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ABSTRACT

The dynamic response of Black market premia to domestic shocks is an important issue in the

design and implementation of stabilization and reform programs. We use a vector autoregressive

fractionally integrated model to provide new evidence on the dynamics of the official and Black

market exchange rates. We show that the official and Black market exchange rates in Hungary

are cointegrated with a negative fractional order ofintegration in the cointegrating residuals. The

new empirical finding means that the cointegrating residuals are positively autocorrelated in the

short run due to autoregressive dynamics, but are negatively autocorrelated in the long run. The

rich and complex dynamics of the premia suggests the existence of what we call long memory

non-monotonicity.
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1 Introduction

The sine qua non of Black markets for foreign currency is restrictive foreign ex-

change and trade policies. Black markets for foreign currency are the rule rather

than the exception in developing countries and the spread between the two rates—

the Black market premium—is a useful indicator of real exchange rate misalignment.’

A key policy objective in countries with over-valued exchange rates and large and well

functioning Black markets is unification of the Black market and official rates. An

important policy instrument in any attempt to unify the foreign exchange rate is

nominal devaluations of the official exchange rate. However, despite the importance

of devaluations as a means of reducing the Black market premium there is scant

empirical evidence on the dynamics of the premium in response to a devaluation.

Investigating the dynamics of the Black market premium in response to a deval-

uation is important because movements in the premium can shed light on the risk

and speculative behavior of agents participating in these markets. It is only by un-

derstanding how such agents respond to changes in their economic environment that

we can design and implement effective policies.

This paper contributes to the empirical literature on Black markets for foreign

exchange by investigating the response of the premium to devaluations in Hungary.

We focus on Hungary for the following reasons. It maintained relatively close ties

to the West despite the “iron curtain”; data on both the official and Black market

exchange rates are readily available and convertibility and exchange rate policies are

pressing issues for economies in transition to a market-based economic system.

An important novelty in our empirical analysis is the use of a multivariate maximum-

likelihood estimator of ARFIMA processes developed by Sowell (1989a) and imple-

mented by Dueker and Startz (1994) which estimates the fractional differencing pa-

rameter and the ARMA parameters simultaneously. This is important because by

conducting joint estimation of the orders of integration of an input series and cointe-

grating residuals one is able to measure on a continuous scale the extent to which two

series share a common stochastic trend. Failure to allow for a more general ARFIMA

process and estimate all parameters jointly can bias the estimator of the fractional

differencing parameter, as noted by Sowell (1992b).

We use a simple bivariate version of the more general model to test the hypothesis

that the Black market and official exchange rate series haveequal orders of integration.

Our methodology differs from most studies of cointegration in which it is assumed,

upon failure to reject the null hypothesis of a unit root, that both input series are

integrated of the same order. The payoff to using the more general approach is that we

are able to document more complex and richer dynamics in response to a devaluation.

To the best of our knowledge this is the first paper to examine long memory

dynamics in Black market premia. There is however, a voluminous literature on

Black markets for foreign currency to which the present analysis is broadly related.
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The first strand of the literature has focused on investigating the determinants of the

Black market premium, Dornbusch et at. (1983). The second strand of the literature

is represented by Edwards (1989) and Kamin (1993) who investigate a large number

of devaluation episodes in an attempt to determine whether there are any systematic

patterns in the dynamics of Black market variables in response to a devaluation.

The empirical evidence suggests a systematic increase in the Black market premium

prior to a devaluation followed by an immediate decline. Agénor (1990, 1991) has

provided evidence showing that the depreciation of the Black market rate is less than

proportional immediately after a devaluation.

A third strand of the literature has investigated the extent to which the official and

Black-market rates share a common stochastic trend. In this strand of the literature,

Booth and Mustafa (1991) who find evidence of cointegration between the official and

Black market rates in Turkey in the mid-1980s, using “integer” tests of the order of

integration of the cointegrating residuals, comes closest in terms of methodology to

the present analysis. There are however several significant differences between our

work and Booth and Mustafa (1991).

First, we use monthly, rather than daily, data. When changes in the official ex-

change rate occur at approximately a monthly frequency, it is not clear how much

advantage higher-frequency data offers. Moreover, Booth and Mustafa (1991) note

that Turkey’s official rate was often revised only on an annual basis. For our data,

however, the official rate changes at least once a month for Hungary and on a monthly

or bimonthly basis for Czechoslovakia. Second, our sample period spans a greater

number of years, as Booth and Mustafa (1991) use daily data spanning a two-year

period, whereas we use 80 monthly observations from May 1982 to December 1990.

