A Note on the Relative Efficiency of the Cochrane-Orcutt and OLS Estimators when the Autocorrelation Process has a Finite Past

Daniel L. Thornton

Working Paper 1984-002A

1984

FEDERAL RESERVE BANK OF ST. LOUIS
Research Division
411 Locust Street
St. Louis, MO 63102
A NOTE ON THE RELATIVE EFFICIENCY OF THE COCHRANE-ORCUTT AND OLS ESTIMATORS WHEN THE AUTOCORRELATION PROCESS HAS A FINITE PAST

Daniel L. Thornton
Federal Reserve Bank of St. Louis

This note shows that the ordinary least squares estimator of a first-order autoregressive model is always more efficient relative to the Cochrane-Orcutt estimator if the autocorrelation process has a finite past than if its past is infinite. This result cast doubt on the usual suggestion that it might be better to delete the initial observation rather than weight it if the autocorrelation process has a finite past.

The views expressed here are those of the authors and do not necessarily represent those of the Federal Reserve Bank of St. Louis or of the Board of Governors of the Federal Reserve System.
A NOTE ON THE RELATIVE EFFICIENCY OF THE COCHRANE-ORCUTT AND OLS ESTIMATORS WHEN THE AUTOCORRELATION PROCESS HAS A FINITE PAST

1. Introduction

A number of studies have noted the relative inefficiency of the Cochrane-Orcutt (C-O) transformation to circumvent the problem of first-order autocorrelation. Chipman (1979) has shown that the C-O estimator is less efficient than ordinary least squares (OLS) in a simple linear time trend model, while Kadiyala (1968) has shown that is is less efficient than the least squares estimator for the mean model.

Furthermore, Maeshiro (1979), Doran (1979), Doran and Griffiths (1983) and Fomby and Guilkey (1983) have shown that the Prais-Winsten estimator which includes the weighted first observation is considerably more efficient relative to the C-O estimator. These comparisons are usually made, however, in terms of an AR(1) process which is assumed to have an infinite past. If there is reason to suspect that the autocorrelation process has a finite past, it is usually suggested that the C-O estimator is preferable to weighting the initial observation, [e.g. Judge, et. al. (1980, p. 182) and Theil (1971, p. 253)].

Maeshiro (1976, 1980) has shown, however, that the inefficiency of the C-O estimator relative to OLS is due to increased collinearity of the transformed variables. He argues that the gain efficiency associated with the reduction or
elimination of autocorrelation is not enough to offset the loss
in efficiency due to the increased collinearity of the data are
smoothly trended. Maeshiro (1979) shows that much of the
advantage to weighting the initial observation results from the
reduction in collinearity.

If the suggestion to use the C-O estimator when there is no
reason to assume that the AR(1) process has an infinite past is
correct, Maeshiro's results would suggest that the efficiency of
OLS relative to the C-O estimator should decline if the
autoregressive process has a finite past. The result obtained
here, however, are not consistent with this conjecture. It is
shown that the OLS estimator is even more efficient relative to
the C-O estimator when the autocorrelation process has a finite
past than when it is infinite.\(^1\) Calculated values of the
efficiency of C-O relative to the OLS estimator are presented for
the simple mean model.

2. The Model

Consider the regression model

\[(1) \ Y = X\beta + \epsilon,\]

where \(Y\) is a nx1 vector of successive observations on the
dependent variable, \(X\) is a nxk matrix of full rank on
successive observations of fixed regressor variables, \(\beta\) is a
kx1 vector of unknown coefficients and \(\epsilon\) is a nx1 vector of
disturbances. Assume that

\[(2) \ \epsilon_t = \begin{cases} \rho \epsilon_{t-1} + u_t, & t > -q \\ u_t & t \leq -q, \end{cases} \]
where u_t is i.i.d $(0, \sigma_u^2).{-2/}$ The parameter q is assumed to be known and is continuous for $q \geq 1$; $q-1$ denotes the number of periods since the process began.

