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Summary. Artificial Immune Systems (AIS) represent one of the most recent and
promising approaches in the branch of bio-inspired techniques. Although this open
field of research is still in its infancy, several relevant results have been achieved by
using the AIS paradigm in demanding tasks such as the ones coming from computa-
tional biology and biochemistry. The chapter will show how AIS have been successfully
used in computational biology problems and will give readers further hints about pos-
sible implementations in unexplored fields. The main goal of the contribution lays in
providing both theoretical foundations and hands-on experience that allow researchers
to figure out novel applications of AIS in bioinformatics and, at the same time, pro-
viding researchers with necessary insights for implementation in daily research. The
contribution will be organised in 5 sections.

11.1 Introduction

Artificial Immune Systems (AIS) represent one of the most recent and promising
approaches in the branch of bio-inspired techniques. Although this open field of
research is still in its infancy, several relevant results have been achieved by using
the AIS paradigm in demanding tasks such as the ones coming from computa-
tional biology and biochemistry. Artificial immune systems (AIS) can be defined
as computational systems inspired by theoretical immunology, observed immune
functions, principles and mechanisms in order to solve problems. Their devel-
opment and application domains follow those of soft computing paradigms such
as artificial neural networks (ANN), evolutionary algorithms (EA) and fuzzy
systems (FS). Soft computing was the term coined to address a new trend of co-
existence and integration that reflects a high degree of interaction among several
computational intelligence approaches like artificial neural network, evolutionary

T.G. Smolinski et al. (Eds.): Comp. Intel. in Biomed. & Bioinform., SCI 151, pp. 271-{235] 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008



272 V. Bevilacqua et al.

algorithms and fuzzy systems. The idea of integrating different computational
intelligence paradigms in order to create hybrids combining the strengths of dif-
ferent approaches is not new. Following the previous concepts when in 2002 de
Castro and Timmis introduced AIS as a new soft computing paradigm they gave
birth to a new challenge to a have a great potential to interact the new born
technique with the other previously existing. Strictly speaking evolution and im-
mune system are biologically very correlated to each other in fact the process of
natural selection can be seen to act the immune system at two levels. First recall
that lymphocytes multiply based on their affinity with a pathogen. The higher
affinity lymphocytes are selected to reproduce, a process usually named immune
microevolution. The mechanism of immune microevolution is very important.
The clonal selection principle presupposes that a very large number of B-cells
containing antigenic receptors is constantly circulating throughout the organism.
The great diversity of this repertoire is a result of the random genetic recom-
bination of gene fragments from different libraries plus the random insertion of
gene sequences during cell development. This availability of different solutions
guarantees that at least one cell will produce an antibody capable of recognizing,
thus binding with, any antigen that invades the organism. The antigen-antibody
binding stimulate the production of clones of the selected cells, where successive
generations result in exponential growth of the selected antibody type. Some of
these antibodies remain in circulation even after the immune response ceases,
constituting a sort of immune memory. Other cells differentiate in plasma cells,
producing antibodies in high rates. Finally during reproduction, some clones
suffer an affinity maturation process, where somatic mutations are inserted with
high rates (hypermutation) and, combined with a strong selective mechanism,
improve the capability (Ag-Ab affinity and clone size) of these antibodies to
recognize and respond to the selective antigens. Secondly, there is surely an im-
mune contribution to natural selection, which acts by allowing the multiplication
of those people carrying genes that are most able to provide maximal defense
against infectious diseases coupled with minimal risk of autoimmune diseases.
At this time the majority of the immune algorithms currently developed have
an evolutionary like type of learning of embodied process and several techniques
from one strategy have been used to enhance another. I-PAES presented and
discussed in the section [T1.3Tlis an example of hybridization between a particu-
lar class of evolutionary algorithms called multi-objective and immune inspired
operators namely cloning and hypermutaion.

The success of the AIS paradigm is based on two key properties of its theo-
retical foundations: recognition and adaptation/optimisation. When an animal
is exposed to an antigen, some subpopulation of its bone marrow derived cells
(B lymphocytes) respond by producing antibodies (Ab). Each cell secretes a sin-
gle type of antibody, which is relatively specific for the antigen. By binding to
these antibodies (cell receptors), and with a second signal from accessory cells,
such as the T-helper cell, the antigen stimulates the B cell to proliferate (divide)
and mature into terminal (non-dividing) antibody secreting cells, called plasma
cells. The process of cell division (mitosis) generates a clone, i.e., a cell or set
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of cells that are the progenies of a single cell. While plasma cells are the most
active antibody secretors, large B lymphocytes, which divide rapidly, also se-
crete antibodies, albeit at a lower rate. On the other hand, T cells play a central
role in the regulation of the B cell response and are preeminent in cell medi-
ated immune responses, but will not be explicitly accounted for the development
of our model. Lymphocytes, in addition to proliferating and/or differentiating
into plasma cells, can differentiate into long-lived B memory cells. Memory cells
circulate through the blood, lymph and tissues, and when exposed to a second
antigenic stimulus commence to differentiate into large lymphocytes capable of
producing high affinity antibodies, pre-selected for the specific antigen that had
stimulated the primary response. Fig [[T.1] depicts the clonal selection principle.
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Fig. 11.1. Clonal selection principle in natural immune systems