Third, we use a vector autoregressive fractionally-integrated moving-average (hence-

forth ARFIMA) model, rather than a vector autoregression. Hence, the model al-

lows for fractionally-integrated moving-average processes, in addition to autoregres-

sive processes.

The rest of the paper is organized as follows. Section 2 provides some background

on the dynamics of the Black market for dollars in Hungary. Section 3 presents a brief

exposition of fractionally integrated processes and fractional cointegration. In Section

4 we start by presenting the bivariate fractionally cointegrated empirical model that

we use to explain the non-monotonicity phenomena and then proceed to discuss the

empirical results and their implications. Concluding remarks are provided in Section

5. An Appendix lays out details on the econometric methodology.

2 The External Environment

In this section we provide a brief overview of the major features of the international

trade and exchange rate regimes in Hungary that were relevant to the Black market

for dollars.

2



For most of the post-war period restrictions on international trade transactions

and currency convertibility in Hungary have lead to over-valuation of the official

exchange rate and an active Black market for U.S. dollars. Figure 1 displays the

time path of the Black-market exchange rates from 1955 to 1990. There appears to

be relatively mild fluctuations the Black market for dollars until the late 1970s and

1980s, except for the discrete jump in the Black market premium associated with the

Soviet invasion on Hungary in 1956.

[Place Figure 1 about here]

In Hungary important developments in the 1970s were steps taken to implement

the New Economic Mechanism (NEM). Introduced in 1968 the NEM constituted

the first comprehensive market oriented reforms by a socialist economy. However,

the sharp increase in world prices for oil and other raw materials and expansive

macroeconomic policies, led to a 20 percent appreciation in the exchange rate over

1974-1978, Balassa (1989).

Apart from Poland, Hungary’s per capita debt surpassed that of any other socialist

or developing country in 1978 rising to over 40 percent of GDP. The need to pay off

the huge external debt built up over the 1974-1978 period resulted in several measures

to promote exports to private market economies and regain access to international

financial markets. These measures included the depreciation of the export exchange

rate by 15 percent in real terms between 1983 and 1986, Balassa (1989).

The weakening of external markets, notably in the Middle East led to a wors-

ening of the external environment between 1985 and 1987. This was manifested by

an appreciation of the exchange rate. Structural adjustment and stabilization mea-

sures that were put in place in 1987 subsequently led to a steady depreciation of the

exchange rate through 1990.

3 Long Memory and Fractional Cointegration

In this section we provide a brief introduction to long memory processes and

fractional cointegration.

3.1 Long Memory Processes

Long-term memory or persistence is the term used to describe a time series whose

autocorrelation structure decays slowly to zero, or equivalently whose spectral density

is highly concentrated at frequencies close to zero. Such autocorrelation structure

suggests that the process must depend strongly upon values of the time series far way

in the past.
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To fix ideas first consider the familiar ARIMA (p, d, q) model for a time series {Yt}

denoted

= it + Oq(L) t (1)

where p, d, q are non-negative integers, L is the backward shift operator (i.e. Ly~=

y~’) A = (1 — L) is the difference operator (i.e. Ay~= yt — yt—,), ‘I~.and °q are

polynomials of order p and q respectively and Ct is a mean zero i.i.d. sequence assumed

to be Gaussian or at least to have a finite variance ~

Assume that the polynomials ~~(z) = 1 — ç~,z— ... — c~,z°and Oq(z) 1 ±O,z +

+ Oqz~viewed as functions of a complex number z have no zero in the unit circle

< 1. This ensures that when d = 0 the time series {yt} is (i) trend stationary,

(where it is possibly replaced by some more general deterministic function of time),

(ii) causal (depends only on past values of c’s and (iii) invertible (the c’s can be

expressed in terms of the past yt’s.

When d = 0 the ARIMA (p, d, q) process is referred to as an ARMA (p, q) process.

The covariance (or dependence) of the ARMA (p, q) R~= E[y~y
0
]are mixtures of

damped exponentials (i.e., they decrease relatively quickly). This behavior is often

referred to as “weak dependence” or short memory. In general a process exhibits

short memory if ~I R(t)~< oc.

