
EVALUATION GUIDE

1 of 2477

Evaluation Guide – Start
Here

Start Here! If you are evaluating Style Intelligence using a timed license
key, please start with this Guide.

Welcome to Style Intelligence!

Style Intelligence™ is a complete business intelligence (BI) software
package that allows you to explore, analyze, monitor, report, and
collaborate on business and operational data, all in real time. You will find
Style Intelligence to be agile, robust, and easy to use.

Style Intelligence offers an extensive feature set, and InetSoft provides
thorough documentation, training, and technical support to help you master
the software. However, we recognize that you may not have the time (or
the need) to explore all of these features during your Evaluation period.

The purpose of this Evaluation Guide is therefore to help you get started
creating dashboards and reports so that you can rapidly evaluate how Style
Intelligence fits your needs. This Guide walks you through a set of basic
steps to creating reports and dashboards, and helps you understand how to
use the product.

Please work through the following sections, in order, to get comfortable
with Style Intelligence.

1. Connecting to Data

2. Creating a Data Worksheet

3. Creating a Dashboard

4. Creating a Report

Keep in mind that this Evaluation Guide is just the beginning. There’s a lot
more to Style Intelligence: Data models, queries, data mashup, virtual
private models, multi-tenancy, ad hoc reporting, scripting, scheduling,
customization, administration, integration, and much more. When you
have completed this Evaluation Guide, please explore the full
documentation set for information on all these other topics.

Now go ahead and get started with Connecting to Data. Best of luck with
your evaluation, and please feel free to contact us with any questions!

EVALUATION GUIDE

2 of 2477

• Phone: +1.888.216.2353 (US) / +1.732.424.0400 (International)

• Email: info@inetsoft.com

• Web: http://www.inetsoft.com/

http://www.inetsoft.com
mailto:info@inetsoft.com

EVALUATION GUIDE

3 of 2477

1 Connecting to Data

Before you display data in dashboards or reports, you will generally create
a connection to your data. This connection is called a datasource. Style
Intelligence allows you to create different kinds of data sources to suit the
way your data is stored (relational database, XML, etc.)

The benefit of defining a formal datasource is that when you update your
data, the updates will be automatically propagated to reports and
dashboards. To create a sample data source for a relational database,
proceed to Defining a JDBC Data Source.

If you do not wish to define a formal data source, you can import data from
a text file, CSV file, or Excel file directly into a Data Worksheet. To import
data from a sample Excel file, proceed to Importing a Data File into a Data
Worksheet.

For information on connecting to other databases, see Appendix A,
Connecting to Other Databases.

1.1 Defining a JDBC Data Source
Most relational databases (Oracle, SQLServer, etc.) are “JDBC” databases,
which means they provide a Java driver that allows Style Intelligence to
connect to the database. The following example shows you how to define a
connection to our sample JDBC database called “Orders”.

Follow the steps below to define the new datasource.

1. From the Windows Start Menu, select the ‘Style Studio’ shortcut in
the ‘Style Intelligence’ program group. This starts Style Studio, the
desktop development tool.

2. Press the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

3. In the left panel of the ‘New Asset’ dialog box, press the ‘Data
Source’ node on the tree.

4. In the right panel, select ‘JDBC’, and press ‘OK’.

EVALUATION GUIDE

4 of 2477

This opens the JDBC Data Source Wizard.

5. Enter “SampleOrders” in the name field, and press ‘Next’.

6. Select ‘Derby Embedded’ from the menu for the ‘JDBC Type’.
The correct driver, org.apache.derby.jdbc.EmbeddedDriver,
automatically appears in the ‘JDBC Driver’ field.

EVALUATION GUIDE

5 of 2477

7. Press ‘Next’ to continue to the ‘JDBC URL’ page.

8. In the ‘JDBC URL’ field, enter the following:

jdbc:derby:classpath:orders

This is the connection URL for the sample Derby database.

9. Uncheck the ‘Requires Login’ option.

10. Press ‘Finish’ to display the final Data Source definition page.

11. Press the ‘Save’ button in the toolbar to save the new data source.
After you save the “SampleOrders” data source, it will appear in
the left-side Asset panel under the ‘Data Source’ node.

EVALUATION GUIDE

6 of 2477

12. Verify that you can connect to the database. Press the ‘Test Data
Source’ button in the top toolbar. A message will inform you if the
connection was successful.

You have now established a connection to your data. To retrieve data from
the database, continue to Creating a Data Worksheet.

Further Reading
Appendix A, Connecting to Other Databases, for information on
connecting to other databases.
Defining a Data Source, in Getting Started
Relational Databases, in Data Modeling
Non-Relational Data Sources, in Data Modeling

1.2 Importing a Data File into a Data Worksheet
You can import a plain text file, CSV file, or Excel file into a Data
Worksheet. In this example, you will import an Excel file. (This Excel file
contains the same data as the JDBC database in Defining a JDBC Data
Source.)

Follow the steps below to import an Excel file into a Data Worksheet.

1. From the Windows Start Menu, select the ‘Style Studio’ shortcut in
the ‘Style Intelligence’ program group. This starts Style Studio, the
desktop development tool.

2. Press the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

3. In the left panel, select ‘Worksheet’, and press ‘OK’. This opens a
new Data Worksheet.

EVALUATION GUIDE

7 of 2477

4. Press the ‘New Embedded Table’ button on the toolbar. This
changes the standard pointer into a “cross-hairs” pointer.

5. Drag the cross-hair pointer on the Worksheet grid to create a new
Table. (It does not matter how tall or wide you make the Table.)

6. Right-click on the title bar of the new Table, and select ‘Import
Data File’. This opens the ‘Import Data File’ dialog box.

EVALUATION GUIDE

8 of 2477

7. Press the ‘Select File’ button.

8. In the file browser, navigate to the following directory in the Style
Intelligence installation folder:

{Style Intelligence
Eval}\examples\docExamples\datasource\data

9. Select the OrderDataText.xls file.

10. Press ‘Upload’ to import the data. (Do not change the other
settings.) This populates the Table with data from the file.

EVALUATION GUIDE

9 of 2477

The number of columns in the Table is automatically adjusted to
display the number of columns in the Excel file. This Table is also
called a “data block.”

11. To display more rows in the data block (Table), drag down the
bottom border of the data block.

12. Right-click on the data block, and select ‘Properties’ from the
context menu. This opens the ‘Table Properties’ dialog box.

13. In the ‘Name’ field, enter the label “Order Data”, and press ‘OK’.

14. Press the ‘Save’ button in the toolbar. This opens the ‘Save As’
dialog box.

15. In the ‘Name’ field, enter “Excel Order Data Worksheet”. Select
the ‘Worksheet’ node on the tree, and press ‘OK’.

EVALUATION GUIDE

10 of 2477

This saves the Data Worksheet under the name “Excel Order Data
Worksheet” at the root level.

You have now finished importing your data into the Data Worksheet, and
you can proceed to create dashboards and reports based on this Data
Worksheet. See Creating a Dashboard and Creating a Report for further
instructions.

Because you imported your data directly into the Data Worksheet (rather
than setting up a formal datasource), changes that you subsequently make
to the Excel file will not be automatically reflected in the Data Worksheet.
To update the Data Worksheet (and any reports or dashboards you create
based on the Worksheet) with new data, you will need to re-import the data
again.

Further Reading
Creating an Embedded Table, in Data Mashup.
Saving an Asset, in Data Mashup.

EVALUATION GUIDE

11 of 2477

2 Creating a Data Worksheet

Now that you have created a connection to the data source (Connecting to
Data), you can create a query to retrieve the data that you will use in your
reports and dashboards.

A Data Worksheet enables you to create simple or complex queries by
using simple drag-and-drop operations. In this example, you will create a
Data Worksheet that retrieves the following result set from the
“SampleOrders” datasource:

The desired query consists of four columns drawn from the database tables,
‘ORDER_DATE’, ‘COMPANY_NAME’, ‘STATE’, and ‘QUANTITY’.
The fifth column, ‘Total’, is not available as a database table column. You
will therefore create an expression to compute the value of ‘Total’ as the
product of ‘PRICE’ and ‘QUANTITY’.

Proceed to Creating the New Data Worksheet.

2.1 Creating the New Data Worksheet
To construct the desired query, first create a new Data Worksheet. Follow
the steps below:

1. Press the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Worksheet’, and press ‘OK’. This opens a
new Data Worksheet.

EVALUATION GUIDE

12 of 2477

3. In the left-side Data Source panel, expand the following nested
folders: ‘Data Source’ > ‘SampleOrders’ > ‘TABLE’ > ‘SA’. This
displays the database tables in the “SampleOrders” datasource.

4. Drag the following tables from the Data Source panel onto the
Worksheet grid:

CUSTOMERS
PRODUCTS
ORDERS
ORDER_DETAILS

EVALUATION GUIDE

13 of 2477

Proceed to Joining the Tables.

Further Reading
Creating a Data Table, in Data Mashup.

2.2 Joining the Tables
You now need to create a single data block (table) that contains all of the
fields that you will use in your reports and dashboards. To do this, you will
join together the existing tables in the Worksheet.

Follow the steps below:

1. Join the four tables together into a single table. Follow the steps
below:

a. Drag across all four tables to select them. (Alternatively, Ctrl-
click on each table in turn.)

b. Press the ‘Inner Join’ button on the toolbar.

EVALUATION GUIDE

14 of 2477

This opens the ‘Inner Join’ dialog box.

c. In the ‘Inner Join’ dialog box, use the menus to specify the
following three join conditions:

CUSTOMERS1.CUSTOMER_ID = ORDERS1.CUSTOMER_ID
ORDERS1.ORDER_ID = ORDER_DETAILS1.ORDER_ID
ORDER_DETAILS1.PRODUCT_ID = PRODUCTS1.PRODUCT_ID

This establishes the relationships among the four tables.

d. Press ‘OK’ to apply the join conditions and create a new joined
table. The new table, called ‘Query1’, contains all of the
columns (25 columns in total) from the four original tables.

These join links are
only visible in the
table’s ‘Composition’
view.

The rows in the joined table are aligned based on the join
conditions you specified. For example, the values in the
‘CUSTOMER_ID’ field of the ‘CUSTOMERS1’ table are
exactly matched to the values in the ‘CUSTOMER_ID’ field of
the ‘ORDERS1’ table. This is indicated by the inner join
symbol (=) and link connecting these fields. Scroll the
Worksheet to see the other columns of the table and the other
join links.

EVALUATION GUIDE

15 of 2477

Continue to Modifying the Table Columns.

Further Reading
Joining Tables, in Data Mashup.

2.3 Modifying the Table Columns
The joined table has many columns, and most of these are not needed. In
the next steps you will hide unnecessary columns, and rename the retained
columns.

Follow the steps below:

1. Switch the table from ‘Composition’ view into ‘Default’ view. To
do this, press the ‘Change View’ button at the right side of the title
bar, and select ‘Default’.

This will allow you to hide columns and change column names.

2. Hide all columns except the ones that are needed in the result:

ORDER_DATE
COMPANY_NAME
STATE
PRODUCT_NAME
PRICE
QUANTITY

To hide a column, press the ‘Visibility’ icon in the column header.

The column is hidden when a red slash appears on the “eye” icon.

3. When you have hidden all unnecessary columns, switch the table
from ‘Default’ view to ‘Live Preview’ view. To do this, press the
‘Change View’ button at the right side of the title bar, and select
‘Live Preview’.

EVALUATION GUIDE

16 of 2477

This suppresses the hidden columns, executes the query, and
populates the table with data from the database.

4. Drag down the bottom border of the table to see more rows of data.

5. To see the full result set, right-click the table title bar and select
‘Preview’ from the context menu.

This displays the result set in a new Preview tab.

6. Press the ‘X’ in the Preview tab to close the tab when you are
finished viewing the data.

7. Change the names of the columns as follows:

COMPANY_NAME -> Company
STATE -> State

EVALUATION GUIDE

17 of 2477

ORDER_DATE -> Order Date
PRODUCT_NAME -> Product
PRICE - Price
QUANTITY -> Quantity

To change a column name, simply double-click on the column
header and type the new name.

8. Right-click on the table title bar, and select ‘Properties’. This opens
the ‘Table Properties’ dialog box.

9. In the ‘Name’ field, enter “Order Data” and press ‘OK’. This
changes the name of the table.

Continue to Adding an Expression Column.

Further Reading
Editing a Table Column, in Data Mashup.

2.4 Adding an Expression Column
You will now create an expression column to provide the total dollar
amount for each row. Follow the steps below:

1. Press the ‘Expression’ (fx) button in the table title bar. This opens
the ‘Input’ dialog box.

EVALUATION GUIDE

18 of 2477

2. In the ‘Input’ dialog box, enter the name of the new column,
“Total”. Press ‘OK’ to open the Expression Editor.

3. In the Expression Editor, first delete the default text 'formula'.
Then expand the ‘Fields’ list in the left ‘Properties’ panel.

4. Click on the ‘Price’ field to enter the field name into the expression.

5. Type a multiplication symbol (*), and then click the ‘Quantity’
field to enter the field name into the expression.

6. Press the ‘Save and Close’ button to close the Expression Editor
and create the new column.

EVALUATION GUIDE

19 of 2477

The table is now complete. Continue to Saving the Data Block.

Further Reading
Creating an Expression/Formula Column, in Data Mashup.

2.5 Saving the Data Block
The table is finished, so save the Data Worksheet. Follow the steps below:

1. Right-click on the ‘Order Data’ data block, and select ‘Set as
Primary’ from the context menu.

This makes the ‘Order Data’ data block visible to reports. (Reports
can only access the ‘Primary’ data block in a Data Worksheet.)

2. Press the ‘Save’ button in the toolbar. This opens the ‘Save As’
dialog box.

3. In the ‘Name’ field, enter “Order Data Worksheet”. Select the
‘Worksheet’ node on the tree, and press ‘OK’.

EVALUATION GUIDE

20 of 2477

This saves the Data Worksheet under the name “Order Data
Worksheet” at the root level.

You can now proceed to create dashboards and reports based on this Data
Worksheet. See Creating a Dashboard and Creating a Report for further
instructions.

Further Reading
Saving an Asset, in Data Mashup.

EVALUATION GUIDE

21 of 2477

3 Creating a Dashboard

To build a dashboard, you lay out components such as gauges, tables, and
charts on a simple canvas called a Viewsheet. Viewsheets can retrieve data
from queries, data models, or Data Worksheets.

The following example walks you through the creation of a simple
Viewsheet. You will use the ‘Order Data Worksheet’ you previously
created (Creating a Data Worksheet) as the data source for the dashboard,
and you will configure data view, output, and selection components to
allow users to quickly analyze this data.

To create this dashboard, proceed to the next section, Starting the Server.

3.1 Starting the Server
Since the server is not yet running, you will need to start the server. Follow
the steps below:

If the server is already
running, just point a
browser to http://
localhost:8080/sree/
to open the User Por-
tal.

1. On Windows, launch the server from the Windows ‘Start’ menu:
Style Intelligence (Evaluation) > Style Intelligence (Evaluation)
Server. This starts the server and opens the browser to the server
home page.

2. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter the
URL http://localhost:8080/sree/ to access the server home
page.

EVALUATION GUIDE

22 of 2477

3. Click the ‘User Portal’ link to open the User Portal.

Continue to Creating a New Viewsheet.

3.2 Creating a New Viewsheet
Continue the example by creating a new Viewsheet base on the ‘Order
Data Worksheet’:

1. In the User Portal, press the Design tab and select the ‘Visual
Composer’ link.

This opens Visual Composer in a new window. The left-side panels
in Visual Composer are labeled Asset and Component. The Asset
panel lists all Data Worksheets and Viewsheets. The Component
panel lists all of the components available to a Viewsheet.

2. Press the ‘New Viewsheet’ button. This opens the ‘New
Viewsheet’ dialog box.

The ‘Order Data
Worksheet’ was cre-
ated in Creating a
Data Worksheet. The
‘Excel Order Data
Worksheet’ was cre-
ated in Importing a
Data File into a Data
Worksheet.

3. In the ‘New Viewsheet’ dialog box, expand the ‘Global Worksheet’
node and select the ‘Order Data Worksheet’ or the ‘Excel Order
Data Worksheet’. Press ‘OK’.

EVALUATION GUIDE

23 of 2477

This creates a new Viewsheet that draws its data from the ‘Order
Data Worksheet’ or the ‘Excel Order Data Worksheet’.

Continue to Creating a Table.

Further Reading
Creating a New Viewsheet, in Dashboard Design

3.3 Creating a Table
Continue the example by adding a table to the Viewsheet:

1. Expand the ‘Order Data Worksheet’ node at the top of the
Component panel in Visual Composer. Drag the ‘Order Data’ data
block into the Viewsheet grid. This adds the ‘Order Data’ data
block to the Viewsheet as a Table component.

2. Click the Table to select it. Drag the bottom border of the Table to
display more rows.

EVALUATION GUIDE

24 of 2477

3. Right-click on the Table, and select ‘Properties’ from the context
menu. This opens the ‘Table Properties’ dialog box.

Of course, you can
select any other style
that appeals to you.

4. In the ‘Table Styles’ panel of the General tab, expand the ‘Blue’
folder and select the ‘Dark Header Clean Bands’ style. Press ‘OK’.

This applies a global style to the Table, including fonts, background
colors, foreground colors, and borders.

5. Drag the right border of the Table to the right to make the Table one
column wider.

EVALUATION GUIDE

25 of 2477

6. Drag the right border of the ‘Company’ column to resize the
column. Make the column wide enough to display the full
company names.

You can reduce the
width of some col-
umns (e.g., ‘State’,
‘Quantity’) to help
accommodate the
wider columns.

Repeat the above step for ‘Products’ columns so that the full
product names are visible.

7. Click on the ‘Company’ column header to select it. Then Shift-
click on the ‘Total’ column header to select all the others. Press the
‘Center’ button in the toolbar to center-align the header text.

8. Click on any cell in the ‘Total’ column to select it. Then press the
‘Currency Style ($)’ button in the toolbar. This formats the totals as
currency.

EVALUATION GUIDE

26 of 2477

Repeat this for the ‘Price’ column as well.

9. Right-click on any data cell in the ‘Order Date’ column, and select
‘Format’ from the context menu. This opens the ‘Format’ dialog
box.

10. In the ‘Format’ dialog box, under the Format tab, select the ‘Date’
option. From the right ‘Format’ menu select the format “MM/dd/
yyyy”. This indicates that dates should be displayed with a two-
digit month, two-digit day, and four-digit year.

Press ‘OK’ to close the dialog box.

EVALUATION GUIDE

27 of 2477

11. Select any value in the ‘State’ column, and press the ‘Center’
button in the toolbar to center-align these values. Repeat this for the
‘Order Date’ and ‘Quantity’ columns.

12. Select any value in the ‘Price’ column, and press the ‘Align Right’
button in the toolbar to right-align these values. Repeat this for the
‘Total’ column.

13. Change the order of the columns to match the Table below:

To reorder a column, simple click and drag on the columns header,
and drop the column into the desired position. A green highlight
indicates the drop position.

14. Resize any columns as needed to improve the Table appearance.

You have now completed the Table design. Proceed to Saving the
Viewsheet to save the work you have done so far.

Further Reading
Tables, in Dashboard Design

EVALUATION GUIDE

28 of 2477

3.4 Saving the Viewsheet
To save the Viewsheet, follow the steps below:

1. Press the ‘Save’ button in the toolbar. This opens the ‘Save
Viewsheet’ dialog box.

2. In the ‘Name’ field, enter the text “Order Data Dashboard”.

Viewsheets saved to 'Global Viewsheet' can be seen by other users
(with appropriate permissions). To save a Viewsheet for private
use, select 'User Viewsheet'.

3. Select the ‘Global Viewsheet’ node on the tree, and press ‘OK’.

The Viewsheet is now saved to the Repository. Continue to Adding
Selection (Filter) Components.

Further Reading
Saving a Viewsheet, in Dashboard Design

3.5 Adding Selection (Filter) Components
You will now create a Selection List to enable users to filter the data in the
Table to display a particular set of states.

1. In the Component panel, under the ‘Order Data Worksheet’ tree
node, expand ‘Order Data’ to show the list of fields within that data
block.

EVALUATION GUIDE

29 of 2477

2. Click and drag the ‘Company’ field to an empty cell in the
Viewsheet grid. Do the same for the ‘State’ field.

String-type fields such
as ‘State’ automati-
cally create Selection
List components.

This creates two Selection Lists that will let the user filter the
displayed results based on ‘Company’ and ‘State’.

3. Click and drag the ‘Order Date’ field to an empty cell in the
Viewsheet grid.

EVALUATION GUIDE

30 of 2477

Date-type fields such
as ‘Order Date’ auto-
matically create
Range Slider compo-
nents.

This creates a Range Slider that will let the user filter the displayed
results based on an ‘Order Date’ range.

4. Resize the two Selection Lists to be the same width as the Range
Slider (two columns). To do this, simply drag on the right border of
each Selection List.

5. Change the ‘State’ Selection List to display two columns of states.
To do this, click on any state cell. Drag the handle on the right side
of the cell to change the cell size. (Hint: You may need to wait a
second for the scroll bar to fade away before you can grab the
handle.)

EVALUATION GUIDE

31 of 2477

You are now finished adding selection components.

Test the Selection Lists by making various choices of ‘Company’ and
‘State’. Test the Range Slider by dragging the “start” and “end” handles.
For example, select ‘CA’ in the ‘State’ Selection List and select ‘Direct
Sales’ in the ‘Company’ Selection List. Set the range on the Range Slider
to “2013 Jan...2013 Dec”. The Table displays only data corresponding to
the values that you select.

Continue to Adding an Output Component.

Further Reading
Selection Components, in Dashboard Design

3.6 Adding an Output Component
You will now add a Gauge to display the total dollar amount for the records
that the user selects. To add a Gauge, follow the steps below:

1. From the Component panel, drag a ‘Gauge’ component onto the
Viewsheet grid.

2. From the ‘Order Data’ data block in the Component panel, drag
the ‘Total’ field onto the Gauge. (A green outline informs you
when you can drop the field.)

EVALUATION GUIDE

32 of 2477

This binds the ‘Total’ field to the Gauge so that the Gauge displays
the summed total for all the records that the user selects.

3. Right-click on the Gauge, and select ‘Properties’ from the context
menu. This opens the ‘Gauge Properties’ dialog box.

4. Select the General tab of the ‘Gauge Properties’ dialog box, and
choose a more interesting Gauge face. Press ‘OK’ and note the
change to the Gauge component.

5. Enlarge the Gauge as desired by dragging on any of the Gauge
borders.

6. Change the number representation on the Gauge to “thousands”. To
do this, follow the steps below:

a. Right-click on the Gauge and select ‘Format’ from the context
menu. This opens the ‘Format’ dialog box.

b. Select the Format tab, and then select the ‘Number’ format.

c. From the ‘Format’ menu, select the format “#,###K”. This
format divides the actual values by 1000 for display.

EVALUATION GUIDE

33 of 2477

d. Edit the format to read “#,###.0K”, which will provide better
precision.

e. Press ‘OK’ to close the dialog box and apply the formatting to
the Gauge. The Gauge now displays values in terms of
thousands.

You have now finished adding a Gauge. Make some filtering selections
using the selection components, and observe how the Gauge updates in
response. The Gauge adapts to display the summed total for the records
that the user selects.

Continue to Adding an Input Component.

Further Reading
Output Components, in Dashboard Design

3.7 Adding an Input Component
An Input component allows the user to dynamically control properties of
other components. In this example, you will use an Input component to
allow the user to change the measure displayed on a Chart.

EVALUATION GUIDE

34 of 2477

Follow the steps below:

1. From the Component panel, drag a RadioButton component into
the Viewsheet grid.

2. From the ‘Order Data’ data block in the Component panel, drag
the ‘Quantity’ field onto the RadioButton. (Look for the green
highlight that indicates the drop zone.)

This adds ‘Quantity’ as an option in the RadioButton.

3. Repeat the above step to add the ‘Total’ field as an additional
option.

4. Resize the RadioButton so that the two options are displayed one
on top of the other.

EVALUATION GUIDE

35 of 2477

5. Right-click the RadioButton and select ‘Properties’ from the
context menu. This open the ‘RadioButton Properties’ dialog box.

6. Set the ‘Name’ property to “MeasureChoice” and set the ‘Title’
property to “Choose”. Press ‘OK’.

The ‘Name’ is a unique component ID. (You are deliberately
assigning a ‘Name’ to this RadioButton because you will need to
refer to the RadioButton by its name when you set the Chart
measure in a later step.) The ‘Title’ is simply the text that appears in
the title bar of the component.

To move a compo-
nent, drag the compo-
nent title bar, or select
the component and
then press the arrow
keys on the keyboard.

7. Temporarily move the RadioButton to the side of the Viewsheet
where it will not interfere with other components. (You will set its
final position later.)

You have now finished adding the Input component. Proceed to Adding a
Chart.

Further Reading
Input Components, in Dashboard Design

EVALUATION GUIDE

36 of 2477

3.8 Adding a Chart
Continuing the example from the previous section, you will now add a
chart. The chart will display either the ‘Total’ or the ‘Quantity’ broken
down by quarter and state.

Follow the steps below:

1. From the Component panel, drag a Chart component into the
Viewsheet grid above the table. This adds the Chart to the
Viewsheet and opens the Chart Editor in the left panel.

2. Resize the Chart to make it approximately the same width as the
Table below. (You can make final adjustments later.)

3. In the Data Source panel of the Chart Editor, expand the ‘Order
Data’ folder. From the ‘Dimensions’ folder, drag the ‘Order Date’
field to the ‘X’ region.

EVALUATION GUIDE

37 of 2477

4. Press the ‘Edit Measure’ button next to the ‘Order Date’ field in the
Chart Editor, and set the ‘Level’ to ‘Quarter’. Then press the green
‘Apply’ button.

This changes the date grouping on the X-axis to from year to
quarter.

5. From the ‘Measures’ folder, drag the ‘Quantity’ field to the ‘Y’
region. This places the ‘Quantity’ field onto the chart as a measure.

Note that the Selection components (Selection Lists and Range
Slider) filter the Chart just as they filter the Table.

EVALUATION GUIDE

38 of 2477

6. Adjust the Selection components so that the Chart displays all the
data: Drag the Range Slider handles to span the full range, and
press the ‘Clear Selection’ buttons on the ‘State’ and ‘Company’
Selection Lists.

7. Change the Chart style to a bar-type chart. To do this, press the
‘Select Chart Style’ button in the Data panel. Enable the ‘Stack’
option at the bottom of the panel, and then select the ‘Stack Bar’
chart type.

Press the green ‘Apply’ button.

8. Break out the data by state using color. To do this, drag the ‘State’
field from the ‘Order Data’ block on the Data Source panel to the
‘Color’ region in the Visual panel.

EVALUATION GUIDE

39 of 2477

9. Configure the Chart so that the RadioButton (added previously in
Adding an Input Component) controls the measure displayed on the
Chart Y-axis. Follow the steps below:

a. Press the ‘arrow’ button next to the ‘Quantity’ field on the ‘Y’
axis, and select ‘Variable’. The ‘Variable’ option allows the
property to be set by an Input component.

b. Select ‘MeasureChoice’ from the menu. (This is the only option
in the menu.)

EVALUATION GUIDE

40 of 2477

Recall that ‘MeasureChoice’ is the name that you gave to the
RadioButton component earlier. By selecting it here, you
specify that the value the user chooses in the ‘MeasureChoice’
RadioButton will determine the field that is displayed on the
Chart Y-axis.

10. Press the two radio buttons to toggle between ‘Quantity’ and
‘Total’. Observe how the Chart Y-axis adapts to display the
corresponding measure.

11. Drag the RadioButton onto the lower-right corner of the Chart,
below the legend.

When you do this, you will see the following prompt. Select the
option to ‘Move component here’.

12. If you do not see the RadioButton, this means it was placed behind
the Chart. In this case, right-click on the Chart and select ‘Send to
back’. You should then see the RadioButton in the location where
you placed it.

EVALUATION GUIDE

41 of 2477

13. (Optional) If there is not enough room for the RadioButton to fit
comfortably in this location, feel free to place it elsewhere. You can
also turn off the title bar to save space: To do this, right-click the
RadioButton and select ‘Properties’ from the context menu. In the
General tab of the ‘RadioButton Properties’ dialog box, uncheck
the ‘Visible’ box next to the ‘Title’ property, and press ‘OK’.

14. Resize the RadioButton as needed.

EVALUATION GUIDE

42 of 2477

15. Add a flyover to the Chart. A flyover turns the Chart into a dynamic
filter, so that when the use points at a group on the Chart, other
components in the dashboard display data for just that group.
Follow the steps below:

a. Right-click the Chart and select ‘Properties’ from the context
menu.

b. In the ‘Flyover’ panel, select both ‘Gauge1’ and ‘Query1’. Press
‘OK’.

c. Hover the mouse over different groups on the Chart. Observe
that the Table and the Gauge dynamically update to display data
for just the selected group.

EVALUATION GUIDE

43 of 2477

The dashboard is now functionally complete. Continue to Adding
Decorative Components.

Further Reading
Charts, in Dashboard Design.

3.9 Adding Decorative Components
The dashboard is now complete from a functional perspective. However,
there are few things you can do to improve the appearance. In the following
steps you will add text and background to the dashboard.

Follow the steps below:

1. From the Component panel, drag an Image component into an
empty area of the Viewsheet grid.

2. Right-click on the Image component, and select ‘Properties’ from
the context menu. This opens the ‘Image Properties’ dialog box.

EVALUATION GUIDE

44 of 2477

3. Under the General tab, expand the ‘Skin’ folder and select the
‘Background1’ image.

4. Select the Advanced tab.

5. Check the ‘Scale Image’ box, and select the ‘Scale (9-Cell Grid)’
option. Enter “1” in each of the ‘Top’, ‘Right’, ‘Bottom’, and ‘Left’
fields.

EVALUATION GUIDE

45 of 2477

This allows the interior of the image (i.e., the gradient fill) to scale
proportionally as you resize the Image component, but does not
apply any scaling to a 1-pixel border around the image. (This
image contains a 1-pixel gray border that would appear too wide if
scaled with the rest of the image.)

6. Press the ‘OK’ button to dismiss the dialog box.

7. Drag the borders of the Image component, and resize the Image so
that it covers all of the other components on the dashboard.

8. Right-click on the Image component and select ‘Send to Back’ to
move the Image component behind all other components. Continue
resizing the Image component as needed to create the desired
background.

EVALUATION GUIDE

46 of 2477

9. From the Component panel, drag a Text component above the
Chart. (If you see the following ‘Layout Option’ dialog box, select
‘Move component here’ and press ‘OK’.)

10. Double-click on the Text component to edit the text. Enter the text
“Order Data Dashboard”.

11. Use the toolbar buttons to make the text bold, 18pt, and centered.

EVALUATION GUIDE

47 of 2477

12. Drag the borders of the Text element so that the text displays fully
and is centered atop the Viewsheet.

13. Add another Text component. (Tip: Double-click in an empty
region of the Viewsheet grid to quickly add a Text component.)

14. Edit the Text component to display the text “Total $ (Thousands)”.

15. Drag this Text component below the Gauge. (If you see the
following ‘Layout Option’ dialog box, select ‘Move component
here’ and press ‘OK’.)

16. Position the Text below the Gauge as desired. Use the toolbar
buttons to make the Text bold and centered.

17. From the Component panel, drag a Rectangle component to an
empty area of the Viewsheet grid.

EVALUATION GUIDE

48 of 2477

18. Right-click the Rectangle component and select ‘Properties’ from
the context menu. This opens the ‘Rectangle Properties’ dialog
box.

19. Select the Shape tab. Set the ‘Round Corner’ property to “12” and
press ‘OK’.

20. Drag the Rectangle partially over the Table or the Chart. Note that
the Rectangle appears in front of the other components because it
was added most recently.

EVALUATION GUIDE

49 of 2477

21. Right-click the Rectangle and select ‘Send to Back’ from the
context menu. This sends the Rectangle behind the Image
component.

22. Now right-click the Image component, and select ‘Send to Back’ to
again place the Image component behind everything else.

23. Drag the borders of the Rectangle component to enlarge it so that it
provides a background for the Chart and Table. Reposition or resize
other components as needed to make space for the Rectangle.

EVALUATION GUIDE

50 of 2477

24. Repeat the same process to place a white rectangle behind the
Selection components. Note that green highlights are displayed
when the Rectangle borders align with other components. These
highlights can be used to achieve a precise layout.

25. To reduce the gap between the Selection Lists and the Table,
change the size of the grid column by dragging the grid column
header.

26. Reposition other components (Gauge, Rectangle, Text) as
necessary to preserve the Viewsheet appearance.

EVALUATION GUIDE

51 of 2477

27. Press the ‘Options’ button in the toolbar. This opens the ‘Viewsheet
Options’ dialog box. Check the ‘Scale to Screen’ option and press
‘OK’.

This will allow the dashboard to automatically size itself to the
browser window.

28. Press the ‘Save’ button in the toolbar to save the Viewsheet.

The dashboard is now complete. Proceed to Previewing the Dashboard.

Further Reading
Output Components, in Dashboard Design.
Shape Components, in Dashboard Design.

3.10 Previewing the Dashboard
Although the dashboard is fully functional in design view, sometimes it is
useful to preview the dashboard as users will see it. To preview the
dashboard, simply press the ‘Preview’ button on the toolbar.

EVALUATION GUIDE

52 of 2477

Make some selections in the ‘Company’ and ‘State’ Selection Lists and
adjust the date range. Observe how the Chart, Table, and Gauge respond.

You have now completed construction of your first dashboard. Continue to
Using the Dashboard.

Further Reading
Previewing a Viewsheet, in Dashboard Design.

3.11 Using the Dashboard
To view the dashboard in the Portal, follow the steps below.

1. If the server is not running, start the server by following the steps
below:

a. On Windows, launch the User Portal from the Windows ‘Start’
menu: Style Intelligence (Evaluation) > Style Intelligence
(Evaluation) Server. This starts the server and opens the
browser to the server home page.

b. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter
the URL http://localhost:8080/sree/ to access the server
home page.

If the server is already running, just point a browser window to
http://localhost:8080/sree/Reports, and continue with the next step.

EVALUATION GUIDE

53 of 2477

2. Select the ‘User Portal’ link to open the Portal.

3. In the Portal, select the Report tab.

4. In the left panel of the Portal, expand the ‘Repository’ tree.

5. Select the ‘Order Data Dashboard’.

The dashboard is now open for viewing and exploration. There are many
different features available to the user. For example:

• Use the selection components to filter the data in different ways.

• Change the Chart measure by using the RadioButton.

• Hover the mouse over a group on the Chart to see the flyover filter.

• Drag the mouse across several groups on the Chart (or Ctrl-click) to
select them. Note that Chart mini-toolbar provides several options such
as zoom, show details, show data, and edit. For more information about
these features, see Charts in Dashboard Design.

• Press the ‘Export’ button in the table title bar to export the table data to
Excel.

• Use the toolbar buttons to print, export, or email the dashboard.

EVALUATION GUIDE

54 of 2477

Further Reading
Using Selection Components, in End User.
Using Data View Components, in End User.
The Dashboard Toolbar, in End User.

EVALUATION GUIDE

55 of 2477

4 Creating a Report

To build a report, you add components such as text, tables, and charts to the
report page. The report engine will automatically generate as many pages
as need to display all of the data. Reports can retrieve data from queries,
data models, or Data Worksheets.

In the following example, you will create a simple sales report featuring a
table and a chart. Start with Creating a Blank Report.

4.1 Creating a Blank Report
Follow the steps below to create a new blank report:

1. Press the ‘New’ button on the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

Most reports use a
tabular rather than
flow layout.

2. Select the ‘Report’ node in the left panel, then select ‘Blank
Tabular Report’ in the right panel.

This opens a new blank report for editing. Continue to Adding a Text
Element.

Further Reading
Creating a Blank Report Template, in Report Design.

4.2 Adding a Text Element
To add an element to a report, click the corresponding element in the
Toolbox panel. (You can also drag the element into the report page itself.)

EVALUATION GUIDE

56 of 2477

In the following steps, you will use Text elements to add a title and page
numbering to the report:

1. Press the ‘Header’ button in the top toolbar to select the header. The
insertion point indicator (black triangle) appears at the top left edge
of the header.

2. Click the ‘Text’ element in the Toolbox panel. A new Text element
appears in the header of the report. (You can also drag the Text
element into the Header region.)

3. In the Text field, type “Sample Sales Report”. Click outside of the
element to finish editing.

EVALUATION GUIDE

57 of 2477

4. Click on the new Text element to select it. Use the controls on the
toolbar to change the font to Tahoma 24-point Bold Underline.
Then click the ‘Center’ button to center-align the Text element on
the page.

1. Press the ‘Footer’ button in the top toolbar. The insertion point
indicator appears at the top left edge of the footer.

EVALUATION GUIDE

58 of 2477

2. Click the ‘Text’ element in the Toolbox panel to add a new text
element to the footer. In the text field, type “{P} of {N}”.

The {P} and {N} tags designate the current page number and the
total number of pages, respectively. The actual page numbers are
created by the report engine when the report is generated. (These
special tags can only be used in a report header or footer.)

3. Click anywhere outside of the footer to deselect it. The footer is
now complete.

Continue to Adding a Table.

Further Reading
Text Element, in Report Design.
Headers and Footers, in Report Design.

4.3 Adding a Table
You will now add a new Table element. The table will display several
columns of the data block you created earlier in Creating a Data
Worksheet.

Follow the steps below:

EVALUATION GUIDE

59 of 2477

1. Click once on the ‘Table’ element in the Toolbox panel. This opens
the Data Binding Wizard.

The Data Binding Wizard is only for initial set-up. It cannot be
accessed after you have created the Table.

The Data Binding Wizard helps you to initially set up your table.
When you complete the Wizard you will be able to continue
making modifications. Data binding is the process of associating a
Worksheet or other data source with a report element. When the
report is generated, the data retrieved from the data source is placed
into the element.

The ‘Order Data
Worksheet’ was cre-
ated in Creating a
Data Worksheet. The
‘Excel Order Data
Worksheet’ was cre-
ated in Importing a
Data File into a Data
Worksheet.

2. Under the Data tab, expand the ‘Global Worksheet’ node. Select
the ‘Order Data Worksheet’ or the ‘Excel Order Data Worksheet’.

EVALUATION GUIDE

60 of 2477

3. Under the Columns tab, verify that all columns are present in the
right panel. If they are not, then drag the desired columns from the
‘Available Columns’ panel to the right panel.

4. Create groups based on the ‘Company’ field and summarize the
‘Quantity’ for each company. Follow the steps below:

a. Select the Grouping and Summary tab.

b. From the ‘Available Columns’ panel, drag the ‘Company’ field
to the ‘Grouping’ panel. Drag the ‘Quantity’ field to the
‘Summary’ panel.

You can add additional grouping and summary fields to the
‘Grouping’ and ‘Summary’ panels in the Wizard. However, it is
also important to understand how grouping can be added to an

EVALUATION GUIDE

61 of 2477

existing Table, so in this example you will add the additional
grouping after the Table has been created.

5. Press ‘Finish’ to create the new table.

6. Click on the table and observe the grouping structure.

The Table displays
only meta-data by
default in design view,
not actual data. In
Previewing the
Report, you will see
how to display data.

The ‘Header’ row contains the columns header labels. The ‘Detail’
row will expand to display all of the detail records grouped by
‘Company’. (Note the grouping symbol on the ‘Company’ cell.)
The ‘GF1’ row will display the summarized ‘Quantity’ for each
group. (Note the summarization symbol on the ‘Quantity’ cell.)
The ‘Footer’ row will display the grand summary for the entire
table.

7. In the Data Binding Wizard you previously grouped on ‘Company’
and summarized by ‘Quantity’. Now group the records also by
‘Order Date’ (quarter), and summarize by ‘Total’. Follow the steps
below:

a. Right-click on the ‘Order Date’ cell in the ‘Detail’ row. From
the context menu, select ‘Cell’ > ‘Group’ > ‘Quarter’.

EVALUATION GUIDE

62 of 2477

This designates ‘Order Date’ as a grouping field, and the cell
now displays the grouping symbol.

b. Click on the empty cell in the ‘GF1’ row of the ‘Total’ column
to select the cell.

c. In the Properties panel at the bottom of Style Studio, select the
Data tab.

d. Expand the menu next to the ‘Column’ option in the ‘Binding’
panel, and select ‘Total’.

EVALUATION GUIDE

63 of 2477

This specifies that the ‘Total’ field should be summarized (in
addition to the ‘Quantity’ field) for each individual company.
The ‘GF1’ band corresponds to “group 1” which is the
‘Company’ grouping.

However, in this case it makes sense to summarize the
‘Quantity’ and ‘Total’ also for each date grouping, that is, for
each quarter. To do this, you will add a new grouping footer in
the following steps.

e. Click on any cell in the ‘GF1’ row to select it. Then right-click
the cell and select ‘Region’ > ‘Insert Group Footer’.

This adds a new group footer called ‘GF1’. The previous ‘GF1’
row is now called ‘GF2’, indicating that there are two levels of
grouping.

8. Move the ‘Order Date’ column to the far left of the table, since it
makes sense to use ‘Order Date’ as the outer grouping level. To do
this, click immediately above the column header, and drag the
column to the far left of the table.

EVALUATION GUIDE

64 of 2477

The green bar shows you where the column will be placed.

9. Click on the ‘Order Date’ field in the ‘Detail’ row to select it.
Right-click on the cell and select ‘Copy’ from the context menu.
Now click on the empty cell in the ‘GF1’ row of the ‘Order Date’
column to select it. Right-click and select ‘Paste’ from the context
menu.

This copies the ‘Order Date’ field into the ‘GF1’ row so that the
date group will appear in the summary row.

You can also make
copies by using Ctrl-C
and Ctrl-V on the key-
board or by holding
down the Ctrl key
while dragging on a
field.

10. Repeat the above steps to copy the ‘Quantity’, ‘Price’, and ‘Total’
fields into the ‘GF1’ row to display these values in the date
summary row.

11. Click to select the ‘Company’ cell in the ‘Detail’ row.

12. In the bottom Properties panel, select the Option tab. In the
‘Dynamic Cell’ panel, select ‘As Detail’.

EVALUATION GUIDE

65 of 2477

This will cause the ‘Company’ field values to be displayed on each
detail row (rather than just once at the start of the group).

You are now finished with the data binding of the table. You will add
formatting the table later. First, proceed to Saving the Report and
Previewing the Report.

Further Reading
Creating a Table Using the Data Binding Wizard, in Report Design.
Creating a Table Using Freehand Operations, in Report Design.
Grouping Data in a Table, in Report Design.

4.4 Saving the Report
You will now save the report into the current working repository. Style
Studio allows you to set up multiple repositories. The default working
repository for Style Studio is the same as the default server repository (sree/
WEB-INF/classes). This arrangement means that reports saved to the
default repository will be immediately available to the server.

Follow the steps below to save the report into the working repository.

1. Press the ‘Save’ button on the toolbar to open the ‘Save As’ dialog
box.

2. Select the Repository Report tab and enter “Sample Sales Report”
as the ‘File name’.

EVALUATION GUIDE

66 of 2477

3. Press ‘Save’ to save the report.

When you save a report, you are saving the report page layout information
and data binding information. No data is saved with the report. Data is
drawn live from the data source when the report is generated by the user or
previewed. Continue to Previewing the Report.

Further Reading
Saving a Report, in Report Design.

4.5 Previewing the Report
There are two ways to preview data in a report:

1. The first way to preview data in a report is to press the ‘Preview’
button in the top toolbar. This previews the report in a new tab.

EVALUATION GUIDE

67 of 2477

Note that this report is over 100 pages long. (Paging controls are in
the top-right corner.) Observe also the grouping on the ‘Company’
and ‘Order Date’ columns.

2. A second way to preview the report is to press the ‘Live Edit’
button in the toolbar. This populates the report with data in the
original design tab.

In ‘Live Edit’ mode you can continue to make modifications to
report while the data is displayed. To turn off ‘Live Edit’ mode,
simply press the ‘Live Edit’ button again.

EVALUATION GUIDE

68 of 2477

The Table is functionally complete but doesn’t look very attractive.
Continue to Formatting the Table to improve the appearance of the Table.

Further Reading
Displaying a Report in Live Edit View, in Report Design.
Displaying a Report in the Preview Tab, in Report Design.

4.6 Formatting the Table
You will now proceed to format the table to improve the presentation.
Follow the steps below.

1. Right-click anywhere on the Table (or in the margin to the left of
the Table), and select ‘Properties’ from the context menu. This
opens the ‘Table Properties’ dialog box.

2. Press the ‘Select Style’ button to open the Style Viewer.

3. Select the ‘Dark Header Borders’ style and press ‘OK’.

EVALUATION GUIDE

69 of 2477

Press ‘OK’ again to dismiss the ‘Table Properties’ dialog box.

4. Move the ‘Product’ column to the left of the ‘Quantity’ column by
dragging above the column (as you did earlier for the ‘Order Date’
column).

5. Click to select the ‘Order Date’ cell in the ‘Detail’ row. Then Shift-
click to select also the empty cell in the ‘GF2’ row below it.

6. Right-click on either of the selected cells, and select ‘Table’ >
‘Merge Cells’ from the context menu.

EVALUATION GUIDE

70 of 2477

This combines the two cells so that the date groupings (quarters)
will not be interrupted by border lines.

7. Change the font of the date values to be large and bold. To do this,
click to select the merged ‘Order Date’ cell, and use the toolbar font
buttons.

8. Preview the report to see the effect of these modifications.

Keep the Preview tab open so that you can switch back and forth
between the design view and the preview. The Preview tab will
automatically refresh to show changes you make in the design
view.

9. Format the ‘Order Date’ summary row so that it is more visible.
Follow the steps below:

a. Click in the left margin next to the ‘GF1’ row. This selects the
entire summary row.

b. In the bottom Properties panel, select the Format tab. From the
‘Background’ menu, select a light color of your choosing.

EVALUATION GUIDE

71 of 2477

c. Click the cell to the right of the ‘Order Date’ cell in the ‘GF1’
row to select it. Type the following text into the cell: “Quarter
Total:”.

d. Use the toolbar font controls to make the text for the ‘Order
Date’ cell and the ‘Quarter Total’ cell 11pt and bold.

e. Select the ‘Quarter Total’ cell and the two adjacent cells to the
right.

Right-click on any selected cell, and select ‘Table’ > ‘Merge
Cells’.

f. Preview the report and observe how the ‘GF1’ row is now
displayed. (You may need to page forward in the report to find
an example of the ‘GF1’ row.)

10. Format the ‘Company’ summary row so that it is more visible.
Follow the steps below:

a. Click in the left margin next to the ‘GF2’ row. This selects the
entire summary row.

EVALUATION GUIDE

72 of 2477

b. In the bottom Properties panel, select the Format tab. From the
‘Background’ menu, select a light color of your choosing.

c. Click the cell to the right of the ‘Company’ cell in the ‘GF2’
row to select it. Type the following text into the cell: “Company
Total:”.

d. Use the toolbar font controls to make the text for the ‘Company’
cell and the ‘Company Total’ cell 11pt and bold.

e. Select the ‘Company Total’ cell and the adjacent cell to the
right.

Right-click on any selected cell, and select ‘Table’ > ‘Merge
Cells’.

f. Preview the report and observe how the ‘GF2’ row is now
displayed.

EVALUATION GUIDE

73 of 2477

11. Apply appropriate numerical formats to the measure columns. To
do this, follow the steps below:

a. Shift-click to select all of the ‘Price’ and ‘Total’ cells.

b. Select the Format tab in the bottom Properties panel. Select
the ‘Number’ format, and enter “$#,##0” in the ‘Decimal
Format’ field. Press the green ‘Apply’ button.

This format is the same as the ‘Currency’ format option, but
omits the zeros to the right of the decimal point.

12. Delete the global ‘Footer’ row. To do this, right-click on any cell in
the footer row, and select ‘Row’ > ‘Delete Row’ from the context
menu.

EVALUATION GUIDE

74 of 2477

13. Insert a page break following each date group (i.e., quarter). Follow
the steps below:

a. Click in the left margin next to the ‘GF1’ row to select the entire
row.

b. Select the Option tab in the bottom Properties panel.

c. Select ‘New Page After’ and press the green ‘Apply’ button.

14. Preview the report again. Page through the report and observe the
page breaks following each date group.

The Table formatting is now complete. Continue to Filtering the Table.

Further Reading
Table Formatting, in Report Design.
Splitting and Merging Table Cells, in Report Design.
Selecting a Cell, Row, or Column of a Table, in Report Design.

4.7 Filtering the Table
The table now displays data from the full range of dates in the database,
making it rather long. It might be helpful to focus the results by allowing
the user to specify the range of dates and set of companies they wish to see
in the table.

To do this, add a parameterized filter to the Table. Follow the steps below:

1. Right-click on the Table and select ‘Condition’. This opens the
‘Conditions’ dialog box.

2. From the left-most menu, select ‘Order Date’. From the middle
menu select ‘between’.

EVALUATION GUIDE

75 of 2477

3. For each of the two right pop-up menus, select ‘Variable’.

You don’t have to use
“startDate” and “end-
Date”. You can use
any variable names
you prefer.

4. In the top ‘Label’ field, enter “startDate”. In the bottom ‘Label’
field, enter “endDate”. These are the names of variables that will
hold the value of the starting date and ending date that the user
specifies.

5. Press the ‘Append’ button to add the clause to the condition. Note
that the ‘startDate’ and ‘endDate’ terms appear in the condition as
“$(startDate)” and “$(endDate)”, which indicates that these are
parameters whose values will be supplied at a later time.

6. Add a second clause to the condition to allow the user to select a set
of companies. Follow the steps below:

a. From the left-most menu select ‘Company’. From the middle
menu select ‘one of’.

b. From the right-most pop-up menu, select ‘Variable’. In the
‘Label’ field, enter “companies”.

c. Check the ‘Use Selection List’ option. (This will present the
user with a menu from which the can select a set of companies.)

EVALUATION GUIDE

76 of 2477

d. Press ‘Insert’ to add the clause to the condition.

The condition now contains two clauses joined by a conjunction
(AND) operator.

7. Press the ‘OK’ button to finalize the condition and close the dialog
box.

8. From the Style Studio ‘Report’ menu, select ‘Parameter...’ This
opens the ‘Parameter Definition’ dialog box. This is the central
location to manage all report parameters.

EVALUATION GUIDE

77 of 2477

Note that the filter parameters you have defined are listed in the
dialog box.

9. In the ‘Parameter Definition’ dialog box, click the ‘companies’
parameter to select it. In the ‘Label’ field, change the label to
“Companies:”.

10. Repeat the above step to change the ‘startDate’ label to “Starting
Date:” and the ‘endDate’ label to ‘Ending Date:’.

11. Click again on the ‘companies’ parameter, and press the “down
arrow” above the list to move the ‘companies’ parameter to the
bottom of the list.

This specifies that the user prompt for ‘companies’ will appear
below the prompts for the other two parameters.

12. Press ‘OK’ to close the ‘Parameter Definition’ dialog box.

EVALUATION GUIDE

78 of 2477

13. Press the ‘Preview’ button on the toolbar to create a fresh preview.
Note that Style Studio now prompts you to enter values for the
parameters.

14. Enter a ‘Starting Date’ and ‘Ending Date’ by using the pop-up
calendar controls, and select a list of ‘Companies’ to view. (Shift-
click to select multiple companies.)

15. Press ‘OK’ to run the report with these parameter values. Note that
the Table is now considerably shorter, displaying data only for the
date range and companies that you selected.

You have now completed the Table. Continue to Adding a Chart.

Further Reading
Filtering Data in a Table, in Report Design.

4.8 Adding a Chart
You will now add a chart. The chart will display the ‘Total’ by quarter and
state. Follow the steps below:

1. Click once on the Table to select it. This also places the insertion
point (the black triangle) above the Table.

EVALUATION GUIDE

79 of 2477

The insertion point indicates where the next component will be
placed.

2. In the Toolbox panel, click on the Chart element to add a Chart
above the Table. This also opens the Chart Editor in the left panel.
(If you do not see the Chart Editor, click on the Chart to select it.)

The ‘Order Data
Worksheet’ was cre-
ated in Creating a
Data Worksheet. The
‘Excel Order Data
Worksheet’ was cre-
ated in Importing a
Data File into a Data
Worksheet.

3. In the Data Source panel of the Chart Editor, expand the ‘Global
Worksheet’ folder and expand the ‘Order Data Worksheet’ or the
‘Excel Order Data Worksheet’ node.

4. Drag the ‘Order Date’ field from the Data Source panel to the ‘X’
region of the Binding panel.

5. Press the ‘Edit Measure’ button next to the ‘Order Date’ field in the
Chart Editor, and set the ‘Level’ to ‘Quarter’. Then press the green
‘Apply’ button.

EVALUATION GUIDE

80 of 2477

This changes the date grouping on the X-axis to from year to
quarter.

6. Drag the ‘Total’ field from the Data Source panel to the ‘Y’ region
of the Binding panel This places the ‘Total’ field onto the chart as a
measure.

Note that, like the Table, the Chart displays meta-data by default.

EVALUATION GUIDE

81 of 2477

To display actual data, either preview the report or press the ‘Live
Edit’ button in the toolbar.

7. Change the Chart style to a bar-type chart. To do this, press the
‘Select Chart Style’ button in the Binding panel. Select the ‘Bar’
chart type and enable the ‘Stack’ option at the bottom of the panel.

Press the green ‘Apply’ button.

8. Break out the data by state using color. To do this, drag the ‘State’
field from the Data Source panel to the ‘Color’ region in the
Visual panel.

9. Use tooltips to distinguish the data from different companies: To do
this, drag the ‘Company’ field from the Data Source panel to the
‘Break By’ region in the Visual panel.

EVALUATION GUIDE

82 of 2477

Tooltips will be active when the report is viewed in the User Portal.

10. Preview the report to see the Chart with its data.

Note that the values that you enter at the parameter prompt (when
you create a new preview) do not yet have any effect on the chart.

In the next section you will add a filtering condition to the chart so that the
‘Start Date’, ‘End Date’, and ‘Companies’ parameters will filter the Chart
as well as the Table. Continue to Adding a Filter to the Chart.

Further Reading
Adding a Chart Element, in Report Design.

EVALUATION GUIDE

83 of 2477

4.9 Adding a Filter to the Chart
In this section, you will add the same filtering conditions to the Chart that
you already added to the Table. This way, when the user enters values for
the parameters, these values will be used to filter both the Table and the
Chart.

Note: Since the Table
and Chart are using
the same conditions,
you could have
instead added a condi-
tion to the Worksheet
data block.

Follow the steps below to add a filtering condition to the Chart:

1. Right-click on the Chart and select ‘Condition’. This opens the
‘Conditions’ dialog box.

2. From the left-most menu, select ‘Order Date’. From the middle
menu select ‘between’.

3. For each of the two right pop-up menus, select ‘Variable’.

4. Expand the top ‘Label’ menu, and select “startDate”. Expand the
bottom ‘Label’ menu, and select “endDate”.

These are the same variable names that you used in the Table
condition. This is important! You want to prompt the user only
once for each unique parameter. If you use different variable names
(even different capitalizations) in the Chart condition and the Table

EVALUATION GUIDE

84 of 2477

condition, the user will be prompted separately for each uniquely-
spelled variable.

5. Press the ‘Append’ button to add the clause to the condition.

6. Add a second clause to the condition to allow the user to select a set
of companies. Follow the steps below:

a. From the left-most menu select ‘Company’. From the middle
menu select ‘one of’.

b. From the right-most pop-up menu, select ‘Variable’. Expand the
the ‘Label’ menu, and select ‘companies’.

c. Check the ‘Use Selection List’ option. (This will present the
user with a menu from which the can select a set of companies.)

d. Press ‘Insert’ to add the clause to the condition.

EVALUATION GUIDE

85 of 2477

The condition now contains two clauses that are joined by a
conjunction (AND) operator.

7. Press the ‘OK’ button to finalize the condition and close the dialog
box.

8. From the Style Studio ‘Report’ menu, select ‘Parameter’ This
opens the ‘Parameter Definition’ dialog box.

Observe that only one set of parameters is listed, even though these
parameters are used to filter both the Table and the Chart. The user
will be prompted for just this one set of parameters.

Since you have edited the ‘Label’ property for these parameters
previously, press ‘Cancel’ to dismiss the dialog box.

9. Press the ‘Save’ button in the toolbar to save the report.

EVALUATION GUIDE

86 of 2477

10. Press the ‘Preview’ button on the toolbar to create a fresh preview.
Style Studio prompts you to enter values for the parameters.

11. Enter a ‘Starting Date’ and ‘Ending Date’ by using the pop-up
calendar controls, and select a list of ‘Companies’ to view. (Shift-
click to select multiple companies.)

12. Press ‘OK’ to run the report with these parameter values.

Note that the both the Chart and the Table are filtered to display only data
for the date range and companies that you selected. Proceed to Using a
Report.

Further Reading
Filtering Data in a Chart, in Report Design.

4.10 Using a Report
The User Portal can be accessed with any browser. To view the “Sample
Sales Report” that you saved, follow the steps below.

If the server is already
running, just point a
browser window to
http://localhost:8080/
sree/Reports.

1. On Windows, launch the User Portal from the Windows ‘Start’
menu: Style Intelligence (Evaluation) > Style Intelligence
(Evaluation) Server. This starts the server and opens the browser to
the server home page.

2. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter the

EVALUATION GUIDE

87 of 2477

URL http://localhost:8080/sree/ to access the server home
page.

3. Select the ‘User Portal’ link to open the Portal.

4. In the Portal, select the Report tab.

5. In the left panel of the Portal, expand the ‘Repository’ tree.

6. Select the ‘Sample Sales Report’. This opens the parameter screen
for the report.

7. Enter the desired parameter values and press ‘OK’ to run the report.

EVALUATION GUIDE

88 of 2477

The report is now open for viewing. Use the toolbar buttons to page
through the report, to export, or to print.

Further Reading
Production Reports, in End User.

EVALUATION GUIDE

89 of 2477

5 Where Do I Go From Here?

Once you have completed this Evaluation Guide – Start Here guide,
proceed to Getting Started, which discusses development in more detail
and contains pointers to other topics in the full documentation set.

As always, feel free to contact InetSoft with any questions!

• Phone: +1.888.216.2353 (US) / +1.732.424.0400 (International)

• Fax: +1.732.980.5949

• Email: info@inetsoft.com

• Web: http://www.inetsoft.com/

EVALUATION GUIDE

90 of 2477

APPENDIX A: Connecting to Other
Databases

The report and dashboard examples in this Guide use the sample Derby
database (see Defining a JDBC Data Source). After you have worked
through these examples with the sample data, you may wish to try
connecting to your own database. The following sections provide specific
instructions for other common JDBC data sources.

A.1 SQL Server

For SQL Server, the ‘JDBC URL’ in the JDBC Data Source Wizard has the
following form:

jdbc:sqlserver://{server name}:1433

For SQL Server Express, the ‘JDBC URL’ has the following form (no port
number):

jdbc:sqlserver://{server name};instanceName=SQLEXPRESS

Use your SQL Server login credentials rather than Windows domain
credentials.

A.2 Oracle

For Oracle, the ‘JDBC URL’ in the JDBC Data Source Wizard has the
following form:

jdbc:oracle:thin:@{server name}:1521:{service ID}

A.3 MySQL

For MySQL, the ‘JDBC URL’ in the JDBC Data Source Wizard has the
following form:

jdbc:mysql://{server name}:3306/{database name}

A.4 Microsoft Access

For Microsoft Access, the ‘JDBC URL’ in the JDBC Data Source Wizard
has the following form:

jdbc:odbc:{DSN}

To create an ODBC system DSN (Data Source Name) in Windows, open
Windows’ Administration Tools and select Data Sources (ODBC).

Note that the 64-bit ODBC driver is not pre-installed on Windows. If you
are using the default 64-bit version of Style Intelligence, you will need to
download the 64-bit ODBC driver from Microsoft’s Download Center.

http://www.microsoft.com/en-us/download/confirmation.aspx?id=13255

EVALUATION GUIDE

91 of 2477

Alternatively, you can use the 32-bit ODBC driver, odbcad32.exe, located
in C:\Windows\SysWOW64\. However, in order to use this driver, you will
need to install the 32-bit version of Style Intelligence.

A.5 SQL Server Analysis Services Cubes

Style Intelligence uses the XMLA standard to query a Cube engine with
MDX queries. Cubes can be visualized only within Viewsheets. (When
you create a new Viewsheet, do not choose a specific data source. All
available cubes will automatically be visible in the left Component panel.)

The IIS server can run in any of the following environments:

• The physical host running analysis services (quickest and simplest set-
up). Note: If IIS is not running on the same machine as analysis services,
you will also need to install the OLE DB for SQL Server on the IIS host
machine (SQL Server 2008 or SQL Server 2012).

• The physical host running Style Intelligence

• A completely separate machine

For SSAS, Microsoft provides an ISAPI web service via IIS
(msmdpump.dll) to query the Analysis Server. This file can be found within
your Analysis Services installation: Microsoft SQL
Server\<instance>\OLAP\bin\isapi. For detailed instructions on how to set
up IIS 7, see the Microsoft Developer Network.

A.6 General Tips

Following are some general tips when using Style Intelligence with
different datasources.

• When you create the first query or physical view for a datasource, Style
Studio imports and caches all meta-data (table names, column names,
and column types). Style Studio may be unresponsive for up to several
minutes during this process, depending on the amount of meta-data that
needs to be retrieved.

• To refresh the cached meta-data of your schema, open the datasource in
Style Studio and press the ‘Refresh Metadata’ button in the toolbar.

• When using an ODBC datasource, set the ‘Table Name’ datasource
option to ‘Table’.

• If you are evaluating Style Intelligence on Windows 2008, run Style
Studio and the Style Intelligence Server as Administrator. To do this,
right-click the executable file and select ‘Run as administrator’.

http://msdn.microsoft.com/en-us/library/gg492140.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=16978
http://www.microsoft.com/en-us/download/details.aspx?id=29065

GETTING STARTED

92 of 2477

Getting Started

Welcome to Style Intelligence!

Style Intelligence™ is a complete business intelligence (BI) software
package that allows you to explore, analyze, monitor, report, and
collaborate on business and operational data, all in real time. You will find
Style Intelligence to be agile, robust, and easy to use.

Style Intelligence has three main components:

• Style Studio: A desktop-based integrated development environment
that allows developers to configure data sources and design queries, data
models, reports, data mashups, and much more. See Working with Style
Studio for an introduction.

• User Portal: A web-based environment for viewing, scheduling, and
manipulating reports and dashboards. See Using a Dashboard and
Using a Report for an introduction.

• Enterprise Manager: A web-based administrative tool for managing
report and dashboard deployment and server performance. See
Administration Reference for full details.

Note: To install the files used in these examples, please make sure
to select the 'Examples' option during installation.

The best way to learn Style Intelligence is to work through the examples in
this Getting Started guide. The examples will walk you through all the
major features of Style Intelligence, and explain where you can find more
detailed information. All examples used in this chapter are in the examples/
docExamples/design directory of the default installation.

When you have finished the topics presented in this Getting Started guide,
explore the rest of the documentation to learn about additional Style
Intelligence features. See Where Do I Go From Here? for some helpful
pointers.

GETTING STARTED

93 of 2477

1 Getting Started with Style Intelligence
Development

This section will help get you started developing assets with Style Studio
and Visual Composer, and will introduce you to important approaches to
team development.

1.1 Development Workflow
Different applications may require different assets and different
approaches, but the most common workflow for creating assets is given
below:

1. Configure Style Studio

Before you begin creating new assets, etc., make sure that Style
Studio is correctly configured. In particular, make sure that the
repository location is set correctly and that your database driver
files are on the classpath. See Configuring Style Studio for more
information. If you plan to develop assets as a team, see also Devel-
oping as a Team.

2. Define datasources

A datasource is a connection to your data, which might be stored in
a relational database such as Oracle or SQLServer, in a text or
Excel file, or in some other format. By defining a datasource, you
provide your reports and dashboards with a live connection to your
data. This means that when your data is updated, reports and dash-
boards automatically reflect the updated data. To learn how to cre-
ate a datasource, see Defining a Data Source.

3. Create queries, data models, and Data Worksheets

After you have defined a datasource to connect to your data, you
need a mechanism to retrieve the desired data and supply this data
to reports and dashboards. You can do this by creating queries, by
creating data models, or by creating Data Worksheets. See Query
vs. Model vs. Worksheet for an explanation of the benefits of each
approach.

4. Create reports and dashboards

After you have created queries, data models, and/or Data Work-
sheets, proceed to create your final products: Reports and dash-
boards. See Report vs. Dashboard for an explanation of the benefits
of each type of asset.

GETTING STARTED

94 of 2477

5. Deploy reports and dashboards to production server

After you have created reports and dashboards, deploy them to
your production server. See Deploying a Report, Data Source, or
Other Asset for more information.

See Also
Working with Style Studio, for information how to use Style Studio.

1.2 Query vs. Model vs. Worksheet
There are three principal ways to retrieve data from a datasource:

• Query: A query is a specific request for data from the datasource (i.e., a
request for specific columns and rows), typically written in the SQL
language. Style Studio provides a wizard to make query creation easy.
See Independent Query in Data Modeling for information on how to
create a query.

• Data Model: A data model provides an all-encompassing
representation of your data, a view into your database suitable for
business users. Because a data model is not a specific request for data,
but rather a model of your database schema, it is much more flexible
than a query. See Getting Started With Data Models for an example.

• Data Worksheet: A Data Worksheet has many roles, but is most often
used to graphically build complex queries and mash-up data from
different data sources. See Getting Started with Data Mash-Up for more
information.

The table below highlights the advantages and disadvantages of these
different approaches.

FEATURE QUERY DATA MODEL DATA
WORKSHEET

Mash up data
from different
data sources

No No Yes

Quick to create Yes No Yes
Create complex
queries

Partially (via SQL
string)

Partially (via SQL
string)

Yes

Facilitate self-
service (see
below)

No Yes Partially

Accept SQL
string

Yes Yes No

GETTING STARTED

95 of 2477

Self-service refers to the ability of an end-user to make their own data
selections. Queries and Data Worksheets are limited in this regard, because
they provide access only to the fields that they were originally designed to
provide (although, of course, a user can choose among those fields).
Because a data model provides a broader view into the entire database
schema, it gives the user much more flexibility in selecting data and greatly
enhances self-service.

1.3 Report vs. Dashboard
The end result of your development process is a generally a report or a
dashboard. It is important to understand the similarities and differences
between these two methods of data presentation. Both reports and
dashboards present data, but they provide a very different user experience.

The most profound difference between reports and dashboards is the level
of interactivity:

• To create a highly interactive environment, use a dashboard. See Getting
Started with Dashboards for more information.

• To present static data in a multi-page format, use a report. See Getting
Started with Reports for more information.

The table below compares some other features of reports and dashboards.

Import data from
non-datasource

No No Yes

Available for non-
relational
databases

Yes No Yes

REPORT DASHBOARD

Supports multiple pages. Supports only a single screen, but
allows tabbed interfaces.

Supports multiple data sources in a
single report.

Allows only one data source per
dashboard, but dashboards with
different data sources can be nested.

Static, but can be made more interactive
through parameterization.

Dynamic and interactive.

Does not support materialized views. Supports materialized views.
Provides full desktop-based design
tools and limited web-based design
tools (Ad Hoc editing).

Provides full web-based design tools.

Supports reusability via beans, meta-
templates, subreports, and parameter
sheets.

Supports reusability via nesting.

FEATURE QUERY DATA MODEL DATA
WORKSHEET

GETTING STARTED

96 of 2477

1.4 Developing as a Team
It is common for multiple developers to work on the same set of projects,
and Style Intelligence supports such team development in a variety of
ways.

To set permissions for
dashboards, Work-
sheets, and folders,
see Repository Per-
missions and Compo-
nent/Object
Permissions in
Administration Refer-
ence.

Dashboards and Data Worksheets can be created and edited entirely
through the web-browser. Therefore, to work as a team on dashboards and
Worksheets, developers should simply log into the same server and edit the
dashboards and Worksheets using Visual Composer. See Getting Started
with Dashboards and Getting Started with Data Mash-Up for more
information.

Data Worksheets can
also be created and
edited in Style Studio.

Reports, data sources, queries, data models, and reusable assets such as
table styles and parameter sheets are created on the desktop using Style
Studio. A developer who works on these assets must therefore have an
installation of Style Studio. The easiest way to develop these assets as a
team is to utilize a shared repository. The repository is the location from
which Style Studio reads and writes these assets, and by sharing the same
repository developers can access and edit the same assets.

There are three different types of repositories, “local”, “database”, and
“server”, and any of these can be shared for team development. See
Configuring a Repository and Sharing a Repository for information on
how to set up and share a repository. To deploy assets from one repository
to another (e.g., from a development repository to a production server
repository), see Deploying a Report, Data Source, or Other Asset.

Can be viewed under the Portal Report
tab.

Can be viewed under the Portal Report
tab and Dashboard tab.

Can be exported to a wide variety of
formats.

Can be exported to Excel, PDF, or
PowerPoint.

REPORT DASHBOARD

GETTING STARTED

97 of 2477

2 Getting Started with Dashboards

Exploration is the key to discovery. Style Intelligence’s advanced
dashboards allow end-users to freely probe and experiment within an easy-
to-use, self-service environment. Users can inspect their data from a variety
of angles, test and validate analysis methods, and simulate hypothetical
business scenarios – all without the assistance of IT staff.

To understand the value of dashboards, consider some of the common
needs expressed by business users:

• “I need to analyze data obtained from different sources in real-time, for
example, data from an Excel spreadsheet and an Oracle database.”

• “I need to analyze live operational data, as well as historical data.”

• “I want to view selected portions of my data, without having to
continuously resubmit a set of parameters and generate new reports.”

• “I need to analyze my data, and I understand the business, but I have no
knowledge of how the data is stored.”

• “I need to perform interactive ‘what-if’ analysis on my data, for
example, to test a hypothetical scenario by trying different inputs.”

Style Intelligence dashboards address all of these issues, allowing users to
rapidly obtain answers to their questions. Style Intelligence provides Visual
Composer, a powerful web-based tool that gives end-users the flexibility to
create and prototype their own dashboards using simple drag-and-drop
operations.

The following sections introduce Visual Composer and highlight the
exploratory capabilities of dashboards. For complete information on how
to create dashboards in Visual Composer, see Dashboard Design.

2.1 Creating a Dashboard
To build a dashboard, you lay out components such as gauges, tables, and
charts on a simple canvas called a Viewsheet. Viewsheets can retrieve data
from queries, data models, or Data Worksheets. (See Data Modeling and
Getting Started with Data Mash-Up for more information on creating these
assets.)

Note: Creation of new dashboards is currently not supported on
Apple iPads.

The following example walks you through the creation of a simple
Viewsheet. You will use an existing Data Worksheet called ‘ProductSales’
as the data source for the dashboard, and you will configure output and

GETTING STARTED

98 of 2477

selection components to allow users to quickly analyze the ‘ProductSales’
data.

Follow the steps below:

If the server is already
running, just point a
browser window to
http://localhost:8080/
sree/Reports.

1. On Windows, launch the User Portal from the Windows ‘Start’
menu: Start > All Programs > Style Intelligence > Style
Intelligence Server. This starts the server and opens the browser to
the server home page.

2. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter the
URL http://localhost:8080/sree/ to access the server home
page.

3. Select the ‘User Portal’ link to open the Portal.

4. Press the Design tab, and select the ‘Visual Composer’ link.

This opens Visual Composer in a new window. The left-side panels
in Visual Composer are labeled Asset and Component. The Asset
panel lists all Data Worksheets and Viewsheets. The Component
panel lists all of the components available to a Viewsheet.

5. Press the ‘New Viewsheet’ button. This opens the ‘New
Viewsheet’ dialog box.

6. In the ‘New Viewsheet’ dialog box, expand the ‘Global Worksheet’
node and expand the ‘Tutorial’ folder. Select the ‘ProductSales’
Data Worksheet and press ‘OK’.

GETTING STARTED

99 of 2477

This creates a new Viewsheet that draws its data from the ‘Product-
Sales’ Worksheet.

7. Expand the ‘ProductSales’ node at the top of the Component panel
in Visual Composer. Drag the ‘SalesByDate’ data block into the
Viewsheet grid. This adds the ‘SalesByDate’ data block to the
Viewsheet as a Table component.