The clonal selection and affinity maturation principles are used to explain
how the immune system reacts to pathogens and how it improves its capability
of recognizing and eliminating pathogens [I]. In a simple form, clonal selection
states that when a pathogen invades the organism, a number of immune cells
that recognize these pathogens will proliferate; some of them will become effector
cells, while others will be maintained as memory cells. The effector cells secrete
antibodies in large numbers, and the memory cells have long life spans so as
to act faster and more effectively in future exposures to the same or a similar
pathogen. During the cellular reproduction, the cells suffer somatic mutations
with high rates and, together with a selective force, the higher affinity cells in
relation to the invading pathogen differentiate into memory cells. This whole
process of somatic mutation plus selection is known as affinity maturation. To a
reader familiar with evolutionary biology, these two processes of clonal selection
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and affinity maturation are much akin to the (macro-)evolution of species. There
are a few basic differences however, between these immune processes and the
evolution of species. Within the immune system, somatic cells reproduce in an
asexual form (there is no crossover of genetic material during cell mitosis), the
mutation suffered by an immune cell is proportional to its affinity with the
selective pathogen (the higher the affinity, the smaller the mutation rate), and
the number of progenies of each cell is also proportional to its affinity with the
selective pathogen (the higher the affinity, the higher the number of progenies).
Evolution in the immune system occurs within the organism and, thus it can
be viewed as a micro-evolutionary process. As we know, in fact, immunology
suggests that the natural Immune System (IS) has to assure recognition of each
potentially dangerous molecule or substance, generically called antigen (Ag), by
antibodies (Ab). The IS first recognises an antigen as “dangerous” or external
invaders and then adapts (by affinity maturation) its response to eliminate the
threat. To detect an antigen, the IS activates a recognition process. In vertebrate
organisms, this task is accomplished by the complex machinery made by cellular
interactions and molecular productions. The main features of the clonal selection
theory that will be explored in this chapter are [I]]:

Proliferation and differentiation on stimulation of cells with antigens;
Generation of new random genetic changes, subsequently expressed as diverse
antibody patterns, by a form of accelerated somatic mutation (a process
called affinity maturation);

e FElimination of newly differentiated lymphocytes carrying low affinity anti-
genic receptors.

To illustrate the adaptive immune learning mechanism, consider that an anti-
gen Agl is introduced at time zero and it finds a few specific antibodies within
the animal (see Fig. After a lag phase, the antibody against antigen Ag1
appears and its concentration rises up to a certain level, and then starts to de-
cline (primary response). When another antigen Ag2 is introduced, no antibody
is present, showing the specificity of the antibody response [I]. On the other
hand, one important characteristic of the immune memory is that it is associa-
tive: B cells adapted to a certain type of antigen Agl presents a faster and more
efficient secondary response not only to Ag1, but also to any structurally related
antigen Agl + Ag2. This phenomenon is called immunological cross-reaction, or
cross-reactive response. This associative memory is contained in the process of
vaccination and is called generalization capability, or simply generalization, in
other artificial intelligence fields, like neural networks [I].

Receptor editing offers the ability to escape from local optima on an affin-
ity landscape. Fig [[T.3] illustrates this idea by considering all possible antigen-
binding sites depicted in the x-axis, with the most similar ones adjacent to each
other. The Ag-Ab affinity is shown on the y-axis. If it is taken a particular an-
tibody (Ab1) selected during a primary response, then point mutations allow
the immune system to explore local areas around Abl by making small steps
towards an antibody with higher affinity, leading to a local optima (Ab1 *).
Because mutations with lower affinity are lost, the antibodies can not go down
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Fig. 11.3. Antibody affinity as function of the specific antigen binding site

the hill. Receptor editing allows an antibody to take large steps through the
landscape, landing in a locale where the affinity might be lower (Ab2). How-
ever, occasionally the leap will lead to an antibody on the side of a hill where
the climbing region is more promising (Ab3), reaching the global optimum. From
this locale, point mutations can drive the antibody to the top of the hill (453 *).
In conclusion, point mutations are good for exploring local regions, while editing
may rescue immune responses stuck on unsatisfactory local optima.
Computational immunology is the research field that attempts to reproduce
in silico the behavior of the natural IS. From this approach, the new field of
Artificial Immune Systems (AIS) attempts to use theories, principles, and con-
cepts of modern immunology to design immunity-based system applications in
science and engineering [1]. AIS are adaptive systems in which learning takes
place by evolutionary mechanisms similar to biological evolution. These differ-
ent research areas are tied together: the more we learn from in silico modelling of
natural systems, the better we are able to exploit ideas for computer science and
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engineering applications. Thus one wants, first, to understand the dynamics of
such complex behavior when they face antigenic attack, and second, one wishes
to develop new algorithms that mimic the natural IS under study. Thus the
final system may have a good ability to solve computational problems otherwise
difficult to be solved by conventional specialised algorithms. The computational
and predictive power of AIS offers researchers a promising approach for trying
to solve well known and challenging problems like knowledge discovery from
huge biological databases (e.g. coming from high throughput platforms) as well
as protein folding or function prediction and multiple sequence alignment. The
chapter will show how AIS have been successfully used in computational biology
problems and will give readers further hints about possible implementations
in unexplored fields. The main goal of the contribution lays in providing both
theoretical foundations and hands-on experience that allow researchers to figure
out novel applications of AIS in bioinformatics and, at the same time, providing
researchers with necessary insights for implementation in daily research.

