When I started the Value Initiative Alliance five years ago, my key strategy was to raise broad awareness of the value of nuclear medicine in the R&D, Quality of Practice, Workforce Pipeline and Outreach domains. I am humbled and delighted that we have done so much work together and achieved measurable progress for the SNMMI’s VI vision. One excellent way we have accomplished our goals is by increasing research and grant funding for nuclear medicine.

Through the Minoshima-Pappas Transformative Leadership Award 2023, we recognized Physician Investigator Umar Mahmood, MD, PhD, Massachusetts General Research Institute, Professor of Radiology, Harvard Medical School, an individual who has made a transformative impact in the field and elevated the value of nuclear medicine and molecular imaging.

We have good news to share with the public, patients, and other stakeholders in nuclear medicine. As we know, Nuclear Medicine plays an essential role in all significant diseases, from cardiology to oncology to neurology and psychiatry and is a growing $1.7 billion industry. Each year world-wide, Nuclear Medicine doctors
perform over 40 million nuclear medicine procedures from targeted imaging using instrumentation and radiopharmaceuticals to study physiological processes and non-invasively diagnose, stage, and treat diseases. As the *Journal of Nuclear Medicine* states, “Nuclear medicine now provides diagnostic, prognostic, predictive, and intermediate endpoint biomarkers in oncology, cardiology, neurology, and infectious and inflammatory disorders. Whole-body target expression can be quantified and used for predicting therapy response. Treatment-induced metabolic changes serve as early prognosticators of therapy effectiveness.” But nuclear medicine research remains woefully underfunded. For instance, NIH and DOD still do not fund specific separate categories for nuclear medicine. However, SNMMI’s Value Initiative Alliance’s Advocacy Domain is working to change this. As part of the Value Initiative’s R&D Domain, and under Richard Wahl’s, M.D., SNMMI Board Presidency (Elizabeth E. Mallinckrodt Professor; Chair: Department of Radiology Director: Mallinckrodt Institute of Radiology Professor of Radiology and Radiation Oncology Washington University in St. Louis School of Medicine), he created the Mars Shot Research Fund intending to raise $100 million for innovative nuclear medicine research and increasing federal funding for nuclear medicine. Within a year, the fund has raised close to $4 million with significant gifts from the Flanagan and Smallwood families, the Lobular Breast Cancer Alliance, and individual donors throughout SNMMI.

Calls for innovative research projects drew responses from researchers in cardiology, prostate, breast, and NET cancer research, as well as other cutting-edge, innovative ideas. As part of a rigorous peer-review process, the full proposals were reviewed, and the decision on how to award over $3 million in research grants was made in May 2023. The announcement of winners will be celebrated during the SNMMI Annual Meeting in Chicago.

We awarded Mars Shot Research Fund grants to the following promising nuclear medicine and molecular imaging research:

- $1 million to Amir Iravani, MD Associate Professor, Theranostics, and Clinical Director for Fred Hutchinson Cancer Center, Nuclear Medicine Biography, for a Phase 2 randomized trial of Lu177-PSMA therapy with early intensification of treatment to improve outcomes in patients expected to have poorer outcomes based on PSMA SUV mean measurements.
- $500,000 to the following UC Davis researchers: Julie Sutcliffe, PhD, FSNMMI, Biomedical Engineering Hematology and Oncology Professor; Helen K. Chew, MD, Vice Chief, Hematology & Oncology, and Director, Clinical Breast Cancer Program, Professor of Medicine; and Cameron Carl Foster, MD, Director of Theranostics and Director, Nuclear Medicine Residency Program, and Professor, Department of Radiology, Division of Nuclear Medicine. These researchers have developed integrin αvβ6-Binding Peptide which they will label with Ga-68 for PET/CT imaging in patients diagnosed with lobular breast cancer. Patients will also have FDG scans and tissue and blood sampling.
- $500,000 to Paul A. Ellison, PhD, University of Wisconsin (Principal Investigator); Peter Scott, PhD, University of Michigan (Co-principal Investigator); Melanie Sanford,
Renal imaging with Technetium-99m labelled dimercaptosuccinic acid (99mTc-DMSA) is of great value in the diagnosis and follow up in several acute and chronic disorders of the renal cortex, most commonly the detection of acute pyelonephritis and renal scarring, and the determination of split renal function (Fig. 1). It is a sensitive, effective, minimally invasive method for use in pediatric and adult patients with a well-established safety profile. DMSA scintigraphy provides a functional image of the renal cortex reflecting regional renal blood flow mainly in the proximal convoluted tubules. For an expanded review of this topic, including examples the reader is referred to a recent SNMMI webinar on DMSA, available here.