It is easy to show that

$$E(\epsilon \epsilon') = \frac{\sigma^2}{1-\rho^2} \Phi,$$

where

$$\Phi^{-1} = \frac{1}{1-\rho^2} \begin{bmatrix}
\frac{1-\rho^2(q+1)}{1-\rho^2} & -\rho & 0 & 0 & \ldots & 0 & 0 \\
-\rho & 1+\rho^2 & -\rho & 0 & \ldots & 0 & 0 \\
0 & -\rho & 1+\rho^2 & -\rho & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -\rho & 1
\end{bmatrix}$$

Furthermore, equation (1) can be transformed to the classical model with a scalar covariance matrix by premultiplying (1) by the transformation matrix C,

$$C = \begin{bmatrix}
(1-\rho^2/1-\rho^2q)^{1/2} & 0 & 0 & \ldots & 0 & 0 & 0 \\
-\rho & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & -\rho & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -\rho & 1
\end{bmatrix}$$

The C-0 transformation premultiplies equation (1) by a transformation matrix Q, where Q is a $(n-1) \times n$ matrix obtained
by deleting the top row of C. If q is known, the only advantage to the C-O approach is computational.

If the customary stationarity condition is assumed (i.e., $|\rho|<1$), then the usual covariance matrix A is

$$\lim_{q \to \infty} \varphi = A,$$

and the usual P-W transformation matrix, M, is

$$\lim_{q \to \infty} \psi = M_3/\sqrt{\phi}.$$

3. The Relative Efficiency of OLS and Cochrane-Orcutt Estimates

Denote the least squares and C-O estimators by $\hat{\beta}$ and $\tilde{\beta}$, respectively. The relative efficiency, E, of $\tilde{\beta}$ with respect to $\hat{\beta}$ can be expressed as

$$E = \frac{\Sigma_{\hat{\beta}}}{\Sigma_{\tilde{\beta}}},$$

where $\Sigma_{\hat{\beta}}$ and $\Sigma_{\tilde{\beta}}$ are the covariance matrices for $\hat{\beta}$ and $\tilde{\beta}$, respectively, i.e.,

$$\Sigma_{\hat{\beta}} = \frac{\sigma^2}{1-\rho^2} (X'X)^{-1} X' \varphi X (X'X)^{-1},$$

and

$$\Sigma_{\tilde{\beta}} = \frac{\sigma^2}{1-\rho^2} (X'Q'QX)^{-1} X'Q'QXQX(X'Q'QX)^{-1}.$$

It is easy to show that

$$Q'Q = (1-\rho^2) (A^{-1} - \varphi)$$

and

$$Q\varphi Q' = (1-\rho^2) I,$$
where θ is a $n \times n$ matrix whose $(1,1)$ element is one and all other elements are zero. Making use of these results, the efficiency ratio reduces to

$$E = \frac{1}{1^2} \frac{X' \phi X 1^2 (A^{-1} - \theta)X1}{1^2}.$$

Note that

$$\lim_{q \to \infty} E = \frac{1X'AX1}{1^2} = E^*.$$

By the binomial inverse theorem,

$$\phi = A - \frac{Au'A}{1 + u'Au},$$

where $u' = (\rho^2q/(1-\rho^2q) \ 0 \ 0 \ldots \ 0)$. Using this result, it is easy to show that $1X'AX1 > 1X'\theta X1$ and, thus, $E < E^*.4/$

4. Results for the Mean Model

Consider the mean model, where $X = \xi = (1 \ 1 \ 1 \ldots \ 1)'.$

In this case,

$$X'\phi X = \frac{n(1-\rho^2) - 2\rho(1-\rho^n) - \rho^2q(1-\rho^n)^2}{(1-\rho)^2}.$$

Likewise,

$$X' (A^{-1} - \theta)X = \frac{(n-1)(1-\rho)}{1+\rho}.$$

Therefore, E reduces to

$$E = \frac{1}{n^2} \frac{[n(1-\rho^2) - 2\rho(1-\rho^n) - \rho^2q(1-\rho^n)^2]}{(1-\rho)^2} \frac{(n-1)(1-\rho)}{(1+\rho)}.$$

Note that
\[
\lim_{q \to \infty} E = \frac{n(1-p^2) - 2p(1-p^n)}{n^2 (1-p)^2} \cdot \frac{(n-1)(1-p)}{1+p}.
\]

This is the expression obtained by Kadiyala. Calculated values of \(E\) and \(E^*\) for the mean model are presented in table 1. The results indicate that the C-O estimator is inefficient relative to the OLS estimator, especially for large positive values of \(p\) and small values of \(q\).