The long memory or ARFIMA model generalizes the ARIMA (p, d, q) model by

allowing d to take fractional values that may be either positive or negative.

Many features of ARFIMA models can be illustrated by studying the special case

p = q = 0, ARFIMA (0, d, 0). This time series model is called fractionally integrated

noise and is denoted Ady~= Ct for d fractional as Yt = A_de~.Where A_d = (1 —

by using the formal power series expansion (1 — z)_d = ~Io b~(d)z~as follows

= (1 — L)~= ~b~(d)L~, (2)

where P denotes the backward operator L iterated j times, b
0
(d) = 1

bId~_flkl~_ F(j+d) —12 3
~ )_&11 k - F(j+1)F(d) ~ - ()

and F(.) is the Gamma function.

The ARFIMA (0, d, 0) model has an infinite moving average representation

Yt = ~b~(d)e~_~, (4)

where the llj’s are given as in (3).
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For (4) to be well defined it is necessary that the square summability condition,

~ b~<cx be satisfied that is

(5)

The autocorrelation function is

(k) — F(1 — d)F(k + d) k — 1 2 (6
p — F(k—d+1)F(d)’ — ‘ ...

When 0 <d <

~p(k)~ocasn~oc. (7)

When —~ <d < 0

~p(k)<ocasn~oo. (8)

When d E (0, ~) the autocorrelations are all positive, decrease hyperbolically and

have an infinite sum . Such series are said to exhibit long memory because data in

the distant past exerts small but non-negligible effects on the present.

When d e (—i, 0) the autocorrelations are all negative except at lag 0, converge

hyperbolically to zero and have a convergent sum. Such series are said to be antiper-

sistent.

In contrast to the ARMA (p, q) the covariance R(k) = TE[y
0

yk] of an ARFIMA

(0,d,0) process satisfies

R(k) Cdk2~1
as k ~‘ oc (9)

where Cd = ‘F(l — 2d) sin 7rd.

From (5) the spectral density equals

f(~) = ~1 — e~
2
d = ~ (

2
sin~)

2
d (10)

and satisfies

f(~)= as ~‘ 0. (11)

Since {yt} is well defined for d < ~, we have R(0) = f~f(~)d~< oc when d <

which can be directly verified by using (11).

The autoregressive representation of the ARFIMA (0, d, 0) process is AdX~= Ct,

i.e.

= e~ (12)

j=o
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where the b~(d)’sexactly compensate for the dependence structure of the time series

{yt}. It is easy to show that (11) is always defined for —~ < d < ~. The case of
—~ < d < ~. is of particular interest. When 0 < d < ~ the process is covariance

stationary and the covariances decrease so slowly that f(0) = 1~t~R(k) = co. In

other words long memory behavior can be characterized by the unboundedness of

the spectral density at frequency zero. When d = 0 the Yt’~are uncorrelated. \~~fhen

—~ <d < 0 they are weakly dependent because ~ R(k) <cc. They are in fact

“negatively” dependent because as (9) shows the covariances are negative for large k.

Relaxing the asssumption that p = q = 0 yields a general ARFIMA (p, d, q)

= 0q(L)A~et (13)

where if d < ~, then y~is mean-reverting (or, more generally, reverts to its deter-

minstic trend) and is covariance stationary. In practice, we difference y until the

remaining differencing parameter is less than so the series we work with are covari-

ance stationary. 2 The inclusion of AR and MA parameters in the model enables the

ARFIMA (p, d, q) to better reflect both the short and long memory characteristics of

the data. The ARFIMA representation is a parsimonious low-frequency generaliztion

of the ARIMA class

3.2 Fractional Cointegration

Fractional cointegration (Granger 1986; Cheung and Lai 1993) enables us to mea-

sure the persistence of the stochastic trend common to two series on a continuous

scale and thus provides more information as to whether two economic variables are

related in ways suggested by theory.