A recent survey confirmed that 99mTc-DMSA imaging is indeed a valuable, desired resource and, therefore should be available in the U.S. (Fig. 2). After several years of very limited availability of 99mTc-DMSA in the U.S., the supply chain has been recently ameliorated by the good news that it is back on the market. NEPHROSCAN™, a proprietary kit for the preparation of technetium Tc 99m succimer injection, received approval last year by the U.S. Food and Drug Administration. NEPHROSCAN is Theragnostics Inc.’s, an Ariceum Therapeutics company, (BRAINTREE, MA) first FDA approved drug. It is manufactured by ROTOP Pharmaka GmbH in Germany. GE HealthCare serves as the exclusive distributor of the product in the U.S. The NEPHROSCAN indication statement now includes pediatric patients, including term neonates.

The effective patient radiation dose with 99mTc-DMSA is in the range of 0.6–1.1 mSv. In comparison, abdominopelvic CT, has an effective dose of approximately 7.7 mSv. Therefore, the decision of obtaining a DMSA scan should be based on the anticipated diagnostic benefit, weighed against the radiation exposure risk. As stated by the SNMMI, the aim should be to perform the right test, with “the right dose, to the right patient at the right time.”

MR imaging is at least equally as sensitive as 99mTc-DMSA for detection of pyelonephritis or cortical scarring. However, MR imaging requires general anesthesia or sedation in young children, it carries a risk (infrequent) of contrast agent reaction, must be performed at an experienced pediatric facility, is more costly, and may have lengthier wait times to schedule.

With the return of 99mTc-DMSA in the U.S. it should be anticipated that this imaging method will return to occupy its rightful place in the imaging armamentarium in evaluation of renal cortical abnormalities.

Indication: NEPHROSCAN, after radiolabeling with technetium Tc 99m, is a radioactive diagnostic agent indicated for use as an aid in the scintigraphic evaluation of renal parenchymal disorders in adults and pediatric patients including term neonates.

Important Safety Information:

Radiation Risks: Technetium Tc 99m succimer injection contributes to a patient's overall long-term cumulative radiation exposure. Long-term cumulative radiation exposure is associated with an increased risk for cancer. Ensure safe handling to minimize radiation exposure to the patient and health care workers. Advise patients to hydrate before and after administration and to void frequently after administration.

Risk in Patients with Advanced Renal Failure: The use of technetium Tc 99m succimer injection contributes to a patient's overall long-term cumulative radiation exposure. Long-term cumulative radiation exposure is associated with an increased risk for cancer. Ensure safe handling to minimize radiation exposure to the patient and health care workers.

Figure 1: 99mTc-DMSA scan in an infant with febrile urinary tract infection. There is a cortical defect in the upper pole of the right kidney (arrow) with decreased split renal function of 44%, indicating acute pyelonephritis. Eight months later, the pyelonephritis defect has resolved and the split renal function is now normally symmetric. (Images courtesy of Ruth Lim, M.D.)

Continued on page 4. See The Comeback Kid (Kit).
REFERENCES

5. Treves, S.T., Gieland, M.J., Fahey, F.H., Parsi, M.T. 2016 Update of the North American Consensus Guidelines for Pediatric Administered technetium Tc 99m succimer and thus the Tc 99m succimer may distribute to organs or parts of the body other than the kidneys. It has been reported that satisfactory images may be obtained in some of these patients by delaying imaging between 6 hours to 24 hours.

Hypersensitivity Reactions:

Hypersensitivity reactions, including urticaria, rash, pruritus, and erythema have been reported with the use of technetium Tc 99m succimer injection in adults and pediatric patients. The time of onset of the reactions varied within 2 hours to several hours after the injection. Have appropriate instruments and medications necessary for immediate treatment of hypersensitivity reactions and monitor patients for reactions during and after administration.

For full prescribing information, please refer to www.nephroscan.com.

