ACCOUNTING FOR JOB-TO-JOB MOVES: WAGES VERSUS VALUES

Victoria Gregory (St. Louis Fed)
with Andrew Caplin, Søren Leth-Petersen, Johan Sæverud, Chris Tonetti, Gianluca Violante
October 26, 2020

Disclaimer: The views expressed herein are solely those of the author and do not necessarily reflect those of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Motivation

• Job-to-job transitions are an important part of labor reallocation
 • 60% of new hires come directly from other jobs
 • 10% of workers each year make an EE transition
• Moving jobs is a common way of obtaining earnings increases
• Yet there appears to be a substantial amount of wage cuts
• Wage cuts are not necessarily puzzling from a dynamic perspective if they are associated with increases in value
• Key question: are these wage cuts associated with positive or negative changes in value?
• Important for understanding efficiency of the labor market, risk over the life cycle, policy design
 • Motivations for switching jobs affect the allocation of workers to firms and determine which features should be included in models
 • Link between labor market fluidity and welfare
<table>
<thead>
<tr>
<th>+ Value</th>
<th>- Wage</th>
<th>+ Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept wage cut now in ex-</td>
<td>Accept wage cut now in exchange for future wage growth: Postel-Vinay</td>
<td>Good move for both immediate wages and future wages</td>
</tr>
<tr>
<td></td>
<td>and Robin (2002)</td>
<td></td>
</tr>
<tr>
<td>- Value</td>
<td>Non-wage amenities, forced moves: Sorkin (2018), Hall and Mueller</td>
<td>Borrowing constraints: Lise</td>
</tr>
</tbody>
</table>
1. Refine measurement of job-to-job transitions
 • Made possible by high frequency administrative data from Denmark
 • Precise pinpointing of transition and clear wage measures

2. Compute wage change CDFs for stayers and switchers

3. Semi-parametric estimation of value of a job for a worker
 • Nest value functions in commonly used search models

4. Analyze the joint distribution of wage changes and value changes for job-to-job transitions
 • With model, we assign a change in value associated with every wage change we observe
 • Quantify value cuts, toward an understanding of who is taking them and why
Measurement

• About half of job-to-job transitions feature a wage cut, but only a quarter of these are more than 10%
• But it makes a difference how you measure these!

Wages vs. values

• Changes in value are typically smaller in magnitude than wage changes
• 60% of wage cuts also feature declines in value
• Motivations for EE switches tend to be related to unobservable match + job characteristics
• Lots of variation as to whether future wages or future transitions are quantitatively responsible for the value changes

Related literature
Measurement and Motivating Facts

Model of Job Values

Results
MEASUREMENT AND MOTIVATING FACTS
Danish administrative registry data

- Entire Danish population from 2008 to 2017
- Monthly payroll records reported by employers
- Total pay each month, firm ID, contractual hours, occupation, industry, demographics, ...
- Public transfers database for unemployment and OLF states

What is a job?

- Firm × 2-digit occupation
- Why? Wages in same firm differ across occupation, relevant for model
- Cells under 1000 person-quarter observations are grouped by 4-digit industry × 2-digit occupation

Quarterly aggregation to keep model tractable, but still can track moves through U
Distribution of Wage Growth

The image shows two graphs representing the cumulative distribution functions (CDFs) for wage growth among movers and stayers. The x-axis represents the change in log wage (dlw), while the y-axis represents the cumulative distribution function (CDF). The graphs illustrate the distribution of wage growth for individuals who have moved and those who have stayed in their current job.
How to Measure Wages

Construct measure of base real wage

- Issue: spikes during the last month, representing payouts from holiday fund
- Drop last wage observation + calculate 12-month centered moving average

Sample: full-time workers who are attached to the labor force

- Only consider jobs with contractual hours within 2% of 160 hours per month (full-time)
- Ensures measured wage change during job switch not driven by hours
Wage Growth for Switchers: Alternate Measurements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Decrease > 10%</th>
<th>Increase > 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>Fail to drop last wage obs.</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Looser hours restriction</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Previous two combined</td>
<td>0.26</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- Our adjustments reduce the noise present in the original data
- Careful measurement matters, especially at the tails
MODEL OF JOB VALUES
Objectives

• Want to translate our wage changes into value changes
• PDV of future wages in a job consists of:
 1. Wage stream in that job
 2. Transition rates to other jobs
• Need a model for
 1. Predicting wages for any worker in any job
 2. Predicting transitions between jobs for any worker
• Approach
 1. Define worker and job types
 2. Define state variables
 3. Estimate wage and transition as function of state variables by type
Environment

Workers

- Workers can be one of $i \in I$ types (will drop i subscripts)
- Type-specific component of earnings: g
- Live from $a = 1, 2, \ldots, A$
- Age profile of earnings differs across types: $h(a)$

Jobs

- Workers transition between J jobs
- This set also includes non-employment states
- Piece-rate in each job: $\omega(j)$

