Version 02 November 24 2011

A B = Synchronizer

SimpleAleatoric_04

Top Bottomn Gate Change Rate Pitch Change Rate Pitch Range Center Pitch

PN =
{/ \‘, |®| (" *) |é
L\ h 4 . b, Y

Select Le\-'el Select Leuel

" Send 1 Send 1 Sena 1 Send 1
/ -\ / -\ FitchCorrector
Style Style

Tune Tune Perc. FM 4 4 - Mellow Piano

Modulator 1
Fine

Modulator 2 Carrier 2
Arnpl |t Flne Armpl 4 Pitch 2 Fine 2
= = =

700

Carrier En\-'

ge-l:go:l
fe-0 g
-[-H |
ge-l:go:l
Lor o ———
2
S — 1

=
o
=
o

E
m

-3
r

- P
[

A Tutorial on Algorithmic Music Generation in Reaktor

N\

By Peter Dines
peterdines@gmail.com
http://reaktortips.com/

mailto:peterdines@gmail.com
http://reaktortips.com/

Everyone loves randomly generated music, right? Heh heh, well, perhaps not. But if you're the kind of
person who uses Reaktor, chances are it's a subject that interests you.

In this tutorial we're going to cover some of the basic nuts and bolts of the Reaktor toolkit that you'll
need to create unpredictable music machines that play themselves.

First, let's load the randomO1.ens and see what it does and why. There's a Synchronizer instrument, cut
out of the Gobox instrument from the factory library, a Perc. FM 4 synth driven by the SimpleAleatoric
instrument, and a standard Mixer instrument to combine the audio output. Hit the space bar to run the
clock and create sound. You should hear a basic beat and a melody. It's not terribly musical sounding, is
it? As a matter of fact it's sort of bletcherous. There are reasons for that. The main one is that it's quite
rudimentary. This is the single celled amoeba of Reaktor algorithmic music generation. It doesn't even
have an eye spot yet. Stop the clock before it drives you up a wall and let's dissect it.

Go into the structure of the SimpleAleatoric 01 instrument and this is what you'll see:

L] Pitch Chanfs

[0l Pitch Ranggl

Slaw Fandam

Just as every cell in your body needs a source of energy, so every generative instrument in Reaktor
needs a source of energy and motion. In this instrument, the Slow Random and Geiger modules are the
driving force.

The Slow Random module is a source of random values. We're
using that here to vary the pitch of the notes being output to the
Perc. FM 4 synth. There are two controls here — one for the
frequency in Hz, and one for the +/- range of the values. The
Pitch Range is the range in semitones by which the pitch can
vary. Since the Slow Random produces fractional values like
3.852, we feed it into a Quantize module, which we can use to
force it to whole number values like 1, 2, 3, etc. These integer
values can then be used as MIDI note pitches. A Stepsize
control allows us to adjust the quantize value to various
numbers to produce various melodic effects. They'll always sound a bit odd, though, because they'll be
symmetric scales (with a constant interval between pitches) rather than the blend of whole tones and
semitones we're used to in Western music. This is one of the areas that will improve as our musical
amoeba evolves.

Tip: if you hover the mouse cursor
over a wire in Reaktor, you will
see a tooltip with the values
carried over that wire. Do this with
the input and output of the
Quantize module to see how it
affects the values passing through
it.

Up to this point we're producing pitches that vary between -36 and +36, and usually less than that, so
we add a value to keep the pitches in an audible range. The Center Pitch control determines this value.
60 is a good default value, but you can change this to make the average pitch higher or lower. From

here the pitch goes to the P input on a MIDI Note out module, This is the way the generated note events
get to another instrument. The Note module sends out a note whenever there's a trigger input at the G
input, and uses whatever value happens to be at the P input at the time the trigger is received.

The Geiger module provides the trigger. There are two controls
on the input of the Geiger. One controls the rate at which it fires
events, and the other controls how random or steady the trigger
rate is. Run the clock and play with these controls to get an idea
of how they work. Since the Geiger module produces signals
constantly, it's connected to a Router module to prevent it from
running when the clock is stopped. The Router's Pos control
input comes from a Start / Stop module. The value of the G
output on the Start / Stop is zero when the clock is stopped and one when the clock is running. So if the
clock is stopped, the Geiger's triggers go to the unconnected 0 output of the router, and if the clock is
running, they go to the connected “1”” output of the router.

Tip: if you right click on the input
of'a module and choose “create
control”, Reaktor will insert a
control with a range of values
typical for that type of input.

Tip: You can do almost the same
thing by using a Multiply module
instead of a Router, but I want you
to get used to using Routers.

Raouter 1-xM

What happens next? If you look at the Out dropdown menu in the conenct tab properties of the
SimpleAleatoric instrument, you will see that its MIDI output is routed to the Perc. FM 4 instrument. It
is also possible to route output to an externally connected hardware synth using the Ext. MIDI menu.