SNMMI Welcomes New Value Initiative Industry Alliance Co-chair Barinder Kang From Novartis

Novartis is pleased to join the Value Initiative Industry Alliance Board of SNMMI to continue to advance important discussions in the field of nuclear medicine and Radioligand Therapy/Imaging (RLT/RLI). At our company, we are harnessing the innovation of our world-class scientists and strategic partnerships to explore the full potential of our targeted radioligand therapy platform to address the greatest unmet needs in multiple cancers. Our goal is to reduce the global disease burden, extend the lives of patients, and elevate current standards of care.

Personally, I am looking forward to meeting many of you during the SNMNI Annual Meeting this year. I encourage you to visit our booth to learn more about our pipeline and research.

Barinder Kang, PhD – VP & US Medical Head, Radioligand Therapy (RLT)
AZEDRA® (high-specific-activity I 131 MIBG): Perseverance—Bringing a Targeted Radiotherapy to Patients with Advanced Pheochromocytoma and Paraganglioma

Despite its Arduous Path, a Valuable FDA-approved Theranostic Continues to Make a Difference in the Lives of Patients With a Rare Orphan Disease

BY LANTHEUS, SNMMI VALUE INITIATIVE LEADERSHIP CIRCLE MEMBER

A Long and Winding Road

AZEDRA (high-specific-activity (HSA) I 131 meta-iodobenzylguanidine (MIBG)) was approved by the FDA nearly five years ago for the treatment of adult and pediatric patients 12 years and older with iobenguane (MIBG) scan positive, unresectable, locally advanced or metastatic pheochromocytoma or paraganglioma (PPGL) who require systemic anticancer therapy.1 However, I 131 MIBG can trace its origins all the way back to the early 1980s when Wieland et al. first described its ability to image the adrenal medulla and Fischer et al. reported its utility both as an imaging agent and as a therapeutic at higher doses for these rare tumor types.2-4 It was ten years later that Glowniak et al. identified the norepinephrine transporter, a protein typically expressed on the surface of PPGL tumor cells, as the molecular target for MIBG.5

While early reports of efficacy were being described for I 131 MIBG in the treatment of advanced PPGL and other neuroendocrine tumors,6,7 technical issues prevented its treatment from reaching its full potential. The most common procedures to radiolabel MIBG involve ionic exchange methods that substitute “cold” iodine for the “hot” isotope. Due to the inefficiency of this process, this typically leads to a very large percentage of non-labeled (low-specific-activity (LSA)) I 131 MIBG in the final drug product formulation.8 To get around this, methods were developed to create a drug product where nearly all of the MIBG is radiolabeled.9,10 A version of this high-specific-activity I 131 MIBG, developed using the Ultratrace method, produced a radiotherapy drug candidate able to deliver to cancer cells 100-200 fold greater radiation levels when compared to conventional MIBG preparations.11 And in 2006, Molecular Insight Pharmaceuticals (acquired by Progenics Pharmaceuticals in 2013) initiated a phase 1 study in patients with neuroendocrine tumors with high-specific-activity I 131 MIBG, thus launching the clinical development path towards the development of AZEDRA as a theranostic for PPGL.12,13

A Pivotal Phase 2 Study

By 2009, Molecular Insight began a pivotal, prospective, multi-center phase 2b trial designed to demonstrate the efficacy of high-specific-activity I 131 MIBG in patients with advanced PPGL. Importantly, the study was conducted under a Special Protocol Assessment (SPA) agreed upon with the FDA that involved a unique registrational endpoint, a significant reduction in hypertensive medication, designed to show clinical benefit in patients with these ultra-rare, often indolent tumors. However, delays arose when the company was unable to continue providing financial resources for the trial and by 2011, the study had stalled. Following Progenics acquisition of Molecular Insight in 2013, patient enrollment picked up right where it left off with no changes to the SPA and efficacy endpoints and by early 2017 the last patient completed the 12-month efficacy phase and the study was subsequently brought to a successful completion.14

In this largest completed prospective trial in advanced PPGL, 81 patients were enrolled and 74 received a treatment planning, dosimetric dose (0.185 GBq [5 mCi]). Of those, 68

Continued on page 6. See AZEDRA®.
or after the administration of HSA 131 I-MIBG, an often-had drug-infusion related acute hypertensive events during the most common adverse events. Importantly, no patients' quality of life were also recently reported. Nausea, fatigue and myelosuppression were observed to be

and urinary biomarkers were also observed. Improvements in the patients' quality of life were also recently reported. Nausea, fatigue and myelosuppression were observed to be the most common adverse events. Importantly, no patients had drug-infusion related acute hypertensive events during or after the administration of HSA 131 I-MIBG, an often-observed side effect with conventional (LSA) I 131 MIBG.