11.2 Immunity-Based Data Mining Systems in
Bioinformatics

Recent advances in active fields of research like biotechnology and electronics
allowed biomedical research to make a significant step forward in the acquisi-
tion of fundamental tools for the elucidation of complex bio-processes like the
ones behind cancer or Alzheimer disease. The advent of High-Throughput (HT)
platforms has revolutionized the way researchers working in life sciences thought
at their role in experiments. HT devices allowed researchers to concentrate on
higher tasks like experimental design and results interpretation at the same time
avoiding him minding of hundreds when not thousands of repeats of the same
protocols for the different patients or mRNA sequences for instance. Microarrays
are, probably, one of the most evident examples of this change of perspectives:
gene expression evaluation for a panel of even only a few tens of genes took several
days to be completed before their introduction, now we are able to obtain gene
expression level for thousands of genes in the time of an overnight hybridization.
Together with expression microarrays we can mention copy number monitoring
microarrays (commonly referred to as aCGH technique), High-Throughput Se-
quencers, and Mass Spectrometers. In the next sections we will go through a brief
analysis of the main open problems in bioinformatics and will discuss about how
they can be addressed using immunity based data mining algorithms. A short
introduction on data mining principles and potentialities is given in order to
help unexperienced readers understanding concepts behind statements.

11.2.1 Data Bases and Information Retrieval in Biology

Devices coming from the integration of experiences gained in diverse fields like
physics, chemistry, biology and engineering, in this way helped researchers in
boosting their work and in quickly obtaining results of their experiments. The
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capabilities of these different kinds of approach pushed the interest for the es-
tablishment of data repositories for newly generated results. Data-bases entered
the world of biology. Larger and larger amounts of data started to fill pub-
lic databases (leaving apart literature databases which, of course, need a sepa-
rated analysis) giving rise to what we can rename “Moore’s law in biology” [2]
(that just like the original Moore’s law in electronics, models future progress in
biotechnology [3]). However the main advantages provided by novel devices soon
revealed to be their main weak point. The availability of large amount of data as
results didn not yield of information drawn from these data; this phenomenon
characterized both early and more recent years in life sciences research bringing
to the so-called “gap”. Roughly speaking, researchers indicate, with this term, an
estimate of the difference between the amount of available data and the amount
of these data that have been sufficiently interpreted [4]. In the recent years we
have observed a worrying widening in this gap: this means that we are making
quite large investments with a ROI (return on investments) that still keeps low.
In order to maximize the information yield of each experiment several alterna-
tive solutions have been proposed being probably data warehousing the most
successful. Data warehouses are the natural evolution of data bases; described
for the first time by William Immon [5] they are integrated, subject-oriented,
time-variant and non-volatile data collection processes implemented with the
precise aim to build a unique decision support system. The distinction between
data bases and data warehouses is clear: as advanced data bases, data ware-
house provide data analysis functionalities that ease the process of knowledge
extraction from highly dense data repository. In this context grew significant
experiences like the GEO (Gene Expression for Omnibus, [7]), SMD (Stanford
Microarray Database, [§]) and ArrayExpress [9]. This is the evident that data
warehouse can greatly help researchers in reducing the gap providing a valu-
able aid in filling the last real hole in experimental processes automation: results
interpretation.

11.2.2 Mining the Data: Converting Data to Knowledge

Data mining, also known as Knowledge Discovery in Data-bases (KDD), has
been defined as “The nontrivial extraction of implicit, previously unknown, and
potentially useful information from data” [6] (a more practical definition of data
mining will be given in the following section); it uses machine learning, statistical
and visualization techniques to discover and present knowledge in a form easily
comprehensible to humans. Data mining grew at the border line among statis-
tics, computer science and artificial intelligence and soon became a golden tool to
solve problems spacing from Customer Relationship Management (CRM, [10])
to Decision Making Support in medicine [I5]. Data mining in bioinformatics,
then, can be considered as a useful tool for modelling complex processes allow-
ing researchers speeding the pace towards treatments for diseases like cancer:
for instance several works have successfully tried to exploit the potentialities
of rule induction systems in breast cancer associated survival [56, 57] and can-
cer evolution modelling [58]. It can be argued that data mining was born from
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several diverse disciplines, in the effort of overcoming intrinsic limitations of the
single approaches. It is particularly evident if we compare the expressive power
of typical statistical inference approaches and propositional or first order logic
on the other hand. Huge efforts have been spent, in the recent past, in order
to speed up one of the central tasks in current research in bioinformatics, that
is the transformation process that converts data in knowledge passing through
information [16]. Data mining software, then, became more and more common:
researchers soon realized the valuable aid algorithms could have given to their
researchers and the amount of paper describing algorithms for information ex-
traction grew faster and faster [40], [41I], [45]. Comprehensive software suites for
data mining purposes are currently largely used in bioinformatics and include
both open-source and proprietary solutions. Among commercial packages we can
list SPSS, SAS, Clementine and E-Miner. Open source suites are well represented
by:

o Weka [I§]
e Rapid Miner (formerly YALE) [19)]
e Orange [20]

In particular Weka has gained a relevant success in the field of data mining
due to its flexibility and versatility. Thanks to these characteristics Weka has
been customized and redistributed in several different flavours (BioWeka [21]
devoted to biological sequences mining and WekadWS [22], the GRID-enable
Weka implementation). Due to a simple but efficient modular organization Weka
allowed third-party developers to add functionalities to the core package. It is the
case of “Weka Classification Algorithms” project managed by Jason Brownlee
who has implemented several bioinspired [11, 12 [13] data mining algorithm in
a customized version of Weka [I4]. One of the most interesting aspects of this
implementation consists in the presence of a wide variety of Artificial Immune
System based data mining algorithms. Both the black and white box flavours
are represented in the set of proposed algorithms. The distinction between black
and white box algorithms will be described in the following paragraph, however
it can be argued that white box approaches provide the user with tools to easily
interpret the way it reached a certain results, on the contrary to what happens
with black box algorithms (think at how complex is the interpretation of neural
network predictions and how simple is interpreting rules induced from a dataset).
Among black box Immunity based algorithm we can mention:

Clonalg. The Clonal Selection Algorithm, originally called CSA in [55], and re-
named to CLONALG in [6]1] is said to be inspired by the following elements of
the clonal selection theory:

Maintenance of a specific memory set

Selection and cloning of most stimulated antibodies
Death of non-stimulated antibodies

Affinity maturation (mutation)

Re-selection of clones proportional to affinity with antigen
Generation and maintenance of diversity
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The goal of the algorithm is to develop a memory pool of antibodies that
represents a solution to an engineering problem. In this case, an antibody repre-
sents an element of a solution or a single solution to the problem, and an antigen
represents an element or evaluation of the problem space.

CSCA. The Clonal Selection Classifier Algorithm is an evolution of the concept
behind Clonalg since it tries to maximise classification accuracy and minimise
misclassification accuracy still using clonal selection paradigms.

Immunos. The Immunos [54] algorithm has been mentioned a number of times
in AIS literature [37, [38, [39]. It is claimed as being one of the first immune-
inspired classification systems. Immunos tries to mimic in a very precise way the
mechanisms underlying immune response to antigen attacks and this has led to
a quite complex classification system still under discussion.

AIRS. The Artificial Immune Recognition System [42] algorithm was one of the
first AIS technique designed specifically and applied to classification problems.
After an initialisation phase the algorithm cycles through each antigen (record
in the dataset) in order to select best fitting memory cells through a powerful
resource competition stage.

On the other hand white box AIS based paradigms can be found in:

e IFRAIS
ATS based rule induction with boosting

These approaches will be deeply discussed in the next section.

11.2.3 Algorithmic Approaches to Data-Mining in Biology

As previously stated data mining is an interdisciplinary research field, involving
areas such as machine learning, statistics, databases, expert systems and data
visualization, whose main goal is to extract knowledge (or patterns) from real-
world data sets [I7, [I8]. This section focuses on the classification (supervised
learning) task of data mining. In essence, the goal of the classification task is
to assign each example (data instance or record) to a class, out of a prede-
fined set of classes, based on the values of attributes describing that example.
In the context of bioinformatics an example could be, for instance, a protein;
the classes could be protein functions; and the attributes describing the pro-
tein could be, say, physico-chemical properties of the amino acids composing the
protein. It is important that the attributes describing an example are relevant
for predicting its class. Hence, it would be a mistake to use a clearly irrelevant
attribute, say the name of the patient, as an attribute to predict whether or not
a patient will get a certain disease. In bioinformatics, ideally, the classification
model should satisfy two requirements. First, it should have a high predictive ac-
curacy, or generalization ability, correctly predicting the class of new examples
unseen during the training of the system. Second, it should be comprehensi-
ble to users (biologists), so that it can be interpreted in the context of existing
biological knowledge and potentially further validated through new biological ex-
periments. Concerning the issue of comprehensibility of the classification model
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discovered from the data, it should be noted that some classification algorithms
are designed to maximize only predictive accuracy, representing the classification
model in a way that cannot be understood by the user - therefore ignoring the
comprehensibility requirement. Typical examples of algorithms in this category
are support vector machines [24] and neural networks [25]. In this case the clas-
sification model is a “black box”, which does not give the user any insight about
the data or explanations about the classification of new examples. By contrast,
some classification algorithms use a representation which is comprehensible to
the user, therefore returning “knowledge” to the user. In this section we focus
on one popular kind of comprehensible representation, namely IF-THEN classi-
fication rules, and algorithms that use this kind of representation are called rule
induction algorithms [23]. In rule induction algorithms the classification model
is represented by a set of classification rules. These rules are of the form: “IF
antecedent THEN consequent”, where the antecedent represents a conjunction
of conditions and the consequent represents the class predicted for all examples
(data instances, records) that satisfy the antecedent. Each condition in the an-
tecedent typically specifies a value or a range of values for a given attribute of
the data being mined - e.g., “gender = female”, “age < 21”.

The first AIS for rule induction in the classification task of data mining was
proposed in [27], and named IFRAIS (Induction of Fuzzy Rules with an Artificial
Immune System). IFRAIS will be discussed in the next section. In this section
we just highlight that this system discovers fuzzy classification rules. Fuzzy rules
are in general more natural and more comprehensible to human beings than crisp
rules, and the fuzzy rule representation also has the ability of coping well with the
uncertainties frequently associated with data in biological databases [28]. Other
algorithms based on AIS for rule induction are discussed in detail in [66, [67].

