The Less Volatile U.S. Economy: A Bayesian Investigation of Timing, Breadth, and Potential Explanations

Chang-Jin Kim
Korea University

Charles Nelson
University of Washington

Jeremy Piger
Federal Reserve Bank of St. Louis

August 2000
Last Revised: January 2003

* Kim: Dept. of Economics, Korea University, Anam-Dong, Seongbuk-ku, Seoul, 136-701, Korea, (cjkim@mail.korea.ac.kr); Nelson: Dept. of Economics, University of Washington, Box 353330, Seattle, WA 98195, (cnelson@u.washington.edu); Piger: Federal Reserve Bank of St. Louis, Research Dept, 411 Locust St., St. Louis, MO 63102, (piger@stls.frb.org). Kim and Nelson acknowledge support from the National Science Foundation under grant SES-9818789, Kim acknowledges support from a Korea University Special Grant and Piger acknowledges support from the Grover and Creta Ensley Fellowship in Economic Policy at the University of Washington. We thank without implicating Mark Gertler, Andrew Levin, James Morley, the editor, associate editor, an anonymous referee and seminar participants at the Johns Hopkins University, University of Washington, Federal Reserve Board and the 2001 AEA annual meeting for helpful comments. The views expressed in this paper do not necessarily represent official positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Abstract
Using a Bayesian model comparison strategy, we search for a volatility reduction within the post-war sample for the growth rates of U.S. aggregate and disaggregate real GDP. We find that the growth rate of aggregate real GDP has been less volatile since the early 1980s, and that this volatility reduction is concentrated in the cyclical component of real GDP. The growth rates of many of the broad production sectors of real GDP display similar reductions in volatility, suggesting the aggregate volatility reduction does not have a narrow source. We also find a large volatility reduction in measures of final sales in the goods sector. We contrast this evidence to an existing literature documenting an aggregate volatility reduction that is shared by only one narrow sub-component, the production of durable goods, and is not present in final sales. We also document structural breaks in the persistence and conditional volatility of inflation that occurred over a similar time frame as the volatility reduction in real GDP.

Key words: business cycles, stabilization, volatility reduction, structural break, Bayesian

J.E.L classification: C11, C22, E32, E5
1. Introduction

The U.S. economy appears to have stabilized considerably since the early 1980s as compared to the rest of the postwar era. For example, the standard deviation of quarterly growth rates of real GDP from 1950 through 1983 was over twice as large as for 1984 through 1999. This observation has sparked a growing literature rigorously testing the statistical significance of the volatility reduction and documenting various stylized facts about the nature of the stabilization. This literature includes Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Kahn, McConnell and Perez-Quiros (2000), Ahmed, Levin and Wilson (2000), Warnock and Warnock (2000), Blanchard and Simon (2001), Chauvet and Potter (2001) and Stock and Watson (2002).

A primary goal of this research agenda is to determine the cause of the observed volatility reduction. Many explanations have been proposed, including improved policy (specifically monetary policy), structural change (a shift to services employment, better inventory management) and good luck (a reduction in real or external shocks). Determining the relative importance of these competing explanations is important in that they have very different implications for the sustainability of the volatility reduction and the evaluation of policy effectiveness. In assessing the viability of explanations for macroeconomic events, it is of course useful to have a clear picture of the nature of the event. In the current case, this includes compiling a list of stylized facts describing the volatility reduction. One can then ask whether these stylized facts invalidate any potential explanations for the reduction. In this paper we revisit an existing list of stylized facts that document how pervasive the volatility reduction is
within broad production sectors of aggregate real GDP.² We also investigate structural change in the dynamics of inflation around the same time as that found in real GDP.

This paper has four main findings: 1) Aggregate real GDP underwent a volatility reduction in the early 1980s that is shared by its cyclical component but not by its trend component. 2) A volatility reduction similar to that found in aggregate real GDP is present in many of the broad production sectors of real GDP. Thus, the volatility reduction in aggregate GDP is not confined to any one sector. 3) The volatility reduction is apparent in final sales as well as production. 4) The dynamics of inflation display structural breaks in persistence and conditional volatility over a similar time frame as the volatility reduction observed in real GDP.

Our results can be compared to those obtained by McConnell and Perez-Quiros (2000), hereafter MPQ, and Warnock and Warnock (2000). These papers conclude that a volatility reduction in broad measures of activity, (real GDP for MPQ, aggregate employment for Warnock and Warnock (2000)), is reflected in within-sector stabilization for only one sector - durable goods. MPQ go on to show that measures of final sales have not become more stable, suggesting the volatility reduction is focused in the behavior of inventories. The results of MPQ can lead to striking conclusions regarding the viability of competing explanations for the source of the volatility reduction. For example, MPQ argue that explanations based on improved monetary policy are hard to reconcile with the limited breadth of the volatility reduction, particularly the failure of measures of final sales to show greater stability. They argue that explanations based on improved inventory management are much more consistent with the stylized facts. By contrast, the results presented here are consistent with a broad range of

² Statistically, a volatility reduction in aggregate real GDP can arise from 3 sources: 1) Greater within-sector stability, 2) A shift in production shares to less volatile sectors (e.g. services) from more volatile sectors (e.g. manufacturing), 3) Changing covariances between sectors. In this paper we focus on documenting stylized facts regarding this first source.
potential explanations. Indeed, we will argue that the evidence from broad production sectors of real GDP is not sharp enough to help invalidate potential candidates for the source of the volatility reduction.

Whereas MPQ investigate structural breaks in volatility using classical tests based on Andrews (1993) and Andrews and Ploberger (1994), here we investigate this issue using a Bayesian model comparison framework. This procedure compares the marginal likelihood from models with and without structural breaks using the Bayes factor. As discussed in Koop and Potter (1999), Bayes factors have an advantage over classical tests for evaluating structural change in the way information regarding the unknown break date is incorporated in the test. The unknown break date, which is a nuisance parameter present only under the alternative hypothesis, leads to non-standard asymptotic distributions for classical test statistics. Solutions to this problem in the classical framework fail to incorporate sample information regarding the unknown break point. On the contrary, model comparison based on Bayes factors incorporates sample information regarding the unknown break date and, as a byproduct of the procedure, yield the posterior distribution of the unknown break date, a very useful piece of information for determining when the break occurred. Given the substantial differences in methodology, the evidence in favor of structural change provided by the Bayes factor may differ substantially from that yielded by classical tests. Thus, a primary goal of this paper is to evaluate the robustness of the MPQ results based on classical techniques to a Bayesian model comparison methodology.