FDA Approval and Beyond

At the end of July in 2018, over 35 years from the first description of LSA I 131 MIBG as a treatment for advanced PPGL, and 12 years after the initiation of the clinical development path for HSA I 131 MIBG, the FDA approved AZEDRA for the treatment for adult and pediatric patients 12 years and older with pheochromocytoma and paraganglioma that are positive for the norepinephrine transporter (as determined by an iobenguane scan), and who require systemic anticancer therapy. Just two months later, AZEDRA was added to the NCCN guidelines for the treatment of advanced pheochromocytoma and paraganglioma. Two years later, Progenics was acquired by Lantheus, Inc. and slowly but steadily, awareness and availability continue to grow for this important therapy with important positive real world efficacy data continuing to make it into the peer-reviewed literature. As adoption of this critical theranostic grows, the future for advanced PPGL patients looks bright.

REFERENCES

15. Endocr Relat Cancer (2023) 30: e220236
Further Revolutionizing Nuclear Medicine: VERITON-CT 400 Receives U.S. FDA 510(k) Approval

BY SPECTRUM DYNAMICS, SNMMI VALUE INITIATIVE PRINCIPAL MEMBER

The field of nuclear medicine continues to advance at an astonishing pace. State-of-the-art digital SPECT and SPECT/CT scanners provide the foundation for the next generation of clinical applications and the shift to routine 3D imaging. Significant improvements in sensitivity and resolution drive transformational shifts in workflow and diagnostic capabilities. The recent U.S. FDA 510(k) clearance of the Spectrum Dynamics Medical (SDM) VERITON-CT® 4001 SPECT/CT marks a significant milestone in this journey.

Nuclear medicine requires modernization to continue to thrive. Upgrading from analog technology to digital solid-state SPECT/CT lets you perform faster scans while generating higher quality images. With a co-scan range of two meters and fast 3D total body scanning you can have quantification-ready total body images in half the time of conventional analog SPECT/CT. VERITON-CT combines best-in-class cadmium zinc telluride (CZT) detectors, novel system design, low-dose high-resolution CT, and advanced image reconstruction with energies up to 400 keV.

Enhanced Imaging Capabilities

VERITON-CT represents a leap forward in SPECT/CT. With the power of Broadview Technology and digital swiveling detectors on 12 robotic arms, positioned 360° around the patient, the system automatically contours the patient's body during all examinations. This innovative design offers sensitivity and resolution which results in exceptional image quality at acquisition speeds that have never been seen with SPECT/CT. In addition, VERITON-CT 400 sets a new standard as the first commercially available SPECT/CT to scan up to 400 keV with CZT detectors and no collimator changes.

Transform Your Technology

SDM’s implementation of CZT detectors has set an industry standard for CZT-based SPECT cameras in nuclear medicine. VERITON-CT efficiently manages the entire workflow of routine 3D imaging, optimizing every step from patient preparation to data analysis and review. Its design is specifically tailored to support nuclear medicine diagnostic imaging and research applications by offering superior energy resolution, sensitivity, and multi-energy imaging capabilities.

Transform Your Workflow

Among the most compelling aspects of VERITON-CT is its ability to provide substantial clinical and workflow benefits for both routine and advanced clinical needs. With the integration of Broadview Technology, VERITON-CT offers a digital imaging platform that enables clinicians to make more precise diagnoses, develop personalized treatment plans, and ensure effective therapy guidance, all at unparalleled imaging times.

The systems are equipped with advanced image processing algorithms, ensuring state-of-the-art image quality. Iterative SPECT reconstruction with resolution recovery, attenuation correction, scatter correction, and partial volume correction further enhance image accuracy and reliability. This allows clinicians to obtain fully quantitative images, facilitating precise diagnosis and personalized treatment planning. Additionally, the integrated operator console with VERITON-CT, TruView
Further Revolutionizing. Continued from page 7.