If two series, x and y, are fractionally integrated with (continuous) orders of

integration d, and d2, then generally a linear combination y + xf3 will be fractionally

integrated of order max{d,,d2}.3

If d, = d2, a cointegrating vector (1, /3) might exist, however, such that the linear

combination, y + x/3, is fractionally integrated of order b < d.4 In this case d — b

indicates the extent to which the series are “cointegrated”. If b = 0, all long-memory

components in the two series are common to both; if b = d, the series have distinct,

unrelated stochastic trends. In the framework of fractional cointegration, integer

cointegration tests become a joint test of d = 1 and b = 0. Note that the usual

integer cointegration tests, which utilize unit root tests such as Dickey-Fuller [Dickey

and Fuller (1981)], test whether b = 1 against the alternative that b = 0 and assume

that the unit root in the input series is known with certainty (d = 1). To test

cointegration hypotheses over the continuous metric d — b, it is necessary to have

joint estimates of b and d.
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It is possible for two series with fractional order of integration d to be cointegrated

with residuals which are fractionally integrated of order ~d, for example. With Dickey-

Fuller tests on the residuals, inferences are limited to rejecting or not the hypothesis

that the series share the same stochastic trend.

4 Empirical Analysis

In the empirical analysis we use monthly observations of the Hugarian florint for

the period from May 1984 to December 1990. The Black market exchange rates

are quoted as foreign currency units per U.S dollar and were obtained from various

issues of the World Currency Yearbook. The Black market rates are end-of-month

quotations. Official exchange rates for the Hungarian fiorint were obtained from the

International Monetary Fund’s International Financial Statistics data tapes.

Figure 2 displays time series plots of the respective series between 1982 and 1991

[Place Figure 2 about here]

4.1 Bivariate ARFIMA model with Fractional

Cointegration

In this subsection we present the bivariate model with fractional cointegration that

we use in the empirical investigation. Due to lengthy computation times, we did not

pursue a formal model selection procedure, as Dueker and Startz (1994) found that

models more heavily parameterized than the bivariate ARFIMA(1,d,1) model often

proved to be overparameterized. For a discussion of model selection with ARFIMA

models, see Sowell (1992b).

For a model of fractional cointegration, Granger (1986) generalized the usual

bivariate error-correction mechanism (ECM) to include fractional integration and

cointegration, shown here with the first-differences on the left-hand side:

~~(L)(Ax~, Ay~)’ = —(T,, T
2

)[(1 — L)~ — (1 — L)](1, —/3)(Xt, yt)’

+Oq(L)(1 — L)~(e,~,C
2
t)’ (14)

where x and y are 1(1 + d), but have cointegrating residuals which are 1(b). One

important feature of the ECM is its symmetry, which implies that changes in both

variables are constrained by a long-memory process of past values of the cointegrating

residuals if neither ~ nor T
2

equals zero. This symmetry is present also in the usual

I(1)/I(0) cointegration, but when d = 0 and b = 0, the effects of lags of the cointe-

grating residuals on Ay and Ax decline geometrically with the terms in the inverted

AR process, ~ When b—d ~ 0, that is, when there is fractional cointegration,
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both Ay and Ax respond with long memory to past deviations from the long-run

relationship.

In some cases, it may not be desirable to assume that both variables respond

symmetrically to distant past deviations from the long-run relationship. Moreover,

Cheung and Lai (1993) note that estimation of the fractional ECM model of equation

(14) is not straightforward. In our application, it does not seem appropriate to

assume that the cointegration restriction constrains changes in the official rate, which

is presumed to be at least partly a policy variable, the same way it constrains changes

in the Black-market rate. To allow for fractional cointegration without forcing current

changes in both variables to be long-memory processes of distant deviations from

the long-run relationship, Sowell (1989a) proposed the following bivariate model of

fractional cointegration:

l/t — /3xt)’ = Oq(L)(eit, C
2
j)’ (15)

where

D(L)= ((1_L)d (1_L)b)
By specifying the cointegrating residuals as a left-hand side variable in place of the

variable that bears most of the long-run cointegration restriction, the changes in the

other variable, Ax, become short-memory functions of deviations from the long-run

relationship, according to ~I~(L)’. The changes in y, on the other hand, are implicitly

a long-memory function of the deviations from the long-run relationship, because the

cointegrating residuals themselves are a long-memory process. Note that there is no

longer an error-correction term on the right-hand side, because the deviation from

the long-run relationship is now one of the dependent variables in equation (15).