8. Under the ‘ProductSales’ tree node, expand ‘SalesByDate’ to show
the list of fields within that data block.

GETTING STARTED

100 of 2477

9. Click and drag the ‘State’ field to an empty cell in the Viewsheet
grid. This creates a Selection List that will let the user choose the
states for which data is displayed.

10. From the ‘Selection’ folder in the Component panel, drag a Range
Slider component into an empty cell in the Viewsheet grid. This
will let the user specify a time period for the displayed output.

GETTING STARTED

101 of 2477

11. Drag and drop the ‘Month(Date)’ field onto the Range Slider in the
grid. This links the Range Slider to the ‘Month(Date)’ field.

Use the main toolbar
to change the fonts,
colors, and other
visual properties of
the elements. You can
right-click an element
to see further options.

This allows the Range Slider to filter the ‘Date’ field in the Work-
sheet data block.

12. Drag the handles on the Range Slider to adjust the size as desired.

GETTING STARTED

102 of 2477

See Dashboard
Design for more
information on global
and user scope.

13. Press the ‘Save’ button in the Viewsheet toolbar, and save the
Viewsheet under ‘Global Viewsheet’ with the name “Sample
Viewsheet”. This deploys the Viewsheet to the server under global
scope.

14. Press the ‘Preview’ button on the main toolbar. This provides a
preview of what the user will see in the Portal, and allows you to
interact with the dashboard as a user would.

You have now completed construction of your first dashboard. To explore
the dataset using this Viewsheet, see Using a Dashboard. For more
information about creating Viewsheets, see Dashboard Design.

2.2 Creating a Materialized View
A materialized view is a method of storing data that permits a dashboard to
retrieve data more quickly and improves dashboard responsiveness. (See

GETTING STARTED

103 of 2477

Materialized Views in Administration Reference for more details.) Most
dashboards will benefit from a substantial performance improvement when
a materialized view is utilized.

This section illustrates how an administrator can create a materialized view
for the dashboard you created in the previous section, Creating a
Dashboard. Follow the steps below:

If the server is already
running, just point a
browser window to
http://localhost:8080/
sree/EnterpriseMan-
ager.

1. On Windows, launch the User Portal from the Windows ‘Start’
menu: Start > All Programs > Style Intelligence > Style Intelligence
Server. This opens the browser to the server home page.

2. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter the
URL http://localhost:8080/sree/ to access the server home
page.

3. Select the ‘Enterprise Manager’ link to open Enterprise Manager.

4. Select the Report tab, expand the ‘Repository’ tree node, and
select the ‘Sample Viewsheet’ dashboard in the tree.

5. Select the Materialized View tab.

6. Press the ‘Analyze’ button below the ‘Materialized Views’ table.

GETTING STARTED

104 of 2477

This opens the ‘Optimize Plan’ dialog box.

7. Press ‘OK’ to dismiss the ‘Optimize Plan’ dialog box. The
‘Materialized Views’ table now lists a materialized view with status
‘Recommended’.

The cycle determines
how often the materi-
alized view is
refreshed with data
from the database.

8. To assign a cycle to the materialized view, choose the desired cycle
from the ‘Select Cycle’ menu, and press ‘Apply Cycle’. (See
Scheduler Cycle in Administration Reference for more details about
cycles.) The materialized view is now configured to be generated
on the specified cycle.

9. To create the initial materialized view, press the ‘Create’ button
below the ‘Materialized Views’ table.

GETTING STARTED

105 of 2477

This opens the ‘Create Materialized Views’ dialog box.

10. Choose the method for creating the materialized view, and press
‘Create’.

Select ‘Immediately With Data’ to create the full materialized view.
Select ‘Immediately Without Data’ to create just the materialized
view framework. (In this case, the materialized view will be popu-
lated with data the next time the cycle runs.) Select ‘Scheduled’ to
schedule the initial materialized view creation for a future time.

The ‘Status’ column of the ‘Materialized Views’ table now indicates that a
materialized view exists for the dashboard, and this materialized view
(rather than the database) will supply data to the dashboard in the future.

GETTING STARTED

106 of 2477

2.3 Using a Dashboard
Style Intelligence dashboards encourage end-users to freely explore and
experiment, guiding users toward asking questions that return valuable and
actionable information.

This section illustrates how end-users can interact with a sample dashboard
to generate new knowledge. The example uses the sample Viewsheet you
designed in Creating a Dashboard. To explore data using this Viewsheet,
follow the steps below.

If the server is already
running, just point a
browser window to
http://localhost:8080/
sree/Reports.

1. On Windows, launch the User Portal from the Windows ‘Start’
menu: Start > All Programs > Style Intelligence > Style Intelligence
Server. This opens the browser to the server home page.

2. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter the
URL http://localhost:8080/sree/ to access the server home
page.

For more information
on the User Portal, see
End User.

3. Select the ‘User Portal’ link to open the Portal.

4. In the Portal, select the Report tab.

5. In the left panel of the Portal, expand the ‘Repository’ tree click the
‘Sample Viewsheet’ to open this dashboard.

As a user, you can interact with the Viewsheet by manipulating the
graphical controls. The Viewsheet in this example has a Selection List,
Range Slider, and Table.

• The Selection List lets you to specify which states are displayed.

GETTING STARTED

107 of 2477

• The Range Slider lets you focus on a specific time period. The period
can be as short as two months or as long as the full available range.

• The Table displays the results of your selections.

Note: The dashboard interface operates in a slightly different way
on Apple iPads and iPhones. See Using Dashboards on a Mobile Device
in End User for details.

Often, components of a Viewsheet have their own toolbars and
modification options. For example, hover the mouse over the Selection
List’s title bar to see the available tools.

To begin the analysis, use the Viewsheet to address the following question:
“Which clients are in Colorado?”

1. Select Colorado (CO) in the Selection List. (Use the scroll bar on
the right side of the Selection List, if necessary). The table now
shows the results for Colorado.

“OK, but we want to see only January 2011 through January 2012.”
Change the time period:

2. Click-and-drag on the right handle of the Range Slider. Drag the
handle to the left until the dates listed are ‘2011 January – 2012
January’.

GETTING STARTED

108 of 2477

The table automatically updates to display the new data selection.
Use the scroll bar on the right edge of the table to scroll through the
data.

“The data is all there, but we want to see it sorted according to the name of
the company, rather than by the date of purchase.” Change the sorting
column:

3. Hover the mouse over the right side of the ‘Company’ header cell
in the table. The ‘Sort Column’ button appears in the header cell.

4. Press the ‘Sort Column’ button once to sort the column in
ascending order (indicated by an up-arrow). The table is now
alphabetically sorted by company name.

“Now we want to see the purchases for January 2012 through January
2013.” Shift the date range:

5. Click-and-drag on the body of the Range Slider. Move the slider
until the date range selected is ‘2012 January – 2013 January’.

GETTING STARTED

109 of 2477

The table is immediately refreshed with data only for the range you
selected.

“Who was our best customer in the first half of 2012?” Look at the results
for all states over this six month period:

6. In the Selection List toolbar, press the ‘Clear Selection’ button to
remove the existing filter.

7. On the Range Slider, drag the right handle until only the range
‘2012 January – 2012 June’ is displayed.

8. To sort the table according to total purchases, hover the mouse over
the right side of the ‘Total’ header cell in the table. Press the ‘Sort
Column’ button twice to sort the results in descending order.

“We want to show this data to our colleagues in the meeting later.”

9. Press the ‘Export’ button in the top toolbar to open the ‘Export’
dialog box. The dialog box provides two tabs, Content and
Location.

10. Make the desired selections, and press ‘OK’.

GETTING STARTED

110 of 2477

For more information about interacting with Viewsheets in the User Portal,
see Dashboards in End User.

See Also
Using a Report, for information on viewing a report in the Portal.

GETTING STARTED

111 of 2477

3 Working with Style Studio

Style Studio is a desktop-based integrated environment for the
development of report and other assets. You will use Style Studio to
develop the following resources:

• Data sources, connections, queries, data models, virtual private models.
(See Data Modeling for full details.)

• Data Worksheets. (See Data Mashup for full details.)

• Reports, parameter sheets, beans, meta-templates, table styles, scripts,
etc. (See Report Design for full details.)

Dashboards are created using the web-based Visual Composer. See
Getting Started with Dashboards for an introduction and Dashboard
Design for full details.

The following sections explain how to launch and configure Style Studio,
and how to work effectively within the Style Studio environment.

3.1 Starting Style Studio
There are two ways to launch Style Studio. For most purposes, it is best to
launch Style Studio from the Windows Start menu.

Launching Style Studio from the Start Menu

To start Style Studio, select the ‘Style Studio’ shortcut from the Windows
Start Menu.

Launching Style Studio from the Command Line

You can also launch Style Studio from the command line. If you are using
the Style Report Pro package, start Style Studio as follows:

java inetsoft.gui.Designer

If you are using the Style Report EE, Style Scope, and Style Intelligence
packages, start Style Studio as follows:

java inetsoft.sree.gui.Designer2

Before running this Java command, verify that the following required
InetSoft JAR files (in the installation lib directory) are on the command-
line classpath.

PRODUCT JAR FILES

Style Report Pro
design.jar, xreport.jar, xtools.jar, layer.jar, ide/
*.jar

Style Report Enterprise design.jar, sree.jar, etools.jar, layer.jar, ide/*.jar

GETTING STARTED

112 of 2477

See Also
Configuring the Style Studio Classpath, to set the classpath for developer
tools.
Accessing a Data Source, Query, Model, VPM, in Data Modeling.
Editing a Data Worksheet in Style Studio, in Data Mashup.

3.2 Style Studio Interface
Style Studio is an integrated development environment that supports a
number of different tasks including data modeling, report design, data
mashup, scripting, etc. The interface is composed of a set of panels, menus,
and toolbars.

Figure 1. Adaptive Panels and Toolbar

The configuration of the panels and toolbar adapts to the current task. For
example, if you are designing a report, you will see a set of panels and
buttons that are appropriate for report design operations. If you are
designing a Data Worksheet, you will see a set of panels and buttons
appropriate for data-mashup operations.

You can manually rearrange the panels to suit your own working style. The
following sections explain how to do this.

Style Scope
design.jar, visual.jar, etools.jar, layer.jar, ide/
*.jar

Style Intelligence
design.jar, bisuite.jar, etools.jar, layer.jar, ide/
*.jar

GETTING STARTED

113 of 2477

3.2.1 Moving a Panel

To move a panel from one location to another, click-and-drag on the
panel’s title bar, and move it to the desired location. When you release the
mouse, the panel will be relocated to the specified location.

As you drag the panel, an orange outline indicates where the panel will be
placed. A rectangular orange outline means that the panel will occupy its
own region (approximately as indicated by the outline). A tabbed outline
means that the panel will be placed into a tabbed deck with other panels.

Figure 2. Dragging a panel to create a new tab.

Figure 3. Dragging a panel to create a new region.

GETTING STARTED

114 of 2477

3.2.2 Minimizing and Maximizing a Panel

To minimize a panel, press the ‘Minimize Panel’ button in the panel tab.
This reduces the panel to a button at the margin of the Style Studio
interface.

To temporarily re-expand the panel, hover the mouse over the
corresponding button. To permanently re-expand the panel, press the
button.

To restore the panel to it’s original position (prior to being minimized),
follow these steps:

1. Press (or hover over) the minimized button. This expands the
minimized panel.

2. Press the ‘Pin’ button in the panel’s tab. This restores the panel to
its original position.

3.2.3 Closing and Opening a Panel

To close a panel, press the ‘Close Panel’ button in the tab.

GETTING STARTED

115 of 2477

Alternatively, uncheck the panel name in the main ‘Window’ menu. To
open a closed panel, open the ‘Window’ menu, and check the desired panel
name.

3.2.4 Restoring the Original Layout

To restore the original Style Studio layout (panel positions, etc.), select
‘Reset All Windows’ from the ‘Window’ menu. This restarts Style Studio
and restores all panels to their factory settings. If necessary, you will be
prompted to save your open work.

3.2.5 Console

If an error occurs in Style Studio, a Console panel may open to show
relevant exceptions or log messages.

Figure 4. Console Panel

To open the Console panel at any time, select ‘Console’ from the
‘Window’ menu. To clear the contents of the Console panel, right-click
anywhere in the panel itself, and select ‘Clear’.

GETTING STARTED

116 of 2477

To set Console properties, select ‘Console Settings’ from the ‘Window’
menu. This opens the ‘Console Settings’ dialog box.

The ‘Console Settings’ dialog box provides the following options:

• ‘Show console on error’ opens the Console panel when an error occurs
during report preview, query preview, etc.

• ‘Show full exception trace’ generates an execution trace that may be
useful in identifying the source of the error.

• ‘Suspend messages’ prevents subsequent log messages from being
displayed in the Console panel.

• ‘Detail Level’ specifies the level of detail supplied in the log messages.
There are five available detail levels, described below:

Table 1. Log Detail Levels

It is recommended that you set the detail level to ‘Warning’ or higher.

3.2.6 Undoing an Operation

To undo a recent operation, press the ‘Undo’ button in the Style Studio
toolbar (or press ‘Ctrl-z’ on the keyboard). Repeat as necessary to undo a
sequence of operations.

To redo an operation (after undoing), press the ‘Redo’ button in the Style
Studio toolbar (or press ‘Ctrl-y’ on the keyboard).

3.3 Configuring Style Studio
Before you begin working with Style Studio, there are a few settings that
you should customize. The most important of these is the Style Studio

DETAIL LEVEL DESCRIPTION

Finest Very fine-grained performance information.

Fine Debugging messages.

Info Non-critical information messages.

Warning Non-fatal errors and critical messages.

Severe Fatal errors.

GETTING STARTED

117 of 2477

working repository, the location from which Style Studio accesses reports,
queries, data models, and other assets.

To change Style Studio configuration settings, select ‘Configure’ from the
‘File’ menu. This opens the ‘Style Studio Configuration’ dialog box.

The ‘Style Studio Configuration’ dialog box has four tabs: General,
Repository, License, and Classpath. These tabs allow you to configure
multiple repositories, adjust the Style Studio classpath, and tailor other
settings. The tabs are discussed in the following sections.

Note: The location of
the HTML documen-
tation is specified by
the ‘help.dir’ prop-
erty in the .stylereport
file.

Configuration settings are saved in the .stylereport and .stylereport_repos
files. These files are located in a version-specific directory (e.g., “11.5”)
within the .stylereport.d folder in the home (user) directory on the machine
where Style Studio is installed. Some of these settings can be viewed in the
System Info tab of the ‘About Style Studio’ dialog box, which you can
access from the main ‘Help’ menu.

3.3.1 Configuring a Repository

A repository is a location from which Style Studio can access report files
and other assets. You can configure multiple repositories, but only one
repository at a time can be the working repository (see below). A repository
contains the following key configuration files:

GETTING STARTED

118 of 2477

These files are
accessed both by Style
Studio and any Style
Intelligence server
that uses the same
repository.

• repository.xml: The repository listing, containing information about
reports and folders displayed under the ‘Repository’ node of the Style
Studio Asset panel. The repository.xml file is also used to populate the
‘Repository’ listing for any server that uses this repository. See Saving a
Report to the Working Repository for instructions on how to deploy a
report.

• asset.dat: The asset registry, containing global Data Worksheets (as
well as Viewsheets created on the server). See Getting Started with Data
Mash-Up for information about creating Worksheets. See Getting
Started with Dashboards for information about Viewsheets.

The asset.dat and
stylereport.srl files
can be exploded into
their individual com-
ponents, if needed.
See Exploding Con-
figuration Files in
Administration Refer-
ence for details.

• stylereport.srl: The report library, containing reusable report and
dashboard components (meta-templates, beans, parameter sheets, table
styles, scripts).

• query.xml: The query registry, containing global query definitions that
can be shared among different reports, Worksheets, and dashboards. See
Independent Query in Getting Started with Data Modeling for
information on how to create queries.

• datasource.xml: The data source registry, containing global definitions
for database connections, data models, and virtual private models
(VPMs) that can be shared among different reports, worksheets, and
dashboards. See Getting Started with Data Modeling for information on
how to create data sources and data models.

Note: A “remote repository” is any repository other than the
current working repository. The remote repository need not be
located on a remote machine.

You can configure multiple repositories from within Style Studio (see
Creating a New Repository), but only one repository at a time can be the
current working repository. The working repository is the location in which
Style Studio is currently set to access reports, report components, and the
other resources described above. Any repository other than the working
repository is a remote repository.

The following sections explain how to configure a repository, and how to
select the working repository. To save a report or other asset to a remote
repository, see Deploying a Report, Data Source, or Other Asset.

Creating a New Repository

The working repository is the location from which Style Studio currently
accesses report files and configuration files. A remote repository is any
repository other than the working repository.

GETTING STARTED

119 of 2477

A remote repository
can have type ‘Local’.
“Remote” means “not
the working reposi-
tory”.

A repository (working or remote) can be one of three types:

• Local: Repository files are stored on a local drive or shared network
drive.

• Database: Repository files are stored in a table within a supported
database system (Derby, Oracle, SQL Server, DB2, PostgreSQL,
MySQL).

• Server: Repository files are managed by a server and accessed over the
internet.

The following sections explain how to create each type of repository.

Creating a Local Repository

A local repository stores the configuration files on a local drive or shared
network drive. To create a local repository, follow the steps below:

1. From the Style Studio ‘File’ menu, select ‘Configure’. This opens
the ‘Style Studio Configuration’ dialog box.

2. Select the Repository tab.

3. On the Repository tab, press the ‘New’ button. This opens the
‘New Repository’ dialog box.

4. In the ‘Name’ field, enter the label under which the repository
should be listed.

5. Select the ‘Local’ option from the ‘Type’ listing, and press ‘OK’.

A green check-mark
indicates the working
repository.

This adds a new local repository to the listing in the Repository
tab, and automatically sets this new repository to be the working
repository. (See Selecting the Working Repository for information
on manually setting the working repository.)

GETTING STARTED

120 of 2477

The specified directory cannot be used for any other repository.

6. In the ‘Configuration Directory’ field, enter the full path to the
desired repository directory (a local or network drive location). If
the specified directory is empty, a new set of configuration files is
created in that location. (See Creating a Clean Local Repository.)

7. (Optional) Select ‘Disable Locking’ to disable Style Studio’s
automatic locking mechanism. The locking mechanism prevents
multiple developers from simultaneously editing the same assets
(e.g., data models, queries, etc.), which might lead to edit conflicts.
In general, leave the locking mechanism enabled.

8. Press ‘OK’ to close the dialog box.

This new ‘Local’ repository can be used either as the working repository or
as a remote repository.

See Also
Selecting the Working Repository, to manually select the working
repository.
Creating a New Repository, for information about different repository
types.

GETTING STARTED

121 of 2477

Creating a Database Repository

A database repository stores reports and configuration files in a database
schema. To create a database repository, follow the steps below:

1. From the Style Studio ‘File’ menu, select ‘Configure’. This opens
the ‘Style Studio Configuration’ dialog box.

2. Select the Repository tab.

3. On the Repository tab, press the ‘New’ button. This opens the
‘New Repository’ dialog box.

4. In the ‘Name’ field, enter the label under which the repository
should be listed.

5. Select the ‘Database’ option from the ‘Type’ listing, and press
‘OK’.

A green check-mark
indicates the working
repository.

This adds a new database repository to the listing in the Repository
tab, and automatically sets this new repository to be the working
repository. (See Selecting the Working Repository for information
on manually setting the repository.)

The specified directory cannot be used for any other repository.

6. In the ‘Configuration Directory’ field, enter the full path to a
directory which will store the database connection information.

7. In the ‘Database’ menu, select the type of database to use for
storage of the repository files. The options are ‘SQLServer’,
‘Oracle’, ‘Derby’, ‘DB2’, PostgreSQL, MySQL. (To use the
sample audit database of the default installation, select ‘Derby’.)

Your database admin-
istrator can provide
the connection URL.

8. In the ‘URL’ field, enter the connection information for the
database schema. (To use the sample audit database, enter
jdbc:derby://localhost:1527/database;create=true. To run the
audit database, expand the ‘Style Intelligence’ program group in
the Windows ‘Start’ menu, and select ‘Audit Database’.)

GETTING STARTED

122 of 2477

9. In the ‘Driver’ field, enter the appropriate class name for the Java
driver. (This field may already be populated based on your
selection in the ‘Database’ menu. To use the sample audit database,
enter org.apache.derby.jdbc.ClientDriver.)

10. Select ‘Requires Login’ if the database requires a user name and
password to open a connection. In this case, also enter the desired
‘User Name’ and ‘Password’ credentials. (To use the sample audit
database, enter “app” for the ‘User Name’ and “password” for the
‘Password’.)

11. (Optional) In the ‘Default DB’ field, enter the name of the default
database schema to receive the connection.

12. In the ‘Isolation Level’ field, select the desired isolation level.

13. (Optional) If an existing schema contains multiple asset
(Worksheet/Viewsheet) packages, specify the desired package in
the ‘Asset File Key’ field.

14. Press ‘OK’ to close the dialog box.

This new ‘Database’ repository can be used either as the working
repository or as a remote repository.

GETTING STARTED

123 of 2477

See Also
Selecting the Working Repository, to manually select the working
repository.
Creating a New Repository, for information about different repository
types.

Creating a Server Repository

A server repository stores reports and configuration files in a server
repository. This method uses HTTP for communication, and requires only
internet access and a password. The server repository option can support
highly distributed development teams working across geographically
diverse regions, although performance may be inferior to that of local or
database repository options.

To create a server repository, follow the steps below:

1. From the Style Studio ‘File’ menu, select ‘Configure’. This opens
the ‘Style Studio Configuration’ dialog box.

2. Press the Repository tab.

3. On the Repository tab, press the ‘New’ button. This opens the
‘New Repository’ dialog box.

4. In the ‘Name’ field, enter the label under which the repository
should be listed.

5. Select the ‘Server’ option from the ‘Type’ listing, and press ‘OK’.

A green check-mark
indicates the working
repository.

This adds a new server repository to the listing in the Repository
tab, and automatically sets this new repository to be the working
repository. (See Selecting the Working Repository for information
on manually setting the repository.)

The specified directory cannot be used for any other repository.

6. In the ‘Configuration Directory’ field, enter the full path to the
directory which will store the server connection information.

GETTING STARTED

124 of 2477

See Configuring the
Data Space in Admin-
istration Reference for
information on how to
set a server repository
location.

7. In the ‘Server URL’ menu, enter the full URL of the server to
manage the shared repository. (The default URL of the server is
http://hostname:8080/sree/Reports.) The specified server’s
repository will then be used as the Style Studio repository.

8. Enter the ‘User Name’ and ‘Password’ credentials to access the
server.

Note: For both
‘Local’ and ‘Remote’
options, the repository
is managed by the
remote server.

9. (Optional) In the ‘Execution’ panel, select ‘Local’ if you want Style
Studio to perform all report and query processing on the local
machine (default). Select ‘Remote’ if you want the specified
remote server to perform all report and query processing. In this
case, when you execute a report (for preview, export, etc.) in Style
Studio, the remote server fully generates the report and returns the
completed report as HTML for display in Style Studio. This option
requires administrative permission. See Objects Tab in
Administration Reference for more information.

Note: If you are using a text or Excel file as a datasource and select
the ‘Remote’ execution option, the datasource file path must be
accessible to the server in order to preview reports, queues, etc.

10. Press ‘OK’ to close the dialog box.

This new ‘Server’ repository can be used either as the working repository
or as a remote repository.

GETTING STARTED

125 of 2477

See Also
Selecting the Working Repository, to manually select the working
repository.
Creating a New Repository, for information about different repository
types.

Selecting the Working Repository

The working repository is the repository from which Style Studio is
currently accessing assets and configuration settings. To select the working
repository, follow the steps below:

1. From the Style Studio ‘File’ menu, select ‘Configure’. This opens
the ‘Style Studio Configuration’ dialog box.

2. Select the Repository tab.

The Repository tab lists all of the configured repositories. See Cre-
ating a New Repository for information on how to add a new repos-
itory to this list.

You can also double-
click the desired
repository.

3. Click the desired repository and press ‘Select’.

The repository listing
is stored in the
.stylereport_repos
file. See Configuring
Style Studio for more
details.

Note that a green check mark appears next to the currently selected
repository. Style Studio uses this working repository to access the
key configuration files described in Configuring a Repository
(query.xml, repository.xml, datasource.xml, etc.)

4. Press ‘OK’ to close the dialog box.

GETTING STARTED

126 of 2477

Sharing a Repository

To save assets into a
repository other than
the working reposi-
tory, see Deploying a
Report, Data Source,
or Other Asset.

If a team of developers is collaborating on creating reports or other assets
(queries, models, scripts, etc.) for a particular project, it is best for all
developers share the same working repository. This means that each
developer should configure and select the same working repository in their
own installation of Style Studio. See Configuring a Repository for
information on how to do this.

By sharing the same working repository, multiple developers can edit the
same set of configuration files (datasource.xml, query.xml, stylereport.srl),
which simplifies deployment and eliminates synchronization problems.

See Configuring a
Repository for infor-
mation on selecting a
repository type.

Any type of repository (local, database, or server) can be shared among
developers. However, one type of repository may be better suited than
another to distributed team development in a particular context. The
following sections explain the advantages and disadvantages of the
different repository types for team development.

Sharing a Local Repository

To share a working repository using the ‘Local’ repository option, mount a
network drive and create a directory on this network drive for the
repository. Each developer should follow the steps given in Creating a
Local Repository and specify this network drive directory as their
‘Configuration Directory’.

Note: For the 'Local' repository approach, set the 'locklevel.user'
property in the 'sree.properties' file to 'false' (default).

A useful variation on this approach is to set the ‘Configuration Directory’
to the SREE Home directory of a development server (e.g., sree/WEB-INF/
classes). This ensures that modifications you make to reports, data sources,
queries, assets, etc., will be available to the server without any special
deployment. However, be aware that Style Studio loads the server’s
sree.properties settings with a higher priority than those in the .stylereport
file in the user home directory, and Style Studio does not write back to
sree.properties.

It is prudent to imple-
ment a backup proce-
dure for network
drives.

The network drive approach to a shared repository is very straightforward
if your organization already uses network drives. However, this solution
may not be feasible if a development team is distributed across more than
one office, or if members do not have access to a single network drive. In
this case, consider using the ‘Database’ repository option described below.

Sharing a Database Repository

To share a working repository using the ‘Database’ repository option, set
up a database (SQLServer, Oracle, Derby, DB2, PostgreSQL, MySQL) to

GETTING STARTED

127 of 2477

store the configuration files. Each developer should follow the steps given
in Creating a Database Repository, and specify the same database schema
information.

Note: For 'Database Repository', set the 'locklevel.user' property
in the 'sree.properties' file to 'true'.

Databases are usually accessible from multiple locations within an
organization, so the database repository approach often readily supports
distributed teams. In addition, your organization may already have a
backup procedure in place for its databases (which might not be the case
for a network drive).

Sharing a Server Repository

To share a working repository using the ‘Server’ repository option, each
developer should follow the steps given in Creating a Server Repository,
and specify the same ‘Server URL’ for the servlet.

Because the server repository is accessible to any developer with an
internet connection and login credentials, this option can easily support the
most distributed of teams. However, performance of the ‘Server’ repository
is generally inferior to that of the ‘Local’ and ‘Database’ repositories due to
its reliance on HTTP for communication.

Team Development Using Independent Repositories

If your team cannot set up a shared repository as recommended in Sharing
a Repository, it is still possible for multiple developers to create assets
using independent repositories. However, if developers use independent
repositories, they will need to merge the assets that they have individually
created.

The easiest way to merge assets (if developers cannot share a common
working repository) is to set up a common remote repository into which
developers can deploy assets. See Configuring a Repository to set up a
remote repository in Style Studio, and see Deploying a Report, Data
Source, or Other Asset for instructions on how to save assets into this
remote repository. For example, each developer can define a connection
from their own Style Studio installation to a common “server-type” remote
repository. When individual developers deploy their assets into that
common remote repository, the assets will be automatically merged.

If it is not possible for developers to use either a common working
repository or a common remote repository, they can merge assets from their
independent repositories into a single deployment repository by exporting
to a JAR file, as described below.

GETTING STARTED

128 of 2477

To merge assets from multiple independent repositories into a single
deployment repository, follow the steps below:

1. Each developer should deploy the assets they have created into an
independent JAR file. (See Deploying a Report or Asset to a JAR
File.)

2. Move these JAR files to a location that is accessible to the desired
deployment repository.

3. Import and merge the assets from the JAR files into the deployment
repository:

a. To do this from within Style Studio, see Importing Assets from a
JAR File.

b. To do this from within Enterprise Manager, see Importing
Assets in Administration Reference.

This merges the assets into the deployment repository. To synchronize the
independent developer repositories with the common deployment
repository, you can use the same approach in reverse: Export a JAR with
the desired assets from the deployment repository, and import the JAR
contents into the individual developer repositories. (See Importing Assets
from a JAR File.)

See Also
Incremental Deployment of Assets, in Administration Reference, for
information on deploying assets.
Deploying a Report, Data Source, or Other Asset, for more information on
live deployment.
Configuring a Repository, for information on specifying the repository
location.

Creating a Clean Local Repository

When you first install Style Intelligence, the repository is set to ‘Default
Repository’, which is a ‘Local’ repository populated with a number of
example data sources, queries, reports, and other assets. The location of this
default local repository is server\webapps\sree\WEB-INF\classes, which is
also the default SREE Home directory for the Style Intelligence server. (It
is useful for Style Studio to share a repository with a development server so
that modifications you make to reports, data sources, queries, assets, etc.,
will be avialable to the server without any special deployment.)

The files in the ‘Default Repository’ are provided for learning purposes,
and the sample queries, data sources, Worksheets, etc., are referenced in the
documentation. When you begin to develop your own reports and assets,

GETTING STARTED

129 of 2477

you may want to create a new repository that is not cluttered by these
sample materials.

To create a “clean” repository, simply follow the instructions in Creating a
New Repository, and set the ‘Configuration Directory’ to an empty
directory. This will automatically create a new set of blank configuration
files (datasource.xml, query.xml, stylereport.srl, etc.) in that location.

3.3.2 Configuring General Style Studio Properties

The General tab of the ‘Style Studio Configuration’ dialog box allows you
to specify several properties relating to the appearance and behavior of
Style Studio. To open the dialog box, select ‘Configure’ from the Style
Studio ‘File’ menu, and select the General tab.

The following options are available:

• Look & Feel: Sets the general appearance of the Style Studio interface.

• Single Style Studio Instance: If enabled, allows only a single instance
of Style Studio to run on the desktop.

• Auto-Save: Automatically saves a copy of the current report with the
frequency specified by the ‘Interval’ setting. This helps to protect
against data loss in case of a machine failure. When you restart Style
Studio after such a failure, Style Studio prompts you to restore files from
the auto-saved copies.

• Report Directory: Specifies a directory containing reports for which
Style Studio should routinely assess asset dependencies (optional).

GETTING STARTED

130 of 2477

• Preview Server Features: Enables hyperlinks and other server features
from with the preview tab.

• Parameter Name Unique: Specifies that every occurrence of a
parameter name in a report refers to the same parameter.

• Enable Security: Instructs Style Studio to apply security policies
(including login challenge) during report preview. This is useful for
testing VPMs or other user-dependent filters. Authentication and
authorization settings are drawn from Enterprise Manager. (See Security
in Administration Reference for details on creating users, etc.)

• Save User Name/Password: Caches the most recently entered user
name and password to reuse for subsequent report previews (without
further prompting). This relieves you from re-entering login credentials
when you are repeatedly previewing a report as the same user.

3.3.3 Configuring the Style Studio License

To install a license key, follow the steps below:

1. Select ‘Configure’ from the Style Studio ‘File’ menu. This opens
the ‘Style Studio Configuration’ dialog box.

2. Select the License tab.

3. Enter the license key, and press ‘OK’.

3.3.4 Configuring the Style Studio Classpath

The classpath is a list of folders and JAR files that the JVM uses to locate
Java resources. To specify the classpath, follow the steps below:

1. Select ‘Configure’ from the Style Studio ‘File’ menu. This opens
the ‘Style Studio Configuration’ dialog box.

2. Select the Classpath tab.

3. Press ‘Add JAR’ to add a JAR file (e.g., a JDBC driver) to the
classpath.

4. Press ‘Add Directory’ to add a file system directory containing
resources to the classpath.

5. Restart Style Studio.

The path list that you specify in the Classpath tab is stored in the
.stylereport configuration file. (See Configuring Style Studio for more
details about the .stylereport file.) This same classpath is used whether
Style Studio is launched from the Windows ‘Start’ menu or from the
command line.

GETTING STARTED

131 of 2477

3.4 Features of Style Studio
The following sections introduce the main functions and features of Style
Studio.

3.4.1 Data Modeling

The data modelling features in Style Studio provide a data connectivity
toolkit for visually building data models and queries to extract information
from diverse data sources. Unlike traditional query builders, which only
support relational databases, Style Studio is capable of querying a large
number of different data source types. The supported data sources include:

• Relational databases (JDBC)

• OLAP databases (XMLA)

• XML data

• Text files

• Java Objects

• Web Services (SOAP)

• SAP

Style Studio has an extensible architecture that allows new data source
types to be added to the toolkit without any modification to the existing
code base. For more information about the above features, see the
following sections:

• Defining a Data Source

• Getting Started with Data Modeling, and, for full details, Data
Modeling

• Independent Query in Data Modeling

3.4.2 Data Mashup

Style Studio provides a powerful and easy-to-use data mashup tool called
Data Worksheet, which facilitates complex tasks such as what-if analysis
and cross-domain analysis. With a simple point-and-click interface, the
Data Worksheet helps you analyze data and extract meaningful information
with minimal effort. It allows you to build complex queries without
knowledge of databases and query languages, and enables you to combine
multiple queries from heterogeneous data sources into a single dataset. See
Getting Started with Data Mash-Up, and, for full details, Data Mashup.

3.4.3 Report Design and Scripting

Style Studio provides enterprise-class report design tools to create reports
of any length or complexity. Reports can be completely automated, can
incorporate advanced user interactivity, and can be delivered to large

GETTING STARTED

132 of 2477

numbers of users by a variety of methods. See Getting Started with
Reports, and, for full details, Report Design.

Script can also be
added to dashboards.
See Dashboard
Scripting for further
details.

Style Studio offers extensive scripting capabilities based on the JavaScript
standard. Scripts can added to reports, Data Worksheets, and VPMs. See
Report Scripting, Data Mashup, and Data Modeling for detailed
information.

3.4.4 Reusable Components

Style Studio allows you to create a variety of reusable components for
reports and Viewsheets. For more information, see the appropriate sections:

• Report Bean, in Report Design, to create a reusable component
assembly.

• Parameter Sheets, in Report Design, to create reusable parameter input
forms.

• Meta-Templates, in Report Design, to create reusable boiler-plate
reports.

• Subreports, in Report Design, to embed a report within another report.

• Creating a Custom Table Style, in Report Design, to design a reusable
table aesthetic.

• Using the Script Library, in Report Scripting, to create a reusable script
function.

3.5 Deploying a Report, Data Source, or Other
Asset
Deployment from Style Studio should generally be restricted to
development servers. Deployment to a production server should be
performed by an administrator. See Incremental Deployment of Assets
in Administration Reference for details.

You can easily deploy a report or other asset (data source, data model,
Worksheet, query, table style, etc.) to a repository other than the working
repository; that is, to a remote repository. The deployment feature allows
you to transfer an asset together with all additional assets on which the
target asset depends.

Before you deploy a report or asset to a remote repository, verify that the
remote repository is configured under the Repository tab of the ‘Style
Studio Configuration’ dialog box. If the repository is of type ‘Database’ or
‘Server’, verify that the indicated database or server is ready to accept
connections. See Configuring a Repository for more information.

GETTING STARTED

133 of 2477

3.5.1 Deploying a Report or Asset to a Remote Repository
To save an asset to the
working repository,
simply press the
‘Save’ button in the
toolbar. (See Saving a
Report to the Working
Repository.)

A remote repository is any repository other than the current working
repository. To deploy a report or other asset to a remote repository, follow
the steps below:

1. Open the asset or report in Style Studio, and press the ‘Deploy’
button in the Style Studio toolbar. This opens the ‘Deploy’ dialog
box.

Alternatively, expand the Style Studio Asset panel, and right-click
the report or asset that you wish to deploy. Select ‘Deploy’ from the
context menu to open the ‘Deploy’ dialog box.

See Configuring a
Repository to config-
ure alternate reposito-
ries.

2. In the ‘Deploy’ dialog box, select the ‘Repository’ option, and
choose the desired remote repository from the menu. (Note that the
current working repository is not listed in the menu.)

3. When deploying a report, follow the steps below:

a. Enter the name of the report in the ‘Name’ field as it should
appear when viewed in the User Portal of the remote
environment (unless an alternative ‘Alias’ is specified; see
below).

GETTING STARTED

134 of 2477

b. (Optional) Specify an alternate display name for the report in
the ‘Alias’ field. If provided, the ‘Alias’ is used in place of the
‘Name’ in the User Portal Repository listing.

The deployed report
inherits permissions
from its parent folder
in the repository. See
Repository Permis-
sions in Administra-
tion Reference for
further information.

c. In the ‘Folder’ menu, select or enter the name of a repository
folder into which to deploy the report. If the folder does not
exist, it will be created.

The table below the ‘Folder’ menu lists all of the assets that are
required by the selected report. You can choose which of these
assets you wish to deploy together with the report.

d. Under the ‘Include’ column of the table, select the assets that
you wish to deploy together with the report.

Note: Overwriting repository files may interfere with other reports
and dashboards.

e. Select ‘Overwrite’ to specify that these deployed assets should
replace assets of the same name in the deployment repository.
Deselect the ‘Overwrite’ option if you do not wish to modify
existing assets.

4. Press ‘OK’ to begin the deployment. Depending on the type of the
remote repository (server, database, or local), the deployment may
take a few moments.

To view a deployed report, open the User Portal on a server which is
configured to use the specified remote repository. See Using a Report for
information on viewing reports in the Portal. Reports and assets that you
deploy to a remote repository can be managed by an administrator using
Enterprise Manager.

See Also
Incremental Deployment of Assets, in Administration Reference, to move
assets using Enterprise Manager.

3.5.2 Deploying a Report or Asset to a JAR File

You can deploy a report or other asset to a JAR file on the local file system.
This allows you to easily transfer the bundled report or asset to a different
environment at a later time.

To deploy a report or other asset to a JAR file, follow the steps below:

1. Open the asset or report in Style Studio, and press the ‘Deploy’
button in the Style Studio toolbar. This opens the ‘Deploy’ dialog
box.

GETTING STARTED

135 of 2477

Alternatively, expand the Style Studio Asset panel, and right-click
the report or asset that you wish to deploy. Select ‘Deploy’ from the
context menu to open the ‘Deploy’ dialog box.

2. In the ‘Deploy’ dialog box, select the ‘Desktop’ option, and press
the ‘Browse’ button.

This opens the ‘Save’ dialog box.

3. In the ‘Save’ dialog box, specify the location and the ‘File name’
for the exported JAR file, and press ‘OK’.

4. When deploying a report, follow the steps below:

a. Enter the name of the report in the ‘Name’ field as it should
appear when viewed in the User Portal (unless an alternative
‘Alias’ is specified; see below).

b. (Optional) Specify an alternate display name for the report in
the ‘Alias’ field. If provided, the ‘Alias’ is used in place of the
‘Name’ in the User Portal Repository listing (when the report is
later imported into another server environment).

GETTING STARTED

136 of 2477

The deployed report
inherits permissions
from its parent folder
in the repository. See
Repository Permis-
sions in Administra-
tion Reference for
further information.

c. In the ‘Folder’ menu, select or enter the name of a repository
folder into which to deploy the report. If the folder does not
exist, it will be created.

The table below the ‘Folder’ menu lists all of the assets that are
required by the selected report. You can choose which of these
assets you wish to deploy together with the report.

d. Under the ‘Include’ column of the table, select the assets that
you wish to deploy together with the report.

Note: Overwriting repository files may interfere with other reports
and dashboards.

e. Select ‘Overwrite’ to specify that these deployed assets should
replace assets of the same name in the deployment repository.
Deselect the ‘Overwrite’ option if you do not wish existing
assets to be modified.

5. Press ‘OK’.

This deploys the report or asset, together with any selected required assets,
to a JAR file in the location that you specified. You can import the JAR file
into an alternate repository by using the ‘Import’ feature of Style Studio or
Enterprise Manager in the target repository. See Importing Assets from a
JAR File below and Importing Assets in Administration Reference for more
information.

See Also
Incremental Deployment of Assets, in Administration Reference, to move
assets using Enterprise Manager.

3.5.3 Importing Assets from a JAR File

You can import a report or other asset from a JAR file that was generated
using the Style Studio ‘Deploy’ feature or the Enterprise Manager ‘Export’
feature. See Deploying a Report or Asset to a JAR File and Exporting
Assets in Administration Reference for more information on creating a JAR
file package.

To import assets from a JAR file, follow the steps below:

1. Select ‘Import’ in the Style studio ‘File’ menu. This opens the
‘Open’ dialog box.

2. In the ‘Open’ dialog box, select the JAR file whose contents you
wish to import, and press ‘Open’. This opens the ‘Import’ dialog
box.

GETTING STARTED

137 of 2477

The items listed in the top panel will all be imported. The items
listed in the bottom table are required by items in the top panel, and
will be imported by default. However, if one or more of these items
already exist in the current repository, you can choose not to import
those items.

3. Select the ‘Include’ box next to assets in the table that you wish to
import.

Note: Overwriting repository files may interfere with other
reports.

4. Select ‘Overwrite’ to specify that the selected assets should replace
assets of the same name in the working repository. Deselect the
‘Overwrite’ option if you do not wish to modify existing assets.

5. Press ‘OK’.

This imports the selected assets into the working repository.

See Also
Special Deployment Issues, in Administration Reference, for information
on administrative deployment options.

GETTING STARTED

138 of 2477

4 Getting Started with Data Modeling

Style Studio provides a set of tools that allow you to connect to data
sources, design queries, and define semantic layers (data models). Style
Studio supports multiple data source types, including databases (JDBC),
MOLAP (XMLA), POJO, text, XML, Web Services (SOAP), and SAP.

A query is a specific request for data from a data source, while a data
model is a user-friendly representation of a database that can
automatically generate queries on demand. Queries and data models
each have their own advantages, and frequently complement each
other. Data models often provide the easiest way to expose business
data contained in relational databases, and offer maximum flexibility
for end-user self-service. See Query vs. Model vs. Worksheet for more
information.

The following sections walk you through the basics of defining a data
source and building a data model. For more detailed information on these
topics, see Data Modeling.

4.1 Defining a Data Source
To connect to other
types of databases, see
Relational Databases
and Non-Relational
Data Sources in Data
Modeling.

Before you build queries or data models, you must create the datasource
that defines the connection to your data. The following example shows you
how to define a JDBC (Java Database Connectivity) datasource.

In this walkthrough, you will define a new JDBC data source called
‘SampleOrders’. Follow the steps below.

1. Press the ‘New’ button in the toolbar. This opens the ‘New Asset’
dialog box.

2. In the left panel of the ‘New Asset’ dialog box, press the ‘Data
Source’ node on the tree.

3. In the right panel, select ‘JDBC’, and press ‘OK’.

GETTING STARTED

139 of 2477

This opens the ‘JDBC Data Source Wizard’.

4. Enter “SampleOrders” in the name field, and press ‘Next’.

If you connect to your
own JDBC data
source, make sure that
you add the vendor-
specific driver JAR
file(s) to the classpath.
See Configuring the
Style Studio Class-
path.

5. Select ‘Derby Embedded’ from the menu for the ‘JDBC Type’.
The correct driver, org.apache.derby.jdbc.EmbeddedDriver,
automatically appears in the ‘JDBC Driver’ field.

GETTING STARTED

140 of 2477

6. Press ‘Next’ to continue to the ‘JDBC URL’ page.

Every JDBC driver
has a unique connec-
tion ‘JDBC URL’.
You can obtain this
from the database
vendor.

7. In the ‘JDBC URL’ field, enter “jdbc:derby:classpath:orders”.
This is the connection URL for the sample Derby database.

8. Uncheck the ‘Requires Login’ option. (Otherwise you will be
prompted for a username and password.)

9. Press ‘Finish’ to display the final Data Source definition page.

After you save the
data source, it will
appear in the left-side
Asset panel under the
‘Data Source’ node.

10. Press the ‘Save’ button in the toolbar to save the new data source.

11. Verify that you can connect to the database. Press the ‘Test Data
Source’ button in the top toolbar. A message will inform you if the
connection was successful.

GETTING STARTED

141 of 2477

4.2 Getting Started With Data Models
Once you have created a datasource as described in Defining a Data
Source, you can proceed to create queries, data models, and Data
Worksheets. Data models are logical abstractions of database schemas,
similar to Entity-Relation Models. In Style Intelligence, a full data model
includes the following three components:

• Physical view: A set of database tables and the joins between them

• Logical model: A logical mapping of table fields to meaningful
business units

• OLAP overlay: A mapping of data model fields to hierarchical
dimensions and measures

A basic data model includes just the physical view and the logical model.
The following example demonstrates how to create these essential
components. For full information on all aspects of data models, see
Relational Databases in Data Modeling.

4.2.1 Creating the Physical View

The first step to creating a data model is to create a physical view. A
physical view captures the relationships (joins) among a set of tables, and
may encompass all or part of the underlying database schema.

In the following example, you will first create a new physical view using
the predefined ‘Orders’ data source. You will then create a logical model
based on this physical view to provide the order details for products.

To create the physical view, follow the steps below:

1. Expand the Style Studio Asset panel.

2. Expand the ‘Orders’ data source node in the Asset panel.

3. Right-click the ‘Data Model’ node, and select ‘Add Physical View’
from the context menu. This opens the ‘Physical View Wizard’.

GETTING STARTED

142 of 2477

4. In the ‘Physical View Wizard’, type “SampleView” in the ‘Name’
field and press ‘Finish’.

This opens the new physical view for editing.

5. Expand the ‘TABLE’ tree in the Database panel, and expand the
‘SA’ node.

6. Drag the following tables to the right panel: ‘ORDER_DETAILS’,
‘ORDERS’, and ‘PRODUCTS’.

7. Create the joins between the tables as follows:

GETTING STARTED

143 of 2477

Note: There may be a
slight delay as join
cardinality is ana-
lyzed.

a. Drag the ‘PRODUCT_ID’ field from the ‘ORDER_DETAILS’
table, and drop it onto the ‘PRODUCT_ID’ field in the
‘PRODUCTS’ table.

b. Drag the ‘ORDER_ID’ field from the ‘ORDER_DETAILS’
table, and drop it onto the ‘ORDER_ID’ field in the ‘ORDERS’
table.

8. Press ‘Save’ to save the physical view.

You have now finished creating the physical view. Note that the physical
view does not represent a specific query. Rather, the join relationships that
you established between the tables provide the foundation on which queries
will be automatically generated when a user requests fields of the data
model.

If you make a change to the structure of the database schema, press
the ‘Refresh Metadata’ button on the toolbar to update the physical
view.

Physical views are independent of one another; that is, join relationships
defined in one physical view do not impact join relationships defined in
another physical view. For full information on physical views, see Physical
View in Data Modeling.

4.2.2 Creating the Logical Model

A logical model reorganizes a physical view by mapping database tables
and columns into ‘Entities’ and ‘Attributes’. It exposes the physical view in
a way that is more familiar to business users. A logical model is always
based on a single physical view.

Entities group related business attributes together, and these attributes can
be drawn from fields in any part of the underlying physical view. Style

GETTING STARTED

144 of 2477

Intelligence automatically creates appropriate queries based on selected
fields at runtime.

To build a logical model based on the ‘SampleView’ physical view (see
Creating the Physical View), follow the steps below:

1. Expand the Asset panel.

2. Expand the ‘Orders’ data source node in the Asset panel.

3. Right-click the ‘Data Model’ node, and select ‘Add Logical
Model’ from the context menu. This opens the ‘Logical Model
Wizard’.

4. In the ‘Logical Model Wizard’ enter “SampleModel” into the
‘Name’ field. Press ‘Next’.

5. In the ‘Physical View’ menu, select ‘SampleView’, and press
‘Finish’.

This closes the dialog box, and opens the logical model design
view. The left-side View panel displays the tables from the physical

GETTING STARTED

145 of 2477

view: ‘SA.ORDER_DETAILS’, ‘SA.ORDERS’, and ‘SA.PROD-
UCTS’.

6. Right-click in the empty region of the right-side panel, and select
‘Add Entity’ from the context menu. This opens the ‘Entity
Wizard’.

7. In the ‘Entity Wizard’, type “Order” into the ‘Name’ field, then
press ‘Finish’.

8. Expand the tables in the View panel, and drag the following
columns onto the new ‘Order’ entity in the ‘SampleModel’ panel:

To sort the attributes
within an entity, right-
click on an attribute
and select ‘Sort by
name’.

a. From the ‘ORDER_DETAILS’ table, drag ‘ORDER_ID’ and
‘QUANTITY’.

b. From the ‘ORDERS’ table, drag ‘CUSTOMER_ID’,
‘ORDER_DATE’ and ‘PAID’.

c. From the ‘PRODUCTS’ table, drag ‘CATEGORY_ID’,
‘PRICE’, and ‘PRODUCT_NAME’.

GETTING STARTED

146 of 2477

9. Press ‘Save’ to save the logical model. Data models are saved in
the repository file datasource.xml.

This data model is now available to report designers and end users. For full
information on creating logical models, see Logical Model in Data
Modeling.

GETTING STARTED

147 of 2477

5 Getting Started with Data Mash-Up

Style Intelligence provides sophisticated data manipulation and mash-up
capabilities with easy-to-use Data Worksheets. Designers and “power end-
users” can rapidly transform and combine information (even from different
data sources) into meaningful and reusable data blocks, which can then act
as data sources to Viewsheets, reports, and other Data Worksheets.

Developers can create Data Worksheets within Style Studio, and “power
end-users” can create Data Worksheets within Visual Composer. The
features provided by these two tools for Worksheet design are essentially
the same.

The example in the following sections shows how to construct, manipulate,
and save a new data block using Style Studio. For complete information on
how to create data blocks, see Data Mashup.

5.1 Constructing a Data Block
There are many different ways to construct data blocks. In this example,
you will build a data block by assembling several attributes from a single
data model.

1. Press the ‘New’ button in the toolbar. This opens the ‘New Asset’
dialog box.

2. In the left panel, select ‘Worksheet’ and press ‘OK’.

This creates a blank Data Worksheet.

GETTING STARTED

148 of 2477

3. In the Data Source panel, expand the following tree nodes: ‘Data
Source’ > ‘Orders’ > ‘Order Model’ > ‘Order’. This displays the
attributes within the ‘Order’ entity of the data model.

You can think of a
data block as a table.

4. Drag the ‘Date’ field from the tree to an empty cell on the Data
Worksheet grid. This creates a new data block with the title
“Order1”.

5. Next, expand the ‘Product’ entity, and drag the ‘Category’ attribute
over the ‘Date’ column header.

GETTING STARTED

149 of 2477

When you see the green line on the right side of the header, drop
the entity into the data block (table). The data block now includes
both fields.

6. Using the same procedure, add the ‘Product’ > ‘Total’ field to the
data block.

7. Now, right-click the data block title, and select ‘Properties’ from
the context menu. This opens the ‘Table Properties’ dialog box.

8. In the ‘Table Properties’ dialog box, rename the data block by
typing “MonthlySales” into ‘Name’ field.

GETTING STARTED

150 of 2477

9. Press ‘OK’ to close the dialog box.

10. In the title bar of the “MonthlySales” data block, press the ‘Change
View’ button and select ‘Live Preview’. Drag the bottom border of
the data block down to see the actual data.

You can use this new data block in further data manipulations (e.g., joins,
concatenations), or as a data source to reports and Viewsheets. For more
information on creating data blocks, see Creating a Data Table in Data
Mashup.

5.2 Manipulating a Data Block
Data Worksheets allow you to perform a full range of data manipulations,
including joins, filtering, grouping, and table concatenation. In the next
example, you will use some grouping and aggregation tools to manipulate
the data block that you created earlier in Constructing a Data Block.
Follow the steps below:

1. In the data block’s title bar, press the ‘Group and Aggregate’
button. This opens the ‘Aggregate’ dialog box.

GETTING STARTED

151 of 2477

2. In the ‘Aggregate’ dialog box, make the following selections:

a. For the ‘Order.Date’ field, select the ‘Group’ checkbox and
select ‘Month’ from the right menu.

b. For the ‘Product.Total’ field, select the ‘Aggregate’ checkbox
and choose ‘Sum’ from the right menu.

3. Press ‘OK’ to exit the ‘Aggregate’ dialog box.

The grouping that you specified is now applied to the ‘Date’ and ‘Total’
columns of the table. The ‘Category’ column is hidden because no
grouping options were specified for it.

There are many further manipulations you can make to a data block. See
Manipulating Tabular Data in Data Mashup for full details.

See Also
Grouping, in Data Mashup, for full information about grouping and
aggregation.

5.3 Saving a Data Block
After you have created a Data Worksheet, you can save it to the repository
so that it will be available for use in reports, Viewsheets, and other
Worksheets.

GETTING STARTED

152 of 2477

Follow the steps below to save the Data Worksheet.

1. Press the ‘Save As’ button in the top toolbar. This opens the ‘Save
As’ dialog.

2. Enter the name “SampleAsset” in the ‘Name’ text box.

3. Select the root ‘Worksheet’ node, then press ‘OK’.

The Worksheet is now saved, and appears in the Asset panel under the
‘Worksheet’ node.

For more information on saving a data block, see Saving an Asset in Data
Mashup.

GETTING STARTED

153 of 2477

6 Getting Started with Reports

Style Studio provides production-grade report development tools. The
following sections walk you through creating and saving a new report. For
complete information about report design, see Report Design.

6.1 Creating a Report
For most cases, use a
tabular layout.

Before creating a new report, you will need to choose one of two layout
types, flow layout or tabular layout. Tabular layout is best suited to reports
that have rectangular partitions to keep the contents organized. Flow layout
is often used for brochure-like reports with multiple columns or fixed
panels.

For more informa-
tion, see Meta-Tem-
plates in Report
Design.

If your new report is going to be one of a series of similar reports with
common features, you may want to first create a meta-template, and use the
meta-template to create the new report. Otherwise, you can just create a
stand-alone report, as you will do in the following example.

In the following example, you will create a simple sales report, starting
with a ‘Blank Tabular Report’. Then you will add some report elements to
display data and other report information. Follow the steps below:

1. Press the ‘New’ button on the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. Select the ‘Report’ node in the left panel, then select ‘Blank
Tabular Report’ in the right panel.

This opens a new blank report for editing. To add elements to this new
report, continue to the next section, Adding Report Elements.

GETTING STARTED

154 of 2477

6.2 Adding Report Elements
To build a report, add elements such as text, charts, tables, and sections. For
example, use text elements to add headings, labels, and other text
information. Use charts, tables, and section elements to display data.

To add an element to a report, select the corresponding element in the
Toolbox panel. (You can also drag the element into the report page itself.)
You can add elements in the report body, header, or footer.

6.2.1 Adding Text and Presentation Elements

In this example, you will add a title and page numbering to the report that
you created in Creating a Report. Follow the steps below:

1. Press the ‘Header’ button in the top toolbar to select the header. The
insertion point indicator (black triangle) appears at the top left edge
of the header.

GETTING STARTED

155 of 2477

2. Press the ‘Text’ button in the Toolbox panel. A new text element
appears in the header of the report.

3. In the text field, type “Sample Sales Report”. Click outside of the
element to finish editing.

4. Click on the new text element to select it. Use the controls on the
toolbar to change the font to Tahoma 24-point Bold Underline.
Then click the ‘Center’ alignment button to align the Text element
on the page.

GETTING STARTED

156 of 2477

Note: There are four
pre-existing header
and footer types:
default, first page,
even page, and odd
page.

Page numbers and date/time stamps are created by the report engine when
the report is generated. You can add these dynamic elements by placing
special tags in the report header or footer.

Follow the steps below to add page-numbering to the report.

1. Press the ‘Footer’ button in the top toolbar. The insertion point
indicator appears at the top left edge of the footer.

2. Click the ‘Text’ element in the Toolbox panel to add a new text
element to the footer. In the text field, type “{P} of {N}”.

GETTING STARTED

157 of 2477

The {P} and {N} tags
designate page num-
ber and page total,
respectively. Other
tags are {D} for date,
and {T} for time.

3. Click anywhere outside of the footer to deselect it. The footer is
now complete.

6.2.2 Adding Data Elements

You will now add a new Table element. The table will display the results
retrieved by several fields of a query.

Follow the steps below to add the table:

1. Click inside the body of the report to select it. This places the
insertion indicator (black triangle) at the top of the body region.

2. Drag the ‘Table’ element from the Toolbox panel into the body of
the report. This adds a blank table to the report.

GETTING STARTED

158 of 2477

Multiple report ele-
ments can be bound
the same query.

Data binding is the process of associating a query or other data source with
a report element. When the report is generated, the data retrieved by the
query is placed into the element. During the data binding process, you can
modify the query by hiding fields, adding conditions, grouping, etc.

Follow the steps below to bind data to the table.

1. Select the Data Source tab in the left-side panel (next to Toolbox
tab). This opens the Data Source panel.

2. In the Data Source panel, expand the ‘Orders’ node. Then expand
the ‘Order details’ query.

3. Select all fields in the ‘Order details’ query (Shift-click or Ctrl-
click).

4. Drag all of the fields above the top row of the table. When you see
the column selector triangle, drop the fields.

GETTING STARTED

159 of 2477

In design view, the
table displays query
field names rather
than data. To view
data, preview the
report as described
below.

This binds the table to the ‘Order details’ query, and displays the
selected fields as columns. Now, when the table is selected, the
Data Source panel displays only the fields for the ‘Order details’
query, and the Binding panel displays the query name.

In the next steps, you will specify grouping and summarization.

GETTING STARTED

160 of 2477

5. Select the detail cell for the ‘Company’ field. Right-click on the
cell, and choose ‘Cell’ > ‘Group’ > ‘Default’ from the context
menu.

This adds ‘Company’ as a grouping field. Note the grouping sym-
bol next to the field name in the ‘Company’ cell.

6. Repeat the previous procedure to add ‘Product’ as another
grouping column.

7. Select the detail cell for the ‘Quantity’ field. Right-click on the cell,
and choose ‘Cell’ > ‘Summarize’ > ‘Sum’ from the context menu.

GETTING STARTED

161 of 2477

This adds ‘Quantity’ as a summarized field. Note the aggregation
symbol next to the field name in the ‘Quantity’ cell.

8. Repeat the previous process to add ‘Total’ as another summarized
column.

9. Press the ‘Save’ button to open the ‘Save As’ dialog box, and select
the Local Report tab. Enter “Sample Sales Report” as the ‘File
name’.

GETTING STARTED

162 of 2477

10. Press the ‘Preview’ button in the top toolbar to preview the finished
product.

In the example above, you defined a fixed binding for the table. You can
also use JavaScript to dynamically bind data to a report element at runtime.
See Binding Queries in Report Scripting for more information.

GETTING STARTED

163 of 2477

6.3 Saving a Report to the Working Repository
To view a report within the User Portal, you must save or deploy the report
to a repository that can be accessed by a Style Intelligence server.

Style Studio’s default working repository, called ‘Default Repository’, is a
local repository located at server\webapps\sree\WEB-INF\classes. This
directory location is also the standard repository for the default installation
of the Style Intelligence server. Therefore, when you deploy a report into
the ‘Default Repository’, this report will be automatically available to the
default installation of the Style Intelligence server.

Note: Style Studio deployment is intended for development purposes.
To deploy to a production server, see Incremental Deployment of
Assets in Administration Reference.

In the following example, you will use Style Studio to deploy the “Sample
Sales Report” (see Adding Data Elements) to the ‘Default Repository’.
Follow the steps below.

1. In Style Studio, open the “Sample Sales Report” if it is not already
open. To do this, follow the steps below:

a. Press the ‘Open’ button in the Style Studio toolbar.

b. In the ‘Open’ dialog box, select the Local Report tab, and
navigate to the location where you saved the “Sample Sales
Report” report.

c. Select the “Sample Sales Report” and press ‘Open’.

2. From the Style Studio ‘File’ menu, select ‘Save As’. This opens the
‘Save As’ dialog box.

3. In the ‘Save As’ dialog box, select the Repository Report tab.

Note: To deploy the report to an alternate repository, use the
'Deploy' button. See Deploying a Report or Asset to a Remote
Repository.

This tab provides access to the working repository, the location
from which Style Studio accesses reports and other assets. The
physical storage of reports depends on the type of repository that
you have configured in Style Studio. (See Configuring a Reposi-
tory for further information.)

4. In the ‘Name’ field, enter a name for the deployed report, such as
“Sample Sales Report”.

GETTING STARTED

164 of 2477

This name is used as the physical report filename (a “.srt” exten-
sion is added automatically). The name is also displayed as the
report’s label in the ‘Repository’ listing in the User Portal unless
you specify an alternate ‘Alias’ for this purpose.

5. (Optional) In the ‘Alias’ field, enter the label under which to
display the report in the ‘Repository’ listing of the User Portal (for
example, “User Sales Report”. If you do not supply an ‘Alias’, the
‘Name’ field is used to provide this label.

6. (Optional) Enter a ‘Description’ for the report. The description is
displayed to users when they hover the mouse over the report
name.

7. Press ‘Save’ to deploy the report into the working repository.

To verify that the report has been successfully deployed into the working
repository, follow the steps below:

1. Expand the Style Studio Asset panel.

2. Expand the ‘Report Repository’ node on the tree.

GETTING STARTED

165 of 2477

3. Verify that the “Sample Sales Report” report is displayed in the
‘Report Repository’ listing. Note that in the Style Studio Asset
panel, the report is displayed using the label supplied by the
‘Name’ field (“Sample Sales Report”) rather than the label
supplied by the ‘Alias’ field.

The deployed report will be available in the User Portal of the server that
shares the same working repository as Style Studio. The next section,
Using a Report, explains how users can access this report in the User
Portal.

See Also
Saving a Report, in Report Design, for additional information on deploying
reports.

6.4 Using a Report
The User Portal is
fully customizable.
See Presentation in
the Administration
Reference.

The User Portal can be accessed with any browser. To view the “Sample
Sales Report” that you deployed earlier in Saving a Report to the Working
Repository, follow the steps below.

If the server is already
running, just point a
browser window to
http://localhost:8080/
sree/Reports.

1. On Windows, launch the User Portal from the Windows ‘Start’
menu: Start > All Programs > Style Intelligence > Style
Intelligence Server. This starts the server and opens the browser to
the server home page.

2. On Linux, run the InetsoftServer.sh file in the bin folder of the
installation directory to start the server. In your browser, enter the
URL http://localhost:8080/sree/ to access the server home
page.

3. Select the ‘User Portal’ link to open the Portal.

4. In the Portal, select the Report tab.

GETTING STARTED

166 of 2477

5. In the left panel of the Portal, expand the ‘Repository’ tree. Note
that the report is represented here by its alias (defined in Saving a
Report to the Working Repository).

6. Select the ‘User Sales Report’.

The report is now open for viewing. For more information on the User
Portal, including available toolbar operations and end-user editing, see End
User and Ad Hoc Reporting.

See Also
Using a Dashboard, for information on interacting with a dashboard in the
Portal.

GETTING STARTED

167 of 2477

7 Where Do I Go From Here?

Once you have completed this Getting Started guide, you should be
comfortable using many of Style Intelligence’s features. For further
information on any aspect of the product, please consult the relevant Style
Intelligence documentation, described in the following sections.

7.1 Data
Data modeling documentation is available through the ‘Help’ menu in
Style Studio.

Data Modeling describes the tools available for connecting to data sources
and designing queries, data models, and VPMs. These assets can be used
directly in reports and Viewsheets, or serve as atomic building blocks for
Data Worksheets.

Data Mashup describes Data Worksheets and the interface for designing
dynamic data blocks. This technology allows developers and power users
to easily assemble complex queries based on diverse data sources. Data
Worksheets are available on the desktop through Style Studio and through
the web-based Visual Composer.

7.2 Dashboards
Dashboard documentation is available through the ‘Help’ link of the
User Portal.

Dashboard Design describes Viewsheets, web-based dashboard for
visualizing data. Viewsheets allow mainstream executives and business
users to easily explore and analyze their data using familiar drag-and-drop
operations.

Dashboard Scripting describes the scripting features available within the
Viewsheet environment. Viewsheet scripting allows you to design more
flexible responses to user inputs and data events.

7.3 Reports
Report design documentation is available through the ‘Help’ menu in
Style Studio.

Report Design describes the professional report design tools available
through Style Studio.

Report Scripting describes the scripting environment provided by Style
Studio for report design.

7.4 End User
End user documentation is available through the ‘Help’ link of the
User Portal.

GETTING STARTED

168 of 2477

End User describes the User Portal and the powerful features it provides
for interacting with reports and dashboards. Among many other topics, it
covers saving and exporting, archiving and scheduling, and exploratory
dashboard analysis.

Ad Hoc Reporting describes ad hoc reporting features that you can
optionally provide to end users. These features include the ability to modify
the properties of report elements, add new report elements, change element
data sources, create formula columns, and generate completely new
reports.

7.5 Administration
Administration documentation is available through the ‘Help’ menu
in Style Studio and the ‘Help’ link in Enterprise Manager.

Administration Reference describes Enterprise Manager, the web-based
administration tool for the Style Intelligence server environment. This
guide covers many administration topics including server environment
controls, user security, and performance tuning.

Integration describes integration techniques for Style Intelligence
products. It covers integration points for user interfaces, server deployment,
security, and many other areas.

GETTING STARTED

169 of 2477

APPENDIX A: Packages

Style Intelligence is packaged for different applications with various
components. The following table identifies the available components for
different packages.

COMPONENT STYLE REPORT STYLE
SCOPE

STYLE
INTELLIGE
NCE

Data Modeling Yes Yes Yes
Worksheets Enterprise Edition Yes Yes
Report Design Yes No Yes
Server Administration Enterprise Edition Yes Yes
Integration Some aspects EE only Some aspects Yes

END USER

170 of 2477

End User
This guide uses some
examples from the
‘Tutorial’ folder in the
Repository. If you do
not see these exam-
ples, please ask your
system administrator
to set them up before
you begin.

This Guide introduces you to the User Portal, and explains how to
effectively work with reports and dashboards. Whether you are a frontline
user, analyst, manager, or developer, you will find the information in this
Guide to be helpful.

END USER

171 of 2477

1 User Portal

The User Portal is a web-based interface, so you do not need to install any
special software on your computer. Your system administrator will tell you
the correct address to use in your web browser.

The User Portal provides features for accessing and managing existing
Style Intelligence assets, such as reports and dashboards, and allows you to
create new assets as well.

Figure 1. The User Portal

There are three main areas of the User Portal:

• Portal Tabs: Provide quick access to dashboards, scheduling features,
and design features.

• Repository Tree: Provides access to existing reports and dashboards.

• Display Area: Displays the requested reports and dashboards.

1.1 Logging In
Note: For security
reasons, login infor-
mation expires after
five minutes. If you
receive a ‘Login
Expired’ warning,
simply re-enter your
credentials.

If security is enabled on the Style Intelligence server, you must log in
before you can use the Portal. Enter your username and password in the
provided ‘User’ and ‘Password’ fields. (Ask your system administrator if
you don’t know your username and password.) If you are prompted to enter
a ‘Locale’, select the correct option for your location.

END USER

172 of 2477

After you log in, click on the desired Portal tab for the features you wish to
access or press the ‘Help’ link to get information about using the Portal.
See Portal Functions for more information about the available features.

1.2 Portal Functions
The Portal contains tabs for viewing and creating Style Intelligence
components. The options available will depend on what permissions you
have been granted by the administrator.

Figure 2. Portal tabs and links.

The table below explains the various features.

TAB FUNCTION

Dashboard Access your important dashboards. See Deploying a
Dashboard for information on configuring dashboards.

Report/Viewer View all available dashboards and reports in the repository.
See Dashboards and Production Reports for more details.

Design Create ad hoc reports and dashboards. See Ad Hoc
Reporting, Dashboards, and Deploying a Dashboard, for
more information.

Schedule Create batch reports, and monitor queued and completed
tasks. See Scheduling Reports and Dashboards for more
details.

LINK FUNCTION

Help Open the user documentation.
Preferences Change personal settings and configure user dashboards. See

User Preferences for more information.

END USER

173 of 2477

1.3 User Preferences
To manage user preferences, press the ‘Preferences’ link at the top of the
Portal.

This opens the ‘Preferences’ dialog box.

The following preferences are available:

• Change Password: Press the ‘Change Password’ link to open the
‘Change Password’ dialog box. Enter your current password and a new
password and press ‘OK’.

Log Out Log out of the Portal (when security is enabled).
Search Search within reports. Logic (AND, OR) and wildcards (*,

?) are allowed. For example, “wee*” will find “week” and
“weekly.” See Archived and Batch Reports for more
information about archiving. To search an open report, see
Searching.

END USER

174 of 2477

• Email: Enter the email address to which queued reports and
notifications should be sent.

• Email Subject: Enter the subject line to be used for queued report
emails sent to the address specified in the ‘Email’ field. If nothing is
specified for the ‘Email Subject’ field, the report name will be used as
the subject text.

• Default Format: Select the default format in which queued reports
should be emailed or saved.

• Queued Report: Select ‘Send Email to User’ to have queued reports
delivered by email to the address specified in the ‘Email’ field. Select
‘Save in My Reports’ to save an archived version of the report in the
‘My Reports’ repository folder. (This requires archiving to be enabled
by an administrator.) Enable ‘Send a Notification Email’ to receive a
notification email when the report has finished generating. See Adding a
Report to the Scheduler Queue for information about queueing a report.

• Message: Enter a message to be displayed in the body of the email
delivered to the address specified in the ‘Email’ field.

• Load all dashboards on initialization: Forces all enabled dashboards
to reload when any dashboard is accessed. This is only needed when
you have multiple dashboards that share a filter. (See Synchronizing
Selection Elements and Input Elements in the Dashboard Design for
more information.) For all other cases, this option should remain
disabled.

• Automatically Refresh Repository Tree: Allows the server to
automatically update the listing of available reports and dashboards.
You can also press the ‘Refresh’ button below the Repository panel to
update the listing on-demand.

• Default Printer: Select the printer that you wish to use as your default
Portal printer.

To enable and disable dashboards or to change the order of the dashboard
tabs, follow these steps:

END USER

175 of 2477

1. In the ‘Dashboard’ table, select a checkbox in the ‘Enable’ column
to make the corresponding dashboard visible in the Dashboard
tab.

2. Press the up-arrow and down-arrow buttons in the ‘Arrange’
column to change the order of the various dashboard tabs in the
Portal.

See Adding a Dashboard to the Dashboard Tab for information about
deploying dashboards.

See Also
Adding a Report to the Scheduler Queue, for information about queueing a
report.
Adding a Dashboard to the Dashboard Tab, to create a new dashboard
under the ‘Dashboard’ tab.

END USER

176 of 2477

2 Dashboards

One of the best ways for you to gain an understanding of your data is to
explore and experiment through the process called visualization. Style
Intelligence dashboards provide a powerful and easy way to visualize your
data.

Style Intelligence dashboards are also called “Viewsheets”.

Style Intelligence dashboards enable you to discover answers to existing
questions and discover new questions to ask. Here are some common kinds
of problems that you can solve with dashboards:

• “I want to view selective portions of my data without resubmitting a set
of parameters over and over again.”

• “I need to analyze my data, but I only have knowledge of the business,
and not of how the data is stored.”

• “I need to perform interactive ‘what if’ analysis on my data, for
example, changing inputs to test hypothetical scenarios.”

• “I need to analyze data obtained from different sources in real-time, for
example, data from an Excel spreadsheet and an Oracle database.”

• “I need to analyze live operational data as well as historical data.”

Note: Dashboards are available only in Style Intelligence and Style
Scope.

This chapter will familiarize you with Style Intelligence dashboards. See
Dashboard Design for complete information on creating and editing
dashboards.

2.1 Opening a Dashboard
To open a dashboard from the Dashboard tab, follow the steps below:

1. Open the User Portal. (See the User Portal section for
information.)

2. Select the Dashboard tab at the top of the User Portal.

3. Select the tab for the dashboard that you want to view. The tabs
may be located either at the top or bottom of the screen.