In the following section we discuss the basic model specification and Bayesian methodology we use to investigate structural change in the various series considered in this paper. Section 3 presents the results for aggregate and disaggregate real GDP and contrasts these results with the existing literature based on classical hypothesis tests. Section 3 also discusses
evidence of structural change in inflation dynamics. Section 4 discusses potential explanation for the different results produced by the classical and Bayesian methodologies. Section 5 concludes.

2. Model Specification, Bayesian Inference, and Model Comparison Techniques

To investigate a possible volatility reduction in growth rates of aggregate and disaggregate real GDP, we employ the following empirical model:

\[y_t = \sum_{j=1}^{k} \phi_j y_{t-j} + e_t \]

\[e_t \sim N(0, \sigma_{D_t}^2) \]

\[\sigma_{D_t}^2 = \sigma_0^2 (1 - D_t) + \sigma_1^2 (D_t) \]

\[D_t = \begin{cases}
0 & 1 \leq t \leq \tau \\
1 & \tau < t < T - 1
\end{cases} \]

where \(y_t \) is the demeaned growth rate of the output series under consideration and \(D_t \) is a discreet latent variable that determines the date of the structural break, \(\tau \). In order to allow for the possibility of a permanent but endogenous structural break in the conditional variance, we follow Chib (1998) in treating \(D_t \) as a discrete latent variable with the following transition probabilities:

\[P(D_{t+1} = 0 | D_t = 0) = q \]

\[P(D_{t+1} = 1 | D_t = 1) = 1 \]

\[0 < q < 1 \]

That is, before a structural break occurs, or conditional on \(D_t = 0 \), there always exists non-zero probability \(1 - q \) that a structural break will occur, or \(D_{t+1} = 1 \). Thus, the expected duration of
\(D_t = 0 \), or the expected duration of a regime before a structural break occurs, is given by

\[
E(\tau) = \frac{1}{1 - q}.
\]

However, once a structural break occurs at \(t = \tau \) we have \(D_{\tau+j} = 1 \) for all \(j > 0 \). We estimate two versions of the model given in equations 1-2. The first, which we label Model 1, estimates the model parameters freely. The second, which we label Model 2, constrains the model parameters to have no structural break, that is \(\sigma_0^2 = \sigma_1^2 \).

Bayesian inference requires specification of prior distributions for the model parameters. In order to evaluate the sensitivity of the results to the choice of priors, we employ the following three sets of prior specifications for Model 1:

Prior 1A: \([\phi_1 \ldots \phi_k] \sim N(0_k, I_k); \frac{1}{\sigma_0^2} \sim \text{Gamma}(1,2); \frac{1}{\sigma_1^2} \sim \text{Gamma}(1,1); q \sim \text{beta}(8,0.1); \)

Prior 2A: \([\phi_1 \ldots \phi_k] \sim N(0_k, 2*I_k); \frac{1}{\sigma_0^2} \sim \text{Gamma}(1,4); \frac{1}{\sigma_1^2} \sim \text{Gamma}(1,2); q \sim \text{beta}(8,0.2); \)

Prior 3A: \([\phi_1 \ldots \phi_k] \sim N(0_k, 0.5*I_k); \frac{1}{\sigma_0^2} \sim \text{Gamma}(1,1); \frac{1}{\sigma_1^2} \sim \text{Gamma}(1,0.5); q \sim \text{beta}(8,0.05); \)

Priors employed for Model 2 were based on those for \([\phi_1 \ldots \phi_k] \) and \(\sigma_0^2 \) in Priors 1A-3A above and yielded results very close to the maximum likelihood estimates. In the interest of brevity we will present only results for Prior 1A in the following sections. However, all results were quite robust to choice of prior.

To evaluate the evidence for a structural break at an unknown break date based on the above models, we compare the model allowing for structural change to the model with no structural break using Bayes factors:

\[
BF_{12} = \frac{m(\tilde{Y}_T \mid \text{model 1})}{m(\tilde{Y}_T \mid \text{model 2})}
\]
where \(\tilde{Y}_T = [y_1 \ldots y_T]' \) and \(m(\tilde{Y}_T | .) \) is the marginal likelihood conditional on the model chosen. Among the various ways of evaluating the Bayes factor introduced in the literature, we follow Chib's (1995) procedure in which the Bayes factor is evaluated through a direct calculation of the marginal likelihood based on the output from the Gibbs-sampling procedure. Details of the Gibbs-sampling procedure for the specific models considered here are described in Kim and Nelson (1999).

To aid in interpretation of the Bayes factor, we will refer to the well-known scale of Jeffreys (1961) throughout the text:

\[
\begin{align*}
\ln(BF) < 0 & \quad \text{Evidence supports the null hypothesis} \\
0 < \ln(BF) \leq 1.15 & \quad \text{Very slight evidence against the null hypothesis} \\
1.15 < \ln(BF) \leq 2.3 & \quad \text{Slight evidence against the null hypothesis} \\
2.3 < \ln(BF) \leq 4.6 & \quad \text{Strong to very strong evidence against the null hypothesis} \\
\ln(BF) > 4.6 & \quad \text{Decisive evidence against the null hypothesis}
\end{align*}
\]

It should be emphasized that this scale is not a statistical calibration of the Bayes factor but is instead a rough descriptive statement often cited in the Bayesian statistics literature.

3. Evidence of a Volatility Reduction in Aggregate and Disaggregate Real GDP

In this section we evaluate the evidence of a volatility reduction in the growth rates of aggregate and disaggregate U.S. real GDP data. All data was obtained from DRI, is seasonally adjusted, expressed in demeaned and standardized quarterly growth rates and covers the sample

3 Kass and Raftery (1995) provide a detailed survey of the literature.
period 1953:2 to 1998:2. The lag order, k, was chosen based on the AIC criterion for the model with no structural break, Model 2, with $k = 6$ the largest lag length considered. The AIC chose two lags for all series except consumption of non-durable goods and services, for which one lag was chosen. All inferences are based on 10,000 Gibbs simulations, after discarding the initial 2,000 simulations to mitigate the effects of initial conditions.