Console, enhances workflow efficiency by enabling multi-tasking of acquisition, reconstruction, and quantitative post-processing of 3D data seamlessly within one user interface. TruView Console, powered by MIM Software, brings the expertise of image display and analysis to VERITON-CT. Automated image segmentation, quantification, and multi-modality data management is achieved within a single vendor-neutral platform. The combination of SDM and MIM Software ensures that you have powerful data acquisition and image generation from VERITON-CT which flows seamlessly into the advanced functionalities of TruView Console for image interpretation and analysis to streamline the entire imaging process.

VERITON-CT hybrid imaging workflow includes:
- Advanced CT image quality options
- CT-based SPECT scan optimization
- Fastest, highest-sensitivity image acquisition
- TruFlow 4D dynamic acquisition and post processing
- Advanced reconstruction techniques
- Quantitative image generation
- Advanced image analysis and interpretation

Focus on Patient Care

VERITON-CT goes beyond enhancing clinical and imaging departments; it also has significant implications for patient care. The system’s high sensitivity enables low-dose imaging capabilities that play a crucial role in enhancing patient care and safety. By integrating low-dose iterative reconstruction software (LISA) and dedicated pediatric protocols, the system ensures that even the most vulnerable patients receive optimal imaging while minimizing radiation exposure.

Additionally, the system’s ability to perform personalized CT-based SPECT scan optimization helps you easily and efficiently optimize and reduce scan times while maintaining accuracy and reliability of diagnostic information. Physicians can make well-informed treatment decisions based on high-resolution, low-dose CT scan data that not only aids in attenuation correction and localization but also enables routine reconstruction of SPECT data with partial volume correction. This improvement in contrast and resolution further enhances the diagnostic value of every nuclear medicine scan.

Evolve with the Industry

VERITON-CT introduces routine 3D scanning to your imaging department, ensuring that you stay at the forefront of technological advancements. Don’t allow your imaging department to fall behind. With a state-of-the-art VERITON-CT, you will establish a foundation for growth and gain access to cutting-edge technology for new examinations and diverse patient populations for years to come. Embrace the next generation of clinical applications, expand your imaging capabilities, and make the shift to the industry’s fastest routine 3D imaging for routine and novel imaging applications.

Spectrum Dynamics Medical, the driving force behind this groundbreaking technology, showcases its unwavering commitment to pushing the limits of imaging excellence and dedication to delivering continuous innovations to ensure that your department remains at the forefront of nuclear medicine.

REFERENCE

1. VERITON-CT 400 may not be commercially available in all countries. Please contact your local Spectrum Dynamics Medical representative for details.
“Integrating Blood Volume Analysis into the Future of Nuclear Medicine”: A Conversation About its Value and Implementation

BY DAXOR CORPORATION, SNMMI VALUE INITIATIVE PRINCIPAL MEMBER

Daxor sat down with Gustavo Andrei Zamora, BS, CNMT and Adalgisa Vergara, BS, ARRT(N) who are getting ready to implement blood volume analysis (BVA) at their Level 1 Trauma Center in central New Jersey.

BVA provides a 98% accurate, objective quantification of intravascular total blood and red cell volume — taking the guesswork out of determining volume status. BVA informs clinicians with precise information to optimize fluid management enabling substantial reductions in mortality, hospital readmission, length of stay, and costs. BVA has CPT coding and is reimbursed by both public and private insurance.

Adalgisa, tell us about your experience with BVA at your previous facility?
The hospital saw early on the value in the BVA test to help guide fluid management. We had an ICU patient on a ventilator and the intensivist used the BVA test results to guide treatment. After one week, the patient was off the vent and sent home. Thereafter BVA became the standard of care. It was exciting to bring such an innovative test to our clinicians and patients. The difference the test made was huge and I felt rewarded by that.

Andrei, what problems will BVA solve?
It’s important to start integrating the future into nuclear medicine with new tests that can be done alongside or without traditional camera and table time scans. We are all struggling with containing costs and doing more with less. Integrating the BVA test will add productivity, and revive our department — allowing us to do more without adding additional resources.

Andrei, what challenges did you face in convincing others about BVA?
Driving change and lack of understanding. We worked this from the ground up - convincing the main lab we were not taking any lab tests away and educating the doctors that the BVA test is complementary but different from the information they get using volume assessment surrogates like hemodynamics, biomarkers, and clinical exam. When everyone understood BVA’s value and experienced that ‘ah-ha’ moment, I knew we had overcome these challenges.

