OWNER'S MANUAL CP, CB SERIES CENTRIFUGAL PUMP

MODELS
Medium Head - Noryl ${ }^{\oplus}$ Impellers
Medium Head - Brass Impellers
High Head - Noryl ${ }^{\circledR}$ Impellers
High Head - Brass Impellers
1/3 through 2-1/2 H.P.:
115/230 Volt Single Phase
230 Volt Single Phase
230/460 Volt Three Phase

LIMITED WARRANTY

BERKELEY warrants to the original consumer purchaser ("Purchaser" or "You") of the products listed below, that they will be free from defects in material and workmanship for the Warranty Period shown below.

Product	Warranty Period
Water Systems Products - jet pumps,	whichever occurs first:
small centrifugal pumps, submersible pumps	12 months from date of original installation, or
and related accessories	18 months from date of manufacture
Pro-Source ${ }^{\text {TTM }}$ Composite Tanks	5 years from date of original installation
Pro-Source ${ }^{\text {TM }}$ Steel Pressure Tanks	5 years from date of original installation
Pro-Source ${ }^{T M}$ Epoxy-Lined Tanks	3 years from date of original installation
Sump/Sewage/Effluent Products	12 months from date of original installation, or
	18 months from date of manufacture

Our warranty will not apply to any product that, in our sole judgement, has been subject to negligence, misapplication, improper installation, or improper maintenance. Without limiting the foregoing, operating a three phase motor with single phase power through a phase converter will void the warranty. Note also that three phase motors must be protected by three-leg, ambient compensated, extraquick trip overload relays of the recommended size or the warranty is void.
Your only remedy, and BERKELEY's only duty, is that BERKELEY repair or replace defective products (at BERKELEY's choice). You must pay all labor and shipping charges associated with this warranty and must request warranty service through the installing dealer as soon as a problem is discovered. No request for service will be accepted if received after the Warranty Period has expired. This warranty is not transferable.
BERKELEY SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR CONTINGENT DAMAGES WHATSOEVER. THE FOREGOING WARRANTIES ARE EXCLUSIVE AND IN LIEU OF ALL OTHER EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE FOREGOING WARRANTIES SHALL NOT EXTEND BEYOND THE DURATION EXPRESSLY PROVIDED HEREIN.
Some states do not allow the exclusion or limitation of incidental or consequential damages or limitations on the duration of an implied warranty, so the above limitations or exclusions may not apply to You. This warranty gives You specific legal rights and You may also have other rights which vary from state to state.
This warranty supersedes and replaces all previous warranty publications.
In the U.S.: BERKELEY, 293 Wright St., Delavan, WI 53115
In Canada: 269 Trillium Dr., Kitchener, Ontario N2G 4W5
Berkeley Pumps / 293 Wright Street / Delavan, Wisconsin 53115

PIPING - GENERAL

Support both suction and discharge piping independently at a point near the pump to avoid putting a strain on the pump housing. Start all piping AT THE PUMP.
Increase pipe diameter at both the suction and discharge by one (1) standard pipe size (minimum) to obtain desired performance and flow rate. Refer to Table I when sizing pipe for your pumping system.
NOTICE: Do not use pipe with smaller diameter on the suction side of pump.

TABLE I

Pump Port Size (NPT)		Recommended Pipe Size	
Suction	Discharge	Suction	Discharge
$1-1 / 4$	1	$1-1 / 2$	$1-1 / 4$
$1-1 / 2$	$1-1 / 4$	2	$1-1 / 2$
2	$1-1 / 2$	3	2

SUCTION PIPE

Increase pipe size from pump suction port as shown in Table I.
Figure 1 (Page 2) depicts a recommended run of pipe and fittings for the suction side of a centrifugal pump. Please refer to this illustration when choosing pipe and fittings for your suction connection.
IMPORTANT: All connections must be air tight!
Figure 2 (Page 2) depicts conditions that are NOT DESIRABLE on the suction side of a centrifugal pump and may cause problems in flow rate and priming. Please look this illustration over carefully before choosing pipe and fittings for your suction connection.

DISCHARGE PIPING

Increase pipe size from pump discharge port as shown in Table I. Figure 1 (Page 2) depicts a recommended run of pipe and fittings for the discharge. Install tee with priming plug as close to pump as possible. Figure 2 (Page 2) notes conditions that should be avoided. Please read over carefully before making discharge connection.