To External Devices Channel
All 1
To Internal Inztrurments
Select Instruments «
Mixer
~ Perc. FM 4
SimpleAleatoric_01
SimpleAleatoric_01 <self>

Synchronizer

So to summarize, we have parts of the instrument that are sources of activity — the Slow Random and
Geiger modules; we have parts that modify and channel the sources of activity — the Quantize, Add and
Router modules, and we have an output for the instrument — the Note module. Now how do we
improve the cacophony it creates? I don't know about you but the thing that bugs me the most about
this instrument is the melodic quality. So let's see how we can improve it.

Open the random02 ensemble and run the clock. It sounds maybe a Tip: to keep a cat off your
little bit more musical now, doesn't it? Instead of sounding like a cat o kevboard. cl h

. p1ano keyboard, close the
walking across a piano keyboard, it now sounds like a cat walking lid
across only the white keys of a piano keyboard. '

Take a look at the structure of the SimpleAleatoric 02 instrument. Now there's an extra macro called
PitchCorrector inserted in the structure before the Note module.

. . - speln = T Outs

=l Pitch Rangk— PitchCorrector

Cuantize

Notice that we have retained the Quantize module, but now its Stepsize is a fixed value of 1. This
quantizes the values coming from the Slow Random to whole numbers, which can be used to represent
the semitones in a chromatic scale.

This is what the PitchCorrector looks like on the instrument panel:

FitchCorrector

Fey
. E.:.

Does the pattern of light and dark bars look familiar? If you
think it looks like piano keys, you're right. And there's a
reason for that. The purpose of the PitchCorrector is to
change the pitches coming from the Quantizer into the
pitches of a Western diatonic scale. The Key dropdown menu
lets you select one of the twelve diatonic scales. If you want
a minor scale, select its relative major — so to obtain E minor,
you'd select G (major) in the dropdown menu. To get C
Dorian, select Bb, and so on.

Tip: Plato thought that Dorian and
Phrygian modes would toughen up a
soldier and that the Lydian and Ionian
modes would weaken one. Don't be a
wimp. Choose a tough mode. (Then
again, Plato also believed in Atlantis.)

http://en.wikipedia.org/wiki/Diatonic

The heart of the PitchCorrector macro is a
Reaktor Event Table. Drill down into the

PitchCorrector.

Incoming pitches are sent to the RX and R inputs
of the Event Table. (ignore the Subtract module
for a moment.) The value at RX selects the read
position in the table, and any event at R sends the
value it finds there to the Out port of the Event
Table. From there it is added to the pitch, making
it a semitone sharp if the table contains a 1 at that

position.

Ewent Table

The table is set up so it's 12 units long. It's also set to Wrap, which is the default. You can check this out

in the table properties.

Fana

[1o:]
> = . 1
" Backup Data With Madule

VALUE RAMGE

Ilan

Ilin Murn Step
1

Diefault Dizplay

Murmeric

MIDDE

Interpalation Clip & Wrap =%

Mone - Wrap

IS nFo | view | comnec |

This macro works by exploiting two features in Reaktor: 1) that
every C pitch is divisible by 12 (except for C0O, which is zero),
and 2) the Wrap feature in the Event Table's properties. The Wrap
works like this: a value of zero selects position zero; a value of
one selects position one, and
so on. But when you get
higher than the length of the

Tip: remember that the first
position in a Reaktor table is

table, the read position wraps
around to the start. So a value
of 12 at the RX input selects
the first position again. So
will 24, 36, 48, 60, etc. —

counted as a zero, not a one.
Reaktor tables are like arrays
in programming. This table
counts from 0 to 11, not from
1to12.

anything divisible by 12.

Let's examine what would happen in the key of C major. A
middle C has a value of 60. With wrap turned on, that's going to
select the value at the first position of the table. Since the value
at that position is zero, nothing will be added to the pitch. C into
the macro, C out of the macro. But a C# will read the second
position, which contains a value of one. The value of one will be
added to the incoming C#, “correcting” it to a D. C# into the
macro, D out. The way the table colors are set up in this
instrument, values of zero look white in the table and values of
one look black. That's what causes the piano key appearance.

Now, what about the Key menu and Subtract module? If you
want to have the SimpleAleatoric_02 instrument play in the key

of C# major, you have to subtract 1 from the read position value going to the table's RX input so that
the relationship between the notes — the pattern of tones and semitones — remains the same. With the
Key menu set to C#, an incoming C# note will trigger a read operation at the first position in the table
rather than the second position. The C# will not be corrected to D, as it was when we wanted to play in
C major. However, an incoming D will trigger a read operation at the second position, adding a
semitone to the D and correcting it to D# - which is one of the notes in a C# major scale. Each entry in
the Key menu will subtract an appropriate number of notes from the RX read position. You can see this
for yourself in the properties for the Key menu.