Current Models

Artificial Immune Systems in Bio-medical Data Mining: IFRAIS Study Case As
mentioned earlier, IFRAIS is an AIS that discovers fuzzy classification rules from
data. Recall that the rule antecedent is formed by a conjunction of conditions.
Each attribute can be either continuous (real-valued, e.g. the molecular weight
of a protein) or categorical (nominal, e.g. the name of a species), as usual in data
mining. Categorical attributes are inherently crisp, but continuous attributes are
fuzzified by using a set of three linguistic terms (low, medium, high). Hence, in
the case of conti-nuous attributes, IFRAIS discovers fuzzy rules having condi-
tions such as: “molecular weight is large”. IFRAIS discovers fuzzy classification
rules by using the sequential covering approach for rule induction algorithms [I§].
This is an iterative process which starts with an empty set of rules and the full
training set (containing all training examples). At each iteration, IFRAIS is run
to discover the best possible classification rule for the current training set, which
is then added to the set of discovered rules. Then the examples correctly covered
by the discovered rule (i.e. the examples satisfying the antecedent of that rule
and having the class predicted by the rule) are removed from the training set,
so that a smaller training set is available for the next iteration. This process is
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repeated until all (or a large part of the) training examples have been covered
by the discovered rules. In order to discover classification rules, IFRAIS uses
essentially clonal selection and hypermutation procedures. The basic ideas are
as follows. Each antibody corresponds to a candidate fuzzy classification rule.
During an IFRAIS run, the better the classification accuracy of an antibody,
the more likely it is to be selected for cloning. In addition, once an antibody is
cloned, the rate of mutation of a clone is inversely proportional to the classi-
fication accuracy of the antibody. Hence, the principles of clonal selection and
hypermutation drive the evolution of the population of antibody towards better
and better classification rules. In [34] [35] IFRAIS was successfully employed to
discover fuzzy classification rules for female breast cancer familiarity profiling.
IFRAIS’ results were validated using statistical driven approaches using Gene
Ontology through GO Miner [40]. Competitive results obtained by IFRAIS seem
to encourage new efforts in this field. A biological interpretation of the results
carried out using Gene Ontology is currently under investigation.

11.2.4 Application of AIS based Data Mining in Bioinformatics

As we previously stated several examples of application of AIS based data min-
ing systems in bioinformatics can be retrieved in literature. Artificial Immune
Systems-derived algorithms have been employed in familiarity profiling [34],
prognosis prediction [58] and estrogen receptor modelling [59] in breast cancer.
For a brief comparative overview of the performances of these kinds of systems
in the context of aCGH data analysis the reader is referred to [60]. Previously
de Castro and colleagues focused on the use of Hierarchical Artificial Immune
Network paradigm for the problem of gene expression clustering [63], 64] and
for rearrangement study of gene expression [62]. AIS/K-NNK-NN hybrid data
mining algorithm have been tested for cancer classification in [43]. Tsanakova
and colleagues, instead, focused on the problem of gene signature finding in the
context of diffuse large B-Cell lymphoma [44]. A similar perspective has been
reported by Ando and colleagues in [65] for the problem of acute leukemia classi-
fication. PCA-AIRS hybrid systems have been employed in the diagnosis of lung
cancer [46] and [47]. A hybrid system based on fuzzy weighting pre-processing
and AIRS has been described and employed in the diagnosis of heart, hepatitis
and thyroid diseases in [48] [49] [50] respectively. Research currently being carried
out by Alves and colleagues is mainly focused on the application of a multi-label
ATS based data mining system to the problem of protein function prediction [36].

11.3 Immune Algorithms in Structural Bioinformatics
and Proteomics

11.3.1 The Multi-objective Immunological Algorithm

Central to the field of protein structural biology is a set of observations, hypoth-
esis and so-called paradoxes. The Thermodynamic hypothesis postulates that the
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native state of a protein is the state of lowest free energy of the protein system
under physiological conditions.

The free energy of a protein can be modelled as function of the different
interactions within the protein. These interactions (local, non-local, hydrophobic,
entropic effects, hydrogen bonding) depend on the positions of the atoms of the
protein. The set of atomic coordinates providing the minimum possible value of
the free energy corresponds to the native conformation of the protein. Since the
interactions comprising the energy function are highly non-convex, the protein
structure prediction (PSP) problem must be tackled as a global optimization
problem.

For the past fifty years, the PSP problem has been defined as a large single-
objective optimization problem, with researchers employing Molecular Dynamics,
Monte Carlo methods and Evolutionary Algorithms [71], [69, [72] [73], [70]. In this
section, we reason by computational experiments that it would be more suitable
to model the PSP problem as a multi-objective optimization problem. The goal of
the research is to find a set of equivalent three-dimensional folded conformations,
relying on the observation that the folded state is one of only a small ensemble of
all possible conformations [74]. We adopt a multi-objective approach in order to
obtain “good” non-dominated compact solutions near or inside the folded state.

PAES is a multi-objective optimizer which uses a simple (1+1) local search
evolution strategy. Nonetheless, it is capable of finding diverse solutions in the
Pareto optimal set because it maintains an archive of non-dominated solutions
which it exploits to accurately estimate the quality of new candidate solutions.
At each iteration ¢, a candidate solution ¢; and a mutated solution m; must
be compared for dominance. Acceptance is simple if one solution dominates the
other. If neither solution dominates the other, the new candidate solution is
compared with the reference population of previously archived non-dominated
solutions. If the comparison fails to favor one solution over the other, the chosen
solution is the one which resides in the least crowded region of the space. A
maximum size of the archive is always maintained. The crowding procedure is
based on recursively dividing up the M-dimensional objective space in 2¢ equal-
sized hypercubes, where d is a user defined depth parameter. The algorithm
continues until a given, fixed number of iterations is reached.

PAES by itself has proved to be a very useful MOEA with successful ap-
plication in many different fields. However, when applied to the PSP problem,
we have observed poor performance both in terms of energy function and final
structure obtained. The complexity of the funnel landscape of the PSP problem,
which is characterized by a huge number of local minima, coupled with the goal
of producing a “good” conformation from a structural point of view (RMSD
and DM E), clearly poses many problems (e.g., premature convergence, trapping
in local minima, etc).

