The Hunt For Alpha Among Alternative Data Sources

QuantCon Singapore – 11th November 2016

Michael Halls-Moore
QuantStart.com
Talk Outline

- About **QuantStart**
- Our **goal** as quant traders
- The problem of **Alpha Decay**
- Alpha from **new data sources**
- *Which* new data sources?
- **Tools** to quantify new data sources
- **Alpha-generating strategies** based on new data
- Where to go **from here**?
About QuantStart.com
About QuantStart.com

- QuantStart was founded in 2012
- **Educational portal** for quantitative trading
- Talks about **algo trading, backtesting** and **machine learning**
- Mainly **Python** and **open-source backtesting**
- My background is originally in:
 - Computational Fluid Dynamics (CFD) research
 - Quantitative development at small London quant fund
Our Goal as Quant Traders
The Hunt for Alpha

• Our goal is to search for “alpha”
• Alpha is a new stream of returns uncorrelated with other “known” sources of returns
• Purely, it is a function applied to a time series that produces predictions/weights of assets for the next time-period/rebalance → Roughly the “strategy”
• The main idea is to look for approaches that others don't know about otherwise it's not “alpha”
The Problem – Alpha Decay
Alpha Decay

- Very cheap to get quality asset pricing and fundamentals data
- Easy to “wrangle” data into the correct format
- Can analyse thousands of strategies with cloud computing
- Diffusion of information and “democratisation” of technology ensures faster “alpha decay”
- Need to look for alpha elsewhere
 - Alternative data sources!
The Solution – Alternative Data
Alternative Data

- New alpha can be found in **alternative data**
- Quant funds, family offices and prop trading desks are **already using it successfully**
- **Standard practice** for retail quants within next five years
- Those who don't use it will be on the **wrong side of the informational edge**
What Data Sources are Available?

- **Satellite data** - Visual, IR
- **Aerial/drone data** – Visual, LiDAR, IR
- **Social media data** – Blogs, FB, Twitter, Instagram, Reddit...
- **Internet-of-Things data** – Smartphones, car logs, sensors
- **Energy supply/demand data** – Oil, natural gas, consumer demand
- **Weather data** – Wind, temperature, rainfall
- **Automated email receipts** - E-commerce purchases
- **Geolocation monitoring** - Shipping, airline and freight locations
- Many, many more...
Alternative Data Examples
Remote Observation Data Abundance

- **Satellite imagery** and aerial **drones**
- Multiple EM wavelengths → “**Hyperspectral**”
- **Microsats** becoming cheaper to develop and launch
- **Drones** are cheap to build, fly and collect data with
- Vendors offering **frequent high-resolution observation data** from both at low(ish) cost
Remote Observation Data Uses

- Estimating **oil volume** by calculating oil storage floating-tank height with their **shadows**
- **Air** and **marine freight traffic** location determination
- **Counting cars** in retail car parking lots to **estimate sales**
- Hyperspectral **crop yield estimation** for “softs” trading
- Estimating **mining yields** via LiDAR volume calculation
- Previously this data had to be collected **in-person, by hand**
Oil Depot Floating Tank Shadow Height
Mining Yields from Raw Material Stockpiles
Crop Yields via “AgTech” Drone Usage
Sentiment Analysis

- **Numerous vendors** – Gnip, DataSift, Quandl, AlchemyAPI
- Provides access to **thousands of news sources** as well as Disqus, FB, Instagram, Reddit, Twitter, YouTube and more
- Datasets are large → YouTube added 1PB *per day* in 2015
- Often used for **equities returns prediction** through news, tweets and earnings reports
- Challenging to make effective strategy!
Sentiment Analysis Challenges

- **Rapidity**: Requires fast trade execution after receipt of news
- **Relevance**: Which equities does news affect and how much?
 - e.g. new Tesla car release impacts Ford, GM, Google
- **Categorisation**: Each category has variable market response
 - e.g. surprise earnings vs legal battle
- **Novelty**: Market only moves if news not “priced in”
 - Must account for *relative* value of news
Build Smarter Apps With AlchemyLanguage

12 Semantic Text Analysis APIs Using Natural Language Processing

TRY OUR DEMO FREE API KEY

Pioneering Easy-to-build Smart Apps for Understanding Customer Needs and Predicting Their Behavior

The AlchemyAPI cloud platform makes it easy to create apps that deeply understand the world’s conversations, debates, and photos so you can align your business with customer preferences and intent.

We help you take action. Brand sentiment. Content sentiment. Sentiment score. Speech sentiment. Everything is algorithmically vetted for a super-fast response.