4. Conclusions

It has been shown that the efficiency of the Cochrane-Orcutt estimator relative to the least squares estimator is strictly smaller when the autocorrelation process has a finite past than when its past is infinite. Thus, the usual suggestion that the C-O transformation be employed in situations where it is not reasonable to assume the autocorrelation process has an infinite past is questioned.
1/ Actually, this result is consistent with Maeshiro's result since the initial observation gets more weight for the finite past model than for the infinite past model. Compare matrices C and M below.

2/ There are of course an infinite number of finite past assumptions that could be made. For example, let \(\epsilon_t \) be \(\text{nid}(0, \sigma^2_\epsilon) \) for \(t \leq -q \) and let \(u_t \) be \(\text{nid}(0, \sigma^2_u) \) for \(t > q \), and further assume that \(\sigma^2_\epsilon = \sigma^2_u/(1-\rho^2) \). This would eliminate the heteroskedasticity in (2), but would also eliminate the distinguish between finite and infinite pasts. Since this distinction has been an important characteristic of nearly all discussions of the first-order autoregression model, attention was limited to the generalization of the usual model.

3/ The reader unfamiliar with these matrix forms should see Kadiyala (1969) or Judge, et al. (1981, p. 181).

REFERENCES

Table 1:
Calculated Values for E for the Mean Model

<table>
<thead>
<tr>
<th>q</th>
<th></th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.99</td>
<td></td>
<td>1.71571</td>
<td>1.73302</td>
<td>1.59969</td>
<td>1.41851</td>
<td>1.19457</td>
</tr>
<tr>
<td>-0.90</td>
<td></td>
<td>0.98994</td>
<td>0.99750</td>
<td>0.99960</td>
<td>0.99990</td>
<td>0.99998</td>
</tr>
<tr>
<td>-0.80</td>
<td></td>
<td>0.93375</td>
<td>0.96731</td>
<td>0.98735</td>
<td>0.99371</td>
<td>0.99749</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.85875</td>
<td>0.92023</td>
<td>0.97102</td>
<td>0.98546</td>
<td>0.99417</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>0.75018</td>
<td>0.87083</td>
<td>0.94733</td>
<td>0.97350</td>
<td>0.98396</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>0.50576</td>
<td>0.72697</td>
<td>0.86760</td>
<td>0.94333</td>
<td>0.97722</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>0.31890</td>
<td>0.39845</td>
<td>0.71257</td>
<td>0.85401</td>
<td>0.94127</td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td>0.26211</td>
<td>0.17524</td>
<td>0.47286</td>
<td>0.70766</td>
<td>0.88149</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td>0.25489</td>
<td>0.28129</td>
<td>0.28613</td>
<td>0.53750</td>
<td>0.80192</td>
</tr>
<tr>
<td>0.85</td>
<td></td>
<td>0.21201</td>
<td>0.04127</td>
<td>0.17101</td>
<td>0.38434</td>
<td>0.70469</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>0.03240</td>
<td>0.01193</td>
<td>0.05909</td>
<td>0.16956</td>
<td>0.46604</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>0.17242</td>
<td>0.72456</td>
<td>1.62461</td>
<td>1.45094</td>
<td>1.22199</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>1.00000</td>
<td>1.01333</td>
<td>1.00613</td>
<td>1.00320</td>
<td>1.00131</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.93750</td>
<td>0.96979</td>
<td>0.98817</td>
<td>0.99412</td>
<td>0.99766</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.86250</td>
<td>0.93021</td>
<td>0.97183</td>
<td>0.95857</td>
<td>0.99434</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>0.78012</td>
<td>0.88667</td>
<td>0.95387</td>
<td>0.97680</td>