END USER

177 of 2477

To open a dashboard from the Report or Viewer tab, follow these steps:

1. Open the User Portal. (See the User Portal section for
information.)

2. Click the Report or Viewer tab at the top of the User Portal.

3. In the tree on the left side of the Portal, expand the folder
containing the desired dashboard.

4. Click on the dashboard that you want to view (for example, ‘Sales
Explore’ in the ‘Dashboards’ folder).

END USER

178 of 2477

2.2 Closing a Dashboard
To close a dashboard, press the red ‘X’ in the toolbar, or open a different
dashboard.

When you close a dashboard, you will be prompted to save your current
settings (filter selections, menu choices, annotations, etc.) in a bookmark. If
you choose to save your settings, you will be able to restore these settings
from the bookmark at a later time. See Using Bookmarks for more details.

2.3 The Dashboard Toolbar
The dashboard toolbar has the following buttons:

Previous: Undoes the most recent action.

Next: Restores the most recent action that was undone.

Edit: Opens the current dashboard in Visual Composer. For more
information about creating and modifying dashboards using Visual
Composer, see Dashboard Design.

Refresh: Updates the dashboard with current data. (Not available for
dashboards that use materialized views.)

Bookmark: Opens the ‘Bookmark’ menu, which allows you to save a
bookmark or load a previously-saved bookmark. A bookmark allows you
to save the modifications (filtering selections, menu choices, annotations)
that you that you have made to the dashboard. When you reopen the

END USER

179 of 2477

bookmark in the future, the settings that you saved are reapplied to the
current data. See Using Bookmarks for more details.

Email: Sends an export of the dashboard to another person.

Print: Prints the dashboard on any available printer.

Export: Exports a copy of the dashboard to Excel, PowerPoint, or PDF
format. See Exporting a Dashboard for Viewing for detailed instructions.

Schedule: Configures a dashboard for automatic generation and delivery.
See Basic Scheduling from Toolbar for more information.

2.4 Using Input Components
Note: The dashboard interface operates in a slightly different way
on Apple iPads and iPhones. See Using Dashboards on a Mobile Device
in End User for details.

You can enter values into a dashboard by using the following input
components:

• Slider

• Spinner

• CheckBox

• RadioButton

• ComboBox

• Embedded Table

• TextInput

These inputs components are often use to dynamically adjust dashboard
properties such as the data displayed on chart axes, and can also be used to
modify tables and variables in an underlying Data Worksheet.

The following sections explain how to use these components.

2.4.1 Slider

To specify a value using a Slider, simply drag the handle to the desired
value.

See Also
Range Slider, to select a range of values or dates.

END USER

180 of 2477

Slider and Spinner, in Dashboard Design, for information on designing
these input components .

2.4.2 Spinner

To specify a value using a Spinner, press the arrow buttons to select the
desired value, or type a numerical value directly into the number field.

See Also
Slider and Spinner, in Dashboard Design, for information on designing
these input components.

2.4.3 CheckBox

A CheckBox component provides multiple-selection capability. To specify
a value or values using a CheckBox, click to select the desired item(s).

See Also
Radio Button, Check Box, Combo Box, in Dashboard Design, for
information on designing these input components.

2.4.4 RadioButton

A RadioButton component provides single-selection capability. To specify
a value using a RadioButton, click to select the desired item.

See Also
Radio Button, Check Box, Combo Box, in Dashboard Design, for
information on designing these input components.

2.4.5 ComboBox

A ComboBox component provides single-selection capability via a menu.
To specify a value using a ComboBox, click to select the desired item.

END USER

181 of 2477

In some cases, you can also manually type values into the ComboBox.

See Also
Radio Button, Check Box, Combo Box, in Dashboard Design, for
information on designing these input components.

2.4.6 Embedded Table

An Embedded Table allows you to type data directly into the Table
component. Click away from the Table to submit the data.

See Also
Creating an Embedded Table, in Dashboard Design, for information on
designing an Embedded Table.

2.4.7 TextInput

A TextInput component allows you to enter text input into the dashboard.
Often a TextInput component is accompanied by a ‘Submit’ or ‘OK’ button
to allow you to submit your text.

See Also
TextInput, in Dashboard Design, for more detailed information.

2.5 Using Selection Components
Selection components allow you to filter the data displayed on a dashboard.
The following Selection components are available:

• Selection List

• Selection Tree

• Range Slider

• Calendar

• Selection Container

See Also
Selection Components and Using Selection Lists and Trees, in Dashboard
Design, for more detailed information.

END USER

182 of 2477

2.5.1 Selection List

Selection Lists are used to filter the data displayed by data view
components (Tables, Charts, etc.) and output components (Gauges,
Thermometers, etc.). A Selection List can provide either single-selection or
multiple-selection capability, and can be configured to submit selections
automatically (i.e., as soon as you make the selection) or on-demand when
you press the ‘Apply’ button.

To filter data using a Selection List, select the desired item(s) in the list. If
an ‘Apply’ button is visible in the title bar, press the ‘Apply’ button to
submit your selections.

If there is no ‘Apply’ button in the title bar, each individual selection you
make is submitted immediately. To make multiple selections before
submitting, hold down the Ctrl-key on the keyboard while making your
selections.

See Selection List Walkthrough for a complete example of using a Selection
List.

Selection List Toolbar

The Selection List provides a mini-toolbar in the title bar that allows you
make convenient modifications to the current selection. Move the mouse
over the Selection List to see the mini-toolbar.

END USER

183 of 2477

The mini-toolbar buttons are described below.

Selection List Icons

Selection Lists make use of five different icons to designate the status of
items in the list. The table below explains these icons:

Search
Press the ‘Search’ button and enter a search term in the text
field. As you type, the Selection List updates to display only
items having a match for your search text (appearing anywhere
in the item). Press the ‘X’ button in the text field to close the
Search feature.
Sort Selection
Press the ‘Sort Selection’ button once to sort the items in
ascending numerical or alphabetical order. Press the button
again to sort in descending numerical or reverse alphabetical
order. Press the button a third time to reset the original order.
Reverse Selection.
Press the ‘Reverse Selection’ button to deselect all currently
selected items and select all currently unselected items.
Clear Selection.
Press the ‘Clear Selection’ button to deselect all items.
Apply.
Press ‘Apply’ to submit the current selection. If the ‘Apply’
button is not visible, this means that your selections are
submitted automatically.

Data selected and included.
The user has explicitly selected this item, and the corresponding
records are included in the returned data set.
Data selected but not included.
The user has explicitly selected this item, but more recent
explicit selections in other selection lists have now made this
selection incompatible. The corresponding data is therefore not
included in the returned data set.
Data included but not selected.
The user has not explicitly selected this item, but has made other
selections that implicitly select this item as well. The
corresponding records are included in the returned data set (as a
result of those other selections).
Data compatible but not included.
The user has not explicitly selected this item, and the item
remains compatible with existing user selections. This item can
therefore be selected to add additional records to the returned
data set.

END USER

184 of 2477

See Also
Selection List, in Dashboard Design, for information on designing a
Selection List.

Selection List Walkthrough

Walkthrough This example illustrates the dual input/output nature of Selection Lists. If
you do not have access to this example dashboard, you can follow along
with the screenshots.

1. Press the Dashboard tab at the top of the User Portal.

2. Select the Analysis tab at the bottom of the Portal to open the
sample ‘Analysis’ dashboard.

3. Press the ‘Bookmark’ button at the top-right of the dashboard, and
select the ‘(Home)’ option. This ensures that you are starting from
the dashboard’s original configuration.

Note: Some Selection
Lists submit automati-
cally when you make
a selection. To make
multiple selections on
this kind of Selection
List, Ctrl-click when
selecting options.

4. Select a few states (e.g., ‘New Jersey’, ‘New York’,
‘Pennsylvania’, ‘Connecticut’) in the ‘State’ Selection List.

Note that the ‘Division’ selection list now shows two items with
green squares, ‘Mid-Atlantic’ and ‘New England’. The remaining
divisions are listed under ‘Others’. The two green divisions are
those that are compatible with the current ‘State’ selection. That is,
the selected states are in the Mid-Atlantic and New England divi-
sions.

Data incompatible.
The user has not explicitly selected this item, and this item is
incompatible with existing selections. (It appears listed under
‘Others’). Selecting this clears all other selections and starts
fresh.

END USER

185 of 2477

5. You can now filter the results further based on division. Select
‘New England’ in the ‘Division’ list. When you make this selection
in the ‘Division’ selection list, the ‘State’ selection list
automatically updates.

Note the following features of the ‘State’ selection list:

a. Connecticut is shown with a green check mark. This indicates
that you explicitly selected ‘Connecticut’, and the records for
Connecticut were returned by the query.

b. Three states are shown with gray check marks (New Jersey,
New York, Pennsylvania). This indicates that you explicitly
selected these states, but their records are not included in the
result set because of an incompatible choice in another selection
list. In this case, you explicitly selected the ‘New England’
division, so only records for New England states (i.e.,
Connecticut) are actually included.

END USER

186 of 2477

c. Five states are shown with empty boxes (Maine, Massachusetts,
New Hampshire, Rhode Island, Vermont). This indicates that
records for these states are not included, but these choices
remain compatible with your other selections. You can select
these choices to widen your result set.

d. All other states are listed under ‘Others’. This indicates that
these records are not included, and moreover they are not
compatible with your other selections. To better understand the
‘Others’ status, see the next step.

6. Now, expand the ‘Others’ node in the ‘State’ selection list. Notice
that all incompatible states have a gray ‘X’ icon.

7. Select ‘Delaware’.

Note that this clears the ‘New England’ selection from the ‘Divi-
sion’ list. Whenever you add a selection from an ‘Others’ list, this
resets any incompatible selections in other lists. In this case, the
‘Division’ list is reset to show only divisions compatible with the
five currently selected states.

2.5.2 Selection Tree

The Selection Tree is a hierarchical version of the Selection List that allows
you to select items at multiple levels. See Selection List Toolbar for
operation of the mini-toolbar and Selection List Icons for the meaning of
the different selection icons.

END USER

187 of 2477

See Also
Selection Tree, in Dashboard Design, for information on designing a
Selection Tree.

2.5.3 Range Slider

The Range Slider component allows you to select a date range or numerical
range.

To adjust the start-point or end-point of a range, drag the left or right
handle. To slide the entire range, drag the slider body.

To quickly set the right side of the range to its maximum, double-click on
the right end-handle. To quickly set the left side of the range to its
minimum, double-click on the left end-handle. To quickly set the entire
range to its full extent, double-click on the slider body.

See Also
Slider, for information on using a Slider input component.
Range Slider, in Dashboard Design, for information on designing a Range
Slider.

2.5.4 Calendar

The Calendar component provides a calendar interface that allows you to
filter data based on a range of dates or a comparison of dates. The Calendar
is similar in purpose to a Range Slider, but provides functionality beyond
simple range selection. The following sections explain how to use the
Calendar component.

Calendar Toolbar

The Calendar component provides a mini-toolbar in the title bar that allows
you make convenient modifications to the calendar. (Move the mouse over
the Calendar to see the mini-toolbar.)

END USER

188 of 2477

The title bar buttons are described below.

See Also
Calendar, in Dashboard Design, for information on designing a Calendar.

Calendar Range Options

The following illustration shows some of the different types of ranges that
you can select using a Calendar. Note that the Calendar toolbar indicates
the selected range.

Switch to Year View and Switch to Month View
Press to alternate between year and month styles.
Switch to Range/Comparison and Switch to Simple
View
Press to alternate between single- and double- calendar
modes. In single-calendar mode, selections are applied
immediately. In double-calendar mode, press the
‘Apply’ button to submit your selections.
Switch to Comparison Mode and Switch to Date Range
Mode
Press to switch between date range selection and date
comparison operations.
Clear
Press to remove the specified date information.

Apply
Press ‘Apply’ to submit the selection. If the ‘Apply’ button does
not appear, this means that your selection is submitted
automatically.

END USER

189 of 2477

Filtering a Range of Dates

To filter a range of dates using the Calendar component, follow the steps
below:

1. If the Calendar is currently in ‘Comparison’ mode (indicated by an
“=” symbol between the left and right calendar pages), press the
‘Switch to Date Range Mode’ button, or click the “=” symbol to
switch to ‘Date Range’ mode.

2. (Optional) To switch the Calendar from single-page to double-page
display, press the ‘Switch to Range/Comparison’ button.

To switch the Calendar from double-page to single-page display,
press the ‘Switch to Simple View’ button.

END USER

190 of 2477

3. (Optional) To switch the Calendar from displaying a single month
to displaying the entire year, press the ‘Switch to Year View’
button.

To switch the Calendar from displaying the entire year to display-
ing a single month, press the ‘Switch to Month View’ button.

4. Press the ‘Last Year’/‘Last Month’ buttons and ‘Next Year’/‘Next
Month’ buttons to display the appropriate calendar pages.

5. Click a date on the Calendar to select the start date of the range.
You can select a day, week, or month, depending on the how the
Calendar has been configured.

In a ‘Month View’ calendar, click to select a day or week, or click
the name of the month at the top of the calendar to select the entire
month. In a ‘Year View’ calendar, click to select a month, or click
the year at the top of the calendar to select the entire year.

6. Click another date on the Calendar to select the end date of the
range, or Ctrl-click to select discontiguous dates.

END USER

191 of 2477

In a ‘Month View’ calendar, click to select a day or week, or click
the name of the month at the top of the calendar to select the entire
month. In a ‘Year View’ calendar, click to select a month, or click
the year at the top of the calendar to select the entire year.

7. If the Calendar is double-page view, press the ‘Apply’ button to
submit your selection. (If the Calendar is in single-page view, the
selection is applied automatically.)

The range that you select is used to filter all data view and output
components that are based on the same Data Block as the Calendar
component.

Comparing a Range of Dates

To compare a range of dates using the Calendar component, follow the
steps below:

1. If the Calendar is in single-page view, press the ‘Switch to Range/
Comparison’ button to switch to double-page display.

2. If the Calendar is currently in ‘Range’ mode (indicated by an arrow
symbol between the left and right calendar pages), press the
‘Switch to Comparison Mode’ button, or click the arrow symbol to
switch to ‘Date Comparison’ mode.

END USER

192 of 2477

3. (Optional) To switch the Calendar from displaying a single month
to displaying the entire year, press the ‘Switch to Year View’
button.

To switch the Calendar from displaying the entire year to display-
ing a single month, press the ‘Switch to Month View’ button.

4. Press the ‘Last Year’/‘Last Month’ buttons and ‘Next Year’/‘Next
Month’ buttons to display the appropriate calendar pages for the
comparison that you wish to make.

5. Select a date range to compare on the left page of the Calendar. You
can select a day, week, or month, depending on the how the
Calendar has been configured.

The initial selection
that you make will be
mirrored on the right
page of the Calendar,
but you can change
this in the next step.

In a ‘Month View’ calendar, click to select a day or week, or click
the name of the month at the top of the calendar to select the entire
month. In a ‘Year View’ calendar, click to select a month, or click
the name of the year at the top of the calendar to select the entire
year. Ctrl-click to select discontiguous dates.

6. Select a date range to compare on the right page of the Calendar.
You can select a day, week, or month, depending on the how the
Calendar has been configured. Ctrl-click to select discontiguous
dates.

7. Press the ‘Apply’ button to submit your selection.

END USER

193 of 2477

The date ranges that you select are used to generate comparisons in all
Charts and Crosstabs that are based on the same Data Block.

2.5.5 Selection Container

A Selection Container provides convenient access to multiple selection
elements, and provides a way for you to add new Selection Components
into the dashboard.

The following sections explain how to use a Selection Container.

See Also
Selection Container, in Dashboard Design, for more information about
Selection Containers.

Using Selection Components in a Selection Container

To display a selection component in a Selection Container, press the
‘Show’ button in the selection component title bar. This expands the
selection component and its toolbar. (See Selection List, Selection Tree, and
Range Slider for information on how to use these selection components.)
To collapse a selection component in a Selection Container, press the
‘Hide’ button.

To clear the filters on all selection components in the Selection Container,
press the ‘Clear All Selections’ button in the Selection Container title bar.

END USER

194 of 2477

Adding Selection Components into a Selection Container

For certain dashboards, you may be able to add new selection components
into an existing selection container. To do this, follow the steps below:

1. Press the ‘Edit’ button in a Chart or Crosstab component on the
dashboard.

Note: If no ‘Edit’ but-
ton is available on any
Chart or Crosstab, you
cannot add a new
selection into the
Selection Container.
Contact the system
administrator.

This opens the Chart Editor or the Crosstab Editor.

2. Drag the desired fields from the Data Source panel into the
Selection Container.

END USER

195 of 2477

String-type fields are added to the Selection Container as Selection
Lists, while numerical-type and date-type fields are added to the
Selection Container as Range Sliders.

3. To remove a selection component from the Selection Container,
right-click the component and select ‘Remove’.

2.6 Using Data View Components
Data View components include tables, charts, and crosstabs, and are the
primary tools for displaying data on a dashboard. This section discusses the
features of these components

2.6.1 Table and Crosstab

This section presents various features of tables and crosstabs in dashboards.

See Also
Tables and Crosstabs, in Dashboard Design, for more detailed information.

Sorting

Note: Sorting actions
for certain tables may
be administratively
restricted.

To sort a table or crosstab column, hover the mouse over the right side of
header or data cell and press the ‘Sort Column’ button.

Press the button once to sort in ascending (alphabetical) order.

Press the button a second time to sort in descending (reverse-alphabetical)
order.

END USER

196 of 2477

Press the button a third time to restore the original order.

Hover the mouse over a cell to display the current sort order for the field.
An up-arrow means “ascending”. A down-arrow means “descending”. An
up-arrow or down-arrow accompanied by a sigma indicates that the field is
sorted by aggregate value. For example, if you sort an aggregated field in
ascending order, the sort indicator for the dimension shows that it is sorted
in ascending order by the aggregate value.

Filtering

The ‘Filter’ option is only available if the dashboard contains a
Selection Container component.

To filter a table, follow the steps below:

1. Right-click on the column that you wish to filter and select ‘Filter’
from the context menu.

This opens the filtering control for the column, a Selection List for
a string-type column, and a Range Slider for a numerical-type or
date-type column.

END USER

197 of 2477

2. Make the desired selection using the selection control, and click
away from the column to submit. (See Selection List and Range
Slider for information on how to use these controls.)

The selections that you make are shown in the Selection Container.

To remove the filter from a particular column, follow the steps above, and
press the ‘Clear Selection’ button on the selection control.

To remove all filters on the table, press the ‘Clear Selections’ button in the
Selection Container.

See Also
Selection Container, for more information about the Selection Container
component.

Exporting

To export the data in a Table or Crosstab to Excel, press the ‘Export’ button
in the table title bar.

END USER

198 of 2477

Drilling Down

To drill-down into the data in a Crosstab table, follow the steps below:

1. Select the aggregated data into which you want to drill. (You can
select data in a Crosstab by clicking to select individual cells, Shift-
clicking to select contiguous ranges of cells, and Ctrl-clicking to
select discontiguous ranges of cells.)

2. Press the ‘Show Details’ button in the title bar.

This displays the detail data in a panel at the bottom of the screen.
You can continue to select different cells without clicking ‘Show
Details’ again.

3. To export the data to Excel, press the ‘Export’ button at the top
right.

Editing

Press the ‘Edit’ button in the Crosstab title bar (if available) to open the
Crosstab Editor to modify the table. See Crosstabs in the Dashboard
Design for more information.

2.6.2 Charts

Select one or more data groups in a Chart component to view the Chart
toolbar. (You can select data groups by dragging across the groups on the
chart, by clicking on group, or by Shift-clicking or Ctrl-clicking to select
multiple groups.)

END USER

199 of 2477

The following toolbar options may be available:

• ‘Edit’: Opens the Chart Editor to modify the chart. See Charts in the
Dashboard Design for more information.

• ‘Max Mode View’: Displays the chart in a floating window, which you
can resize.

• ‘Chart Data’: Displays a tabular listing of the chart’s summarized data,
which can be exported to Excel.

• ‘Show Details’: Displays the detail records underlying the chart’s
summarized data, which can be exported to Excel.

• ‘Zoom’: Zooms the chart to display only the selected data groups.

• ‘Exclude’: Zooms the chart to exclude the selected groups (i.e., displays
only the unselected groups).

• ‘Brush’: Highlights the selected data groups across all charts in which
the data occurs. See Brushing a Chart in Dashboard Design for full
information.

To save an individual Chart as an image, right-click the Chart and select
‘Save Image As’ from the context menu.

See Also
Changing the Chart View, in Dashboard Design, for more detailed
information on these features.
Grouping Chart Labels into Named Groups, in Dashboard Design, for
information on agglomerating chart categories.

Formatting Chart Elements

Chart formatting includes data formats (date, number, currency, etc.),
borders, colors, fonts, and other aspects pertaining to the visual
presentation of the Chart.

To set formatting for a particular aspect of a Chart, right-click on the aspect
of the chart that you want to format (axis title, axis labels, plot area, etc.),
and select ‘Format’. This opens the ‘Format’ dialog box.

END USER

200 of 2477

See Format Dialog Box in Dashboard Design for full information about
the dialog box properties.

Setting Chart Plot Properties

Plot properties for a Chart include grid-lines, trend-lines, banding,
transparency, and other features that pertain to the visual appearance of the
plot region.

To set plot properties for a Chart, right-click on the chart and select ‘Plot
Properties’. This opens the ‘Plot Properties’ dialog box.

See Editing Plot Properties in Dashboard Design for full information
about the dialog box properties.

Adding a Target Line, Target Band, or Statistical Measure to a Chart

A target line is a horizontal or vertical line drawn on the chart that
generally denotes an ideal value (goal or threshold) or representative value
(average, minimum, etc.). A target band is a horizontal or vertical band
drawn on the chart that generally denotes either an ideal range (e.g., goal
zone) or representative range (e.g., span of maximum to minimum). A
statistical measure is a line or region drawn on the chart to represent one or

END USER

201 of 2477

more statistical quantities derived from the data (confidence intervals,
percentiles, etc.).

To create or edit a target line, target band, or statistical measure on a Chart,
right-click on the Chart and select ‘Properties’. This opens the ‘Chart
Properties’ dialog box.

To create a new target line, band, or statistical measure, press ‘Add’. To edit
an existing target line, band, or statistical measure, select the desired target
and press ‘Edit’.

For full information about these chart features, see Adding a Target Line,
Adding a Target Band, and Adding a Statistical Measure in Dashboard
Design.

END USER

202 of 2477

2.7 Using Output Components
Output components such as gauges, scales, and thermometers display a
single aggregate value, and do not allow input or manipulation.

See Also
Output Components, in Dashboard Design, for more detailed information.

2.8 Using Bookmarks
Bookmarks do not
store data, only set-
tings.

A bookmark allows you save your current dashboard settings (filter
selections, menu choices, annotations, etc.) so that you can return to these
settings at a later time. The following sections explain how to work with
bookmarks.

2.8.1 Saving Dashboard Settings in a New Bookmark

To save a dashboard configuration as a new bookmark, follow the steps
below:

1. Adjust the dashboard settings (filtering selections, menu choices,
annotations, etc.) as desired to obtain the configuration that you
want to save.

2. Press the ‘Bookmark’ button on the right side of the toolbar. This
opens the ‘Bookmark’ menu.

3. Select the ‘Save as New Bookmark’ option. This opens the
‘Bookmark Properties’ dialog box.

4. If desired, enter a name for the new bookmark in the ‘Name’ field.
(The default bookmark name is current time.)

END USER

203 of 2477

5. Select ‘Private’ if you want the bookmark to be visible only to you.
Select ‘Shared’ if you want other users of the dashboard to be able
to use the bookmark that you have created.

If you select ‘Shared’, select ‘All Users’ to share the bookmark
with all dashboard users or select ‘Same Groups’ to share the book-
mark only with users that belong to one or more of your current
user groups. (User groups are configured by an administrator.)

6. Enable the ‘Read-only’ option if you do not want other users to
modify this bookmark. Otherwise, any user who shares this
bookmark will be able to change the bookmark settings.

7. Press ‘OK’ to save the bookmark.

See Also
Adding an Annotation to a Dashboard, to annotate dashboard components
or data.

2.8.2 Restoring Settings from a Bookmark

To restore a dashboard to the settings saved in a bookmark, follow the steps
below:

1. Press the ‘Bookmark’ button on the right side of the toolbar. This
opens the ‘Bookmark’ menu.

2. Select the bookmark you want to restore.

END USER

204 of 2477

The dashboard is updated with the settings previously saved in the
bookmark.

2.8.3 Updating an Existing Bookmark with New Settings

To update a bookmark with new settings, follow the steps below:

1. Press the ‘Bookmark’ button on the right side of the toolbar. This
opens the ‘Bookmark’ menu.

2. Select the bookmark you want to update. This bookmark is now the
active bookmark.

3. Make any desired changes to the dashboard settings (selections,
input components, etc.).

4. (Optional) Press the ‘Bookmark’ button again, and note that the
active bookmark is highlighted.

5. Select the ‘Save Current Bookmark’ option or press Ctrl-S on the
keyboard. (On Internet Explorer, press Ctrl-Alt-S.) This updates the
active bookmark with the current dashboard settings.

Note that you can only update a bookmark for which you have write
permission. You can only update the default bookmark (the bookmark
shown in italics or the ‘Home’ bookmark) if you have write permission for
the dashboard.

2.8.4 Deleting a Bookmark

To delete a bookmark, follow the steps below:

1. Press the ‘Bookmark’ button on the right side of the toolbar. This
opens the ‘Bookmark’ menu.

END USER

205 of 2477

2. Right-click on the bookmark that you want to delete, and select
‘Remove’ from the context menu.

Note that you can only delete a bookmark for which you have write
permission. (The ‘Home’ bookmark cannot be deleted.)

2.8.5 Modifying a Bookmark

To change the name or sharing settings for a bookmark, follow the steps
below:

1. Press the ‘Bookmark’ button on the right side of the toolbar. This
opens the ‘Bookmark’ menu.

2. Right-click on the bookmark that you want to change, and select
‘Properties’ from the context menu. This opens the ‘Bookmark
Properties’ dialog box.

END USER

206 of 2477

3. Make the desired changes to the bookmark name and sharing. See
Saving Dashboard Settings in a New Bookmark for more
information about these settings.

4. Press ‘OK’ to update the bookmark name and sharing.

Note that you can only modify a bookmark that you have created yourself.
(The ‘Home’ bookmark cannot be modified.)

2.8.6 Setting Initial Dashboard State with a Default
Bookmark

The default bookmark for a dashboard specifies the settings (filter
selections, menu choices, annotations) that will be in effect each time you
re-open the dashboard in the Portal. The default bookmark therefore
specifies the “starting state” of the dashboard.

If you have not yet
bookmarked the
desired dashboard
state, see Saving Dash-
board Settings in a New
Bookmark.

To set an existing bookmark as the default bookmark, follow the steps
below:

1. Press the ‘Bookmark’ button on the right side of the toolbar. This
opens the ‘Bookmark’ menu.

The default book-
mark is subsequently
shown in italics.

2. Right-click on the bookmark that you want to set as the
dashboard’s starting state, and select ‘Set As Default’.

END USER

207 of 2477

The dashboard will now open with the settings defined by this default
bookmark.

If you do not specify a default bookmark for a dashboard, the dashboard
will open with the settings defined by the ‘Home’ bookmark. To remove
the default designation from a bookmark, simply designate a different user-
created bookmark or the ‘Home’ bookmark as the default.

2.9 Using Annotations
You can add annotations to a dashboard, to an individual dashboard
component, and even to an individual data point. The following sections
explain how to do this.

2.9.1 Adding an Annotation to a Dashboard

You can add annotations to the following parts of a dashboard:

• Dashboard body

• Output, data view, and shape components

• Chart data point

• Table data cell

Annotations are saved together with the current bookmark. If you do not
have permission to update the current bookmark, you will be prompted to
create a new bookmark in order to save the annotations you have created.

The following sections explain how to add annotations to a dashboard.

Adding an Annotation to the Dashboard body

To add annotation to the body of the dashboard, follow the steps below:

1. If necessary, select the bookmark in which you want to save the
annotation. (Annotations that you add will be saved with the active
bookmark) See Restoring Settings from a Bookmark for
information on selecting a bookmark.

END USER

208 of 2477

2. Right-click in an empty region of the dashboard, and select
‘Annotate’ from the context menu.

This opens the annotation in the Annotation Editor.

3. Enter the desired annotation text into the Editor, and use the toolbar
to visually format the text. See Editing Annotation Text for more
information on how to use the Editor.

4. Press ‘OK’ to close the Annotation Editor. This adds the annotation
to the dashboard.

END USER

209 of 2477

5. Position the annotation as desired. See Positioning an Annotation
for more information.

Adding an Annotation to an Output, Data View, or Shape Component

To add an annotation to one of the Data View components (Table, Chart,
Crosstab), Output components (Gauge, Image, Text, etc.), or Shape
components (Rectangle, etc.) follow the steps below:

1. If necessary, select the bookmark in which you want to save the
annotation. (Annotations that you add will be saved with the active
bookmark) See Restoring Settings from a Bookmark for
information on selecting a bookmark.

2. Right-click on the Data View, Output, or Shape component, and
select ‘Annotate Component’ from the context menu.

This opens the Annotation Editor. (For an Output component, the
Editor displays a default annotation giving the components current
aggregate.)

3. Enter the desired annotation text into the Editor, and use the toolbar
to visually format the text. See Editing Annotation Text for more
information on how to use the Editor.

END USER

210 of 2477

4. Press ‘OK’ to close the Annotation Editor. This adds the annotation
to the dashboard and attaches a callout line to the designated
component.

5. Position the annotation as desired. See Positioning an Annotation
for more information.

See Also
Using Data View Components, for information about using Data View
components.
Shape Components, in Dashboard Design for information about using
shapes.
Output Components in Dashboard Design for information about Output
components.

Adding an Annotation to a Chart Data Point

To add an annotation to a data point on a chart, follow the steps below:

1. If necessary, select the bookmark in which you want to save the
annotation. (Annotations that you add will be saved with the active
bookmark) See Restoring Settings from a Bookmark for
information on selecting a bookmark.

2. Right-click on the chart data point you wish to annotate, and select
‘Annotate Point’ from the context menu.

END USER

211 of 2477

This opens the Annotation Editor, which by default displays the
contents of the current data point tooltip.

3. Enter the desired annotation text into the Editor, and use the toolbar
to visually format the text. See Editing Annotation Text for more
information on how to use the Editor.

4. Press ‘OK’ to close the Annotation Editor. This adds the annotation
to the dashboard and attaches a callout line to the designated data
point.

END USER

212 of 2477

5. Position the annotation as desired. See Positioning an Annotation
for more information.

Adding an Annotation to a Table Cell

To add an annotation to a data cell in a table, follow the steps below:

1. If necessary, select the bookmark in which you want to save the
annotation. (Annotations that you add will be saved with the active
bookmark) See Restoring Settings from a Bookmark for
information on selecting a bookmark.

2. Right-click on the table cell you wish to annotate, and select
‘Annotate Cell’ from the context menu.

This opens the Annotation Editor, which by default displays the
contents of the current cell’s tooltip.

END USER

213 of 2477

3. Enter the desired annotation text into the Editor, and use the toolbar
to visually format the text. See Editing Annotation Text for more
information on how to use the Editor.

4. Press ‘OK’ to close the Annotation Editor. This adds the annotation
to the dashboard and attaches a callout line to the designated table
cell.

5. Position the annotation as desired. See Positioning an Annotation
for more information.

Positioning an Annotation

To resize an annotation, click and drag on one of the annotation “resize”
handles.

To move the annotation, click and drag on the “move” handle, or click and
drag on the annotation body.

END USER

214 of 2477

To move the callout arrow for a component annotation, click and drag on
the arrow handle. The callout arrow must be placed within the body of the
component.

The callout arrow for a data point annotation cannot repositioned, and
always targets the venter of the data point.

2.9.2 Editing Annotation Text

To edit an exiting annotation, first make sure the annotation is visible. See
Showing or Hiding an Annotation for information on how to make
annotations visible. Then follow the steps below to edit an annotation:

1. Right-click on the annotation and select ‘Edit’ from the context
menu.

This open the annotation for editing in the Annotation Editor.

END USER

215 of 2477

2. Modify the annotation text as desired by typing in the text box.

3. Modify the visual formatting of a block of text as desired by using
the formatting tools in the toolbar to adjust the font, size, weight,
color, etc.

4. Press ‘OK’ to close the Editor.

2.9.3 Formatting the Annotation Box and Line

To change the visual appearance of an annotation box or callout line, first
make sure the annotation is visible. See Showing or Hiding an Annotation
for information on how to make annotations visible. Then follow the steps
below to format the annotation box and line:

1. Right-click on the annotation and select ‘Format’ from the context
menu.

This opens the ‘Format’ dialog box.

2. Adjust the following settings in the ‘Box’ panel:

END USER

216 of 2477

a. From ‘Style’ menu, select a line style for the box border. Select
a border color from the adjacent color-picker.

b. From the ‘Round Corner’ menu, select a radius (in pixels) for
the box corners. Larger values produce more gently rounded
corners, and smaller values produce more sharply rounded
corners.

c. From the ‘Fill Color’ menu, select a background color for the
annotation box.

d. From the ‘Alpha’ menu, set the background transparency. A
value of 0% indicates complete fill transparency (i.e., fill color
not visible), and a value of 100% indicates complete fill opacity.

3. Adjust the following settings in the ‘Line’ panel:

a. Enable the ‘Visible’ option to display the callout line.

b. From ‘Line’ menu, select a line style for the callout line.

c. From the ‘End’ menu, select the arrow type for the callout line.

d. From the ‘Color’ menu, select a color for the callout line.

4. Press ‘OK’ to close the dialog box.

2.9.4 Showing or Hiding an Annotation

When a dashboard or component annotation is hidden, it appears on the
dashboard or component as a small note icon. The toolbar ‘Annotation’
button allows you toggle annotations between their hidden and visible
states.

END USER

217 of 2477

Every annotation is associated with a particular bookmark.

To display all annotations for a particular bookmark, follow the steps
below:

1. If necessary, select the bookmark for which you want to see
annotations. See Restoring Settings from a Bookmark for
information on selecting a bookmark.

2. Press the ‘Annotation’ button in the toolbar.

If you export a dashboard while annotations are visible, the annotations
will be included in the export.

To hide all annotations, simply press the ‘Annotation’ button in the toolbar
a second time.

2.10 Importing and Exporting from a Dashboard
You can export an image of an entire dashboard, or export data from a
particular dashboard component. The following sections explain how to do
this.

2.10.1Exporting a Dashboard for Viewing

To export a copy of the dashboard into Excel, PowerPoint, or PDF format,
follow the steps below:

1. Click the ‘Export’ button in the dashboard toolbar. This opens the
‘Export’ dialog box.

2. Select the Content tab, and make the following selections:

a. Choose the export type: ‘Excel’, ‘PowerPoint’, ‘PDF’, or
‘Snapshot’.

END USER

218 of 2477

See Importing Assets
in Administration Ref-
erence for details on
incremental deploy-
ment.

The ‘Snapshot’ option produces a portable version of the
dashboard that incorporates an embedded (static) copy of the
underlying data. This “snapshot” dashboard can be loaded into
another server installation via incremental deployment or into
other InetSoft products such as Style Scope Free Edition (http://
www.dashboardfree.com).

b. Select ‘Match Layout’ to obtain the closest possible match
between the appearance of the exported copy and the original
dashboard.

c. Select ‘Current View’ to include the current state of the
dashboard in the exported file.

d. Select the bookmarks that you wish to include in the exported
file. The selected views are converted to individual pages
(PowerPoint and PDF) or sheets (Excel) in the exported copy.

Note: An ‘anonymous’ user cannot save to the repository, and a
Snapshot cannot be saved to the repository.

3. Select the Location tab. Choose ‘Desktop’ to save the exported file
onto the local machine. Choose ‘Repository’ and select a repository
location to save the exported file onto the server.

When you export a dashboard to the repository, the dashboard will
appear (with a different icon) within the repository tree, but will not
be supplied with live data. Rather, the exported dashboard will exist
as an “archive,” reflecting the state of the data at the time that the
export was made.

http://www.dashboardfree.com
http://www.dashboardfree.com

END USER

219 of 2477

4. Click ‘OK’ to close the dialog box and proceed with the export.

2.10.2Exporting a Dashboard for Editing in Excel
Note: Offline dashboard editing features are available only if
product is licensed for Viewsheet Forms.

Dashboards provide several features to assist in offline data editing. You
can export data from dashboard Tables and Input Components into an
Excel file, edit the data values and make input selections within the Excel
file, and re-import the revised data and selections into the dashboard at a
later time. This allows you to edit a dashboard offline, while not actively
logged into the server.

To export a dashboard for editing (and subsequent importing), follow the
steps below:

Note: Do not use the
‘Export’ button in the
table title bar.

1. Press the ‘Export’ button in the dashboard toolbar.

2. On the Content tab, select the ‘Excel’ export option.

3. Deselect the ‘Match Layout’ option.

END USER

220 of 2477

4. Under the Location tab, select the ‘Desktop’ option.

5. Press ‘OK’ to close the dialog box and export the dashboard.

This saves the Excel file (with the same name as the dashboard) in the
browser’s default download directory. You can now open the file in Excel,
and edit the tables or modify input elements as desired. To re-import the
modified Excel data back into the dashboard, see Importing Excel Data
into a Dashboard.

See Also
Exporting Table Data for Editing, in Dashboard Design, for information on
how to configure editing features.

2.10.3Importing Excel Data into a Dashboard
Note: Offline dashboard editing features are available only if
product is licensed for Viewsheet Forms.

Dashboards provide several features to assist in offline data editing. You
can export data from dashboard Tables and Input Components into an
Excel file, edit the data values and make input selections within the Excel
file, and re-import the revised data and selections into the dashboard at a
later time. This allows you to edit a dashboard offline, while not actively
logged into the server.

To import data from Excel into a dashboard, the following conditions must
be satisfied:

• The Excel file was created by the procedure described in Exporting a
Dashboard for Editing in Excel. (If the Excel file was created by another
process, the import will not succeed.)

• Each editable table and input control in the dashboard has the same
name (set by the ‘Name’ field in the ‘Table Properties’ dialog box) as
the corresponding table or control in the Excel file. (The names are used

END USER

221 of 2477

to match the Excel components with the corresponding dashboard
components.)

When you have verified the above conditions, follow the steps below to
import the modified data from the Excel file:

1. Press the ‘Import’ button in the dashboard toolbar. This opens the
file selection dialog box.

2. Choose the Excel file that you want to import, and press ‘Open’.

This uploads the Excel data into the dashboard tables and columns with
corresponding names, and updates input elements with revised settings.
Records which have been added or edited within Excel are highlighted for
better visibility.

For information on committing modified table data to a database, see
Committing User-Modified Data to Database (Database Write-Back), in
Dashboard Scripting.

See Also
Exporting Table Data for Editing, in Dashboard Design, for information on
how to configure editing features.

END USER

222 of 2477

3 Deploying a Dashboard

You can arrange the dashboards displayed under the Dashboard tab of the
User Portal, and add your own dashboards under this tab.

The following sections explain how to do this.

3.1 Adding a Dashboard to the Dashboard Tab
Each of the dashboards that appears under the Dashboard tab of the User
Portal consists of one or more component dashboards called “Viewsheets”.
To add a new dashboard to the Dashboard tab, follow these steps:

1. Select the Design tab in the User Portal, and click the ‘Dashboard’
button. This opens the ‘Dashboard Configuration’ page.

END USER

223 of 2477

2. Click the ‘New Dashboard’ button under the ‘Dashboards’ table.
This opens the ‘Dashboard Properties’ dialog box.

3. In the ‘Dashboard Name’ field, enter a name for the new dash-
board. This name will be displayed on the dashboard’s tab in the
Portal.

4. (Optional) Enter a description for the dashboard in the ‘Descrip-
tion’ field. This description is only visible when the dashboard is
being edited.

5. Press ‘OK’. This opens the ‘Edit Dashboard’ dialog box.

6. To specify a single existing Viewsheet to use as the dashboard, fol-
low the steps below:

a. Choose the desired Viewsheet from the ‘Select Viewsheet’ list.

END USER

224 of 2477

b. Press ‘OK’. This closes the ‘Edit Dashboard’ dialog box, and
returns you to the main ‘Dashboard Configuration’ page.

7. To compose a dashboard by combining several existing
Viewsheets, follow the steps below:

a. Select the ‘Compose Dashboard’ option at the bottom of the
‘Edit Dashboard’ dialog box.

b. Press ‘OK’. This opens the Visual Composer.

See Nesting a Views-
heet in Dashboard
Design for more infor-
mation about nesting
one Viewsheet within
another Viewsheet.

c. From the Asset panel, drag the desired Viewsheets into the
Viewsheet grid to compose the dashboard layout.

END USER

225 of 2477

d. Click and drag the “move” handle on a nested Viewsheet to
position it on the grid.

e. Press the ‘Save’ button in the Visual Composer toolbar to save
the composite dashboard.

f. Press the ‘Close’ button in the Visual Composer toolbar to close
the Visual Composer. This returns you to the main ‘Dashboard
Configuration’ page.

END USER

226 of 2477

The new dashboard is now listed in the ‘Dashboards’ table, and will be
visible under the Dashboards tab of the Portal. See User Preferences to
arrange the dashboards under the Dashboards tab.

See Also
Dashboard Design, for information about creating and deploying
Viewsheets.

3.2 Editing or Deleting a Dashboard
To edit a dashboard that you have added under the Dashboard tab, follow
the steps below:

1. Select the Design tab in the User Portal, and press the ‘Dashboard’
button.

2. Locate the dashboard you wish to edit in the ‘Dashboards’ table.
(This table lists all of the user-defined dashboards. It does not list
global dashboards defined by the administrator.)

3. Press the ‘Edit’ button in the rightmost column for the dashboard
you wish to edit.

END USER

227 of 2477

This opens the ‘Edit Dashboard’ dialog box. Follow the instructions in
Adding a Dashboard to the Dashboard Tab to make the desired edits.

To delete a dashboard entirely, Click the ‘Delete’ button in the rightmost
column.

END USER

228 of 2477

4 Production Reports

Operational or production reports are the backbone of most business
processes. These reports are typically produced in electronic format and
paper printouts for a wide range of users. The vast amount of business
knowledge contained within such reports is extremely valuable because
they are widely used and time critical. Production reports are often viewed
as the most fundamental business intelligence tool.

To run a report, simply click on it once in the Repository Tree. The report
will either display immediately or (for larger reports) after a momentary
loading screen.

For information about the ‘Add to Queue’ button, see Adding a Report to
the Scheduler Queue.

4.1 Report Toolbar
The figure below shows a sample toolbar. (Some buttons may not be
visible for a given report.)

Figure 3. Default Report Toolbar

You will usually see only a subset of the buttons that are described below.

Table 1. Report and Ad Hoc Toolbar Buttons

BUTTON FUNCTION

Go to first page.

Go to previous page.

Go to next page.

Go to last page.

Go to specified page (page number in the field).

Searches within the current report.

END USER

229 of 2477

The ‘Print’ button in
the browser toolbar
only prints the single
page that is currently
displayed in the Por-
tal.

Note that there is both a ‘Server Print’ and a regular ‘Print’ button. The
regular ‘Print’ button will load a PDF in the background so that every page
can be printed. Most browsers will launch the Adobe Reader plug-in to
complete the printing operation. This client-side print feature is only
available on platforms that fully support Adobe Reader.

In addition to the standard toolbar buttons above, a report may also have a
pop-up menu button. This button will open a custom menu that was built
by the report developer.

Note: A pop-up menu button can also be on an element.

Figure 4. Element Pop-Up Menu

View/Save-As PDF.

Refresh the current report. (This differs from the browser
Reload function, as ‘Refresh’ regenerates the report on the
server.) For a “pre-generated” report, the ‘Refresh’ option
re-executes the pre-generation cycle, saving the updated
report.
Opens the Ad Hoc Reporting toolbar. See Ad Hoc Toolbar in
the Ad Hoc Reporting for more information.
Export report.

Returns to the parent report from a drill-down report.

Mail report.

Print report using a local printer via PDF. (May not be
available on certain platforms. See below.)
Server-side Printing.

Customize report parameters.

Save the report. This overwrites the existing template.
Unsaved changes are denoted by an ‘*’ next to this button.
Save As. This allows you to copy the template or save an
archived copy.
Pop-up menu. This provides a customizable drop-down list.

Report Explorer.

Close Report.

END USER

230 of 2477

4.1.1 Exporting a Report

To export a report, press the ‘Export’ button in the toolbar. Reports can be
exported to local files in any of the following formats:

Table 2. Export formats

FORMAT DESCRIPTION

PDF Portable Document Format.
Excel (match exact layout) Microsoft Excel worksheet preserving the report

layout.
Excel (no pagination) Same as ‘Excel (match exact layout)’ except that

page breaks are eliminated for easier data
manipulation.

Excel (best data editing) Microsoft Excel file with two sheets. The version of
the report on the first sheet is the same as the ‘Excel
(match exact layout)’ version, while the version of
the report on the second sheet attempts to preserve
the report layout without using any cell spanning.

RTF (editable document) Rich Text Format, readable and editable by most
word processors.

RTF (match exact layout) Same as RTF except presentation is more similar to
the actual report. Block layout may make data
manipulation more difficult in some cases.

HTML (match exact
layout)

Standard HTML, preserving the report layout.

HTML (no pagination) Same as HTML (match exact layout) except page
breaks are eliminated for easier data manipulation.

HTML (bundled as zip) Creates a zip file containing the HTML report as
well as all associated image files.

HTML (no pagination,
bundled as zip)

Same as HTML (bundled as zip) except that the
page breaks are eliminated to produce a single page
HTML report for easier data manipulation.

CSV Delimited text file, readable by most spreadsheets.
Only table data is exported.

SVG Scalable Vector Graphics, an XML-based language
for web graphics.

Text Text file representing the report as closely as
possible.

PowerPoint Microsoft PowerPoint presentation.
XML Well-formed XML file, intended for data analysis,

including data from Text elements, Tables, Charts,
and Sections. Crosstab and Chart data are
represented in flattened form. Section data appears
without group or band delimitation.

END USER

231 of 2477

Figure 5. Export Pop-up Window

The export file format can be selected from the dialog. For PDF and
HTML formats, you can also select which pages of the report to export.

4.1.2 Saving As Archived Report or Live Report

Use the ‘Save As’ button in the toolbar to save the report under a different
name or location in the repository, or to create an archived version of the
report.

Figure 6. The ‘Save As’ dialog box

• Select ‘Save as Archived Report’ to save the report together with its
current data. The archived report will subsequently always display this
same dataset, and will never be updated with any new data. An archived
report therefore represents a “snapshot” of the dataset at a particular
moment in time.

• Select ‘Save as Live Report’ to save the report without archiving its
data. A live report is a report that draws its data from the data source at
runtime, thus always displaying “fresh” data. (This is the typical way
that reports are saved.)

END USER

232 of 2477

• Select the ‘Save Parameters Only’ option to save the values of all input
parameters that you have previously entered. The report will apply these
same parameters (to fresh data) the next time it runs.

4.1.3 Navigation

The Portal displays one page at a time. This permits the report to load
immediately, so that you do not need to wait for the entire report to be
generated or downloaded before you can begin reviewing it.

4.1.4 Browser Printing

Reports can be printed to a local printer by clicking on the ‘Print’ button.
The report will be downloaded as a PDF before being sent to a local printer.

4.1.5 Server Printing

If the administrator has set up server side printers then you can print reports
to them. See the Administration Reference for information on setting up
server printers.

4.1.6 Report Explorer

The Report Explorer allows you to browse, search, and customize report
elements by sorting, filtering, and hiding/reordering table columns. This
gives you the ability to create a view of the report that suits your needs.

For full Report
Explorer functional-
ity, set ‘Enable Adhoc
Analysis’ in the Data
Options tab of the
Style Studio ‘Proper-
ties’ dialog box for
the desired element.

The Report Explorer does not change the report, but only manipulates the
way the information in the report is viewed. However, you can export or
save your customized report to the report archive. See the Interactive
Reports section for more information on how to use the Report Explorer.

4.1.7 Searching

Click the ‘Search’ button to open the search panel to search within the
report. Note that you can move between ‘Browse’ and ‘Search’ by clicking
the tabs at the top of this panel. See the Searching section for step-by-step
examples.

4.1.8 Scheduling

Press the ‘Schedule’ button on the toolbar to configure a report for
automatic generation and delivery. See Basic Scheduling from Toolbar for
more information.

4.2 Interactive Reports
While production reports are the foundation, they often need to be changed
to suit a particular purpose. Changes can be minor, like changing the sort
order, or major ones that completely change the report. Instead of creating
separate reports for each need, users like yourself are given the power to
customize reports to address your specific requirements. You will use

END USER

233 of 2477

sample reports that may be located in the ‘Repository’ panel of the User
Portal. All of these examples come with the default installation. Ask your
system administrator to set up the examples if you do not see them. If the
reports are not available, you can still learn by referring to the screenshots.

4.2.1 Parameters

A parameter is any input that you enter. Run the ‘Parameters’ report.

Walkthrough You see the first set of parameter choices in the screenshot. Once the state is
chosen from the drop-down option box, the second drop-down option box
will contain client cities in the state that was selected.

1. In the ‘State’ drop-down, select ‘NJ’. The ‘City’ drop-down now
contains cities within New Jersey. Change the state to ‘CO’, and
select ‘Boulder’ for the city. Now ‘Submit’ your selections.

2. You will see the next set of parameters. Here you will again narrow
the scope of the report to be generated. (We chose ‘Category’.)
Click Submit.

Note: Multiple
options can be
selected by holding
down the CTRL key
on your keyboard
while selecting indi-
vidual options, or the
SHIFT key to choose
consecutive options.

3. Now you have a third set of parameters to choose, categories of
products. (We chose ‘Games’, ‘Educational’, and ‘Graphics’.)
Click Submit.

4. The report is in the Display panel, but there is still one more
parameter available, in the upper right corner under the InetSoft
logo.

END USER

234 of 2477

5. Choose ‘Bar’ from the drop-down to change the charts.

4.2.2 Drilldowns

A drill-down will allow you to access information associated with a report
element. It is often used to show the detail behind a summary value. The
example utilizes the ‘Interactive’ report.

END USER

235 of 2477

In the ‘Interactive’ report you can drill down on different report elements
by just clicking on the hyperlinks, i.e., one of the bars in the ‘Revenue by
Year’ chart, one of the States in the ‘Sales by Geography’ section, or one of
the company names in the ‘Purchaser List’. Elements even support
multiple hyperlinks, which will appear in a popup hyperlink menu.

If a hyperlink is ambiguous, you will be shown a pop-up dialog with a list
of possible options for the drill-down.

4.2.3 Sorting

There are two methods that you can use to sort tabular data.

Sort On Header

If the ‘Sort On Header’ feature has been enabled by the report designer,
you can sort a table by clicking a column header. Click once to sort the data
in ascending order. A second click on the same column will sort the data in
descending order. The following screenshots from the ‘Interactive’ report
demonstrate this.

Sorting with Report Explorer

Walkthrough This example illustrates an alternative way to sort, again using the
‘Interactive’ report.

1. Click on the ‘Report Explorer’ button, located on the report toolbar,
to open the ‘Browse/Search’ panel.

2. Select the ‘Geography’ element then ‘Show Sorting Options’ from
the toolbar at the bottom of the ‘Browse/Search’ panel.

Note that, unlike ‘Sort On Header’, you can apply multiple sort cri-
teria simultaneously.

END USER

236 of 2477

Features of the Report Explorer are greatly determined by the nature and
complexity of the original report design. For example, complex formula
tables cannot be manipulated within the Report Explorer, and Section
elements do not permit column rearrangement and/or hiding.

4.2.4 Filtering
Filtering values for
expression fields are
not displayed as selec-
tion lists, and need to
be entered manually.

There are two ways to set filter conditions on data in a report. This section
demonstrates the Report Explorer. An alternative way is to use Ad Hoc
reporting tool (discussed in the Ad Hoc Reporting). The example uses the
‘Interactive’ report.

Walkthrough The following example shows you how to filter data using Report
Explorer, again using the ‘Interactive’ report.

1. Open the Report Explorer, select the ‘Geography’ element, and
click the ‘Show Filter Options’ button in the ‘Browse/Search’
panel toolbar.

2. In the drop-down to the right of ‘Total’, select ‘>’ and type
“1000000” in the text box to the right. Click ‘Filter’.

END USER

237 of 2477

Filtering values for
expression fields are
not displayed as selec-
tion lists, and need to
be entered manually.

Features of the Report Explorer are greatly determined by the nature and
complexity of the original report design. For example, complex crosstab
tables (Formula Tables) cannot be manipulated within the Report Explorer,
and Section elements do not permit column rearrangement and/or hiding.

4.2.5 Showing and Hiding Columns

There are various methods for hiding and showing columns, discussed
below.

Hiding Table Columns

Walkthrough Sometimes it is either necessary or desired to hide or reorder columns in a
report. Style Intelligence provides you with two ways to accomplish this.
One way is with the Ad Hoc tool, and the other uses the Report Explorer.

The following steps and screenshots refer to the ‘Interactive’ report.

1. With the report open in the ‘Display’ panel, click the ‘Report
Explorer’ button and select the ‘Purchasers’ element in the
‘Browse/Search’ panel. In the toolbar, click on the ‘Show Column
Selection Options’ button.

2. Uncheck ‘Company’. Click ‘Submit’ to generate the report.

Filtering values for
expression fields are
not displayed as selec-
tion lists, and need to
be entered manually.

Features of the Report Explorer are greatly determined by the nature and
complexity of the original report design. For example, complex crosstab
tables (Formula Tables) cannot be manipulated within the Report Explorer,
and Section elements do not permit column rearrangement and/or hiding.

END USER

238 of 2477

Show Summary Rows only

Walkthrough The ‘Browse/Search’ panel displays all the elements in the report and
allows you to select a specific table element. If the table element has
grouping, you can click on the arrows to the right of the group name to
‘Hide Detail Rows’ for any or all groups. This example uses the
‘Interactive’ report to illustrate.

1. Click the ‘Report Explorer’ button to open the ‘Browse/Search’
panel. Select ‘Geography’ and expand it by clicking the ‘+’ to its
left.

2. To the right of ‘Geography’, and each state listed beneath it, there is
a ‘Show/Hide Detail Rows’ button. Click on the one by
‘Geography’.

4.2.6 Searching
Walkthrough Searching is another way to quickly find the information you want. Style

Intelligence allows you to search a report in either Basic or Advanced
mode. (To search archived reports, use the Portal ‘Search’ box. See Portal
Functions for more information.)

The ‘Interactive’ report will be used to illustrate these features.

1. In the User Portal, open the ‘Tutorial’ > ‘Interactive’ report.

END USER

239 of 2477

2. Press the ‘Search’ button in the report toolbar to open the ‘Search’
panel. You can also use ‘Report Explorer’ > ‘Browse/Search’ >
Search tab.

3. Enter “George” in the ‘Search for’ box, and press ‘Search’ to find
all occurrences in all of the elements of the report.

The ‘Browse/Search’ panel lists the locations of the searched term,
and all results are outlined in a red dotted line in the report. When
you select one of the instances in the search list, the report jumps to
the appropriate page, and the result is outlined in a bold, dotted red
line.

4. Now do an ‘Advanced Search’: First, drill down (click) on the year
2011 bar in the ‘Revenue by Year’ chart. This lists the orders for
2011.

END USER

240 of 2477

5. Open the ‘Search’ panel, then click the ‘Advanced’ button to open
the advanced search options.

6. Now search for a specific date. Select the ‘date’ option in the
‘default’ drop-down option box. Click the ‘Calendar’ button below
the menu, and select the following date: September 25, 2011.

7. Press the ‘Search’ button to list the results Click on an entry in the
list to jump to the corresponding location in the report.

END USER

241 of 2477

4.3 Archived and Batch Reports
The default behavior of a report is to run on demand and pull real time data.
However, this is not always desired. For instance, a 50,000 page annual
report may be viewed many times without having to refresh the data. This
is where archiving and batch scheduling come into play.

An archived report contains a static set of data that is fresh as of the date the
report was archived. Batch reports are run on a schedule, and can be
archived. For information on creating archived reports, see Scheduling
Reports and Dashboards.

4.3.1 Accessing Archived/Batch Reports

Archived reports are present in the report tree alongside live reports. You
can distinguish the report type by its icon. To access an archived report,
simply click it.

4.3.2 Managing Archived Reports

Archived reports can be managed just like live reports. You can rename,
move, and delete them. When saving an archived version of a report, you
can define a clean-up rule. This rule defines when to automatically delete
this archived report. Default clean-up rules may be defined by your
administrator.

END USER

242 of 2477

4.4 Scheduling Reports and Dashboards
A scheduled task defines a batch operation, and the time at which it should
be executed. You can define a task explicitly under the Schedule tab or
create a task on-the-fly by adding a requested report to the queue.

4.4.1 Basic Scheduling from Toolbar

To easily schedule a report or dashboard for automatic generation and
delivery, follow the steps below:

1. Press the ‘Schedule’ button on the toolbar. This opens the
‘Schedule Dashboard’ or ‘Schedule Report’ dialog box.

2. For a dashboard, select ‘Create New Bookmark’ and provide a
name for the new bookmark, or select ‘Use Current Bookmark’.
(See Using Bookmarks for more information about bookmarks.)

Then press ‘Next’.

3. In the ‘Format’ menu, select the format in which the report or
dashboard should be delivered. (The available formats are different
for reports and dashboards.)

4. In the ‘Emails’ field, enter a comma-separated list of email
addresses to which the report or dashboard should be delivered.

END USER

243 of 2477

5. Select a ‘Daily’, ‘Weekly’, or ‘Monthly’ option and enter the
desired date specifications for when the report or dashboard should
be generated.

6. Press ‘Finish’ to close the dialog box.

This creates a new scheduled task that will automatically generate and
email the report or dashboard on the schedule that you specified. The
automatically generated report or dashboard will use the same parameter
values that you entered when you originally opened the report or
dashboard.

To view your scheduled tasks or make modifications to a scheduled task,
select the Schedule tab in the Portal. See Schedule Management for more
information.

4.4.2 Adding a Report to the Scheduler Queue

When you run a large report, you will see the following loading screen.

Note: If the report is
almost finished gener-
ating when you press
‘Add to Queue’, it
will not be added to
the cue, but will rather
display normally in
the Portal.

Click ‘Add to Queue’ to force the report to generate in the background.
Click the Schedule tab to check the status of queued reports.

END USER

244 of 2477

When a queued report has completed, a copy of the report is delivered to
you based on your preferences (emailed, or saved into ‘My Reports’ with
specified file format and optional email notification).

See User Preferences for more information about queued report settings.

4.4.3 Creating a Scheduled Task

To scheduled a report or a dashboard, follow the steps below.

1. Click the Schedule tab in the Portal.

2. Click the ‘New Task’ button below the Schedule table. This creates
a new task with the name ‘Task1’, and opens the Editor.

Using the tabs at the bottom of the Editor, you can specify when the
task executes, what actions it performs, and additional options. See
Schedule Conditions, Scheduler Actions, and Schedule Options for
more information.

3. Click the ‘Close’ button to exit the Editor.

To modify an existing task, click the task’s ‘Edit’ button in the ‘Schedule’
table. This opens the Editor as described above.

END USER

245 of 2477

4.4.4 Schedule Conditions

A schedule condition is used to determine when the schedule task executes.
There are six types of conditions: Daily, Weekly, Monthly, Run Once,
Chained, and User Defined.

• Daily: This task will execute every N days (1 day, 5 days, etc.) at the
specified time. The time is specified in HH:mm [am|pm]. e.g 11:39 pm.
You can also select the weekday option which will execute the task at
the specified time on weekdays only.

• Weekly: This task will execute every N weeks (1 week, 4 weeks, etc.) at
the specified time and days of the week.

• Monthly: This task will execute every Nth day of the specified months
(e.g., April 15) or every Nth day-of-the-week of the specified month
(e.g., 1st Sunday of May).

• Run Once: This task will execute once on a certain day at a specified
time. (e.g Nov 25, 2006 at 11:30 am).

• Chained Condition: A chained condition is based on the completion
status of another schedule task or a schedule cycle. The condition
evaluates to ‘true’ only when the specified task or the cycle completes
successfully.

• User Defined Condition: ‘User Defined’ conditions can be created by a
developer within your organization to fill a custom requirement, and
provided in this dropdown list.

• Multiple Conditions: It is possible to specify multiple conditions. Click
on the ‘Multiple Schedules’ button at the bottom right of the editing

END USER

246 of 2477

panel. This will display the schedule condition list to which you can add,
delete or edit conditions by clicking on the ‘Add’, ‘Delete’ and ‘Edit’
buttons respectively.

4.4.5 Scheduler Actions

This action specifies the operations to be performed when the schedule task
runs. There are three types of actions: ‘Report’, ‘Viewsheet’, ‘Burst’, and
‘User Defined’.

Report Action

A report action executes a report and delivers or saves it. The options for
report action are shown below.

Table 3. Delivery Options

OPTION DESCRIPTION

Save in
Archive

Save the generated report in the report archive. A report archive
must be properly configured, and you must have proper
permissions to save the report in the selected folder.

Print on Server Print to a server printer.

END USER

247 of 2477

Email and Save to Disk Parameters

The ‘Deliver to Emails’ subject line uses the java.text.MessageFormat
syntax with two properties, the first (index 0) being the report alias, and the
second (index 1) being the date and time of report generation. For example,
a report with alias ‘testReport’ and ‘Subject’ specification

Report named {0}, generated at {1,time} on {1,date}

would produce an email subject line such as the following:

Report named testReport, generated at 10:34:54 AM on Nov 5,
2007

where the time and date shown would be the actual time and date of the
report’s generation. See below for some examples of date formatting using
the java.text.SimpleDateFormat. The report alias is set by an administrator,
and may often be the same as the report name.

The filename for the ‘Save to Disk’ action, and the attachment for the
‘Deliver to Emails’ action can include the same parameters as the email
subject line. However, because of filename restrictions, you cannot use the

Deliver to
Emails

Send a report to other users via email. To embed the report
within the email as HTML, select the ‘HTML Email’ option.
(Note that the appearance of the delivered report may not be
fully preserved if the recipient’s email client is not standards
compliant). To send the report as an attachment, select one of
the other formats (PDF, Excel, etc.). If the attached file is too
large, it will be split into multiple emails. The email subject
line can include parameters for automatic insertion of report
alias and time/date of report generation. See the Email and
Save to Disk Parameters section below for examples. The
‘Bundled as zip’ option allows you to zip the attachment and
optionally specify a password to encode the archive with
WinZip 256-bit AES encryption.

Save to Disk Save the report on the local file system in any of the
following formats: PDF, HTML, Excel, RTF, SVG, CSV,
Text, XML. The ‘Path’ field should specify a valid absolute
path, including filename. (The filename extension is added
automatically.) The filename can include parameters for
automatic insertion of report name and time/date of report
generation. See the Email and Save to Disk Parameters
section below for examples.

Notify when
Completed

Send users an email notification about the task completion
status. Optionally you can check ‘Notify only if failed’.

OPTION DESCRIPTION

END USER

248 of 2477

“{1,time}” syntax. Some examples of automatically generated filenames
are shown below.

Viewsheet Action

The ‘Viewsheet’ action allows you to schedule the execution of a
Viewsheet (dashboard), and email a notification or an exported copy of the
dashboard to specified users. See Report Action above for more details
about these actions.

Burst Action

The ‘Burst Action’ delivers multiple versions of the target report, tailoring
each version to the particular recipient. To do this, the report must first be
configured for bursting. See Report Bursting in the Report Design for more
details.

User Defined Action

‘User Defined’ actions can be created by a developer within your
organization to fill a custom requirement, and provided in this dropdown
list.

Specifying Multiple Actions

It is possible to specify multiple actions. Click on the ‘Multiple Actions’
button at the bottom right of the editing panel. This will display the
schedule action list to which you can add, delete or edit actions by clicking
on the ‘Add’, ‘Delete’ and ‘Edit’ buttons respectively.

Once the scheduler action is specified, select the Options tab at the bottom
of the editing panel to specify the different options available when
executing the scheduler task.

4.4.6 Schedule Options

There are several options available when modifying a schedule task.

• Enabled: A task can be temporarily enabled or disabled by selecting or
deselecting this option.

• Delete if not scheduled to run again: If a task is scheduled to run once,
this option will delete it from the system once it runs.

SPECIFIED FILENAME GENERATED FILENAME

myRep_{1,date}.pdf myRep_Nov 14, 2007.pdf
{0}_{1,date}.pdf “report alias”_Nov 14, 2007.pdf
myRep_{1,date,MMM-dd}.pdf myRep_Nov-14.pdf
myRep_{1,date,EEE-h-mm a}.pdf myRep_Wed-11-49 AM.pdf

myRep_{1,date,yy-MM-dd-HH-z}.pdf myRep_07-11-14-11-EST.pdf

END USER

249 of 2477

• Start From and Stop On: A task will only execute within the specified
date range.

• Execute As: A task can be executed as a user, in which case user
permissions will influence the execution of the task; e.g., if VPMs (data
level security) are set up different users will see different data. All the
existing users who have permission to use the scheduler will be included
in the drop down list.

• Locale: Different locales can be specified for individual tasks by using
this option. This allows you to set the language and formats to use.

4.4.7 Schedule Management

You can view and monitor all of your scheduled tasks can from the
Schedule tab. This tab provides a list of the schedule tasks, in which you
can view the start time, end time, the status of the last run, and the start time
for the next run.

• Press the ‘Edit’ button to modify the task specifications. See Schedule
Conditions, Scheduler Actions, and Schedule Options for more
information.

• Press the ‘Run Now’ button to execute the task immediately.

• Press the ‘Stop Now’ button to stop the task immediately.

• Press the ‘Delete’ button to delete this task.

To temporarily disable a task, deselect the ‘Enabled’ checkbox on the
Options tab. See Schedule Options for more information.

END USER

250 of 2477

APPENDIX A: Using Dashboards on a Mobile
Device

You can access dashboards on a mobile device (iPad, Android, etc.) in the
same way that you access dashboards on a personal computer. To open the
User Portal, simply point your browser to the URL that your administrator
has provided. For example:

http://hostname:8080/sree/Reports

In most cases, the appearance and operation of the dashboard is the same as
on a personal computer. However, on Apple devices (iPad, iPhone) the
dashboard interface is slightly modified to take advantage of the iOS
platform.

On an Apple device, component toolbars are displayed as a floating
toolbars. Simply tap on the desired dashboard component to expand the
component’s toolbar. For example, the illustration below shows the Chart
menu as it appears on a PC and an iPad.

To activate tooltips for a Chart, press the ‘Tooltip’ toolbar button. To
activate multiple-selection (similar to Ctrl-click on a PC), press the
‘Multiselect’ toolbar button. To activate a hyperlink, press and hold the
hyperlinked region.

END USER

251 of 2477

To activate multiple-
selection (similar to
Ctrl-click on a PC),
press the ‘Multise-
lect’ toolbar button.

The illustration below shows the difference between the Selection List
menu on a PC and an iPad.

Aside from the different appearance of the component toolbars, dashboards
on Apple mobile devices have certain limitations as far as component
behavior. The following list explains the major differences:

• The Visual Composer is not available for creating dashboards.

• The Chart Editor is not available for making modifications to a Chart
binding.

• The Chart ‘Format’ and ‘Properties’ dialog boxes are not available.

• The Chart right-click menu options (‘Hide Legend’, etc.) are not
available.

• The Crosstab Editor is not available for making modifications to a
Crosstab binding.

END USER

252 of 2477

APPENDIX B: Navigating a Dashboard With
the Keyboard

There are several different techniques by which you can navigate a
dashboard using the keyboard (or equivalent voice commands). The table
below lists these essential techniques.

OPERATION TECHNIQUE

Move focus from one component to another Press ‘Tab’ or ‘Shift-Tab’

Move focus within a component (e.g., from
Range Slider handle to Range Slider body)

Press ‘Up-arrow’ or ‘Down-
arrow’

Adjust a component setting (e.g., adjust
Range Slider range)

Press ‘Left-arrow’ or ‘Right-
arrow’

Make a selection (e.g., choose an item in a
Selection List)

Press ‘Space bar’

Move focus within component toolbar Press ‘Left-arrow’ or ‘Right-
arrow’

Move focus from component body to
component toolbar

Press ‘Up-arrow’ (repeatedly, if
necessary)

Move focus from component toolbar to
component body

Press ‘Down-arrow’

DATA MODELING

253 of 2477

Data Modeling

Style Studio contains data modeling tools that enable you to rapidly
connect to data sources, graphically construct queries and data models, and
implement dynamic security and filtering. With Style Studio, you do not
need to be a business intelligence specialist to become an efficient data
modeler.

DATA MODELING

254 of 2477

1 Contents

This guide covers all the data modeling features in Style Studio, and shows
you how to build a meta-data layer for relational databases,
multidimensional databases, and other data sources.

• Introduction – Data Block Architecture

Explains the relationship between queries, models, and Data

Block™ technology.

• Data Modeling Features

Provides an overview of data modeling features offered by the Style
Studio interface.

• Relational Databases

Discusses relational architectures such as ‘3rd normal form’ and
‘star schema’, and presents considerations unique to each,
including potential query traps that should be carefully avoided.

• Multidimensional Databases

Discusses the setup of hierarchical information in multidimensional
databases that use MDX via XMLA.

• Non-Relational Data Sources

Explains how data sources that are not database-driven can also be
combined into the Style Intelligence data layer. Typically, these data
sources return tabular data in the form of query, which can then be
mixed with database output for additional flexibility.

DATA MODELING

255 of 2477

2 Introduction – Data Block Architecture

The data modeling features in Style Studio allow you to connect to various
data sources, and create queries, data models, and virtual private models
(VPMs). These assets can be used directly to supply data to reports and
dashboards. They also lay the foundation for Data Block™ technology,
which allows you to create sophisticated data mash-ups from
heterogeneous data sources. (For more information on Data Worksheets,
please see the Data Mashup.)

Style Studio’s data modeling features give you ready access to data stored
in relational databases, objects, and flat files. Databases include data
warehouses, data marts, mainframes, operational data stores (ODS), multi-
dimensional databases (OLAP), and transactional databases (OLTP).
Objects include web services, XML, and plain old java objects (POJO).
Flat files include spreadsheets, CSV, and text.

Data Block architecture distinguishes the Style Intelligence approach to
meta-data modeling from that of other business intelligence platforms.
Instead of focusing on narrow pre-purposed business intelligence tasks,
Style Intelligence lets you concentrate on designing Data Blocks that
represent data in a way that business users understand. You can then
assemble these Data Blocks in different combinations to address whatever
business needs arise, now or in the future.

DATA MODELING

256 of 2477

3 Data Modeling Features

This chapter provides an overview of the data modeling features offered by
Style Studio.

3.1 Accessing a Data Source, Query, Model, VPM
To access an existing data source, query, model, or VPM, follow the steps
below:

1. From the Style Studio Window menu, select ‘Asset Tree’. This
opens the Asset panel.

2. In the Asset panel, expand the ‘Data Source’ node and open the
desired asset for editing. Follow the steps below:

a. To open a data source for editing, double-click the desired data
source node, or right-click and select ‘Open’ from the context
menu.

b. To open a query for editing, first expand the parent data source.
Then double-click the desired query node, or right-click and
select ‘Open’ from the context menu.

c. To open a data model for editing, first expand the parent data
source and expand the ‘Data Model’ node. Then double-click
the desired physical view or logical model node, or right-click
and select ‘Open’ from the context menu.

d. To open a VPM for editing, first expand the parent data source.
Then double-click the desired VPM node, or right-click and
select ‘Open’ from the context menu.

To create a new data source, query, model, or VPM, follow the steps below:

DATA MODELING

257 of 2477

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. Expand the ‘Data Source’ node, and select the component you
wish to create.

3. Make any required selections in the right ‘Type’ panel, and click
‘OK’.

Alternatively, you can right-click a node on the Asset tree, and select ‘New
Data Source’, ‘New Query’, ‘New Folder’, etc.

See the related links for further information about creating different assets.

See Also
Creating a New JDBC Data Source, for information on connecting to a
database.
Independent Query, for information on creating a query with the Query
Wizard.
Semantic Layer – Data Model, for information on creating a data model.
Virtual Private Model – Security, for information on creating a data-level
filter.

3.2 Configuring Data Source and Query Registries
Style Studio uses two XML repository files to store the data source/model
and query definitions (datasource.xml and query.xml, respectively). The
first time you launch Style Studio, a dialog box prompts you to specify the
locations of these files. You can change the repository directory location at
a later time by selecting the File > Configure option from the Style Studio
menu bar. See Configuring Style Studio in Getting Started for more
information.