Adalgisa, how are you ensuring your department is ready?
Get everyone involved and make sure the entire staff is fully trained. We set up a mini simulation lab using a fake arm, so our techs are confident before live patient testing. We invited nephrologists, intensivists, and heart failure departments to align on our implementation plan to ensure we get maximum value from BVA throughout our facility.

Andrei, what advice would you give to centers looking to start a BVA program?
Do it right the first time. BVA is reliable, and we want to ensure the results are useful and impactful since BVA changes the way clinicians care for patients. We are starting with our outpatients and using Daxor’s ezBVA Lab, a CLIA facility that provides on-demand, next day blood volume analysis as a bridge before obtaining an analyzer so administrators and champions will see how BVA can make a difference.

To learn more about BVA contact Daxor at 865-425-0555 or visit daxor.com.
PhD, University of Michigan (Co-principal Investigator); Co-Investigators: Jonathan Engle, PhD, (University of Wisconsin); Allen Brooks, PhD, (University of Michigan). The researchers propose development of 76Br/77Br as a true theranostic pair of radionuclides compatible with small molecule RPs. $^{76}/^{77}$Br-pHPG can be used for PET imaging, personalized dosimetry and treatment of neuroblastoma.

- $500,000 to the following Memorial Sloan Kettering researchers: Randy Yeh, MD, Nuclear Medicine; Joshua Drago, MD, Oncologist; and Audrey Maugen, PhD, Biostatistician to research HER2 PET imaging with 89Zr-ss-pertuzumab in patients with HER2-low metastatic breast cancer. The researchers hypothesize that 89Zr-ss-pertuzumab PET will allow for a noninvasive and quantitative method to determine HER2 expression and allow for prediction of response to HER2 therapy.

- $500,000 to the following Stanford researchers: Craig Levin, PhD, a Professor of Radiology and, by Courtesy, of Physics, Electrical Engineering, and Bioengineering and founding member of the Molecular Imaging Program; Corinne Beinat, PhD, Assistant Professor of Radiology (Molecular Imaging Program); and Eric Rosen, MD, Clinical Professor of Diagnostic Radiology. The researchers plan to develop a platform of innovative technologies for simultaneous PET/MRI that they hypothesize will enable visualization and quantification of up to three molecular biomarkers of breast cancer in the same imaging session, with the same or lower dose exposure compared to a conventional PET study. The technologies include labeling an estrogen receptor radioligand with a novel radionuclide, 44Sc, that emits a prompt gamma-ray in cascade with a positron, as well as a novel 1 mm resolution, MRI-compatible PET detector design and data correction algorithms that promote high two- and three-photon coincidence detection efficiency and accurate un-mixing of the multiplexed tracers.

- $100,000 to Marina Sharifi, MD, PhD, assistant professor in the Department of Medicine at the University of Wisconsin, Madison. This Mars Shot Research grant is funded by SNMMI and the Lobular Breast Cancer Alliance and will focus on Invasive Lobular Carcinoma Imaging and involves innovative use of patient input in the research protocol. Dr. Sharifi’s research intends to combine two non-invasive tests, a blood test and PET imaging that uses an investigational radiopharmaceutical called 18F-FFNP, to understand earlier whether treatment of the metastatic lobular tumor is effectively suppressing estrogen signaling and controlling or eradicating a patient’s lobular breast cancer cells. While both tests have been studied before in ER+ metastatic breast cancer, neither has been explicitly studied in lobular breast cancer.

Several Mars Shot Fund events will take place during the 2023 Annual Meeting. There will be a Mars Shot Reception and Mars Shot Donor Lounge (for those interested in learning more about the Mars Shot Fund, for donors or interested donors – all are welcome). There will also be a Mars Shot Board of Directors Meeting. If you have interest in the Mars Shot Reception or the Mars Shot Donor Lounge, please check out the schedule on the meeting app, donate https://donate.snmmi.org/SNMMIDONOR/Donate/SNMMI_Mars_Shot.aspx and/or contact sgleason@snmmi.org for assistance.

Satoshi Minoshima, MD, PhD
University of Utah, Salt Lake City, UT
Value Initiative Board

THE SNMMI VALUE INITIATIVE BOARD IS MADE UP OF SNMMI LEADERSHIP, ALONG WITH CHAIRS FOR EACH OF THE VALUE INITIATIVE DOMAINS. EACH DOMAIN CHAIR IS APPOINTED FOR A TERM OF THREE YEARS.