<td>0.99069</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>0.60880</td>
<td>0.78766</td>
<td>0.91280</td>
<td>0.95606</td>
<td>0.98234</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td>0.34169</td>
<td>0.55186</td>
<td>0.79376</td>
<td>0.89944</td>
<td>0.95795</td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td>0.17715</td>
<td>0.33042</td>
<td>0.60543</td>
<td>0.78532</td>
<td>0.91311</td>
</tr>
<tr>
<td>0.97</td>
<td></td>
<td>0.09322</td>
<td>0.18921</td>
<td>0.41695</td>
<td>0.63554</td>
<td>0.84557</td>
</tr>
<tr>
<td>0.98</td>
<td></td>
<td>0.05125</td>
<td>0.10948</td>
<td>0.27400</td>
<td>0.48115</td>
<td>0.75581</td>
</tr>
<tr>
<td>0.99</td>
<td></td>
<td>0.01610</td>
<td>0.03646</td>
<td>0.10690</td>
<td>0.23177</td>
<td>0.51864</td>
</tr>
<tr>
<td>-0.99</td>
<td></td>
<td>1.74110</td>
<td>1.78163</td>
<td>1.69405</td>
<td>1.54129</td>
<td>1.29838</td>
</tr>
<tr>
<td>-0.90</td>
<td></td>
<td>1.01988</td>
<td>1.01333</td>
<td>1.00613</td>
<td>1.00320</td>
<td>1.00131</td>
</tr>
<tr>
<td>-0.80</td>
<td></td>
<td>0.93750</td>
<td>0.96979</td>
<td>0.98817</td>
<td>0.99412</td>
<td>0.99766</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.86250</td>
<td>0.93021</td>
<td>0.97183</td>
<td>0.95857</td>
<td>0.99434</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>0.78012</td>
<td>0.88667</td>
<td>0.95387</td>
<td>0.97680</td>
<td>0.99069</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>0.60881</td>
<td>0.78766</td>
<td>0.91280</td>
<td>0.95606</td>
<td>0.98234</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td>0.34466</td>
<td>0.55470</td>
<td>0.79527</td>
<td>0.89621</td>
<td>0.95826</td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td>0.19537</td>
<td>0.35500</td>
<td>0.62643</td>
<td>0.79763</td>
<td>0.91812</td>
</tr>
<tr>
<td>0.97</td>
<td></td>
<td>0.11928</td>
<td>0.23072</td>
<td>0.46727</td>
<td>0.67325</td>
<td>0.86206</td>
</tr>
<tr>
<td>0.98</td>
<td></td>
<td>0.07506</td>
<td>0.15097</td>
<td>0.33664</td>
<td>0.54004</td>
<td>0.78690</td>
</tr>
<tr>
<td>0.99</td>
<td></td>
<td>0.02863</td>
<td>0.06043</td>
<td>0.15345</td>
<td>0.29234</td>
<td>0.56985</td>
</tr>
<tr>
<td>-0.99</td>
<td></td>
<td>1.75624</td>
<td>1.81060</td>
<td>1.75030</td>
<td>1.61447</td>
<td>1.36027</td>
</tr>
<tr>
<td>-0.90</td>
<td></td>
<td>1.01988</td>
<td>1.01333</td>
<td>1.00613</td>
<td>1.00320</td>
<td>1.00131</td>
</tr>
<tr>
<td>-0.80</td>
<td></td>
<td>0.93750</td>
<td>0.96979</td>
<td>0.98817</td>
<td>0.99412</td>
<td>0.99766</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.86250</td>
<td>0.93021</td>
<td>0.97183</td>
<td>0.95857</td>
<td>0.99434</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>0.78012</td>
<td>0.88667</td>
<td>0.95387</td>
<td>0.97680</td>
<td>0.99069</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td>0.60881</td>
<td>0.78766</td>
<td>0.91280</td>
<td>0.95606</td>
<td>0.98234</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td>0.34466</td>
<td>0.55470</td>
<td>0.79527</td>
<td>0.89621</td>
<td>0.95826</td>
</tr>
<tr>
<td>0.95</td>
<td></td>
<td>0.19537</td>
<td>0.35500</td>
<td>0.62643</td>
<td>0.79763</td>
<td>0.91812</td>
</tr>
<tr>
<td>0.97</td>
<td></td>
<td>0.07506</td>
<td>0.15097</td>
<td>0.33664</td>
<td>0.54004</td>
<td>0.78690</td>
</tr>
<tr>
<td>0.98</td>
<td></td>
<td>0.02863</td>
<td>0.06043</td>
<td>0.15345</td>
<td>0.29234</td>
<td>0.56985</td>
</tr>
<tr>
<td>0.99</td>
<td></td>
<td>0.04376</td>
<td>0.08940</td>
<td>0.20970</td>
<td>0.36553</td>
<td>0.63173</td>
</tr>
</tbody>
</table>