Table 1 summarizes the results of the Bayesian estimation and model comparisons for all the aggregate and disaggregate real GDP series considered. The second column of Table 1 presents the results of the Bayesian model comparison, summarized by the log of the Bayes factor in favor of a structural break, $\ln(BF_{12})$. The third column of Table 1 shows the mean of the posterior distribution of the break date, τ. The fourth column of Table 1 presents the ratio of posterior means of the variance of e_t before and after the structural break, σ_1^2 / σ_0^2. Finally, Figures 1-13 plot the estimated probability of a structural break at each point in the sample, $P(D_t = 1 | \tilde{Y}_T)$, and the posterior distribution of the break date for each series considered.

3.1. Aggregate Real GDP, Trend, and Cycle

The first row of Table 1 contains results for the growth rate of aggregate real GDP. The posterior mean of σ_1^2 is 20 percent of σ_0^2, consistent with a sizable reduction in conditional volatility. The log of the Bayes factor is 18.1, decisive evidence against the model with no volatility reduction. The posterior mean of the unknown break date is 1984.1, the same date reported in Kim and Nelson (1999) and MPQ. Figure 1.B shows that the posterior distribution of the unknown break date is tightly clustered around its mean.

4 Due to data availability at the time the data was originally collected, our sample period is one year shorter than that investigated by MPQ (2000), who use a sample period extending from 1953:2 – 1999:2. We have chosen to not update our sample to include this final year as our data would then incorporate the benchmark NIPA revisions released in the fall of 1999. These revisions could create substantial discrepancies in the newly collected data and that used in MPQ.
Next, we turn to the question of whether both the trend and the cyclical component of real GDP have shared in this aggregate volatility reduction. It seems reasonable that at least a portion of the volatility reduction is due to a stabilization of cyclical volatility. Many plausible explanations for the volatility reduction, for example improved monetary policy and better inventory management, would mute cyclical fluctuations. However, some explanations, such as a lessening of oil price shocks, might also affect the variability of trend growth rates. Thus, investigating a stabilization in the trend and cyclical components may help shed light on the viability of competing explanations for the aggregate volatility reduction.

There are of course numerous ways of decomposing real GDP into a trend and cyclical component. Unfortunately, the choice of decomposition can have non-trivial implications for implied business cycle facts, see for example Canova (1998). This seems particularly relevant for investigating a structural break in volatility, as assumptions made to identify the trend may affect how much of a volatility reduction in the aggregate series is reflected in the filtered trend or cycle. In order to abstract from this problem, in this paper we consider a theory based measure of trend, defined as the logarithm of personal consumption of non-durables and services (LCNDS). Such a definition of trend is both theoretically and empirically plausible. Neoclassical growth theory, see for example the discussion in King, Plosser and Rebelo (1988), suggests that log real GDP and LCNDS share a common stochastic trend driven by exogenous, stochastic, technological change. This analysis suggests that log real GDP and LCNDS are cointegrated with cointegrating vector (1, -1). Recent investigations of the cointegration properties of these series confirm this result, see for example King, Plosser, Stock and Watson (1991) and Bai, Lumsdaine and Stock (1998). If one also assumes a simple version of the permanent income hypothesis, which suggests that LCNDS is a random walk, then LCNDS is
the common stochastic trend shared by log real GDP and LCNDS. Although it is now well known that LCNDS is not a random walk, in the sense that one can find statistically significant predictors of future changes in LCNDS, Fama (1992) and Cochrane (1994) have argued that these deviations are so small as to be economically insignificant. Based on our measure of trend, we define the cyclical component of log real GDP as the residuals from a regression of log real GDP on a constant and LCNDS. Given its popularity, we also show results for a measure of trend and cycle obtained from the Hodrick-Prescott (H-P) filter with smoothing parameter set equal to 1600.

The second row of Table 1 shows there is no evidence in favor of a break in the volatility of the growth rate of LCNDS and therefore in the growth rate of our theory-based measure of the trend of log real GDP. The log of the Bayes factor is -0.4, providing slight evidence in favor of Model 2, the model with no change in variance. The third column of Table 1 shows that the evidence for a break in the growth rate of the H-P measure of trend is even weaker, with Model 2 strongly preferred to Model 1. This is suggestive that the volatility reduction observed in aggregate real GDP is focused in its cyclical component. Indeed, the log of the Bayes factor for the level of the cyclical component derived from the theory based measure of trend, reported in the fourth row of Table 1, is 13.9, providing decisive evidence against Model 1. The posterior mean of σ_1^2 is 23 percent of σ_0^2, close to the percentage for aggregate GDP. The posterior mean of the unknown break date is 1983:4 with, from Figure 3.B, the posterior distribution of the break point tightly clustered around this mean. Even stronger results are obtained for the cyclical component based on the H-P filter, shown in the fifth row of Table 1. Here, the posterior mean of σ_1^2 is 20 percent of σ_0^2 and the log Bayes factor is 17.4. These results, which suggest that only the cyclical component of real GDP has undergone a large volatility reduction, makes
explanations for the aggregate stabilization based on a reduction of shocks to the trend component less compelling.

3.2 How Broad is the Volatility Reduction? Evidence from Disaggregate Data

In this section, we attempt to evaluate how pervasive the volatility reduction observed in aggregate real GDP is across sectors of the economy. To this end, we apply the Bayesian testing methodology to the set of disaggregated real GDP data investigated by MPQ. This data set consists of the broad production sectors of real GDP: Goods production, services production and structures production. Goods production is investigated further by separating durable goods and non-durable goods production. Finally, we investigate the evidence for a volatility reduction in measures of final sales in the goods sector. MPQ found a volatility reduction only in the production of durable goods, and that the volatility reduction was not visible in measures of final sales. Thus, we will be particularly interested in the evidence for a volatility reduction outside of the durable goods sector and in measures of final sales.