News API is a simple and easy-to-use API that returns JSON metadata for the headlines currently published on a range of news sources and blogs (APIs and counting to 201)

Use this free API to display live news headlines and images on any website. How to use it:

News API can provide headlines from world-class news sources, including:

- CBS News
- The Guardian
- BuzzFeed News
- The Verge
- The Wall Street Journal
- The New York Times
- NPR
- Reuters
- Al Jazeera
- Vox
- Quartz
- BBC News
- Vox
- The Washington Post
- CNN
- NPR
- The Guardian
- The New York Times
- The Washington Post
- Reuters
- Al Jazeera
- Vox

0 Get API Key

News API Vendors
Sentiment Analysis API Vendors
Internet-of-Things (IoT) Data

- Smartphones, GPS, sensors → All internet-connected
- **Huge impact** in O&G/energy, AgTech, healthcare and insurance
- Vendors beginning to **anonymise** and **sell** data
- Hedge funds are first to **exploit alpha** in these datasets
 - e.g. Consumer footfall via GPS/smartphones for **retail sales estimation** ahead of analyst expectations
Energy and Weather Data

- **Physical weather** data and **energy supply/demand**
- Funds/banks use this to trade **commodity futures**, **cat bonds** and **weather derivatives**
 - One example is London-based **Cumulus** fund
 - Reported to be able to predict weather **better than Met Office**
- Many companies rely on **favourable weather for revenue**
 - Retail, adventure sports, agriculture, energy
 - Motivates earnings-based trading ideas
Some startups have **indirect visibility into email** inboxes
- Gmail, productivity apps, to-do apps

Vendors now provide millions of anonymised emails as data

Trading strategy **estimates quarterly revenues from email purchase receipts** and trades when expectations differ

Quandl.com talks about this at length in blog posts
Pros and Cons
Advantages of Alternative Data

- Good **signal-to-noise ratio** compared to pricing data
- Often **uncorrelated** to other financial data sources
- Many off-the-shelf techniques available to **quantify the data**
- **Competitive advantage** once 'data pipeline' is built and tested
- New data sources **appear frequently**
- Retail traders **can compete** with funds in niches
 - Open source data science tools freely available
 - Compute power in the cloud is cheap
Disadvantages of Alternative Data

- Often **non-quantitative** – Video, imagery, text
- Extremely **high-dimensional** – Video, imagery, text
- **Unstructured/hierarchical** – no key-value schema
- **Missing values** – Interpolation or imputation required
- Data vendors all have **differing formats**
- Data vendor **quality** is highly variable
- Some datasets can be **prohibitively expensive** for retail
Alternative Data for Quant Trading

- **Prediction**: Volume, volatility, returns?
- **Liquidity**: Can you actually trade on it?
- **Timeframe**: HF microstructure or longer-term macro trends?
- **Exclusivity**: Too many users causes alpha decay
- **Domain Expertise**: Can data be used “out of the box”?
- **Consistency**: Does the data format change over time?
Overcoming Alternative Data Challenges

- Alternative data can be **terabytes** or **petabytes** in size
- Often requires **quantification** through **vectorisation**
- Software and algorithms need to be **highly parallelisable**
- “Big Data” era requires new **data science** tools
 - **Storage/Processing:** AWS S3, Hadoop, HDF5, MapD
 - **Analysis:** Machine Learning
Machine Learning
Machine Learning

• A mechanism for **extracting useful signals** from alternative data
• Learns model **from the data**
 – Not pre-programmed “if-then-else” rules
• Main goals are **prediction** and **classification**
• Machine learning is **pervasive in quant finance**
• Three main areas:
 – **Supervised Learning**: Asset Price Prediction, Trade Parameter Optimisation
 – **Unsupervised Learning**: Factor Analysis, Portfolio Clustering
 – **Reinforcement Learning**: Optimising execution algos
Supervised Learning

- Attempt to **match inputs** with **known outputs**
 - Predicting tomorrow's stock price from the previous ten days of prices
 - Classifying a text document into a set of known categories

- **Advantage:**
 - State-of-the-art for classification tasks in alternative data

- **Disadvantages:**
 - Data must be **labelled**, which is costly
 - Prone to **overfitting** – performance might not generalise
 - Requires substantial **training data** to perform well
Unsupervised Learning

• Find **useful structure** in the data – no “outputs”
 – Which equity returns tend to **cluster together**?
 – Which **factors** drive equity returns?

• **Advantages:**
 – Most data in the world is unlabelled so UL is widely applicable
 – Used to reduce dimensionality of high-dimensional alternative data

• **Disadvantage:**
 – Lack of **consistent evaluation mechanism** makes it hard to know if algorithm is effective
Reinforcement Learning

- **Agent** interacting with **environment** via **actions** and **rewards**
- **More challenging** than supervised and unsupervised learning
- Has recently become very famous due to **DeepMind** success on **Atari 2600 games** and **AlphaGo** competition
- Recent promise has prompted many to apply it to quant trading
 - **Stochastic environment** and **noisy reward signal** make it tricky
 - Is used in execution algo optimisation (discussed here at QuantCon!)
Deep Learning

- Deep learning is a **state-of-the-art** machine learning technique
- It involves 'deep' **neural networks** with many 'hidden' layers
- Allows **feature extraction** that other ML methods can't achieve
- Primary method for **extracting signal** from alternative data

