so the integral cannot be 0. That is, both solutions

satisfy the value matching conditions only if they are identical.l

Thus, B, and D2 are unique, and so uniquely define u~(B, ,D2) and uw (B,, D2),

and thus the entire solution is unique.
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Figure 1
Entering and Exiting Commitment
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Figure 2

Effect of Commitment Cost Changes
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Figure 3
Effect of Weasel Cost Changes
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Figure 4

Effect of Shock Variance Changes
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Chart5

Fraction of Time in Discretion
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FIGURE A—i
Solution to

H(uw) = W, H(uc) = —C,
H~~(uw)= 0, and H”(u’~)= 0
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FIGURE A—2
Solutions to H~(u)= 0
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