Rows 6-8 of Table 1 contain the results for the production of goods, services and structures. Consistent with MPQ, we find strong evidence of a volatility reduction in the goods sector. The log of the Bayes Factor for goods production is 12.9, providing decisive evidence against the model with no change in volatility. The volatility reduction is quite large, with the posterior mean of σ_1^2 25 percent of σ_0^2. The posterior mean of the break date is 1984:1, close to the date estimated by MPQ using classical techniques. Also consistent with MPQ, we find little evidence of a volatility reduction in services production that occurs around the time of the break in aggregate real GDP. From row 7 of Table 1, the log Bayes Factor for services production is 34.5, extremely strong evidence in favor of a volatility reduction. However, the estimated mean of the break date is 1958:2, not in the early 1980s. Figure 7.B confirms this,
showing no mass in the posterior distribution of the break date in the 1980s. However, because
the model used here only allows for a single structural break, there may be evidence of a second
structural break in the early 1980s that is not captured. To investigate this possibility, we re-
estimated the model for services production using data beginning in 1959. The log Bayes factor
fell to 3.4, still strong evidence for a structural break. However, the estimated break date was
again well before the early 1980s, with the mean of the posterior distribution in the second
quarter of 1966.

We turn now to structures production, where we obtain the first discrepancy with the
results obtained by MPQ. Again, using classical tests, MPQ are unable to reject the null
hypothesis of no structural break in the conditional volatility of structures production. However,
the Bayesian tests find decisive evidence of a volatility reduction. From row 8 of Table 1, the
log Bayes factor is 6.8, with the posterior mean of the break date equal to 1984:1, the same
quarter as for aggregate GDP. Figure 8.b shows that the posterior distribution of the break date
is tightly clustered around the posterior mean. The volatility reduction in structures is
quantitatively large as well, as the posterior mean of σ^2_T is 37 percent of σ^2_0. Thus, the
evidence from the Bayesian model comparison suggests that the volatility reduction observed in
real GDP is reflected not only in the goods sector, as suggested by MPQ, but is also found in the
production of structures.

Following MPQ, we next delve deeper into an evaluation of the goods sector by
separately evaluating the evidence for a volatility reduction in the non-durable and durable goods
sectors. Row 9 of Table 1 contains the results for durable goods. The log Bayes factor is 16.2,
decisive evidence in favor of structural change. The posterior mean of the unknown break date
is the same as for aggregate GDP, 1984:1. From row 10, the log Bayes factor for non-durable
goods production is 3.7, smaller than for durable goods, but still strong evidence against the model with no structural break. The volatility reduction in non-durable goods is quantitatively large, with σ_1^2 47 percent of σ_0^2, although smaller than that found for durable goods. The posterior mean of the break date is also somewhat later than for durable goods, falling in 1986:4. Finally, from Figure 9.B and 10.B, the posterior distributions of the break date for non-durable goods production is more diffuse than that for durable goods production.

We now turn to an investigation of measures of final sales. Again, a striking result found by MPQ is that classical tests do not reject the null hypothesis of no volatility reduction for either aggregate measures of final sales or final sales of durable goods. This result is strongly suggestive of a primary role for the behavior of inventories in explaining the aggregate volatility reduction. MPQ also argue that the failure of final sales to show any evidence of a volatility reduction casts doubt on explanations for the aggregate volatility reduction based on monetary policy. To investigate the possibility of a volatility reduction in final sales we investigate three series. The first is an aggregate measure of final sales, final sales of domestic product.5 We then turn to measures of final sales in the goods sector. In particular, we investigate final sales of non-durable goods and final sales of durable goods.

From row 11 of Table 1, the log of the Bayes factor for final sales of domestic product is 6.6, decisive evidence against the model with no volatility reduction. The volatility reduction in final sales is quantitatively large, with the posterior mean of σ_1^2 40 percent of σ_0^2. The posterior mean of the break date is 1983:3, consistent with that observed for aggregate real GDP. From Figure 11.B the posterior distribution is fairly tightly clustered around this mean, although

5 As in MPQ, we also investigated final sales to domestic purchasers, which is final sales of domestic product less net exports. The results for this series were nearly identical to those found for final sales of domestic product.
less so than for aggregate real GDP. That we find evidence for a volatility reduction in aggregate final sales is perhaps not surprising given that we have already shown that the Bayesian model comparison finds evidence of a structural break in structures production, a component of aggregate final sales. Thus, we are perhaps more interested in the results with regard to final sales in the goods sector, the only sector for which the distinction between sales and production is meaningful. We turn to these now.

From row 12 of Table 1, the log of the Bayes factor for final sales of durable goods is 4.4, strong evidence against the model with no structural break. However, the log Bayes factor is weaker than when inventories are included, suggesting that inventory behavior may be an important part of the early 1980s volatility reduction in durable goods production. Also, the posterior mean of the break date for final sales of durable goods is in 1991:3. This break is seven years later than that recorded for aggregate GDP and durable goods production. Thus, it appears that the MPQ finding of no volatility reduction in final sales of durable goods is not confirmed by the Bayesian techniques employed here. However, there does appear to be significant timing differences in the volatility reduction in the production and final sales of durable goods.

From row 13 of Table 1 we see that there is much evidence of a volatility reduction in final sales of non-durable goods. The log Bayes factor is 8.0, decisive evidence against the model with no structural break. Interestingly, this is much stronger evidence than that obtained for the production of non-durable goods. Also, the volatility reduction in final sales of non-durable goods appears to be quantitatively more important than that for production of non-durables, with $\sigma^2_1 = 34$ percent and 47 percent of σ^2_0 for non-durable final sales and non-durable production respectively. The posterior mean of the break date is in 1986:1, close to the break date for non-durable goods production. However, as seen in Figure 13B, the posterior
distribution of the break date is much more tightly clustered around this mean than that obtained for non-durable goods production. Thus, the results for final sales of non-durable goods suggests the opposite conclusion than was obtained for durable goods – the evidence in favor of a break in volatility in the non-durable goods sector is more compelling when only final sales are considered. This could be used as evidence against an inventory management explanation for the volatility reduction in this sector.