Wages: $\omega(j)h(a)gz$

- z: match-specific productivity
Matches

- When matched to a job, workers have a match-specific productivity z
 - Helps match the wage changes of job switchers
- After moving $j \rightarrow k$, draw new z' from a distribution that depends on (j, k, z)
 - z' revealed if the match is created
 - Allow for persistence in z when workers switch between jobs
 - Productivity in new job may depend on the identity of the old job
- Stayers’ wages are subject to i.i.d. mean 0 shocks ϵ
 - Helps match stayers’ wage growth
- Contact rate from job j to k: $\lambda_k(a, j, z)$
 - Workers may be more likely to leave lower-paying jobs or jobs at which they’re not productive
Value Function

\[v(a, j, z) = \omega(j) h(a) g z \]

\[+ \beta \left[\sum_k \lambda_k(a, j, z) I_{d(a, j, k, z) = 1} \mathbb{E}_{z' \varepsilon'} v(a + 1, k, z') + \Lambda(a, j, z) \mathbb{E}_\varepsilon v(a + 1, j, z') \right] \]

- Burdett-Mortensen: constant job-specific wage piece rate, probability of moving to other jobs depends on current job, no renegotiation in response to outside offers
- Generalizations: life-cycle, match-specific productivity, i.i.d. shocks to stayers’ wages
- Instead of computing equilibria of structural model, calculate ingredients needed to solve for \(v(a, j, z) \)
Ingredients: $\omega(j), h(a), g, z, \lambda_k(a, j, z)$, expectations over z' for switchers

Worker types

- Correspond to 4 fixed education \times gender categories

Job types j

- 6019 employment states (about half correspond to firm \times occupation; other half corresponds to industry \times occupation)
- 10 non-employment states: short- and long-term unemployment, retirement, maternity leave, sick leave, etc. that we observe transfers for

Age profile $h(a)$

- $w(j), z$ constant within match \rightarrow average wage change between a and $a + 1$ for stayers
- Pool across jobs and over time, take cumulative sum of earnings changes
Wage premia $\omega(j)$

Separate each component of earnings: $w_n(a,j,z) = \omega(j)h(a)gz$

- Selection issue: what if workers’ mobility decisions are based on z?
- Averaging earnings within jobs and worker types would give biased estimates of $\omega(j)$
- Assumption: while unemployed, z is low enough such that all workers accept any job offer \implies their distribution of z is the same across jobs

With g in hand, for jobs with enough hires from U, $\omega(j)$ is: $\omega(j) = \frac{1}{U_j} \sum_{n=1}^{U_j} \frac{w_n(a_n,j_n,z_n)}{h(a_n)g_n} = \frac{1}{U_j} \sum_{n=1}^{U_j} \frac{\omega(j)h(a)gE[z]}{h(a)g} = \omega(j) \quad \forall n : j_n = j$

- Key: expectation over z is the same as the unconditional, normalized to 1 for all j
- For jobs less workers hired from U, impute $\omega(j)$ via statistical methods
Match-specific productivity z_n in data:

$$z_n = \frac{w_n(a_n, j_n, z_n)}{\omega(j_n)h(a_n)g_n}$$

Necessary step for computing values: law of motion for z'

Want to generate accurate wage predictions at the individual level so we can trust value predictions!

Model with and without z fit the overall CDF of wage changes well

For job switchers from j to k, want to forecast z' as a function of the model's state variables: $z' = f(a, j, k, z)$

Specification that yields the best forecast is:

$$
\log z'_i = \bar{z} + \rho \log z_i + \beta_1 \log \omega_i + \beta_2 \log \omega'_i + \beta_3 \text{mean}(z|\omega_i) + \beta_4 \text{mean}(z|\omega'_i) \\
+ \beta_5 \text{var}(z|\omega_i) + \beta_6 \text{var}(z|\omega'_i) + \eta_i
$$
• On their own, piece rates do not do well at predicting individual wage changes
Incorporating \(z \) into the model helps to better match individual wage changes.
• Transition probabilities: $\lambda_k(a,j,z)$
 • Use observed transitions among the whole set of jobs in the data
 • Workers at better paying jobs or with higher z may be less willing to leave
 • Group a into 3 age bins and z into 4 quartiles
• Distribution of z for UE transitions
 • Comes from variance of z in the data for workers hired out of U
• Distribution of ε
 • Comes directly from variance of wage changes for stayers
Results
Densities of Wage and Value Changes

- Value changes smaller in magnitude than wage changes

![Graph showing distributions of wage and value changes with histograms.]
Majority of Moves Result in Value Increase

- Pr(value increase | wage cut) = 39.6%; Pr(value cut | wage increase) = 23.8%
- No major differences within fixed worker groups (gender × education)
Younger workers more likely borrowing constrained
Older workers tend to take more wage cuts that result in higher values
Better Matches Tend to Increase Both Wages and Value

- Increasing z is likely to be good for both wages and values
Still Lots of Wage Cuts for Moves to Higher-Paying Jobs

- In contrast to z, moving up in $\omega(j)$ is more closely tied to increases in value.
- Piece rate \neq wage \neq value