PRIMING THE PUMP

A pump is primed when all air in the suction line and pump volute has been evacuated and replaced with water.

To Prime:

1. Close valve in discharge line.
2. Remove priming plug from tee and fill pump and suction line with water until water is flowing back out of tee.
3. Replace priming plug.
4. Start pump and slowly open valve until desired water flow is achieved.
NOTICE: If water is not being pumped, turn off pump, close valve, and repeat steps 1 thru 4.
If pump volute is rotated as shown in Figure 1 (Page 2), loosen vent plug when priming to evacuate air trapped inside volute. Tighten when volute is completely filled with water.
NOTICE: Do not run the pump dry. This will damage mechanical seal and void warranty.

A CAUTION

Burn hazard. Motor normally operates at high temperature and will be too hot to touch. It is protected from heat damage during operation by an automatic internal cutoff switch. Before handling pump or motor, stop motor and allow it to cool for 20 minutes.

TABLE II - RECOMMENDED FUSING AND WIRING DATA - 60 CYCLE MOTORS

			DIAMETER IN FEET FROM MOTOR TO METER					
MOTOR HP	MAX. LOAD AMPERES	$\begin{gathered} \hline \text { BRANCH } \\ \text { FUSE* } \\ \text { RATING } \\ \text { AMPS } \\ \hline \end{gathered}$	$\begin{aligned} & 0^{\prime} \\ & \text { TO } \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 51^{\prime} \\ \text { TO } \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 101 \\ & \text { TO } \\ & 200 \end{aligned}$	$\begin{aligned} & 201 ’ \\ & \text { TO } \\ & 300 \end{aligned}$	$\begin{gathered} \hline 301 \\ \text { TO } \\ 400 \\ \hline \end{gathered}$	$\begin{gathered} 401 \\ \text { TO } \\ 500 \\ \hline \end{gathered}$
			WIRE SIZE					
SINGLE PHASE - 115 VOLT								
1/3	9.4	15	14	14	12	10	8	8
1/2	9.4	15	14	14	12	10	8	8
3/4	12.2	20	12	12	10	8	6	4
1	14.8	20	12	12	8	6	6	4
1-1/2	19.2	30	10	10	8	6	4	2
2	24.0	30	12	10	6	6	4	4
SINGLE PHASE - 230 VOLT								
1/3	4.7	15	14	14	14	12	12	10
1/2	4.7	15	14	14	14	12	12	10
3/4	6.1	15	14	14	14	14	12	10
1	7.4	15	14	14	14	12	12	10
1-1/2	9.6	15	14	14	14	12	10	10
2	12.0	15	14	14	12	12	10	8
2-1/2	12.0	15	14	14	12	12	10	8
THREE PHASE - 230 VOLT								
1/2	2.3	15	14	14	14	14	14	14
3/4	3.1	15	14	14	14	14	14	14
1	3.6	15	14	14	14	14	14	14
1-1/2	4.7	15	14	14	14	14	14	14
2	6.8	15	14	14	14	14	14	12
2-1/2	8.5	15	14	14	14	14	14	12
THREE PHASE - 460 VOLT								
1/2	1.15	15	14	14	14	14	14	14
3/4	1.55	15	14	14	14	14	14	14
1	1.8	15	14	14	14	14	14	14
1-1/2	2.35	15	14	14	14	14	14	14
2	3.4	15	14	14	14	14	14	14
2-1/2	4.25	15	14	14	14	14	14	14

*A Fusetron is recommended instead of a fuse in any motor circuit.

ELECTRICAL

Connection diagram for dual voltage, single-phase motors. Your dual-voltage motor's terminal board (under the motor end cover) will match one of the diagrams below. Follow that diagram if necessary to convert motor to 115 Volt power.
Connect power supply wires to L1 and L2. For 3-phase motors, or if motor does not match these pictures, follow the connection diagram on the motor nameplate.

THE MOTOR IS SET FOR 230 VOLTS WHEN SHIPPED.

To change the motor to use 115 volts:

1. Turn off power
2. Remove the back motor cover.
3. Use a screwdriver or $1 / 2$ " wrench and turn the voltage selector dial counterclockwise until 115 shows in the dial opening.
4. Reinstall the motor cover.