In sum, the evidence presented here demonstrates that the results in MPQ are not robust to a Bayesian model comparison strategy. Specifically, the volatility reduction appears pervasive across many of the production components of aggregate real GDP and is also present in measures of final sales in addition to production. This evidence provides less ammunition to invalidate any potential explanation for the aggregate volatility reduction than that obtained by MPQ. Indeed, the evidence seems consistent with a broad range of explanations, including improved inventory management and improved monetary policy, and is thus not very helpful in narrowing the field of potential explanations.

One could still argue that our finding of a reduction in the volatility of durable goods production in 1984, with no reduction in durable final sales volatility until 1991, makes improved inventory management the leading candidate explanation for the volatility reduction within the durable goods sector. However, even this may not be a useful conclusion to take from the stylized facts. The results presented here suggest a difference in timing only, not the absence of a volatility reduction in the final sales of durables goods as in MPQ. Such a timing difference could be explained by many factors, including idiosyncratic shocks to final sales over the second half of the 1980s. Another explanation is that the hypothesis of a single, sharp break date is misspecified, and in fact the volatility reduction has been an ongoing process. Stock and
Watson (2002) and Blanchard and Simon (2001) present evidence that is not inconsistent with this hypothesis. If this is the true nature of the volatility reduction then the discrepancy in the estimated (sharp) break date for durable goods production and final sales of durable goods becomes less interesting.

3.3 Robustness to Alternative Prior Specifications

The results presented in Section 3.2 were obtained using the prior parameter distributions listed as “Prior 1A” in Section 2. We also estimated the model with Prior 1B and 1C and obtained very similar results to those in Table 1. In this section we evaluate the sensitivity of the results to prior specification further by investigating alternative priors on the Markov transition probability q. This is a key parameter of the model as it controls the placement of the unknown break date. Thus, the econometrician can specify beliefs regarding the timing of the structural break by modifying the prior distribution for q. Classical tests such as Andrews (1993) and Andrews and Ploberger (1994) assume no prior knowledge of the break date. Thus, we are interested in the extent to which the differences between the results we find here and those obtained in MPQ can be explained by the prior distributions placed on q.

We investigate this by re-evaluating one of the primary series considered above for which we draw differing conclusions from MPQ - structures production. Using classical tests, MPQ are unable to reject the null hypothesis of no structural break in the volatility of structures production. Here, we found a log Bayes factor of Model 1 vs. Model 2 of 6.8, strong evidence in favor of a structural break. This was obtained using the prior on q listed in Prior 1A, $q \sim \text{beta}(8, 0.1)$, the histogram of which, based on 10,000 simulated draws from the distribution, is plotted in Figure 14a. This distribution has mean $E(q) \approx 0.988$ and standard deviation 0.037. How restrictive is this prior on q for the placement of the break date τ? From the 10,000 draws
of \(q \) plotted in Figure 14a, roughly 80% corresponded to \(E(\tau) = 1/(1-q) > 90 \) quarters, which is the midpoint of the sample size considered in this paper. Correspondingly, roughly 20% of the draws from the distribution for \(q \) yielded expected break dates less than 90 quarters into the sample.

Table 2 considers the robustness of the result for structures production to alternative prior specifications on \(q \), keeping the prior distributions for the other parameters of the model the same as in Prior 1A. Figure 14b holds the histogram for the first alternative prior we consider, \(q \sim beta(1,1) \). This prior is relatively flat, with mean equal to 0.5 and roughly equal probability placed on all values of \(q \). However, this yields a somewhat more restrictive prior distribution for the placement of the break date, \(\tau \), than that used in Prior 1A. From the 10,000 draws of \(q \) plotted in Figure 14b, only 1% corresponded to \(E(\tau) = 1/(1-q) > 90 \) quarters. Further, 98% of the draws of \(q \) yielded expected break dates in the first 50 quarters of the sample. From the second row of Table 2, the log Bayes factor for this prior specification is 3.7, less than that obtained using Prior 1A, but still strong evidence in favor of a structural break. We next investigate a prior that places the mean value of \(q \) at a very low value, thus placing most probability mass on a break date early in the sample. We specify this prior as \(q \sim beta(0.1,1) \), the histogram of which is contained in Figure 14c. This prior could be considered quite unreasonable. From the 10,000 draws of \(q \) plotted in Figure 14c, less than 0.1% corresponded to \(E(\tau) = 1/(1-q) > 90 \) quarters. Further, greater than 99% of the draws of \(q \) yielded expected break dates in the first 12 quarters of the sample. However, despite this unreasonable prior, the log Bayes factor, shown in the third row of Table 2, is still above 3, strong evidence in favor of a structural break. In order to erase the evidence in favor of a structural break, one must move to the prior in the final row of Table 2, \(q \sim beta(0.1,2) \). This prior distribution, graphed in Figure
14d, places almost all probability mass on a break very early in the sample. From the 10,000
draws of q plotted in Figure 14d, none corresponded to $E(\tau) = 1/(1 - q) > 50$ quarters. Under
this prior, the model with no structural break is slightly preferred to the model with a structural
break.

Thus, it appears that the evidence for a structural break in structures production is robust
to a wide variety of prior distributions. This suggests that the sample evidence for a structural
break is quite strong, making the choice of prior distribution on the break date of limited
importance for conclusions based on Bayes factors.

3.4 Structural Change in Inflation Dynamics

In this section we ask if the reduction in the volatility of real GDP is also present in the
dynamics of inflation. Unlike the case of real GDP, changes in conditional mean and persistence
also appear to be important for inflation. Thus, to investigate structural change in the dynamics
of inflation, we employ the following expanded version of the model in section 2:

$$y_t = \mu_{D_t^*} + \rho_{D_t^*} y_{t-1} + \sum_{j=1}^{p-1} \beta_{j,D_t^*} \Delta y_{t-j} + e_t,$$

$$e_t \sim N(0, \sigma_{D_t}^2)$$

where y_t is the level of the inflation rate. The specification of the error term and its variance is
the same as that in Section 2. However, we additionally allow for a structural break in the
persistence parameter and conditional mean. For example, while $\sigma_{D_t}^2$ captures a shift in
conditional volatility, the parameter $\rho_{D_t^*}$, which is the sum of the autoregressive coefficients in
the Dickey-Fuller style autoregression, captures a one-time shift in the persistence. We allow for
the possibility that a shift in the persistence parameter and conditional mean can occur at a
different time than the shift in conditional variance. Thus, we assume that D_t^* is independent of D_t and that it is governed by the following transitional dynamics:

$$D_t^* = \begin{cases}
0 & 1 \leq t \leq \tau^* \\
1 & \tau^* < t < T-1
\end{cases}$$ \quad (4)

$$P(D_{t+1}^* = 0 \mid D_{t}^* = 0) = q^*$$

$$P(D_{t+1}^* = 1 \mid D_{t}^* = 1) = 1$$

For inflation, we consider a shorter sample period than for the real variables, beginning in the first quarter of 1960. Preliminary analysis suggested that inclusion of data from the 1950s yields very unstable results that were generally indicative of a structural break in the dynamics of the series in the late 1950s. That the 1950s might represent a separate regime in the behavior of inflation is perhaps not surprising. Romer and Romer (2002) argue that monetary policy in the 1950s had more in common with that in the 1980s and 1990s than monetary policy in the 1960s and 1970s. Because we are interested here in a structural break that corresponds to the break found in real variables in the early 1980s, we restrict our attention to the post 1960s sample. This is a common sample choice in studies investigating structural change in U.S. nominal variables, see for example Watson (1999) and Stock and Watson (2002).

Table 3 contains the mean and standard deviation of the posterior distributions for the parameters of the model in equations 3 and 4 applied to the CPI inflation rate. The log of the Bayes factor comparing this model to one with no structural breaks is 7.8, decisive evidence against the model with no structural change. The structural change appears to be coming from two places, a reduction in persistence and a reduction in conditional variance. The posterior mean of the persistence parameter falls from $\rho_0 = 0.94$ to $\rho_1 = 0.72$. The posterior mean of the conditional volatility falls from $\sigma_0^2 = 0.88$ to $\sigma_1^2 = 0.17$. The conditional mean, given by μ_0
and \(\mu_1 \), is essentially unchanged over the sample. Figure 15.B shows the posterior distributions of the two break dates. The break date for the change in persistence, \(\tau^* \), and the change in volatility, \(\tau \), both have posterior distributions that are tightly clustered around their posterior means, 1979:2 and 1991:2. Given that the reduction in persistence implies a reduction in unconditional volatility, these results suggest two reductions in volatility, one at the beginning of the 1980s and another at the beginning of the 1990s.

4. What Explains the Discrepancy between the Classical and Bayesian Results?

The results of MPQ and this paper demonstrate that for several of the disaggregate real GDP series, classical tests fail to reject the null hypothesis of no volatility reduction while a Bayesian model comparison strongly favors a volatility reduction. One simple explanation for this discrepancy is that classical hypothesis tests and Bayesian model comparisons are inherently very different concepts. While classical hypothesis tests evaluate the likelihood of observing the data assuming that the null hypothesis is true, a Bayesian model comparison evaluates which of the null or alternative hypothesis is more likely. Given this difference in philosophy, the approach that is preferred by a researcher will likely depend on the preferences of that researcher for classical vs. Bayesian techniques.

This explanation is somewhat unsatisfying, as it suggests that “frequentist” researchers will prefer the results of MPQ, while “Bayesian” researchers will find the results presented in this paper more convincing. Thus, in the remainder of this section we perform a series of Monte Carlo experiments to explore the discrepancy between the two procedures from a purely classical perspective. Based on the results of these experiments, we will argue that for this application the
conclusions from the Bayesian model comparison should be preferred, even when viewed from
the viewpoint of a classical econometrician.

We first consider the case where a volatility reduction has occurred in the series for
which the classical and Bayesian methodologies provide conflicting results. In this case, the
Bayesian model comparison correctly identifies the true model, while the classical hypothesis
test fails to reject the false null hypothesis, a type II error. Given that the alternative hypothesis
is true, how likely would it be to observe this type II error? To answer this question we perform
a Monte Carlo experiment to calculate the power of a classical test used in MPQ against two
relevant alternative hypotheses. In the first, (DGP1), data is generated from an autoregression in
which there is an abrupt change in the residual variance. Formally:

\[y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t \] \hspace{1cm} (5)
\[\epsilon_t \sim N(0, \sigma^2_t) \]

\[\sigma^2_t = \begin{cases} \sigma^2_0 & t = 1, 2, \ldots, \tau \\ \sigma^2_1 & t = \tau + 1, \ldots, T \end{cases} \]

\[\sigma^2_0 > \sigma^2_1 \]

In the second, (DGP2), data is generated from an autoregression in which there is a gradual
change in the residual variance:

\[y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t \] \hspace{1cm} (6)
\[\epsilon_t \sim N(0, \sigma^2_t) \]

\[\sigma^2_t = \sigma^2_0 (1 - P(D_t = 1)) + \sigma^2_1 P(D_t = 1) \]

\[\sigma^2_0 > \sigma^2_1 \]
\[P(D_t = 1) = \begin{cases}
0 & 1 \leq t \leq \tau_1 \\
0 < P(D_t = 1) < 1 & \tau_1 < t \leq \tau_2 \\
1 & t > \tau_2
\end{cases} \]

\[P(D_t = 1) \leq P(D_s = 1) \quad \text{for} \ t < s \]

DGP2 is motivated by the posterior distributions of \(\tau \) for the disaggregate real GDP data series. As is apparent from Figures 6-13, the posterior distribution of \(\tau \) is fairly diffuse in several cases, a result that is suggestive of gradual rather than sharp structural breaks. Notably, this tends to be the case for those series for which the results of MPQ differ from the Bayesian model comparison - structures production, non durable goods production and all of the final sales series.

We base the calibration of DGP1 and DGP2 on a series for which the classical and Bayesian methodologies are sharply at odds, final sales of domestic product. For this series, the log Bayes factor is 6.64, decisive evidence against the null of no structural change. However, MPQ are unable to reject the null hypothesis of no structural change in this series using classical tests. We replicate this result here using the Quandt (1960) sup-Wald test statistic, the critical values of which are derived in Andrews (1993). As in MPQ, we perform this test based on the following equation for the residuals of (5):

\[|e_t| = \alpha_0 (1 - D_t) + \alpha_1 D_t + \omega_t \] \hspace{1cm} (7)

\[D_t = \begin{cases}
0, & \text{for} \ t = 1, 2, \ldots, \tau \\
1, & \text{for} \ t = \tau + 1, \ldots, T
\end{cases} \]

We proxy \(e_t \) with the least-squares residuals from (5), \(\hat{e}_t \). Equation (7) is then estimated by least-squares and the Wald statistic for the test of the null hypothesis that \(\alpha_0 = \alpha_1 \) calculated for
each possible value of \(\tau \).\(^6\) The largest test statistic obtained is the \textit{sup-Wald} statistic, while the value of \(\tau \) that yields the \textit{sup-Wald} statistic is the least-squares estimate of the break date, \(\hat{\tau} \).