Now that we've ratcheted up the melodic intelligence of the instrument a bit, it's time to work on the
rhythm. Open up the random03 ensemble and dig into the SimpleAleatoric 03 instrument.

Pos

« 0
5 1
2
3
o
w5
o
7

Fouter M->1 [l

As you can see, the Geiger module is gone, replaced by a few other modules. Run the clock and give it
a listen. The notes have a closer relationship to the steady drumbeat now, don't they? There are now
moments where the melody sounds almost deliberate, or even playful. That's because we're using Sync
Pls. modules, which trigger at a steady rate relative to Reaktor's master clock. It's still not going to win
a Grammy for songwriting, but we're getting closer to something listenable.

There are seven Sync Pls. modules connected to a Router Sync Pls. m
module. Each Sync Pls. has a different firing rate which is set in INFO VIEW CONNECT
the properties. The Pos input on the Router determines which
Sync Pls is selected at any given moment. And the Pos input is
being fed by another Slow Random module. Why is there a |X|
module in between the Slow Random and that Pos input? It
gives the absolute value of the events generated by the Slow
Random. So if the Slow Random produces a 5, the |X| module
puts out a 5. But if the Slow Random produces a -2, the |X]| puts Ouration
out a 2. Thus the value is always in the range of zero to seven. / 1/16

One more quick and easy improvement we can make to the
rhythm is to tighten up the timing of the router changing position
Snap lsolate to let through a different Sync Pls. First thing we have to do is
right click on the background of the SimpleAleatoric 03

Recall by MIDI instrument and choose properties. At the bottom of the Properties
dialog, tick the “event loops enable” checkbox. Normally, Reaktor
warns you if there are feedback loops in your event structures.

¥ Enable However, they're safe to add if you know what you're doing. If
you don't, and you do something stupid like create an infinite
loop, Reaktor can and will shut itself down completely to avoid locking up your computer. So always
save your work before you start tinkering with event loops. Event loops should be enabled globally in
Reaktor's system preferences. Then they can be enabled selectively per instrument or per macro.

Once you have enabled event loops in the instrument, insert a
Value module, connect the output of the router to its Trig port,
and connect the output of the |X| module to its input port. Then
connect the output of the Value module to the Pos input on the
Router module. This module latches the value coming from |X]
and prevents it from going through until it receives a signal at
the Trig input. When it receives a trigger, it sends through - =
whatever value is currently at the input. In other words, it - =
doesn't remember the “queue” of signals that it received up to
that point.

The rhythm of the melody should be tighter now, with fewer i
jerky little trills when a different Sync Pls. is selected by the
router. In effect, it's listening to itself. Controlling feedback loops like this is one of the secrets to
making a machine that not only plays itself but sounds like it knows what it's doing.

If you had trouble turning on event loops and hooking up the Value module properly, no worries — open
up the random04 ensemble, which includes the changes we just made plus one more: it's polyphonic.

Look in the properties of the
SimpleAleatoric_04 instrument. This
one has three voices, not just one like
the earlier versions. Remember that
UNIGUN each module in the instrument has a
Max Yoices Spread yellow lamp in its corner — that means
1 0.05 it's capable of polyphonic processing.
Min Yoices So each connection and each module
1 in this instrument is carrying three
parallel data channels. Imagine there
were three parallel layers of the structure stacked one atop the other — that's what's happening here. The
Slow Random modules act like three separate Slow Randoms, producing a different value for each
voice. Thinking of Reaktor polyphony in this way — as parallel data channels, rather than as merely
how many voices a synth can play — will help you go on to build interesting and intelligent machines.

Tip: a module or
macro can be set
to monophonic or
polyphonic in its
properties or its
right click context
menu.

Hit the space bar to start the clock and you should hear a more complex melody, this time with
harmonies. You can select a different number of voices, but three seems to be a nice middle ground for
this instrument. If you route the midi to another synth, which you can easily do with the routing menus
in the instrument header, you may want only one voice, or four.

Here are some ideas for ways to modify and expand the SimpleAleatoric instrument:

e Drive the pitch or rhythm with a sine LFO whose speed and amplitude are controlled by other sine LFOs.
Try other LFO shapes too.

e Use event tables to draw curves and use a clock to iterate through them to produce values.

e Use an event randomizer and an absolute value module to vary the velocity of the notes produced.

e Use a delay module to create “MIDI echo” in the notes you send to a synth.

e Extend the range of the Event Table in the PitchCorrector macro so you can program altered scales like
harmonic minor

e Use Counter and Compare modules to change a value or fire an event after X number of F# notes (for

example) have been produced by the instrument

You should now have a solid foundation to explore these and many more ideas. Happy building!

Peter Dines

peterdines(@gmail.com

Visit the http://reaktortips.com/ blog for news and updates

http://reaktortips.com/
mailto:peterdines@gmail.com