3.3 The Data Modeling Toolbar
The data modeling options on the toolbar may change slightly depending
on the data source type.

DATA MODELING

258 of 2477

Table 1. Data Modeling Toolbar Buttons

3.4 Data Source/Query Tree
The ‘Data Source’ node in the Asset panel lists the available data sources,
together with their associated queries, models, and VPMs.

A data source provides connection information for a database. The
information needed varies depending on the type of the database (e.g., a
relational database requires a driver and URL). For more complex data
sources, the data source objects also contain the meta-data information.
The following types of datasources are supported.

Save the selected data source or query.

Specify options for the selected query. (Max Rows, Timeout)

Preview the selected query.

Test the connection to the selected data source.

Edit the parameter definitions for the selected query.

Add a new physical view.

Add a new logical view.

Add a new Virtual Private Model.

Refresh Style Studio with the current structure and meta-data of
all the data sources.
Populate the result column list for a stored procedure.

Set Request Parameters for a query (SOAP, XML).

Relational Databases (JDBC: Oracle, DB2, MySql, SQL Server, Sybase,
Access, etc.)
XML Data Source

DATA MODELING

259 of 2477

Relational (JDBC) data sources may also have associated data models
(discussed in the following sections). A data source can have multiple data
models, but each data model can only use one data source. Likewise, each
query is associated with one data source.

3.4.1 Grouping Queries Using Folders

You can organize queries for a given data source into folders. To create a
new folder, follow these steps:

1. Right-click on the data source in the Asset panel, and select ‘New
Folder’ from the context menu.

2. When prompted, enter a name for the new folder, and click ‘OK’.

3. Drag the desired queries into the new folder.

3.4.2 Grouping Data Sources Using Folders

You can organize data sources into folders. This allows you to assign
permissions to data sources on a folder-by-folder basis. (See Component/
Object Permissions in Administration Reference for details on assigning
permissions.)

To create a new data source folder, follow these steps:

Multidimensional Databases (XMLA)

Text Data Source (CSV, Tab-delimited)

Web Service Data Source (SOAP)

Java Object Data Source

SAP Data Source

DATA MODELING

260 of 2477

1. Right-click on the ‘Data Source’ node in the Asset tree or right-
click on an existing data source folder, and select ‘New Folder’
from the context menu.

2. When prompted, enter a name for the new folder, and press ‘OK’.

This creates a new folder on the tree under the ‘Data Source’ node.

3. Drag the desired data sources from the tree into the new folder.

Data sources within a given folder must have unique names.

To delete a data source folder, right-click on the folder and select ‘Delete’
from the context menu. This deletes the folder as well as all of the data
sources contained within the folder.

See Also
Adding Additional Connections, for information about making multiple
data source connections for a multi-tenant environment.

3.4.3 Deploying a Data Source, Query, or Data Model

You can easily deploy a data source, query, or data model to a repository
other than the working repository (i.e., a remote repository) or to a JAR file
for later use. See Deploying a Report, Data Source, or Other Asset in
Getting Started.

DATA MODELING

261 of 2477

3.5 Advanced Toolbar Buttons
When you open a query for editing, the toolbar provides several query-
specific buttons.

3.5.1 Query Properties

The ‘Query Properties’ button opens the ‘Query Properties’ dialog box.
This allows you to place limits on queries that return a large result set by
constraining the maximum number of returned rows and maximum
execution time.

The following options are available:

• Maximum Number of Rows: The maximum number of records that
the query should be permitted to request.

• Query Timeout: The maximum length of time for which the query
should be permitted to execute. (After this period elapses, attempts will
be made to terminate the query.)

• Show Query in Ad Hoc: Specifies that the query will be available to
reports designed using the end-user Ad Hoc tool.

• Inherit VPM from: Specifies an existing physical view whose VPM
filter will be applied to the query.

3.5.2 Query Parameters

The ‘Parameters’ button opens the ‘Query Variable Definition’ dialog box.
This allows you to edit query parameters that have been used in the query
condition. (See Creating a New Query for information on parameterizing a
query.)

There are two options: ‘User variable’ and ‘Query variable’. The following
sections explain how to use these parameter types.

DATA MODELING

262 of 2477

Acquiring a Query Parameter from User Input

By default, when you add a parameter in a query condition, the user is
prompted to enter the value at runtime. (To use another field of the query to
provide an aggregate value for the right side of the condition, see Acquiring
a Query Parameter from a Query Field.)

To customize user prompting when setting the parameter value by user
input, follow the steps below:

1. Open the desired query for editing. (Double-click the query in the
Asset panel.)

2. Click the ‘Parameters’ button in the toolbar. This opens the ‘Query
Variable Definition’ dialog box. The ‘Variable List’ panel at the top
displays any query parameters that have been specified in the query
condition.

3. Select the desired variable in the ‘Variable List’ panel.

4. Click the ‘User Variable’ button (if not already selected).

5. Click ‘Set Selection List’ to open the ‘Selection List’ dialog box.
(The button’s label is displayed in green if the selected parameter
already has a list associated.)

6. To enter a fixed set of labels/values for the parameter, follow the
steps below:

a. Click the List tab.

b. Click ‘Add’ to add a new label/value pair.

DATA MODELING

263 of 2477

c. Enter the desired ‘Label’ and ‘Value’. (The ‘Label’ text is
displayed to the user in the interface element; the corresponding
‘Value’ is assigned to the parameter.)

7. To acquire parameter labels/values from a different query at
runtime, follow these steps:

Note: The query is used to prompt the user for input. If you want a
query to automatically set the parameter value (without user input)
see Acquiring a Query Parameter from a Query Field.

a. Click the Query tab.

b. Select the query that contains the label/value pairs.

The data in the first column of the query are used as the
parameter values; the data in the second column of the query are
used as the labels. (Query conditions can reference other
parameters if those parameters possess default values.)

DATA MODELING

264 of 2477

8. (Optional) Select ‘Allow multiple selections’ to permit the user to
select multiple values for the parameter.

To remove values
associated with a
parameter, click the
‘Clear’ button in the
‘Selection List’ dia-
log box.

9. Click ‘OK’ to close the ‘Selection List’ dialog box.

10. Make the following optional selections in the ‘Query Variable
Definition’ dialog box, if desired:

a. Select ‘As customization parameter’ to expose the parameter as
a customization parameter. Customization parameters are
displayed when the user clicks the ‘Customize’ button on the
report toolbar. (See Report Toolbar in End User.)

b. Select ‘Prompt User’ if the user should be automatically
prompted to enter a value for this parameter. (Disable this option
for parameters set by script and drill-down reports.)

c. Select ‘Sort Values’ if you want the list to be sorted
alphabetically.

d. Enter text in the ‘Tooltip’ field to display when the user hovers
the mouse over the corresponding parameter control on the
input form.

11. Click ‘OK’ to close the ‘Query Variable Definition’ dialog box.

Acquiring a Query Parameter from a Query Field

Instead of acquiring a query parameter value from the user, you can
provide the value by aggregating a field of another query. To do this, follow
the steps below:

1. Open the desired query for editing. (Double-click the query in the
Asset panel.)

2. Click the ‘Parameters’ button in the toolbar. This opens the ‘Query
Variable Definition’ dialog box. The ‘Variable List’ panel at the top
displays any query parameters that have been specified in the query
condition.

3. Select the desired variable in the ‘Variable List’ panel.

4. Click the ‘Query Variable’ button (if not already selected).

DATA MODELING

265 of 2477

5. In the ‘Query’ panel, select a query from the top menu. This
displays a list of query fields in the panel below.

6. Select the desired query field, and click ‘Select Record’. This
places a marker (diamond) next to the selected field.

7. From the ‘Aggregation’ menu, choose a summarization method. If
you select ‘None’, the first value from the query result set will be
used.

8. (Optional) To filter the selected query, click on the query name, and
then click the ‘Edit’ button below the ‘Condition’ panel. This opens
the ‘Conditions’ dialog box, where you can specify a filtering
condition.

DATA MODELING

266 of 2477

3.6 Auto Back-Up and Recovery
When you save, delete, or rename an asset, a backup of the previous
version of the datasource.xml or query.xml file will be stored in the
repository. The old version will be stored as

backup/datasource_{timestampmillisec}.bak

or

backup/query_{timestampmillisec}.bak

By default, a maximum of 10 backups are stored, but this can be changed
by setting datamodel.backfile.count in the .stylereport properties file to
the desired integer (use 0 to disable the backup mechanism).

DATA MODELING

267 of 2477

4 Relational Databases

You can access a relational database both through data models and queries.
Data models and queries can also be combined with one another using the
Data BlockTM architecture provided by Data Worksheets (see Data
Mashup).

• Data models offer maximum flexibility for developer and end-user self-
service, and are recommended in most situations. See Semantic Layer –
Data Model for more information.

• Queries give you precise control over requests sent to the database, and
can be used to provide a fixed result set to developers or end users See
Independent Query for more information.

4.1 Data Source Configuration
The examples in this
Guide use the sample
‘Orders’ JDBC data-
base.

Before you can build data models or queries, you need to configure a data
source. A data source contains the connection information that allows Style
Studio can connect to a database. Style Studio supports all relational
databases with available JDBC drivers 3.0 and above. This includes all
major commercial and open source databases such as Oracle, SQL Server,
DB2, Sybase, Informix, MySQL, PostgreSQL, MS Access, and more.

4.1.1 Creating a New JDBC Data Source

A data source defines the connection and login information for a database.
To create a new data source, follow the steps below.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel of the ‘New Asset’ dialog box, click the ‘Data
Source’ node on the tree.

3. In the right panel, select ‘JDBC’, and click ‘OK’.

DATA MODELING

268 of 2477

This opens the ‘JDBC Data Source Wizard’.

4. On the General tab, enter a name for the new data source. Click
‘Next’ to proceed.

Database vendors provide their own JDBC drivers. Make sure that the
appropriate JAR files are on the CLASSPATH. See Configuring Data
Source and Query Registries in Report Design for more information.
Style Studio will save the settings that you enter regardless of
whether it locates the JDBC driver.

5. On the Driver tab, select the appropriate database name from the
‘JDBC Type’ menu. This automatically populates the ‘JDBC
Driver’ field. Click ‘OK’ to proceed.

DATA MODELING

269 of 2477

6. On the URL tab, enter the required connection information:

a. The ‘JDBC URL’, ‘User’, and ‘Password’ information should
be provided by your database administrator, if needed.

b. (Optional) Select ‘Requires Login’ to specify that a user ID and
password are required to connect to the database. For most
databases, this option should be enabled.

c. (Optional) Select ‘ANSI Join Syntax’ to specify that queries
should use the ANSI standard.

d. (Optional) In the ‘Default DB’ field, enter the default schema
name with which the login and password are associated.

7. Click ‘Test’ to verify that Style Studio can successfully connect to
the database.

DATA MODELING

270 of 2477

8. If the test was successful, click ‘Finish’. This displays the
datasource definition page.

9. The ‘Transaction Isolation’ option sets the database transaction
isolation level. For information about the ‘Additional Connections’
panel, see Adding Additional Connections.

10. The ‘Table Name’ option allows you to select how table names are
represented in the SQL that is sent to the database.

For example, if you select the ‘Schema.Table’ option, the SQL
string will refer to tables by both the schema name and the table
name. For a schema called “ORDERS”, table names would
therefore appear in SQL as ORDERS.CATEGORIES, ORDERS.PRODUCTS,
and so on. If you instead select the ‘Table’ option, the SQL string
will refer to tables by just the table name, e.g., CATEGORIES,
PRODUCTS, and so on.

11. Click the ‘Save’ button in the Style Studio toolbar to save the new
data source to the datasource.xml file.

The new data source is now listed under the ‘Data Source’ node of the
Asset panel.

Limitations of Hadoop Hive Data Sources

The following limitations exist when using the Hadoop Hive JDBC-type
data source:

• Data models are not supported for Hadoop Hive data sources.

DATA MODELING

271 of 2477

• Tables and columns in a Hadoop Hive database cannot be directly
bound to tables and columns in reports or Data Worksheets. (You must
create queries to retrieve the data.)

• Conditions in reports, Data Worksheets, and Viewsheets cannot be
pushed to the Hadoop Hive database, and must therefore always be
post-processed.

• The ‘Browse Data’ option is not available when designing conditions
for a Hadoop Hive data source query.

Other Data Source Issues

In certain cases, divergence between the time zone for a MySQL database
server and the Style Intelligence server may create a time-shift in the data
retrieved. To correct this, explicitly specify the time zones for the Style
Intelligence server and MySQL server using the local.timezone and
mysql.server.timezone properties, respectively. See Miscellaneous
Properties in Administration Reference for details.

4.1.2 Parameterizing the Data Source

You can make the data source URL dynamic (in whole or part) by using
parameters. To place a parameter in the URL, insert “$(parameter name)”
at the desired location in the ‘JDBC URL’ string.

At runtime, Style Intelligence will attempt to acquire the value of this
parameter by testing the following sequence of available sources:

• Test for parameter stored as JVM system variable.

• Test for parameter stored as report parameter in the sree.properties file.

• Test for parameter passed within URL string.

If Style Intelligence cannot locate the parameter value in the above
locations, it will by default prompt the user for the value.

4.1.3 Assigning User-Specific Data Source Login
Credentials

You can allow different users to connect to the data source with user-
specific login credentials. To configure user-specific login credentials,
follow the steps below:

1. If a static username and password has been set for the data source,
remove the static username and password.

DATA MODELING

272 of 2477

2. Configure an SSO request filter to inject the following properties
into the user Principal object:

a. Username Parameter Name: _Db_User_{Datasource Name}

b. Password Parameter Name: _Db_Password_{Datasource Name}

See Session-Based Single Sign-On in Integration for information
on how to create a request filter.

All queries executed by a user on the data source will then utilize the
assigned user-specific login credentials.

For example, the following request filter code assigns the login credentials
for a particular user on a JDBC data source named ‘Orders’:

String username = lookupDatabaseUser(principal);
String password = lookupDatabasePassword(principal);
principal.setParameter("_Db_User_Orders", username);
principal.setParameter("_Db_Password_Orders", password);

In this example, you would need to create the lookupDatabaseUser() and
lookupDatabasePassword() methods as part of the SSO Filter.

4.1.4 Adding Additional Connections

A single data source can support connections to multiple databases. This is
useful in a multi-tenant environment, as it enables you to assign different
connections to different users.

To add a new connection, follow the steps below:

1. From the ‘Data Source’ node of the Asset panel, open (double-
click) the data source for which you want to create additional
connections.

2. In the ‘Additional Connections’ panel of the data source definition
page, click ‘New’. This will start the ‘New Data Source’ wizard.

DATA MODELING

273 of 2477

3. Follow the steps of the ‘New Data Source’ wizard (see Creating a
New JDBC Data Source for details), and click ‘Finish’. This adds
the new connection to the connection list.

To reopen the ‘New Data Source’ wizard for a connection, select the
connection in the list, and click ‘Edit’. To change the connection name or
description, click the ‘Rename’ and ‘Description’ buttons, respectively.
Click ‘Delete’ to remove the connection.

See Also
Design for Multi-Tenant Environment, for more about multi-tenant
considerations.
Creating a New JDBC Data Source, for information on creating the default
connection.
Extending a Physical View, to create a physical view based on a new
connection.

4.2 Semantic Layer – Data Model
Relational database schemas are often designed using normalized forms
that are efficient for data storage. Normalization reduces redundancy and
helps maintain data integrity. However, normalized designs also make it
difficult for non-experts to understand the structure of the database, and

DATA MODELING

274 of 2477

require complex queries to retrieve meaningful data. This creates a barrier
between business users and the data that they require to make decisions.

To remove this restriction and facilitate greater access to data, Style
intelligence provides a data representation called a data model. The data
model allows you to expose business data to report designers and end users
in a way that is easy for them to understand and use. You can create data
models for any type of database.

Data models are not available for the ‘Hadoop Hive’ JDBC type.

A data model comprises a physical view, logical model, and optional
hierarchical overlay. These components are described below:

• Physical View: A physical view specifies a subset of database tables
and the join relationships between them, covering all or part of the
database schema. The physical view transforms the original database
schema into a business intelligence-friendly schema, which can then be
exposed to designers and end users through one or more logical models.
See Physical View for information on constructing a physical view.

• Logical Model: A logical model is based on a single physical view, and
presents a business-oriented, easy-to-understand representation of the
physical view by mapping database tables into entities and columns into
attributes. The logical model denormalizes the data (adds additional
redundancy) in order to maximize simplicity for data analysts and end
users. See Logical Model for information on constructing a logical
model.

• Hierarchical Overlay: A hierarchical model (OLAP overlay) is a
mapping that allows OLAP operations to be used on non-OLAP
databases. See OLAP Overlay – Multidimensional Analysis for
information on constructing a hierarchical model.

4.3 Physical View
The basis of a data model is the physical view, which specifies a set of
database tables and the joins that relate them. The physical view does not
represent a particular query that retrieves specific fields, but rather outlines
the full join structure that will enable arbitrary queries to be generated on an
ad hoc basis. When an end-user or report developer accesses a set of
attributes in a data model, the joins that you have pre-specified in the
physical view will permit the necessary query to be constructed
automatically.

DATA MODELING

275 of 2477

A physical view is not directly accessed by report designers or end users.
Designers and users have access only to the logical models defined from
the physical view. The goal in creating a physical view is therefore to
transform the generic database schema into a business-friendly schema, a
set of tables and joins to provide the information desired by report
designers and end users.

If you make a change to the structure of the database schema, press
the ‘Refresh Metadata’ button on the toolbar to update the physical
view.

Physical views are independent of one another; that is, relationships in one
physical view do not impact relationships defined in a different physical
view. You can create multiple physical views from a given data source, and
it is common practice to model a single schema with multiple overlapping
physical views. However, a given data model relies on just a single
physical view.

4.3.1 Creating a Physical View

To create a new physical view, follow the steps below:

1. Defining a New Physical View

2. Adding Database Tables to the Physical View

3. Adding an Embedded SQL View

4. Defining Join Relationships

5. Resolving Loop Traps

The following sections explain these steps in greater detail.

Defining a New Physical View

To define a new physical view, follow the steps below:

DATA MODELING

276 of 2477

1. Click the ‘Asset’ button to expand the Asset panel.

2. Expand the ‘Data Source’ node, and then expand the relational
database data source for which you want to create the data model.

3. Right click the ‘Data Model’ node, and select ‘Add Physical View’
from the context menu. This open the ‘Physical View Wizard’
dialog box.

4. In the ‘Physical View Wizard’ dialog box, enter a name and
description for the new view.

5. Click ‘Finish’ to close the dialog box.

The name of new physical view is added to the items beneath the ‘Data
Model’ node in the tree, and the new physical view is opened for editing.

DATA MODELING

277 of 2477

Adding Database Tables to the Physical View

The ‘Database’ panel displays available database tables and views. To add
a table to the physical view, simply drag the table from the ‘Database’
panel into the diagram pane (on right).

To filter the list of tables, click the ‘Filter Tables’ button at the top of the
‘Database’ panel. For large databases, this provides a convenient way to
quickly find the desired table or view.

DATA MODELING

278 of 2477

Select ‘Owned by user’ to display only those tables that belong to the
user’s schema. Select ‘Tables in view’ or ‘Tables not in view’ to list tables
that are, or are not, respectively, visible in the diagram pane. Use the ‘Type’
menu to restrict the list to either ‘Tables’ or ‘Views’.

To list only tables that match a specified pattern, select one of ‘Search’
options: ‘Basic’ allows you to use ‘*’ as a wildcard, while ‘Regular
Expression’ allows Perl 5 regex syntax.

Adding an Embedded SQL View

If you want to add custom business rules in your model without creating a
new view in your database schema, you can create an inline embedded SQL
view. This allows you to create a virtual “table” by embedding a SQL
directly into the physical view.

Note: An embedded view may result in a different execution plan
than a database view. You should test both options against your
database.

To create an embedded view, follow the steps below.

1. Click the ‘New View’ button.

2. Enter the view name in the ‘Name’ field, and type in the SQL
query string into the ‘SQL’ field.

3. Press ‘OK’. This adds the embedded view as a new table in the
diagram panel.

DATA MODELING

279 of 2477

4. Join this table to other tables/views in the physical view as
required.

See Also
Defining Expression Attributes, for information on creating formula
columns.

Defining Join Relationships

You can create join relationships between tables automatically, or by
manually joining particular table columns.

To automatically join tables, follow the steps below:

1. Click the ‘Auto Join’ button in the toolbar. This opens the
‘Generate Joins’ dialog box.

2. Select ‘By Key Relation’ to join columns by using primary key/
foreign key definitions, or ‘By Column Name’ to join columns by
using common column names.

3. Select the desired columns in the ‘Available Columns’ panel.

4. Click the right-arrow button to add the selected columns to the
‘Key Columns’ panel.

5. Click ‘Finish’ to automatically add the requested joins to the
physical view.

DATA MODELING

280 of 2477

To manually define a join between two tables, click a column name in the
first table, and drag and drop the column name onto the corresponding
column in the second table.

See Also
Defining the Join Type, for information on modifying a join.

Defining the Join Type

The default join type is an inner join. To change the join type, follow the
steps below:

1. Click on the desired join link to select the join.

2. Right-click on the join line, and select ‘Properties’ from the context
menu. This opens the ‘Join Properties’ dialog box.

3. Select the desired join type under the ‘Join Type’ tab.

Changing the Join Priority

In many cases, the position of a join within a SQL query can greatly affect
query performance. To determine the positioning of a particular join within

DATA MODELING

281 of 2477

the SQL query generated by the physical view, you can specify a priority
for the join.

Priority increases with value: 1=lowest, 10=highest. A join with
priority 10 is placed before a join with priority 1.

To specify the priority of a join, follow these steps:

1. Click on the desired join line to select the join.

2. Right-click the join, and select ‘Properties’ from the context menu.
This opens the ‘Join Properties’ dialog box.

3. In the ‘Join Properties’ dialog box, click the Options tab.

4. From the ‘Order Priority’ menu, select the desired priority for the
join.

Changing the Join Operator

The default logical operator for joins is ‘AND’. However, there may be
some instances where an ‘OR’ operator is appropriate. As an example,
consider the following hypothetical case of a Sales schema where an order
can be placed by a domestic customer or a foreign customer. The schema
contains three tables:

• Orders

• Domestic Customers

• Foreign Customers

DATA MODELING

282 of 2477

The CUSTOMER_ID field in the ‘Orders’ table can reference the CUSTOMER_ID
field in either the ‘Domestic Customers’ or the ‘Foreign Customers’ table.
In this case you need to a logical OR between the “Order -> Domestic
Customers” join and the “Order -> Foreign Customers” join because they
are mutually exclusive.

To specify the logical operator for a join, follow these steps:

1. Click on the desired join line to select the join.

2. Right-click the join, and select ‘Properties’ from the context menu.
This opens the ‘Join Properties’ dialog box.

3. In the ‘Join Properties’ dialog box, click the Options tab.

4. Select the desired logical operator in the ‘Merging Rule’ section,
and click ‘OK’.

DATA MODELING

283 of 2477

The ‘Merging Rule’ determines how the join is integrated together
with other joins between the same tables. The ‘And’ option
indicates that the join is applied conjunctively (i.e., the join
condition must be satisfied even if another join condition is already
satisfied); the ‘Or’ option indicates that the join is applied
‘disjunctively’ (i.e., the join condition need not be satisfied if
another join condition is already satisfied).

Overriding Automatic Cardinality Detection

As discussed in Identifying Query Traps, Style Studio automatically detects
query traps known as the chasm trap and the fan trap by analyzing the
cardinality and connectivity of relationships between tables. As a result,
Style Studio is able to generate an appropriate warning message when a
report developer or end user constructs a data model binding that creates a
query trap. Because Style Studio generates these warnings automatically,
you do not need to manually analyze your model for query traps in general.

The automatically-detected cardinality for a join is indicated by a fan icon
on the join link. However, if you need to override the automatic cardinality
detection, you can do this by manually specifying the relationship between
tables associated by a join.

To manually specify the cardinality relationship for a join, follow the steps
below:

1. Click on the desired join line to select the join.

2. Right-click the join, and select ‘Properties’ from the context menu.
This opens the ‘Join Properties’ dialog box.

3. In the ‘Join Properties’ dialog box, click the Options tab.

4. Select the desired cardinality relationship in the ‘Cardinality’
section, and click ‘OK’.

DATA MODELING

284 of 2477

The ‘fan’ icons on the ends of the join links will update to reflect the
cardinality relationship that you have specified.

Resolving Loop Traps

Style Studio alerts you to loop traps by highlighting the implicated joins in
bright red. There are various approaches to resolving loop traps, described
below.

• Weak join designates a relationship to be used only when no other join
route is available. Right-click on a relation line and select ‘Weak Join’
from the menu to mark a join as such. Weak joins appear as dotted lines.

An aliased table is indicated by a colored header. To display the
name of the table that was originally aliased, hover the mouse over
the alias table header.

• Manually aliasing a table is another tool in resolving traps. Select a table
and right-click to select the ‘Create Alias’ option. Once the alias is
created, it can be used as a totally independent copy of the original table.

• Auto aliasing provides a new level of flexibility. Creating alias tables
manually is very simple and straightforward when the aliased table
stands alone. However if a table has outgoing relationship links, aliasing
the table may mandate further aliasing of other tables. The auto-aliasing
feature significantly simplifies this process.

Example:
Aliasing a Table

Consider a simple example in which a table called ‘PRODUCTS’ needs to
be aliased in order to resolve a cycle. Follow the steps below:

1. Create a new physical view, as shown below.

DATA MODELING

285 of 2477

The joins highlighted in red indicate the presence of a cycle. You
can resolve the cycle by auto-aliasing the ‘PRODUCTS’ table, as
the following steps illustrate.

2. Right-click on the title of the ‘PRODUCTS’ table and select ‘Auto-
alias’ from the context menu. This opens the ‘Auto-alias’ dialog
box.

3. In the ‘Auto-alias’ dialog box, check the ‘Enable Auto Aliasing’
box. The dialog box lists all of the joins from the adjacent tables in
the diagram.

4. In the ‘Incoming Joins’ panel, select the boxes next to the
‘ORDER_DETAILS’ and ‘CUSTOMERS’ tables.

This designates the ‘ORDER_DETAILS’ and ‘CUSTOMERS
tables as providing the “incoming” joins to the ‘PRODUCTS’
table. When the ‘PRODUCTS’ table is auto-aliased, two copies of
the table will be created. One copy corresponds to the incoming
join from the ‘ORDER_DETAILS’ table, and the other copy
corresponds to the incoming join from the ‘CUSTOMERS’. By
splitting the ‘PRODUCTS’ table into two aliases, the join cycle is
eliminated. (Note, however, that if only the ‘PRODUCTS’ table is
aliased, the cycle will simply reappear on the ‘CATEGORIES’
table. This is why in the succeeding steps, you will specify the
‘Keep Outgoing Links’ option.)

5. In the ‘Table Alias’ field for the ‘ORDER_DETAILS’ table, enter
“Order Products”.

6. Select ‘Keep Outgoing Links’ for the ‘ORDER_DETAILS’ table,
and enter “Order” as the ‘Table Prefix’. This will cause the
downstream ‘CATEGORIES’ table to be aliased for the
‘ORDER_DETAILS’ join path as well.

7. In the ‘Table Alias’ field for the ‘CUSTOMERS’ table, enter
“Customer Products”.

DATA MODELING

286 of 2477

8. Select ‘Keep Outgoing Links’ for the ‘CUSTOMERS’ table, and
enter “Customer” as the ‘Table Prefix’. This will cause the
downstream ‘CATEGORIES’ table to be aliased for the
‘CUSTOMERS’ join path as well.

Note: In the diagram, an italicized table name and colored header
indicate that the table is aliased. To view the full effect of
aliasing, however, you must preview the physical view (below).

9. Click ‘OK’ to complete the auto-alias procedure. Note the italics
and color on the ‘PRODUCTS’ table, indicating aliasing.

10. Click the ‘Preview’ button in the Style Studio toolbar. This presents
the structure of the physical view as it will actually be used for
generating queries.

DATA MODELING

287 of 2477

Observe that both the ‘PRODUCTS’ table and the
‘CATEGORIES’ table have been aliased, and that this has entirely
eliminated the cycle.

The new tables that appear in the preview (Customer Products, Order
Products, Customer_SA.CATEGORIES, Order_SA.CATEGORIES) have
been introduced into the physical view by aliasing. They will appear
among the tables available for constructing the Logical Model.

With the elimination of the cycle, there is no remaining ambiguity in the
join structure; any set of fields that one selects from the various tables has a
single unique join path. However, when you design the logical model, you
must still be careful when selecting fields to expose as model attributes. For
example, ‘Customer Produsts.PRODUCT_NAME’ will in general return
different results than ‘Order Produsts.PRODUCT_NAME’ when these
fields are used in a data model. (This is because, even though these two
tables are identical aliases, they are joined to the other tables in different
ways, which results in different data selection.)

¢

See Also
Identifying Query Traps, for information about loop traps and other traps.

4.3.2 Navigating a Physical View

To automatically organize a physical view diagram, click ‘Auto Layout’ in
the toolbar. This repositions the tables to improve the clarity of the
diagram. (It does not change the join structure or join properties.)

To find a particular table within a complex diagram, enter the beginning of
the table name in the toolbar’s ‘Find’ box. Then click the ‘Find Table’
button. This will select all tables that match the specified prefix.

4.3.3 Identifying Query Traps

A query trap refers to a join construction in the physical view that
generates query results that might confuse or mislead end users. There are
three basic kinds of query traps: loop traps, fan traps, and chasm traps. The
following sections discuss these trap types in greater detail.

Star schemas are gen-
erally free from query
traps because of their
uniform 1:n relation-
ship from dimension
table to fact table, and
location of all mea-
sures in fact table.

Style Intelligence automatically detects all of these types of query traps. To
avoid fan traps and chasm traps, Style Intelligence detects the cardinality of
join relationships, and warns users and developers when they select a
subset of data model attributes that would instantiate a potential query trap.
In Ad Hoc report creation, attributes that would instantiate a query trap are
rendered in grey, indicating that they should not be selected.

DATA MODELING

288 of 2477

In general, because fan and chasm trap detection is handled automatically,
you should not need to make explicit modifications. However, if the
automatic cardinality detection incorrectly identifies a trap where none
exists (which might generate unnecessary warnings for end users), you can
override the default cardinality detection through the ‘Join Properties’
dialog box. See Defining Join Relationships for details.

For loop traps, Style Intelligence highlights the offending joins in the
physical view using red color. Loop traps are not corrected automatically,
and you should select the appropriate method for resolving loops based on
your knowledge of the schema. See Resolving Loop Traps for full details.

Additionally, you will be alerted to the existence of un-joined orphan tables
when you save the physical view. In general, you should make sure that
every table in a physical view is joined to at least one other table. However,
when you are prompted with the warning message, you can choose to force
the physical view to be saved with orphaned tables. To correct the view,
select ‘Cancel’ in the warning message, and Style Studio will highlight the
detached tables.

Loop Traps

A loop or cycle is present in the physical view of a data model when
multiple possible paths exist from table A to table B. A loop can exist as a
self-join or multiple join path. Style Studio automatically highlights these
loops in red.

For example, when an “Employee” table contains a “manager id” is joined
to itself (i.e., to indicate an employee’s manager), this produces a self-join
loop. You must resolve the self-join to allow end users to find employees
and their respective managers. Self-join loops are most easily resolved by
creating a table alias. (See Resolving Loop Traps for details.)

A multiple-table loop has the potential to create results that are too
restrictive. For example, consider an order table (A) that joins to the “ship
to” table (B) and the “bill to” table (C), which in turn joins to a “company”

A
B

C
DA

A A A1

DATA MODELING

289 of 2477

table (D). If end users select fields from all four tables, only orders that
have the same company for “bill to” and “ship to” will be returned.

Multi-table loops can be addressed using aliasing or auto-aliasing.
Additionally, these loops can be addressed by using a weak join which will
not be included in the join path of the resultant query. (See Resolving Loop
Traps for details.)

Fan Trap

A measure is a numeric field that can be aggregated. Aggregation of fields
at the detail level is always acceptable, but incorrect results can be
produced when a summary-level fields are aggregated. The problem of
these higher-level aggregates is known as the fan trap.

For example, consider an “Order” table containing total order amounts. If
this table is joined with an “Order Items” table, then aggregation by order
item will recount the order amount multiple times if an order contains more
than one item.

This trap can be readily identified by relationship cardinality (indicated by
the “fan” symbol on the join terminus). If the specified measure exists in
the “1” side table that has a 1:n relationship with another table, this trap
will occur.

The fan trap is evidence of an inherent deficiency in this particular schema,
wherein the schema is not providing the order amount on the item-level of
granularity. If this aggregation is desired, the best option is to enhance the
schema so that the order amount is broken down and recorded in the ‘Order
Items’ table.

If this aggregation is not desired, use two physical views to separate the
measure and the lower-granularity table to prevent incorrect aggregation.
You can still create a data view that shows both order price and all
associated items by building the desired Data Block within a Data Mashup.

B

A

C

D

Order Items
Order_ID
Item_ID

1 n
Order
Order_ID
Order_Amt

DATA MODELING

290 of 2477

Chasm Trap (Cardinality Trap)

When two tables are related by way of a higher-level table (representing a
“compression”), information returned by queries on these tables can be
misleading. This problem of a higher-level join is known as the “chasm
trap.”

For example, a “Customer” table is related to a “Product” table to record
products ordered by a customer. The same “Customer” table is also related
to support case “Issue” table that records the product issues reported by the
customer.

This physical view presents the appearance that it is possible to view issues
by product. However, because the “Product” table and “Issue” table are
linked through a higher-level table (“Customer”) that preserves only
individual customers, this is in fact not possible. Through these particular
joins, each product a customer purchased is associated with all issues this
customer raised – regardless of the particular product.

This trap is readily identifiable by the combination of n:1 and 1:n join
cardinalities. If you require “issue by product” data, you can enhance the
physical view by relating the “Issue” table directly to the “Product” table,
and resolving the resulting loop with a weak join. (See Resolving Loop
Traps.) Otherwise, you should isolate the two relationships in two separate
physical views. You can still combine the two views by building the
desired Data Block within a Data Mashup.

4.3.4 Extending a Physical View

In a multi-tenant environment, it may be useful to provide a different
physical view to each tenant. Each physical view can provide access to
tenant-specific database tables, as well as to a set of common tables that are
shared by all physical views.

To create a tenant-specific physical view, extend the existing physical view
by adding tables from a tenant-specific connection. Follow the steps below.

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Right click on the base physical view that you wish to extend, and
select ‘Add Extended View’ from the context menu. This opens the
‘Extended View’ dialog box.

Product
Customer_ID

Customer
Customer_ID
Customer

n 1

Product

Issue
Customer_ID
Issue

n1

DATA MODELING

291 of 2477

Note: An extended physical view is associated with one (and only
one) connection. Likewise, a connection can be associated with only
one extended physical view.

3. In the ‘Extended View’ dialog box, choose a connection option for
the new extended view, and click ‘OK’. (You can select the default
data source connection, or any of the tenant-specific connections.)

Tables and joins
inherited from the
base physical view
cannot be modified
within the extended
view.

This adds the new extended view to the current data source, and
opens the view for editing. The right panel displays the tables and
joins defined in the base physical view.

4. Drag tables from the left panel into the right panel, and create any
desired joins between the new tables and the inherited tables. (See
Creating a Physical View for more information about joining tables
in a physical view.)

DATA MODELING

292 of 2477

5. When you have finished defining the extended view, click the
‘Save’ button in the Style Studio toolbar.

You can now use this extended physical view to create an extended logical
model. See Extending a Logical Model for more information.

See Also
Adding Additional Connections, for information on configuring
connections.
Creating a Physical View, for information on creating the base physical
view.

4.4 Logical Model
A physical view can
only be exposed to
end users through a
logical model.

A logical model presents a business-oriented, easy-to-understand view of a
single underlying physical view. The logical model organizes data from the
physical view into logical entities that correspond to business world
objects, rather than to the underlying physical tables. Each entity contains
one or more attributes that map to database table columns from the
physical view. Logical models can also extend existing database fields
using formula (expression) attributes.

The mapping of tables and fields into entities and attributes is not a simple
regrouping. Rather, the logical model denormalizes or adds redundancy to
the data, in order to maximize simplicity for designers and end users.

4.4.1 Creating a Logical Model

To create a new logical model, follow the steps below:

1. Defining a New Logical Model

2. Adding Entities and Attributes

3. Modifying Entities and Attributes

4. Defining Expression Attributes

The following sections explain these steps in greater detail.

Defining a New Logical Model

To define a new logical view, follow the steps below:

1. Click the ‘Asset’ button to expand the Asset panel.

2. Expand the ‘Data Source’ node, and then expand the relational
database data source for which you want to create the data model.

DATA MODELING

293 of 2477

3. Right click the ‘Data Model’ node, and select ‘Add Logical Model’
from the context menu. This open the ‘Logical Model Wizard’
dialog box.

4. In the ‘Logical Model Wizard’ dialog box, enter a name and
description for the new model. Click ‘Next’ to proceed.

5. From the ‘Physical View’ menu, select the physical view on which
the model should be based. (The model will have access to the
tables of the underlying physical view.)

6. Click ‘Finish’ to close the dialog box.

The name of new logical model is added beneath the ‘Data Model’ node in
the tree, and the new logical model is opened for editing.

DATA MODELING

294 of 2477

Adding Entities and Attributes

An entity is a table-like construct that contain one or more attributes. An
attribute, in turn, represents a single field from the database. You will use
entities and attributes to create a business-friendly view of the database
schema.

To create a new entity, use one of the following methods:

1. Right-click an empty region of the logical model panel, and select
‘New Entity’ from the context menu. This opens the ‘Entity
Wizard’, where you can enter a name for the new entity.

2. Drag a table from the physical view panel into the logical model
panel. This adds a new entity containing all of the table fields as
attributes. (Expand the entity node to see the attributes.)

DATA MODELING

295 of 2477

To search for a table,
see Sorting and Filter-
ing a Physical View.

To add an attribute to an entity, drag a field from the View panel onto the
desired entity. (Expand the entity node to see the component attributes.)

Modifying Entities and Attributes

You can modify entities and attributes in a variety of different ways, as
described below:

• Moving Entities/Attributes: To move an entity or attribute from one
location to another (either within or between entities) simply drag and
drop the entity/attribute in the desired location.

• Sorting Entities/Attributes: To sort entities or attributes alphabetically,
right-click on the desired entity/attribute, and select ‘Sort by name’ from
the context menu.

• Renaming Entities/Attributes: To rename an entity or attribute,
double-click the desired entity/attribute. This opens an edit box in which
you can modify the name. Entity names cannot contain two consecutive
colons, “::”, because this is used internally as a delimiter.

• Deleting Entities/Attributes: To delete an entity or attribute, click to
select the entity or attribute or Ctrl-click to select multiple objects. Then
right-click on a selected entity/attribute, and choose ‘Delete’ from the
context menu. (You can also press the ‘Delete’ key on the keyboard.)

• Enabling Data Browsing: To allow designers and users to browse the
attribute values when they set a filtering condition on the attribute (for
example, see Creating a Filter Condition in Dashboard Design or
Browse Data in Ad Hoc Reporting), enable the corresponding ‘Browse

DATA MODELING

296 of 2477

Data’ option. By default, ‘Browse Data’ allows designers and users to
select from a list of the distinct values contained in the first 1000 rows.
To provide a customized list of values to users see Customizing the
Browse Data List.

• Adding Auto-Drilldown to Attributes: To add automatic hyperlinks to
an attribute, see Auto-Drilldown.

• Adding Formatting to Attributes: To add formatting to the data
returned in an attribute, see Adding a Format to a Data Field.

• Adding Reference Type to Attributes: To specify that a field should
be treated by default as a dimension, select ‘Dimension’ from the ‘Ref
Type’ menu. To specify that a field should be treated by default as a
measure, select the desired aggregation method from the ‘Measure’
folder in the ‘Ref Type’ menu. The ‘Ref Type’ setting determines the
attribute’s default behavior (as dimension or measure) in aggregation
contexts such as chart and table bindings, etc.

Detecting Model Validity Problems

If you make changes to the underlying database schema or to the physical
view (for example, if you remove tables or columns), the mappings in the
logical model may no longer be valid. When Style Studio detects a validity
problem in the field mappings, it highlights the invalid entities and
attributes in red.

To determine the cause of a validity failure, follow the steps below:

1. Press the ‘Refresh Metadata’ button in the toolbar to verify that
Style Studio has access to the current schema information.

2. In the logical model, hover the mouse over the ‘Name’ field or
‘Physical Mapping’ field of the red-highlighted attribute. This
displays a message explaining the cause of the mapping problem.

3. When you have determined the source of the problem, adjust the
database schema, physical view, or logical model to restore a valid
mapping.

DATA MODELING

297 of 2477

Sorting and Filtering a Physical View

When you add table fields from a physical view to a logical model, it is
often helpful to sort the physical view tables by name. To do this, click the
‘Sort Tables’ button on the View panel.

Click the button once to sort the tables in ascending order. Click again to
sort in descending order. Click a third time to return to the original order. To
jump to a specific sort order without cycling through all the options, click
the right side of the button to expand the menu.

To quickly find tables of interest, you can also filter the list. To do this, click
the ‘Filter Visible Tables’ button on the toolbar. This opens the ‘Filter’
dialog box.

Select ‘Owned by user’ to display only those tables that belong to the
user’s schema. Use the ‘Type’ menu to restrict the list to either ‘Tables’ or
‘Views’.

To list only tables that match a specified pattern, select one of ‘Search’
options: ‘Basic’ allows you to use ‘*’ as a wildcard, while ‘Regular
Expression’ allows Perl 5 regex syntax.

Customizing the Browse Data List

To provide a customized list of values to users who select the ‘Browse
Data’ option in a condition, specify a customized query. To do this, follow
the steps below:

1. Click inside the ‘Browse Data’ column corresponding to the
desired attribute. This opens a mini-toolbar in that cell.

DATA MODELING

298 of 2477

2. Click the ‘Select custom query’ button. This opens the ‘Select
Custom Query’ dialog box.

3. Select the desired query.

The first column of this query should return the desired attribute
values, i.e., the values that will actually be sent to the database
when filtering the data. The second column of the query should
contain the corresponding labels, i.e., the text that will be shown to
users in the ‘Browse Data’ menu. Query parameters, if required,
can be specified as HTTP session attributes. (See Session-Based
Single Sign-On in Integration for additional information). If a
required query parameter is not specified, the corresponding
condition is dropped.

4. Click ‘OK’ to close the ‘Select Custom Query’ dialog box.

5. Click the ‘Apply’ button in the mini-toolbar (or simply click away)
to finalize the settings.

The selected query will now be used to supply the list of values that
appears in the ‘Browse Data’ list for the corresponding attribute.

DATA MODELING

299 of 2477

Defining Expression Attributes

In addition to creating model attributes by directly mapping fields of the
physical view, you can also define expression attributes. Expression
attributes are attributes that are derived from table columns. You can use
derived attributes in the same way as any other model attribute, e.g., in
reports, worksheets, hierarchical overlays, etc. (See Design Considerations
for more information on hierarchy).

To define an expression attribute, follow the steps below:

1. Right-click on an entity or attribute in the logical model, and select
‘Create expression’ from the context menu.

This opens the ‘Formula’ dialog box.

2. In the ‘Attribute Name’ field of the ‘Formula’ dialog box, specify a
name for the new attribute.

3. In the ‘Return Data Type’ menu, select the data type of the value
returned by the defined expression.

4. Click the ‘Edit’ button to open the Script Editor.

5. Enter the expression to define the new attribute. (No return
keyword is necessary.) The expression should use the appropriate
SQL syntax for the underlying database.

6. Click ‘Check’ if you want Style Studio to check the syntax of the
specified SQL expression.

DATA MODELING

300 of 2477

7. Click the ‘Save and Close’ button.

8. Select ‘Aggregate Formula’ if the specified expression contains
aggregation functions such as COUNT, AVG, SUM, etc., or other
database-specific aggregation functions. This will ensure that
generated queries include an appropriate GROUP BY clause.

9. Select ‘Parseable’ if you want VPMs to be able to hide this field
based on its component fields. For example: a VPM hides the
‘price’ column for certain roles, and an expression ‘revenue’ is
defined as ‘price’ multiplied by ‘quantity’. The ‘revenue’ column
will also be hidden for those same roles, as long as it is marked
‘Parseable’.

10. Click ‘OK’ to exit the ‘Formula’ dialog box. The new expression
attribute will appear alongside the existing attributes under the
selected entity.

Example:
Defining
Expression
Attributes

In this example, you will add a new expression attribute to the sample
Order Model. The attribute will represent the total price of a particular
product’s stock (i.e., product price * number in stock).

1. Open the Asset panel. Expand the ‘Data Source’ node and the
‘Orders’ data source.

2. Double-click on the ‘Order Model’ to open the model for editing.

3. Right-click the ‘Product’ entity in the logical model, and select
‘Create expression’ from the context menu. This opens the
‘Formula’ dialog box.

4. In the ‘Attribute Name’ field, enter “Cost of Stock” as the name of
the new attribute.

5. Click the Edit button to open the Script Editor, and enter the
following expression:

field['SA.PRODUCTS.PRICE'] *
field['SA.PRODUCTS.NUMBER_INSTOCK']

DATA MODELING

301 of 2477

Note: You can double-click the field names in the ‘Properties’ list
to add them to the expression (without typing).

6. Click the ‘Save and Close’ button.

7. Select ‘Double’ or ‘Float’ from the ‘Return Data Type’ menu.

8. Click ‘OK’ to exit the ‘Formula’ dialog box.

The new expression attribute ‘Cost of Stock’ now appears
alongside the other attributes of the ‘Product’ entity. It is marked
with an ‘f’ symbol, which indicates a formula field.

To modify an existing expression attribute, right-click the attribute and
select ‘Edit expression’ from the context menu. This opens the ‘Formula’
dialog box, where you can make the desired modifications as discussed
above.

¢

4.4.2 Auto-Drilldown
You can also set an
auto-drill for a partic-
ular level of a cube
dimension.

You can assign hyperlinks to data model attributes or query columns at the
time that you design the model or query. Hyperlinks can target reports,
Viewsheets, or web pages. When you use the model or query within a
report or Viewsheet, the hyperlinks allow the user to drill down to the
specified reports, Viewsheets, or web pages. This is known as auto-
drilldown, because the specified hyperlinks are automatically created
wherever the model or query is used.

You can pass parameters with the drill-down hyperlinks. Parameter values
can include the value of the attribute/column on which the user clicks to
launch the hyperlink, or mapped values obtained from a distinct query.

The advantages of using auto-drilldown (rather than using regular
hyperlinks at the report or Viewsheet level) are that drilldown parameters
can incorporate the results of arbitrary queries, and that the drilldowns are

DATA MODELING

302 of 2477

automatically propagated to all reports and viewsheets that use the model
or query.

See Also
Hyperlinks, in Report Design, to add explicit links directly to a report
element.
Hyperlinks, in Dashboard Design, to add explicit links directly to a
Viewsheet.

Adding Auto-Drilldown to a Logical Model

The following examples illustrate how to pass parameters to a target report
or web page by adding an auto-drilldown to a logical model. There are two
basic kinds of parameter values that you can pass in an auto-drill:

• You can pass actual column data values, i.e., the values that the end user
clicks to launch the hyperlinks.

• You can pass values derived from a query based on the column data.

Example 1: Passing column values in a drill

Set your Style Studio
repository directory to
the server SREE
home (WEB-INF/
classes). See Config-
uring a Repository in
Getting Started for
more information.

In this example you will add an auto-drill to the “Order Model” to provide
drilldown hyperlinks from the ‘Customer’ > ‘Company’ attribute to the
‘OrderList’ report (in classes/inetsoft/demos). The ‘OrderList’ report is
designed to accept five parameters, one of those being ‘customer,’ which
represents the company name of the customer.

Walkthrough You will configure an auto-drill on the ‘Customer’ > ‘Company’ attribute
of ‘Order Model’ to pass the actual company name (column value) into the
‘OrderList’ report’s ‘customer’ parameter. (For an illustration of how to
target a web page rather than a report, see Example 2: Passing query-based
values in drill.)

1. Open the Asset panel. Expand the ‘Data Source’ node and the
‘Orders’ data source.

2. Double-click on the ‘Order Model’ to open the model for editing.

3. Click on the cell in the ‘Auto Drill’ column corresponding to the
‘Customer’ > ‘Company’ attribute. This opens the ‘Auto Drill’
window for the ‘Company’ attribute.

DATA MODELING

303 of 2477

4. In the ‘Auto Drill’ window, click the ‘New Drill’ button to create a
new auto-drill scheme. The new drill is named ‘drill0’ by default.
(If you add more than one drill to a given attribute, the end-user
will be presented with a menu of hyperlink choices corresponding
to the different drills you have specified.)

5. Rename the new drill by entering a name in the ‘Name’ field. (We
use “DrillToOrderList” as the name of the drill.)

6. Enter a tooltip in the ‘Tool Tip’ field. (In the example we use “List
orders for company” as the tooltip.) The tooltip is displayed when
the end-user hovers the mouse over a hyperlink. If there are
multiple drills for a given attribute, the tooltip of each drill is
displayed when the end-user hovers the mouse over the name of
the drill in the menu of hyperlink options.

7. Click the ‘Asset Link’ button. From the ‘Link’ popup menu, select
the ‘OrderList’ report.

DATA MODELING

304 of 2477

This ‘Link’ menu is populated from the repository.xml (reports)
and asset.dat (Viewsheets) repository files, which contain the lists
of deployed assets. You can also manually enter the name of a
deployed asset in the ‘Link’ field.

If a target report is
configured to display
parameter sheets
when launched, you
can bypass these
screens by selecting
‘Disable parameter
sheets’ on the ‘Auto
Drill’ screen.

8. (Optional) If you want the target report to be displayed in a
particular browser window, enter the name of the desired window
in the ‘Target Frame’ field. (The specified name becomes the DOM
‘name’ attribute.) To specify that the target report should open in
the User Portal frame, select the ‘Self’ checkbox.

9. Press the ‘Add Parameter’ (+) button to open the ‘Parameter’
dialog box.

10. From the ‘Parameter Name’ menu, select the ‘customer’ report
parameter. This is the report parameter that will receive the passed
value.

The parameter name that you specify in the ‘Parameter Name’ field
must match the parameter name specified in the target report. (By
selecting a name from the ‘Parameter Name’ menu, you ensure that
the parameter name matches. You can also manually type a
parameter name into the ‘Parameter Name’ field if the parameter
has not yet been defined in the report.) See Parameterization in
Report Design for more information about configuring report
parameters.

11. From the ‘Value for Parameter’ menu, select ‘this.column’. The
variable ‘this.column’ represents the actual data values in the
column.

12. Press ‘OK’ to close the ‘Parameter’ dialog box.

Report parameters are
parameters defined
within the report con-
taining the hyperlinks.

13. Check the ‘Send Report Parameters’ option to send report
parameters together with the hyperlink (in addition to the auto-drill
parameters).

14. Click the ‘OK’ button to complete the auto-drill configuration.

DATA MODELING

305 of 2477

15. Save the changes to the data model by clicking the ‘Save’ button.
The final configuration of the ‘Auto Drill’ window for this example
is shown below.

To test the auto-drill you have added to the ‘Order Model’, you will now
create a new report that uses the Customer.Company attribute.

16. Create a new ‘Blank Tabular’ report. (See Creating a Report in
Getting Started for a walkthrough of creating a report.)

17. Click the ‘Table’ component in the Toolbox panel to start the ‘Data
Binding’ wizard.

18. Under the Data tab of the ‘Data Binding dialog box, bind the table
to the ‘Order Model’ data source.

19. In the Columns tab of the ‘Data Binding dialog box, select the
following columns from ‘Order Model’: Customer.Company,
Customer.City, Customer.State, and Customer.Zip.
(Customer.Company is the attribute that you configured for auto-
drill.)

20. Click ‘Finish’ to exit the ‘Data Binding’ dialog box, and deploy the
report to the server. (See Saving a Report to the Working
Repository in Getting Started for a walkthrough of creating a
report.)

DATA MODELING

306 of 2477

When the user views this report in the User Portal, they will see automatic
hyperlinks on all the values in the ‘Company’ column. (The ‘State’ column
also shows hyperlinks because this attribute was pre-configured for auto-
drill.) When the user clicks on one of the ‘Company’ hyperlinks, this
launches the ‘OrderList’ report in a new browser window, and the
‘OrderList’ report displays only the orders for the specific company that the
user clicked.

All other reports and Viewsheets that use the Customer.Company attribute of
the Order Model will now also automatically provide these same drilldown
hyperlinks to the ‘OrderList’ report.

This example illustrated how to pass parameters in an auto-drill hyperlink
to a report. You can also pass query-based parameters to a report. The
procedure is the same as passing query-based parameters to a web page,
which is described in Example 2: Passing query-based values in drill. To
auto-drill to a report, select the ‘Asset Link’ option, and be sure to match
the drill parameter names to the report parameter names.

Example 2: Passing query-based values in drill

In Example 1: Passing column values in a drill, you learned how to create
an auto-drill hyperlink that passes a value that the user clicks as a parameter
to a report. Sometimes, however, you do not need to transmit the selected
value itself, but rather some information that is related to the selected
value. To do this, you can add a query-based auto-drill to the logical model.

Walkthrough In this example, you will add an auto-drill that transmits a product ID when
the user clicks the corresponding product name in a report or Viewsheet.
This example also illustrates how to target a web page with the hyperlinks
(rather than a report, as in Example 1: Passing column values in a drill).

To add a query-based auto-drill, the first step is to build an appropriate
query. In the following sequence, you will use the Query Wizard to build a
new query that accesses the desired product information. You will design
this new query to return the data you wish to pass as parameter in the auto-
drilldown, which is the ‘PRODUCT_ID’ field.

The auto-drill query should accept parameters, and return rows
containing the appropriate values to pass to the target report or
web page.

1. Open the Asset panel. Expand the ‘Data Source’ node.

DATA MODELING

307 of 2477

For more information
on constructing que-
ries, see the Indepen-
dent Query section.

2. Right-click the ‘Orders’ data source, and select ‘New Query’ from
the context menu. This opens the ‘Query Wizard’.

3. On the General tab, enter a name for the new query in the ‘Name’
field (e.g., ‘getProdID’). Click ‘Next’.

4. Under the Data tab of the Query Wizard, select the ‘PRODUCTS’
table from the ‘TABLE’ > ‘SA’ node.

5. Under the Fields tab of the Query Wizard, select the
‘PRODUCT_ID’ field.

6. Under the Conditions tab of the Query Wizard, select
‘SA.PRODUCTS.PRODUCT_NAME’ as the conditioned field,
since this will be the input to the query (the attribute that the user
will be clicking in the report/viewsheet).

7. Select ‘is equal to’ from the adjacent popup menus.

8. Select ‘Variable’ from the right-most popup menu, and enter a
variable name in the text field. For this example, enter
$(userProductChoice) as the variable name.

Note: If a query returns multiple rows, the user is shown a pop-up
with all of the values. The user can then clarify their selection
by choosing one of these to send to the report or URL.

9. Click the ‘Append’ button to add this condition.

10. Click the ‘Finish’ button in the Query Wizard, and then click the
‘Save’ button in the toolbar to save this query.

DATA MODELING

308 of 2477

In the next sequence of steps, you will use the saved query as the basis of a
new auto-drill:

1. Open the Asset panel. Expand the ‘Data Source’ node and the
‘Orders’ data source.

2. Double-click on the ‘Order Model’ to open the model for editing.

3. Click on the cell in the ‘Auto Drill’ column corresponding to the
‘Product’ > ‘Name’ attribute. This opens the ‘Auto Drill’ window
for the ‘Name’ attribute.

4. In the ‘Auto Drill’ window, click the ‘New Drill’ button to create a
new auto-drill scheme. The new drill is named ‘drill0’ by default.
(If you add more than one drill to a given attribute, the end-user
will be presented with a menu of hyperlink choices corresponding
to the different drills you have specified.)

5. Rename the new drill by entering a name in the ‘Name’ field (e.g.,
“SendProdID”).

DATA MODELING

309 of 2477

6. Enter a tooltip in the ‘Tool Tip’ field (e.g., “View product
information”). The tooltip will be displayed when the end-user
hovers the mouse over the hyperlink. If there are multiple drills for
a given attribute, the tooltip of each drill will be displayed when the
end-user hovers the mouse over the name of the drill in the menu of
hyperlink options.

This URL is for illus-
trative purposes since
the ‘PRODUCT_ID’
attribute is an integer
value and will not
yield any useful
search results.

7. Select the ‘Web Link’ button. In the ‘Link’ field, enter the URL of
the hyperlink destination with parameters omitted. For example, if
the hyperlink is to pass a value as parameter to the Google search
engine, the ‘Link’ field should specify “http://www.google.com/
search”.

8. (Optional) If you want the target web page to display in a particular
browser window, enter the name of the desired window in the
‘Target Frame’ field. (The specified name becomes the DOM
‘name’ attribute.) To specify that the target page should open in the
User Portal frame, select the ‘Self’ checkbox.

9. Click the ‘Query’ button in the ‘Auto Drill’ window to bring up the
‘Query Selection’ dialog box. Select the saved query
(‘getProdID’), choose ‘Product.Name’ for the ‘userProductChoice’
dropdown at the bottom, and click ‘OK’.

Note: If the query takes multiple parameters, you can connect them
to various attributes/columns from the current model/query. If
those columns are present in the table that is displaying the auto-
drill, the values of those columns will also be passed to the
subquery.

10. Press the ‘Add Parameter’ (+) button to open the ‘Parameter’
dialog box.

DATA MODELING

310 of 2477

Note that the ‘Value of Parameter’ menu displays the output of the
‘getProdID’ query, which is the attribute called ‘PRODUCT_ID’.
The ‘PRODUCT_ID’ attribute is available only as a result of
running the ‘getProdID’ query; it is not explicitly shown anywhere
in the user’s report.

11. Enter the variable name “q” in the ‘Parameter Name’ field. This
name will be the parameter name used in the URL that is
automatically constructed. (The parameter name “q” is the
parameter name expected by the Google search engine.)

12. Select ‘PRODUCT_ID’ in the ‘Value for Parameter’ menu. This
indicates that ‘PRODUCT_ID’ will be passed as a parameter in the
auto-drill.

13. Press ‘OK’ to close the ‘Parameter’ dialog box.

14. Press ‘OK’ to exit the auto-drill configuration. The final
configuration of the ‘Auto Drill’ window for this example is shown
below.

The hyperlinks constructed by this auto-drill will be of the following form:

DATA MODELING

311 of 2477

http://www.google.com/search?q={ProductID}

where {ProductID} is the value of ‘PRODUCT_ID’ corresponding to the
‘Product.Name’ clicked by the user. All reports and Viewsheets that use the
‘Product.Name’ attribute of this logical model will now automatically
provide hyperlinks of the above form on that attribute.

For an illustration of how these hyperlinks will appear in a deployed report,
see Steps 16–20 of Example 1: Passing column values in a drill.

Passing Multiple Parameters in a Query-Based Auto-Drill

The prior examples (Example 1: Passing column values in a drill and
Example 2: Passing query-based values in drill) described how to use auto-
drilldowns to pass a single parameter to a specified report or web page. It is
also possible to pass multiple parameters in an auto-drill.

The procedure for creating multiple-parameter drills is the same as
described in the previous sections. If the query specified in Steps 1–10 of
Example 2: Passing query-based values in drill returns more than one
column, all of the returned columns will be available for selection in the
‘Value’ pane of the ‘Auto Drill’ page (Steps 9–10).

For example, if a query called ‘getProductInfo’ accepts a parameter and
returns the two columns ‘PRODUCT_ID’, and ‘SUPPLIER_ID,’ then
when you specify the ‘getProductInfo’ query in the ‘Auto Drill’ window,
these two columns will be shown in the ‘Value’ pane. Each of the multiple
attributes listed in the ‘Value’ panel can then be selected and mapped to a
parameter name.

DATA MODELING

312 of 2477

As in the previous examples, if the auto-drill is targeting a report, the
parameter names specified in the ‘Auto Drill’ window must match the
corresponding parameter names specified in the report. If the auto-drill is
targeting a web page, the parameter names specified in the ‘Auto Drill’
window will be the names used in the hyperlink URL, with parameter-
value pairs separated by the ampersand (&) symbol. For the ‘Auto Drill’
settings shown above, the resulting hyperlinks will have the form

http://remotehost?param1={value1}¶m2={value2}

where param1, param2 are the parameter names specified in the ‘Auto Drill’
window, and {value1}, {value2} are the values returned by the query for
the user’s particular hyperlink click.

If an auto-drill query returns multiple rows, the user is prompted to select
one of the possible parameter combinations. For example, consider a case
where the user clicks on a ‘State’ field to see a list of orders for a customer.
If there is only one customer in a given State, the drill-down goes directly
to the detail report. However, if there are multiple customers in the selected
state, the user is first prompted with a list of these customers. After they
submit their selection, the detail report returns data for the chosen
customer.

Adding Auto-Drilldown to a Query

Adding auto-drilldown at the query level is very similar to adding auto-
drilldown at the model level. (See Example 1: Passing column values in a
drill and Example 2: Passing query-based values in drill above.) You can
add auto-drills to new queries or existing queries.

Walkthrough In the following example, you will add an auto-drill to the ‘Sales by
Category’ query of the ‘Orders’ data source:

1. Open the Asset panel. Expand the ‘Data Source’ node and the
‘Orders’ data source.

2. Double-click the ‘Sales by Category’ query under the ‘Orders’ data
source. This opens the query for editing.

3. Select the Fields tab at the top of the query panel. (Make sure that
the ‘Main Query’ tab at the bottom of the panel is selected.)

4. Select ‘SA.CATEGORIES.CATEGORY_NAME’ in the ‘Query Fields’ panel.
This enables the ‘Editor’ at the bottom of the panel.

DATA MODELING

313 of 2477

5. In the editor, click the ‘Auto-drill’ button.

The ‘Auto-Drill’ window that now opens is the same as the ‘Auto-
Drill’ window for data models. For further instruction on using this
‘Auto-Drill’ window, see Example 1: Passing column values in a
drill and Example 2: Passing query-based values in drill. After you
add the auto-drill to this query field, all reports and viewsheets that
use the ‘Sales by Category’ query will automatically provide
hyperlinks.

Note that the ‘Auto-Drill’ window for query-level auto-drill also offers the
option of passing query-based parameters. See Example 2: Passing query-
based values in drill for details of the procedure.

4.4.3 Adding a Format to a Data Field

To associate a data format with an attribute (column) at the model level or
query level, follow the steps below:

1. For a data model, open the model for editing, and click the button
in the ‘Format’ column corresponding to the desired attribute.

DATA MODELING

314 of 2477

For a query, open the query for editing, and select the desired field
in the ‘Query Fields’ panel. Then click the ‘Format’ button in the
‘Editor’ panel.

This opens the ‘Format’ dialog box shown below.

2. In the ‘Format’ dialog box, select the desired formatting option.
The options are the same as those available in the Format tab of
the Style Studio. (See Formatting in Report Design.)

For date and number formats, you can specify an optional format pattern
string. The date format pattern must conform to the patterns specified by
the java.text.SimpleDateFormat class. For example, to format a date as
‘Jan 01, 2000’, use ‘MMM dd, yyyy’.

Decimal formatting
only applies if the
value is a numeric
type.

The number format pattern must conform to the patterns specified by the
java.text.DecimalFormat class. For example, to add commas to a number,
use ‘#, ###, ###. ##’. A ‘#’ will show a digit if needed, and a ‘0’ will
display zero if the digit is not needed. Adding a ‘%’ at the end of the format
will multiply the value by 100 and display as a percentage.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

DATA MODELING

315 of 2477

4.4.4 Extending a Logical Model

In a multi-tenant environment, you can provide a different logical model to
each tenant. Each logical model can provide access to a tenant-specific
physical view that draws data from a tenant-specific database connection.

To create a tenant-specific logical model, extend an existing logical model
by linking the model to an existing extended physical view. Follow the
steps below:

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Right-click on the base logical model that you wish to extend, and
select ‘Add Extended Model’ from the context menu. This opens
the ‘Extended Model’ dialog box.

Note: An extended model is associated with one (and only one)
connection and physical view. Likewise, a connection can be
associated with only one extended model.

3. In the ‘Extended Model’ dialog box, choose a connection option
for the new extended model, and click ‘OK’. (You can select the
default connection for the data source, or any of the additional
connections.)

This adds the new extended model under the ‘Data Source’ node,
and opens the extended model for editing.

DATA MODELING

316 of 2477

The View panel displays the tables and columns that are available
from the corresponding extended physical view. The right panel
displays entities and attributes that are inherited from the base
model.

Note that entities and attributes which are inherited from the base
logical model cannot be modified within the extended model.
However, you can hide an inherited property by disabling its
‘Visible’ option. (See Modifying Entities and Attributes for more
information.)

4. Drag tables or columns from the View panel into the model panel
to add new entities and attributes, or to extend inherited entities.
(See Creating a Logical Model for more information about creating
entities and attributes.)

5. When you have finished defining the extended model, click the
‘Save’ button in the Style Studio toolbar.

You can now expose this extended model to particular tenants by setting
user or group permissions on the corresponding connection. See
Component/Object Permissions in the Administration Reference for more
information on authorizing connection access.

DATA MODELING

317 of 2477

See Also
Adding Additional Connections, for information on configuring
connections.
Extending a Physical View, for information on adding an extended view.
Creating a Logical Model, for information on creating the base logical
model.

4.5 Independent Query
For cases when you need greater control over data access or more
sophisticated logic than that provided by a generic data model, you can
create an independent query.

A query is a specific request for data from the database, and often
incorporates advanced or proprietary database features. A query is similar
to a relational database view, except that a query is normally not generic
enough to be created as permanent database object. Nevertheless, Style
Intelligence queries can be quite flexible, depending on the query
parameters and data selection.

For non-relational data sources, queries are often the only available means
to obtain the required dataset. In this situation, a generic query can indeed
serve the same role as a database view. For relational databases, Style
Intelligence also treats stored procedures and other query derivatives as
queries.

You can create a query by using simple drag-and-drop operations, or by
manually entering a valid SQL string. (See Creating a New Query and
Editing a Query SQL String, respectively.) You can choose to save the
query publicly, so that it will available to all Viewsheets, Worksheets, and
reports, or you can choose to embed the query within a specific report.

Queries and data models are independent of one another. However, you can
transform and combine queries with data models for use in more
sophisticated applications by using the Data Block technology provided by
Data Worksheets. (See Data Mashup for more details.)

4.5.1 Creating a New Query

To create a new query for a relational database, follow the steps below:

To create a new query
by modifying an
existing query, see
Creating a Derived
Query.

1. Open the Style Studio Asset panel, and expand the ‘Data Source’
node.

2. Right-click on the data source that you wish to query, and select
‘New Query’ from the context menu. This opens the ‘Query
Wizard’ dialog box.

DATA MODELING

318 of 2477

3. Under the General tab of the ‘Query Wizard’ dialog box, enter a
name for the query and (optional) description. Click ‘Next’ to
advance to the next tab.

You can also double-
click fields to add
them, or use the arrow
buttons.

4. Under the Data tab, drag the desired database tables from the ‘Data
Sources’ panel to the ‘Tables’ panel. Click ‘Next’ to advance to the
next tab.

To manually enter
SQL rather than using
the Wizard, click the
SQL String tab. See
Editing a Query SQL
String.

5. Under the Links tab, define a set of joins to relate the tables. This
process is the same as defining joins for physical views. (See
Defining Join Relationships for an explanation of how to relate
tables.) Click ‘Next’ to advance to the next tab.

DATA MODELING

319 of 2477

You can also double-
click fields to add
them, or use the arrow
buttons.

6. On the Fields tab, drag the fields that you wish the query to return
from the ‘Database Fields’ panel to the ‘Query Fields’ panel.

7. (Optional) To create a derived (expression) column, follow the
steps below:

a. Click the ‘Add Expression’ button above the ‘Query Fields’
panel. This opens the ‘Field Edit’ dialog box.

Double-click the field
names to add them to
the expression.

b. Enter an expression to define the new column, then click ‘OK’.
(The expression should use the appropriate SQL syntax for the
underlying database.)

DATA MODELING

320 of 2477

c. To create an alias for the expression column, select the
expression column in the ‘Query Fields’ panel, and type a name
into the ‘Field Alias’ box in the bottom panel.

d. Click ‘Next’ to advance to the next tab.

8. On the Conditions tab, use the menus to specify a filtering
condition. This condition will restrict the data returned by the
query. Click the “arrow” button on the right side to select a method
of supplying the right-hand side of the condition.

DATA MODELING

321 of 2477

When you enter a
fixed value as the
right-side of the con-
dition, use the
‘Browse Data’ button
to assist the selection.

The ‘Field’ option allows you to select a different column from the
same result set. ‘Expression’ allows you to enter a regular
expression using Perl5 regex syntax (see Appendix A.5, Regular
Expressions.) ‘Value’ allows you to enter a fixed value. ‘Subquery’
allows you to specify a distinct query to return the right-side of the
condition. ‘Variable’ allows you to enter an arbitrary variable
name. The value of the variable will either be provided by the user,
by script, or by another subquery. (See Query Properties for more
details about variables.)

9. Click ‘Next’ to proceed to the Sort tab. Drag the fields on which
you wish to sort from the ‘Available Fields’ panel to the ‘Sort
Fields’ panel.

An arrow to the left of
the field name indi-
cates the current sort
order.

10. Select a field in the ‘Sort Fields’ panel, and click the ‘Order’ button
above the panel. Click once to sort in descending order. Click again
to sort in ascending order.

DATA MODELING

322 of 2477

The table below summarizes the operation of the different tabs in the
‘Query Wizard’ dialog box. The same tabs are available also when editing
a query. See Editing a Query for more details.

Table 2. Query Definition Tabs

TAB NAME DESCRIPTION

Links

Shows all tables selected in the query and their relationships
(joins). Joins are created automatically if the data model
contains join information. Right-click a join line to change the
join properties.

Fields

Column selection and column alias definition. Data formatting
and auto-drilldown options are the same as for logical models.
See Adding a Format to a Data Field and Auto-Drilldown in
the Logical Model section for more information. The ‘Retrieve
distinct rows only’ option prevents the query from returning
duplicate rows.

Conditions Specifies query selection conditions.
Sort Sorting order of the table.

Grouping
Grouping columns and ‘Having’ conditions. The having
conditions can only be defined if grouping is defined.

SQL String

The resulting SQL string or directly-entered SQL statement.
The ‘Parse SQL’ checkbox controls whether the statement is
parsed by Style Studio into a structured query. For very
complicated SQL statements that are slow to parse, you may
wish to disable parsing. In this case, you should click ‘Get
Column Info’ to get the meta-data by executing the query.
Click it again whenever the meta-data (columns or data-types)
change.

DATA MODELING

323 of 2477

4.5.2 Creating a Derived Query

In some cases, you may want to create a set of closely-related queries (i.e.,
sharing the same data source, tables, joins, grouping) that differ from one
another only in terms of the fields retrieved or conditions applied. To do
this, design a single “base” query, and then create a set of “derived” queries
from the base query. Derived queries can modify the columns retrieved by
the base query, and can impose additional conditions.

To create a new query based on an existing query, follow the steps below:

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Expand the data source that contains the query you want to modify.

3. Right-click on the query from which you want to derive the new
query, and select ‘New Derived Query’ from the context menu.
This opens the ‘Query Wizard’ dialog box.

4. Specify information in the General, Fields, and Condition tabs of
the ‘Query Wizard’ dialog box as described in Creating a New
Query. The settings you add here will modify the settings already
in place for the “base” query.

DATA MODELING

324 of 2477

5. Click ‘Finish’. This opens the new derived query for editing. (Note
that the base query is displayed at top.)

6. Make any desired changes in the editor, and click the Preview tab
at bottom to view the results.

7. Click ‘Save’ in the Style Studio toolbar to save the new derived
query to the repository. The new query will appear as a node under
the associated data source.

Queries that you create using the tabs in the Query Wizard are
automatically parsed (by default) and converted into SQL statements. To
view (and optionally edit) the generated SQL string, see Editing a Query
SQL String.

4.5.3 Editing a Query

To edit an existing query, follow the steps below:

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Expand the data source that contains the query you want to modify.

If you make a change to the structure of the database schema, press
the ‘Refresh Metadata’ button on the toolbar to update the query.