Consistent with MPQ, the \textit{sup-Wald} test statistic for final sales of domestic product is 7.05, below the 5% critical value of 8.85.

To calibrate DGP1 we set the parameter \(\tau = \hat{\tau} \) for final sales of domestic product. The parameters, \(\mu, \phi_1 \) and \(\phi_2 \) are then set equal to their OLS estimates from (5), where the estimation is performed conditional on \(\tau = \hat{\tau} \). Finally, \(\sigma_0^2 \) and \(\sigma_1^2 \) are set equal to \(\frac{1}{\tau} \sum_{t=1}^{\tau} \hat{e}_t^2 \) and \(\frac{1}{T-\tau} \sum_{t=\tau+1}^{T} \hat{e}_t^2 \). For DGP2 we set \(P(D_t = 1) = P(D_t | \bar{Y}_t) \), obtained from estimation of Model 1, defined in Section 2.1, for final sales of domestic product. This probability is displayed in Figure 11A. The other parameters are set equal to the respective posterior distributions from estimation of Model 1 for final sales of domestic product. We generate 10,000 sets of data from DGP1 and DGP2, each with a length equal to the sample size of our series for final sales of domestic product. For each generated data set, we perform a 5% \textit{Sup-Wald} test, and record whether the null hypothesis is rejected.

For DGP1, the \textit{Sup-Wald} statistic rejects the null hypothesis 75 percent of the time, suggesting the power of this test against DGP1 is only fair. Under DGP2, which is arguably the more relevant data generating process for the disputed series, the power of the \textit{Sup-Wald} test falls considerably, with the test rejecting only 43 percent of the time. Thus, these results suggest that if the alternative hypothesis were true, it would not be unlikely for the \textit{sup-Wald} test to fail

\(^6\) As in MPQ, we employ 15% trimming – the break date is not allowed to occur in the first or last 15 percent of the sample.
to reject the null hypothesis. This provides a possible reconciliation of the discrepancy between the classical and Bayesian results.

We next turn to the case where the null hypothesis is true. In this case the classical tests used by MPQ correctly fail to reject the null hypothesis while the Bayesian model comparison, calibrated to the Jeffrey’s scale, incorrectly prefers the alternative hypothesis. From a classical perspective the Bayesian model comparison commits a type I error. Thus, another possible reconciliation of the conflicting results given by the classical and Bayesian methodologies is that the Bayesian model comparison tends to commit a larger number of type I errors than the classical test. The question then is, if the Bayes factor as interpreted in this paper were treated as a classical test statistic what would be its size?

To investigate this we perform a Monte Carlo experiment where data is generated under the null hypothesis of no structural change. Specifically, we generate data from Model 2 described in section 2. The parameters are calibrated to the posterior means of the posterior distributions for the parameters of Model 2 fit to final sales of domestic product. For each Monte Carlo simulation, the log Bayes Factor was computed, using the same priors as defined in Section 2. Due to the lengthy computation time required for each simulation, the number of Monte Carlo simulations was reduced to 1000.

In this experiment, 5% of the log Bayes factors exceeded 3.4. Thus, if one were to treat the log Bayes factor as a classical test statistic, the 5% critical value would be 3.4. In the results reported in Table 1, the log Bayes factor exceeds this value in all cases except for the two measures of trend GDP. Thus, this suggests that the discrepancy in the results between MPQ and the Bayesian model comparison are not likely to be explained by the Bayesian model comparison having an excessive size when viewed as a classical test. Indeed, given that the values of the
Bayes factors in Table 1 are often far above the 5% critical value of 3.4, this reconciliation seems very unlikely.

In sum, these Monte Carlo experiments suggest that, when viewed from a classical perspective, it would not be unusual for classical tests to fail to reject the null hypothesis when the alternative was the correct model. However, it would be highly unlikely to observe values for the log Bayes factor as large as those observed in Table 1 if the null hypothesis of no structural change were true.

5. Conclusion

In this paper, we use Bayesian tests for a structural break in variance to document some stylized facts regarding the volatility reduction in real GDP observed since the early 1980s. First, we find a reduction in the volatility of aggregate real GDP that is shared by its cyclical component but not by its trend component. Next, we investigate how pervasive this aggregate volatility reduction is across broad production sectors of real GDP. Evidence from the existing literature, which is based on classical testing procedures, has found that the aggregate volatility reduction has a narrow source, the durable goods sector, and that measures of final sales fail to show any volatility reduction. This evidence has been used to cast doubt on explanations for the volatility reduction based on improved monetary policy. By contrast, we find that the volatility reduction in aggregate output is visible in more sectors of output than simply durable goods production. Specifically, we find evidence of a volatility reduction in the production of structures and non-durable goods. We also find evidence of a reduction in the volatility of aggregate measures of final sales that looks similar to that in aggregate output. Finally, we find evidence of a volatility reduction in final sales of both durable goods and non-durable goods.
Based on these results, we argue that the evidence that one obtains from investigating the pattern of volatility reductions across broad production sectors of real GDP is not sharp enough to cast doubt on any potential explanations for the volatility reduction. We also document that, alongside the reduction in real GDP volatility, the persistence and conditional volatility of inflation has also fallen.
References

Table 1
Bayesian Evidence of a Volatility Reduction in Aggregate and Disaggregate Real GDP