I-PAES [76] is a modified version of PAES with a different solution repre-
sentation (polypeptide chain) and immune inspired (cloning and hypermutation)
operators. The algorithm starts by initializing a random conformation. The tor-
sion angles (¢, 1, x;) are generated randomly from the constraint regions. Next,
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I-PAES(depth, archive_size, objectives)
1.t :=0;
2. Initialize(c); /*Generate initial random solution*/
3. Evaluate(c); /*Evaluation of initial solution*/
4. AddToArchive(c); /*Add ¢ to archive*/
5. while(not(Termination()))
/*Start Immune phase*/
6. (c§', c§'°) := Cloning(c); /*Clonal expansion phase*/
7. (chvP chvPy .= Hypermutation(c§', ¢5'°); /*Affinity maturation phase*/
8. Evaluate(c[¥?, ch¥P); /*Evaluation phase*/
10. if(c"? dominates ch¥?) m = lvP;
10. else if(ch¥" dominates ¢'¥?) m := cj¥?;
10. else m := Best(c?‘z””7 cg”“”); /*min Ecparmm selection®/
12. AddToArchive(Worst(cIV?, ch¥P)); /*max Ecnarmm selection*/
/*End Immune phase*/
/*Start (1+1)-PAES*/
10. if(c dominates m) discard m;
11. else if(m dominates c)
12. AddToArchive(m);
13. c:=m;
14. else if(m is dominated by any member of the archive) discard m;
15. else test(c, m, archive_size, depth);
16. ti=t+1;
17. endwhile

Fig. 11.4. Pseudo-code of I-PAES

the energy of the conformation (a point in the landscape) is evaluated. The pro-
tein structure in internal coordinates (torsion angles) is transformed in Cartesian
coordinates. The CHARMM energy potential of the structure is then computed
using routines from TINKER Molecular Modeling Package@.

Figure [[T.4] shows the pseudo-code of the algorithm.

11.3.2 Open Questions in Proteomics

Given a protein with unknown biological function, its function(s) can be deter-
mined in a biological laboratory or via theoretical/computational methods. In a
biological laboratory, the determination of protein functions is usually performed
by experimental methods such as X-ray, crystallography or nuclear magnetic res-
onance. Theoretical /computational methods include homology modelling (based
on previous knowledge) or ab-initio methods [29]. The problem of protein func-
tion prediction can be naturally cast as a classification problem. In this context,
a protein is considered as an example (record) to be classified, and a list of pre-
defined protein functions that can be assigned to each protein are the classes

! http://dasher.wustl.edu/tinker/
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to be predicted by the classification algorithm. The ultimate goal is to predict
the functions of proteins whose function is not yet known, based on attributes
describing characteristics of the proteins. Protein function prediction is a very
active research area for several reasons, such as the urgent and crucial need for a
better understanding of proteins related to diseases, developing of more effective
medical drugs, preventive medicine, etc. In any case, the very large volume of
data stored in biological databases makes it infeasible to manually determine
the function of each protein in those databases. Hence, several bioinformatics
studies have been performed with the aim of developing computational meth-
ods for predicting protein function [26]. At present, the biological functions that
can be performed by proteins are defined in a structured, standardized dictio-
nary of terms called the Gene Ontology [30]. The GO consists of a dictionary
that defines gene products independent from species. GO actually consists of
3 separate “domains” (very different types of GO terms): molecular function,
biological process and cellular component. The GO is structurally organized in
the form of a direct acyclic graph (DAG), where each GO term represents a node
of the hierarchical structure. The inter-node relationships are of the type “is a”
or “part of”. A “child” node can have one or more parent nodes in the DAG.
Several other works have been proposed for predicting the biological functions
of proteins according to the GO [31], 32} 33].

Current Models

Towards Protein Function Prediction with AIS for Hierarchical Classification
The vast majority of classification algorithms assign just one class to an exam-
ple (a protein, in the case of protein function prediction). Such classification
algorithms solve a so-called single-label classification problem. However, in the
context of protein function prediction, it is often necessary that the algorithm
be flexible enough to be able to assign multiple classes (functions) to a protein,
characterizing a multi-label classification problem [51]. In addition, protein func-
tions are often defined in a hierarchical fashion, such as the functions included
in the Gene Ontology (GO) - briefly discussed earlier. IFRAIS is a single-label,
“flat” (non-hierarchical) classification algorithm. Work is ongoing in modifying
IFRAIS to be a multi-label hierarchical classification algorithm [36]. One of the
extensions being incorporated in the algorithm is to make it consistent with the
semantics of the protein function hierarchy in GO. More precisely, when a protein
is annotated with a GO term, this means that it contains not only the function
specified by that term, but also the functions specified by all other terms which
are ancestors of the former term in the GO’s function hierarchy. IFRAIS [27] is
being modified to guarantee that such hierarchical semantics is preserved in the
candidate classification rules throughout the training of the algorithm. Another
modification being implemented is to allow the algorithm to solve a multi-label
classification problem, so that a single classification rule can predict one or more
classes at once. Another research direction being pursued is the development
of an AIS for the hierarchical prediction of GPCR (G protein coupled recep-
tors) functions [52]. The AIS being developed in this project is a hierarchical
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classification system, but not a multi-label one, since the GPCR classes being
predicted are mutually exclusive at each level of the class hierarchy. A distinctive
characteristic of this project is that it uses a novel methodology for designing
an AIS where, instead of just using the natural immune system as a source of
inspiration at a high level of abstraction (as usual in the field of AIS), the design
of the AIS is influenced by the computational modelling of some aspect of the
natural immune system. Hence, this project tries to achieve a much closer in-
tegration between computer science and biology than in previous AIS projects.
More precisely, the key aspect of the natural immune system being modelled
in the above project is the concept of antigen receptor degeneracy, which, ac-
cording to [53], is essentially the capacity of a single antigen receptor to bind
and recognize many different ligands. Cohen’s theory is based on the idea that
the degeneracy of different receptors is combined in order to achieve immune
specificity. Mendao et al in [52] developed an agent-based computational model
of immune degeneracy, and derived from it a high-level degeneracy-based clonal
selection algorithm. This algorithm is currently being refined and extended in
order to produce a degeneracy-based AIS for hierarchical classification [78§].