Abstract

A WARNING Hazardous voltage. Can shock, burn, or cause death. Disconnect power to motor before working on pump or motor. Ground motor before connecting to power supply.

Figure 3: Changing the Voltage Setting

Figure 4: Motor Set for 115 Volt Operation

WIRING

A
Ground motor before connecting to electrical power supply. Failure to ground motor can cause severe or fatal electrical shock hazard.

Do not ground to a gas supply line.

To avoid dangerous or fatal electrical shock, turn OFF power to motor before working on electrical connections.

ASupply voltage must be within $\pm 10 \%$ of nameplate voltage. Incorrect voltage can cause fire or damage motor and voids warranty. If in doubt consult a licensed electrician.

AUse wire size specified in Wiring Chart (Page 3). If possible, connect pump to a separate branch circuit with no other appliances on it.

AWire motor according to diagram on motor nameplate. If nameplate diagram differs from diagrams above, follow nameplate diagram.

1. Install, ground, wire and maintain your pump in compliance with the National Electrical Code (NEC) in the U.S., or the Canadian Electrical Code (CEC), as applicable, and with all local codes and ordinances that apply. Consult your local building inspector for code information.
2. Provide a correctly fused disconnect switch for protection while working on motor. For switch requirements, consult your local building inspector for information about codes.
3. Disconnect power before servicing motor or pump. If the disconnect switch is out of sight of pump, lock it open and tag it to prevent unexpected power application.
4. Ground the pump permanently using a wire of the same size as that specified in wiring chart (Page 3). Make ground connection to green grounding terminal under motor canopy marked GRD. or Θ.
5. Connect ground wire to a grounded lead in the service panel or to a metal underground water pipe or well casing at least 10 feet long. Do not connect to plastic pipe or insulated fittings.
6. Protect current carrying and grounding conductors from cuts, grease, heat, oil, and chemicals.
7. Connect current carrying conductors to terminals L1 and L2 under motor canopy. When replacing motor, check wiring diagram on motor nameplate against Figure 3. If the motor wiring diagram does not match either diagram in Figure 3, follow the diagram on the motor.
IMPORTANT: 115/230 Volt single phase models are shipped from factory with motor wired for 230 volts. If power supply is 115 volts, remove motor canopy and reconnect motor as shown in Figure 4. Do not try to run motor as received on 115 volt current.
8. Motor has automatic internal thermal overload protection. If motor has stopped for unknown reasons, thermal overload may restart it unexpectedly, which could cause injury or property damage. Disconnect power before servicing motor.
9. If this procedure or the wiring diagrams are confusing, consult a licensed electrician.

SERVICE

PUMP SERVICE

This centrifugal pump requires little or no service other than reasonable care and periodic cleaning. Occasionally, however, a shaft seal (Key No. 4, Page 6) may become damaged and must be replaced. The procedure as outlined below will enable you to replace the seal.
NOTICE: These mechanical seals are supplied with either a rubber seat ring or a sealing O-Ring. They are completely interchangeable.
NOTICE: The highly polished and lapped faces of this seal are easily damaged. Read instructions and handle the seal with care.
Some models are equipped with an impeller screw, which has a left hand thread. Before unscrewing the impeller, remove the impeller screw.

REMOVAL OF OLD SEAL

1. After unscrewing impeller (Key No. 5, Page 6), carefully remove rotating part of seal by prying up on sealing washer, using two screwdrivers (see Figure 5A). Use care not to scratch motor shaft.
2. Remove seal plate (Key No. 3) from motor and place on flat surface, face down. Use a screwdriver to push ceramic seat out from seal cavity (see Figure 5B).

INSTALLATION OF FLOATING SEAT

(Figure 5C)

1. Clean polished surface of floating (ceramic) seat with clean cloth.
2. Turn seal plate over so seal cavity is up; clean cavity thoroughly.
3. Lubricate outside rubber surface or O-Ring of ceramic seat with soapy water and press firmly into seal cavity with finger pressure. If seat will not locate properly in this manner, place cardboard washer over polished face of seat and press into seal cavity using a $3 / 4$ " socket or $3 / 4$ " piece of standard pipe.
4. DISPOSE OF CARDBOARD WASHER. Be sure polished surface of seat is free of dirt and has not been damaged by insertion. Remove excess soapy water.