3. Double-click the query. This opens the query for editing.

DATA MODELING

325 of 2477

The query editor is organized using the same tabs as the ‘New
Query’ dialog box: Links, Fields, Condition, Sort, and Grouping
at the top, and SQL String at the bottom. See Creating a New
Query and Editing a Query SQL String for instructions on using
these tabs.

To view the results returned by the query, click the Preview tab at the
bottom of the editor.

4.5.4 Editing a Query SQL String

To manually edit the SQL string for a query, follow the steps below:

1. Open the query for editing, as described in Editing a Query.

2. Click the SQL String tab at the bottom of the editor. This opens the
SQL string for editing.

DATA MODELING

326 of 2477

To change back to the
graphical query view,
click the Main Query
tab.

3. (Optional) Select the ‘Parse SQL’ checkbox to allow Style Studio
to automatically parse the SQL string and reconstruct the graphical
query view. This is the default.

Note, however, that due to database variations, the parser may not
be able to parse all valid SQL statements. In such cases, you will be
asked whether you want to keep the change or modify the query. In
either case, manually entered SQL always overrides the query
graphical query definition. (This allows any query to be
constructed in Style Studio.) For very complicated SQL statements
that are slow to parse, you may wish to disable the ‘Parse SQL’
option.

4. Click the ‘Save’ button in the Style Studio toolbar to save your
changes.

You can add query variables to the SQL string using the $(var) construct,
where var is an arbitrary variable name. This variable will be translated
into a SQL variable and the value will be provided at runtime.

You can also specify a special string replacement variable with the $(@var)
construct. This allows you to dynamically construct the SQL string,
through scripting, in order to satisfy complex business requirements. For
example, you can dynamically determine the table from which to select at
runtime. To do this, define a partial SQL string, such as “select id from
$(@var)”. Then create a runtime script to replace the variable var with a
table name such as ‘customers’ or ‘prospects’.

DATA MODELING

327 of 2477

4.5.5 Creating a Local Query

A local query is a query that is embedded within a report, rather than being
stored in the common query.xml repository file. Embedding a query data
source within a report enhances report portability. However, because a
local query is available only to the particular report in which it is
embedded, embedding is most useful in cases when the query is unique to
the report and will not be reused for other reports.

Creating a Local Query

To create a local query, you must first open a report. Follow these steps:

1. In Style Studio, open the report into which you want to embed the
local query.

2. Expand the Style Studio Asset panel.

3. Expand the ‘Report’ node, and right-click the ‘Local Query’ folder.
Select ‘New Query’ from the context menu.

Note: The ‘Local Query’ folder is only available when a report is
open for editing in Style Studio.

4. Design the query as desired, and save the query. (See Creating a
New Query for full information.)

The query is displayed under the ‘Local Query’ folder, and is now
embedded within the current report. You can bind this local query to a
report element in the same way that you bind any other data source. See
Walkthrough: Choosing the Binding Data Source in Report Design for
more information.

See Also
Creating a Local Worksheet, in Data Mashup, for information on
embedding a Worksheet.

Exporting a Local Query to the Global Repository

To export one or more local queries to the common query registry
(query.xml file) so that they can be used by other reports, follow the steps
below:

DATA MODELING

328 of 2477

1. Open the report that contains the local query or queries you want to
export.

2. Expand the Asset panel.

3. Expand the ‘Local Query’ node in the tree.

Alternatively, drag-
and-drop the query to
the desired location
while holding down
the Ctrl key.

4. To copy the query or queries from the ‘Local Query’ folder to the
global repository (leaving the originals embedded in the report),
follow these steps:

a. Select the desired queries in the ‘Local Query’ folder, right-
click, and choose ‘Copy’ from the context menu.

b. Right-click on the desired folder under the ‘Data Source’ tree
node, and select ‘Paste’ from the context menu.

5. To move the query or queries from the ‘Local Query’ folder to the
global repository (removing them from their embedding in the
report), follow these steps:

a. Select the desired queries in the ‘Local Query’ folder.

b. Drag-and-drop the selected queries on the desired folder under
the ‘Data Source’ tree node.

The query or queries are added to the common repository. Elements in the
report that were previously bound to removed local queries are
automatically re-bound to the newly-exported global queries.

Importing a Local Query from the Global Repository

To import a query from the global query registry (query.xml file) into a
local query, follow the steps below:

1. Open the report into which you want to import a query or queries.

2. Expand the Style Studio Asset panel.

DATA MODELING

329 of 2477

3. Expand the ‘Report’ node, which contains the ‘Local Query’
folder.

4. Expand the data source that contains the query or queries that you
wish to import.

Alternatively, drag-
and-drop the query to
the desired location
while holding down
the Ctrl key.

5. To copy the queries to the ‘Local Query’ folder (leaving the
originals in the global repository), follow these steps:

a. Select the desired queries, right-click, and select ‘Copy’ from
the context menu.

b. Right-click on the ‘Local Query’ folder, and select ‘Paste’ from
the context menu.

6. To move the query or queries to the ‘Local Query’ folder (and
remove them from the global repository), follow these steps:

a. Select the desired queries.

b. Drag-and-drop the selected queries to the ‘Local Query’ folder.

The query or queries are now displayed under the ‘Local Query’ folder and
embedded within the current report. You can bind a local query to a report
element in the same way that you bind any other data source. See
Walkthrough: Choosing the Binding Data Source in Report Design for
more information

Report elements that were bound to removed global queries are
automatically re-bound to the newly-created local copies.

4.5.6 Accessing a Stored Procedure

Stored procedures are compiled and stored in a database. There are a few
major differences between a stored procedure and a SQL query:

• A stored procedure is invoked as a function call instead of a SQL query.

• Stored procedures can have parameters for both passing values into the
procedure and returning values from the call.

• Results can be returned as a result set, or as an OUT parameter cursor.

Stored procedures are listed on the same tree as tables and views. Only one
stored procedure may be selected per query. The stored procedure
parameters are listed on the middle pane. Specify values for the parameters
by selecting each parameter on the tree and entering a value or variable
name. If the result column list is not populated, select the ‘Column Info’
button to retrieve it. Select the ‘Preview’ button to preview the query. If any
parameter is left as null or specified as ‘Prompt User’, when the query is

DATA MODELING

330 of 2477

executed a parameter dialog will pop up to prompt for the remaining
parameters.

Due to the different ways database vendors implement stored procedures,
not all stored procedures are supported by JDBC. If a stored procedure
cannot be used directly in the Style Studio, you can instead execute it with
custom code, and set up as a Java object data source.

The following is a list of known restrictions on stored procedures:

• Only one dataset is allowed in a stored procedure.

• In Oracle, only one cursor is allowed and it has to be the last parameter
in the stored procedure.

• In Oracle, only standard SQL types should be used in the parameters
(user defined types are not allowed).

• In PostgreSQL, create a free-form SQL query of the following form:

select * from procedureName(parameters)

• In MySQL, older drivers do not return procedure meta-data.

4.6 Virtual Private Model – Security
A Virtual Private Model (VPM) is an optional component that provides a
highly flexible and comprehensive security layer. The VPM controls
security for individual database tables. All queries, whether they are
created manually or automatically generated from a data model, are filtered
through the VPM.

The VPM is invisible to users, transparently providing access only to data
for which a given user is authorized. Because the VPM is applied at the
data level, security logic defined in the VPM applies to every method of
data access (deployed report, ad hoc report, dashboard, Worksheet, etc.).

A VPM consists of conditions, hidden columns, lookups, and their
associated triggers. Conditions and hidden columns allow you to filter rows
and columns, respectively, and can be easily created for global application.
Triggers provide fine-grained control on conditions and hidden columns by
role, group, and even individual user. Multiple VPMs can be specified for a
given data source, and these are joined in an ‘and’ fashion.

See Also
Design for Multi-Tenant Environment, in Integration, for connection-based
access control.

4.6.1 Creating a VPM

To create a Virtual Private Model, follow these steps:

DATA MODELING

331 of 2477

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Right-click the data source to which the VPM should be applied,
and select ‘Add Virtual Private Model’ from the context menu.

This opens the Virtual Private Model Wizard, which contains several tabs
for configuring the VPM. These allow you to set permissions on table rows
(VPM conditions) and table columns (VPM hidden columns), and to set
triggers to implement logic in permission settings. The following sections
discuss this in greater detail.

4.6.2 VPM Conditions

You can add a condition to a VPM to filter the rows retrieved from the
database tables. To add a condition to an existing VPM, follow these steps:

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Expand the data source that contains the VPM you want to edit.
Double-click the VPM to open it for editing.

3. In the VPM edit view, click the Conditions tab at the bottom of the
window.

4. In the ‘Define Conditions’ pane, click the ‘New’ button. This opens
the ‘New Condition’ dialog box.

Previously defined
conditions are listed
in alphabetical order.
(case insensitive).

5. Enter a name for the new condition in the ‘New Condition’ dialog
box, and click ‘OK’.

6. In the ‘Define Conditions’ pane, click the ‘Choose Table’ button.
This opens the ‘Select Table’ dialog box, showing a list of database
tables.

DATA MODELING

332 of 2477

The dialog box pro-
vides controls for
searching and sorting
tables. See Adding
Database Tables to the
Physical View for
details.

7. To define the condition on an individual table, select the ‘All’
option at the top. Select the desired database table from the list, and
click ‘Finish’ to close the dialog box.

The filter condition can be based on any fields in the selected table,
and the filter will be applied whenever the selected table appears in
a query.

8. To define the condition on a physical view, select the ‘Physical
View’ option at the top. Select the desired physical view from the
list, and click ‘Finish’ to close the dialog box.

Note: If you have created one or more aliases of a table in the
physical view, do not apply VPM conditions to the original table.
(VPM conditions applied to the original table may affect its
aliases in an unpredictable manner.) Rather, apply VPM conditions
only to the aliased copies.

DATA MODELING

333 of 2477

For the ‘Physical View’ option, the filter condition can be based on
fields from any table in the physical view. These fields will be
automatically included in any query generated from the physical
view, even if the query does not explicitly include them. This
effectively applies the filter globally to all data models derived
from the physical view.

9. In the ‘Conditions’ panel of the Conditions tab, specify the
condition that you want to apply to the table.

The menu controls for specifying the condition are the same as
those used in query construction and data binding. See Filtering
Data in Data Binding Wizard in Report Design for an example of
constructing a condition. The arrow menu allows you to use
different kinds of values in the right-side of the condition.

You can also use two
special variables,
USER and
ROLES, as param-
eters in the VPM con-
dition to represent the
current user user’s
roles.

‘Field’ allows you to select a different column from the same table
or physical view. ‘Expression’ allows you to enter a regular
expression using Perl5 regex syntax (see Appendix A.5, Regular
Expressions.) ‘Value’ allows you to enter a fixed value. ‘Variable’
allows you to enter the name of a parameter to supply the value at
runtime. ‘Subquery’ allows you to specify a distinct query to return
the right-side of the condition. ‘Session data’ provides the logged-
in user’s name, an array of user roles, and an array of user groups.

10. Click ‘Append’ to add the condition clause. Repeat the above steps
to add additional clauses, as needed.

11. Click ‘Save’ in the Style Studio toolbar to save the changes to the
VPM.

Once a condition is added to the table or physical view, the selected table or
physical view is automatically listed in the Lookup tab. This indicates that
the VPM will be applied to any query that contains the selected table, or
any data model that uses the physical view.

DATA MODELING

334 of 2477

Figure 1. VPM Conditions

4.6.3 VPM Hidden Columns

You can specify columns of a table to which VPM access control should be
applied. To add access control to table columns, follow these steps:

1. Open the Asset panel, and expand the ‘Data Source’ node.

2. Expand the data source that contains the VPM you want to edit.
Double-click the VPM to open it for editing.

3. In the VPM edit view, click the Hidden Columns tab at the bottom
of the window.

4. Drag the desired columns from the ‘Available Columns’ pane to
the ‘Hidden Columns’ pane.

The columns listed in the ‘Hidden Columns’ pane are
automatically hidden from all users, except for those who are
associated with at least one of the roles listed in the ‘Grant to’ pane.

5. Add the desired roles to the ‘Grant to’ pane by clicking the arrow
button.

DATA MODELING

335 of 2477

6. Click ‘Save’ in the Style Studio toolbar to save the changes to the
VPM.

Once the hidden columns are specified, the tables containing those
columns are automatically listed in the Lookup tab. This indicates that the
VPM security will be applied to any query that contains those tables.

A column that is derived from one or more hidden columns by an
expression will be accessible only to users who have permissions for all of
the columns used in the expression. However, for unparsable queries,
derived columns should be explicitly tagged; see VPM Filtering of
Unparsable Queries.

4.6.4 Trigger Scripts

The restrictions specified in a VPM are global by default and apply to all
users. Triggers allow you to incorporate business logic into this cell-level
security model. There are three types of triggers: Lookup Trigger, Column
Trigger, and Condition Trigger. Trigger scripts use standard JavaScript
syntax, and the following parameters are available to all three triggers:

PARAMETER VALUE

user The user id
roles Array of roles that this user is associated with
groups Array of groups that this user is associated with
parameter Report parameters
tables List of tables in the query
columns Array of columns included in the query

DATA MODELING

336 of 2477

Lookup Trigger

All tables for which the VPM specifies conditions or hidden columns listed
under the Lookup tab. When a report or dashboard runs a query, the VPM
will be applied to the query if the query makes referenced to any one of
these “lookup” tables.

To apply the VPM to a query based on information other than its
constituent tables, you can specify this logic in the lookup Trigger tab
script. The lookup trigger script is executed only if the VPM would not
have been applied otherwise. The VPM is applied only if the lookup trigger
returns true.

Column Trigger

The hidden column Trigger allows you to modify the list of hidden
columns for individual users, or for a specific role or a group of users. The
following additional parameters are available for the column trigger:

The hidden columns trigger should return a modified array of hidden
columns in the last statement of the script. For example:

hiddenColumns[hiddenColumns.length] = 'SA.CUSTOMERS.CITY';
hiddenColumns;

Condition Trigger

The condition Trigger tab enables you to modify the set of conditions
specified in the VPM. The following additional parameters are available
for the condition trigger:

The condition trigger should return the modified list of conditions in the
last statement of the script. For example:

if(condition.length > 0) {
condition += " and ";

}

condition += "SA.CUSTOMERS.STATE = 'CA'";
condition;

4.6.5 VPM Example
Walkthrough In the following example, you will create a VPM that implements the

following restrictions:

PARAMETER VALUE

hiddenColumns Array of hidden columns defined in the VPM

PARAMETER VALUE

condition Condition string of the conditions defined in the VPM

DATA MODELING

337 of 2477

• The ‘CUSTOMER_ID’ column in the ‘CUSTOMERS’ table will be
hidden from all users except those with the ‘Administrator’ role.

• Information about California customers will be hidden from all users
except those with the ‘CASalesDept’ role.

A security provider is required in order to use VPM security. See
Specifying a Security Provider in Administration Reference for
more information.

To begin, create a new user and role in your security model. (If you are
using default security provider, do this from within Enterprise Manager.
See Creating and Editing Roles in Administration Reference for
instructions.)

1. Create a new role called “CASalesDept”. Users who are assigned
this role will have access to information about all of the customers
in the state of California.

2. Create a new user “Eric,” and assign him the role of
“CASalesDept”.

You will now define a VPM that operates on the ‘CUSTOMERS’ table. It
will hide the ‘CUSTOMER_ID’ field from all users, and hide California
customer information from unauthorized users.

3. Open the Asset panel, and expand the ‘Data Source’ node.

4. Right-click the ‘Orders’ node, and select ‘Add Virtual Private
Model’ from the context menu. This opens the ‘Virtual Private
Model Wizard’.

5. Name the new VPM “Customers”. Notice that a short description
for the VPM can also be added in this wizard.

6. Click on the ‘Finish’ button. This opens the new VPM for editing.

7. Click the Conditions tab at the bottom of the VPM editing panel.

8. Click on the ‘New’ button. This opens the ‘New Condition’ dialog
opens.

DATA MODELING

338 of 2477

9. Name the new condition “NotCA” and click on the ‘OK’ button.

10. Click the ‘Choose Table’ button. This opens the ‘Select Table’
dialog box.

11. Select the ‘SA.CUSTOMERS’ table and click on the ‘Finish’
button.

12. Specify the following condition and click the ‘Append’ button:

[SA.CUSTOMERS.STATE] [is not] [equal to] ['CA']

DATA MODELING

339 of 2477

13. Click the Trigger tab and add the following script:

var newcond = condition;
for(var i = 0; i < roles.length; i++) {
if(roles[i] == 'CASalesDept') {
newcond = "";
break;

}
}
newcond;

DATA MODELING

340 of 2477

This script tests all of the roles assigned to the current user. If one of
these roles is ‘CASalesDept’, then the condition specified earlier
(and provided to the script as variable condition) is replaced with
an empty string, indicating a null condition. The effect is that no
state filtering occurs for a user with role ‘CASalesDept’.

To achieve the same result without using a trigger script, join
(“and”) the following clause to the original condition: [Roles] [is
not] [equal to] ['CASalesDept']. (To select the ‘Roles’ option in
the left-menu, first choose the ‘Session Data’ option from the
adjacent pop-up menu.)

14. Select the Hidden Columns tab.

15. Select ‘SA.CUSTOMERS.CUSTOMER_ID’ field from the list of
‘Available Columns’ and click on the right-arrow button to add the
field to the list of ‘Hidden Columns’.

16. Select ‘Administrator’ from the list of ‘Available Roles’ under
‘Grant access to’. Click the right-arrow button to grant permission
to the ‘SA.CUSTOMERS.CUSTOMER_ID’ field to all users
having role ‘Administrator’.

DATA MODELING

341 of 2477

17. Click the Lookup tab (at bottom) and notice that the
‘SA.CUSTOMERS’ table is included in the list of lookup tables.
All tables having conditions or hidden columns will appear in this
list.

18. Click the Test tab (at bottom), and select ‘Role’.

19. Select ‘Administrator’ from the list of roles and click on the ‘Test’
button. Users with ‘Administrator’ role do not see California data
because of the ‘CUSTOMERS.STATE’ condition. However,
because no hidden columns are listed here, they are able to see the
‘CUSTOMERS.CUSTOMER_ID’ field.

20. Now select ‘CASalesDept’ from the list of roles and click on the
‘Test’ button. Users belonging to this role do not have the
‘CUSTOMERS.STATE’ condition applied to their query. This is
because of the condition trigger script. However, the
‘CUSTOMERS.CUSTOMER_ID’ column is hidden from all of
these users.

21. Select the ‘User’ button, and choose ‘Eric’ from the user list. Click
‘Test’ and confirm that Eric’s permissions are the same as those for
the role of ‘CASalesDept’ because Eric has been assigned this role.

DATA MODELING

342 of 2477

22. Select the ‘Role’ button again. Choose ‘Everyone’ from the role list
and click on the ‘Test’ button. Notice that the
‘CUSTOMERS.STATE’ condition as well as the
‘CUSTOMERS.CUSTOMER_ID’ hidden column are applied to
queries from users having this role.

23. Click on the ‘Save’, button on the Style Studio toolbar to save the
changes made to this VPM.

4.6.6 VPM Filtering of Unparsable Queries

In some cases, Style Studio may not be able to parse highly complex SQL
queries, or those that contain custom database syntax. If a query is
unparsable, Style Studio cannot automatically identify the columns being
returned by the query, and therefore cannot automatically apply the VPM
security model.

To enable VPM filtering for an unparsable query, you must embed special
tags into the query’s SQL string. These tags supply information to Style
Studio about hidden columns and filtering conditions. The special tags are
listed below.

The ‘vpm.tables’ and ‘vpm.columns’ tags should be added at the beginning
of the unparsable query. The ‘vpm.tables’ tag is followed by a list of tables
used in the query. The ‘vpm.columns’ tag is followed by a list of table

TAG REFERENCE
--vpm.tables A list of the tables contained in the query (to be used for

VPM filtering).
--vpm.columns A list of the hidden columns used in the query.
--vpm.aliases A list of the table aliases used in the query.
/*<idx>*/ The integer index of the hidden column in the

‘vpm.columns’ list from which the tagged query column
should inherit security. (Numbering begins with 1.)

/*<where>*/ Denotes the “where” clause of the query for which
filtering conditions are to be added by the VPM

DATA MODELING

343 of 2477

columns from which the query columns will inherit VPM settings. Every
item on this list must exactly match one of the columns specified in the
‘Hidden Columns’ panel of the Hidden Columns tab. (See Step 14 of the
VPM Example section.)

To specify the security for a particular returned query column, you need to
associate the given query column with one of the hidden columns in the
‘vpm.columns’ list. To do this, wrap the query column inside a pair of ‘/
<idx>/’ tags, and set ‘idx’ to the index of the listed column from which
the query column should inherit security.

If the VPM defines filtering conditions for any one of the tables in the
‘vpm.tables’ list, those conditions will be applied within the ‘/*<where>*/’
tags.

Example:
Filtering
Unparsable
Queries

Consider the following query.

select
SA.CUSTOMERS.COMPANY_NAME,SA.ORDER_DETAILS.QUANTITY+10,
SA.ORDERS.DISCOUNT,SA.PRODUCTS.PRODUCT_NAME,SA.PRODUCTS.PRI
CE,SA.PRODUCTS.DESCRIPTION
from SA.CUSTOMERS, SA.ORDER_DETAILS, SA.ORDERS, SA.PRODUCTS
where
SA.ORDER_DETAILS.PRODUCT_ID = SA.PRODUCTS.PRODUCT_ID and
SA.ORDERS.ORDER_ID = SA.ORDER_DETAILS.ORDER_ID and
SA.ORDERS.CUSTOMER_ID = SA.CUSTOMERS.CUSTOMER_ID

Assume that the query is unparsable, and that you want to apply security to
the ‘CUSTOMERS.COMPANY_NAME’ and ‘ORDER_DETAILS.QUANTITY+10’ columns
returned by the query, and that you also want to apply a VPM filter to the
‘where’ clause.

To configure the above security settings, follow these steps:

1. In the Hidden Columns tab, add the
‘SA.CUSTOMERS.COMPANY_NAME’ and ‘SA.ORDER_DETAILS.QUANTITY’
columns to the ‘Hidden Columns’ list.

2. Specify the desired VPM filtering conditions in the Conditions tab.

3. Open the query in Style Studio, and click the SQL String tab to
edit the query SQL as follows.

4. Place the ‘/*<where>*/’ tags around the “where” clause of the
query:

/*<where>*/SA.ORDER_DETAILS.PRODUCT_ID =
SA.PRODUCTS.PRODUCT_ID and SA.ORDERS.ORDER_ID =
SA.ORDER_DETAILS.ORDER_ID and SA.ORDERS.CUSTOMER_ID =
SA.CUSTOMERS.CUSTOMER_ID/*</where>*/

DATA MODELING

344 of 2477

5. Add the following tags at the beginning of the query:

--vpm.tables:SA.CUSTOMERS,SA.ORDER_DETAILS,SA.PRODUCTS
--
vpm.columns:SA.ORDER_DETAILS.QUANTITY,SA.CUSTOMERS.COMPANY_
NAME

Filtering conditions defined by the VPM on the specified tables
(vpm.tables) will be applied within the ‘/*<where>*/’ tags. The
specified columns (vpm.columns) will be referenced by the ‘/
<idx>/’ tags in the queries, as follows.

Note: The SQL query
must remain valid
when the material
enclosed by tags is
removed. Commas
should therefore be
placed inside the tags.
Line breaks may not
occur between two
special tags.

6. Add ‘/*<idx>*/’ tags around the query columns that will inherit
security:

select /*<2>*/SA.CUSTOMERS.COMPANY_NAME,/*</2>*/
/*<1>*/SA.ORDER_DETAILS.QUANTITY+10,/*</1>*/ ...

Note that the index ‘idx’ refers to the location of the corresponding
hidden column in the ‘vpm.columns’ list. Therefore, the tag ‘/
<1>/’ refers to the first item in the ‘vpm.columns’ list, which is
‘ORDER_DETAILS.QUANTITY’. This means that the returned column
‘SA.ORDER_DETAILS.QUANTITY+10’ inherits security from the hidden
column ‘ORDER_DETAILS.QUANTITY’.

The complete tagged query is shown below:

--vpm.tables:SA.CUSTOMERS,SA.ORDER_DETAILS,SA.PRODUCTS
--
vpm.columns:SA.ORDER_DETAILS.QUANTITY,SA.CUSTOMERS.COMPANY_
NAME
select /*<2>*/SA.CUSTOMERS.COMPANY_NAME,/*</2>*/ /*<1>*/
SA.ORDER_DETAILS.QUANTITY+10,/*</1>*/
SA.ORDERS.DISCOUNT,SA.PRODUCTS.PRODUCT_NAME,SA.PRODUCTS.PRI
CE,SA.PRODUCTS.DESCRIPTION
from SA.CUSTOMERS, SA.ORDER_DETAILS, SA.ORDERS, SA.PRODUCTS
where /*<where>*/SA.ORDER_DETAILS.PRODUCT_ID =
SA.PRODUCTS.PRODUCT_ID and SA.ORDERS.ORDER_ID =
SA.ORDER_DETAILS.ORDER_ID and SA.ORDERS.CUSTOMER_ID =
SA.CUSTOMERS.CUSTOMER_ID/*</where>*/

¢

4.7 OLAP Overlay – Multidimensional Analysis
Note: OLAP features are available only in Style Intelligence.

Style Studio provides a lightweight, logical mapping tool called OLAP
overlay to allow direct “slice-and-dice” on ER schema data. The OLAP
overlay is an optional component of a data model that provides flexible
ways to dynamically group, aggregate, and display summary information.

An OLAP overlay defines attributes as measures and dimensions.
Measures are numeric values that are additive in nature. For example,

DATA MODELING

345 of 2477

‘order sale amount’ fits this definition because adding all ‘order sale
amounts’ will give the ‘sales total’. Bank account ‘daily balance’, on the
other hand, is not additive because adding two days of a balance does not
provide meaningful information. Therefore, account balance is considered
semi-additive, because it can still be averaged for useful purposes.

Dimensions are the descriptive parameters for measures that can be used to
filter and group. For example, ‘purchase date’, ‘ship date’, ‘product’ and
‘sale location’ are all possible dimensions for orders. Dimensions also
often form natural hierarchies, i.e., a product belongs to a category. This
allows business users to easily use different combinations of dimensions
and measures to analyze performance.

The total collection of dimensions and measures represents a
multidimensional data structure known as a data cube. Because of its
organization into dimensions and measures, conceptually, the OLAP
overlay can also be considered a star schema.

4.7.1 Creating a Hierarchical OLAP Overlay

The Hierarchy tab of the logical model provides an interface to create the
OLAP overlay. Entities and attributes are listed in the center pane in a tree
structure.

To add dimensions to the overlay, do one of the following:

The order of dimen-
sions within each
dimensional hierar-
chy is significant, as
this is the order of the
drilling hierarchy.

• Drag an individual attribute from the logical model (center panel) to the
‘Dimensions’ panel. This adds the attribute as a dimension.

• Drag an entire entity from the logical model (center panel) to the
‘Dimensions’ panel. This adds all attributes of the entity as a
dimensional hierarchy.

DATA MODELING

346 of 2477

To add a measure to the overlay, drag an attribute from the logical model
(center panel) into the ‘Measures’ area.

When you create dimensions, give special attention to Date fields.
Breaking a single date field into individual components can drastically
increase usability for the end user. Additionally, mapping date components
into business attributes can be a powerful usability enhancement, for
example, mapping the month of a date field so that June becomes “calendar
month 1,” and so on.

To create new date components of this kind, you can define expression
attributes in the Model tab. These expression attributes will be available for
use in the hierarchical overlay. For example, to create a new ‘Month’
attribute in which June is “calendar month 1,” you could define a new
expression attribute with the formula

Month(DateAdd('m',-5,field['orders.order_date']))

where ‘orders.order_date’ is the existing date column. The particular
formula would need to use SQL syntax and functions that are appropriate
to the underlying database. See Defining Expression Attributes for more
information.

4.7.2 Editing Dimension and Measure Properties

You can change the names of dimensions and measures from the
‘Properties’ panel of the Hierarchy tab. Additionally, the aggregation
method for each measure can be specified using the ‘Aggregate’ menu.

DATA MODELING

347 of 2477

The aggregation method determines how a particular measure is
summarized at the different levels of dimensional granularity. For example,
consider the case where you have the hierarchically-related dimensions
‘Month’ and ‘Day’, and a measure ‘Cost’. If you aggregate the measure by
‘AVG’, then the value of the measure when viewed along the ‘Month’
dimension will be “average cost per month,” while the value of the
measure when viewed along the ‘Day’ dimension will be “average cost per
day.” Likewise, if you aggregate the measure by ‘MIN’, then the value of
the measure when viewed along the ‘Month’ dimension will be “minimum
cost per month,” while the value of the measure when viewed along the
‘Day’ dimension will be “minimum cost per day.”

4.7.3 Creating Derived Measures

In addition to selecting existing model attributes as measures for the
hierarchical overlay, you can create new “derived measures,” which are
measures computed from existing attributes.

To create a derived measure:

1. Click the ‘Create derived measure’ button above the ‘Dimensions’
tree in the Hierarchy tab. This opens the ‘Add Expression’ dialog
box.

2. Enter a name for the new measure and click ‘OK’. This opens the
Script Editor.

3. In the Script Editor, enter an expression to define the new measure.
The expression should use the appropriate SQL syntax for the
underlying database. (There are no aggregation functions available
for measure definition because aggregation is specified in the
‘Properties’ panel of the Hierarchy tab.)

4. Click the ‘Save and Close’ button. The new derived measure will
appear alongside the existing measures.

4.7.4 Example: OLAP Overlay
Walkthrough In this example, you will create a data cube (OLAP overlay) with two pairs

of nested dimensions and two measures. This overlay will be based on the
existing Order Model, so first make a working copy of that logical model:

1. Open the Asset panel, and expand the ‘Data Source’ node.

DATA MODELING

348 of 2477

2. Expand the ‘Orders’ node, and expand the ‘Data Model’ node.

3. Right-click the ‘Order Model’ node, and select ‘Copy’ from the
menu.

4. Right-click on the ‘Data Model’ node, and select ‘Paste’ from the
context menu. This creates a new data model called ‘Copy of Order
Model’.

5. Right-click this copy and select ‘Rename’. Rename the copy ‘New
Order Model’ and click ‘OK’.

6. Double-click the ‘New Order Model’ node to open the copied
model.

7. Click the Hierarchy tab at the bottom of the edit panel.

8. Remove the existing hierarchical overlay, so that you can start
fresh. To do this, follow the steps below:

a. Select a dimension (cube icon) in the ‘Dimensions’ panel. Click
the ‘X’ button to delete the entity from the overlay.

DATA MODELING

349 of 2477

b. Repeat the above step to delete all additional dimensions in the
‘Dimensions’ panel.

c. Repeat the above steps to delete all measures in the ‘Measures’
panel.

You will now specify dimensions and measures for the new hierarchical
overlay. The four dimensions are as follows:

• ‘Customer State’

• ‘Customer City’

• ‘Product Category’

• ‘Product SKU’

The first pair forms a hierarchical group, i.e., ‘City’ represent a finer
granularity than ‘State’. The second pair also forms a hierarchical group,
i.e., ‘SKU’ represents a finer granularity than ‘Category’.

First you will create the dimensional hierarchy representing customer
location. This hierarchy will be composed of ‘Customer State’ and
‘Customer City’:

9. Click and drag the ‘Customer.State’ attribute from the model panel
to the ‘Dimensions’ panel. This adds a new dimension called
‘State’ to the ‘Dimensions’ panel, automatically placed under a
hierarchy labeled ‘State’.

10. Click on the ‘State’ hierarchy node (cube icon) to select it. In the
‘Name’ field of the ‘Properties’ panel, enter the name “Customer
Location.” (You can also enter a description of this hierarchy, if
desired.)

DATA MODELING

350 of 2477

11. Click and drag the ‘Customer.City’ icon from the model panel to
the ‘Dimensions’ panel. Drop it on top of the ‘Customer Location’
node.

The ‘City’ attribute should now appear as a dimension in the
‘Customer Location’ hierarchy. Make sure the dimension order is
correct: Finer-granularity dimensions should appear below the
corresponding courser-granularity dimensions; thus, ‘City’ should
appear below ‘State’. If the ordering is wrong, move the dimension
by using the arrow buttons above the panel.

12. To add the next hierarchy, drag the ‘Product.Category’ attribute
from the model panel to an empty location in the ‘Dimensions’
panel. This adds a new dimension called ‘Category’ to the
‘Dimensions’ panel, automatically placed under a hierarchy
labeled ‘Category’.

13. Click on the ‘Category’ hierarchy root node (cube icon) to select it.
In the ‘Name’ field of the ‘Properties’ panel, enter the name
“Product Info.” (You can also enter a description of this hierarchy.)

14. Click and drag the ‘Product.SKU’ icon from the model panel to the
‘Dimensions’ panel. Drop it on top of the ‘Product Info’ node.

This adds the ‘SKU’ attribute as a dimension in the ‘Product Info’
hierarchy. Again, make sure the dimension ordering is correct,
‘SKU’ below ‘Category’.

DATA MODELING

351 of 2477

Now you will add two measures. The first measure will be the quantity of
product purchased, and the second measure will be the dollar amount of
discounts applied. Because this second measure is not available as an
existing attribute, you will derive it from other attributes by using an
expression.

15. Click and drag the ‘Product.Quantity Purchased’ attribute from the
model panel to the ‘Measures’ panel. This adds a new measure
called ‘Quantity Purchased’ to the ‘Measures’ panel.

16. Click to select the ‘Quantity Purchased’ measure in the to the
‘Measures’ panel. This opens the ‘Properties’ panel at bottom.

17. From the ‘Aggregate’ menu, select the ‘MIN’ option. This will
compute the minimum quantity purchased for each level of the
dimension.

18. To define the derived measure, the dollar amount of discounts,
click the ‘Create Derived Measure’ button above the ‘Dimensions’
tree. This opens the ‘Add Expression’ dialog box.

19. Enter “Total Discounts” in the ‘Expression Name’ field. This will
be the name of the new measure.

DATA MODELING

352 of 2477

20. Click the ‘OK’ button in the ‘Add Expression’ dialog box to open
the Script Editor.

You can double-click
an attribute names in
the ‘Fields’ tree to add
it to the expression.

21. In the Script Editor, enter the following expression to define the
new measure representing the total dollar amount of discounts:

field['Product.Total'] * field['Order.Discount']

22. Click the ‘Save and Close’ button. This adds the new derived
measure ‘Total Discounts’ alongside the other measure.

23. From the ‘Aggregate’ menu in the ‘Properties’ panel, select the
‘SUM’ option. This will compute the summed discount in dollars
for each level of dimension granularity.

The hierarchical overlay is now fully specified, and you can use this OLAP
model when you design Viewsheets.

See Also
Creating a Crosstab, in Dashboard Design.

4.7.5 Design Considerations

You should give careful consideration to designing a properly formed
OLAP overlay. In particular, the relationships between dimensions and
measures, and between attributes within a dimension, should have the
cardinality pattern shown below:

This cardinality pattern will avoid “traps” and ensure that aggregation
performed by end users gives correct results.

In the event that you need to implement your OLAP design in a physical
database (rather than using the hierarchical overlay), the following books
will provide helpful design ideas:

• The Data Warehouse Toolkit, by Ralph Kimball

• Building the Data Warehouse, by William Inmon

1

1
1
n

n

n

Dimension

Dimension Dimension

Fact

Level 2

Level 1

Measures

DATA MODELING

353 of 2477

5 Multidimensional Databases

The multidimensional database is another way to provide data for OLAP
operations. Taking the place of tables in relational databases,
multidimensional databases organize data into cubes that contain measures
and dimensions. This technology is often referred as MOLAP. The primary
benefit of using MOLAP is enhanced performance because of pre-
aggregation.

The closest to an industry standard query language is MDX via XMLA.
Style Studio uses these technologies to access meta-data from MOLAP
databases and present it uniformly. Because the meta-data from a MOLAP
database contains all of the information needed for the Style Studio engine,
models for multidimensional databases are automatically created.

Recommendation: Within a given level of a dimension, do not create
multiple entries with the same name. This creates an ambiguity for
Viewsheet selections.

Multidimensional databases are most commonly provided by a part of a
relational database. Both the Microsoft SQL Server Analysis Services and
Oracle OLAP server are OLAP add-ons. ESSbase is a specialized
multidimensional database that is also marketed as an IBM OLAP server as
an add-on to the DB2 database server. Some independent OLAP databases
exist, such as Mondrian.

See Also
Appendix Appendix B:, OLAP Server Setup, for details about specific
databases.

5.1 Configuring a Multidimensional Database Data
Source
To configure an OLAP data source, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Data Source’ node. In the right ‘Type’
panel, select ‘XMLA’ and click ‘OK’.

DATA MODELING

354 of 2477

This opens the ‘XMLA Data Source Wizard’ dialog box.

3. In the ‘XMLA Data Source Wizard’ dialog box, click the General
tab and enter the data source ‘Name’ and ‘Description’.

4. Click the Driver tab and enter the ‘XMLA URL’.

XMLA is used to communicate with the OLAP server. The URL is
the path to the XMLA service; for example, the URL for SQL
Server is the file msxisapi.dll, which is in the Isapi directory of the
XMLA installation.

5. Click on ‘Browse Catalogs’ button and select the database catalog
name from the menu. Click ‘OK’.

6. Click on ‘Retrieve Metadata’ to load the schema. This button can
be used to update the schema if it changes.

DATA MODELING

355 of 2477

7. (Optional) For a date dimension, select a desired level of the date
dimension in the tree, and enable the ‘As Date’ option. In the ‘Parse
Pattern’ field, enter the date format corresponding to the date
values stored in the data source.

The ‘As Date’ option allows the date field to be displayed in
Charts, Crosstabs, and Selection Lists with normal date-sorting
features, and allows the date field to be filtered by a Range Slider
component (but not by a Calendar component).

8. Press the ‘View Sample Data’ button to verify that the dates are
being parsed correctly.

DATA MODELING

356 of 2477

9. ‘Save’ the data source.

10. The ‘Keep Original Order’ option for a dimension determines the
sorting order when it is displayed in a chart or a cross-tab. If
checked it will display values in the order it retrieves them from the
data source.

See Also
Appendix Appendix B:, OLAP Server Setup, for details about specific
databases.

DATA MODELING

357 of 2477

6 Non-Relational Data Sources

In today’s business environment, data is stored in many different formats.
Java Objects are present in legacy systems, while Web Services and XML
are the new standards for sharing information over the internet. Excel
remains a popular data analysis and manipulation tool. Style Intelligence
allows you to leave your data in its native format and still utilize it for BI
purposes.

6.1 XML Data Source
With the explosive growth of the Internet, a number of new data format
standards have emerged. A widely accepted format is XML. With its self-
descriptive properties, and both human and machine-readable content,
XML has transformed the way that information is exchanged.

Style Studio uses ‘XQuery’, a standard developed by W3C, for querying
XML documents and other forms of hierarchical data. XQuery transforms
the hierarchy into a flat tabular format to make it more conducive to
reporting and analysis. The conditional expression syntax (see Appendix
Appendix A:, Hierarchical Query Condition Expression Syntax) is based
on SQL and is very easy to learn. The following sections provide a few
examples of creating XML queries.

See Also
Querying XML or Web Service Data Source, for information on creating a
query.

6.1.1 Defining an XML Data Source

Creating an XML data source in Style Studio is similar to the creating a
JDBC data source.

Walkthrough To create an XML data source named “MyPersonnel,” follow the steps
below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Data Source’ node, and in the right
‘Types’ panel select ‘XML’. Click ‘OK’. This opens the ‘XML
Data Source Wizard’.

3. Click the General tab. Enter “MyPersonnel” for the data source
‘Name’.

DATA MODELING

358 of 2477

4. Click the Source tab. Enter a data source URL. (For this example,
“file:///$INSTALL_DIR$/examples/docExamples/datasource/
data/personnel.xml”.)

An XML data source can get its data from any URL. In particular,
it can communicate with an HTTP server using the POST or GET
methods to pass parameters to the server side program. A DTD or
XML schema must be specified for the XML data stream.

You can use a variable in the URL field, e.g., ‘file:///c:/
datafiles/$(parameter_name)’ to make the data source URL
dynamic (in part or whole). Parameters can be specified in one of
three ways: (1) as system variables, (2) as report parameters within
the sree.properties file or (3) as URL parameters. The report engine
will look for the parameters in the above sequence, and if not
found, will default to prompting the user for the parameter.

5. Select the HTTP method. If the URL does not use HTTP, select the
GET method.

6. Select the Request tab.

DATA MODELING

359 of 2477

7. Enter the name and the encoding of the request, “default” and
“UTF8”.

Each request is bound to a pre-defined XML output type (DTD).
More requests can be added after the data source has been created.
A request corresponds to a particular set of parameters in the data
source server. For example, a servlet may expect a ‘file’ parameter
which contains the file name of the XML file on the server.

8. Select the Parameter tab.

The Parameter tab shows the current parameters for the request.
For HTTP requests, the parameters are ordered in a parameter tree.
The root of the tree is the ‘Parameters’ node. The child of the root is
a sequence node, with one or more pairs of parameters. Each pair
consists of a name and a value node. The name node contains the
name of the HTTP request parameter, and the value node contains
the value of the parameter.

Check the ‘Variable’
box if you want the
parameter value to be
a variable.

9. To add a new parameter, select the ‘parameters[0]’ node and click
on the ‘Add parameter’ button. Enter the name of the parameter
and its value. Repeat to add more parameters.

DATA MODELING

360 of 2477

10. Select the Output tab. Click ‘Browse’ and choose the DTD or
XSD file that corresponds to the XML file (In the example,
personnel.dtd). Click ‘Import DTD’.

11. Click ‘Finish’. This closes the Wizard and creates the XML data
source.

12. Select the Output tab. The output tree shows the XML schema
defined in the DTD file. Because the DTD format does not specify
the real type of the data in the XML elements, all elements are
treated as strings by default.

See XML Element
Types for more infor-
mation about the
types.

You do not ordinarily need to specify XML element types. This is
only necessary if the element is used in the query selection
conditions as a non-string type. For example, if the birthday is
compared in a conditional expression with another date value, the
type must be specified for the XML element, otherwise it will be
treated as a string and the comparison will be meaningless.

Since only one schema is defined for each request, a request can
only generate XML data in the specified schema. A separate
request must be defined in the data source for each different XML
output type.

13. (Optional) To manually override the element type for an element,
follow the steps below:

a. Expand the ‘employee’ node, select the ‘birthday’ node, and
change its type to ‘date’.

DATA MODELING

361 of 2477

b. Select the ‘salary’ node on the tree, and change its type to
‘double’.

c. Set any desired format for the field (e.g., MMM-dd-yy for a date or
###.00 for a number). See Adding a Format to a Data Field for
more information about format specifications.

14. Click the ‘Save’ button in the Style Studio toolbar to save the new
data source.

Every XML data source must contain at least one request. For more
complex XML data sources, it is often necessary to create multiple
requests. Each request can have different parameters and a different XML
output type. If the URL is not HTTP-based or does not require any
parameters, simply create a request without specifying any parameters.

6.1.2 XML Element Types

The XML Element Types can be specified as any one of the following pre-
defined types:

 – String
 – Boolean
 – Float
 – Double
 – Char
 – Byte
 – Short
 – Integer
 – Long
 – TimeInstant – Date and time
 – Date – Date only
 – Time – Time of day

For date and time data types, you can supply a date format to create a date
parser. Construct the format string according to the

DATA MODELING

362 of 2477

java.text.SimpleDateFormat specification. (See Adding a Format to a
Data Field for more information about format specifications.) For
example, to parse the date ‘01/30/2000 01:30:59’, use the format ‘MM/dd/
yyyy hh:mm:ss’. The ‘double’ element type requires that the decimal
format be specified. Construct the format according to
java.text.DecimalFormat specification. For example, to add commas to a
number, use ‘#, ###, ###. ##’.

6.2 Web Service Data Source
The example web ser-
vice data source must
run in a J2EE applica-
tion server.

Web Services have proved increasingly efficient in sharing data among
distributed applications in a hybrid language environment. The
functionalities are made accessible over the web using SOAP (Simple
Object Access Protocol). Style Studio allows you to create a data source
that retrieves data from a web service with any standard SOAP
implementation.

If the web service does not require special intervention for the generation of
the client (i.e., a working client can be generated by wsimport with no
arguments or custom binding), you only need to provide the URL of the
WSDL in order to create the web services data source. If you do not create
a client stub, one will be created automatically by Style Studio. To create a
stub manually, see Creating the Client Stub.

See Also
Querying XML or Web Service Data Source, for information on creating a
query.

6.2.1 Defining a Web Service Data Source

Before you create any web service data source, verify the following points:

• The web service is running on the host server.

• (Optional) You have created a Java client stub as described in Creating
the Client Stub.

The example below uses a web service called ‘PeopleService’ which is
deployed with the default installation. To follow the example, use the
peopleservice-client.jar file in the sree/WEB-INF/lib folder as the client
stub. Make certain that you add it to the Style Studio classpath. (See
Configuring the Style Studio Classpath in Getting Started.)

Walkthrough You will now walk through the creation of a SOAP data source, which will
connect to the ‘PeopleService’ web service (included in the default
installation).

Before you start, verify the following:

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html

DATA MODELING

363 of 2477

• Start the server and make sure that the ‘PeopleService’ webservice has
been deployed (‘http://localhost:8080/sree/PeopleService’).

• Verify that the peopleservice-client.jar file located in the sree/WEB-
INF/lib folder is on the Style Studio classpath. (See Configuring the
Style Studio Classpath in Getting Started.)

Then follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Data Source’ node. In the right ‘Types’
panel, select ‘SOAP’, and click ‘OK’. This opens the ‘SOAP Data
Source Wizard’.

3. Select the General tab. In the ‘Name’ field, enter “Contacts2”.

4. Select the URL tab. In the ‘URL’ field, enter the service URL:
‘http://localhost:8080/sree/PeopleService’

5. Select the Import tab. In the ‘Server Interface’ field, specify the
client stub class (Soap Binding Stub):
‘com.inetsoft.webservice.client.PeopleServiceService’

DATA MODELING

364 of 2477

Note: The ‘Generated’ option can be used to generate the client
stub automatically if the web service does not require special
intervention for the generation of the client (i.e., if a working client
can be generated by wsimport with no arguments or custom
binding).

6. Click ‘Finish’ to add the data source to the data source registry
(datasource.xml).

7. Click the ‘Test Data Source’ button on the Style Studio toolbar to
verify that the data source is configured correctly.

By default, this is
done when you create
the data source

8. Click on the ‘Import Binding Stub Class’ to import (introspect) its
‘get’ methods.

You can now create a query based on the ‘get’ methods of the data service.

6.2.2 Creating the Client Stub

You can create a client stub using any standard SOAP implementation that
conforms to the JAXWS standard. The recommended implementation is
Metro, developed by the GlassFish group.

To create a Java client stub for a web service using Metro, follow the steps
below:

https://metro.dev.java.net/

DATA MODELING

365 of 2477

1. Make sure the web service is deployed and running on the host
server.

2. Create the client java stubs:

a. Download and set-up Metro (http://metro.java.net).

b. Create a new folder where the stub files will be create (e.g.,
{StubHome}).

c. Create two folders in {StubHome}, e.g., classes and source, or
any other suitable names.

d. Use the {MetroHome}/bin/wsimport utility to create the stubs
with the following command:

wsimport.bat -s {folder1} -c {folder2} -Xendorsed
{URL}?wsdl

e.g., change directory to {StubHome}
{MetroHome}/bin/wsimport.bat -s source -c classes -
Xendorsed http://localhost:8080/sree/PeopleService?wsdl

This will create the Java stub files in the classes folder and
source code (optional) in the source folder.

6.3 Text Data Source
A Text data source is used to represent data that is stored in a fixed-width
text file, delimited text file, or Excel spreadsheet. The text file is treated as a
table: Each line is converted into a table row, and the fields are used to
populate the columns.

6.3.1 Defining a Text Data Source

A Text data source definition contains configuration information for
accessing the data in the text file. The configuration includes the URL of
the data source and a list of related requests. In a servlet- or CGI-based
URL, each request corresponds to a parameter set for the HTTP request.

To create a Text data source, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Data Source’ node. In the right ‘Types’
panel, select ‘Text’, and click ‘OK’. This opens the ‘Text Data
Source Wizard’.

https://metro.dev.java.net/

DATA MODELING

366 of 2477

3. Select the General tab. In the ‘Name’ field, enter a name for the
new data source.

4. Select the Source tab. In the ‘URL or File’ field, enter the path to
the text data file.

You can use a variable in the ‘URL or File’ field, e.g., ‘file:///c:/
datafiles/$(parameter_name)’ to make the data source URL
dynamic (in part or whole). Parameters can be specified in one of
three ways: (1) as system variables, (2) as report parameters within
the sree.properties file, or (3) as URL parameters. The report
engine will look for the parameters in the above sequence, and, if
not found, will default to prompting the user for the parameters.

If the URL refers to a static data stream, simply create one
default request with no parameters.

5. (Optional) Select the Request tab, and enter the name of the
request. In a servlet- or CGI-based URL, each request corresponds
to a parameter set for the HTTP request.

DATA MODELING

367 of 2477

6. Add the desired parameters by following the steps below:

a. Select the Parameter tab.

Click ‘Remove
Parameter’ to delete
an existing parameter.

b. Click the ‘Add parameter’ button, and specify the ‘Name’ and
‘Value’ of the parameter.

c. To specify a null value for the parameter, select the ‘Null’
option.

d. To specify a variable name for the parameter, select the
‘Variable’ option and click ‘Apply’. (When the ‘Variable’
option is selected, the value of the parameter is expected to be
provided by an external source, such as report script or user
input.)

e. Repeat the above steps to add additional parameters.

7. (Optional) For a text or CSV file, select the Import tab, and make
the following settings:

a. If the first row contains header information, enable ‘First row
header’.

DATA MODELING

368 of 2477

b. In the ‘Header’ panel, enter the character used as the header
delimiter, or select ‘Tab’ for a tab-delimited header.

c. In the ‘Body’ panel, enter the character used as the body
delimiter, or select ‘Tab’ for a tab-delimited body.

8. Press ‘Finish’ to close the Wizard. Style Studio displays the
completed Text data source.

Note: If you already entered information on the Import tab of the
Wizard, you do not need to complete the steps below.

9. Select the Output tab.

10. In the ‘File type’ menu, select the type of text file.

‘Fixed Width Text’ is appropriate for a file in which each row in a
given column occupies the same width. (Different columns may
have different widths.) ‘Delimited Text’ is appropriate for a file in
which each column is separated by a space, comma, or other
delimiting character. The two ‘Microsoft Excel’ options can be
used for spreadsheets of the respective types.

11. If you selected ‘Fixed Width Text’, follow the steps below:

a. Select ‘First header row’ if the first row of the text file contains
headers describing the columns (meta-data).

DATA MODELING

369 of 2477

b. If you selected ‘First header row’, specify the number of
characters in the column headers using the ‘Default field width’
box. This also sets the default width for the data rows, which
you can modify later on a column-by-column basis.

12. If you selected ‘Delimited Text’, follow the steps below:

a. Select ‘First header row’ if the first row of the text file contains
headers describing the columns (meta-data).

The default delimiter
is a comma.

b. If you selected ‘First header row’, enter the delimiter character
in the ‘Delimiter’ field of the ‘Header’ region. If the delimiter is
a ‘Tab’ character, check the ‘Tab’ box.

c. Enter the delimiter character in the ‘Delimiter’ field of the
‘Body’ region. If the delimiter is a ‘Tab’ character, check the
‘Tab’ box.

13. If you selected one of the ‘Microsoft’ formats, follow the steps
below:

a. Select the desired Excel sheet from the ‘Sheet’ menu.

b. Select ‘First header row’ if the first row of the file contains
headers describing the columns (meta-data).

c. Enter the starting and ending rows and columns in the
appropriate fields.

14. If you selected the ‘First header row’ option for any of the available
formats, press the ‘Import’ button to import the column header
meta-data. This opens the ‘Import’ dialog box.

The ‘File’ option is
useful when you are
using a ‘Server’ type
repository and the
datasource file path is
not accessible locally.

15. Press ‘Source’ to load the meta-data from the specified Text data
source. Press ‘File’ to load the meta-data from an alternate file that
you select.

The ‘Import’ feature uses the column headers and column data to
populate the ‘Alias’ and ‘Type’ fields in the meta-data table at the
bottom of the screen.

DATA MODELING

370 of 2477

To make manual adjustments to the meta-data assignments, see
Modifying Text Source Meta-Data.

16. Press the ‘Save’ button in the Style Studio toolbar to save the new
Text data source.

6.3.2 Modifying Text Source Meta-Data

If you do not wish to use the ‘Import’ function to automatically load the
meta-data from the file (or if the file does not contain header information),
you can define the data columns manually. Follow the steps below:

1. Click ‘Append Column’ in the bottom panel to add a column to the
table specification.

2. In the ‘Alias’ field for the new column, enter the desired column
header text.

3. In the ‘Type’ menu, select the desired data type for the column.

4. In the ‘Format’ field, select the desired format for the column. The
format specifications are the same as those for the XML data
source. See Defining an XML Data Source for more details.

5. Repeat the above steps to add additional column specifications. (To
add a new column to the left of an existing column, use the ‘Insert
Column’ button.)

6. Click the ‘Save’ button in the Style Studio toolbar to save the data
source.

DATA MODELING

371 of 2477

The example below illustrates how to specify multiple columns.

Example: Text
Data Source

In this example, you will create a Text data source using a sample text file
in the examples/docExamples/datasource/xml directory. Follow the steps
below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Data Source’ node. In the right ‘Types’
panel, select ‘Text’, and click ‘OK’. This opens the ‘Text Data
Source Wizard’.

3. Select the General tab. In the ‘Name’ field, enter the data source
name. For this example, enter “Text”.

4. Select the Source tab. Click the ‘Browse’ button next to the ‘URL
or File’ field, and select the following text file:

{StyleIntelligence}\examples\docExamples\datasource\xml\customers.t
xt

Because this is a static
text file, no parame-
ters are needed.

5. Click ‘Next’ twice, and then click ‘Finish’ to close the Wizard.
Style Studio displays the completed Text data source.

6. Select the Output tab.

DATA MODELING

372 of 2477

7. In the ‘File type’ menu, select ‘Delimited Text’.

8. Deselect ‘First row header’, because the customers.txt file does not
include a header row.

9. For the Body ‘Delimiter’, use the default comma delimiter.

For files with a header
row, use the ‘Import’
feature to help define
columns. See Defin-
ing a Text Data Source.

10. Click ‘Append Column’ to add a column to the table specification.

11. In the ‘Alias’ field for the new column, type “Customer Number ”.

12. Repeat the two previous steps to add the rest of the columns in the
customers.txt file: “Name”, Company”, “Address”, “City”, “State”,
“Zip”, and “Reseller”.

13. To set a column’s data type, click in the correspoding ‘Type’ field,
and make a selection. In this example, change the ‘Reseller’
column type to ‘boolean’.

14. Click the ‘Save’ button in the Style Studio toolbar to save the data
source.

¢

DATA MODELING

373 of 2477

6.4 Java Object Data Source
A session EJB can be
used as a Java Object
data source.

A Java Object Data Source is useful when your data cannot be accessed via
common standards such as JDBC, SOAP, XML, etc., or if you have a pre-
existing JAVA API to which you wish to connect.

To create a Java Object data source you must create a Data Loader class. A
Data Loader class can be based on the inetsoft.uql.object.DataLoader
interface, the inetsoft.uql.object.DataLoader2 interface, or on introspection
(by complying with JavaBean conventions). In some cases when using the
DataLoader interface, an additional Data Helper class is also needed to
describe the structure of the data being returned.

6.4.1 Selecting the Type of Data Loader

If your data has a flat tabular structure, the Data Loader should be based on
the DataLoader2 interface. This is the simplest and most convenient
option, as it deals only with primitive data types and does not require a
Data Helper class.

For data which has a hierarchy (especially recursive hierarchy) the Data
Loader should be based on the DataLoader interface or on introspection:
Examples of hierarchy:

• One forest has N trees, one tree has M leaves.

• An ‘Employee’ has a ‘Manager’ who is also an ‘Employee’, etc.

Data Loader based on Introspection

A Data Loader that does not implement the DataLoader interface is
completely based on introspection and must satisfy the following
requirements:

• The class must have a default constructor that requires no arguments.

• The class must have methods that return a collection of objects. The
collection may be an object of one of these subclasses:

 – java.util.Collection
 – java.util.Enumeration
 – java.util.Iterator

When a data source is defined based on the Data Loader, the query engine
uses introspection to discover all public methods that return one of the
collection types. Each method is then added to the data source as a request.

If a request is created from a method that requires parameters, you can
specify parameter values as part of the data source or declare them as
variables, which become the data source parameters.

DATA MODELING

374 of 2477

For each request, you need to specify the object type (class) returned by the
request. The query engine probes the class to find all of the public “getter”
methods, and then treats these as the fields in the record. During probing
the query engine follows the object references, so the meta data can be a
hierarchical structure, as shown below:

Employee (object class)
Name
FirstName
LastName
Address

City
State
Zip

Data Loader based on DataLoader Interface

While the default introspection-based Data Loader works well with the
classes that match the defined convention, the DataLoader interface
provides a more flexible way to define the procedure to load objects. The
design and runtime of the data source works in the same way as an
introspection-based Data Loader, except that the DataLoader interface is
used for meta-data discovery and runtime execution without relying on
introspection.

The DataLoader interface defines the following four methods:

• public String[] getRequests()
This method should return a list of request names. This corresponds to
the methods that return a collection of objects in the introspection-based
Data Loader.

• public Class getRequestOutput(String request)
This method returns the object type for each request. It must handle all
request names returned from getRequests().

• public Class getRequestParameter(String request)
This method returns the parameters for each request, similar to the
getRequestOutput() method.

• public Collection execute(String request, Object params,
XNodePath condition)
This method executes the requests. It optionally handles the user defined
conditions in the XNodePath. If any conditions defined in the XNodePath
can be handled by the execute() method, they should be handled
internally (for example, as a condition to an object oriented database
query). If a condition cannot be handled by the execute() method, it
should raise a ConditionNotSupportedException. The query engine will
call the execute() method again without the condition, and will process
the conditions as part of the post-processing.

DATA MODELING

375 of 2477

Data Loader based on DataLoader2 interface

The DataLoader2 interface is used to extract data which has a flat tabular
structure, as opposed to data with an inherent hierarchy. This is the simplest
way to extract tabular data. It requires no Data Helper class because it deals
only with primitive data types.

The DataLoader2 interface defines the following four methods:

• public String[] getRequests()
This method should return a list of request names. A request is tied to
one set of output objects sharing the same class, and to one set of
parameters. Requests are presented in Style Studio and are selected as
part of a query, e.g:

public String[] getRequests() {
return new String[]
{"salesForEmployee", "salesForState"};

}

• public ObjectMetaData getRequestOutput(String request)
This method gets the output object type of a request. This method must
support all requests returned from the getRequests() method, e.g:

public ObjectMetaData getRequestOutput(String request) {
if(request.equals(“salesForEmployee“)) {
return new ObjectMetaData(
new String[] {"Employee", "Sales", "Year"},
new Class[] {
(new String()).getClass(),
(new Float(0)).getClass(),
(new Integer(0)).getClass()

});
}
else if(request.equals(“salesForState“)){
....

}
}

• public ObjectMetaData getRequestParameter(String request)
This method gets the request parameter type. The parameter can be
constructed when building a query and is passed to the data loaded in
execute().

public ObjectMetaData getRequestParameter(String request) {
if(request.equals(“salesForEmployee“)) {
return new ObjectMetaData(
new String[] {"fiscalYear"},
new Class[] {(new Integer(0)).getClass()});

}
else if(...) {
...

}
}

• public Object execute(String request, VariableTable params,
XSelection columns, XNodePath condition) throws

DATA MODELING

376 of 2477

ConditionNotSupportedException
This method executes a request. If any condition is defined, the
condition is passed to the execute() method. The method may choose to
handle the conditions, or throw a ConditionNotSupportedException. If
the exception is thrown, the engine will call execute() again without the
condition parameter passed in, and will handle the filtering as part of the
post processing. The following return types are supported: XTable
object, XTableNode object, or a two-dimensional array in which the first
row serves as the column headers.

Using a Data Helper

The Data Helper may be required under the following circumstances:

Your Data Loader is based on the DataLoader interface or introspection.

• AND the return object class has only primitive attributes, but does not
follow the Java Bean naming conventions.

• OR the return object class has a hierarchy.

The Data Helper class must implement the inetsoft.uql.object.DataHelper
interface, which defines the following two methods:

• public XTypeNode[] getAttributes(Class cls)
Given a class, this method should return an array of field types. Each
type can be a primitive type such as those below, or a more complex
type that represents an object tree:

 – string (inetsoft.uql.schema.StringType)
 – integer (inetsoft.uql.schema.IntegerType)
 – date (inetsoft.uql.schema.DateType)
 – etc.

• public Object getValue(Object obj, String name)
This method returns the value of a field. The name is the name of the
field, and the obj parameter is the data object.

The Data Helper overrides the introspection in two ways.

• At design time, introspection is not used to discover object fields.
Instead, the getAttributes() method is called on the Data Helper to
find the fields.

• At runtime, field values are returned using the getValue() method of the
Data Helper, instead of calling the “getter” method on the data object
itself.

DATA MODELING

377 of 2477

6.4.2 Leveraging JavaBean Properties

If the custom data loader includes Java Bean properties (those with get/set
methods), you can configure these properties in the data source definition.
This allows you to write a more generic, reusable, data loader
implementation. For example, if the custom data loader obtains SharePoint
lists, and requires a URL, user name, and password, you can create an
individual data source for each property combination (using the same data
loader class), rather than writing multiple classes.

If a BeanInfo class is associated with the data loader, you can provide
display names, descriptions, custom editors, etc., for the class. You can also
define a “secret” attribute for passwords, etc., which will use a password
field (masked text) in the interface and encrypt the value in the data source
file.

6.4.3 Defining a Java Object Data Source

To define an object data source, first place all necessary files into a single
directory (e.g., a directory named ‘object’). The list of necessary files
includes the following:

• Data Loader class

• Data Helper class, if any

• BeanInfo class, if any

• All the object classes

The parent directory of this ‘object’ directory must be included in the
classpath.

The example below creates an object data source using a Data Helper and a
Data Loader based on introspection. The required files can be found under
the examples/docExamples/datasource/object directory.

Example: Java
Object Data
Source

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Data Source’. In the right ‘Types’ panel,
select ‘Object’, and click ‘OK’. This opens the ‘Object Data Source
Wizard’ dialog box.

3. Select the General tab. In the ‘Name’ field, enter a name for the
data source name, for example: “JavaObject”.

DATA MODELING

378 of 2477

4. Select the Data Helper tab. In the ‘Data Helper Class’ field, type in
‘object.DataHelper’.

5. Select the Data Loader tab. In the ‘Object Loader Class’ field,
type in ‘object.Loader’.

6. Click ‘Finish’ to create the data source.

7. In the ‘Data Source’ panel, select the ‘getEmployee’ request. Select
parameter0, and enter “John” in the ‘Value’ field. Click ‘Apply’.

DATA MODELING

379 of 2477

8. Select parameter1, and enter “5000” in the ‘Value’ field. Click
‘Apply’.

9. Select parameter2. In the ‘Value’ field, pick any date and time.
Click ‘Apply’.

10. Select the Output tab. Type ‘object.Employee’ in the right-side
text field and click ‘Import’.

11. In the ‘Data Source’ panel, select the ‘getEmployeeStruct’ request.

12. Select the Output tab, enter ‘object.Employee’ in the right-side
text field, and click ‘Import Object Class’.

13. In the ‘Data Source’ panel, select the ‘getEmployeeMillion’
request.

14. Select the Output tab, enter ‘object.Employee’ in the right-side
text field, and click ‘Import’.

15. In the ‘Data Source’ panel, select the ‘getCustomEmployee’
request.

DATA MODELING

380 of 2477

16. Select the Output tab, enter ‘object.CustomEmployee’ in the right-
side text field, and click ‘Import’.

17. Click the ‘Save’ button in the Style Studio toolbar to save the data
source settings.

¢

The next example creates an object data source using a custom data loader
which implements the DataLoader interface. The required files can be
found under the examples/docExamples/datasource/object directory.

Example:
Custom Data
Loader

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Data Source’. In the right ‘Types’ panel,
select ‘Object’, and click ‘OK’. This opens the ‘Object Data Source
Wizard’ dialog box.

3. Select the General tab. In the ‘Name’ field, enter the name for the
data source name: “custom”.

If you have declared a
class using the stan-
dard Java loader mech-
anism, you can select
the class name from
the ‘Data Helper
Class’ and ‘Object
Loader Class’ menus.

4. Select the Data Loader tab. In the ‘Object Loader Class’ field,
type in (or select) ‘object.CustomLoader’,

5. (Optional) If the custom data loader defines JavaBean properties,
press the ‘Properties’ button next to the ‘Object Loader Class’ field,
and enter values for these properties.

6. Click ‘Finish’.

7. In the ‘Data Source’ panel, select the ‘employees’ request. Click
the Output tab.

http://download.oracle.com/javase/7/docs/api/index.html?java/util/ServiceLoader.html

DATA MODELING

381 of 2477

Note that the output object classes are automatically imported for
both of the requests.

8. Click the ‘Save’ button in the Style Studio toolbar to save the data
source settings.

¢

See Also
Querying a Java Object Data Source, for information on constructing a
query.

6.5 SAP Data Source
To connect to an SAP data source, you must first instal the SAP Java
Connector (JCo) drivers on your system. Follow the steps below:

1. Download and extract the JCo software to a new directory, e.g.,
C:\SAPJCo.

2. Copy the following files to the C:\WINDOWS\SYSTEM32
directory:

librfc32.dll
sapjcorfc.dll

3. (Optional) If your Windows environment does not have the .NET
SDK installed, copy the following .NET files to the
C:\WINDOWS\SYSTEM32 directory:

msvcp71.dll
msvcr71.dll

4. Add the sapjco.jar file to your Style Studio classpath. (See
Configuring the Style Studio Classpath in Getting Started.)

5. Place a copy of the sapjco.jar file into the webapps\sree\WEB-
INF\lib directory.

DATA MODELING

382 of 2477

Once you have finished the above configuration, create the SAP data
source by following the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Data Source’ node. In the right ‘Types’
panel, select ‘SAP’, and click ‘OK’.

This opens the ‘SAP Data Source Wizard’.

3. Select the General tab. Enter a ‘Name’ and optional ‘Description’
for the data source.

4. Select the Driver tab, and enter the requested connection
information.

The following values are required: ‘Application server host’,
‘Client’, ‘User name’, ‘Password’, and ‘System number.’ See the
SAP documentation for further information about the connection
parameters.

http://help.sap.com/

DATA MODELING

383 of 2477

5. Click ‘Finish’ to close the Wizard. Style Studio displays the
completed SAP data source.

6.6 Querying Non-relational Data Sources
While queries on non-relational data sources do not use SQL, they can be
used to filter and manipulate the data before returning the result set. This
also provides a common access metaphor, because all queries are
interchangeable.

6.6.1 Querying XML or Web Service Data Source

A Web Service query is very similar to an XML query. Therefore, the
following example will explain how to create a query in either of the two
data sources.

An XML query consists of three major components: XML sub-tree
selection, tree node filtering, and table construction.

See Also
Web Service Data Source, for information on how to configure an XML
data source.
XML Data Source, for information on how to configure an XML data
source.

Selection Tree Path

Walkthrough The first step in creating an XML query is to select a branch of the XML
tree. The selection tree path is a required component in XML queries.

Follow these steps:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

DATA MODELING

384 of 2477

2. In the left panel, select the ‘Query’ node. In the right ‘Types’ panel,
select the ‘Personnel’ data source, and click ‘OK’. This opens the
‘Query Wizard’.

3. Select the General tab. In the ‘Name’ field, type “all_employees”.

4. Select the Fields tab. Expand the ‘name’ node in the ‘Database
Fields’ panel. Add ‘lastname’ and ‘firstname’ to the ‘Query
Fields’ panel. Also add the ‘id’ node, then click ‘Finish’.

5. (Optional) Select the Condition tab. Click a node in the tree to
filter, and press the ‘Add’ button.

6. Use the menus to specify the first part of a condition. For example,
to select employees from a particular department, click to select the
dept_id field, and enter the following condition fragment from the
menus:

[employee.dept_id][is][equal to]

DATA MODELING

385 of 2477

7. To enter a value in the condition, click the “arrow” button at the
right side of the condition, and select the ‘Value’ option. Then enter
the desired value in the text field.

8. To use a variable in the condition, click the “arrow” button at the
right side of the condition, and select the ‘Variable’ option. In the
adjacent ‘Name’ field, enter a name for the parameter. (For
example, enter “deptVar” as the parameter name.)

This is the name (case sensitive) by which you will refer to the
parameter in hyperlinks, scheduled tasks, and scripts. If the
condition operator is “one of”, then the variable represents an
array. Otherwise, it is a scalar value.

Note that the adjacent
menu automatically
chooses the ‘equal to’
or ‘one of’ operator to
match your selection.

9. To use session data in the condition, click the “arrow” button at the
right side of the condition, and select the ‘Session Data’ option.

In the menu, choose one of ‘User’, ‘Roles’, or ‘Groups’. These
parameters return information about the user who is currently
accessing the report; respectively, the user name, the array of roles
to which the user belongs, and the array of groups to which the user
belongs.

10. Repeat the above steps to add additional conditions.

11. Press ‘Finish’ to exit the Wizard.

12. Select the ‘employee’ node on the schema tree.

13. Click on ‘Select Record’ to select the sub-tree as the output. This
marks the node as a selected path. See Selection Nodes for more
information.

DATA MODELING

386 of 2477

Selection Nodes

A tree path selects a branch of the output tree to serve as the root of the
output data. Once a path is selected, the nodes on the path are changed to
the path icon. A single diamond icon represents non-selection nodes, and a
diamond icon in a box border represents selection nodes.

A node is a selection node if there can be multiple instances of the node in
the tree. For example, there can be one or more ‘Employee’ elements under
a ‘Personnel’ node. This is indicated by a plus sign at the end of the node
label. Therefore, the ‘Employee’ node is a selection node. On the other
hand, there can be only one ‘Personnel’ node in the XML stream, so this is
a non-selection node.

Apart from differences in their visual appearance on the schema tree, a
selection node can also have a query condition attached to it. If a query
condition is associated with a selection node, the condition is used to select
a subset of the nodes based on the condition evaluation. (See Tree Node
Filtering for more information). For non-selection nodes there can be only
one instance of the node, so selection is never necessary.

If the tree path contains multiple selection nodes and each selection node
selects multiple instances of the nodes on that tree level, the tree path will
select more than one subtree. For example, if you select the ‘personnel.
employee.skill’ subtree, because there is more than one employee, the
result of the tree path selection could contain multiple ‘Skill’ subtrees. In
this case, the subtrees are merged into one root node, with all subtrees as its
children.

Tree Transformation Rules

If a path in the schema tree is selected without any query conditions, the
query will simply parse the XML output and return the selected subtrees as
the result. The result tree is interpreted by the report engine based on the
binding of the query. If tabular data is expected by the element with which
the query is associated, the tree is transformed into a table by using the
following rules:

• If the tree contains multiple nodes of the same type, each node is
converted to a table row. This is the case if any tree path node is a
selection node.

• If the tree contains a single root node, this node is converted to a single
table row. This is the case if the tree path does not contain any selection
nodes.

• A sub-tree is converted to a table row by treating each child as a table
column. The child node’s name is used as the column name, and the
child node’s value is used as the column value.

DATA MODELING

387 of 2477

Figure 2. Example tabular output

Because the tree is converted to a table using the default table conversion,
the child values of the name and location elements are not used in the final
table. To display the values properly, you need to specify more precise table
construction rules. See Table Construction for additional information.

Table Construction

You can specify table construction rules as part of a query. This gives you
more control over how the tree is converted to a table. Additional
conversion parameters are as follows:

• Inclusion of sub-tree children nodes as table columns.

• Inclusion of node attributes as table columns.

• Table column aliases.

• Data type conversion

Adding Table Construction Rules

To add table construction rules to a query, follow the steps below:

1. Select the ‘Map to Table’ option. This enables the controls for
specifying table construction rules.

2. (Optional) Select the ‘Join Subtrees’ option to create multiple rows
per record, where each row corresponds to a particular combination
of the child nodes of the subtrees.

