COVID-19 antibody tests and the UK Rapid Testing Consortium

June 18, 2020

Jonathan Allis, D.Phil.
CEO Blue Earth Diagnostics
Chairman Polarean Imaging plc.
Chairman UK Rapid Test Consortium
And now for something completely different ..

- Blue Earth Diagnostics*
 - Robust portfolio of approved and investigational PET diagnostic/therapeutic compounds for prostate cancer and brain metastases
- Polarean Imaging*
 - Hyperpolarized gas MRI imaging of lungs

*Blue Earth Diagnostics and Polarean Imaging are not connected to the UK Rapid Test Consortium

My normal job

COVID

Professor Sir John Bell (Oxford) “Your Country Needs You”!
UK government 5 pillar plan for COVID-19 testing

Our National Testing Strategy

Pillars 1, 2: Antigen tests for virus; Pillar 3: Antibody (to SARS-CoV-2) testing
COVID-19 testing

Antigen testing

- Detecting SARS-CoV-2 viral RNA in nasal swabs, etc..
- RT PCR
 (Reverse Transcription Polymerase Chain Reaction)

Antibody testing

- Detecting antibodies to SARS-CoV-2 in blood
- ELISA and other Lab-based tests
- Lateral Flow Tests (decentralized & home use)
Immune response to SARS-CoV-2 infection

A: viral infection

SARS-CoV-2
single stranded RNA genome
~30kB

trimeric
spike protein

antibody response to
viral spike protein

B: antibody response

- IgM - acute phase
- IgG - convalescent phase

Antibody concentration

Infection (day 0) Acute sample (eg day 7-10) Convalescent sample (eg day 28-35)

Long(er) term immunity?

Antibody tests need a good Antigen

SARS-CoV-2
single stranded RNA genome
~30kB

RNA sequence

Spike protein code

Insert into Mammalian cells

Bioreactor

Antigen (Spike protein)

0.5 ug / assay

Trimeric S protein

Purification

An alternative antigen used in some Antibody tests is the Nucleocapsid (N) protein
ELISA
Enzyme-linked Immunosorbent Assay

• Once you have a good antigen, you can use it to detect the Neutralizing Antibodies to the antigen in a sample

• The “Gold Standard” method employs the ELISA technique

• There are multiple ELISA techniques for COVID IgG

• The Oxford ELISA seems to be a very good one
Evolution of IgG over time (Oxford ELISA)

Lateral Flow Tests (LFTs)

- Point of care / Home use
- Fast ~ 20 minutes
- Cheap ~ $10-20
- Essential .. UK lacks extensive testing lab infrastructure

For detection of IgG

Optimal characteristics for any COVID Antibody test (including LFT)

- Need very high Specificity
- Don’t want FalsePositives

- Need high Sensitivity
- False negatives less risky, but not helpful

Ideal characteristics

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 99%</td>
<td>> 95%</td>
</tr>
</tbody>
</table>
9 LFTs tested against Oxford ELISA

• 9 Commercially available LFTs were compared to Oxford ELSIA

Performance of 9 COVID-19 LFTs in detail

<table>
<thead>
<tr>
<th>Assay</th>
<th>RT-PCR positive</th>
<th>Pre-pandemic control</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>True positive</td>
<td>False positive</td>
<td>True negative</td>
<td>False negative</td>
</tr>
<tr>
<td>ELISA</td>
<td>34</td>
<td>6</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>15</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>15</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>12</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>13</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>12</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>11</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>10</td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>14</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>18</td>
<td>138</td>
<td>4</td>
</tr>
</tbody>
</table>

9 LFTs performance characteristics

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>93%-100% (point 98%)</td>
<td>65-85% (ideal ~ 90%)</td>
</tr>
</tbody>
</table>

Most COVID-19 Lateral Flow Antibody Tests don’t work that well
Everyone wanted COVID LFTs ..

- Lots of tests approved on very small (carefully chosen) data sets
- Need to be very careful if you use/buy them ..

U.K. Paid $20 Million for New Coronavirus Tests. They Didn’t Work.

Facing a global scramble for materials, British officials bought millions of unproven kits from China in a gamble that became an embarrassment.

FINANCIAL TIMES

myFT Daily Digest

Health sector

Delay and confusion about finding a reliable antibody test in the UK

JUNE 18, 2020

MedTech

FDA names 28 antibody tests to be taken off the market

by Conor Hale | May 22, 2020 10:40am
Can we make a better LFT for COVID?
Formation of UK Rapid Test Consortium (RTC)

• Why UK focus?
• Life Science capability
• Security of supply
• Major COVID shortages of medical equipment, PPE, etc.
• Return of the Nation state..
RTC objectives
My role as Chairman

RTC objectives:
• Perform an 8-month development project in 25% of the time
• Develop Phone App to read test
• Scale up to manufacture later in 2020

My role as Chairman
• Wikipedia “research” on LFTs
• Independent of the companies involved
• Promote trust and cooperation
• Provide moral support when working with UK Department of Health & Social Care, NHS, UK Treasury
• Forming, Norming, Storming, Performing in real time
RTC challenges

Macro
• COVID-19 is a new disease, not fully understood
• Government strategy being developed at pace
• The situation changed on a weekly / daily basis
• Interfacing between 4 small companies and DHSC / Treasury

Micro
• Supply of key materials (antigen, lancets, nitrocellulose, …)
• Finding enough blood samples with appropriate ethics for testing
• Developing user instructions that work for the whole population

• Everyone I know wants a free test
Almost there ... !

• LFT developed and optimized
• Modification of existing Phone App to work with new test and interface to NHSx (Digital)
• Development of Regulatory strategy and collaboration with MHRA
• Transition to large scale manufacture for more widespread evaluation & distribution

ELISA negative
Specificity
Close to optimal

ELISA positive
Sensitivity
Close to optimal
How’s it different to PET radiopharmaceuticals?

• Very rapid development!
• Not a lot of IP hurdles
• You can do a clinical trial with 100s of samples in a day!
• Simpler Regulatory environment
• Very low cost
• Very high volume

• I need to come back to PET for a rest
Thank you!