INSTALLATION OF ROTATING PART OF SEAL UNIT (Figure 5D)

1. Reinstall seal plate using extreme caution not to hit ceramic portion of seal on motor shaft.
2. Inspect shaft to make sure that it is clean.
3. Clean face of sealing washer with clean cloth.
4. Lubricate inside diameter and outer face of rubber drive ring (see Figure 5D) with soapy water and slide assembly on motor shaft (sealing face first) until rubber drive ring hits shaft shoulder.
5. Screw impeller on shaft until impeller hub hits shaft shoulder. This will automatically locate seal in place and move the sealing washer face up against the facing seat. Reinstall impeller screw (if used).

FIGURE 5

REPAIR PARTS LST - MEDIUM HEAD - NORYL" IMPELLER

Key No.	Part Description	No. Used	MOTOR AND HORSEPOWER					
			CP1MPS			CP11/4 1 XPS		
			1/3 HP S39489	1/2 HP S39490 S39491	3/4 HP S39492 S39493	1 HP S39494 S39495	$\begin{gathered} \text { 1-1/2 HP } \\ \text { S39496 } \\ \text { S39497 } \end{gathered}$	2 HP S39498 S39499
1*	Motor-115/230V, 60 Cycle, Single Phase	1	J218-582APKG	J218-582APKG	J218-590PKG	J218-596PKG	J218-601PKG	J218-883APKG
1*	Motor - 230/460V, 60 Cycle, Three Phase	1	-	AP100CL	AP100DL	AP100EL	AP100FL	AP100GL
$\dagger 2$	Water Slinger	1	17351-0009	17351-0009	17351-0009	17351-0009	17351-0009	17351-0009
3	Seal Plate	1	N3-8	N3-8	N3-8	N3-8	C3-52	C3-52
$\dagger 4$	Shaft Seal	1	U109-6A	U109-6A	U109-6A	U109-6A	U109-6A	U109-6A
5	Impeller - Single Phase	1	J105-42PHA	J105-42PHA	J105-42PJA	J105-42PP	C105-114PC	C105-114PA
5	Impeller - Three Phase	1	-	J105-42PHA	J105-42PJA	J105-42PPA	C105-114PCA	C105-114PA
5A	Impeller Screw - Single Phase	1	-	-	-	-	-	C30-14SS
5A	Impeller Screw - Three Phase	1	-	C30-6SS	C30-6SS	C30-6SS	C30-14SS	C30-14SS
6	Volute Assembly - Complete	1	-	-	-	-	C201-123	C201-123
6	Volute Assembly - w/Wear Ring	1	C101-122E	C101-122E	C101-122E	C101-122	-	-
7	Wear Ring (only)	(1)	N23-7	N23-7	N23-7	N23-7	C23-19	C23-19
8	Studs - $3 / 8-16 \times 2$ " Lg.	(4)	-	-	-	-	U30-29	U30-29
9	Pipe Plug - $1 / 4$ " NPT	(3)	-	-	-	-	U78-57CT	U78-57CT
9A	Drain Plug - 1/4" NPT	(1)	-	-	-	-	U78-941ZPV	U78-941ZPV
8	Capscrew-3/8-16 x 1-1/2" Lg.	2	U30-76ZP	U30-76ZP	U30-76ZP	U30-76ZP	-	-
8A	Capscrew - $3 / 8-16 \times 1-1 / 4$ " Lg.	2	U30-75ZP	U30-75ZP	U30-75ZP	U30-75ZP	-	-
9	Pipe Plug - $1 / 4$ " NPT	3	U78-57CT	U78-57CT	U78-57CT	U78-57CT	-	-
9A	Drain Plug - 1/4" NPT	1	U78-941ZPV	U78-941ZPV	U78-941ZPV	U78-941ZPV	-	-
$\dagger 10$	Gasket - Volute	1	N20-26	N20-26	N20-26	N20-26	C20-21	C20-21
11	Nuts-3/8-16 Hex	4	-	-	-	-	U36-38ZP	U36-38ZP
12	Base	1	J104-9A	J104-9A	J104-9A	J104-9A	J104-9A	J104-9A
12A	Motor Pad	1	C35-5	C35-5	C35-5	C35-5	C35-5	C35-5