For example, if the selected node represents job application
information, it might have subtree nodes for job location and job
type. When ‘Join Subtrees’ is not selected, only one row is created
for each application, representing the first child node for each
subtree (e.g., ‘New York’ & ‘engineering’). If the ‘Join Subtrees’
option is enabled, multiple rows are created to pair each location
with each job type (e.g., ‘New York’ & ‘engineering’, ‘Boston’ &
‘engineering’, ‘New York’ & ‘programming’, ‘Boston’ &
‘programming’, etc.). The values for other columns would be
duplicated.

3. Change individual column attributes using the bottom selection
table, where each available column is displayed. The column

DATA MODELING

388 of 2477

header shows the node or attribute name. The fields under the
column name are column conversion attributes.

a. Enable the ‘Select’ option for a column to include the column in
the final output table.

b. Enter a value in the ‘Alias’ field to use this value as the column
header in the final table. Otherwise, the node or attribute name
is used.

In the case of XML queries, you must perform data type conversion on the
data source schema definition screen during data source definition. See
Defining an XML Data Source for more information.

Table Construction Rules

Walkthrough In this walkthrough, you will add some table construction rules to the
‘all_employees’ query from the example in Selection Tree Path. Follow
the steps below:

1. Create a new query, ‘all_employees_table’, following the same
steps from the previous example.

2. Enable the ‘Map to Table’ option.

3. Deselect the ‘Join Subtrees’ option.

4. Uncheck the ‘Select’ field for the following columns:

‘fullname’
‘name’
‘benefit_plan_id’
‘dept_id’
‘location’
‘score’
‘skill’
‘@id’
‘skill.description’

DATA MODELING

389 of 2477

5. Drag the ‘name.firstname’, ‘name.lastname’, ‘birthday’, ‘salary’,
‘location.city’, and ‘location.state’ columns to the front (left) of the
table.

6. Enter the aliases for the columns.

The resulting query output now has the expected correct values.

Figure 3. Tabular Output With Joint Sub-Tree Selection

Tree Node Filtering

So far you have used the query engine to select all nodes on the specified
tree path. As described before, you can attach conditions to selection nodes
to filter the child sub-trees and extract a subset of the nodes.

Attaching a Conditional Expression

You can attach a conditional expression to each selection node on the tree
path. The condition can be based on the values of any of the child nodes of
the selection node. The expression syntax is based on the SQL conditions.
For example, a condition attached to the ‘employee’ node of the
‘personnel’ tree can refer to the child of the ‘employee’ node by name as
follows:

salary >= 50000 and location.state in (‘NY’, ‘NJ’)

DATA MODELING

390 of 2477

When this condition is attached to the ‘employee’ node, the result of the
query will only consist of the employees matching the criteria. The
expression can refer to the immediate child of the selection node, or any
descendent of the selection node. A child of the immediate child can be
referenced by concatenating the name of the immediate child with the
name of its child, separated by a dot. This notation can be used to reference
child nodes multiple levels down the tree.

The selection node can exist anywhere in a tree path: At the beginning, in
the middle, or as the last node. If multiple selection nodes are present in the
tree path, a condition can be attached to each selection node. The query
engine performs filtering starting at the top of the tree. If a selection node
returns multiple nodes based on the condition, each node is processed
further at the next tree path level. This process is done recursively until all
branches are processed. The collection of all selected sub-trees becomes
the child nodes of a new root node.

Condition Walkthrough

Walkthrough Next, create an example query to retrieve only employees from New York:

1. Create a query following the same steps as before to select the
employee node and create the table construction rules.

2. Select the ‘Employee’ node so that the condition field is enabled.

3. Click on the ‘Edit’ button for the condition editor.

4. Expand the ‘location’ node, select the ‘state’ field, and click ‘Add’.
Then fill in the condition to read “is equal to NY”.

5. Click ‘OK’ to accept the condition.

DATA MODELING

391 of 2477

6. Click the ‘Save’ button on the main tool bar to save the condition.

The condition could
also be entered manu-
ally in the condition
text area as “loca-
tion.state = ‘NY’”.

If you run the query, the result will only contain information on employees
from NY.

Figure 4. Filtered Query Output

6.6.2 Querying a Text Data Source
Walkthrough A text query specifies how the text file defined by the data source should be

converted into a table. To create a query for the ‘OldCRM’ test data source,
follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Query’ node. In the right ‘Types’ panel,
select the ‘OldCRM’ data source, and click ‘OK’. This opens the
‘Query Wizard’ dialog box.

3. Select the General tab. In the ‘Name’ field, enter the following
query name: “Customer_List”.

4. Select the Source tab (if enabled). Choose one of the requests that
you have defined in the data source definition. (See Text Data
Source for more information.)

DATA MODELING

392 of 2477

5. Select the Fields tab. Choose the database fields you want to
include in the query.

6. (Optional) Select the Condition tab. Click a node in the tree to
filter, and press the ‘Add’ button. For example, to select records for
a particular state, select the State field.

7. Use the menus to specify the first part of a condition. For example:

[State][is][equal to]

8. To use a value in the right-hand side of the condition, click the
“arrow” button at the right side of the condition, and select the
‘Value’ option. Then enter the desired value in the text field.

9. To use a variable in the right-hand side of the condition, click the
“arrow” button at the right side of the condition, and select the

DATA MODELING

393 of 2477

‘Variable’ option. In the adjacent ‘Name’ field, enter a name for the
parameter.

This is the name (case sensitive) by which you will refer to the
parameter in hyperlinks, scheduled tasks, scripts, etc. If the
condition operator is “one of”, then the variable represents an
array. Otherwise, it is a scalar value.

10. To use session data in the right-hand side of the condition, click the
“arrow” button at the right side of the condition, and select the
‘Session Data’ option.

Note that the adjacent
menu automatically
chooses the ‘equal to’
or ‘one of’ operator to
match your selection.

In the menu, choose one of ‘User’, ‘Roles’, or ‘Groups’. These
parameters return information about the user who is currently
accessing the query; respectively, the user name, the array of roles
to which the user belongs, and the array of groups to which the user
belongs.

11. Press ‘Finish’ to exit the Wizard.

12. Click the ‘Save’ button in the Style Studio toolbar to save the query.

Figure 5. Text Query Output

See Also
Text Data Source, for information on how to configure a Text data source.

6.6.3 Querying a Java Object Data Source

Once a data source is defined, the data source can be used to create object
queries. The query-building process is identical to the process for XML
queries; the output of the Java object is mapped to hierarchical meta-data,
which can be selected and filtered using the same mechanism as for other
hierarchical data sources.

DATA MODELING

394 of 2477

A query based on the object data source is executed in the following
sequence:

1. A Data Loader object is instantiated if none have been created yet.

2. The request method is invoked with the parameter values either
from the data source definition or as were input by the user.

3. The collection of object return values is parsed into an object tree
based on introspection.

4. Any user defined filtering and selection in the query is applied to
produce the final result set.

To define a query on the object data source that you just created, follow the
steps below:

1. Click on the ‘New Query’ button to create a new query.

2. Type in “Employee” as the name of the query. Select ‘object’ as the
data source. Click ‘OK’.

3. Add the ‘getEmployee’ request and click ‘Next’.

DATA MODELING

395 of 2477

4. Add ‘Manager.Name’, ‘Manager.Salary’, ‘Manager.StartDate’,
‘Address.City’, and ‘Address.State’ to the Report Fields list. Click
‘Finish’.

5. Click the ‘Save’ button to save the query.

See Also
Java Object Data Source, for information on how to configure a Java
Object data source.

6.6.4 Advanced Query Concepts

This section discusses several advanced concepts.

Sub-Query

Sub-queries are queries used inside a query condition expression. The
result of the sub-query is used when evaluating the expression. This
functionality is only supported for hierarchical data sources like XML,
SOAP, etc. You cannot use this feature with a non-hierarchical data source
like JDBC. This concept also exists in SQL, but there are a few important
differences:

DATA MODELING

396 of 2477

• A sub-query can be used in an expression where a scalar or list value is
expected. This is different from SQL sub-queries, which can only be
used in a few specific types of expressions.

• A sub-query is referenced by the query name. The definition of the sub-
query is not included in the expression. In SQL, the sub-query’s
definition is embedded in the expression where the sub-query is used.
By referencing a sub-query by its name, the sub-query definition can be
shared by more than one query, and the resulting query is easier to
maintain.

• A sub-query can use a different data source from the parent query. This
is very powerful in a hybrid data source environment. For example, an
XML query can use a sub-query that retrieves its data from an EJB. This
allows the application to ignore the underlying implementation of the
data model and unify the data access interface.

Invoking a Sub-Query

A sub-query can be invoked from an expression using the ‘query()’
function.

name in (query('all names'))

In this example, the results returned by the query, ‘all names’, are used as
the list value. The query must be defined in the query registry. If the sub-
query expects parameters (user variables), the variable values can be
passed to the sub-query in the function call.

name in (query('all names', state = state)

One or more parameters can be added to the call as needed. Each variable
is passed in as a name-value pair. In this example, the name of the variable
is ‘state’, and the value of the variable is the ‘state’ node value in the
current record. Any name values can be used as the variable value,
including variables, sub-queries, nodes or attributes, and constant values.

Walkthrough: Designing the Sub-Query

The following example illustrates how to use a sub-query to get a list of
values from an XML data stream and then using the query result in the
condition of another query to retrieve a list of employees. The query
retrieves a list of all employees with evaluation scores above a score of 3.

Walkthrough First, create a query to retrieve the employee ID’s of employees with scores
above a certain value.

1. Create a query, “Scores”, using the ‘Personnel’ data source.

2. Select the ‘default’ request type.

DATA MODELING

397 of 2477

3. On the Fields tab, select the ‘id’ field, and click the ‘add’ button.

4. On the Condition tab, select the ‘score’ field, click the ‘add’
button, and set the condition to:

score >= $(score)

5. Click ‘Finish’.

Notice that the ‘Map to Table’ option is selected. It would not be
necessary to map the result to a table if the return value was a child
node. In this case, however, you need to return the employee ID,
which is an attribute in the employee record. Attributes can only be
returned as a table column.

This query returns a table with a single column, the employee ID. The
score comparison is done against the ‘Score’ variable.

Walkthrough: Designing the Main Query

Next, create a query to retrieve the detailed employee information using the
sub-query as the selection criteria.

1. Create a query, “Above avg employees”, using the ‘Personnel’ data
source.

2. Select the ‘default’ request type.

3. Using the Fields tab, select: ‘name.lastname’, ‘name.firstname’,
‘location.city’, ‘location.state’, and ‘score’.

4. Click ‘Finish’.

DATA MODELING

398 of 2477

5. Select the ‘employee’ node and enter the following condition in the
‘Condition’ text area.

@id in(query('Scores',score=3))

Figure 6. Query Output

List Comparison for Queries using Hierarchical Meta Data

The syntax and grammar of the query condition expression is covered in
Appendix Appendix A:, Hierarchical Query Condition Expression Syntax.
The following is an example.

If you want to get a list of all employees with C++ programming skill, you
can add a condition to the employee node to select only people with C++
on their skill list. However, since each employee may have multiple skills
linked in the employee record, a simple string comparison does not give the
correct result.

skill = 'C++ programming'

This condition would work if all employees only had one skill listed. If the
C++ programming were listed as the second skill of an employee, the
comparison would return false because a list of skills is converted to a
scalar value by using the value of the first child.

You need an expression to compare the skill list with a value, and the
comparison should be true if any value on the list matches the skill. The
following list comparison expression returns the correct result.

DATA MODELING

399 of 2477

'C++ programming' = any skill

Walkthrough Next, use this feature to create a query to retrieve all C++ programmers
from the employee database.

1. Create an XML query as before, with the name “C++
Programmers”.

2. Select the ‘Employee’ node and click on ‘Select Record’ to make it
the selection tree path.

3. Enter the condition expression in the condition text area:

'C++ programming' = ANY skill

4. Select ‘Save’ (on the main toolbar) to save the expression.

5. Select the ‘Map to Table’ option, then click ‘Preview’.

List Pattern Matching for Queries using Hierarchical Meta Data

The syntax and grammar of the query condition expression in covered in
Appendix Appendix A:, Hierarchical Query Condition Expression Syntax.

This section introduces a slightly more difficult problem. Suppose you
want to get a list of all employees with any programming skill, regardless
of the particular programming language. Since there are no fields in the
XML structure that specify this information, it will have to be deduced
from the skill description.

Assuming all programming skills end with ‘Programming’, you can find
employees with programming skills by matching the skills against a regular
expression pattern, ‘.programming’. The following is a list pattern
matching expression:

any skill match '.*programming'

Walkthrough Follow the following steps to create an ‘All Programmers’ query.

1. Create an XML query as before, with the name “All
Programmers”.

2. Select the ‘Employee’ node and click on ‘Select Record’ to make it
the selection tree path.

3. Enter the condition expression in the condition text area:

ANY skill match '.*programming'

DATA MODELING

400 of 2477

4. Select ‘Save’ (on the main toolbar) to save the expression.

5. Select the ‘Map to Table’ option, then follow the same procedures
to map the result sub-tree to a table.

6. Click ‘Preview’.

DATA MODELING

401 of 2477

APPENDIX A: Hierarchical Query Condition
Expression Syntax

The query condition expression grammar for hierarchical data sources
(XML, Web Service, Java Object) is based on SQL condition syntax, and
most of the expressions have a construction identical to their SQL
counterparts. Like SQL, all reserved words are case-insensitive. However,
all names, including variables and child nodes, are case-sensitive. The
following sections cover the complete list of conditional expressions and
give a few examples of advanced usage.

A.1 Named Values

In SQL’s conditions, the column values can be used in expressions for
calculation or comparison. Similarly, Style Studio condition expressions
can reference values on the data tree. However, since the hierarchical data
model used by Style Studio supports much richer organization of data, the
expressions support a few more types of data references.

A.1.1 Child Node Values

The selection node and all of its child nodes can be referenced by the
conditional expression. The value of the selection node can be referenced
using the reserved word, ‘this’.

this is null

Its immediate child nodes can be referenced by their names,

salary > 50000

The descendents of the child nodes can be referenced with a node path. A
node path is constructed by appending the node names from the child node,
and all of the nodes leading to the referenced node, with the node names
separated by dots. For example, the child of ‘location’ node can be
referenced using:

location.city = 'New York'

Using the same algorithm, a path can be constructed for arbitrary levels
down the sub-tree,

child1.grandchild2.grandgrandchild3 like 'N%'

If the referenced node can have multiple instances, the node value is
extracted from the first instance of the node. For example, the ‘Skill’ node
in the ‘Employee’ tree can have more than one instance. An employee can
have multiple skills. A ‘Skill’ node describes each. If the skill child is used
in an expression, it refers to the first occurrence of the ‘skill’ node.

DATA MODELING

402 of 2477

skill like 'Java%'

It is possible to specify the exact instance by adding an index parameter to
the node name.

skill like 'Java%'

The index is zero based. If the specified instance does not exist, the node
reference returns a null value.

Node names used directly in an expression must not contain any spaces or
other special characters. Like identifiers in a programming language, a
node name must start with an alphabetic character or ‘_’, followed by zero
or more alphanumeric characters. In case a node name does not conform to
this requirement, or the name collides with a reserved word, the node can
be referenced using the ‘node’ function,

node('first name') = 'John'

This is functionally equivalent to the direct reference to a node, but allows
any node name to be used regardless of the characters in the name.

A.1.2 Node Attributes

Each node may have zero or more attributes. The attributes are not child
nodes of the node. Each attribute contains a scalar string value. The
attribute of a node can be referenced using the attribute name appended to
an ‘@’ sign.

@id = '339-928-9877'

When the attribute name is used without any qualification, as in the above
example, it refers to the attribute in the current node. Appending the
attribute name to the node path can reference the attribute values of any
child node:

child1.grandchild.@type = 'integer'

The ‘node’ function can also be used to reference an attribute:

node('child1.second child.@name') = 'John'

A.1.3 Variables

A variable can be added to an expression where a value is expected. The
variable does not need to be declared. Whenever a variable notation is
encountered, the variable is implicitly declared. If a variable is used without
any further definition, it defaults to the string type, and the end user enters
its value when the query is executed.

location.state = $(state)

DATA MODELING

403 of 2477

The name of the variable can be quoted in the parentheses. This allows
reserved words to be used as the variable name.

price = $('max')

If the quote were not used, the expression parser would generate an error
because the word ‘max’ is used for the aggregate function and is not
recognized as a regular variable name.

All variable references to the same name in all expressions used in a query
are considered to be the same variable. Variables are never shared across
queries, regardless of their names.

A variable can be formally defined in a query. The variable definition sets
the follow variable attributes:

• Alias
Variable label used when prompting end users for the variable value.

• Type
Variable data type. The type determines the component used for
entering the variable value and the type of the entered value. For
example, if a variable is defined as a date type, a date combo box is used
to enter the variable value and the entered value is a java.util.Date
object.

• Value
Variable default value.

A variable can also be defined as a query-based variable. In this case, the
value of the variable is derived from the result of another query and the end
user is not prompted for the value.

A.2 Constant Values

There are four basic types of constants: string, number, Boolean, and date.

String

A string value is a quoted character sequence. Both single quotes and
double quotes are accepted.

city = 'New York'
or

city = "New York"

If a single or double quote is part of the string value, it needs to be escaped
if the value is quoted using the same character. To escape a quote character,
repeat the character twice, e.g.,

'Seven O''Clock'

DATA MODELING

404 of 2477

Number

A number can be either an integer or a double.

age > 55

A double number can be entered using either decimal notation, or scientific
notation,

ratio < 2.5

Numeric comparison is always done in double values. Therefore, an
integer 50 does not equal a double 50.1. All arithmetic computation is also
done in doubles. All values are converted to a double before the
computation is performed. A division of two integer numbers results in a
double value. No rounding is done regardless of the type of the operands.

Boolean

A Boolean constant is specified using ‘true’ or ‘false’. The case is
insignificant.

instock = true

Date

There is no date constant in an expression. Instead, converting a text
representation of a date to a date object can create a date value. The
conversion is done using the to_date() function.

birthday > to_date("1960-12-31")

The default date format is the same as for SQL, yyyy-MM-dd. An alternative
date format can be supplied in the second argument of the function call:

birthday > to_date("12/31/60 12:00:00","MM/dd/yy HH:mm:ss")

The format should conform to the format defined in the
java.text.SimpleDateFormat class:

SYMBO
L

MEANING PRESENTATION EXAMPLE

G era designator Text AD
y year Number 1996
M month in year Text & Number July & 07
d day in month Number 10
h hour in am/pm (1~12) Number 12
H hour in day (0~23) Number 0
m minute in hour Number 30
s seond in minute Number 55
S millisecond Number 978

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

DATA MODELING

405 of 2477

A.3 Simple Expressions

This section lists various supported expressions.

Arithmetic Expressions

Numeric computations are always done using double values. The
following operators are supported:

Comparison Expressions

The expression ‘is
null’ can be used to
compare a value to
null.

Comparisons can be done between any two values. If the two values have
the same type, the comparison is done according to the type. If two values
are of different types, then both values are converted to strings and
compared using text comparison.

Logical Expressions

The conditional expressions are all short-circuit logic operations. In the
‘and’ expression, the right-hand operand is only evaluated if the left-hand
operand is true. In the ‘or’ expression, the right-hand operand is only

E day in week Text Tuesday
D day in year Number 189

F day of week in month Number 2 (2nd Web in July)
w week in year Number 27
W week in month Number 2
a am/pm marker Text PM
k hour in day (1~24) Number 24
K hour in am/pm (0~11) Number 0

z time zone Text
Pacific Standard
Time

‘ escape for text Delimiter
‘‘ single quote Literal ‘

+ Addition
- Subtraction
* Multiplication
/ Division
- (Unary) Negation

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= or == Equal to
<> or != Not equal

DATA MODELING

406 of 2477

evaluated if the left-hand operand is false.

The operands of logic expressions can be any type. If an operand is not a
Boolean value, it is converted to a Boolean. If the value is null, it is
converted to a false value. Otherwise, it is converted to a true value.

A.4 SQL Predicates

The query condition also supports the other predicate expressions in
defined SQL.

A.4.1 Between Operator

The ‘between’ comparison is shorthand for a ‘greater than or equal to’ and
a ‘less than or equal to’ expression.

salary between 30000 and 40000

This is equivalent to the following condition.

salary >= 30000 and salary <= 40000

A negative ‘between’ comparison can be created using ‘not between’.

salary not between 30000 and 40000

A.4.2 In Operator

The ‘in’ operator tests if a value is one of the values in a given list. In the
simplest form, the value list is given directly in the condition. Each value in
the list can be either a constant or an expression that returns a scalar value.

state in ('NY', 'NJ')

In SQL, the list can be the result of a sub-query. This is also supported in
Style Studio queries. However, the sub-query has a different syntax. The
details for using sub-queries are discussed later.

state in (query('tristates'))

In addition to supporting sub-queries in the ‘in’ operation, the list value can
come from any named value, such as a variable or a sub-selection.

Like the ‘between’ operator, there is a shorthand for adding a logic
negation to the condition.

state not in ($(tristates_variable))

And And operation
Or Or operation
Not Logic negation

DATA MODELING

407 of 2477

A.4.3 SQL Pattern Matching Operator

SQL has a very simple pattern-matching operator. The ‘like’ operator
supports two pattern characters:

company like 'I%'

This condition matches any string starting with an ‘I’ character.

skill like 'C??'

This condition matches any string starting with a ‘C’ character, followed by
two arbitrary characters. Similar to the ‘in’ operator, a logic negation can be
added with a short hand:

skill not like 'C%'

A.4.4 Existence Operator

In SQL, the existence test is applied to a sub-query. The condition tests if
any result is returned by the sub-query. In a Style Studio query condition, a
sub-query is treated the same as any named value. Therefore the existence
test can be applied to any named value.

The result of the condition depends on the type of the data in the named
value. If the value is a table, the existence test checks for the existence of
any rows in the table. If the table is empty, the test returns false. Otherwise,
it returns true.

If the value is a sequence (a node holding the collection of child nodes with
the same type), the test checks for the existence of any child nodes in the
sequence. If the sequence is empty, the test returns false. Otherwise, it
returns true.

For all other values, the test is true if the value is not null.

exists query('salary over 200000')

The existence test can also be applied to a node. For example, to check if
the “link” node exists:

exists link

A.4.5 List Comparison

A value can be compared to a list of values. The result of the comparison
depends on what type of comparison is declared. Two list comparison types
are supported:

% Match any character sequence
? Match any single character.

DATA MODELING

408 of 2477

• Any
The comparison is successful if the value compares to true with any one
of the values on the list.

• All
The comparison is successful if and only if the value compares to true
with all values on the list.

The following comparison tests if the price is greater or equal to all prices
in the group:

price >= all query('all prices')

The ‘query’ function executes a sub-query and returns the results. It is
covered in more detail in a later chapter.

The next condition tests if the state is in one of the states in the list:

state = any query('tristates')

A.5 Regular Expressions

Regular expressions are among the most powerful pattern matching
mechanism, used extensively in text processing (often by Perl and AWK
scripts).

Regular expression operations are relatively expensive compared to
standard string comparisons. Use them only if required.

Regular expressions are supported in expressions for matching a string
value against a pattern. The pattern matching can be done on one string
value or on a list of values.

A.5.1 Regular Expression Operator

The Style Studio query condition adds support for regular expression
pattern matching. Regular expression is a much more powerful pattern
language than the simple patterns supported by the ‘like’ operator.

The regular expression supported by Style Studio conforms to Perl5 regular
expression syntax. For more details on the regular expression, please
consult the Perl5 documentation.

Language Summary

The following is a summarization of the regular expression syntax.

Alternatives separated by |
Quantified atoms
 {n,m} Match at least n but not more than m times.
 {n,} Match at least n times.
 {n} Match exactly n times.
 * Match 0 or more times.

DATA MODELING

409 of 2477

 + Match 1 or more times.
 ? Match 0 or 1 times.
a . matches everything except \n
a ^ is a null token matching the beginning of a string or
line (i.e., the position right after a newline or right
before the beginning of a string)
a $ is a null token matching the end of a string or line
(i.e., the position right before a newline or right after
the end of a string)
Character classes (e.g., [abcd]) and ranges (e.g., [a-z])
Special backslashed characters work within a character class
(except for backreferences and boundaries).
\b is backspace inside a character class
Special backslashed characters
\b null token matching a word boundary (\w on one side and
\W on the other)
\B null token matching a boundary that isn't a word boundary

\A Match only at beginning of string
\Z Match only at end of string (or before newline at the
end)
\n newline
\r carriage return
\t tab
\f formfeed
\d digit [0-9]
\D non-digit [^0-9]
\w word character [0-9a-z_A-Z]
\W a non-word character [^0-9a-z_A-Z]
\s a whitespace character [\t\n\r\f]
\S a non-whitespace character [^ \t\n\r\f]
\xnn hexadecimal representation of character
\cD matches the corresponding control character
\nn or \nnn octal representation of character unless a
backreference.
a \1, \2, \3, etc. match whatever the first, second, third,
etc. parenthesized group matched. This is called a
backreference. If there is no corresponding group, the
number is interpreted as an octal representation of a
character.
\0 matches null character
Any other backslashed character matches itself
Expressions within parentheses are matched as subpattern
groups and saved for use by certain methods.

A.5.2 List Regular Expression Matching

The ‘match’ operator matches a string value with a regular expression.

company match 'I.*'

Similar to the ‘like’ operator, a logic negation can be added with a
‘shorthand’ method.

company not match 'I.*'

Like the list comparison expression, a list of values can be matched against
a regular expression. The comparison can be defined as either ‘Any’ or
‘All’.

any skill match 'C.*Programming'

DATA MODELING

410 of 2477

For the ‘Any’ type list matching, the result is true if any value in the list
matches the regular expression. For an ‘All’ type list matching, the result is
only true if all values in the list match the regular expression.

A.6 Aggregate Functions

Aggregate functions calculate values based on a list of values. The function
can be applied to any value that contains a list, including sub-queries and
sub-selections. In all functions, if the list value is null, it is treated as an
empty list.

Sum

The Sum function calculates the total of the values in a list.

revenue > sum(query('ne-sales'))

Like all computational expressions, the values in the list are all converted to
doubles to calculate the total. If any value on the list is not a number or a
string convertible to a number, the value is converted to a zero.

Avg

The Avg function calculates the average of the values in a list.

price > avg(filter('product.price'))

The average is calculated as a double value. All items on the list, regardless
of whether they are valid numbers, are counted into the average. All non-
numeric values are treated as zero.

The Min function returns the minimum value on a list.

price = min(filter('product.price'))

Max

The Max function returns the maximum value on a list.

price = max(filter('product.price'))

Count

The Count function returns the number of items on a list.

count(query('PDAs')) > 10

A.7 Sub-Query

SQL conditions allow a sub-query to be used in certain expressions. For
example, a sub-query can be used in the ‘in’ expression to serve as the list
value. This concept is supported in the Style Studio conditions.

DATA MODELING

411 of 2477

The SQL sub-query is specified as a select statement inside a SQL
condition. Using Style Studio, you can specify conditions on query
variables such that they are dependent on the results from the sub-query.
For example:

select * from orders where orders.state in (select
customers.state from customers)

The result of the sub-query is interpreted according to the context.

If a scalar value is expected in the expression, the sub-query result (a sub-
tree) is converted to a value using the following rules:

• If the root node is a sequence node, the value of the first child is
returned.

• If the root node value is not null, the value is used as the scalar value.

• If the root node value is null and has child nodes, the value of its first
child is returned.

• Otherwise, the value is null.

If a list is expected in the expression, the sub-query result is converted to a
list using the following rules:

• If the root node is a table node, the first column of the table is converted
to a list.

• If the root node is a sequence node, the sequence is converted to a list by
converting each child of the root to its scalar value.

• Otherwise, a single value list is created using the scalar value of the root.

A sub-query call can be used in any place in a condition expression where a
value is expected.

A.8 Sub-Selection

Previously you have learned how to define a selection tree path using the
query panel. The tree path is saved as part of a query, and is used by the
query to select sub-trees from the data stream. The same tree path selection
mechanism can be used inside a query condition.

A tree path can be used to select nodes from the current sub-tree.

name in (filter('employee[name = "John
Smith"].subordinates.name'))

The filter() function can be used where a scalar or list value is expected,
such as a sub-query or a variable. The result of the filtering is converted to a
scalar or list value using the same algorithm as was used for the result of a
sub-query.

DATA MODELING

412 of 2477

A tree path is constructed by concatenating the node names from the root of
the current sub-tree, separated by a dot. For example, if a condition is
attached to the ‘employee’ node, a tree path to select all skill nodes is:

$(skill) in filter('employee.skill')

Sub-selection is different from referencing child nodes by name or node
path. If ‘employee.skill’ is used in an expression, it refers to the skill list of
the current employee. Since the condition is evaluated for each employee
individually, the list only contains the skills of one employee. On the other
hand, a filter always works on the entire list. The ‘filter(‘employee.skill’)’
expression returns a list of all of the skills contained on the employee list.

The other difference between a selection tree path and a regular node name
path is that conditions can be added to the tree path. The condition is used
to filter the nodes to be included in the sub-tree. For example, if you want
to retrieve all programming skills, you can match the skill with a regular
expression:

$(skill) in filter('employee.skill[this match
".*Programming"]')

As with SQL sub-queries, using a sub-tree selection in a condition
expression is quite expensive. This option should only be used when no
other construct achieves the same purpose.

DATA MODELING

413 of 2477

APPENDIX B: OLAP Server Setup

This section provides various notes on OLAP server configuration.

See Also
Multidimensional Databases, for information on using OLAP data sources.

B.1 Microsoft SQL Server 2000

1. Microsoft Analysis Services should be installed.

2. Install Microsoft XMLA for Analysis, version 1.1 or later.

3. The file datasource.xml in the <XMLA installation directory>/
config directory is configured to use localhost by default. If the
OLAP server is on another machine, the file must be reconfigured.
Multiple data sources can be included in this file.

4. The file msxisapi.dll in the <XMLA installation directory>/isapi
directory must be made available in a web server. Set up a virtual
directory (e.g., xmla) on the web server which points to the isapi
directory. When the URL (e.g., http://localhost/xmla/

msxisapi.dll) is entered in a browser, it should return a SOAP
message. If it fails, make sure the end user has been granted
permission to execute scripts.

B.2 Microsoft SQL Server 2005

1. Microsoft Analysis Services 2005 should be installed.

2. The msmdpump.ini file in the {SQLServer}\MSSQL.1\OLAP\
bin\isapi directory is configured to use localhost by default. If the
OLAP server is on another machine, the file must be reconfigured.
Multiple data sources can be included in this file.

3. The msmdpump.dll file in the ‘{SQLServer}\MSSQL.1\OLAP\
bin\isapi’ directory must be made available in a web server. Set up
a virtual directory (e.g., xmla) on the web server which points to the
isapi directory. When the URL (e.g., http://localhost/xmla/
msmdpump.dll) is entered in a browser, it should return a SOAP
message. If it fails, make sure the end user has been granted
permission to execute scripts.

DATA MASHUP

414 of 2477

Data Mashup

The Data Worksheet is a powerful and easy-to-use tool that enables you to
rapidly build complex queries for demanding tasks such as “what-if” and
cross-domain analysis.

DATA MASHUP

415 of 2477

1 Contents

This guide explains everything you need to know about using Worksheets,
and covers the following major topics.

• Introduction

Introduction to the concept of the Data Worksheet. Information on
creating and saving Data Worksheets.

• Assets: Reusable Worksheet Components

Information on saving assets and using the Asset Repository.

• Creating a Data Table

Information on creating different types of tables in a Data
Worksheet.

• Table Operations

Information on altering and managing tables in a Data Worksheet.

• Manipulating Tabular Data

Information on sorting, grouping, and filtering of Data Tables.

• Creating Non-Tabular Assets

Information on user-defined Worksheet objects: Named Conditions,
Named Groupings, User-Defined Date Ranges, and Variables.

• Applications

Application examples highlighting the strengths of the Data
Worksheet.

DATA MASHUP

416 of 2477

2 Introduction

The Data Worksheet is the second level of Data BlockTM technology, sitting
on top of the atomic data blocks (data models, queries) built in Style Studio.
For more information on creating atomic data blocks, see Data Modeling.

The Data Worksheet is a powerful and easy-to-use tool that enables you to
rapidly build complex datasets for tasks such as “what-if” and cross-
domain analysis. Using the simple mouse-driven interface, you can
perform ad hoc query and data mashup with diverse data sources by
leveraging the atomic data blocks provided for enterprise sources and even
bringing in your local data. You can manipulate these datasets into versatile
Data Blocks. These Data Blocks can then be used in publishable reports,
analytic dashboards, and as components of other data worksheets.

See Also
Assets: Reusable Worksheet Components, for information on creating Data
Blocks and using assets in Worksheets.

2.1 Style Studio and Visual Composer
You can create and edit Worksheets using either the desktop Style Studio or
the web-based Visual Composer. The Style Studio and Visual Composer
tools provide identical functionality, although there are some minor
differences in appearance. Both tools save assets to the same location, and
both have access to the same saved assets.

Note: The screen images shown in this guide are generally from the
Visual Composer.

You can use either tool to create and edit Worksheets. Developers may find
it more convenient to work with the desktop Style Studio, while Viewsheet
users may find it more convenient to work with the web-based Visual
Composer.

See Also
Saving an Asset, for information about asset storage.
Editing Data Worksheets, for information on opening and creating
Worksheets.

2.1.1 Editing a Data Worksheet in Style Studio

To edit a Worksheet in Style Studio, open the Asset panel and expand the
Worksheet node. Double-click the desired worksheet.

To create a new Worksheet in Style Studio, click the ‘New’ button in
toolbar. This opens the ‘New Asset’ dialog box. Select the ‘Worksheet’
node in the left-side tree, and click ‘OK’.

DATA MASHUP

417 of 2477

You can now proceed to edit the Worksheet. See Editing Data Worksheets
for more information.

2.1.2 Editing a Worksheet in Visual Composer

To launch the web-based Visual Composer, follow these steps:

1. Open a web browser, and log in to the User Portal.

See the User Portal section of the End User for information about
logging in. The default URL for the User Portal is http://host-
name:8080/sree/Reports, where ‘hostname’ is the computer run-
ning the Portal software. Consult your administrator for the correct
address and login information.

2. Click the Design tab at the top of the User Portal.

3. Click the ‘Visual Composer’ link under the Design tab. This
launches the Visual Composer in a separate browser window.

Once you have launched the Visual Composer, you can create new
Worksheets or open existing Worksheets for editing. See Editing Data
Worksheets for more information.

DATA MASHUP

418 of 2477

2.2 Editing Data Worksheets
This section provides basic information about working with Worksheets.

2.2.1 Creating a New Data Worksheet

To create a new Worksheet (in Style Studio or Visual Composer), click the
‘New Worksheet’ button in the toolbar. This opens a blank Worksheet
named ‘Untitled’.

See Also
Assets: Reusable Worksheet Components, for adding content to a
Worksheet.
Appendix A:Toolbar Buttons, for information on the Worksheet toolbar.

2.2.2 Creating a Local Worksheet

A local Worksheet is a Worksheet that is embedded within a report, rather
than being stored in the common asset.dat repository file. Embedding a
Worksheet data source within a report enhances report portability.
However, because a local Worksheet is available only to the particular
report in which it is embedded, embedding is most useful in cases when the
Worksheet is unique to the report and will not be reused for other reports.

Creating a Local Worksheet

To create a local Worksheet, you must first open a report in Style Studio.
Follow these steps:

1. In Style Studio, open the report into which you want to embed the
local Worksheet.

DATA MASHUP

419 of 2477

2. Expand the Style Studio Asset panel.

3. Expand the ‘Report’ node, and right-click the ‘Local Worksheet’
folder. Select ‘New Worksheet’ from the context menu.

Note: The ‘Local Worksheet’ folder is only available when a report
is open for editing in Style Studio.

4. Design the new Worksheet as desired, and save the Worksheet.
(See the other sections of this guide for information on designing
Worksheets.)

The saved Worksheet is displayed under the ‘Local Worksheet’ folder, and
is embedded within the current report. You can bind this Worksheet to a
report element in the same way that you bind any other data source. See
Walkthrough: Choosing the Binding Data Source in Report Design for
more information.

See Also
Creating a Local Query, in Data Modeling, for information on embedding
a query.

Exporting a Local Worksheet to the Global Repository

To export one or more local Worksheets to the global asset.dat registry file
so that they can be used in other reports, follow the steps below:

1. In Style Studio, open the report that contains the local Worksheet(s)
that you want to export.

2. Expand the Style Studio Asset panel.

3. Expand the ‘Local Worksheet’ node in the tree.

4. Expand the desired target folder under the ‘Worksheet’ tree node.

5. To copy the Worksheet(s) to the desired folder under the
‘Worksheet’ tree node (and leave the originals as embedded local
Worksheets), follow these steps:

DATA MASHUP

420 of 2477

Alternatively, drag-
and-drop the Work-
sheet to the desired
location while holding
down the Ctrl key.

a. Select the desired Worksheet(s) in the ‘Local Worksheet’ folder,
right-click, and select ‘Copy’ from the context menu.

b. Right-click the desired folder under the ‘Worksheet’ tree node,
and select ‘Paste’ from the context menu.

6. To move the Worksheet(s) to the desired folder under the
‘Worksheet’ tree node (and remove them from their embedding the
report), follow these steps:

a. Select the desired Worksheet(s) in the ‘Local Worksheet’ folder.

b. Drag-and-drop the selected Worksheet(s) into the desired folder
under the ‘Worksheet’ tree node.

The selected Worksheets are added to the common asset registry. Elements
in the report that were previously bound to removed local Worksheets are
automatically re-bound to the newly-exported global Worksheets.

Importing a Local Worksheet from the Global Repository

To import one or more Worksheets from the common asset.dat registry file
into a specific report as local Worksheets, follow the steps below:

1. In Style Studio, open the report into which you want to embed the
Worksheet(s).

2. Expand the Style Studio Asset panel.

3. Expand the ‘Report’ node, which contains the ‘Local Worksheet’
folder.

4. Expand the folder under the ‘Worksheet’ tree node that contains the
Worksheet(s) that you wish to import.

5. To copy the Worksheet(s) to the ‘Local Worksheet’ folder (and
leave the originals in the common asset registry), follow these
steps:

DATA MASHUP

421 of 2477

Alternatively, drag-
and-drop the Work-
sheet to the desired
location while holding
down the Ctrl key.

a. Select the desired Worksheet(s), right-click, and select ‘Copy’
from the context menu.

b. Right-click on the ‘Local Worksheet’ folder, and select ‘Paste’
from the context menu.

6. To move the Worksheet(s) to the ‘Local Worksheet’ folder (and
remove them from the common asset registry), follow these steps:

a. Select the desired Worksheet(s).

b. Drag-and-drop the selected Worksheet(s) onto the ‘Local
Worksheet’ folder.

The Worksheet is now displayed under the ‘Local Worksheet’ folder and
embedded within the current report. You can bind this Worksheet to a
report element in the same way that you bind any other data source. See
Walkthrough: Choosing the Binding Data Source in Report Design for
more information

Report elements that were previously bound to the removed global
Worksheet are automatically re-bound to the newly-created local version.

2.2.3 Opening a Data Worksheet

To open a saved Worksheet in Visual Composer (in Style Studio or Visual
Composer), follow these steps:

1. Expand the ‘Global Worksheet’ or ‘User Worksheet’ node in the
Asset Repository tree, and locate the desired Worksheet.

2. Double-click the Worksheet in the Asset tree, or right-click the
Worksheet and select ‘Open Sheet’.

DATA MASHUP

422 of 2477

The Visual Composer loads the Worksheet into a new page, and displays
the name of the Worksheet in the tab at the bottom. Visual Composer
allows you to keep many Worksheets (and Viewsheets) open
simultaneously.

See Also
Assets: Reusable Worksheet Components, for information on editing a
Worksheet.

2.2.4 Saving a Data Worksheet

This section discusses Worksheet storage and scope.

Saving a New Version of an Existing Worksheet

To save a new version of an existing Worksheet, click the ‘Save’ button in
the toolbar, or press Ctrl-S on the keyboard. This replaces the older version
with the current version, retaining the same name.

To save the new version of the Worksheet under a different name, click the
‘Save As’ button. This opens the ‘Save Worksheet’ dialog box. Then
follow the instructions for saving a new Worksheet below.

Saving a New Worksheet

To save a new Worksheet, follow these steps:

1. Click the ‘Save’ button in the toolbar, or press Ctrl-S on the
keyboard. This opens the ‘Save Worksheet’ dialog box.

The dialog box in Visual Composer appears as shown below:

DATA MASHUP

423 of 2477

The dialog box in Style Studio appears as shown below:

2. Enter a name for the Worksheet in the ‘Name’ field. In Visual
Composer, this is available under the Repository tab, e

3. Select a location in which to save the Worksheet:

a. If you are using Visual Composer, select the appropriate scope
for the saved Worksheet: ‘Global Worksheet’, ‘User
Worksheet’, or a sub-folder. The scope in which you save the
Worksheet determines the accessibility of the Worksheet to
different users. See Controlling Access to an Asset for further
details.

b. If you are using Style Studio, select the appropriate scope for the
saved Worksheet: ‘Worksheet’, a sub-folder under ‘Worksheet’,
or a report under ‘Report Repository’. The scope in which you
save the Worksheet determines the accessibility of the

DATA MASHUP

424 of 2477

Worksheet to different users. See Controlling Access to an Asset
for further details.

4. Select ‘As data source to reports’ to make the Worksheet result
(i.e., the Primary asset) available to reports as well as Viewsheets.
This will allow you to bind the Worksheet result to report elements
such as tables, charts, and sections. In Visual Composer, this setting
is available under the Options tab of the dialog box.

5. (Optional) If you are using Visual Composer, under the Options
tab, set the ‘Design mode sample data size’ to the maximum
number of rows that wish tables in the Worksheet to retrieve.

6. Click ‘OK’ to save the Worksheet.

The Worksheet is saved to the Asset Repository, and appears in the Asset
Repository tree under the specified scope. Saved Worksheets are stored in a
file called asset.dat in the SREE Home directory.

Example: Saving
a global
Worksheet

Create a new Data Worksheet that includes a Composition Table listing all
of the orders from the states of NY and NJ, and save the Worksheet in the
Asset Repository.

Follow these steps:

1. Create a new Worksheet.

2. In the Asset Repository, expand the ‘Data Source’ node, ‘Orders’
node, and ‘DWS’ node.

3. Drag the ‘NJ Orders’ query onto an empty cell on the Worksheet.
This creates a new table, ‘NJ Orders1’.

4. Drag the ‘NY Orders’ query onto an empty cell on the Worksheet.
This creates a new table, ‘NY Orders1’.

5. Select both tables by holding down the Ctrl key and clicking on the
title rows of both tables.

6. Click on the ‘Concatenate Table’ button on the toolbar, and select
‘Union’. This creates a new table, ‘Query1’, which is the union of
the data from the ‘NJ Orders1’ and ‘NY Orders1’ tables.

7. Set the ‘Query1’ table as the Primary Table by right-clicking on its
title row and selecting ‘Set as Primary’.

DATA MASHUP

425 of 2477

8. Click on the ‘Save’ button in the toolbar to save this Data
Worksheet. This opens the ‘Save Worksheet’ dialog box.

9. Enter “Orders” for the Worksheet name, and select ‘Global
Worksheet’ as the scope.

10. Click on the ‘OK’ button.

Note that the ‘Orders’ asset is saved under the ‘Global Worksheet’ node on
the asset tree.

¢

DATA MASHUP

426 of 2477

See Also
Controlling Access to an Asset, for information about scope rules.
Using an Asset, for information about binding worksheet results to
elements.
Showing Live Data in a Table, for information on setting maximum display
rows.
Repository Directory, in Administration Reference, for information on the
SREE Home directory.

Visibility of Saved Worksheet Assets

When you save a Worksheet, all of its constituent assets (Data Tables,
Named Groups, Variables, etc.) are saved together. However, only the asset
marked as “Primary” is accessible to reports and other Worksheets. See
Setting an Asset as Primary for information about setting the external
visibility of Worksheet assets.

The asset marked “Primary” determines the appearance of the Worksheet
icon in the Asset Repository. See Using an Asset for a list of icons.

2.2.5 Closing a Data Worksheet

To close a Worksheet, do one of the following:

• Press Ctrl-W on the keyboard.

• Click the ‘X’ in the Worksheet tab at the bottom of the screen.

If the Worksheet contains unsaved changes, you will be prompted to save
the Worksheet. See Saving a Data Worksheet for more information.

2.2.6 Navigating a Data Worksheet

The bottom left corner of the Visual Composer contains the Worksheet
Explorer. The Worksheet Explorer provides a hierarchical (tree) view of all
the Data Blocks in the current Worksheet. To select a particular Data Block
in the Worksheet, click the appropriate node in the tree.

DATA MASHUP

427 of 2477

The hierarchy reflects the composition structure of Data Blocks in the
Worksheet, with the participating (base) tables of each Composition Table
listed as sub-nodes under the result.

The icons in the tree indicate the type of operation performed to obtain the
resulting Data Block. Click on an icon to open the corresponding dialog
box (‘Conditions’, ‘Join Types’, etc.) and make modifications to the
operation.

ICON OBJECT/OPERATION

Cross Join.

Embedded table. (See Creating an Embedded Table.)

Inner Join.

Intersect.

Merge Join.

Minus.

Mirror table. (See Mirroring a Table.)

Rotated table. (See Rotating a Table.)

Table used as subquery within condition. (See Using a Subquery in a
Condition.)
Union.

DATA MASHUP

428 of 2477

2.2.7 Setting Global Worksheet Options

To set global Worksheet options using Visual Composer, click the
‘Options’ button in the toolbar. In Style Studio, select the ‘Worksheet
Properties’ option from the File menu.

There are several global options available:

• ‘As data source to reports’ specifies that the Worksheet is accessible for
data binding in reports, as well as for use by Viewsheets.

• ‘Alias’ specifies a designation to be used in place of the actual
Worksheet name. The alias replaces the Worksheet name in all contexts
except the Objects tab and the ‘Export Assets’ page in Enterprise
Manager. These always display the actual Worksheet name.

• ‘Description’ specifies a description for the Worksheet to appear in the
Style Studio ‘Open’ dialog box and the Portal’s Ad Hoc Wizard.

• ‘Auto Save’ automatically saves the current Data Worksheet at the
period specified by the ‘Interval (minutes)’ setting.

• ‘Design mode sample data size’ globally limits the number of rows
returned by any query or subquery for Live Preview mode, and for
Viewsheet design view.

If a table in the Worksheet is composed from multiple sub-queries, each
individual subquery result will be capped at the specified ‘Design mode
sample data size’ maximum. This may prove efficient when the final table
is itself row-limited. For example, if the final table displays only 20 rows in
Live Preview mode, it may be unnecessary for the component sub-queries
to each retrieve thousands of rows, and restricting these query result sets
may be desirable. However, artificially limiting queries in this way can also
yield an unrepresentative Live Preview result in some cases.

DATA MASHUP

429 of 2477

See Also
Using a Data Table in a Report, for details on report data binding.
Limiting the Number of Rows in a Table, for a survey of methods.
Viewing the SQL Query Plan of a Table, to inspect composition of the table
query.

DATA MASHUP

430 of 2477

3 Assets: Reusable Worksheet Components

An asset is a reusable Worksheet component. The five different types of
Worksheet assets are listed below.

When you save an asset in the Asset Repository, you can then use that asset
in multiple Worksheets and in multiple reports. This section covers the
basics of working with assets.

3.1 Using an Asset
The Asset Repository tree on the left side of the Visual Composer displays
all assets that are within the scope of the current Worksheet. Each asset type
is shown with a different icon.

Assets listed under the ‘Global Worksheet’ folder are accessible to all
Worksheets, while assets listed under the ‘User Worksheet’ folder are
accessible only to the user who originally saved those assets. (See
Controlling Access to an Asset for information about setting access scope.)

You can use assets in both reports and Viewsheets, as well as in other
Worksheets. This section explains the various methods of using assets.

3.1.1 Using a Data Table

You can use a Data Table from the Asset Repository in a Viewsheet, report,
or within another Worksheet.

ASSET DESCRIPTION

Data Table An array of data drawn from a data source.
Named Condition A reusable filter condition.
Named Grouping A reusable classification (grouping) structure.
User-Defined Date Range A reusable date interval specification.
Variable A reusable interface for acquiring user input.

Data Table

Named Condition

Named Group

User-Defined Date Range

Variable

DATA MASHUP

431 of 2477

Using a Data Table in a Viewsheet

A Viewsheet can be based on a Worksheet. The Viewsheet will have access
to all of the Data Tables its underlying Worksheet, regardless of whether
the tables are marked as Primary.

To create a new Viewsheet based on an existing Worksheet, follow these
steps:

1. Click the ‘New Viewsheet’ button in the Visual Composer toolbar.
This opens the ‘New Viewsheet’ dialog box.

2. In the ‘New Viewsheet’ dialog box, expand the ‘Global Worksheet’
or ‘User Worksheet’ folders, and select the Worksheet on which the
Viewsheet should be based.

3. Click ‘OK’ to close the dialog box and open the new Viewsheet.

Alternatively, right-click the desired Worksheet in the Asset Repository,
and select ‘New Viewsheet’ from the context menu.

To see which Data Tables of the Worksheet are accessible to an existing
Viewsheet, follow these steps:

1. Open the Viewsheet in Visual Composer.

2. Expand the top node in the ‘Component’ tree. (This node has the
same name as the underlying Worksheet).

DATA MASHUP

432 of 2477

The top node lists all of the Data Tables in the underlying Worksheet.
Although you can insert these tables directly into the Viewsheet, it is more
typical to bind the Data Tables to Viewsheet input and output controls that
provide visualization and exploration capabilities.

For more information on using Worksheet data within a Viewsheet, see
Quick Start: Creating a Dashboard, and the rest of Dashboard Design.

Using a Data Table in a Report

To use a Worksheet Data Table in a report, follow the steps below.

1. Click the ‘Options’ button in the Worksheet toolbar, and verify that
‘As data source to reports’ is enabled. This makes the Worksheet
visible for data binding in reports.

2. In Style Studio, open the report template in which you want to
access the Worksheet table.

3. Open the ‘Data Binding’ dialog box for the report element (Table,
Chart, Section, etc.) that you want to bind to the Worksheet table.
(See Data Binding, in Report Design for information.)

4. In the Data tab of the ‘Data Binding’ dialog box, expand the
‘Worksheet’ node on the tree.

The ‘Worksheet’ node shows Data Tables belonging to the ‘Global’
and ‘Report’ scopes of the Asset Repository. Tables belonging
‘User’ scope are not available for binding.

5. Select the desired Data Table, and proceed with the data binding.

DATA MASHUP

433 of 2477

Note that only the table marked as ‘Primary’ in a Worksheet is displayed
under the ‘Worksheet’ node of the ‘Data Binding’ window.

See Also
Data Binding, in Report Design, for details about binding.
Setting Asset Scope, for information about the different Worksheet scopes.
Setting an Asset as Primary, for details on making a Data Table the Primary
asset.
Setting Global Worksheet Options, to make Worksheets accessible to
reports.

Using a Data Table within a Worksheet

To use a Data Table from the Asset Repository in a Worksheet, follow these
steps:

1. Open the Worksheet in which you want to use the Data Table.

2. Select the desired Data Table asset (Worksheet) in the Asset
Repository.

3. Drag the Data Table from the Asset Repository into the Worksheet.

This adds the Data Table to the Worksheet as a new Table. Note
that only the Primary Data Table of the Worksheet in the Reposi-
tory is added to the new Worksheet.

4. Rename the new table as desired.

The new Data Table remains linked to the original Worksheet, and columns
of the new table can therefore not be deleted. If ‘Auto Update’ is set on the
new table, changes made to the original table will automatically propagate
to the new table.

See Also
Setting an Asset as Primary, for information on exposing a Worksheet
asset.
Renaming an Asset in the Worksheet, for information on changing a table
name.
Automatically Updating an Asset, to set updating for linked assets.

DATA MASHUP

434 of 2477

Example: Using
a Data Table

The ‘ProductSales’ Worksheet (in the ‘Tutorial’ folder) contains a joined
table called ‘LimitedProducts’ that returns products in a particular price
range. To use this table within another Worksheet, follow the steps below:

1. In the left-side ‘Asset’ pane of Visual Composer, expand the
‘Global Worksheet’ node, and expand the ‘Tutorial’ node.

2. Double-click the ‘ProductSales’ node to open the ‘ProductSales’
Worksheet in Visual Composer.

3. Right-click the ‘LimitedProducts’ Data Block, and select ‘Set as
Primary’ from the context menu. This makes the ‘LimitedProducts’
Data Block visible to other Worksheets.

4. Save the ‘ProductSales’ Worksheet.

5. Create a new Worksheet.

6. Select the ‘‘ProductSales’ Worksheet in the ‘Global Worksheet’
tree, and drag it onto one of the empty cells in the new Worksheet.
This adds the ‘LimitedProducts’ Data Block to the new Worksheet,
and renames it to ‘LimitedProducts1’.

DATA MASHUP

435 of 2477

You can use the ‘LimitedProducts1’ Data Block in the new Worksheet in
the same way as any other Data Block.

¢

3.1.2 Using a Named Condition

You can use a Named Condition in any Worksheet that shares the same
scope as the Named Condition. (See Creating a Named Condition for
information on creating Named Conditions.)

To add a Named Condition to a table in a Worksheet, follow these steps:

1. Drag the Named Condition asset from the Asset Repository tree to
an empty cell in the Worksheet. This creates a Named Condition
object in the Worksheet.

2. Drag the new Named Condition object until its border touches the
border (left or right) of the table to which you want to add the
condition.

3. When the “filter” icon appears, release the Name Condition object.

The Named Condition is applied to the table. If the Named Condition
references attributes that do not already exist in the table, these attributes
are added to the table as invisible columns.

You can add multiple Named Conditions to a single table by repeating the
above steps. These Named Conditions, as well as any conditions internal to
the table itself, are joined together by AND operators to yield the final data
filter.

Example: Using
a Named
Condition

This example continues from the example in Extracting a Named
Condition from a Table. You will create a new Data Worksheet which
contains a table using the ‘NJ Orders’ query. If you want to filter the data in
that table so that only the orders with a discount value greater than 0.2 are
included, instead of specifying that condition for the table, you can use the
‘Large Discount’ Named Condition and associate it with the table.

1. Create a new Worksheet.

DATA MASHUP

436 of 2477

2. Expand the ‘Data Source’ node, the ‘Orders’ node, and the ‘DWS’
node.

3. Drag the ‘NY Orders’ query onto an empty cell on the Worksheet.
This creates a new table, ‘NY Orders1’.

4. Expand the ‘Global Worksheet’ node.

The condition name is
shown in italics to
indicate that the con-
dition asset is refer-
enced from another
Worksheet.

5. Select the ‘Large Discount’ Named Condition and drag it onto an
empty cell in the Worksheet. This adds a named condition called
‘Large Discount1’ to the Worksheet.

Note: Drag the title
bar to move the
object. (Do not drag
the filter icon in the
title bar.)

6. Drag the Named Condition object to be right next to the ‘NY
Orders1’ table until the mouse changes into the condition icon.

7. Release the mouse. The condition is added to the table.

8. Select the ‘NY Orders1’ table. Notice that a link is created between
the ‘NY Orders1’ table and the ‘Large Discount1’ Named
Condition.

9. Preview the table. (See Previewing a Table.) Notice that only the
orders with a discount value greater than 0.2 are included in the
table.

¢

3.1.3 Using a Named Grouping

To use a Named Grouping from the Asset Repository in a Worksheet table,
follow these steps:

DATA MASHUP

437 of 2477

1. Drag the Named Grouping from the Asset Repository into the
Worksheet where it will be used.

2. Select the Named Grouping from the grouping options in the
‘Aggregate’ dialog box.

To use a Named Grouping from the Asset Repository in the data binding
grouping of a Report, select the Named Grouping from the ‘Predefined
Named Group’ menu.

See Also
Grouping and Aggregating Data for information about the ‘Aggregate’
dialog box.
Data Binding, in Report Design, to bind report elements.
Creating a Named Grouping, to create Named Groups.

3.1.4 Using a Date Range

To use a Date Range from the Asset Repository in the filtering condition of
a Worksheet table, follow these steps:

1. Drag the Date Range from the Asset Repository into the Worksheet
where it will be used.

2. In the ‘Conditions’ dialog box for the table, select the Date Range
from the ‘in range’ menu.

To use a Date Range from the Asset Repository in the data binding
condition of a report or Viewsheet, select the Date Range from the data
binding condition ‘in range’ menu.

See Also
Filtering, for information on setting conditions.
Data Binding, in Report Design, for binding report elements.
Creating a Filter Condition, in Dashboard Design, for information on
filtering Viewsheet components.
Creating a Date Range, for information about creating Date Ranges.

3.1.5 Using a Variable

You can use a Variable from the Asset Repository in the filtering condition
of a Worksheet Data Table, Named Condition, or Named Grouping. Follow
these steps:

1. Drag the Variable from the Asset Repository into the Worksheet
where it will be used.

2. Open the ‘Conditions’ dialog box for the table, Named Condition,
or Named Grouping.

DATA MASHUP

438 of 2477

3. Select the ‘Variable’ option, and choose the desired Variable from
the menu.

When you bind a Variable to a table in a Worksheet (either directly through
the table’s filtering condition, or indirectly through a Named Condition or
Named Group that is linked to the table), a user will be prompted to supply
the Variable value when they do one of the following things:

• Open the Worksheet in Visual Composer or Style Studio

• Save the Worksheet in Visual Composer or Style Studio

• Click the ‘Enter Parameters’ button in the Worksheet toolbar

• Open or preview a Viewsheet linked to the Worksheet (only if
Viewsheet’s ‘Disable Prompt Parameter’ option is deselected, and no
default is specified for the Variable)

• Open or preview a report that uses the table linked to the Variable

See Also
Filtering, for details on setting conditions.
Setting Viewsheet Options, in Dashboard Design, to enable Viewsheet
prompting.
Creating a Named Condition, for details on Named Conditions.
Creating a Named Grouping, for details on Named Groups.

Example: Using
a Variable

This example continues the example in Defining a Variable. Assume you
have a table listing the summarized information of the sales for all states
and you are interested in working with the total sales value for only one
particular state at a time. This can be achieved by adding a filtering
condition on the ‘State’ field of the table to be equal to the value of the
‘State’ Variable.

Instead of creating a new ‘State’ Variable for this Data Worksheet, you can
use the existing ‘State’ Variable from the Asset Repository (see Defining a
Variable).

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and then the ‘Orders’ node.

3. Drag the ‘sales by state’ query onto an empty cell on the
Worksheet. This creates the table ‘sales by state1’.

DATA MASHUP

439 of 2477

4. Expand the ‘Global Worksheet’ node.

The Variable name is
shown in italics to
indicate that the asset
is referenced from
another Worksheet.

5. Select the ‘State’ Variable and drag it onto an empty cell in the
Worksheet. This imports the variable into the Worksheet as
‘state1.’

6. Click on the ‘Condition’ button, located in the title row of the ‘sales
by state’ table. This opens the ‘Condition’ dialog.

7. Deselect the ‘Advanced Conditions’ box.

8. Click the ‘More’ button to add a new condition.

9. Select ‘State’ from the fields drop-down list.

10. Select “is equal to” as the condition operator.

11. For the value, specify that it is a Variable by clicking on the down
arrow button to the right of the value text field and selecting
‘Variable’.

12. From the menu to the left of the down arrow, select ‘state’.

13. Click on the ‘OK’ button.

DATA MASHUP

440 of 2477

14. You will be prompted for the value of the ‘state’ Variable. Specify
“FL” to be the parameter value and click on the ‘OK’ button.

15. Preview the table (see Previewing a Table), and note that only the
sales for the state of Florida are now shown.

¢

3.2 Saving an Asset
There are two ways to save an asset: Save the Worksheet as a whole, or
drag the individual asset to the repository. The following sections explain
the two methods.

3.2.1 Saving an Asset by Saving the Worksheet

To save an asset (e.g., Variable, Named Condition, etc.) to the Asset
Repository, follow these steps:

1. Mark the asset as Primary.

2. Save the Worksheet containing the asset.

The asset marked as Primary determines the appearance of the saved
Worksheet in the Repository, and how it can be used.

See Also
Setting an Asset as Primary, for details on marking the Primary asset.
Saving a Data Worksheet, for details on saving the current Worksheet.
Using an Asset for more information on asset appearance and usage.

3.2.2 Saving an Asset by Dragging to the Repository

To save an asset (e.g., Variable, Named Condition, etc.) to the Asset
Repository, follow these steps:

1. Click the small icon in the top-left corner of the asset title bar.

DATA MASHUP

441 of 2477

2. Drag the icon over a Global Worksheet or User Worksheet folder,
and release. This opens the ‘Enter Asset Name’ dialog box.

3. In the ‘Enter Asset Name’ dialog box, enter the name under which
the asset should appear in the Repository, and click ‘OK’.

The asset is added to the repository in the desired folder under the specified
name. See Using an Asset for information about how assets can be used in
Worksheets.

3.2.3 Deploying an Asset

In Style Studio, you can easily deploy an asset to a repository other than the
working repository (i.e., a remote repository) or to a JAR file for later use.
See Deploying a Report, Data Source, or Other Asset in Getting Started.

3.3 Renaming an Asset
You can rename an asset inside the Worksheet that contains it. You can also
rename an entire Worksheet in the Asset Repository.

3.3.1 Renaming an Asset in the Worksheet

To change the name of a table or other asset (Variable, Named Group, etc.)
in a Worksheet, follow these steps:

1. Right-click the asset title row, and select ‘Properties’ from the
context menu.

2. In the ‘Table Properties’ dialog box, edit the ‘Name’ field and click
‘OK’.

All of the assets in a given Worksheet must have unique names.

Example:
Renaming an
Asset

Say you have a table bound to the ‘sales by state’ query and you would like
to name the table ‘Sales Broken Down By State.’ Follow these steps to
change the name:

1. Create a new Worksheet.

DATA MASHUP

442 of 2477

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘sales by state’ query on to an empty cell of the
Worksheet.

4. Right-click on the table’s title row and select ‘Properties’ from the
context menu.

5. Change the name ‘sales by state’ to ‘Sales Broken Down By State.’

6. Click ‘OK’ to finalize the change.

¢

3.3.2 Renaming an Asset in the Asset Repository

To change the name of a Worksheet in the Asset Repository, follow these
steps:

1. Right-click the asset in the Repository, and select ‘Rename’ from
the context menu.

2. Type the desired name for the asset in the provided field.

3. Click away to save the change.

3.4 Deleting an Asset
You can delete an asset inside the Worksheet that contains it. You can also
delete an entire Worksheet in the Asset Repository.

3.4.1 Deleting an Asset in the Worksheet

To delete a table or other Worksheet asset, follow these steps:

1. Click the asset title row to select the asset.

DATA MASHUP

443 of 2477

2. Right-click the asset title row to open the context menu.

3. Select ‘Remove’ from the context menu.

Alternatively, press the ‘Delete’ key on the keyboard to remove the
assembly.

3.4.2 Deleting an Asset in the Asset Repository

To delete an asset in the Asset Repository, do one of the following things:

Note: If an asset is used by other reports, the asset cannot be
deleted.

• Select the asset name from the tree and press the Delete key on the
keyboard.

• Right-click on the asset name in the tree and select the ‘Remove’ option.

3.5 Editing a Non-Tabular Asset
To modify a non-tabular asset (Named Condition, Named Grouping, Date
Range, or Variable), right-click the asset title bar, and select ‘Properties’
from the context menu. See Creating Non-Tabular Assets for full details
about asset properties.

3.6 Setting an Asset as Primary
To mark an asset as the Primary asset, right-click on the asset’s title row,
and select ‘Set as Primary’ from the context menu. The Primary asset is
displayed with a bold title.

DATA MASHUP

444 of 2477

The Primary asset is the “main result” of the Worksheet. It is this Primary
asset that you will access from within reports or other Worksheets.

When you save a Worksheet, the Primary asset determines the appearance
of the Worksheet in the Asset Repository, and how the Worksheet can be
used. See Using an Asset for more information about accessing Worksheet
assets.

3.7 Automatically Updating an Asset
When you drag an asset from the Asset Repository into a Worksheet, the
imported asset is a copy that remains linked to its own defining Worksheet.
When you make changes to the original asset, the changes are propagated
to all linked copies. This default behavior is called “Auto Update.”

• To disable Auto Update, click the ‘Disable Auto Update’ button in the
asset title bar.

• To re-enable Auto Update, click the ‘Enable Auto Update’ button in the
asset title bar.

3.8 Controlling Access to an Asset
Assets can be assigned a specific scope, which determines their
accessibility to different users.

3.8.1 Setting Asset Scope

Assets can be stored under one of the following three scopes:

• Global scope: Assets saved under the Global scope are available to all
of the users and reports in the system.

• User scope: Assets saved under the User scope can be accessed only by
the reports and Data Worksheets that share the same user scope. User
scope is only available in the Visual Composer.

DATA MASHUP

445 of 2477

• Report scope: Assets saved under Report scope can be accessed only
by the associated report. See Editing a Data Worksheet in Style Studio
for details.

In the Global scope only, assets can be further organized into domains, for
example:

 – Shared assets
 – Sales domain
 – Marketing domain
 – R&D domain
 – Support domain
 – Financial domain

Each domain can be assigned different access rights. See Component/
Object Permissions in the Administration Reference for more information
on setting Global security for Worksheets.

3.8.2 Changing Asset Scope

To change the scope of an asset in the Asset Repository, drag it to the
branch of the Repository tree that corresponds to the desired scope. The
following rules apply:

• The user should have write permission to the target scope.

• If an asset is used in a report that is not owned by the current user, it
cannot be moved to the User or Report scope.

• If an asset is used in more than one report, it cannot be moved to the
Report scope.

Note that Report scope is only available in Style Studio, and User scope is
only available in Visual Composer.

DATA MASHUP

446 of 2477

4 Creating a Data Table

You can combine data from multiple queries and different data sources into
a Data Table, producing a single dataset that contains meaningful and
useful information. Tables have many different roles; see Using a Data
Table for more information.

Many Data Table operations create and maintain links between the
component Data Tables, conditions, expressions, etc. These links are
displayed graphically by dashed lines connecting the assets. When the
configuration or value of a linked asset is changed, the impact of the
change propagates to all its dependent components. This dynamic data
updating makes it easy to explore the data and to perform cause and effect
analysis.

4.1 Creating a Regular Data Table
This section discusses the various ways to create a regular Data Table.

4.1.1 Creating a Table from a Query or Data Model

To create a regular Data Table from a query or data model, drag one of the
following assets from the Asset Repository tree into the Worksheet:

• Query

• Query column

• Data model entity

• Data model attribute

This creates a new Data Table in the Worksheet. If you drag a query
column or a data model attribute into the Worksheet, then a table with just
one column is created. If you drag a full query or a data model entity to the
Worksheet, then a table is created which contains all the columns in the
selected query or all the attributes in the selected entity.

The new Data Table displays a single data row containing the table’s
metadata, a representation of the table column’s contents (e.g., “XXXX”
for text, “9999” for integer, etc.). To view the table data, see Showing Live
Data in a Table and Previewing a Table.

Example:
Creating a Data
Table from a
Query

Assume that you want to create a table for the ‘sales by state’ query from
the ‘Orders’ data source. Follow the steps below.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

DATA MASHUP

447 of 2477

3. Drag the ‘sales by state’ query from the tree to an empty cell in the
Worksheet. A new table named ‘sales by state1’ is created with two
columns, ‘State’ and ‘Sales’.

4. Right-click on the table title row and select ‘Preview’ from the
context menu.

¢

4.1.2 Creating a Table from Database Tables

In most cases, you should access data from a relational database only via
queries and data models. (See the Data Modeling for information on
creating queries and data models.) However, you can also directly access
the underlying database tables.

Note: Whenever possible, use queries or data models to create
Worksheet assets. Only use database tables directly if this is
absolutely necessary.

To create a Worksheet table or column directly from a database table,
follow these steps:

1. Expand the ‘TABLE’ folder in the Asset Repository tree. The
database tables are now listed in the tree.

DATA MASHUP

448 of 2477

If the ‘TABLE’ folder is empty or nonexistent, your administrator
may have disabled the listing of the physical fields. If the ‘TABLE’
folder does not reflect recent changes to the database schema, your
administrator may need to refresh the metadata. See Specifying
Data Source Information in Administration Reference.

2. Drag and drop a table or table column into the Worksheet. (This is
the same as adding a query or query column to the Worksheet. See
Creating a Regular Data Table and Adding a Table Column for
details.)

4.1.3 Creating a Table from Existing Table Columns

You can create a new Data Table by copying the columns of an existing
regular Data Table. Follow the steps below:

1. Select the columns to copy. (Ctrl-click the header cells to select
multiple columns. Continue holding the Ctrl key after selecting the
last column.)

2. While still holding down the Ctrl key, drag the selected columns
out of the table and drop them into an empty Worksheet cell.

This creates a new table containing just the selected columns. The order of
the columns is the order in which they were selected.

To add columns to an existing table, see Adding a Table Column. To copy
an entire table, see Copying a Table.

Example:
Creating a Data
Table from
Columns

Assume you have a table listing the order details which include the
company name, the product purchased, the description of the product, the
price of the product, the quantity of that product purchased, the discount
given, and the total amount of money paid by the customer for that product

DATA MASHUP

449 of 2477

in an order. you can create another table with only the information about
the customer and the name of the product purchased. Follow these steps:

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘Order details’ query onto one of the empty cells on the
Worksheet. This creates a new table called ‘Order details1’.

4. Ctrl-click the ‘Company’ and ‘Product’ column headers to select
them.

After you select both
columns, you can drag
either column to drag
both.

5. Drag the two selected column headers out of the table and drop
them onto an empty Worksheet cell.

6. A new table, ‘Query1’ is created with ‘Company’ and ‘Product’ as
its columns.

7. Right-click on the title row of the ‘Query1’ table and select
‘Preview’ The resulting table shows only the ‘Company’ and
‘Product’ columns.

¢

DATA MASHUP

450 of 2477

4.2 Creating an Embedded Table
Instead of creating a regular table from a query or data model, you can
create a Data Table by manually typing values into the Worksheet. Such a
table is called an Embedded Table.

There are two ways to generate an embedded table:

• Create a new embedded table using the ‘Embedded Table’ option in the
‘New Object’ menu.

• Convert a regular Data Table into an embedded table.

After you generate an embedded table, you can use it in the same way as a
regular Data Table. Embedded tables also provide a means for Viewsheets
to filter the data returned by Worksheet queries, enabling straightforward
what-if analysis.

See Also
Creating a Regular Data Table, to create a table from a query or data
model.
What-If Analysis, to use embedded tables in exploratory analysis.
Using Input Components, in Dashboard Design, for information on the
embedded table interface to Viewsheets.

4.2.1 Creating a New Embedded Table

To create a new embedded table, follow these steps:

1. Click the ‘New Object’ button, and select ‘Embedded Table’. The
cursor changes to a cross.

2. Click and drag the cursor across the cells that you want to compose
the table. The cells are highlighted as you drag across them.

When you release the cursor, the highlighted cells are converted
into an embedded table. The top row of cells becomes the title row
of the table, the second-to-top row becomes the column header row
of the table, and any remaining rows of highlighted cells become
the data rows of the table.

3. To edit a column header, double-click on the header and enter the
desired text.

DATA MASHUP

451 of 2477

4. To edit a data cell, click in the cell and enter text directly. You can
enter both numeric and non-numeric values. (See Changing the
Column Type in an Embedded Table.)

Example:
Creating a New
Embedded Table

Assume that you want to create a table of values to be used in a formula for
some other table on the Worksheet. (Refer to What-If Analysis for such an
application of the embedded table.) In the following example you will
create an embedded table with three rows and three columns of data.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Click on the ‘New Object’ button, and select the ‘Embedded Table’
option. The cursor changes to a cross.

3. Drag across the Worksheet to highlight five rows and three
columns. When you release the mouse, the selected range of the
empty grid cells becomes part of the new table called ‘Query1’; the
first row of the selected range becomes the header row, and the
second row becomes the column header row.

4. All the cells of this newly created table are editable. Double-click
on the ‘col0’ header cell. The cell switches to editing mode, and
you can now type in the cell to change the text.

5. Change the column names for ‘col0’, ‘col1’ and ‘col2’ to ‘A’, ‘B’
and ‘C’, respectively.

6. Enter any numeric values in the nine data cells. Note that both
numeric and non-numeric values can be entered in the table.