Value Initiative Board Chair
Satoshi Minoshima, MD, PhD
University of Utah, Salt Lake City, UT

President, SNMMI
Munir Ghesani, MD, FACNM, FACR
Mount Sinai Hospital
New York, NY

CEO, SNMMI and Organizational Strength and Stability Domain Chair
Virginia Pappas, CAE
Society of Nuclear Medicine & Molecular Imaging, Reston, VA

Quality of Practice Domain Chair
Heather Jacene, MD
Dana Farber Cancer Institute, Boston, MA

Workforce Pipeline Domain Chair
Christopher J. Palestro, MD
Zucker School of Medicine
New Hyde Park, NY

Research and Discovery Domain Chair
John Sunderland, PhD, FSNMMI
University of Iowa
Iowa City, IA

Advocacy Domain Chair
Cathy Cutler, PhD
Brookhaven National Laboratory
Upton, NY

Outreach Domain Chair
Giuseppe Esposito, MD
Georgetown University Hospital
Washington, DC

Volunteer Involvement by Domain

Domain 1: Quality of Practice
- Committee on Medical Internal Radiation Dose (MIRD)
- Committee on Procedure Standards
- Committee on Radiation Dose Assessment Response (RADAR)
- Committee on Guidance Document Oversight
- Quality and Evidence Committee
- Quality and Patient Safety Committee
- RaPTR Registry Oversight Committee

Domain 2: Research and Discovery
- Committee on Radiopharmaceuticals
- Clinical Trials Network
- Center for Molecular Imaging Innovation & Translation
- PET Center of Excellence
- Therapy Center of Excellence
- Brain Imaging Council
- Cardiovascular Council
- Correlative Imaging Council
- Pediatric Imaging Council
- Physics, Instrumentation and Data Sciences Council
- Radiopharmaceutical Sciences Council

Domain 3: Workforce Pipeline & Life-Long Education
- Future Leaders Academy Task Force
- Academic Council
- Program Directors Committee
- Qualified Training Program Task Force
- Early Career Professionals Committee
- Women in Nuclear Medicine Committee
- Diversity, Equity, and Inclusion Task Force
- In-Training Committee
- Medical Student and STEM Working Group

Domain 4: Advocacy
- Committee on Government Relations
- FDA Task Force
- Committee on Coding and Reimbursement
- Third Party Payer Subcommittee
- Committee on Radiopharmaceuticals

Domain 5: Outreach
- Committee on Outreach
- Breast Cancer Imaging Outreach Working Group
- Brain Imaging Outreach Working Group
- Prostate Cancer Outreach Working Group
- Neuroendocrine Tumor Outreach Working Group
- Healthcare Administrators Outreach Working Group
- Pediatrics Outreach Working Group
- Patient Advocacy Advisory Board

Value Initiative Industry Alliance Advisory Committee Chairs

James Williams, PhD
CEO, Siemens Healthineers Molecular Imaging

Terri Wilson
President, Blue Earth Diagnostics, A Bracco Company

Matt Shah
VP Global Sales & Marketing
Siemens Healthineers Molecular Imaging
SNMMI would like to thank our Value Initiative Industry Alliance member companies for their support. Together we have made incredible progress advancing patient care and precision medicine.

Leadership Circle

BLUE EARTH DIAGNOSTICS
A Bracco Company

SIEMENS Healthineers

Biogen

Cardinal Health
Essential to care™

CURIUM™
LIFE FORWARD

Eisai

GE HealthCare

itm
PASSION FOR PRECISION

JUBILANT RADIOPHARMA

LANTHEUS

Lilly

NOVARTIS

UNITED IMAGING

Visionary Member

IONETIX

mim SOFTWARE

Principal Member

BAYER
Advancing science for life™

Boston Scientific

BRACCO
LIFE FROM INSIDE

CAPINTEC
A MIRION MEDICAL COMPANY

cyclomedica

DAXOR

Digirad

isotopia

MEDTRACE

monrol

NorthStar MEDICAL RADIOISOTOPES, LLC

PharmaLogic

Point Biopharma

SHINE

SPECTRUM

Telix

VIEWPOINT molecular targeting

Voximetry

Corporate Member

CLOVIS ONCOCLOGY

HERMES MEDICAL SOLUTIONS

MiE medical imaging electronics

Learn more about becoming a Value Initiative Member Company: valueinitiative.snmmi.org