11.3.3 Results

In the first set of experiments, we apply the approach to six proteins sequences,
five extracted from reference [73] and one from [77]: 1ZDD, 1ROP, 1CRN, 1UTG,
1R69 and 1CTF.

Discussion is as follows. First we compare the performance of different versions
of the PAES and I-PAES algorithms on the first protein set. Then we study the
stability of the approach with respect to the native and predicted secondary
structure constraints. Finally, we show specific results for each protein in terms
of the obtained observed Pareto optimal sets at different time steps, P;‘Z;Z, and
various dynamics of the algorithm during the evolution.

Four different versions of the PAES algorithm have been used [76] featuring
dynamic (exponential decay)

The best conformation obtained with I-PAES has DMFE = 0.77A and
RMSD = 1.92A (see figure I1.5)).

Fig. 11.5. Native (left plot) and predicted (right plot) for 2MLT protein (DME =
0.77A, RMSD = 1.924)

o
1
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Table 11.1. Comparative results between I-PAES,, I-PAES,,, (1+1)-PAES; and
(141)-PAES;. For each protein we report the Protein Data Bank (PDB) identifier,
the length (number of residues), the approximate class (a-helix, -sheet), and the
energy values of the native structures. The last three columns show the best results
obtained for each protein on 10 independent runs. The DM FE and RMSD values are
measured on C, atoms from the native structure. Energy values are calculated using
the ANALYZE routine from TINKER.

Protein Algorithm DME in (A) RMSDmin (A) Min energy (kcal/mol)
1ROP(56 aa) I-PAES, 2.01 4.11 —661.48
class: a I-PAES,, 1.684 3.70 —902.36
energy: -667.05 kcal/mol (14+1)-PAES; 4.91 6.31 2640.77
(14+1)-PAES; 5.99 8.665 —409.95
1UTG(70 aa) I-PAES, 4.49 5.11 282.24
class: a I-PAES,, 3.79 4.60 573.89
energy: -142.46 kcal/mol (14+1)-PAES; 4.71 6.04 7563.07
(14+1)-PAES, 4.82 5.56 397.12
1CRN(46 aa) I-PAES, 4.13 4.73 232.29
class: a + I-PAES,, 3.72 4.31 509.09
energy: 202.73 kcal/mol (1+1)-PAES; 4.67 6.18 1653.93
(14+1)-PAES; 6.05 7.89 509.52
1R69(63 aa) I-PAES, 5.93 8.42 211.26
class: a I-PAES,, 4.91 5.05 264.56
energy: -676.53 kcal/mol (1+1)-PAES; 5.16 7.59 9037.89
(14+1)-PAES, 6.88 8.52 659.49
1CTF(68 aa) I-PAES, 8.08 10.69 71.55
class: oo + 3 I-PAES,, 6.82 10.12 218.99
energy: 230.08 kcal/mol (1+1)-PAES; 9.61 12.09 1424.33
(141)-PAES; 8.84 10.21 617.69

11.4 Proteomic Multiple Sequence Alignments:
Refinement Using an Immunological Local Search

11.4.1 Proteomics Multiple Sequence Alignments

The Multiple Sequence Alignment (MSA) of proteins plays a central role in
molecular biology, as it can reveal the constraints imposed by structure and
function on the evolution of whole protein families [78]. MSA has been used for
building phylogenetic trees, for the identification of conserved motifs, to find
diagnostic patterns families, and for predicting secondary and tertiary struc-
tures of RNA and protein sequences. In order to be able to align a set of bio-
sequences, a reliable objective function for the measurement of an alignment
in terms of its biological plausibility through an analytical or computational
function is needed.

One of the most important and popular computational sequence analysis prob-
lem is to determine if two, or more, biological sequences have common sub-
sequences. However, to check the similarities between two or more sequences,
there are two primary issues that need to be faced: the choice of an objec-
tive function that assesses the biological alignment quality and the design of an
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effective algorithm to optimize the given objective function. The alignment qual-
ity is often the limiting factor in biological analyses of amino-acid sequences;
defining a proper objective function is a crucial task.

The classical objective function used to measure the biological alignment qual-
ity is the weighted sums-of-pairs with affine gap penalties [79]: each sequence
receives a weight proportional to the amount of independent information that it
contains [80] and the cost of the multiple alignment is equal to the sum of the
costs of all the weighted pairwise substitutions:

max (112 i WSS(Si, S;) +iAGPS(S’i)>. (11.1)

s i=1 j=i+41 =1

Sequence weights are determined by constructing a guide tree from known se-
quences.

11.4.2 IMSA, an Immunological Algorithm

In this chapter we present an immunological algorithm, IMSA, to tackle the
multiple sequence alignment problem. It incorporates two different strategies to
create the initial population, as well as new hypermutation operators, specific
operators for solving MSA, which insert or remove gaps in the sequences. Gap
columns which have been matched are moved to the end of the sequence. The
remaining elements (amino acids in this work) and existing gaps are shifted into
the freed space.