¢

See Also
Adding or Removing a Row from an Embedded Table, to change the table
length.

DATA MASHUP

452 of 2477

4.2.2 Converting a Regular Table to an Embedded Table

To convert a regular Data Table to an embedded table, follow these steps:

1. In the table title bar, click the ‘Change View’ button. Select ‘Live
Preview’ from the menu. This will populate the table with data.

2. Right-click the title bar of the table, and select ‘Convert to
embedded Table’.

This creates a new table with the name of ‘Query’. Once the table is
converted into an embedded table, it cannot be reverted back to a regular
table.

Example:
Converting to an
Embedded Table

In the following example, the ‘Sales by Category’ query is converted to an
editable embedded table.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, and then the ‘Orders’ node.

3. Drag the ‘Sales by Category’ node from the tree to an empty cell in
the Worksheet. A new table named ‘Sales by Category1’ is created.

4. Expand the table vertically so that it occupies a total of 11 rows in
the Worksheet.

5. Click the ‘Change View’ button in the table title bar, and select
‘Live Preview’ from the menu.

DATA MASHUP

453 of 2477

6. Right-click on the title row and select ‘Convert to Embedded
Table’. A new table will be created with a name of ‘Query1’.
Expand the number of rows so that all rows are visible.

7. Now, click on any of the cells of the ‘Query1’ table. Notice that all
of the cells in this table are now editable.

¢

4.2.3 Importing Data Into an Embedded Table

To import data from a delimited text file into an embedded table, follow the
steps below:

The size of the
embedded table will
change to match the
number of rows and
columns in the
imported data.

1. Create a new embedded table, or select an existing embedded table.
(Existing data and column names will be overwritten by the
imported data.)

2. Right-click the title bar of the embedded table, and select ‘Import
Data File’ from the context menu. This opens the ‘Import Data
File’ dialog box.

DATA MASHUP

454 of 2477

3. Click ‘Select File’, and choose the desired text file. (By default,
only files with the extension “.csv” are shown. To view all file
types, enter “*.*” in the ‘File Name’ field, and press Enter.)

4. From the ‘Encoding’ menu, select the encoding of the text file.

5. In the ‘Delimiter’ field, enter the character that is used in the text
file to separate entries. The default delimiter character is a comma.
For tab-delimited files, select the ‘Tab’ option.

6. Adjust any of the following optional settings to modify the way the
file data is interpreted:

a. Select ‘First Row as Header (Regular Table)’ to use the entries
in the first row of the text file as the column header text.
Otherwise, default column names are used (“col0,” “col1,” etc.).

You can only unpivot
a crosstab that has a
single level of col-
umn headers.

b. (Optional) Select ‘Unpivot Data (Crosstab Table)’ if the data in
the file is in crosstab table form, and you wish to convert the
crosstab table into a regular table within the Worksheet. This
option will convert the column header row into a “dimension”
column and convert the crosstab cells into a “measure” column.
If the crosstab table in the file contains multiple levels of row
headers, enter the number of levels in the ‘Header Columns’
field.

c. (Optional) Select ‘Remove Quotation Marks’ to strip quotation
marks out of the text file upon import.

The delimited text is imported into the embedded table, and the table
resizes itself to the correct number of columns.

See Also
Unpivoting a Table, to unpivot an arbitrary Worksheet crosstab.
Creating a New Embedded Table, for instructions on adding a new table.
Text Data Source, in Data Modeling, for more extensive text capabilities.

DATA MASHUP

455 of 2477

4.3 Adding a Table Column
You can expand an existing table in the Data Worksheet by adding
additional columns. This allows you to gather data from multiple entities
into a single table. You can also create new columns that contain complex
calculations.

This section discusses various methods for adding table columns.

4.3.1 Adding a Column to a Regular Table

To add a new column to a regular table in the Worksheet (from the same
query or data model), follow these steps:

1. In the asset tree, select the query column or a model attribute that
you want to add to the existing table.

2. Drag the query column or model attribute over the column header
row in the existing table. (A green bar shows the location in the
table where the new column will be placed.)

3. Drop the column into the table at the desired location.

See Also
Joining Tables, to integrate columns from different queries or models.
Merging Tables, to merge tables that share the same data model or query.

Example:
Adding a Column
to a Regular
Table

In the following example, you add a single attribute (salesperson last name)
as a new column in an existing table.

1. Drag the ‘Order Model’ > ‘Order’ entity to an empty cell on the
Worksheet. This creates a new ‘Order1’ table.

2. Drag the ‘Last Name’ attribute from ‘Order Model’ >
‘Salesperson’ entity over any column header in the existing
‘Order1’ table. (A green bar indicates where the new column will
be placed.)

DATA MASHUP

456 of 2477

3. Release the mouse button when the green bar appears in the
location you wish to place the new column. The column is then
added to the table.

¢

4.3.2 Adding a Column to an Embedded Table

To add a new column to an embedded table, right-click a column header.
Choose ‘Insert Column’ to insert a blank column to the left of the column
you clicked, or choose ‘Append Column’ to append a blank column to the
right of the column you clicked. All cells in the new column can be edited.

See Also
Adding or Removing a Row from an Embedded Table, to change the table
length.

4.3.3 Adding or Removing a Row from an Embedded Table

To add a new row to an embedded table, follow these steps:

1. Deselect the table. (Click the Viewsheet grid away from the table.)

2. Right-click a table row, and choose ‘Insert Row’ or ‘Append Row’
from the context menu. This inserts a blank row above the row you
clicked or appends a blank row below the row you clicked,
respectively.

To remove an existing row from an embedded table, follow these steps:

1. Deselect the table. (Click the Viewsheet grid away from the table.)

2. Right-click on the table row you want to delete, and choose
‘Remove Row’ from the context menu. This removes the row you
clicked, and shifts subsequent rows upward in the table.

4.3.4 Creating an Expression/Formula Column

An expression column, or formula column, is a column whose data is
generated from a script (expression) by processing existing data in the
table. The expression can use either SQL or JavaScript syntax, and can
reference any other columns within the Data Table.

To add an expression column to a table, follow these steps:

1. Click the ‘Expression’ button (labeled ‘fx’) located in the title row
of the Data Table. This opens the ‘Expression’ dialog box.

2. Enter a name for the new column in the dialog box, and click ‘OK’.

DATA MASHUP

457 of 2477

This adds the formula column to the right side of the table, and
opens the Formula Editor.

3. In the Formula Editor, click the ‘SQL’ button to enter an expression
using SQL syntax, or press the ‘Script’ button to enter an
expression using JavaScript syntax. Select the appropriate data type
from the ‘Return Data Type’ menu.

4. Enter the desired formula expression in the bottom text field.

JavaScript expression columns can make full use of the built-in
scripting functions in the script library. You can reference the value
of a Viewsheet input component, Viewsheet parameter, report
parameter, or Worksheet variable by using the component name or
variable name as a parameter. For example, if a Viewsheet input
control has name ‘RadioButton1’, you can reference the input’s
value within a Worksheet expression by using syntax “parame-
ter.RadioButton1”.

See Input Components in Dashboard Design for more information.

5. Click ‘OK’ to exit the Formula Editor. The data in the new column
will reflect the results of the specified expression.

Example:
Creating a
Formula Column

Consider the ‘Sales by Category’ query, which lists the total revenue
generated from the sales of different categories of products. It also has
information about the total discount given for each product category. Using

DATA MASHUP

458 of 2477

these two pieces of information, you can calculate the ‘Revenue’ generated
by each product category. Follow these steps to perform the calculation.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘Sales by Category’ query from the tree onto an empty
cell in the Worksheet. A new data block, ‘Sales by Category1’, is
created.

4. Click on the ‘Expression’ button, located on the title row of the
‘Sales by Category1’ table. This opens the ‘Expression’ dialog box.

5. Enter “Revenue” as the name of the new expression column.

6. Click ‘OK’. This appends a new ‘Revenue’ column to the right side
of the Data Table, and opens the Formula Editor.

7. In the ‘Return Data Type’ menu, select the ‘Float’ option.

8. Enter the following formula in the text area:

You can click on a
field name in the left
panel to add it to the
expression area.

field['Total Sales'] - field['Total Discounts'];

DATA MASHUP

459 of 2477

Refer to
Appendix B:Accessin
g Table Cells in Script
for information on
how to reference the
current table cell, row,
and column in the
expressions.

(Optional) To edit the expression again at a later time, click the ‘fx’
button in the expression column header (not the table title). This
reopens the Formula Editor.

9. Preview the ‘Sales by Category1’ table.

¢

See Also
Editing an Expression Column, to modify the formula of an expression
column.
Appendix B:Accessing Table Cells in Script, to reference table data in
expressions.
Appendix JS:General JavaScript Functions, for further information.

4.3.5 Automatically Substituting JavaScript For SQL

There are certain conditions that may prevent a SQL expression from being
executed properly (for example, if your particular database does not honor
the Data Block ‘Maximum Rows’ setting or the administrative ‘Query
Maximum Row Count’ setting). To prevent the expression script from
failing in such cases, you can provide a fall-back JavaScript expression to
be evaluated when the SQL script cannot be executed.

To include a fall-back JavaScript expression, simply enclose the desired
JavaScript expression within /*script [...] script*/ tags. For example:

CASE WHEN field['Returns.Return Total'] IS NULL THEN
field['Orders.Order Total']
ELSE field['Orders.Order Total']-field['Returns.Return
Total']
END

/*script
if(field['Returns.Return Total'] == null) {

field['Orders.Order Total']
}
else {

field['Orders.Order Total']-field['Returns.Return
Total']
}
script*/

DATA MASHUP

460 of 2477

In this case, the JavaScript version of the expression within the /*script
[...] script*/ tags will be executed only if the SQL version cannot be
executed.

4.3.6 Creating a Numeric Range Column

A numeric range column groups numeric data into a predefined set of bins
or ranges, for example:

 – Less than 5
 – 5 to 10
 – 10 to 15
 – 15 to 20
 – Greater than 20

You can create a range column for any numeric column in a Data Table. To
create a range column, follow these steps:

1. Right-click the header of the column for which you want to create a
range column, and select the ‘New Range Column’ option from the
context menu. This opens the ‘Value Range Name’ dialog box

2. Enter a name for the new range column, and click ‘OK’. This
opens the ‘Numeric Range Option’ dialog box. Here you can
specify the different benchmarks defining the range.

To customize a bench-
mark label, double-
click the benchmark
value. to enable edit-
ing.

3. Enter a benchmark value into the ‘Value Range’ field, and click the
‘Add’ button. Repeat until all desired benchmarks have been
entered.

4. Select the ‘Less Than Min’ checkbox to create a bin for all values
that fall below the minimum benchmark. If you do not select this
option, those values are classified as “Others.”

5. Select the ‘Greater Than Max’ checkbox to create a bin for all
values that fall above the maximum benchmark. If you do not
select this option, those values are classified as “Others.”

DATA MASHUP

461 of 2477

6. Click the ‘OK’ button to close the dialog box.

See Also
Creating a Named Grouping, for another way of partitioning column data.
Creating a Date Range Column for partitioning date information.

Example:
Creating a
Numeric Range
Column

Consider the ‘Sales by Category’ query, which lists the total amount
generated from the sales of different categories of products. You can define
a range column for the ‘Total Sales’ field, which places each amount into a
predefined range (bin).

1. Create a new Worksheet and drag the ‘Sales by Category’ query
into a vacant cell.

2. Right click the ‘Total Sales’ column, and select the ‘New Range
Column’ option. This opens the ‘Value Range Name’ dialog box.

3. Enter the name “Revenue Range” and click ‘OK’. This creates the
new column and opens the ‘Numeric Range Option’ dialog box.
Here you can specify the different benchmarks in your range.

4. Deselect the ‘Less Than Min’ and ‘Greater Than Max’ options.

5. Enter the first benchmark value, 750000, into the ‘Value Range’
field, and click the ‘Add’ button.

6. Enter the next three benchmarks in turn, clicking ‘Add’ after each
one: 1000000, 4000000, 10000000.

DATA MASHUP

462 of 2477

This creates the three ranges: (1) 750,000-1,000,000, (2)
1,000,000-4,000,000, and (3) 4,000,000-10,000,000.

7. Double-click the ‘750000-1000000’ label and enter the new label
“Low”.

8. Repeat the above step to relabel the 1,000,000-4,000,000 range as
“Medium” and the 4,000,000-10,000,000 range as “High”.

9. Click the ‘OK’ button to close the dialog box.

10. Preview the table data. Note that each cell in the ‘Total Sales’
column has a corresponding range in the ‘Revenue Range’ column.
The values that lie outside the specified range are labeled ‘Others’.

DATA MASHUP

463 of 2477

11. (Optional) Instead of defining a fixed minimum and maximum
value (750,000-10,000,000), you can keep the numeric range open
ended. Follow the steps below:

a. Open the ‘Numeric Range Option’ dialog box by clicking the
icon in the column header (see Editing a Range Column).

b. In the dialog box, select the ‘Less Than Min’ option, and click
the ‘OK’ button.

c. Preview the Data Table and note that the values outside the
specified range (formerly labelled ‘Others’) are now labelled
‘<750000.00’.

¢

4.3.7 Creating a Date Range Column

A date range column groups dates into a fixed set of date bins. You can
create a range column for any date column in a Data Table.

To create a range column, follow these steps:

1. Right-click the header of the column for which you want to create a
range column, and select the ‘New Range Column’ option from the
context menu. This opens the ‘Date Range Name’ dialog box.

2. Enter a name for the new column in the ‘Date Range Name’ dialog
box, and click ‘OK’. This opens the ‘Date Range Option’ dialog
box.

DATA MASHUP

464 of 2477

3. Select the desired partitioning (year, month, quarter, etc.), and click
the ‘OK’ button to close the dialog box.

See Creating a Numeric Range Column for doing a similar partitioning on
numeric columns.

Available Date Ranges

There are five date ranges available for the date range column:

• ‘Year’: A number in the range 0000-9999

• ‘Quarter’: A number in the range 1-4

• ‘Month’: A number in the range 0-11

• ‘Day of Week’: A number in the range 1-7

• ‘Day of Month’: A number in the range 1-31

4.4 Editing a Table Column
This section describes various ways to change the column properties of a
table. Column sorting options are discussed in the Sorting section of
Manipulating Tabular Data.

4.4.1 Renaming a Column
Warning: If there is a Viewsheet that uses on this Worksheet
column, renaming the column will cause the Viewsheet to lose its
reference.

To change a column name, double-click the column header and enter the
desired text.

4.4.2 Reordering a Column

To change the position of a column, click on the column header cell, and
drag the column to the desired location in the table. A green bar shows the
location where the column will be inserted.

In the figure below, the ‘Order Date’ column is positioned between the
‘Discount’ and ‘Paid’ columns.

DATA MASHUP

465 of 2477

4.4.3 Showing and Hiding a Column

To change the visibility of a column (show or hide), click the ‘visibility’
button next to the column name in the column header cell.

In the figure below, the ‘Order Date’ column is hidden.

4.4.4 Changing the Column Type in an Embedded Table

By default, all manually created columns in an embedded table are of type
‘String’. To change the type of an embedded table column, follow these
steps:

1. Right-click the column header, and select ‘Column Type’ from the
context menu. This opens the ‘Column Type’ dialog box.

2. Select the desired data type from the ‘Type’ menu. If you select a
numeric or date type, a secondary ‘Parse Format’ menu appears
below.

This allows the
Embedded Table to
convert the data to a
standard representa-
tion.

3. (Optional) In the ‘Parse Format’ menu, select the format in which
you have entered your data. For example, if you have entered dates
in the form “1/13/1995,” select or type “MM/d/yyyy” as the parse
format.

4. Click ‘OK’ to close the ‘Column Type’ dialog box.

After you have specified a data type for a column of an Embedded Table,
any additional data you enter into the column must match this specified
type.

Example:
Changing the
Column Type

In the following example, you will change the data type of an embedded
table column from ‘String’ to ‘Integer’:

1. Create a new Worksheet.

2. Create a new embedded table with four rows and four columns.
See Creating an Embedded Table for instructions on how to create
an embedded table.

DATA MASHUP

466 of 2477

3. Right-click a header cell and select ‘Column Type’ from the
context menu. This opens the ‘Column Type’ dialog box.

4. Select ‘Integer’ from the ‘Type’ menu and click ‘OK’.

¢

See Also
Date and Time Formats, in Report Design, for more information on
formats.
Format Tab, in Dashboard Design, for more information on Viewsheet
formatting.

4.4.5 Editing an Expression Column

To change the formula of an expression column, follow these steps:

1. Click the column header to select it.

2. Click the ‘Formula’ button in the column header. This opens the
Formula Editor.

3. Make the desired changes to the formula, and click ‘OK’ to close
the Formula Editor.

See Creating an Expression/Formula Column for more information about
using the Formula Editor.

4.4.6 Editing a Range Column

To edit a date range column or numeric range column, follow these steps:

DATA MASHUP

467 of 2477

1. Select the column header.

2. Click the Date Range or Numeric Range icon in the header.

This opens the ‘Numeric Range Option’ or ‘Date Range Option’ dialog
box. See Creating a Numeric Range Column and Creating a Date Range
Column for more details about using these dialog boxes.

4.5 Deleting a Table Column
To delete a column or multiple columns from a table, follow these steps:

1. Click the header of the first column to delete. This selects the
column.

2. Ctrl-click the headers of any other columns to delete. These
columns are also selected.

3. Right-click on any of the selected column headers, and choose
‘Delete column(s)’ from the context menu. The columns are
deleted from the table.

Deleted columns are removed from the query. To hide rather than delete a
column, see Showing and Hiding a Column. To add a column, see Adding a
Table Column.

4.6 Copying a Table
To eliminate repetitive work, an existing table may be copied to create a
new one. To copy and paste a table, follow these steps:

1. Right-click the title row of the table to copy, and select ‘Copy’ from
the right-click menu. This copies the table to the clipboard.

2. Right-click on an empty cell in the Data Worksheet where you
would like to paste the copy. Select ‘Paste’ from the right-click
menu to paste the clipboard copy into the Worksheet.

A new table is created in the Worksheet at that location. Although the
newly created table is a copy of the existing table, the two tables are

DATA MASHUP

468 of 2477

completely independent of each other. Therefore, changes made to one
table do not affect the other table.

To create a table copy that remains linked to the original table, see
Mirroring a Table.

4.7 Mirroring a Table
A mirrored table looks just like a copied table (see Copying a Table), but
remains linked to the original table. This link is one-way only: Changes
made to the original table are propagated to the mirrored table, but changes
made to the mirrored table are not propagated to the original table.

To create a mirrored table, right-click the title row of the table to mirror,
and select ‘Mirror’ from the right-click menu.

The new mirrored table is created, and a graphical link to the original table
is drawn to indicate the dependency.

A mirrored table is useful when you want to manipulate data in a table
without affecting dependent assets. For example, if a table is being used as
a component of a Composition Table, manipulation of the table’s data
would propagate to the dependent Composition Table as well. To prevent
this propagation, you can mirror the original table and then work with the
mirrored copy instead of the original.

Like a Composition Table, a mirrored table has a Hierarchical mode and an
Editable mode; see Editing a Composition Table for more information.

4.8 Table Operations
This section explains the basic operations you can perform on tables.

4.8.1 Setting Table Query and Display Properties

You can change various properties of a Data Table, such the table
description, maximum number of rows retrieved and displayed, and the
handling of duplicate rows.

To change table properties, follow these steps:

1. Right-click the title row, and select ‘Properties’ from the context
menu. This opens the ‘Table Properties’ dialog box.

Original Table

Mirrored Table

DATA MASHUP

469 of 2477

2. Change the desired properties, and click ‘OK’ to exit the dialog
box.

The table properties are described below.

PROPERTY DESCRIPTION

Description The description text is displayed as a tooltip when the mouse
hovers over the Table icon in the table’s title row, and when the
table is selected in Style Studio. (See Using a Data Table for
information about binding tables.)

Max Rows The maximum number of rows to retrieve from the database at
runtime and to display in table preview. This is also the
maximum number shown in Live Preview mode when ‘Max
Rows’ is less than ‘Max Display Rows’. (See Previewing a
Table and Showing Live Data in a Table.)

Return Distinct
Values

Display only distinct rows in the table. (Remove duplicate
rows.)

Merge SQL When selected, the Worksheet attempts to generate the table by
forming a single SQL query, thus delegating all of the data
manipulations to the database. If this option is not selected, or
if the unified SQL statement cannot be formed, the table is
generated in post-processing. (See Viewing the SQL Query
Plan of a Table for information on viewing a table’s query.) In
certain cases, you can improve Viewsheet performance by
disabling the ‘Merge SQL’ option.

DATA MASHUP

470 of 2477

4.8.2 Viewing the SQL Query Plan of a Table

To view the SQL statements that a table will attempt to execute (the query
plan), right-click the title bar, and select ‘Show Plan’ from the context
menu. This opens the ‘Query Plan’ dialog box.

The ‘Query Plan’ dialog box displays the queries that will be sent to the
database at runtime. Additionally, it shows the data operations that the
Worksheet will perform in post-processing, after the data is retrieved from
the database. The plan also shows the source information for parameterized
conditions.

By default, the Worksheet attempts to create a single SQL query that fully
generates the table’s data. This is typically the most efficient approach
because it allows the database to perform all the needed data operations
(joins, filtering, etc.). However, you can override this behavior for a
particular table by deselecting the ‘Merge SQL’ option in the ‘Table
Properties’ dialog box, and in some cases this may improve performance.
See Setting Table Query and Display Properties for more information.

Example:
Viewing the SQL
Query Plan

This example illustrates how you can control the SQL query that a table
sends to the database.

1. Expand the ‘TABLE’ > ‘SA’ node of the ‘Orders’ data source.

2. Drag the ‘PRODUCTS’ table to an empty location on the
Worksheet.

3. Drag the ‘CATEGORIES’ table to an empty location on the
Worksheet.

4. Drag the ‘CATEGORY_ID’ column header from the
‘CATEGORIES’ table onto the ‘CATEGORY_ID’ column header
of the ‘PRODUCTS’ table, and release when the ‘join’ symbol
appears.

 Live Preview Display live data in the table, rather than meta-data. When
displaying live data, it is recommended that you set the ‘Max
Rows’ property to prevent the query from returning a very
large number of records. Live Preview can also be enabled
from the ‘Change View’ button on the table title bar. See
Showing Live Data in a Table.

Max Display
Rows

Maximum number of table rows to retrieve and display in Live
Preview mode. (See Showing Live Data in a Table.) This
property does not affect the number of records retrieved from
the database at runtime or during preview. If ‘Max Rows’
specifies a smaller value, the ‘Max Rows’ value is used as the
Live Preview maximum.

PROPERTY DESCRIPTION

DATA MASHUP

471 of 2477

This creates a new table called ‘Query’ that contains the inner join
between the two tables based on the ‘CATEGORY_ID’ columns.
(See Inner Join for more details.)

5. Right-click the title bar of the ‘Query’ table, and select ‘Show
Plan’. This displays the ‘Query Plan’ dialog box.

The ‘Query Plan’ dialog box displays the query that the table will send to
the database. The statement below the query indicates that this query
(including the instructions to join the two tables) will be sent to the
database as a single SQL statement, which is also indicated by the single
icon in the top panel.

To override the default single-query behavior, follow the steps below:

1. Right-click the title row of the ‘Query’ table again, and select
‘Properties’ from the context menu. This opens the ‘Table
Properties’ dialog box.

2. Deselect ‘Merge SQL’ and click ‘OK’ to exit the dialog box.

3. Right-click the table title bar, and select ‘Show Plan’ again.

DATA MASHUP

472 of 2477

The query plan is again displayed, but the top panel now shows an
expandable hierarchy of queries. The ‘PRODUCTS’ and ‘CATEGORIES’
queries are each individually executed as single queries, but the inner join
that generates the final ‘Query’ table is performed by the Worksheet in
post-processing.

¢

4.8.3 Editing a Composition Table

Joined Tables and Concatenated Tables are considered Composition Tables.
A Composition Table, as well as a Mirrored Table, has two modes:
Composition view and Default view.

• Composition view shows the exact composition of the table. It displays
graphical links between the tables and columns involved in the
composition, and indicates the type of concatenation or join being used.
You cannot edit a table’s columns when the table is in Composition
view.

• Default view allows you to edit column attributes, such as sorting order,
visibility, etc. When a Composition Table is in Default view, it looks
similar to a regular Data Table. All of the table’s composition
information, such as join links, concatenation types, constituent tables,
etc., is hidden from view.

To toggle a Composition Table to Composition view, click the ‘Change
View’ button in the table title bar, and select ‘Composition’ from the menu.
To toggle a Composition Table to Default view, click the ‘Change View’
button in the table title bar, and select ‘Default’ from the menu.

DATA MASHUP

473 of 2477

Example:
Editing a
Composition
Table

Assume that you have a Composition Table which is a union of two tables,
one displaying information about customers in the state of NY and the
other displaying information about the customers in the state of NJ. Both of
these tables have a column named ‘customer_id’ which you would like to
hide. They also both have a column named ‘company_name’ which you
would like renamed to ‘Company’.

To create this Composition Table, and then hide and rename columns in the
Default view, follow the steps below:

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, ‘Orders’ node, and ‘DWS’ node.

3. Drag the ‘NY Customers’ query on to one of the empty cells in the
Worksheet. This creates a new table, named ‘NY Customers1’.

4. Drag the ‘NJ Customers’ query on to one of the empty cells in the
Worksheet. This creates a new table, named ‘NJ Customers1’.

5. Drag the ‘NY Customers1’ table until it is directly above or below
the ‘NJ Customers1’ table. When the ‘union’ symbol appears,
release the table to perform the concatenation.

A new Concatenated Table, ‘Query1’ is created. Notice that the
‘Query1’ table is in the ‘Hierarchical’ view since the ‘union’ sym-
bol is visible on the left of the table, indicating its type, and the

DATA MASHUP

474 of 2477

table’s title row lists all of the tables participating in the union oper-
ation.

6. Press the ‘Change View’ button in the table title bar, and select
‘Default’ from the menu.

7. Select the ‘CUSTOMER_ID’ cell and click on the ‘Visibility’
button to hide it.

8. Double-click the ‘COMPANY_NAME’ cell, and change the name
to ‘Company’.

9. Switch back to ‘Composition’ view by pressing the ‘Change View’
button in the table title bar. Select ‘Composition’ from the menu.

Notice that the column name change does not appear in the Com-
position view. This is because the Composition view displays the

DATA MASHUP

475 of 2477

base table information and the column name has not been changed
for the base tables.

10. Preview the table. Notice that the ‘CUTOMER_ID’ field is hidden
and the ‘COMPANY_NAME’ column header has been renamed to
‘Company’.

¢

4.8.4 Changing the Source of a Composition Table

When you select a Composition Table (Joined Table or Concatenated
Table), the Worksheet displays a set of arrows that indicate the table’s
dependencies. For example, when you click on a Joined Table, the lines
and arrows indicate the two Data Blocks are joined to produce the selected
table.

In some cases, you may need to change the source of a Composition Table
after you have already created the table. For example, when you originally
created the Composition Table, you might have used a source Data Block
(e.g., Embedded Table) containing some prototype or placeholder data.
Later, when the production data is available, you need to replace this
prototype Data Block with the Data Block containing real data.

To change the source of a Composition Table from one Data Block to
another, follow the steps below:

DATA MASHUP

476 of 2477

Note: The new Data Block must be compatible with the Data Block it
replaces. See below.

1. Add the new (replacement) source Data Block to the Worksheet.

2. Click the Composition Table to select it. This displays the lines and
arrows that show the Composition dependencies.

3. Click the arrow that connects the Composition Table to the old
source Data Block (the Data Block you wish to replace). This
highlights the arrow.

4. Drag and drop the arrow over the new (replacement) Data Block.

This rebinds the Composition Table to the new (replacement) Data
Block.

To preserve the existing composition operation with the replacement Data
Block, the replacement Data Block must be compatible with old Data
Block in the following manner:

• For a Joined Table, the name of the original join column must match a
column name in the replacement Data Block in order to preserve the
join. Otherwise, the resultant join type will default to a cross-join until
you define a new relationship.

• For a Concatenated Table, the number of columns and the data types in
the replacement Data Block must match the old Data Block.

See Also
Changing the Join Type, to change the existing join operator.
Changing the Concatenation Type, to change the existing concatenation
operator.

DATA MASHUP

477 of 2477

4.8.5 Previewing a Table

To preview a table, right-click the table title bar, and select ‘Preview’ from
the context menu. This opens the Preview tab, which displays all visible
columns of the table.

You can only preview one table at a time. In the table preview tab, click the
table title bar to see table information, including the record numbers being
displayed. Click outside the table to see information about the Worksheet.

See Also
Showing and Hiding a Column, to limit the number of columns displayed.
Setting Table Query and Display Properties, to limit the number of rows
retrieved.
Showing Live Data in a Table, to display tabular data within the Worksheet
itself.

4.8.6 Showing Live Data in a Table

A new table by default displays only metadata. However, the table can also
display “live data” drawn from the database. This often provides a useful
alternative to Preview.

For a large table, before entering Live Preview mode, you should set the
‘Max Display Rows’ in the ‘Table Properties’ dialog box to a reasonable

DATA MASHUP

478 of 2477

value. Note that for Live Preview mode, filtering conditions are only
applied to the sample data retrieved from the database, which is limited by
the ‘Max Rows’ and ‘Max Display Rows’ settings (as well as by the global
‘Design mode sample data size’ and administrator-set limits). Therefore,
Live Preview may not accurately represent the results of table filtering.

To view live data in a table, follow these steps:

1. Click the ‘Change View’ button in the table title bar, and select
‘Live Preview’.

2. Drag the bottom border of the table downward to display more
rows.

3. To scroll the table, move the mouse over the arrow symbol in the
last column.

This displays the scroll bar, which you can use to scroll the data.
The indices of the rows currently displayed in the table are shown
in the information bar at the bottom of the screen.

To toggle the table back to Meta Data mode, press the ‘Change View’
button in the table title bar and select ‘Default’ from the menu. You can
also toggle Live Preview mode from the ‘Table Properties’ dialog box.

See Also
Creating a Regular Data Table, for information about creating a new table.
Previewing a Table, for information about displaying the full table data.
Setting Table Query and Display Properties, for details about ‘Table
Properties’.
Displaying the Length of a Table, for methods of determining table length.

4.8.7 Limiting the Number of Rows in a Table

There are several ways to limit the number of rows (records) presented in a
table:

DATA MASHUP

479 of 2477

• To limit the number of rows retrieved and displayed by a particular table
in Live Preview mode only, set the ‘Max Display Rows’ property in the
table ‘Table Properties’ dialog box.

• To limit the number of rows retrieved from the database at runtime (and
displayed in Preview and Live Preview modes), set the ‘Max Rows’
property in the table ‘Table Properties’ dialog box.

• To globally limit the number of rows returned by all queries and sub-
queries, set the ‘Design mode sample data size’ in the ‘Worksheet
Options’ dialog box.

• To retrieve only the rows of a table matching some specified criteria, set
a filtering condition on the table.

• To retrieve only the rows of a table that have some specified relationship
to the data of another table, create a joined table.

See Tailoring Server Performance in the Administration Reference for
other methods of limiting query size and duration.

See Also
Setting Table Query and Display Properties, for details about ‘Table
Properties’.
Setting Global Worksheet Options, for details on ‘Design mode sample
data size’.
Tailoring Server Performance, in Administration Reference, for global
limits.
Filtering, for information on how to set a filtering condition on a table.
Joining Tables, for limiting rows displayed by comparison with another
table.

4.8.8 Displaying the Length of a Table

The length of a table is the number of records that the table retrieves from
the database. You can check this length in two ways, by using Live Preview
mode or by using Preview.

Displaying Table Length in Preview

To check the length of a table using Preview, follow these steps:

1. Select the table, and click ‘Preview’ in the toolbar. This opens the
‘Preview’ tab.

2. Click on the table title bar. The information bar at the bottom of the
page shows the number of records in the table.

DATA MASHUP

480 of 2477

Displaying Table Length in Live Preview Mode

To check the length of a table using Live Preview, follow these steps:

1. Press the ‘Change View’ button in the table title bar, and select
‘Live Preview’ from the menu.

2. Open the ‘Table Properties’ dialog box.

3. Make sure the ‘Max Rows’ field is empty. (This ensures that there
is no artificial limit on the number of records retrieved. However,
limits can also be set by an administrator.)

4. Click ‘OK’ to close the ‘Table Properties’ dialog box.

5. Click the table title bar to select the table.

6. Consult the information bar at the bottom of the window (just
above the tab).

The information bar displays the total number of records retrieved, as well
as the record numbers currently being displayed. If the information display
reads “maximum exceeded,” this means that Live Preview mode is unable
to display the full table. In this case, use the Preview method to assess the
table length.

See Also
Showing Live Data in a Table, for information on Live Preview mode.

“Displaying records 1-3 of 3934”

DATA MASHUP

481 of 2477

Setting Table Query and Display Properties, for details about ‘Table
Properties’.

4.8.9 Rotating a Table

To rotate a table, right-click on the table’s title row and select ‘Rotate’ from
the context menu.

This creates a rotated copy of the table, which is linked back to the original
table. In the rotated copy, each row of the original table becomes a column,
and each column of the original table becomes a row. The first column of
the original table is the column header row of the rotated table, and the
column header row of the original table is the first column of the rotated
table.

4.8.10Unpivoting a Table

In some cases it is useful to unpivot a table from crosstab form into normal
“flat” form. This operation converts the column headers into an additional
‘Dimension’ column.

To unpivot a crosstab, follow the steps below:

1. Right-click the table title bar, and select ‘Unpivot’ from the context
menu. This opens the ‘Unpivot Data’ dialog box.

2. In the ‘Levels of Row Headers’ field, enter the number of columns
containing row headers.

3. Press ‘OK’ to close the dialog box.

This creates a new table which contains the same data from the original
crosstab, but in flattened form (i.e., with column headers converted to an
independent ‘Dimension’ column). The unpivoted table remains linked to
the original crosstab so that changes to data in the crosstab are
automatically propagated to the new table.

Example:
Unpivoting a
Crosstab

To understand how to unpivot a crosstab, first create a crosstab by
following the steps below:

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘All Sales’ query from the tree to an empty cell in the
Worksheet. This creates a new table named ‘All Sales1’. You will
use this table to create a crosstab.

DATA MASHUP

482 of 2477

4. Press the ‘Group and Aggregate’ button in the table’s title bar. This
opens the ‘Aggregate’ dialog box.

5. Press the ‘Switch to Crosstab’ button at the bottom of the dialog
box. This updates the dialog box to display the crosstab binding
interface.

6. In the ‘Row Header’ region, select the following two fields:
‘Employee’ and ‘Company’.

7. In the ‘Column Header’ region, select the ‘Order Date’ field.

8. In the menu next to the ‘Order Date’ field, select ‘Year’.

9. In the ‘Measure’ region, select the ‘Total’ field.

10. Press ‘OK’ to close the dialog box. This creates a new crosstab in
the Data Worksheet.

11. In the crosstab title bar, click the ‘Change View’ button, and select
‘Live Preview’ from the menu.

12. Drag the bottom border of the table to expand the table.

DATA MASHUP

483 of 2477

This crosstab has two levels of row headers (‘Employee’ and ‘Company’),
and one level of column headers (‘Order Date’, broken out by year: 2008,
2009, 2010, 2011).

You will now unpivot the crosstab to create a flat table that contains the
same data. Follow the steps below:

1. Right-click the crosstab title bar, and select ‘Unpivot’ from the
context menu. This opens the ‘Unpivot Data’ dialog box.

2. In the ‘Unpivot Data’ dialog box, enter a value of “2” for the
‘Levels of row headers’ value. (The two levels are ‘Employee’ and
‘Company’.)

3. Press ‘OK’ to close the dialog box. This creates a new table
containing the unpivoted (flattened) data.

4. In the table title bar, click the ‘Change View’ button, and select
‘Live Preview’ from the menu.

5. Drag the bottom border of the table to expand the table.

DATA MASHUP

484 of 2477

Observe that the unpivoting operation transforms the values of the row
header in the crosstab (‘Order Date’) into a new column called
‘Dimension’. The new unpivoted table retains the row headers of the
original crosstab in the first two columns (‘Employee’ and ‘Company’),
but now repeats each combination of ‘Employee’ and ‘Company’ for each
value of ‘Order Date’.

The data presented in the unpivoted table is exactly the same as the data
presented in the original crosstab. However, the flattened version may be
more conducive to certain data operations such as trending.

¢

See Also
Importing Data Into an Embedded Table, for information on unpivoting a
crosstab table during import.

DATA MASHUP

485 of 2477

5 Combining Data Tables

One of the Data Worksheet’s most powerful capabilities is combining
tables from different data sources into unified Data Blocks. This section
explores the different ways that Data Tables can be combined.

5.1 Concatenating Tables
A Concatenated Table is a table generated by one of the following set
operations: Union, Intersect, and Minus. These set operations are called
concatenations. Candidate tables for concatenation should have the same
number of columns, and corresponding columns of each table should have
the same data type. A Concatenated Table is a type of Composition Table.
See Editing a Composition Table for information about other properties of
Composition Tables.

You can only concatenate two tables at a time, but any Concatenated Table
can be used in further concatenations. To concatenate multiple base tables,
first concatenate two of the base tables, and then concatenate the resulting
Concatenated Table with the third base table, and so on.

5.1.1 Creating a Concatenated Table

To create a Concatenated Table, follow these steps:

1. Select two tables to concatenate. (Ctrl-click the table title rows to
select them.)

The order in which you select the tables may influence the result.
See the Minus, Union, and Intersect sections for more details.

2. Click the ‘Concatenate Table’ button in the Worksheet toolbar and
select the desired concatenation: ‘Union’, ‘Intersect’, or ‘Minus’.

See Changing the Concatenation Type for information about switching the
concatenation type of an existing Concatenated Table.

5.1.2 Union

By default, the union of two tables contains all of the unique rows from the
two tables. The first table you select is the table whose distinct rows will
appear first in the result. By default, no duplicate rows are retained in the
union table. For information on how to preserve duplicate rows in the
union table, see Changing the Concatenation Type.

For information on how to create a union table, see Creating a
Concatenated Table or the example below.

DATA MASHUP

486 of 2477

Example: Union Say you have two queries: One returning a list of customers who have
purchased more than 100 pieces of ‘Wireless Mouse’ and the other
returning a list of customers who have purchased more than 100 pieces of
‘Fast Go Game’. If you desire to have both these pieces of information
provided as one entity, you can write another SQL query that is a union of
the two above mentioned queries. However, the necessity of writing a new
query can be eliminated by performing the union of the two tables, each
bound to one of the two queries.

Follow the steps below to concatenate two tables in order to see the contact
information of all customers who have purchased more than 100 pieces of
either ‘Wireless Mouse’ or ‘Fast Go Game’ in one table.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, the ‘Orders’ node, and the ‘DWS’
node.

3. Drag the ‘Fast Go Game’ node from the tree to an empty cell in the
Worksheet. A new table named ‘Fast Go Game1’ is created.

4. Drag the ‘Wireless Mouse’ node from the tree to an empty cell in
the Worksheet. A new table named ‘Wireless Mouse1’ is created.

5. Ctrl-click the table title bars to select both tables.

6. Click on the ‘Concatenate Table’ button in the toolbar, and select
‘Union’. A new table, ‘Query1’, is created. Notice that the title row
includes the names of the tables participating in the concatenation
and the type of concatenation (a union symbol in this case).

7. Preview the table ‘Query1’ by right-clicking on its title row and
selecting ‘Preview’ from the context menu. The information for all

DATA MASHUP

487 of 2477

customers who purchased more than 100 pieces of either ‘Wireless
Mouse’ or ‘Fast Go Game’ is included in the table.

¢

5.1.3 Intersect

The intersection of two tables contains the unique set of common rows
shared by the two tables, ordered lexicographically. Only a single instance
of each shared row is retained in the intersection table; all duplicates are
removed. For information on how to create an intersection table, see
Creating a Concatenated Table or the example below.

Example:
Intersection

Assume that you want a list of only those customers who have purchased
more than 100 pieces of both ‘Wireless Mouse’ and ‘Fast Go Game’. This
can be accomplished by taking the intersection of the ‘Wireless Mouse’
and ‘Fast Go Game’ queries.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button

2. Expand the ‘Data Source’ node, the ‘Orders’ node, and the ‘DWS’
node.

3. Drag the ‘Fast Go Game’ node from the tree to an empty cell in the
Worksheet. A new table named ‘Fast Go Game1’ is created.

4. Drag the ‘Wireless Mouse’ node from the tree to an empty cell in
the Worksheet. A new table named ‘Wireless Mouse1’ is created.

5. Now select both the tables by holding down the Ctrl key and
clicking on each table’s title row.

6. Click on the ‘Concatenate Table’ button in the toolbar and select
‘Intersect’. A new table, ‘Query1’, is created. Notice that the title
row includes the names of the tables participating in the

DATA MASHUP

488 of 2477

concatenation and the type of concatenation (an intersect symbol in
this case).

7. Preview the table ‘Query1’ by right-clicking on its title row and
selecting ‘Preview’ from the context menu. The information for
only those customers who purchased more than 100 pieces of both
‘Wireless Mouse’ and ‘Fast Go Game’ is included in the table.

¢

5.1.4 Minus

The difference (minus) of two tables is the set of distinct rows found in one
table but not in the other. The first table selected is the table whose unique
rows are retained in the result. For information on how to create a Minus
table, see the Creating a Concatenated Table section or the example below.

Example: Minus Assume you want a list of all the customers who purchased more than 100
pieces of ‘Fast Go Game’ but did not purchase more than 100 pieces of
‘Wireless Mouse’. Follow these steps to accomplish that result.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, the ‘Orders’ node, and the ‘DWS’
node.

3. Drag the ‘Fast Go Game’ node from the tree to an empty cell in the
Worksheet. A new table named ‘Fast Go Game1’ is created.

4. Drag the ‘Wireless Mouse’ node from the tree to an empty cell in
the Worksheet. A new table named ‘Wireless Mouse1’ is created.

DATA MASHUP

489 of 2477

5. First select the ‘Fast Go Game1’ table by clicking the table’s title
bar.

6. Now select the ‘Wireless Mouse1’ table as well by Ctrl-clicking the
table’s title bar (It is important to select the ‘Wireless Mouse1’ table
after selecting the ‘Fast Go Game1’ table.)

7. Click on the ‘Concatenate Table’ button, and select ‘Minus’. A new
table, ‘Query1’, is created. Notice that the title row includes the
names of the tables participating in the concatenation and the type
of concatenation (a minus symbol in this case).

8. Preview the table ‘Query1’ by right-clicking on its title row and
selecting ‘Preview’ from the context menu. The information for all
customers who purchased more than 100 pieces of ‘Fast Go Game’
but did not purchase more than 100 pieces of ‘Wireless Mouse’ is
included in the table.

¢

5.1.5 Changing the Concatenation Type

To change the concatenation type of a Concatenated Table, follow these
steps:

1. If the table is in Default view, switch the table to Composition
view. (Press the ‘Change View’ button in the table title bar, and
select ‘Composition’ from the menu. See Editing a Composition
Table for more details.)

DATA MASHUP

490 of 2477

2. Select and then right-click the concatenation symbol or the “link”
(the thin line) on the left side of the table, and select ‘Link
Properties’ from the context menu. This opens the ‘Concatenation’
dialog box.

3. Select a new concatenation type from the menu in the
‘Concatenation’ dialog box.

4. If you set the concatenation type to ‘Union’, you can choose ‘Keep
Duplicate Rows’ to prevent the removal of duplicate rows from the
result.

5. (Optional) If the data block contains multiple concatenations, select
‘Apply to all concatenations’ to simultaneously update all of the
links to the specified concatenation type. Leave this option disabled
to modify only the selected link.

See Also
Creating a Concatenated Table, to create a new Concatenated Table.
Union, Intersect, and Minus, for information on the concatenation types.

5.2 Joining Tables
A joined table is a composition of two tables that preserves a specified
relationship between the participating tables (base tables).

The joined table contains all the columns from both base tables, but retains
only the rows satisfying a specified join condition. The join condition is a
relation between two columns, one from each base table. These two
columns are called the join columns. The joined table can be thought of as
the intersection of the two tables based on the join columns.

There are no restrictions on the nature of the base tables for joins, and
joined tables can themselves be used in subsequent join operations. There
is no limit to the number of tables that can be successively joined together

DATA MASHUP

491 of 2477

in this way. Additionally, two tables can be joined together using multiple
join conditions, that is, multiple pairs of join columns. This allows you to
construct a joined table that embodies a very complex relation between the
base tables.

The next sections explain how to create various types of joined tables.

See Also
What-If Analysis, for an illustration of using multiple join conditions.
Changing the Join Type, for information on converting between join types.
Editing a Composition Table, for Editable and Hierarchical modes of
tables.

5.2.1 Inner Join

The most commonly-used join type is the inner join. The inner join of two
tables can be described in the following way: “First pair every row of the
first base table with every row of the second base table (Cartesian product),
and then delete any row in the product where the values in the join columns
do not satisfy the specified join condition.” See the Joining Tables section
for more general information about joins.

You can create an inner join either by dragging columns or by using the
‘Join Table’ button.

Creating a Inner Join by Dragging Columns

To create an inner join between two base tables by dragging columns,
follow these steps:

1. Identify the join columns, one from each table. These are the
columns to which the join condition is applied.

2. Drag the first join column header on top of the second join column
header. The cursor should change to a join symbol, and a green line
should appear in the second join column header.

3. When you see the join symbol and the green line, drop the column
header.

This creates a new table that represents the inner join of the two
base tables. A graphical link is drawn between the two join col-
umns, and the join type symbol is displayed. By default, the “equal-

Drag column

DATA MASHUP

492 of 2477

ity” join condition is used, producing the so-called “equi-join.” For
information on changing the join condition or join columns, see
Changing the Join Type.

4. If desired, repeat the above steps to implement multiple join
conditions.

Creating an Inner Join with the ‘Join Table’ Button

To create an inner join between two base tables, follow these steps:

1. Ctrl-click to select the two table that will participate in the join.

2. Click the ‘Join Table’ button in the toolbar, and select ‘Inner Join’.
This opens the ‘Inner Join’ dialog box.

3. In the top row of menus the ‘Inner Join’ dialog box, select one
column from each table, and choose the join condition that the data
must satisfy in order to appear in the result set. The ‘=’ operator
produces the “equi-join.” The inequality operators produce their
respective “non-equijoins.”

4. (Optional) To convert an inner join to an outer join, select ‘include
all values’ for the left or right table, or for both tables. These
selections correspond, respectively, to the left outer join, the right
outer join, and the full outer join.

5. Select additional columns and join conditions from the remaining
menus in the ‘Inner Join’ dialog box to create multiple join
conditions.

DATA MASHUP

493 of 2477

The outer join is a generalization of the inner join: In addition to the
matching rows preserved by the equi-join, the left outer join preserves all
the rows in the left table, while the right outer join preserves all the rows in
the right table. The full outer join preserves all the rows of both tables.

When you specify an outer join, the additional rows included from a table
(beyond those selected by the equi-join) do not have matching rows in the
other table. Therefore, outer-join tables generally exhibit empty cells
corresponding to these unmatched rows.

For information on changing the join condition or join columns after
creating the table, see Changing the Join Type.

Example:
Creating an Inner
Join

Suppose you have two queries, ‘Salesperson’ and ‘Sales by Employee’.
The ‘Salesperson’ query returns the names of the sales people and their
sales quotas. The ‘Sales by Employee’ query returns the names of the sales
people and the total sales each one of them has made. You can very easily
compare their total sales with the sales quota by joining the two tables, each
of which is bound to one of the above mentioned queries.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, then the ‘Orders’ node, and the
‘Order Model’ node.

3. Drag the ‘Salesperson’ entity on to one of the empty cells in the
Data Worksheet. A new table, ‘Salesperson1’ is created.

4. Drag the ‘Sales by Employee’ query from the tree on to one of the
empty cells in the Data Worksheet. A new table, ‘Sales by
Employee1’ is created.

5. Now hold down the left mouse button and drag the ‘Last Name’
column header from the ‘Sales by Employee1’ table on top of the
‘Last Name’ column header of the ‘Salesperson1’ table. Notice that
the cursor changes and a green line is drawn in the destination cell.

DATA MASHUP

494 of 2477

Notice that the con-
nector line on the bot-
tom row of the table
shows the join rela-
tionship by connect-
ing the join columns
together.

6. Release the left mouse button to create the join. A new joined table,
‘Query1’, is created.

7. Preview the ‘Query1’ table by right-clicking on the title row and
selecting ‘Preview’.

¢

5.2.2 Outer Join

When you join two tables, the default join type created is an equi-join. This
join type preserves only the rows of the two tables that have matching
values on the join columns.

Sometimes, in addition to preserving the matching rows, you may also
want to preserve all the rows of one or both base tables. A join which
preserves all rows of one or both base tables is called an outer join.

See Changing the Join Type to change an inner join to an outer join.

See Also
Inner Join, for information about the default equi-join.
Changing the Join Type, to change an inner join to outer join or change the
type of outer join.

5.2.3 Cross Join

Tables that do not share the same data model or query can be joined
together with a cross join. A cross-joined table contains the cross-product
(Cartesian product) of the data in the base tables. This means that every
row in the first table is paired together with every row in the second table.
The length of the new joined table is the product of the two base table
lengths.

To cross-join two tables in a Data Worksheet, follow these steps:

1. Drag the first table alongside the second table.

DATA MASHUP

495 of 2477

2. Position the dragged table so that its border touches the border of
the second table. The join icon should appear.

3. When the cross-join icon appears, release the dragged table.

The two tables are cross-joined to create a new table. Filtering conditions
from both base tables are applied to the cross-joined table.

If the two base tables are mergeable (i.e., share the same data model or
query), the steps above will produce a merged table rather than a cross-
joined table. See Merging Tables for more information on this type of table
manipulation.

Example: Cross
Join

Say you have two queries, ‘Salesperson’ and ‘Sales by Employee’. The
‘Salesperson’ query returns the names of the sales people and their sales
quotas. Cross joining the tables corresponding to these two queries will
create a joined table with a number of rows equal to the product of the rows
of the two base tables.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Query node, then the ‘Orders’ node, and the ‘Order
Model’ node.

3. Drag the ‘Salesperson’ entity on to one of the empty cells in the
Data Worksheet. This creates a new table, ‘Salesperson1’.

4. Drag the ‘Sales by Employee’ query from the tree on to one of the
empty cells in the Data Worksheet. This creates a new table, ‘Sales
by Employee1’.

5. Now click on the title row of the ‘Sales by Employee1’ table, hold
down the left mouse button and drag it close to the ‘Salesperson1’
table so that the two tables are laid side-by-side.

6. When the ‘merge’ icon appears, release the mouse to create the
join. A new joined table, ‘Query1’, is created.

DATA MASHUP

496 of 2477

7. Preview the ‘Query1’ table by right-clicking on the title row and
selecting ‘Preview’ from the context menu. Notice that the
‘Query1’ table contains the cross product of the data from the
‘Salesperson1’ and ‘Sales by Employee1’ tables.

¢

5.2.4 Merge Join

The Merge Join is a special type of join that creates no relationship between
the two base tables. The base tables are simply merged into a single table
by collecting their columns together and placing corresponding rows side
by side.

Note: A Merge-Joined table is not the same as a Merged table. See
Merging Tables for information about merging tables that share the
same query or model.

To create a merge join, follow these steps:

1. Select both tables by Ctrl-clicking on each table’s title row.

2. Click the ‘Join Table’ button in the Worksheet toolbar, and select
‘Merge Join’. A new merge-joined table is created.

In the merge-joined table, the columns of the shorter table are padded with
empty rows to match the length of the longer table. The number of columns
in the final merge-joined table is the sum of the columns in the two base
tables.

DATA MASHUP

497 of 2477

Example: Merge
Join

For example, say you want to see all of the orders from the states of NY
and NJ side by side. You can accomplish this by using the merge join.

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, the ‘Orders’ node, and the ‘DWS’
node.

3. Drag the ‘NY Orders’ node from the tree to an empty cell in the
Worksheet. A new table named ‘NY Orders1’ is created.

4. Drag the ‘NJ Orders’ node from the tree to an empty cell in the
Worksheet. A new table named ‘NJ Orders1’ is created.

5. Now select both the tables by holding down the Ctrl key and
clicking on each table’s title row.

6. Click on the ‘Join Table’ button on the top toolbar, and select
‘Merge Join’. A new table, ‘Query1’ is created.

Since the merge join
does not create any
relationship between
the tables, there is no
connector shown.
This join type, there-
fore, cannot be
changed.

7. Preview the ‘Query1’ table by right-clicking on the title row and
selecting ‘Preview’. Notice that since the ‘NJ Orders1’ table has
more rows than the ‘NY Orders1’ table, the number of rows of the
‘Query1’ table is equal to the number of rows of the ‘NJ Orders1’
table. Also notice that the ‘NY Orders1’ table has two empty rows
appended to it.

¢

DATA MASHUP

498 of 2477

5.2.5 Changing the Join Type

The join type can be changed for all joined tables except for Merge-joins
and Cross-joins. (Merge joins and cross joins do not define a relationship
between tables, so there is no relationship that can be changed.)

To change the join type of a joined table, follow these steps:

1. If the joined table is in Default view, switch the table to
Composition view. (Press the ‘Change View’ button in the table
title bar, and select ‘Composition’ from the menu. See Editing a
Composition Table for more details.)

2. Open the ‘Join Types’ dialog box. You can do this in any one of the
following ways:

a. Click the join connector link to select it. The selected link is
highlighted in blue. Right-click on the highlighted join
connector link and select ‘Join Properties’ from the context
menu. This opens up the ‘Join Types’ dialog box for the selected
join.

b. Right-click on the title bar of the Data Block and selected ‘Join
Properties’. This opens up the ‘Join Types’ dialog box for all
joins.

c. Press the ‘Join’ symbol next to the Data Block name in the
Worksheet Explorer. (See Navigating a Data Worksheet for
more information about the Worksheet Explorer.) This opens up
the ‘Join Types’ dialog box for all joins.

DATA MASHUP

499 of 2477

3. In the ‘Join Types’ dialog box, select the join columns from the
drop-down menus for each table.

4. Select the join condition operator from the middle menu. The ‘=’
operator produces the “equi-join.” The inequality operators
produce their respective “non-equijoins.”

5. (Optional) To convert an equi-join to an outer join, select ‘include
all values’ for the top or bottom table, or for both tables.

These selections correspond, respectively, to the left outer join, the
right outer join, and the full outer join. In addition to the matching
rows preserved by the equi-join, the left outer join preserves all the
rows in the top table, while the right outer join preserves all the
rows in the bottom table. The full outer join preserves all the rows
of both tables.

When an outer join is specified, the additional rows included from a table
(beyond those selected by the equi-join) do not have matching rows in the
other table. Therefore, outer-join tables generally exhibit empty cells
corresponding to the unmatched rows.

Example:
Changing the
Join Type

Follow the steps below to change the join type of a joined table from inner
join to left outer join.

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

DATA MASHUP

500 of 2477

3. Drag the ‘customers’ node from the tree to an empty cell in the
Worksheet. A new table named ‘customers1’ is created.

4. Expand the ‘DWS’ node on the ‘Orders’ tree.

5. Drag the ‘NY Customers’ node from the tree to an empty cell in the
Worksheet. A new table named ‘NY Customers1’ is created.

6. Select the ‘customer_id’ column header in table ‘customers1’, hold
down the left mouse button and drag it from the ‘customers1’ table
onto the ‘CUSTOMER_ID’ column header of the ‘NY
Customers1’ table. This creates a new (inner) joined table called
‘Query1’.

7. Right-click on the title row of the ‘Query1’ table and select
‘Preview’ from the context menu.

Notice that only the customers from the state of NY are listed.

8. Close the preview.

9. In the Data Worksheet, click the join connector in table ‘Query1’ to
select it.

10. Right-click the connector and select ‘Join Properties’ from the
context menu. This opens the ‘Join Types’ dialog box.

DATA MASHUP

501 of 2477

11. Select the ‘include all values’ option for the ‘customers1’ table and
click ‘OK’.

12. Preview the table again. Notice that the two tables are now joined
using the left outer join.

¢

5.3 Merging Tables
Tables that are linked to the same query or data model are called mergeable
tables. Two mergeable tables can be merged into a single table while
preserving the original relationships in the data. This simply means that
rows in the two tables that correspond to the same data record are merged

DATA MASHUP

502 of 2477

together. The merge effectively provides just another view of the same
query or data model, and does not entail any new joins.

To merge two mergeable tables in a Data Worksheet, follow these steps:

1. Drag the first table to the left or right side of the second table.
Position the dragged table so that its border touches the border of
the second table.

2. When the merge icon appears, release the dragged table. The
dragged table will be merged into the second table.

When the tables are merged, the columns of the first (dragged) table are
added to the right side of the second table, with corresponding rows of the
two tables merged together. (The first table is left unaltered.) Filtering
conditions that are defined on the second table are retained in the merged
table, but filtering conditions defined on the first table are dropped. A
merged table cannot be split.

If two tables are not mergeable, the above steps will produce a new cross-
joined table rather than a merged table. See the Cross Join section for more
information.

Note that a Merged table is not the same as Merge-Joined table. A Merge
Join simply appends the columns of one table to another, with no
relationship governing the row pairing. See the Merge Join section for
more information.

Example:
Merging Tables

The following example illustrates the difference between merging tables
and cross-joining tables. First, consider the case of two mergeable tables
(tables linked to the same query or a data model):

1. Create a new Worksheet by clicking on the ‘New Worksheet’
button.

2. Expand the ‘Data Source’ node, then the ‘Orders’ node, and the
‘Order Model’ node.

3. Drag the ‘Order’ entity on to one of the empty cells on the
Worksheet. A new table, ‘Order1’ is created.

4. Drag the ‘Salesperson’ entity on to one of the empty cells in the
Worksheet. A new table, ‘Salesperson1’ is created.

5. Now click on the title row of the ‘Salesperson1’ table, hold down
the left mouse button and drag it near the ‘Order1’ table so that the
two tables are laid side-by-side. Notice the merge icon which
indicates that the two tables will be merged together.

DATA MASHUP

503 of 2477

Merged tables cannot
be split.

6. Release the left mouse button to merge the two tables. Because the
‘Order1’ and ‘Salesperson1’ tables are bound to entities from the
same data model, the ‘Order1’ table is modified to include the
columns of the ‘Salesperson1’ table. No new tables are created.

7. Right-click on the title row of the ‘Salesperson1’ table and select
‘Preview’ to see the merged table.

8. Close the ‘Preview’ window.

Next, consider the case of two non-mergeable tables (tables linked to
different queries or a data models). See the Cross Join section for more
information.

9. Drag the ‘Sales by Employee’ node on to one of the empty cells on
the Worksheet. A new table, ‘Sales by Employee1’ is created.

10. Now click on the title row of the ‘Sales by Employee1’ table, hold
down the left mouse button and drag it near the ‘Salesperson1’
table so that the two tables are laid side-by-side.

DATA MASHUP

504 of 2477

11. Release the left mouse button to cross-join the tables. Because the
two tables do not share the same data model or a query, they are not
merged together. Instead, a cross join is created between them,
producing a new ‘Query1’ table.

12. Preview the ‘Query’ table.

¢

DATA MASHUP

505 of 2477

6 Manipulating Tabular Data

This section discusses various techniques for manipulating the data within
a table.

6.1 Sorting
Any column in a table can be sorted in ascending or descending order. You
can sort the table data based on a single column, or specify nested sorting
columns. If a column in the table is already sorted, sorting on a new column
clears the previous sorting.

6.1.1 Sorting a Single Column

To sort a single column, do one of the following:

• Click the ‘Sort’ button in the column header. This sorts the column in
ascending order. Click the button again to sort the column in descending
order. Click a third time to return the column to its original order.

• Press the ‘Sort Column(s)’ button in the table title bar. This opens the
‘Sort Column’ dialog box, where you can specify the sort order for the
selected column. See Sorting Multiple Columns for more information on
using the dialog box.

When a column is sorted, its sort order is indicated by the small arrow next
to the column name in the column header cell.

Example:
Sorting a Single
Column

Assume you have a table displaying the sales information for all states and
you would like to sort the data based on the ascending order of the states.
Follow these steps:

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘sales by state’ query on to an empty cell in the
Worksheet. This creates a new table named ‘sales by state1’.

4. Select the ‘State’ header cell.

5. Click on the ‘Sort’ button, located next to the column name in the
column header cell. Notice the presence of an up arrow next to the
‘state’ column name in the table.

DATA MASHUP

506 of 2477

6. Preview the table.

7. Close the ‘Preview’ window, and select the ‘State’ column header
again.

8. Click on the ‘Sort’ button. Notice that the ‘State’ column will now
be sorted in descending order. This is indicated by the down arrow
present next to the column name.

9. Preview the table.

Clicking on the ‘Sort’ button of the ‘State’ column a further time
will result in the data being displayed in its original order.

10. Now select the ‘Sales’ column header cell.

11. Click on the ‘Sort’ button. Notice that the ‘Sales’ column is now
sorted in the ascending order and the ‘State’ column is no longer
sorted. The ‘State’ column is set to display the data in its original
order.

DATA MASHUP

507 of 2477

12. Preview the table.

¢

6.1.2 Sorting Multiple Columns

To sort multiple columns in a hierarchical fashion, follow these steps:

1. Press the ‘Sort Column(s)’ button in the table title bar. This opens
the ‘Sort Column’ dialog box.

2. From the ‘Sort on’ drop-down menus, select the table columns that
you wish to sort.

The hierarchical sort order of a column is determined by the verti-
cal position of the menu. The column specified in the top menu is
sorted first, the column specified in the second-to-top menu is
sorted second, and so on.

3. For each column, select the ‘Ascending’ or ‘Descending’ button to
determine the sorting direction.

When a column is sorted, its sort order is indicated by the small arrow next
to the column name in the column header cell. To sort just a single column,
see Sorting a Single Column.

Example:
Sorting Multiple
Columns

Say you have a table listing the information of all of our customers and you
would like to sort the data based on the state first, and then the city. To sort
both the ‘state’ and the ‘city’ columns of the table, follow these steps:

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

DATA MASHUP

508 of 2477

3. Drag the ‘customers’ query on to an empty cell in the Worksheet.
This creates a new table named ‘customers1’.

4. Press the ‘Sort column(s)’ button in the table title bar. This opens
the ‘Sort Column’ dialog box.

5. Select ‘state’ from the first drop-down list, and ensure that the
‘Ascending’ radio button is selected.

6. Select ‘city’ from the second drop-down list, and ensure that the
‘Ascending’ radio button is selected.

7. Click on the ‘OK’ button. Notice that the up arrows next to the
column names ‘state’ and ‘city’ indicate that both of those columns
are sorted in ascending order.

8. Preview the table. Notice that the data is sorted by the ‘state’ and
the ‘city’ columns.

DATA MASHUP

509 of 2477

¢

6.2 Filtering
You can filter the data in a table by applying conditions to any of the table
columns. For example, you may want to display only products that have a
‘product price’ greater than $100, or that have an ‘order date’ within the
past year. When you specify conditions, the table will only display the data
records that satisfy those conditions.

See Also
Filter Conditions, in Dashboard Design, for information on setting a
Viewsheet condition.
Creating a Named Condition, for creating reusable filtering conditions.
Using a Named Condition, for applying a Named Condition to a table.
Using a Subquery in a Condition, for generating condition criteria at
runtime.
Concatenating Tables, for filtering rows of a table based on set operations.
Joining Tables, for filtering table rows by joining two tables.
What-If Analysis, for implementing an adjustable filtering condition.

6.2.1 Defining Simple Conditions

Simple conditions are conditions defined on the pre-aggregate data, that is,
before any grouping or summarization. Simple conditions are always
joined together using the ‘AND’ operator. To gain greater flexibility, you
can use advanced conditions; see Defining Advanced Conditions.

Note: Filtering conditions are only applied to data that is
retrieved from the database. The amount of data (number of rows)
retrieved is determined by the ‘Max Rows’ setting and the global
‘Design mode sample data size’ setting. See Previewing a Table and
Showing Live Data in a Table for more information.

To define a simple condition, follow these steps:

1. Click the ‘Condition’ button on the title bar of a Data Table. This
opens the ‘Condition’ dialog box.

DATA MASHUP

510 of 2477

2. Click the ‘More’ button to specify a new condition.

3. Use the menus in the ‘Edit’ pane to define the condition. See
Filtering Operators for details on the options.

4. Click ‘OK’ to save the condition and close the dialog box. Click
‘Modify’ to update the condition without closing the dialog box.

5. To delete a condition, select the condition in the list and click the
‘Fewer’ button.

If the condition you specify references data model attributes that do not
already exist in the table, these attributes are automatically added to the
table as invisible columns.

Example:
Defining Simple
Conditions

Say you have a table listing the total sales of products grouped by their
categories, and you wish to view only those categories that have yielded
total sales of at least $1,000,000.

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘Sales by Category’ query on to an empty cell in the
Worksheet. This creates a new table named ‘Sales by Category1’.

4. Click on the ‘Condition’ button located in the upper right corner of
the table’s title bar. This will open the ‘Conditions’ dialog.

5. Click on the ‘More’ button to create a new condition.

DATA MASHUP

511 of 2477

6. Select ‘Total Sales’ from the drop-down list on the left.

7. Select ‘greater than’ from the operator drop-down list and check
the ‘or equal to’ check box to add the ‘greater than or equal to’
condition.

A Variable or another
field value can be
used in the condition
by selecting ‘vari-
able’ or ‘field’ and
specifying either the
Variable or the field
name. See Creating a
Variable for more
information.

8. Specify “1000000” for the value.

9. Click on the ‘OK’ button.

10. Right-click the table title bar, and select ‘Preview’ from the context
menu.

¢

6.2.2 Defining Advanced Conditions

To specify conditions on both pre-aggregate and post-aggregate data, as
well as group rankings, use the ‘Advanced Conditions’ dialog box.
Advanced conditions can additionally be joined using both ‘AND’ and
‘OR’ operations. If you only need pre-aggregate conditions and ‘AND’
operations, you can use simple conditions instead. See Defining Simple
Conditions for more information.

To define advanced conditions, follow these steps:

DATA MASHUP

512 of 2477

1. Click the ‘Condition’ button on the title bar of a Data Table. This
opens the ‘Condition’ dialog box.

2. Select the ‘Advanced Conditions’ check box.

The ‘Advanced Conditions’ check box can be used to toggle
between simple and advanced conditions. However, when switch-
ing from the ‘Advanced conditions’ mode to the ‘Simple Condi-
tions’ mode, if an advanced condition cannot be mapped to a
simple condition, it will be permanently removed from the list of
conditions.

3. Define a condition on pre-aggregate data, post-aggregate data, or
ranking by clicking on the corresponding ‘Edit’ button. See Pre-
aggregate, Post-aggregate, and Ranking Conditions below.

If the condition you specify references attributes that do not already exist in
the table, these attributes are automatically added to the table as invisible
columns.

Pre-aggregate, Post-aggregate, and Ranking Conditions

Pre-aggregate conditions are applied to the detail rows of the table, whereas
post-aggregate conditions are applied to the data in the summary rows of
the table. (Pre-aggregate conditions are equivalent to conditions defined in
the ‘Where’ clause of the SQL statement, and post-aggregate conditions
are equivalent to conditions specified in the ‘Having’ clause of the SQL
statement.) Ranking conditions specify the Top N or Bottom N number of
rows that should be presented in the table. See Filtering Operators for
information about the filtering options.

DATA MASHUP

513 of 2477

Example:
Defining
Advanced
Conditions

Say that you want to view the sales information of only the top three
product categories in the table that you created in the previous section,
Defining Simple Conditions.

1. Press the ‘Condition’ button located in the upper right corner of the
table’s title bar. This opens the ‘Conditions’ dialog box.

2. Click on the ‘Advanced Conditions’ check box. Notice that the
condition added to the ‘Total Sales’ field is included in the ‘Pre-
aggregate’ conditions list.

3. Click on the ‘Edit’ button for the ‘Ranking Conditions’ and click
on the ‘More’ button.

4. From the drop-down list, select ‘Total Sales’.

A Variable value can
be used as the rank-
ing condition value by
selecting ‘variable’
from the drop-down
list to the right of the
value text box and
specifying the param-
eter name in the text
box. See Creating a
Variable for more
information.

5. Ensure that the ranking operation is set to ‘top’ and specify “3” as
the value.

DATA MASHUP

514 of 2477

6. Click on the ‘OK’ button to go back to the ‘Conditions’ dialog.

7. Click on the ‘OK’ button to apply all of the conditions to the table.

8. Preview the table. Data for only the top three categories, based on
the ‘Total Sales’ value, is listed.

¢

6.2.3 Defining a Materialized View Update Condition

You can create conditions for a Data Block which determine how and when
the Data Block’s materialized view is updated. (See Incrementally
Updating a Materialized View in Administration Reference for background
on incremental updates.)

To specify the materialized view update conditions for a Data Block,
follow the steps below:

1. Press the ‘Condition’ button located in the upper right corner of the
Data Block title bar. This opens the ‘Conditions’ dialog box.

2. Select the MV Update tab.

DATA MASHUP

515 of 2477

3. Press the ‘Edit’ button corresponding to the type of update
condition you wish to create. The available options are as follows:

a. Append Records Matching Pre-aggregate Condition: Create
a condition which selects records to add to the existing
materialized view based on the pre-aggregate values of data
(prior to grouping and summarization).

b. Append Records Matching Post-aggregate Condition:
Create a condition which selects records to add to the existing
materialized view based on the post-aggregate values of data
(subsequent to grouping and summarization).

c. Delete Records Matching Pre-aggregate Condition: Create a
condition which selects records to delete from the existing
materialized view based on the pre-aggregate values of data
(prior to grouping and summarization).

d. Delete Records Matching Post-aggregate Condition: Create
a condition which selects records to delete from the existing
materialized view based on the post-aggregate values of data
(subsequent to grouping and summarization).

When you press the desired ‘Edit’ button, this opens the ‘Condi-
tions’ dialog box.

4. Use the menus to enter the desired condition. (See Defining Simple
Conditions for general information on specifying conditions.)

DATA MASHUP

516 of 2477

If you select the ‘Expression’ option for the right side of the condi-
tion, follow the additional steps below:

The ‘sql/js’ option is
not available for dele-
tions. Deletion
expressions must use
JavaScript syntax.

a. For append operations, press the ‘sql/js’ button to select the
desired expression language, SQL or JavaScript.

b. Press the ‘Edit Expression’ button (fx). This opens the Formula
Editor.

c. Enter the desired expression. You can use any available
functions and operators, in addition to the special parameters
MV.LastUpdatedTime, MV.MaxValue, and MV.MinValue. See
Special Parameters for Materialized View Update Conditions
for more details.

Note: To prevent a delete condition from being applied on the
initial materialized view generation, add the following special
tag into the expression script: //@incrementalOnly.

d. Press ‘OK’ to close the Formula Editor.

5. Press ‘OK’ to close the ‘Condition’ dialog box.

The specified condition(s) will be evaluated when any materialized view
based on this Data Block is regenerated. The materialized view will be
updated in accordance with the conditions specified. In general,

DATA MASHUP

517 of 2477

incrementally updating a materialized view in this way is significantly
faster than regenerating the materialized view in its entirety.

Special Parameters for Materialized View Update Conditions

The following special parameters are available for expressions in the
materialized view update condition.

• MV.LastUpdatedTime: This represents the time at which the materialized
view for the Data Block was last updated. You can use this value in an
condition expression to incrementally update the materialized view with
records that have posted to the database since the last materialized view
update. For example, the condition below updates the current
materialized view with records having a “transaction date” subsequent
to the previous materialization.

[transaction_date][is][greater than][MV.LastUpdatedTime]

• MV.MaxValue: This represents the maximum value of the field specified
in the left-side menu of the materialized view condition. For example, in
the condition below, MV.MaxValue represents the maximum value of the
‘Total’ field.

• MV.MinValue: This represents the minimum value in the field specified
in the left-side menu of the materialized view condition.

6.2.4 Filtering Operators

The table below lists the operators available for use in filtering conditions.

OPERATOR DESCRIPTION

equal to True when the column value identically matches the specified
criterion. (String matching is case-insensitive.)

in range For date fields, true when the column value (date) falls within
the specified date range criterion. See Appendix C.1, Built-in
Date Ranges for a list of available date ranges. See Creating a
Date Range for information on creating custom date ranges.

one of True when the column value is a member of the set of criteria
values. (String matching is case-sensitive.)

less than True when the column value is strictly less than the criterion
value. Select the ‘or equal to’ check box to obtain a “less than or
equal to” criterion. (Strings are compared based on their
alphabetical ordering.)

greater than True when the column value is strictly greater than the criterion
value. Select the ‘or equal to’ check box to obtain a “greater than
or equal to” criterion. (Strings are compared based on their
alphabetical ordering.)