The bivariate ARFIMA model used is in (16) below. With all variables in logs

our model of fractional cointegration between Black and official rates is

/i r~\ / /

‘ ~ l I Pu P12 L1
— )

0 1 ) — ~ P21 P22 0 (1 — L)b X

( Officialt — S1t

Black Markett — /3Official~

= [(1 0 ) L° + ( 811 812 ) ~](Cit) (16)

21 22
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This framework enables estimation of the fractional differencing parameter b of

the deviations from the long-run relationship jointly with the fractional differencing

parameter of the input series. We can then formally test hypotheses regarding d —

the extent to which the variables are cointegrated. The approach is general enough

to allow for long-memory processes, unit roots and fractionally-integrated common

stochastic trends of possibly lower order than the input series.

4.2 Estimation

Maximum-likelihood estimation of (16) for the Hungarian florint data was con-

ducted using techniques described briefly in the appendix, in Sowell (1989a) and

Dueker and Startz (1994).

With fractionally integrated time series no matter what the order of integration, it

is always possible to difference a series enough times such that the order of integration

lies in (—i, ~). As we saw above, in this region, the series is covariance stationary

with an invertible moving-average representation. For this reason, the official rate is

differenced in the first row of (16). After differencing, the order of integration lies

between —~ and ~, whereas in levels the series is not covariance stationary (d >

For the official rate for the Hungarian florint, we find d to be close to ~. When we

estimated the model in first differences the estimate of d — 1 converged to the lower

limit of —~. Consequently, we re-estimated the model in levels with a time trend

as in (16). Thus, the data suggest that Hungary’s official exchange rate has long-

memory departures from a deterministic time trend. If in fact d were between -~ and

1, then the series would still revert to the deterministic time trend, but its departures

would be sufficiently persistent to make the series non-covariance stationary. Thus,

the estimation issue is whether to estimate the model in levels or first-differences in

order to have d ~ {—~, ~}. Interestingly, a Dickey-Fuller test does not reject a unit

root, which illustrates the weak power of the test to fractional alternatives.

The apparent slow reversion to a linear trend in the series conforms with Cheung

(1993) who finds that many nominal exchange rates have a fractional root less than

one and with the finding of Booth and Mustafa (1991) that the interplay between

official and Black market exchange rates includes a long-term overshooting of their

long-run relationship.

Table 1 contains the parameter estimates for Hungary and shows that the official

rate appears marginally covariance stationary (d = .41), although we cannot reject

an order of integration above one-half. This implies that the departures from the

linear trend are nearly persistent enough to cause the departures from the trend not

to be covariance stationary.

A negative order of integration in the Black market premium (b = — .465) implies

that low-order autocorrelations are persistently negative —a property called antiper-

sistence. In the context of (16), a negative order of integration in the Black-market
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premium would simply imply that the long-run relationship will be restored follow-

ing some overshooting in the premium: If a shock pushes the premium below average

today, the long-run relationship will be restored via asymptotic decay of a positive de-

viation from the long-run relationship. This is what we call long memory overshooting

because the effect of a shock declines at a slower rate than the usual exponehtial de-

cay assocaited with the autocorrelation functions for the class of covariance stationary

ARMA process.

Figure 3 illustrates the model-implied and sample autocovariances of Hungary’s

Black-market premium. Note that the model-implied autocovariances dip below zero

at a lag of about five months and gradually return to zero.

The described long-memory overshooting has important implications for the dy-

namic relationship between the official rate and the Black-market premium. Our

multivariate time series model also specifies expected covariances between lags of the

official rate and the Black-market premium. These lags help trace the response of

the Black-market premium to an increase in the official rate. Figure 4 shows that

an increase in the official rate initially tends to be associated with smaller Black-

market premia in the first five months, but the Black-market premium does return

monotonically to its mean. Instead, the Black-market premium overshoots and goes

persistently above normal before returning to its mean.

Table 1 contains the parameter estimates for Hungary and shows that the vector

autoregressive process implied by cI~,is relatively persistent with complex roots. The

conjugate pair of roots is .785±/- .028. For this reason, it takes some time for the

autocovariances of the Black-market premium to become negative in Figure 3.

[Place Table 1 about here].

5 Conclusions

We have examined the dynamics of the official exchange rate and Black market

premium using a bivariate time series model that allows for fractional integration and

cointegration. The results suggest that the official and Black-market rates in Hungary

were cointegrated with a negative fractional order of integration in the cointegrating

residuals.