IMSA considers antigens (Ags) and B cells. The Ag is a given MSA instance,
and B cells a set of alignments, that have solved (or approximated) the initial
problem. In tackling the MSA Ags and B cells are represented by a sequence
matrix. In particular, let

Y={AR,N,D,C,E,Q,G,H,I,L,K, M,F,P,S,T,W,Y,V} (11.2)

be the twenty amino acid alphabet, and let S = {S1,S2,...,S5,} be the set of

n > 2 sequences with length {¢,£a,...,£,}, such that S; € X*,. Then an Ag is

represented by a matrix of n rows and max{¢1,...,¢,} columns, whereas each B
3

cell is represented by an (n x £) matrix, with £ = (5 -max{f1,...,¢,}). By using

such a representation IMSA was able to develop more compact alignments.

11.4.3 Results and Conclusions

To evaluate the biological alignment quality produced by IMSA, we tested it
using the classical benchmark BAliBASE.

The obtained results showed in the next tables were obtained using a robust
experimental protocol : d = 10,dup = 1,78 = 33, Thae = 2 x 10° and 50
independent runs. Moreover, we used the following substitution matrices:

e BLOSUMA45 for Reflvl and Ref 3, with GOP = 14,GEP = 2;
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Table 11.2. Pseudo-code of the proposed hybrid immune algorithm for the MSA

IMSA (d,dup, 78, Tmax)
t « 0
FFE — 0;
N, «— d X dup;
P — Initialize_Population(d);
Strip_Gaps(P(t) );
Evaluate(P®);
FFE — FFE + d;
while (FFE < Ty,q,)do
P  Cloning (P, dup);
P(99P)  Gap_operators (P(¢!?));
Strip_Gaps(P99P));
Evaluate(P(99P));
FFE «— FFE + Ng;
plock) _ BlockShuffling_operators (P(C“’));
Compute_Weights();
Normalize_Weights();
Strip_Gaps(P®1ocR));
Evaluate(P(®tck))y;
FFE «— FFE + N;
(Pét), P{ggap),PéblOCk)) = Elitist-Aging(P(®), pl9epr)  p®lock) Ly,
PO+D (4 + N)-Selection (P, plgar)  p(block)y,
tet+1;
end_while

Table 11.3. SP values given by several methods on the BAliBase v.1.0 benchmark

Aligner Ref 1 Ref 2 Ref 3 Ref 4 Ref 5 Overall
(82) (23) (12) (12) (12) (141)
IMSA 80.7 88.6 77.4 70.2 82.0 79.7
DIALIGN [89] 777 384 28.8 85.2 83.6 62.7
CLUSTALX [83] 85.3 58.3 40.8 36.0 70.6 58.2
PILEUPS [82] 82.2 42.8 33.3 59.1 63.8 56.2
ML_PIMA [86] 80.1 37.1 34.0 70.4 57.2 55.7
PRRP [9]] 86.6 54.0 48.7 13.4 70.0 54.5
SAGA [94] 70.3 58.6 46.2 28.8 64.1 53.6
SB_PIMA [86] 81.1 379 244 726 50.7 53.3

MULTALIGN [81] 82.3 51.6 27.6 29.2 62.7 50.6

e BLOSUMSG62 for Reflv2, Ref 2, Ref 4 and Ref 5, with GOP = 11,GEP = 1;
BLOSUMSO for Reflv3, with GOP = 10,GEP = 1.

Table [[1.3] shows the average SP score obtained by the described alignment
tools on every instance set of BAIIBASE v.1.0. As it can be seen in the table,
IMSA performs well on the Reference 2 and Reference 3 sets. The values obtained
aid to raise the overall score, which is higher compared to the results published
by the Bioinformatic platform of Strasbourg.
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11.5 Conclusions and Open Questions

In this chapter we have analysed some applications of Artificial Immune System
based algorithms in bioinformatics. Of course this is only a partial outlook on the
world of AIS based approaches: interested readers can check references in order
to obtain more detailed information about specific aspects of the proposed topics.
Furthermore, given their infancy, AIS are currently undergoing very fast changes
resulting in a very dynamical field of reasearch where tens of novel and promising
projects are proposed in the time of some months. These aspects forced the
authors to select a set of significant experiences to be used as examples of how the
algorithms described herein can be successfully used in the field of bioinfomatics.
This led to exclude interesting projects like BIAS-PROF'S coordinated by Freitas
and colleagues; even in this case interested readers can find useful information in
the references. After these necessary statements some conclusions. In this chapter
we have learned how novel bio-inspired computational intelligence paradigms can
be used in very diverse field of research in bioinformatics. As previously stated
AIS are considered a novel paradigm but they have been already able to reach
significant results in highly complex contexst like Knowledge Discovery in Data
bases (section [[I.2) and Protein Structure Prediction (section IT.I)). Even if
immune-inspired algorithms have been successfully employed in several diverse
problems, there are still some strategic fields of research in which solutions seem
to be far from being reached, just to name few:

e Large molecules folding prediction;
e Gene networks inference;
e Disease profiling and evolution modelling.

These are only some of the most active areas of AIS based research in bioinfor-
matics. From a theoretical point of view it should be noted that some areas like
danger theory and hybrid systems have been exploited with a limited system-
atic approach in bioinformatics: these areas deserve a comprehensive analytic
approach. Readers interested in these promising aspects of the AIS research in
bioinformatics can find useful information in [43], [49].
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