Advantages:
- Usually the 'best' method to extract signal for image, text or audio datasets

Disadvantages:
- Steep learning curve, requires a good background in ML
- Significant trial-and-error needed to achieve best results
Analysing Alternative Data
Quantification of Alternative Data

- **Quantification Steps:**
 - *Vectorise* the data into numerical form
 - *Reduce the dimensionality* of the data
 - *Scale* the data to make it comparable across different datasets

- **Image/Video:**
 - Convert each pixel into grayscale [0, 1] intensity value vector

- **Text:**
 - Each word is a dimension representing weighted frequency in a document (TF-IDF)
Image Vectorisation

- 14x14 greyscale image converted into 196-dimensional vector
Data Science Tools for Exploratory Analysis

- Freely-available **open-source tools** are **best for the job**
 - Top-tier quant funds, big Silicon Valley firms, data scientists and retail traders

- **Python**
 - **Anaconda** → Research environment
 - **NumPy/Pandas** → Data wrangling
 - **Scikit-Learn** → Unified SL and UL API
 - **TensorFlow** → Deep Learning

- Goal: Check data for **alpha**!
Compute Power via The Cloud

- Previously it was **expensive** to get access to highly-parallelised supercomputing
- Required complex HPC machines with **many CPU cores**
- GPUs and cloud vendors have **changed the economics** significantly
- GPU compute power in **the cloud**
 - Amazon EC2 p2.xlarge instance - $0.90/hr
 - Amazon EC2 p2.16xlarge instance - $14.40/hr
Quant Trading on Alternative Data
Quant Trading on Alternative Data

- Must have **underlying economic rationale** for strategy
- **Model the factors** that move asset prices:
 - **Supply/Demand** → Physical, statistical, network/graph models
 - **Market Sentiment** → Text, news, social sentiment analysis models
- Generate **better estimates** than “the market”
- Ensure model produces **alpha-generating predictions**
 - Accounting for liquidity constraints and transaction costs
Low-Frequency Oil Model
Oil Model Sketch

- Attempt to model **major drivers** of the oil price via alternative data sources
 - Specifically **supply/demand imbalance** and **market sentiment**
 - **Alpha should decay slowly** as model will be tricky to replicate
- Trading strategy is likely to work:
 - Current oil inventory data is based on **estimates**
 - Estimates have **varying levels of quality** and **truthfulness** across regions
 - We can generate **better estimates** via alternative data
- Trade weekly when **our predictions differ** from market expectations
 - Oil futures → CL
 - Oil ETFs → USO, XOP, UCO
Oil Price Drivers Estimation

Estimating Supply:
- Satellite: Global oil depot tank **classification** and **volume**
- Satellite: **US domestic fracking output** → Indirectly via transportation data (e.g. counting tanker-wagons on freight trains via satellite)
- Geolocation: MarineTraffic.com for oil tanker locations/destinations

Estimating Demand:
- Economics: Population models, cars per household, freight truck usage, avg miles driven, efficiency of cars, local gasoline taxation

Estimating Sentiment:
- **OPEC/trading sentiment** via Twitter, media and research reports
High-Frequency Weather Model
Weather Model Sketch

• Attempt to model **major drivers** of **weather derivatives** via alternative data
 - Alpha is generated through **better predictions** at **intraday frequencies**
 - Must be able to **predict local weather** to an **extremely high accuracy**
 - Strategy likely to require a **small data-science/quant/developer team**

• For **accurate temperature/rainfall prediction** at major cities we can combine:
 - **Numerical Weather Prediction (NWP)** model and **statistical ensemble** of forecasts
 - **Entity extraction/sentiment analysis** from social/text sources in geo-referenced posts

• Can create **portfolio of weather derivatives** to bet on predictions
 - CMEGroup provides futures/options for larger US cities as well as London and Amsterdam
Weather Derivatives Model Details

- Backtesting will be **challenging**:
 - Potential **illiquidity** of weather derivatives
 - **Market impact** is tough to simulate
 - Combining NWP with statistical ensemble intraday will require **sophisticated HPC infrastructure**

- Advantages:
 - **Capacity constraint** of assets limit it to smaller funds or small team
 - **Alpha will likely decay slowly** as it requires expertise in many areas
Where To Go From Here?
Where To Go From Here?

• Beginner Data Science Tutorials:
 – TensorFlow: https://www.tensorflow.org/tutorials
 – Kaggle/Quantopian: Practice, practice, practice!

• Data Vendors:
 – Quandl, Gnip, DataSift, AlchemyAPI, PyschSignal
 – Forecast.io, NOAA, FlightRadar24, MarineTraffic

• Compute Power:
 – Buy Nvidia Titan X GPU → $1200
 – Rent p2.xlarge Amazon EC2 instance → ~$670/month
Thank you!

Q&A?