[^0]REPAIR PARTS LIST - MEDIUM HEAD - BRASS IMPELLER

$\begin{array}{\|l\|l} \text { Key } \\ \text { No. } \end{array}$	Part Description	No. Used	MOTOR AND HORSEPOWER					
			CB1MPS		CB1 114 XPS			CB1 112 XPS
			$1 / 2 \mathrm{HP}$ S39503 S39504	$3 / 4$ HP S39505 S39506	1 HP S39507 S39508	1-1/2 HP S39509 S39510	2 HP S39511 S39512	2-1/2 HP S39513 S39514
1^{*}	Motor - 115/230V, 60 Cycle, Single Phase	1	J218-582APKG	J218-590PKG	J218-596PKG	J218-601PKG	J218-883APKG	-
1^{*}	Motor - 230/460V, 60 Cycle, Three Phase	1	AP100CL	AP100DL	AP100EL	AP100FL	AP100GL	AP100G5L
$\dagger 2$	Water Slinger	1	17351-0009	17351-0009	17351-0009	17351-0009	17351-0009	17351-0009
3	Seal Plate	1	N3-8	N3-8	N3-8	С3-52	C3-52	C3-52
†4	Shaft Seal	1	U109-6A	U109-6A	U109-6A	U109-6A	U109-6A	U109-6A
5	Impeller - Single Phase	1	J105-42MA	J105-42LA	J105-42NA	C105-79B	C105-73BA	C105-80BA
5	Impeller - Three Phase	1	J105-42MA	J105-42LA	J105-42NA	C105-79BA	C105-73BA	C105-80BA
5A	Impeller Screw - Single Phase	1	-	-	-	-	C30-14SS	C30-14SS
5 A	Impeller Screw - Three Phase	1	C30-6SS	C30-6SS	C30-6SS	C30-14SS	C30-14SS	C30-14SS
6	Volute Assembly - Complete	1	-	-	-	C201-123	C201-123	C201-123B
6	Volute Assembly - w/Wear Ring	1	C101-122E	C101-122E	C101-122	-	-	-
7	Wear Ring (only)	(1)	N23-27	N23-27	N23-27	C23-19	C23-19	C23-19
8	Studs - $3 / 8-16 \times 2$ ' Lg.	(4)	-	-	-	U30-29	U30-29	U30-29
9	Pipe Plug-1/4" NPT	(3)	-	-	-	U78-57CT	U78-57CT	U78-57CT
9A	Drain Plug - $1 / 4^{\prime \prime}$ NPT	(1)	-	-	-	U78-941ZPV	U78-941ZPV	U78-941ZPV
8	Capscrew - $3 / 8-16 \times 1-1 / 2^{\prime \prime} \mathrm{Lg}$.	2	U30-76ZP	U30-76ZP	U30-76ZP	-	-	-
8A	Capscrew - $3 / 8-16 \times 1-1 / 4^{\prime \prime} \mathrm{Lg}$.	2	U30-75ZP	U30-75ZP	U30-75ZP	-	-	-
9	Pipe Plug - $1 / 4^{\prime \prime}$ NPT	3	U78-57CT	U78-57CT	U78-57CT	-	-	-
9 A	Drain Plug - $1 / 4$ " NPT	1	U78-941ZPV	U78-941ZPV	U78-941ZPV	-	-	-
†10	Gasket - Volute	1	N20-26	N20-26	N20-26	C20-21	C20-21	C20-21
11	Nuts-3/8-16 Hex	4	-	-	-	U36-38ZP	U36-38ZP	U36-38C
12	Base	1	J104-9A	J104-9A	J104-9A	J104-9A	J104-9A	J104-9F
12A	Motor Pad	1	C35-5	C35-5	C35-5	C35-5	C35-5	C35-5