<table>
<thead>
<tr>
<th>Variable</th>
<th>(\ln(BF_{12}))</th>
<th>Posterior Mean of (\tau)</th>
<th>(\sigma_1^2 / \sigma_0^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>18.13</td>
<td>1984:1</td>
<td>0.20</td>
</tr>
<tr>
<td>Trend – Consumption Based</td>
<td>-0.38</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Trend – HP Filter</td>
<td>-82.85</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cycle – Consumption Based</td>
<td>13.94</td>
<td>1983:4</td>
<td>0.23</td>
</tr>
<tr>
<td>Cycle – HP Filter</td>
<td>17.41</td>
<td>1983:1</td>
<td>0.20</td>
</tr>
<tr>
<td>Goods Production</td>
<td>12.94</td>
<td>1984:1</td>
<td>0.25</td>
</tr>
<tr>
<td>Services</td>
<td>34.5</td>
<td>1958:2</td>
<td>0.09</td>
</tr>
<tr>
<td>Structures Production</td>
<td>6.83</td>
<td>1984:1</td>
<td>0.37</td>
</tr>
<tr>
<td>Durable Goods Production</td>
<td>16.2</td>
<td>1984:1</td>
<td>0.21</td>
</tr>
<tr>
<td>Non-Durable Goods Production</td>
<td>3.65</td>
<td>1986:4</td>
<td>0.47</td>
</tr>
<tr>
<td>Final Sales of Domestic Product</td>
<td>6.64</td>
<td>1983:3</td>
<td>0.40</td>
</tr>
<tr>
<td>Final Sales of Durable Goods</td>
<td>4.41</td>
<td>1991:3</td>
<td>0.36</td>
</tr>
<tr>
<td>Final Sales of Non-Durable Goods</td>
<td>7.96</td>
<td>1986:1</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Table 2
Evidence of a Structural Break for Alternative Prior Specifications on q
Structures Production

<table>
<thead>
<tr>
<th>Prior Distribution</th>
<th>Log Bayes Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q \sim Beta(8,0.1)$</td>
<td>6.8</td>
</tr>
<tr>
<td>$q \sim Beta(1,1)$</td>
<td>3.7</td>
</tr>
<tr>
<td>$q \sim Beta(0.1,1)$</td>
<td>3.1</td>
</tr>
<tr>
<td>$q \sim Beta(0.1,2)$</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
Table 3
Posterior Moments: CPI Inflation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>With Structural Break</th>
<th>Without Structural Break</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>μ_0</td>
<td>0.302</td>
<td>0.145</td>
</tr>
<tr>
<td>μ_1</td>
<td>0.396</td>
<td>0.156</td>
</tr>
<tr>
<td>ρ_0</td>
<td>0.941</td>
<td>0.040</td>
</tr>
<tr>
<td>ρ_1</td>
<td>0.722</td>
<td>0.092</td>
</tr>
<tr>
<td>β_{10}</td>
<td>-0.235</td>
<td>0.131</td>
</tr>
<tr>
<td>β_{11}</td>
<td>-0.292</td>
<td>0.107</td>
</tr>
<tr>
<td>β_{20}</td>
<td>-0.158</td>
<td>0.138</td>
</tr>
<tr>
<td>β_{21}</td>
<td>-0.398</td>
<td>0.098</td>
</tr>
<tr>
<td>σ_0^2</td>
<td>0.883</td>
<td>0.118</td>
</tr>
<tr>
<td>σ_1^2</td>
<td>0.171</td>
<td>0.050</td>
</tr>
<tr>
<td>q^*</td>
<td>0.987</td>
<td>0.008</td>
</tr>
<tr>
<td>q</td>
<td>0.992</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Posterior Mean - τ^*

<table>
<thead>
<tr>
<th>Posterior</th>
<th>1979:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean - τ^*</td>
<td>1991:2</td>
</tr>
<tr>
<td>Mean - τ</td>
<td></td>
</tr>
<tr>
<td>$\ln(BF)$</td>
<td>7.77</td>
</tr>
</tbody>
</table>
Figure 1A
Growth Rate of GDP and Probability of Structural Break

Figure 1B
Posterior Distribution of Break Date: Growth Rate of GDP
Figure 2A
Growth Rate of Consumption of Non-Durable Goods and Services and Probability of Structural Break

Figure 2B
Posterior Distribution of Break Date: Growth Rate of Consumption of Non-Durable Goods and Services
Figure 3A
Growth Rate of HP Trend and Probability of Structural Break

Figure 3B
Posterior Distribution of Break Date:
Growth Rate of HP Trend
Figure 4A
Consumption Based Cycle and Probability of Structural Break

Figure 4B
Posterior Distribution of Break Date: Consumption Based Cycle
Figure 5A
HP Cycle and Probability of Structural Break

Figure 5B
Posterior Distribution of Break Date: HP Cycle
Figure 6A
Growth Rate of Goods Production and Probability of Structural Break

Figure 6B
Posterior Distribution of Break Date: Growth Rate of Goods Production
Figure 8A
Growth Rate of Structures Production and Probability of Structural Break

Figure 8B
Posterior Distribution of Break Date: Growth Rate of Structures Production
Figure 9A
Growth Rate of Durable Goods Production and Probability of Structural Break

Figure 9B
Posterior Distribution of Break Date:
Growth Rate of Durable Goods Production
Figure 11A
Growth Rate of Final Sales of Domestic Product
and Probability of Structural Break

Figure 11B
Posterior Distribution of Break Date:
Growth Rate of Final Sales of Domestic Product
Figure 12A
Growth Rate of Durable Goods Final Sales
and Probability of Structural Break

Figure 12B
Posterior Distribution of Break Date:
Growth Rate of Durable Goods Final Sales
Figure 13A
Growth Rate of Non-Durable Goods Final Sales and Probability of Structural Break

Figure 13B
Posterior Distribution of Break Date: Growth Rate of Non-Durable Goods Final Sales
Figure 14A
Histogram for 10,000 draws from $q \sim \text{Beta}(8, 0.1)$

Figure 14B
Histogram for 10,000 draws from $q \sim \text{Beta}(1, 1)$
Figure 14C
Histogram for 10,000 draws from $q \sim \text{Beta}(0.1, 1)$

Figure 14D
Histogram for 10,000 draws from $q \sim \text{Beta}(0.1, 2)$
Figure 15A
CPI Inflation Rate and Probability of Structural Break

Figure 15B
Posterior Distribution of Break Date: CPI Inflation