![Graphs showing 1st quartile and 4th quartile piece rate changes with wage changes.](image-url)
Transition Rates are an Important Component of Value

- Decompose the change in value from \((j, z)\) to \((k, z')\) into 2 components, coming from wages and transition rates
- Value changes come from all different mixes by quadrant
Conclusion and Future Work

- Developed a methodology for assigning values associated with job-to-job transitions
- Findings
 - Careful measurement for documenting features of EE switches
 - Significant mass in all quadrants of wage change/value change plane
 - Unobserved heterogeneity is key for determining values behind each switch
- Next steps
 1. Better understand the motivations behind the transitions
 - Recover distribution of non-wage amenities or reallocation shocks that rationalize negative value switches
 - See if switches coincide with family events, geographic moves, changes in wealth or consumption, etc.
 2. Further develop the model
 - Allow for other forms of worker and job heterogeneity
 - Extend to Postel-Vinay and Robin (2002) setting
Related Literature

Measurement

• Nominal wage changers for stayers: Grigsby, Hurst, Yildirmaz (2020)
• Wage changes using administrative data: Kurmann and McEntarfer (2018), Jardim et al. (2019)

Reasons for wage cuts

• Future wage growth, transitions to other jobs: Postel-Vinay and Robin (2002)
• Non-wage amenities: Sorkin (2018), Hall and Mueller (2018)
• “Godfather” shocks: Moscarini and Postel-Vinay (2019) and lots of others
Type-specific premia $g(i)$

- Let U_{ij} be the number of workers of type i hired into job j from unemployment.
- For jobs with $U_{ij} \geq 25$, compute the following:

$$\frac{1}{U_{ij}} \sum_{n=1}^{U_{ij}} \frac{w_n(a_n, j_n, z_n)}{h(a_n)} = \frac{1}{U_{ij}} \sum_{n=1}^{U_{ij}} \omega(j) h(a) g(i) \mathbb{E}[z] = \omega(j) g(i) \quad \forall n : j_n = j$$

- Key: expectation over z is the same as the unconditional, assumed to be 1 for all j.
- Set $g(i) = 1$ for baseline group, weighted average of $g(i)\omega(j)$ over j, and compare to weighted average of $\omega(j)$ for baseline group.
1. For jobs with few observations, first compute naive $\tilde{\omega}(j)$ using all hires:

$$\tilde{\omega}(j) = \frac{1}{N_j} \sum_{n=1}^{N_j} \frac{w_n(a_n,j_n,z_n)}{h(a_n)g_n}$$

2. For jobs with $U_j \geq 10$ estimate the following:

$$\log \omega(j) = \beta_0 + \beta_1 \log \tilde{\omega}(j) + \beta_2 X_j + \epsilon_j$$

X_j contains firm size, occupation, industry

3. Use this relationship to impute a $\omega(j)$ for jobs with less than 10 hires from unemployment
Relationship Between $\omega(j)$ **and** $\tilde{\omega}(j)$
EE Wage Change Predictions: With Observed Match-Specific Productivity z
Densities of Wage and Value Changes

Distribution of wage changes

Distribution of value changes
Education x Gender

Female + College
- Wage change: data
- Value change: observed z
 - 0.2076, 0.3852
- 26.75% of switchers

Male + College
- Wage change: data
- Value change: observed z
 - 0.1858, 0.3692
- 30.96% of switchers

Female + No College
- Wage change: data
- Value change: observed z
 - 0.2221, 0.3713
- 17.63% of switchers

Male + No College
- Wage change: data
- Value change: observed z
 - 0.206, 0.3635
- 24.66% of switchers
Tenure

Tenure < 2 years

Wage change: data
Value change: observed z

0.1903 0.4115

53.22% of switchers

Tenure > 2 years

Wage change: data
Value change: observed z

0.2174 0.3283

46.78% of switchers
Firm and Occupation Switches

- **Firm Switch Only**
 - Wage change: data
 - Value change: observed z
 - 75.48% of switchers

- **Occupation Switch Only**
 - Wage change: data
 - Value change: observed z
 - 8.87% of switchers

- **Firm + Occupation Switch**
 - Wage change: data
 - Value change: observed z
 - 15.65% of switchers

75.48% of switchers

8.87% of switchers

15.65% of switchers

Back
Initial Wage

1st quartile initial wage

- Wage change: data
- Value change: observed z

- 0.1714
- 0.2086

23.39% of switchers

4th quartile initial wage

- Wage change: data
- Value change: observed z

- 0.2155
- 0.393

27.5% of switchers
Initial Piece Rate

1st quartile initial piece rate

Wage change: data
Value change: observed z

26.61% of switchers

24.25% of switchers

Back
INITIAL z

1st quartile initial z

Wage change: data
Value change: observed z

23.84% of switchers

0.1931 0.4594
0.2104 0.137

4th quartile initial z

Wage change: data
Value change: observed z

27.14% of switchers

0.2054 0.2942
0.3914 0.109