[^1]REPAIR PARTS LIST - HIGH HEAD - NORYL® IMPELLER

Key No.	Part Description	No. Used	MOTOR AND HORSEPOWER					
			CP1XPHS				CP11/4TPHS	CP1112TPHS
			$1 / 2 \mathrm{HP}$ S39516 S39517	$3 / 4$ HP S39518 S39519	$\begin{gathered} 1 \mathrm{HP} \\ \text { S39520 } \\ \text { S39521 } \end{gathered}$	1-1/2 HP S39522 S39523	$\begin{gathered} 2 \mathrm{HP} \\ \text { S39524 } \\ \text { S39525 } \end{gathered}$	2-1/2 HP S39526 S39527
1*	Motor - 115/230V, 60 Cycle, Single Phase	1	J218-582APKG	J218-590PKG	J218-596PKG	J218-601PKG	J218-883APKG	J218-628APKG
1*	Motor - 230/460V, 60 Cycle, Three Phase	1	AP100CL	AP100DL	AP100EL	AP100FL	AP100GL	AP100G5L
†2	Water Slinger	1	17351-0009	17351-0009	17351-0009	17351-0009	17351-0009	17351-0009
3	Seal Plate	1	C3-1042P	C3-1042P	C3-1042P	C3-1042P	C3-181	C3-181
†4	Shaft Seal	1	U109-6A	U109-6A	U109-6A	U109-6A	U109-93SS	U109-93SS
5	Impeller - Single Phase	1	C105-92PN	C105-92PM	C105-92PL	C105-92PB	C105-214PCA	C105-214PA
5	Impeller - Three Phase	1	C105-92PNA	C105-92PMA	C105-92PLA	C105-92PBA	C105-214PCA	C105-214PA
5A	Impeller Screw - Single Phase	1	-	-	-	-	C30-14SS	C30-14SS
5A	Impeller Screw - Three Phase	1	C30-14SS	C30-14SS	C30-14SS	C30-14SS	C30-14SS	C30-14SS
6	Volute Assembly - Complete	1	C101-281E	C101-281E	C101-281E	C101-281E	C101-264E	C101-264E
7	Wear Ring (only)	(1)	C23-27	C23-27	C23-27	C23-27	C23-19	C23-19
8	Capscrew-3/8-16x ${ }^{\text {" }}$	2	-	-	-	-	U30-74ZP	U30-99SS
8A	Capscrew - $3 / 8-16 \times 1-1 / 4$ "	2	U30-75ZP	U30-75ZP	U30-75ZP	U30-75ZP	U30-75ZP	U30-104ZP
8	Capscrew - $3 / 8-16 \times 1-1 / 2^{\prime \prime}$	2	U30-76ZP	U30-76ZP	U30-76ZP	U30-76ZP	-	-
9	Pipe Plug-1/4" NPT	(2)	U78-57CT	U78-57CT	U78-57CT	U78-57CT	U78-57CT	U78-57CT
9 A	Drain Plug - $1 / 4$ " NPT	(1)	U78-941ZPV	U78-941ZPV	U78-941ZPV	U78-941ZPV	U78-941ZPV	U78-941ZPV
$\dagger 10$	Gasket - Volute	1	C20-121	C20-121	C20-121	C20-121	C20-122	C20-122
12	Base	1	J104-9F	J104-9F	J104-9F	J104-9F	J104-9F	J104-9F
12A	Motor Pad	1	C35-5	C35-5	C35-5	C35-5	C35-5	C35-5

[^2]REPAIR PARTS LIST - HIGH HEAD - BRASS IMPELLER

[^3]
TROUBLE - CAUSES AND REMEDY

TROUBLE AND CAUSE	REMEDY		
FAILURE TO PUMP	1. Make sure pump casing and suction line are full of water.		
1. Pump not properly primed.	1. Check suction piping.		
REDUCED CAPACITY AND/OR HEAD			
1. Air pockets or leaks in suction line. 2. Clogged impeller.	1. Check suction piping		
PUMP LOSES PRIME 1. Air leaks in suction line. 2. Excessive suction lift and operating too near shut-off point.	2. Move pump nearer to water level.		3. Water level drops while pumping,
:---			
uncovering suction piping.	\quad	3. Check water supply. Add length of pipe to suction	
:---			
to keep submerged end under water.			

[^0]: * For repair or service to motors, always give the motor Model Number and any other data found on the Motor Model Plate. †Included in Seal \& Gasket Kit.

[^1]: * For repair or service to motors, always give the motor Model Number and any other data found on the Motor Model Plate. \dagger Included in Seal \& Gasket Kit.

[^2]: * For repair or service to motors, always give the motor Model Number and any other data found on the Motor Model Plate. † Included in Seal \& Gasket Kit.

[^3]: * For repair or service to motors, always give the motor Model Number and any other data found on the Motor Model Plate. \dagger Included in Seal \& Gasket Kit.