The significance of negative orders of integration in Black-market exchange-rate

premia is that the Black-market premium eventually overshoots in response to a

devaluation of the official rate. The initial response to a devaluation is for the Black-

market premium to fall below normal, as expected. The model and data suggest,

however, that the long-run equilibrium is restored asymptotically following a devalu-

ation by reductions in the Black-market premium from an above-normal level. Thus,

along the way the Black-market premium overshoots its long-run average level due to

10



long-memory, non-monotonic dynamics. The overshooting may result from market

speculation against the official rate in anticipation of further rounds of devaluation.

Such expectations were warranted in the 1980s in Hungary.
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Appendix A

This appendix provides details on the estimation of the model.

Consider a vector of k variables, (yut, ..., ykt)’, denoted by ~j that is differenced

enough times so that their orders of integration are all in (—i, ~ then the covariance

matrix, ~, of the multivariate time series y = (y~,..., y~)’is block Toeplitz where

E[y
1
y~+

8
]= s(s) = E[y1y18]’ =

Assuming that y consists of a multivariate ARFIMA process with fractional differ-

encing parameters d1, ...,dk,

~~(L)D(L)y = 0
2
(L)C (A. 1)

where is assumed to be a vector of random i.i.d. disturbances, ~~(L) is an autore-

gressive polynomial of order p, Oq(L) is a moving-average polynominal of order q,

and D(L) is a diagonal fractional differencing polynomial:

(1_L)dl 0

0

(1_L)dk

Sowell (1989a) derives the autocovariances for the ARFIMA model, which do not

have a closed form, as they are functions of hypergeometric functions. For this reason,

we do not repeat the formulae here. Closed--forms exist for the ARFIMA(0,d,q)

autocovariances, however, and we repeat those here:

k k q q

= ~ ~ ~Ot,~(m)O~,~(l) (A. 2)
n1 r=1 m=0 1=0

F(ldndr)F(dr+s±m1)

F(dr)F(1 — d~)F(1— d~±s ±m — 1)

for element (i,j), where o is the covariance matrix of , 9(m) is the matrix in the

moving-average polynomial corresponding with lag nu, and F is the gamma function.

When p ~ 0, in contrast, it is necessary to take a partial fraction decomposition

with numerous evaluations of hypergeometric functions to obtain the model-implied

autocovariances; see Sowell (1989a, 1992b).

Assuming that is normally distributed, the log-likelihood function, given covari-

ance matrix ~, is

— ~ln(2n) — ~ln —~y’~’y, (A.3)
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The calculation of the inverse and determinant of the block toeplitx covariance

matrix benefited from the algorithm discussed in Sowell (1989b). Sowell (1989b)

suggests that the number of operations needed to invert a block toeplitz matrix using

the algorithm he outlines is on the order of k3T2, where k is the number of variables

and T is the number of observations. By comparison the number of operations needed

to invert an arbitrary (kT x kT) matrix is k3T3.
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Notes

1
See Agénor for an excellent survey of the literature on parallel (Black) markets.

2
See Hosking (1981) for a proof that one can always transform a fractionallyinte-

grated series of order higher ~ into this range by taking a suitable number of integer

deifferences.

3
Because positive serial correlation is much more common than negative serial cor-

relation in economic data, for convenience we assume that both d
1

and d
2

are positive.

In estimation, however, it is sometimes necessary to overdifference the data to achieve

stationarity, in which case one estimates negative fractional orders of integration.

4
If the orders of integration, d

1
, d

2
, are not equal, a linear combination of the

two series may still have less persistence than the two input series, however the

cointegrating residuals cannot have the same fractional differencing parameterization

that will be assumed in this article.
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Table 1: Bivariate ARFIMA(1,d,1) model

of fractional cointegration between

Hungary~sofficial and Black-market

foreign exchange rates (fiorint per dollar)

variable parameter parameter value stand. error

Log-Likelihood -282.87

fractional root d .417 .270

fractional root b -.465 .160

coint. parameter /3 1.11 .102

P11 .812 .103

P12 .009 .014

P21 - .947 .504

P22 .758 .115

811 -.262 .138

012 -.134 .070

021 1.18 .491

822 .356 .162

time trend 81 .233 .125

official rate a~ 6.88 1.18

coint. resids. a~ 22.3 3.77

~12 -3.01 1.60

17



Figure 1
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Figure 2

Official and BlackMarket Exchange Rates For Hungary
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Figure 3

Hungary: Autocovariances of Black-market premium
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Figure 4

Hungary: Covariances between Black-market premium and lags of official rate
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