DATA MASHUP

518 of 2477

6.2.5 Using a Parameter in a Condition

You can use a variable or parameter as the test value in a filter condition.
By default, the user of the Worksheet (including users of linked Viewsheets
and reports) will be prompted at runtime to enter the value of the parameter.

The value of the variable can also be supplied from the following sources:

• Viewsheet input component. (See Passing Inputs to an Embedded Table
or Variable in Dashboard Design.)

• User session data. (See SRPrincipal Properties in Integration.)

To use a variable or parameter in a filter condition, follow these steps:

1. Open the Worksheet containing the table you want to filter.

2. (Optional) To reference a a variable asset in the condition, first
create the Variable asset, or drag an existing Variable from the asset
tree to an empty cell in the Worksheet. (See Defining a Variable for
more information.)

3. Click the ‘Condition’ button on the title bar of the table you wish to
filter. This opens the ‘Condition’ dialog box.

4. Open the edit field in either the ‘Simple Condition’ mode (click the
‘More’ button) or ‘Advanced Condition’ mode (click the pre-
aggregate or post-aggregate ‘Edit’ button).

between True when the column value is within the interval specified by
its upper and lower boundaries. The boundary values are
included in the interval. (Strings are compared based on their
alphabetical ordering.) For date fields, consider using the ‘in
range’ operator in place of specifying fixed dates.

null True when the column value is ‘null’. (Nulls appear as empty
cells in a table.)

top For grouped and aggregated data, true when the aggregated
column value is among the top N aggregated values, according
to the grouping specified by the secondary menu.

bottom For grouped and aggregated data, true when the aggregated
column value is among the bottom N aggregated values,
according to the grouping specified by the secondary menu.

starting with For numeric and string data, true when the column value begins
with (i.e., the left-most characters match) the specified numerals
or characters. String matching is case-insensitive.

contains For numeric and string data, true when the column value
contains the exact sequence of specified numerals or characters.
String matching is case-insensitive.

OPERATOR DESCRIPTION

DATA MASHUP

519 of 2477

5. To use a variable in the condition, select ‘Variable’ from the
rightmost popup menu. This opens a blank Combo Box on the right
side of the condition.

In the Combo Box, do one of the following:

a. Select an existing Worksheet Variable from the menu.

b. Type the name of a new parameter.

c. Type the name of a Viewsheet input component.

6. To use session data in the condition, select ‘Session Data’ from the
rightmost popup menu. This opens a menu on the right side of the
condition.

Note that the adjacent
menu automatically
chooses the ‘equal to’
or ‘one of’ operator to
match your selection.

In the menu, choose one of ‘User’, ‘Roles’, or ‘Groups’. These
parameters return information about the user who is currently
accessing the Worksheet; respectively, the user name, the array of
roles to which the user belongs, and the array of groups to which
the user belongs.

7. Define the rest of the condition as described earlier.

DATA MASHUP

520 of 2477

The default prompting for Variables and parameters is the same. However,
Variables provide additional control over the interface (radio button, menu,
etc.) and the set of choices presented to the user.

See Also
Filtering, for details on specifying filtering conditions.
Defining a Variable, for more information on defining a Variable.

6.2.6 Using a Field in a Condition

You can use table values as the test values in a filter condition. That is, you
can define a filter condition that compares two values in the same row of
the table.

To use a table field in a filter condition, follow these steps:

1. Open the Worksheet containing the table you want to filter.

2. Click the ‘Condition’ button on the title bar of the table you wish to
filter. This opens the ‘Condition’ dialog box.

3. Open the edit field in either the ‘Simple Condition’ mode (click the
‘More’ button) or ‘Advanced Condition’ mode (click the pre-
aggregate or post-aggregate ‘Edit’ button).

4. Make the desired selections in the left three menus.

5. Select ‘Field’ from the right-most menu. This enables a Combo
Box on the right side of the condition.

6. In the Combo Box, select the table column containing the values to
test.

The condition compares corresponding values in the selected columns
(left-most menu and right-most menu), and preserves only rows where the
condition is met.

See Also
Filtering, for details on specifying filtering conditions.

DATA MASHUP

521 of 2477

6.2.7 Using an Expression in a Condition

The test values of a filtering condition can be a SQL or a JavaScript
expression. To filter a field in a data block based on an expression, follow
these steps:

1. Open the Worksheet containing the data block you want to filter.

2. Click the ‘Condition’ button on the title bar of the data block you
wish to filter. This opens the ‘Condition’ dialog box.

3. Select the field and the desired logical operator.

4. Click on the arrow button to choose ‘Expression’ from the menu.

5. Click the ‘sql’ or ‘js’ button at the left of the expression text field to
choose the expression type.

Note: Use SQL expressions if possible. See SQL vs. JavaScript in
Expressions.

6. Click on the ‘Fx’ button to launch the expression edit dialog and
enter your expression.

For example, to retrieve orders placed before today, you can use one of the
following conditions:

// SQL:
[Order Date] [is] [less than] [CURRENT_TIMESTAMP]

// JavaScript:
[Order Date] [is] [less than] [CALC.today()]

SQL vs. JavaScript in Expressions

Expressions that use SQL syntax are processed by the database, while
expressions that use JavaScript syntax are post-processed by the
Worksheet. Because post-processing is CPU-intensive for the query
engine, and may additionally cause retrieval of a large amounts of raw data,
it is preferable to use SQL syntax when possible. Note, however, that SQL
functions are database-specific and vary from one database to another.

DATA MASHUP

522 of 2477

6.2.8 Using a Subquery in a Condition

When you add a filter to a table, you can choose to use a subquery to return
the test conditions. This allows you to design a filter with conditions that
are set at runtime based on current data.

For example, consider a table with a column named ‘CompanyName’. You
want this table to display only companies in NY state, but the table has no
‘State’ column on which you can define the filter. If you knew in advance
which companies reside in NY, you could enter the condition explicitly; for
example,

[Company][is][one of][explicit list of companies in NY]

However, if the set of companies in NY is not fixed, and can therefore
change whenever the underlying database is updated, any fixed list that you
enter in the condition will become outdated. In order to filter the table
correctly, you need to generate a list of “companies in NY” that is always
true to the current data.

You can do this by using a subquery to provide the current list of
“companies in NY.” The condition you place on the table will then have the
form

[Company][is][one of][results of subquery]

The list of “companies in NY” generated by the subquery will always be
up-to-date, because the subquery itself executes at runtime.

To enter a subquery in a filter condition, follow these steps:

1. Open the Worksheet containing the table you want to filter.

2. Select the query you wish to use as a subquery in the condition.
Drag it from the asset tree to an empty cell on the Worksheet. This
creates a new table with the name of the query.

3. Click the ‘Condition’ button on the title bar of the table you wish to
filter. This opens the ‘Condition’ dialog box.

4. Open the edit field in either the ‘Simple Condition’ mode (click the
‘More’ button) or ‘Advanced Condition’ mode (click the pre-
aggregate or post-aggregate ‘Edit’ button).

5. Select ‘Subquery’ from the rightmost popup menu. This displays
the ‘Subquery’ button.

DATA MASHUP

523 of 2477

6. Click the ‘Subquery’ button. This opens the ‘Subquery’ dialog box.

7. In the ‘Subquery’ menu, specify the desired subquery table. (This
is the table created when you dragged the query to the Worksheet.)

8. Select options in the lower three popup menus, as needed.

You may not need to make every menu selection; this will depend
on how you want to use the subquery result set. The ‘In column’
menu specifies the subquery column that contains the result set to
use in the condition. The bottom two menus control table synchro-
nization for row-dependent conditions.

9. Click ‘OK’ to close the ‘Subquery’ dialog box.

10. After you have specified the subquery to use, define the rest of the
condition as described earlier.

See Also
Independent Query, in Data Modeling, for information on queries.
Filtering, for details on specifying filtering conditions.
Specifying a Subquery, for more information on defining the subquery.

6.2.9 Specifying a Subquery

You may not need to specify every setting in the ‘Subquery’ dialog box.
The required menu choices depend on how you wish to use the subquery
result set. This section explains three different cases for using a subquery.

DATA MASHUP

524 of 2477

Subquery Returns a Fixed Value

If the subquery returns a single fixed value (i.e., the subquery table in the
Worksheet contains a single cell), then in the ‘Subquery’ dialog box you
only need to specify the name of the subquery. No further settings are
required.

Subquery Returns a Fixed List

If you want to use a particular column from the subquery as a fixed list in
the condition, you need to specify the query name in the ‘Subquery’ dialog
box, and then select the desired subquery column from the ‘In column’
menu. A subquery that returns a column is typically used in conjunction
with the ‘one of’ condition clause to filter values that are members (or non-
members) of the returned list. You do not need to make selections in the
‘Subquery column’ and ‘Current table column’ menus.

Example:
Subquery
Returns a Fixed
List

Assume that you have a table of companies that purchased a ‘Wireless
Mouse’ product, and a second table of companies that purchased a ‘Fast Go
Game’ product. You would like to filter the ‘Wireless Mouse’ table to show
only the companies that did not purchased the ‘Fast Go Game.’ To do this,
define a condition on the ‘Wireless Mouse’ table that uses the ‘Fast Go
Game’ table as a subquery. Follow the steps below:

1. Create a new Worksheet.

2. Drag the ‘Wireless Mouse’ query on to an empty cell in the
Worksheet. This creates a new table named ‘Wireless Mouse1’.

3. Drag the ‘Fast Go Game’ query on to an empty cell in the
Worksheet. This creates a new table named ‘Fast Go Game1’.

4. In the ‘Fast Go Game1’ table, rename the ‘Customers’ column to
‘Customers_FGG’. This will make the next steps more clear.

5. Click on the ‘Condition’ button located in the upper right corner of
the ‘Wireless Mouse1’ table’s title bar. This will open the
‘Conditions’ dialog box.

6. Deselect the ‘Advanced Conditions’ checkbox if it is selected.

7. Click on the ‘More’ button to open the ‘Edit’ panel.

8. Using the menus in the ‘Edit’ panel, specify the following
expression:

[Customers][is not][one of]

DATA MASHUP

525 of 2477

9. Click on the button with the triangle, located on the far right, and
select ‘Subquery’. The value text box is replaced with the
‘Subquery’ button.

10. Click the ‘Subquery’ button. This opens the ‘Subquery’ dialog box.

11. Select ‘Fast Go Game1’ from the ‘Subquery’ menu. This is the
name of the subquery table to use.

12. Select ‘Customers_FGG’ from the ‘In column’ menu. This is the
column of the subquery which contains the list of values to use in
the condition expression.

13. Click ‘OK’ to close the ‘Subquery’ dialog box. (You do not need to
make selections from the bottom two menus.)

14. Click ‘OK’ to exit the ‘Condition’ dialog box.

15. To view the results, press the ‘Change View’ button in the title bar
of each table and select ‘Live Preview’ from the menu.

The ‘Wireless Mouse1’ table has now been filtered to display only the
companies that did not purchase the ‘Fast Go Game’. Note that the two

DATA MASHUP

526 of 2477

tables are now graphically linked together by an arrow to indicate that the
‘Fast Go Game1’ table provides a subquery result to the ‘Wireless Mouse1’
table.

The usefulness of defining the filter based on a subquery (rather than hard-
coding the list of companies) is that updates to the underlying database
which cause the ‘Fast Go Game’ query to return a different result set will
be automatically reflected in the filtered ‘Wireless Mouse’ table as well.

¢

Subquery Returns a Row-Dependent Value

A subquery can return a value that is dependent on the row of the main
table. Such a row-dependent subquery is useful when you want to filter
rows of the main table based on a comparison with corresponding rows of
another table (i.e., the subquery table).

For example, consider a case where one table displays sales by year for NY,
and a second table displays sales by year for CA. You want the NY table to
display records only for those years where sales were greater than sales in
CA. For instance, you want the NY table to display the record for year
2002 only if sales in NY for 2002 were greater than sales in CA for 2002.

To configure a row-dependent subquery, follow these steps:

1. Select the table you wish to filter.

2. Open the ‘Condition’ dialog box, and then open the ‘Subquery’
dialog box. See the Filtering and Using a Subquery in a Condition
sections for detailed instructions on how to do this.

3. Select the subquery name in the ‘Subquery’ menu. (In the example
above, the subquery is the CA sales table.)

4. Select the desired subquery column from the ‘In column’ menu.
This is the column of the subquery containing the actual values to
be tested in the condition. (In the example above, this would be the
‘sales’ column of the CA table, since this column contains the
values that the condition will test.)

5. From the ‘Subquery column’ menu, select the column in the
subquery table that indexes the subquery condition column
(selected in the previous step). The ‘Subquery column’ column is
the subquery join column; it will be used to “look up” the condition
values corresponding to a particular row in the main table. (In the
example above, the ‘Subquery column’ column would be the

DATA MASHUP

527 of 2477

‘year’ column of the CA table, since this is the column that indexes
the ‘sales’ column of the CA table.)

6. From the ‘Current table column’ menu, select the column in the
main table that contains the indexing values corresponding to those
in the ‘Subquery column’ of the subquery table. (In the example
above, the ‘Current table column’ would be the ‘year’ column of
the NY table, since this is the column that corresponds to the CA
‘year’ column.)

The ‘Subquery column’ and ‘Current table column’ serve to connect the
subquery table and main table. For each row in the main table, the value in
the ‘Current table column’ is matched against the values in the ‘Subquery
column’. The results returned by the subquery for each row are the values
of the condition ‘In column’ in the rows where the ‘Subquery column’
value is matched.

Example:
Subquery
Returns Row-
Dependent Value

This example illustrates how to use a row-dependent subquery. Suppose
you have the total sales information for all product categories, both for this
year and last year. However, you want to display only those product
categories that have yielded more sales revenue this year than last year. To
do this, you can use last year’s total sales as a subquery to provide the data
for the condition you place on this year’s sales table.

1. Create a new Worksheet.

2. Drag the ‘Sales this year’ query from the ‘Orders’ > ‘DWS’ folder
to an empty cell in the Worksheet. This creates a new table named
‘Sales this year1’.

3. Drag the ‘Sales last year’ query from the same folder to an empty
cell in the Worksheet. This creates a new table named ‘Sales last
year1’.

4. Rename the columns in the ‘Sales last year1’ table: Rename
‘Category’ to ‘Category_LY’, and rename ‘Total Sales’ to
‘Total_Sales_LY’. This will make the following steps more clear.

5. Click on the ‘Condition’ button located in the upper right corner of
the ‘Sales this year1’ table’s title bar. This will open the
‘Conditions’ dialog.

6. Deselect the ‘Advanced Conditions’ checkbox if it is selected.

7. Click on the ‘More’ button to open the ‘Edit’ panel.

8. Using the menus in the ‘Edit’ panel, specify the following
expression:

DATA MASHUP

528 of 2477

[Total Sales][is][greater than]

9. Click on the button with the triangle pointing down, located on the
far right, and select ‘Subquery’. The value text box is replaced with
the ‘Subquery’ button.

10. Click on the ‘Subquery’ button. This opens the ‘Subquery’ dialog
box.

11. Select ‘Sales last year1’ from the ‘Subquery’ menu.

12. Select ‘Total_Sales_LY’ from the ‘In column’ menu. This is the
column of the subquery containing the values to be used in the
condition test.

13. Select ‘Category_LY’ from the ‘Subquery column’ column. This is
the subquery column that will be matched up against the ‘Current
table column’ in the main table. (It is the “join column” of the
subquery table.)

14. Select ‘Category’ from the ‘Current table column’ menu. This is
the main table column that will be matched up against the
‘Subquery column’ in the subquery table. (It is the “join column”
of the main table.)

15. Click the ‘OK’ button to close the ‘Subquery’ dialog box.

16. Click the ‘OK’ button in the ‘Condition’ dialog box. The two tables
are now shown with a graphical link, indicating that the ‘Sales this
year1’ table relies on subquery data from the ‘Sales last year1’
table.

DATA MASHUP

529 of 2477

17. For each table, press the ‘Change View’ button in the title bar of the
table and select ‘Live Preview’ from the menu.

18. Expand the table borders as needed to view the results.

19. (Optional) Compare the filtered ‘Sales this year1’ table to the
original ‘Sales this year1’ table by dragging the ‘Sales this year’
query (again) from the asset tree to an empty Worksheet cell.
Rename it ‘Sales this year original’.

Note that the filtered ‘Sales this year1’ table now contains only the
categories for which sales were higher than the previous year.

¢

6.3 Grouping
The ‘Group and Aggregate’ button in a table’s title bar allows you to create
groupings in the table.

6.3.1 Grouping and Aggregating Data

To define grouping and aggregation columns (summary columns) for a
Data table, follow these steps:

1. Press the ‘Group and Aggregate’ button in the table’s title bar. This
opens the ‘Aggregate’ dialog box.

2. Select the grouping columns by clicking the ‘Group’ check box
next to one or more column names.

DATA MASHUP

530 of 2477

When you enable grouping for a column, by default each distinct
value in the column defines its own group. Aggregation is then
based on these groups. For example, if you group a column of state
names, each distinct state name will define its own group, and
aggregate values will be computed for each of those groups.

3. (Optional) If a user-defined group matches the grouping column
data format (String, Double, etc.), you can select the user-defined
group from the right-side menu.

User-defined groups give you greater flexibility in partitioning the
entries in a column for grouping. If you select a user-defined group-
ing from the menu, aggregations will be based on that user-defined
grouping.

4. (Optional) If you specify grouping for a column that has a Date
format, you can select a predefined or user-defined Date grouping
(Year, Quarter, etc.) from the right-side menu.

The actual date values in the grouping column will be replaced
with the new group labels, e.g., ‘1st Quarter’, ‘January’, etc.

5. Click the ‘Aggregate’ check box for columns containing the
measures that you wish to aggregate (summarize).

6. For the aggregate columns, choose the method of aggregation
(Sum, Correlation, etc.).

7. (Optional) For the univariate aggregation methods (Sum, Max,
etc.), select the ‘Percentage’ check box to display the aggregated
measure as a percentage of the grand total.

8. (Optional) For the bivariate aggregation methods (Correlation,
etc.), select the second operand (column) for the computation from
the ‘with’ menu.

9. Click ‘OK’ to close the ‘Aggregate’ dialog box.

DATA MASHUP

531 of 2477

The table is now grouped. Only the table columns that are either grouping
columns or aggregate columns are shown in the grouped table. All other
columns are hidden. In the grouped table, each column has an icon
indicating whether it is a grouping column or an aggregate column. Click
any of these icons to reopen the ‘Aggregate’ dialog box.

See Also
Creating a Named Grouping, for more information on user-defined
groupings.
Appendix C.2, Built-in Date Groupings, for a list of predefined date
groupings.
Crosstab Aggregation Measures, for more details about aggregation
methods.
Switching Between Detail and Aggregate View, to revert back to ungrouped
table.
Creating a Numeric Range Column, to create a new grouping of existing
column.

Example:
Grouping and
Aggregating Data

Assume you have order information for several companies and are
interested in seeing how much revenue was generated by each of the
individual products sold. To do this, group the table data by ‘Product’ and
summarize by ‘Total’. Follow the steps below:

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘Order details’ query on to an empty cell in the
Worksheet. This creates a new table named ‘Order details1’.

4. Press the ‘Group and Aggregate’ button in the table title bar.

This opens the ‘Aggregate’ dialog box.

5. Select ‘Group’ for the ‘Product’ column and ‘Aggregate’ for the
‘Total’ column.

DATA MASHUP

532 of 2477

6. Set the aggregate function for the ‘Total’ column to ‘Sum’.

7. Click on the ‘OK’ button to apply the grouping and summarization.

8. Preview the table. Notice that only the ‘Product’ and ‘Total’ fields
are included in the table and the columns not included in the
grouping or aggregation have been removed.

¢

6.3.2 Defining a Crosstab Table

A crosstab table is also known as a pivot table. A Worksheet crosstab
contains one column header, one or more row headers, and one measure.

The values at the row-column intersections of the crosstab table represent
summary (aggregate) information of the measure. For example, a crosstab
with row headers representing ‘Salesperson’ and column headers
representing ‘Month of Year’ might contain values at the intersections
representing ‘Average Sale Price’ or ‘Maximum Sale Price’. The measure
in both cases is ‘Sale Price’. The summarization method is, respectively,
Average or Maximum. By using summarization, crosstab tables display
large amounts of data in a compact form.

To create a crosstab table from an existing Data Table, follow these steps.

DATA MASHUP

533 of 2477

1. Press the ‘Group and Aggregate’ button in the table title bar. This
opens the ‘Aggregate’ dialog box.

2. In the ‘Aggregate’ dialog box, click ‘Switch to Crosstab’. The
‘Aggregate’ dialog box switches to the crosstab view.

3. In the ‘Row Header’ panel, select one or more fields from the left
menus.

4. In the ‘Column Header’ panel, select a field from the left menu.

5. (Optional) For each selected field in the ‘Row Header’ and
‘Column Header’ panels, select a Named Grouping (if one exists)
from the corresponding right menu.

6. In the ‘Aggregate’ panel, select a measure column from the left
menu. This is the column whose values will be summarized.

7. In the ‘Aggregate’ panel, select the aggregation method from the
right menu.

If you select a bivariate aggregation measure (e.g., ‘Correlation’,
‘Weighted Average’, etc.), select the second operand (column)
from the ‘with’ menu.

8. (Optional) To display the measure as a percentage of the grant total,
select the ‘Percentage’ option.

9. Click ‘OK’ to create the crosstab table.

See Also
Creating a Named Grouping, for more information on user-defined
groupings.

DATA MASHUP

534 of 2477

Crosstab Aggregation Measures, for more details about aggregation
methods.
Switching Between Detail and Aggregate View, to revert back to ungrouped
table.

6.3.3 Crosstab Aggregation Measures

The table below shows the crosstab aggregation measures available for
table grouping.

AGGREGATE
MEASURE

DESCRIPTION

Sum Displays the sum of the measure values for the
given row and column headings

Average Displays the average of the measure values for the
given row and column headings

Max Displays the maximum of the measure values for
the given row and column headings

Min Displays the minimum of the measure values for the
given row and column headings

Count Displays the total count of measure values for the
given row and column headings. This represents the
total number of records corresponding to the given
row and column headings, and is the same value for
any selected measure.

Distinct Count Displays the count of unique measure values for the
given row and column headings.

Correlation Displays the Pearson correlation coefficient for the
correlation between the measure values (for the
given row and column headings) and the
corresponding values in a second column, specified
by the menu labeled ‘with’.

Covariance Displays the covariance between the measure values
(for the given row and column headings) and the
corresponding values in a second column, specified
by the menu labeled ‘with’.

Variance Displays the (sample) variance of the measure
values for the given row and column headings.

Std Deviation Displays the (sample) standard deviation of the
measure values for the given row and column
headings.

Variance (Pop) Displays the (population) variance of the measure
values for the given row and column headings.

Std Deviation (Pop) Displays the (population) standard deviation of the
measure values for the given row and column
headings.

DATA MASHUP

535 of 2477

Example:
Crosstab
Aggregation

Suppose that you want to know the total amount of money spent by each
customer on each of the products. Follow the steps below to display that
information in a crosstab table:

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘Order details’ query on to an empty cell in the
Worksheet. This creates a new table named ‘Order details1’.

4. Press the ‘Group and Aggregate’ button in the table’s title bar. This
opens the ‘Aggregate’ dialog box.

5. Click on the ‘Switch to Crosstab’ button. The view changes to
enable you to specify the column headers and the summary
column.

6. Select ‘Company’ from the first drop-down list under the ‘Row
Header’.

7. Select ‘Product’ from the ‘Column Header’ drop-down list.

8. Select ‘Total’ from the ‘Measure’ drop-down list and ensure that
the aggregate function is set to ‘Sum’.

Weighted Average Displays the weighted average of the measure
values for the given row and column headings. The
weights are given by the corresponding values in a
second column, which is specified by the menu
labeled ‘with’.

AGGREGATE
MEASURE

DESCRIPTION

DATA MASHUP

536 of 2477

9. Click on the ‘OK’ button to save the changes.

10. Preview the table.

¢

6.3.4 Switching Between Detail and Aggregate View

When you define grouping or aggregation on a Data Table, the resulting
table is automatically placed in “aggregate view,” which shows only the
grouping and aggregation columns.

• To switch a table from aggregate view to detail view (displaying all
columns, without grouping and aggregation), click the ‘To detail’ button
on the table title bar.

• To switch a table from detail view to aggregate view (hiding all non-
aggregate and non-grouping columns), click the ‘To Aggregate’ button
on the table title bar.

DATA MASHUP

537 of 2477

Example:
Switching
Between Detail
and Aggregate
View

The following example illustrates how to toggle from detail to aggregate
view.

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, and the ‘Orders’ node.

3. Drag the ‘Order details’ query on to an empty cell in the
Worksheet. This creates a new table named ‘Order details1’.

4. Click the ‘Group and Aggregate’ button in the table title bar. This
opens the ‘Aggregate’ dialog box.

5. Select the ‘Group’ option for the ‘Product’ column and
‘Aggregate’ for the ‘Total’ column.

6. Ensure that the aggregate function for the ‘Total’ column is set to
‘Sum’.

7. Click on the ‘OK’ button to apply the grouping and summarization.

8. Press the ‘Change View’ button in the table title bar, and select
‘Live Preview’ from the menu.

Notice that since grouping and summarization is specified for this
table, only the summarized data is displayed in the table, and all of
the columns that are not included in the grouping or summarization
have been removed.

9. To switch to the detail view, press the ‘Change View’ button in the
title bar and select ‘Full’ (meta-data) or ‘Detail Preview’ (live
data). Notice that all of the columns are now displayed in the table,
but the group and aggregate columns are displayed with darker
headings.

DATA MASHUP

538 of 2477

10. To switch back to the summarized view of the data, press the
‘Change View’ button in the title bar and select ‘Default’ (meta-
data) or ‘Live Preview’ (live data).

¢

DATA MASHUP

539 of 2477

7 Creating Non-Tabular Assets

Non-tabular assets include Named Conditions, Named Groupings, Date
Ranges, and Variables. Like tables, they are reusable across multiple
Worksheets and reports. This section explains how to create each of these
asset types.

For more information about working with assets and the Asset Repository,
see Assets: Reusable Worksheet Components.

7.1 Creating a Named Condition
If you use the same condition in multiple tables, or in multiple Worksheets,
you can create a reusable Named Condition which can be referenced from
multiple contexts.

Note: Named conditions cannot be created for a Composition table
(joined or concatenated table).

A Named Condition is defined in connection with a particular table in the
Worksheet, and only applies to pre-aggregate data. (See Defining Advanced
Conditions for more information about pre-aggregate conditions.) You can
create the Named Condition as a new condition, or you can create the
Named Condition by extracting a condition from an existing table:

7.1.1 Creating a New Named Condition

To create a new Named Condition, follow these steps:

1. Select a table in the Worksheet.

2. Click the ‘New Condition’ button on the toolbar. This opens the
‘Condition’ dialog box, where you can specify the desired pre-
aggregate, post-aggregate, or ranking conditions.

3. Click ‘OK’ in the ‘Condition’ dialog box. The new Named
Condition is added to Worksheet.

See Also
Filtering, for more information about setting conditions.
Saving an Asset, for more information on saving a Named Condition.
Using a Named Condition, to use a Named Condition in another table.

7.1.2 Extracting a Named Condition from a Table

To create a Named Condition by extracting simple conditions from an
existing table, follow these steps:

1. Select a table in the Worksheet.

DATA MASHUP

540 of 2477

2. Press the ‘Extract Condition’ button on the toolbar. This creates a
new Named Condition containing the pre-aggregate conditions in
the selected table. A graphical link indicates the table from which
the condition was extracted.

Example:
Extracting a
Named Condition

Suppose that in a Data Worksheet you have a table listing all of the orders
from the state of NY and that the table also has a pre-aggregate condition
associated with it. Say the pre-aggregate condition is defined on the
‘Discount’ field so that only the orders that have a ‘Discount’ value of
greater than ‘0.2’ are included in the table. If you want to use this same pre-
aggregate condition for other tables in the same Data Worksheet or for
tables in other Data Worksheets, you can create a Named Condition and
save it in the Asset Repository. Follow these steps:

1. Create a new Worksheet.

2. Expand the ‘Data Source’ node, the ‘Orders’ node, and the ‘DWS’
node.

3. Drag the ‘NY Orders’ query onto an empty cell on the Worksheet.
A new table, ‘NY Orders1’, is created.

4. Click on the ‘Condition’ button, located in the title row of the table.
This opens the ‘Condition’ dialog box.

5. In the ‘Condition’ dialog box, click the ‘More’ button to create a
new condition.

6. Using the menus, define the condition as follows:

[Discount][is][greater than][0.2]

DATA MASHUP

541 of 2477

7. Click on the ‘OK’ button to close the ‘Condition’ dialog box.

8. Select the table by clicking on its title row, and press the ‘Extract
Condition’ button in the top toolbar. This extracts the pre-aggregate
condition on the ‘NY Orders1’ table into an external condition
object, ‘Condition’.

The link between the
table and Named Con-
dition indicates that
the condition is used
by the table. Deleting
this link will remove
the condition from the
table.

9. Rename the condition object to ‘Large Discount’. Follow the steps
below:

a. Right-click the ‘Condition’ object and select ‘Properties’ from
the context menu.

b. In the ‘Name’ field, enter ‘Large Discount’, and click ‘OK’.

10. Set the ‘Large Discount’ Named Condition as the Primary object of
this Worksheet: Right-click its title and select ‘Set as Primary’ from
the context menu.

11. Click on the ‘Save’ button, located in the top toolbar.

12. Save the Data Worksheet as ‘LargeDiscount’, and select ‘Global
Worksheet’ as its scope.

DATA MASHUP

542 of 2477

13. Click ‘OK’ to add the Named Condition to the Asset Repository.
Notice that the name of the asset on the asset tree has a “condition
icon” indicating that the asset is of the ‘Named Condition’ type.

This example is continued in Using a Named Condition with an illustration
of how to apply the Named Condition to a table in a different Worksheet.

¢

See Also
Defining Simple Conditions, for instructions on how to add new conditions.
Setting an Asset as Primary, for details about marking an asset as Primary.

7.2 Creating a Named Grouping
The default grouping procedure simply partitions a column based on its
distinct values. For example, if a column contains state abbreviations CA,
NY, and WA, then the default grouping produces one group for CA, one
group for NY, and one group for WA.

If this default grouping is not satisfactory, you can create a different
partition with Named Grouping. A Named (User-Defined) Grouping is a
reusable set of custom conditions (i.e., rules) that partition the data into the
desired groups.

To create a Named Grouping, follow these steps:

1. Click the ‘New Object’ button in the toolbar, and select
‘Grouping’. This opens the ‘Grouping’ dialog box.

2. In the ‘Name’ field, enter a name for the grouping assembly. This is
the title of the grouping object in the Worksheet. (After the
grouping object is created, you can edit the grouping name from
the text field at the top of the Worksheet.)

3. If you want the grouping to be accessible to all columns of a certain
data type, select the desired data type from the ‘Type’ menu.

DATA MASHUP

543 of 2477

For example, you could use the ‘starting with’ operator to define a
grouping based on initial letter (i.e., A, B, C, etc.). If you specified
type ‘String’ for this grouping, you could apply the grouping to any
column of that type in a Worksheet or report. This would allow you
to reuse the same alphabetical grouping for customer names, com-
pany names, product descriptions, and any other column that has
‘String’ type data.

4. If you want the grouping to be applicable only to a particular
column or attribute of a particular data source, select the desired
data source from the ‘Only for’ menu. Select the desired column
from the ‘Attribute’ menu.

You can select a column or attribute from any accessible data
source, not restricted to those in the current Worksheet. The group-
ing defined for this column or attribute will then be available wher-
ever the column or attribute is used in a Worksheet or report.

You can now specify the conditions that define membership in each group
of the User defined Grouping.

5. Click the ‘Add’ button to add a new group. This opens the ‘Add
Condition List’ dialog box. (This is the same as the dialog box used
for adding advanced conditions to tables.)

6. In the ‘Group Name’ field, enter the name of the group you wish to
define. (For example, “East Coast states”.)

7. Enter the conditions that define membership in this particular
group, and click ‘OK’.

8. Repeat the above three steps for each group you wish to add to the
grouping:

9. In the ‘Grouping’ dialog box, choose ‘Group all others together’ to
create a default group called “Others” that will contain all column
values that do not satisfy any of the specified group conditions.
Otherwise, select ‘Leave others in their own group’.

10. Click ‘OK’ to exit the ‘Grouping’ dialog box.

The Named Grouping is now shown in the Worksheet as a table whose title
is the group name, and whose rows are individual group names. (You can
drag the bottom border of the table to see all the group names.)

See Also
Grouping, for information on default grouping operations.
Defining Advanced Conditions, for information on specifying conditions.

DATA MASHUP

544 of 2477

Saving an Asset, to save the defined grouping to the Repository.
Using a Named Grouping, to use the grouping in other Worksheets and
reports.

Example:
Creating a
Named Grouping

Suppose you want to create a group for all the states on the west coast, so
that every time the customer data is displayed in either a table, chart, or
section element in the report, all of the customers from the west coast states
are grouped together.

Follow these steps to create the ‘WestCoast’ group.

1. Create a new Worksheet.

2. Click on the ‘New Object’ button, and select the ‘Grouping’
option. This opens the ‘Grouping’ dialog box.

3. Specify “WestCoast” as the name.

4. For the ‘Type’ select ‘String’.

5. Click on the ‘Add’ button to specify the conditions which the data
has to satisfy in order to qualify to be a part of this new group. This
opens the ‘Add Condition List’ dialog.

DATA MASHUP

545 of 2477

6. Specify ‘WestCoast’ as the Group Name.

7. Specify the following condition, and click the ‘Append’ button.

[this][is][one of][WA,OR,CA]

8. Click on the ‘OK’ button to exit the ‘Add Condition List’ dialog
and go back to the ‘Group’ dialog.

DATA MASHUP

546 of 2477

9. Click on the ‘OK’ button.

10. Right-click on the title for the ‘WestCoast’ group and select ‘Set as
Primary’.

11. Click on the ‘Save’ button, located in the top toolbar. The ‘Save as
Worksheet’ dialog appears.

12. Specify “WestCoast” as the name of the asset and select ‘Global
Worksheet’ as its scope.

DATA MASHUP

547 of 2477

13. Click on the ‘OK’ button to save the newly created user-defined
grouping. Notice that the name of the grouping on the asset tree is
prepended with a ‘Grouping’ icon, indicating that the asset is of the
‘Named Group’ type.

¢

7.3 Creating a Date Range
You can define two different kinds of date range, described in the following
sections:

• A sliding date range is an interval of dates defined relative to the current
date, for example, “this week,” “last month,” or “last November.” The
actual calendar dates included in the range are automatically computed
at runtime.

• A fixed date range is a range of dates defined by fixed beginning and
end dates.

Date ranges are used together with the ‘in range’ filtering condition, which
is applicable to Date fields in Data Block conditions, report conditions, and
Viewsheet conditions. Worksheets also provide a wide range of built-in
date ranges.

See Also
Filtering, for information about the ‘in range’ filtering condition.
Appendix C.1, Built-in Date Ranges, for a list of available date ranges.

7.3.1 Defining a Sliding Date Range

To create a custom date range, follow the steps below:

1. Click the ‘New Object’ button in the toolbar, and select ‘Date
Range’. This opens the ‘Date Range’ dialog.

DATA MASHUP

548 of 2477

2. Enter a name for the date range.

3. Select the ‘Sliding Range’ button at the top of the dialog box.

4. Select an item from the ‘Available Date Ranges’ list, and click
‘Add’ to add the range to the ‘Selected Date Ranges’ list.

5. Repeat the previous step to add additional date ranges as desired.
The final custom date range is the union of the added date ranges.

6. Click ‘OK’ to close the dialog box.

7.3.2 Defining a Fixed Date Range

To create a custom period, follow the steps below:

1. Click the ‘New Object’ button in the top toolbar, and select ‘Date
Range’. This opens the ‘Date Range’ dialog box.

2. Enter a name for the date range.

DATA MASHUP

549 of 2477

3. Select the ‘Fixed Range’ radio button at the top of the dialog box.

4. In the ‘Conditions’ panel, select the start and end dates of the
desired period.

5. Click ‘OK’ to close the dialog box.

Example:
Defining a Fixed
Date Range

To create a new date period, follow these steps:

1. Create a new Worksheet.

2. Click on the ‘New Object’ button in the top toolbar, and select
‘Date Range’. This opens the ‘Date Range’ dialog box.

3. Specify “MidOctToMidNov” for the name of the date range.

4. Select ‘Fixed Range’ as the type of date range. The dialog is
modified to include two date combo boxes enabling you to specify
the exact range.

5. Specify October 16, 2008 in the first combo box and November 15,
2008 in the second combo box.

DATA MASHUP

550 of 2477

6. Click on the ‘OK’ button. The ‘MidOctToMidNov’ date range is
added to the Data Worksheet.

7. Right-click on the title of the date range object and select ‘Set as
Primary’.

8. Click on the ‘Save’ button on the top toolbar. The ‘Save as
Worksheet’ dialog appears.

9. Specify “MidOctToMidNov” as the name of the asset and select
‘Global Worksheet’ as its scope.

10. Click on the ‘OK’ button to save the newly created User-Defined
Date Range. Notice that the name of the date range on the asset tree
is prepended with a ‘date range’ icon, which indicates that the asset
is of the ‘user defined date range’ type.

DATA MASHUP

551 of 2477

¢

7.4 Creating a Variable
Variables provide a way to prompt the user to enter specific filtering
conditions for tables in the Worksheet. You can use Variables in table
conditions, Named Conditions, and in the conditions of Named Groups.

See Saving an Asset and Using a Variable for more information about
working with Variables.

7.4.1 Defining a Variable

To create a new Variable, follow these steps:

1. Click the ‘New Object’ button in the top toolbar, and select
‘Variable’. This opens the ‘Variable Properties’ dialog box.

2. Enter a ‘Name’ for the new Variable asset. This is the name that
appears in the title bar of the Variable asset.

DATA MASHUP

552 of 2477

3. Enter a ‘Label’ for the Variable. This is the label that appears in the
parameter dialog box that prompts the user.

4. Select the data type of the Variable from the ‘Type’ menu. This is
the data type of the values that the Variable will provide to the
filtering condition.

5. In the ‘Selection List’ panel, specify the source of the Variable data:

a. Select ‘None’ to prompt the user with an empty text field (no
choices).

b. Select ‘Embedded’ to enter a fixed list of choices.

c. Select ‘Query’ to populate the list of choices with the data in an
existing table column.

6. In the ‘Display Style’ panel, select the type of list to display to the
user.

The ‘Combo Box’ and ‘Radio Buttons’ options allow the user to
make a single selection. The ‘List’ and ‘Checkboxes’ options allow
the user to make multiple selections. (Multiple selections can be
used in conjunction with the ‘one of’ condition operator.)

7. Click ‘OK’ to exit the dialog box.

See Also
Creating an Embedded Variable List, to manually specify the Variable
values.
Creating a Query-Based Variable List, to automatically generate Variable
values.

Example:
Defining a
Variable

Say you have multiple Data Worksheets including the order and contact
information pertaining to all customers. It would be helpful to have a
Variable that provided a specific state value in order to filter the data so that
only information pertaining to the customers in the specified state was
included in the data analysis.

Instead of creating the ‘state’ Variable for all of the Data Worksheets, you
can create it once and save it as a ‘Variable’ asset in the Asset Repository.
Then, you can reuse the Variable in all of the relevant Data Worksheets.
Follow these steps to create a Variable asset:

1. Create a new Worksheet.

DATA MASHUP

553 of 2477

2. Click on the ‘New Object’ button located in the top toolbar, and
select the ‘Variable’ option. This opens the ‘Variable Properties’
dialog box.

3. Specify “state” as the name of the Variable.

4. Specify “State” as the Label.

5. Select ‘String’ from the drop-down list for Type.

6. Uncheck the ‘None’ check box next to ‘Default Value’, and enter
“CA” as the default value.

7. Ensure that ‘None’ is selected for the Selection List.

8. Click on the ‘OK’ button

DATA MASHUP

554 of 2477

9. Right-click on the Variable’s title and select ‘Set as Primary’.

10. Click on the ‘Save’ button in the top toolbar. This opens the ‘Save
as Worksheet’ dialog.

11. Specify “State” as the asset name and select ‘Global Worksheet’ as
its scope.

12. Click on the ‘OK’ button to add the ‘State’ Variable to the Asset
Repository. Notice that the name of the asset on the asset tree is
prepended with a Variable icon indicating that the asset is of the
‘Variable’ type.

This example is continued in Using a Variable, where the ‘state’ Variable is
used in another Worksheet.

¢

DATA MASHUP

555 of 2477

7.4.2 Creating an Embedded Variable List

To create an embedded list for a Variable, follow these steps:

1. Right-click the Variable asset, and select the ‘Properties’ option
from the context menu. This opens the ‘Variable Properties’ dialog
box.

2. In the ‘Selection List’ panel of the ‘Variable Properties’ dialog box,
select the ‘Embedded’ option.

3. Click the ‘Edit’ button to open the ‘List’ dialog box.

4. Click ‘Add’ to create a new label/value pair. A label/value pair
defines a particular choice that will be shown to the user in the
input dialog box.

5. In the ‘Label’ field, enter the text that should be displayed to the
user for this particular choice.

6. In the corresponding ‘Value’ field, enter the text that should be used
in the filtering condition for this particular choice. (If the ‘Type’
option in the ‘Variable Properties’ dialog box specifies a numeric
type, you can only enter numerical values.)

7. Repeat the previous three steps to add all the choices that should be
presented to the user.

8. To change the position of a item in the list, select the item, and click
the ‘Up’ or ‘Down’ arrow button.

9. Click ‘OK’ to exit the ‘List’ dialog box.

7.4.3 Creating a Query-Based Variable List

To populate the Variable selection list with data obtained from a query
(table), follow these steps:

DATA MASHUP

556 of 2477

1. In the ‘Selection List’ panel of the ‘Variable Properties’ dialog box,
select the ‘Query’ option.

2. Click the ‘Select’ button to open the ‘Table’ dialog box.

3. From the list box on the left side, select the table that contains the
data you wish to use.

4. From the ‘Value Column’ menu, select the column that contains the
data to be used in the filtering condition. Each row of the ‘Value
Column’ represents a possible value of the Variable.

5. In the ‘Label Column’ menu, select the column that contains the
labels to be displayed to the user.

Each row of the ‘Label Column’ should contain the label for the
corresponding row of the ‘Value Column’. These labels are used to
designate the available options in the ‘Enter Parameters’ dialog box
that will be displayed to the user. When the user selects a particular
option, the value corresponding to the selected label is applied to
any filter conditions that use the Variable

6. Click ‘OK’ to exit the ‘Table’ dialog box.

DATA MASHUP

557 of 2477

8 Applications

This section describes high-level procedures used to approach certain tasks
using the Data Worksheet.

These examples describe the general steps needed to apply Worksheet tools
to an application. The example Worksheets can be found in the ‘Global
Worksheet’ > ‘Tutorial’ folder. For specific details on how to carry out
individual constituent tasks, e.g., grouping, concatenating tables, etc.,
please refer to those specific chapters in this guide.

8.1 User Conference Mailing
Compiling a custom mailing list for an upcoming conference is a
necessary, but laborious, task. The functions provided by the Data
Worksheet simplify this task. Say you are hosting a conference for select
customers and you would like to send them printed invitations. Seating is
limited, so sending an invitation to every customer would not be cost
effective. Therefore, to narrow down the list of the customers to whom you
will send the invitation, you can use their order history. Suppose you decide
to send an invitation only to the following customers:

• The top 3 customers this year

• The customers who have purchased at least one of our products in the
last two weeks

In this example, you will make use of the following components and
methods:

• A User-Defined Date Range (see Creating a Date Range)

• Advanced conditions (see Defining Advanced Conditions)

• Concatenated table options (see Concatenating Tables)

• Group and aggregate options (see Grouping)

• A table value in the filter conditions (see Filtering)

The completed example is called ‘UserConferenceMailing’, and can be
found in the ‘Global Worksheet’ > ‘Tutorial’ folder.

Example: User
Conference
Mailing

Assume you have two tables: A table of order information for each
customer, called ‘OrderInfo’, and a table of contact information for each
customer, called ‘ContactInfo’.

To build the desired invitation list, follow these steps:

1. Generate a list of all customers who have purchased at least one of
our products in the last two weeks.

DATA MASHUP

558 of 2477

To do this, create a User-Defined Date Range, ‘Range’, and apply
this new User-Defined Date Range in a filter condition on the
‘OrderInfo’ table. Name this new table ‘RecentCustomers’. The
‘RecentCustomers’ table will to have two columns, ‘Customer
Company’ and ‘Order Date’. You require the ‘Order Date’ field to
specify the date condition, but the column can then be hidden.

2. Generate a list of the top 3 customers for this year. To do this, apply
a ranking condition to the ‘OrderInfo’ table so that it only lists the
top 3 customers based on the sum of the ‘Total’ sales for each
customer.

3. Once you have both of these tables, you can unite them into a
single table. Create a Composition table using the ‘union’ set
operation. This requires that both base tables have the same number
of columns, so hide all the columns of both tables except for the
‘Company Name’ columns. Name this new Concatenated table
‘CustomerList’. This table contains the list of Company names to
whom you wish to send invitations.

4. You now need to retrieve the corresponding contact information for
these companies. Specify a subquery-based filtering condition on
the ‘Company’ field of the ‘ContactInfo’ table, so that a record is
only displayed if the company is “one of” the companies in the
‘CustomerList’ table.

Figure 1. The ‘User Conference Mailing’ example

¢

8.2 What-If Analysis
What-if analysis is the exploration of cause and effect relationships in data.
This is one of the greatest strengths of the Data Worksheet, making use of
the following features:

• Embedded tables (see Creating an Embedded Table)

DATA MASHUP

559 of 2477

• Cell references in formulas (see Appendix B:Accessing Table Cells in
Script)

• Dynamic table updating

Suppose that all of our big customers have been requesting discounts, and
you therefore decide to give a 5% discount on all large orders. Since you
need to recover the lost revenue incurred by this discount, you will
simultaneously need to increase the sales total on all smaller orders by 5%.

To implement this discount plan, you need to decide where to place the
boundary between “large order” and “small order” so as to maintain the
company’s total revenue. This ‘price break’ value can be discovered
through what-if analysis.

In the example below, you will make use of the following components and
methods:

• Embedded Table (see Creating an Embedded Table)

• Joined Table (see Joining Tables)

• Concatenated Table (see Concatenating Tables)

• Group and aggregate options (see Grouping)

• Expression fields (see Creating an Expression/Formula Column)

The completed example is called ‘PriceBreakWhatIf’, and can be found in
the ‘Global Worksheet’ > ‘Tutorial’ folder.

Example:
What-If Analysis

Assume you have a Worksheet table called ‘Revenue’. The ‘Revenue’ table
includes the fields ‘Order Num’ and ‘Product Total’, listing the total value
of each order. Follow the steps below to analyze this data and detect the
proper ‘price break’ threshold for classifying orders as “large” or “small”:

1. Create a new Embedded Table with one data cell, and name this
table ‘PriceBreak’. It will contain the ‘price break’ value that you
experiment with. In the table cell, enter 40000 as the first guess for
the price break value. This indicates that all orders with a total of
$40,000 qualify as “large orders”, and all orders with a total equal
to or less than $40,000 qualify as “small orders”.

Next, you will calculate the total sales of all of the large or ‘High End’
orders, and the total sales of all the small or ‘Low End’ orders, both before
and after the discounts/increases are taken into account. You do this in
order to compare the sales revenue before and after the discount model is
put into effect.

DATA MASHUP

560 of 2477

2. In the ‘Revenue’ table, group the data by ‘Order Num’ and
summarize by ‘Product Total’ so that you have the total sales
amount for each order.

The data in the ‘Revenue’ table can now be split into two separate tables,
‘HighEnd’ and ‘LowEnd’.

3. To obtain the ‘HighEnd’ table, specify a join between the ‘Product
Total’ column and the ‘PriceBreak’ table, and set the join type to:

Revenue.Total >= PriceBreak.PriceBreak

4. To obtain the ‘LowEnd’ table, specify a join between ‘Product
Total’ and ‘PriceBreak’ and set the join type to:

Revenue.Total < PriceBreak.PriceBreak

5. For the ‘HighEnd’ table, create an expression field named
‘Discount’ to calculate the new order total with the 5% discount
applied. The SQL formula for the ‘Discount’ expression field
should be set to

field['Total']*0.95

6. For the ‘LowEnd’ table, create an expression field named
‘Increase’ to calculate the new order total with the 5% increase
applied. The SQL formula for the ‘Increase’ expression field
should be set to

field['Total']*1.05

Now that you have the new sales total values for the large and small orders,
you can analyze the benefits of the current ‘price break’ value by
comparing the difference between the original sales total and the new sales
total.

7. Create a union of the ‘HighEnd’ table and the ‘LowEnd’ table, and
name this Concatenated Table ‘SalesComparison’. Name the right
column ‘NewTotal’, because it contains the totals with discounts
and increases applied.

8. Apply summarization on the ‘Total’ and ‘NewTotal’ fields of the
‘SalesComparison’ table to produce the final total revenue
numbers.

Now every time you change the ‘price break’ value in the ‘PriceBreak’
embedded table, the values in the ‘SalesComparison’ table are
automatically recalculated. After experimenting with a few numbers, you

DATA MASHUP

561 of 2477

learn that $50,000 is the optimal ‘price break’ for applying the new
discount model without affecting the total company revenue.

Figure 2. Price break “What-If’ exploration

In addition to performing what-if experimentation by entering values
manually into an embedded table, you can also adjust table values
graphically by using a Viewsheet input element (slider, spinner, etc.). For
more information about the embedded table interface to Viewsheets, see
Using Input Components in Dashboard Design.

¢

DATA MASHUP

562 of 2477

APPENDIX A: Toolbar Buttons

Table 1. Toolbar buttons

BUTTON FUNCTION

Create a new Data Worksheet.

Save the current Data Worksheet.

Save the current Data Worksheet with a different name and
possibly in a different scope.

Set options relating to the entire Worksheet, such as table size
limit and availability of data to reports.

Preview the table that is set as Primary in the current Data
Worksheet.

Undo the changes.

Reapply changes that were undone.

Automatically lay out Worksheet assets with dependent
elements immediately above their required assets.

Prompt for all input parameters.

Insert a new object into the Worksheet: Embedded Table,
Variable, Date Range, or Grouping.

Create a new Named Condition.

Extract a Named Condition from a table with existing
conditions.

Apply a concatenation to two selected tables: Union,
Intersection, or Minus.

Apply a join to two selected tables: Merge Join, Cross Join, or
Inner Join.

Close the Visual Composer window.

DATA MASHUP

563 of 2477

APPENDIX B: Accessing Table Cells in Script

The power of a Worksheet comes from the ability to connect multiple
assets together using drag and drop methods. However, you also provide a
reference-based model for communication between assemblies, and this
allows you to use arbitrary table values within expressions. (See Creating
an Expression/Formula Column for more information about expressions.)
This section describes this simple model for referencing table columns and
cells.

B.1 Cell on the Current Row

Formulas run in the scope of the current row. Each cell value on the current
row can be accessed by indexing into the ‘field’ array using the appropriate
column name or column index. The syntax is as follows:

field['column name']
e.g.,
field['quantity']

field[column idx]
e.g.,
field[3]

For example, if ‘quantity’ and ‘price’ are two columns in the current table,
a formula column in the same table can use the expression

field['quantity'] * field['price']

to produce the product “quantity*price” for every row of the ‘quantity’ and
‘price’ columns. To access the cell values of a different table, see
Appendix B.4, Cell of Any Table.

B.2 Cell on a Previous Row

You can reference the values of preceding rows by their relative offset from
the current row. This feature is useful when creating differential formulas.
The syntax is as follows:

field[relative position]['column name']

e.g.,
field[-1]['Total Sales'] // previous row, in 'Total Sales'
field[-3][3] // three rows above, in column 3

To reference a cell by its absolute position, see Cell of Any Table.

B.3 Column of Any Table

A column with name ‘columnheader’ in a Data Table with name
‘Tablename’ can be referenced as follows:

Tablename[columnheader]

DATA MASHUP

564 of 2477

B.4 Cell of Any Table

There are several ways to reference a cell in a table. To simply reference a
cell in the current row of the current table, see Appendix B.1, Cell on the
Current Row.

Referencing by Row Index

To reference an arbitrary cell in any table, you can specify the row location
with a numeric index:

worksheet['Table Name']['columnheader'][row_ix]

If the table has no spaces in its name, you can use the simpler syntax below:

Tablename['columnheader'][row_ix]

For example, the reference

Customers['CompanyName'][5]

specifies the value in the 5th row (using 0-based indexing) of the
‘CompanyName’ column in the ‘Customers’ table.

Referencing by Value Lookup

Since most Data Tables are dynamic, referencing a cell by row index (see
above) should only be used when a table contains a single row, or when
rows are ranked. It is generally more useful to reference a cell by lookup
using the table’s primary key, as shown here:

Tablename["columnheader? primary_key == key_value"]

The “?” should be read as “where,” so the above expression can be read as
follows: “Look in the table named ‘Tablename’, and return the value in the
column named ‘columnheader’ where the primary key is equal to
‘key_value’.”

For example, if a table named ‘Customers’ has ‘customer_id’ as its primary
key, you can reference the cell in the ‘CompanyName’ column having key
‘customer_id’ by using the following expression:

Customers["CompanyName? customer_id == 123"]

Instead of using a fixed key value such as “123” for comparison, you can
also use the field value of the current row in the current table. (See
Appendix B.1, Cell on the Current Row, for the basic field syntax.) For
example, consider a table named ‘Customers’, which contains columns
named ‘CompanyName’ and ‘customer_id’ (the primary key). You can
access values in the ‘CompanyName’ column as follows:

Customers["CompanyName? customer_id == field.local_id"]

DATA MASHUP

565 of 2477

This formula says: “Look in the ‘Customers’ table, and return the value in
the column ‘CompanyName’ where the ‘customer_id’ key is equal to the
value of the current cell in the ‘local_id’ column.”

Example:
Reference Cell

This example illustrates how you can reference the cells of another table
from within a formula column. You will use the tables in the ‘TABLE’ >
‘SA’ folder of the ‘Orders’ data source to create the table below, which has
columns for product ID, product name, category ID, and category name.

1. Drag the following fields from the ‘TABLE’ > ‘SA’ >
‘PRODUCTS’ table to an empty cell on the Worksheet. (Option-
click the field names to select them all, and then drag them
together.)

PRODUCT_ID
PRODUCT_NAME
CATEGORY_ID

This creates a new table named ‘PRODUCTS1’.

2. Rename the ‘CATEGORY_ID’ column as ‘CAT_ID’. This will
help to distinguish it from the table you will add next.

3. Drag the ‘TABLE’ > ‘SA’ > ‘CATEGORIES’ table to the
Worksheet. This creates a new table named ‘CATEGORIES1’.

You now want to add a column to the ‘PRODUCTS1’ table that will
contain the category name corresponding to each entry in the ‘CAT_ID’
column. The best way to do this is by joining the tables (see the Joining
Tables section), but to practice using cell references, you will create this
new column as a formula column.

DATA MASHUP

566 of 2477

4. Click the ‘fx’ button in the ‘PRODUCTS1’ table title row. This
opens the ‘Expression’ dialog box. (See Creating an Expression/
Formula Column for more information.)

5. Enter ‘CAT_NAME’ as the name of the new expression column,
and click ‘OK’. This opens the Formula Editor.

6. In the Formula Editor, enter the following formula:

CATEGORIES1["CATEGORY_NAME? CATEGORY_ID==field['CAT_ID']"]

This formula says: “Look in the ‘CATEGORIES1’ table, and
return the value in the column ‘CATEGORY_NAME’ where the
‘CATEGORY_ID’ key is equal to the value of the current cell in
the ‘CAT_ID’ column.”

7. Uncheck the ‘SQL’ option at the top-right of the Editor.

8. Click ‘OK’ to close the Formula Editor. The two tables are now
connected by a graphical link to indicate that the ‘PRODUCTS1’
table references the ‘CATEGORIES1’ table.

9. For each table, press the ‘Change View’ button in the table title bar,
and select ‘Live Preview’ from the menu. Expand the table borders
as needed to view the results.

As desired, the formula column in the ‘PRODUCTS1’ table now
displays the category name corresponding to each entry in the
‘CAT_ID’ column.

DATA MASHUP

567 of 2477

¢

DATA MASHUP

568 of 2477

APPENDIX C: Built-in Ranges and Groupings

This appendix lists various predefined ranges and groups.

C.1 Built-in Date Ranges

The following built-in date ranges are available in filtering conditions for
Data tables. See the Filtering section for information about using these
predefined ranges. See Creating a Date Range for information on
specifying alternative ranges.

The explanation of the last five ranges is as follows:

• Year to date last year: The same date range provided by the ‘Year to
date’ option (i.e., beginning of year to present date), but offset to the
previous year. For example, if today is Nov. 8, 2011, the range selected
by ‘Year to date last year’ is Jan. 1, 2010–Nov. 8, 2010.

• Month to date last month: The same date range provided by the ‘Month
to date’ option (i.e., beginning of month to present date), but offset to the
previous month. For example, if today is Nov. 8, 2011, the range
selected by ‘Month to date last month’ is Oct. 1, 2011–Oct. 8, 2011.

Last year Last month last year Last July
This year This month last year Last August
Last quarter This January Last September
This quarter This February Last October
Last quarter last year This March Last November
This quarter last year This April Last December

1st Quarter this year This May Last week

2nd Quarter this year This June This week

3rd Quarter this year This July Week before last week

4th Quarter this year This August Last 7 days

1st Quarter last year This September Last 8-14 days

2nd Quarter last year This October Last 4 weeks

3rd Quarter last year This November Last 5-8 weeks

4th Quarter last year This December Last 30 days

1st half of this year Last January Last 31-60 days

2nd half of this year Last February Year to date last year

1st half of last year Last March Month to date last month

2nd half of last year Last April Quarter to date last quarter

Last month Last May Month to date last year
This month Last June Quarter to date last year

DATA MASHUP

569 of 2477

• Quarter to date last quarter: The same date range provided by the
‘Quarter to date’ option (i.e., beginning of quarter to present date), but
offset to the previous quarter. For example, if today is Nov. 8, 2011, the
range selected by ‘Quarter to date last quarter’ is July. 1, 2011–Aug. 8,
2011.

• Month to date last year: The same date range provided by the ‘Month to
date’ option (i.e., beginning of month to present date), but offset to the
previous year. For example, if today is Nov. 8, 2011, the range selected
by ‘Month to date last year’ is Nov. 1, 2010–Nov. 8, 2010.

• Quarter to date last year: The same date range provided by the ‘Quarter
to date’ option (i.e., beginning of quarter to present date), but offset to
the previous year. For example, if today is Nov. 8, 2011, the range
selected by ‘Quarter to date last quarter’ is Oct. 1, 2010–Nov. 8, 2010.

C.2 Built-in Date Groupings

The following built-in date groupings are available for columns with a Date
format.

Table 2. Built-in date grouping

See the Grouping section for information about using these predefined
groupings. See Creating a Named Grouping for information about creating
alternative groupings.

DATE GROUP VALUE IN THE GROUP COLUMN

Year Date grouped at the year level
Quarter Date grouped at the quarter level
Month Date grouped at the month level
Week Date grouped at the week level
Day Date grouped at the day level
Hour Date grouped at the hour level
Minute Date grouped at the minute level
Second Date grouped at the second level
Quarter of Year Ordinal number: 1st, 2nd, 3rd, 4th
Month of Year Month name: Jan, Feb, etc.
Week of Year Numbers 1-52
Day of Month Numbers 1-31
Day of Week Day of week name: Sun, Mon, etc.
Hour of Day Numbers 0-23

REPORT DESIGN

570 of 2477

Report Design

Style Studio allows you to rapidly define sophisticated enterprise-grade
reports, bind report elements to data sources, and deploy reports to a server.

REPORT DESIGN

571 of 2477

1 Contents

This section explains the report design features of Style Studio. It covers
the following major topics.

• Introduction

Introduction to report design.

• Report Design Tools

Introduction to Style Studio interface components for report design.

• Report Layout

Description of how to set up report templates.

• Report Elements

Description of available report elements.

• Data Binding

Description of the Data Binding Wizard.

• Advanced Topics

Advanced features such as report parameters and form elements.

• Viewing a Report

Explains how to view and export reports.

• Best Practices

Presents best practices for designing a large group of reports.

REPORT DESIGN

572 of 2477

2 Introduction

A report consists of report elements such as text, charts, and tables,
arranged on the page according to your particular design. Style Studio’s
report design features allow you to fully specify the structure and aesthetics
of a report. This complete report specification is called a report template,
and is stored with the file extension “.srt,” which designates “Style Report
Template.” The report template in general does not contain any data.

In order for report elements (tables, charts, etc.) to display data, you must
bind these elements to a data source such as a query, data model, or Data
Worksheet. When the user executes the report, report elements that possess
data bindings are populated by the data returned by the associated data
sources. You can also specify the contents of report elements dynamically
at runtime by using script. For more information, see Report Scripting. The
following sections explain both the report layout process, and the data
binding procedure.

Style Studio provides a number of tools that allow you to design report data
sources. The Data Modeling component allows you to specify data
sources, and to design data models and queries. The Data Mashup tools
allow you to create assets based on data models, queries, or database tables,
that represent the results of more complex data operations.

Once you have finished laying out the report and set the component data
bindings, you can deploy (publish) your template to the server.

REPORT DESIGN

573 of 2477

3 Report Design Tools

This section discusses some basic report design tools.

3.1 The Report Design Toolbox
The Style Studio Toolbox panel allows you to add various components to a
report. The table below lists the element types. For information on adding
report components, see Inserting Elements.

Table 1. Report Design Toolbox

See Also
Style Studio Interface, in Getting Started, for information on how to access
Style Studio panels.

Table Element Report Bean

Crosstab Element Editable Region

Chart Element Separator

Section Element Bullet

Text Element Table of Contents

TextBox Heading

Image Running Total

Painter Newline

Text Field Space

Text Area Tab

Button Page Break

Image Button
Conditional Page
Break

Check Box Area Break

Radio Button

Choice

List

Date Combo

REPORT DESIGN

574 of 2477

3.2 Using Grids and Rulers
To display grids in the report design view, select the ‘Grid’ option from the
Style Studio ‘View’ menu. These grids will help you to position elements
in the report template.

To display rulers along the top and left side of the report, select the ‘Ruler’
option from the Style Studio ‘View’ menu

To specify the grid size and ruler units, follow the steps below:

1. Select ‘Preferences’ from the Style Studio ‘Report’ menu. This
opens the ‘Preferences’ dialog box.

2. Select the Misc tab.

3. In the ‘Grid’ panel, enter the desired grid size.

4. In the ‘Unit of Measurement’ panel, specify the desired units:
‘British’ or ‘Metric’.

5. Click ‘OK’ to close the ‘Preferences’ dialog box.

REPORT DESIGN

575 of 2477

4 Report Layout

The term report and
report template are
used interchangeably.
here. “Report tem-
plate” stresses the fact
that the designed
report contains no
actual data, only lay-
out and formatting
information.

When you create a new report template, you can base the report template
on a pre-designed meta-template (see Meta-Templates) or create a “blank”
report template (see Creating a Blank Report Template).

A blank report contains no elements, but it does represent a particular
model. The report engine uses two layout models, Flow Layout and
Tabular Layout. The layout method affects the manner in which report
elements appear when the report is executed.

In flow layout, the report page consists of one or more page areas that all
represent a single flow. Elements that you add to the report page will flow
from one page area into the next based on the ordering that you assign. See
Flow Report Layout for more information about flow layout.

In tabular layout, the report page is divided into independent grid cells,
each of which hosts an independent sequential flow of elements. Elements
that you place in one grid cell cannot flow into other grid cells. See Tabular
Report Layout for more information about tabular layout.

4.1 Creating a Blank Report Template
To create a blank report template, follow the steps below:

1. Click the ‘New’ button on the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node.

3. In the right ‘Type’ panel, select either ‘Blank Tabular Report’ or
‘Blank Flow Report’.

REPORT DESIGN

576 of 2477

4. Click ‘OK’ to open the new report for editing.

See Also
Creating a Report Based on a Meta-Template, to design a new report by
using a boilerplate report layout.

4.2 Tabular Report Layout
The tabular layout model is ideal for reports whose contents are partitioned
into rectangular regions. Instead of a single document flow, the report is
separated into multiple grid cell regions, where each cell in the grid
contains a separate flow.

Figure 1. Tabular Layout Grid

Report elements within a single tabular region are laid out inside the region,
one by one in a flow. If the elements take up more space than the space
allocated for the grid cell, the cell is extended vertically, so a given cell may
span multiple pages. This in turn extends other cells on the same row in the
grid. Elements in a tabular cell never overflow into other cells.

Examples of tabular reports are a stock performance report or an order
form with distinct regions for customer details and order items.

4.2.1 Setting up the Layout Grid

To create the grid layout for a tabular report, follow the steps below:

1. Click the ‘Layout View’ button in the toolbar. This toggles the
report into Layout mode. (The report by default has just a single
cell.)

2. Right-click in an existing cell of the tabular layout, and select the
desired operation from the context menu.

Page
Boundaries

REPORT DESIGN

577 of 2477

To select multiple
cells, drag the mouse
across the desired
cells.

The available operations include inserting new rows or columns
into the grid, deleting rows or columns from the grid, splitting a cell
into multiple rows or columns, and merging cells into a single cell.

3. (Optional) To quickly create a new grid cell at a particular location,
follow the steps below:

a. Click the ‘Draw Area’ button on the toolbar.

b. Draw a new cell at the desired location. This creates rows and
columns on the grid to accommodate the new cell.

4. Repeat the above steps to create the desired layout grid.

5. To set properties for a grid cell, right-click the cell and select
‘Properties’ from the context menu. This opens the ‘Cell
Properties’ dialog box.

a. Under the Format tab, set the desired cell border style and
color. Select ‘Repeat Contents on Each Page’ to print the
contents of the region on each page of the report.

REPORT DESIGN

578 of 2477

b. Under the Background tab, set the background color or image
for the region.

6. Click the ‘Layout View’ button in the toolbar again to exit Layout
mode and return to Normal mode.

In Normal mode, you can add report elements to the grid cells that you
created. Click in the desired grid cell to place the insertion point in that cell.
Then click or drag an element from the Toolbox panel. (See Inserting
Elements.)

Drawing the Layout Grid

Walkthrough For this example, you will create the following layout:

To create the grid shown above, follow the steps below:

1. Create a new blank tabular report. (See Creating a Blank Report
Template.)

REPORT DESIGN

579 of 2477

2. Click the ‘Layout View’ button in the toolbar to enter Layout
mode. By default, the report has just one grid cell.

There are many
approaches to arrive
at the same layout.
The steps shown here
are just one possiblil-
ity.

3. Right-click the existing cell, and select ‘Insert Row’ from the
context menu. This adds a narrow row at top.

4. Right-click the larger cell, and select ‘Insert Rows/Columns’ from
the context menu. Specify (as shown below) that you want to add
two rows after the current selection, and click ‘OK’.

5. Resize the rows by dragging the cell borders to match the size of
the rows that you want.

6. Right-click the second row, and select ‘Split Cell’ from the context
menu. Specify (as shown) that you want to split into two columns.

REPORT DESIGN

580 of 2477

7. Right-click the bottom cell, and select ‘Split Cell’ from the context
menu. Specify that you want to split the cell into three columns.

8. Drag across the two left cells (of the bottom row) to select them
both.

9. Right-click in either of the selected cells and choose ‘Merge Cells’
from the context menu.

REPORT DESIGN

581 of 2477

Setting Layout Grid Properties

To set layout properties for a tabular report, follow the steps below:

1. Click the ‘Layout View’ button in the toolbar to enter Layout
mode.

2. Right-click in any grid cell, and select ‘Properties’ from the context
menu. This opens the ‘Cell Properties’ dialog box.

3. Select the Format tab.

a. Choose line styles and colors for the top, left, bottom, and right
borders of the grid cell.

b. (Optional) Select ‘Repeat Contents on Each Page’ if a particular
cell must be repeated on every page (for example, if a cell on the
right spans three pages, and the cell on the left must be repeated
on every page).

REPORT DESIGN

582 of 2477

4. Select the Background tab. Specify a background color or image,
as desired.

5. Select the Row tab.

a. Specify a value for ‘Minimum Height’, if desired.

To force the layout to span more than one page, set the
minimum height to a large number, such as 700. This forces a
new page to be added. Once the second page is available for
layout, you can resize the grid cells appropriately.

b. Select ‘Fill Page’ to force the bottom border of the grid cell to
fall at the bottom of the page (rather than just satisfying the
minimum height requirements).

c. Add margins as desired in the ‘Margin’ panel. A margin
introduces a page break for each cell whose margins are
uniquely specified.

6. Select the Column tab. Select the desired method for specifying
column width from the menu.

REPORT DESIGN

583 of 2477

‘Proportion of columns’ specifies the width as a proportion of all
the columns in the grid. In this case, one column is usually set to
“1” and the other column widths are set as relative proportions
(e.g., “2” would be twice as wide as the first). ‘Percentage of page’
specifies the width as a percentage of the page width, and ‘Size in
Points’ specifies an absolute size in points.

See Also
Setting Page Orientation, for information on setting orientation for a
region.

4.3 Flow Report Layout
The flow-based layout is similar to the document flow in a regular word
processor. The simplest flow-layout report consists of one element flow,
where each report element is placed in sequence on the page from top to
bottom.

The page layout you specify for a flow report will modify the flow of the
report elements. A page layout divides the page into multiple page areas,
and places these areas into a sequence that you define. Elements then
“flow” from one page area to the next (on the same page), until all areas
have been filled, at which point printing advances to the next page.

Figure 2. Page Areas

The page layout that you specify will be used for all successive pages until
a new page layout is specified. For reports with a flow layout, you can
specify the orientation (landscape/portrait) for each page individually.

Flow Layout is best suited for multi-column reports and reports that
contain similar repetitive information. These include inventory listings or
an employee contact information listings, where the contents are not
divided into side-by-side view of report elements (as would be the case in a
tabular report). Such multi-column reports cannot be created using a
tabular report layout because the grid cells in a tabular report are
independent of each other, and the contents of one cell cannot flow into
another.

See Also
Creating a Blank Report Template, for information on how to create a flow
report.

REPORT DESIGN

584 of 2477

Page Areas, for information on how to configure flow report areas.

4.4 Freehand Shapes
To embed a shape in a report as part of the document flow, you need to add
a Painter element to the report via the reporting API by implementing the
Painter class. See the inetsoft.report.painter package in the API
documentation.

You can add shapes to the page in a more straightforward way by using
Layout mode. To add a shape, follow these steps:

1. Click the ‘Layout View’ button in the Style Studio toolbar to enter
Layout mode. The Toolbox panel changes to show the available
shapes.

Hold down the Shift
key to force equal
width and height (cir-
cle or square).

2. Double-click a shape on the toolbar, and then draw the shape on the
page.

3. To set the properties for a shape, right-click the shape, and select
‘Properties’ from the context menu. This opens the ‘Property’
dialog box for the shape.

Properties of ovals include dimension, location, line color, and fill
color. Rectangles additionally provide a line style property. Lines
provide an arrowhead option, and choice of arrowhead placement
(start or end).

REPORT DESIGN

585 of 2477

You can add shapes only to the first page of a tabular report. However, in a
flow report, shapes are attached to a specific page layout. Therefore, if a
page layout is set on the report level, the shapes will be drawn on all pages
until the page layout changes. If the page layout is associated with a report
element (see Associating a Page Area with a Report Element), the shapes
will be drawn on all pages following the printed element until the page
layout changes.

4.5 Meta-Templates
It is easy to design a single simple report from a blank template. (See
Creating a Blank Report Template.) However, it is more common to create
a set of multiple related reports that share certain report properties, layout,
and even report elements. In this situation, you should first design a meta-
template or “boilerplate report” that encapsulates these common report
features. You can then design the individual reports using the meta-
template as a common prototype. This allows you to create a set of reports
with a common look-and-feel.

4.5.1 Creating a Report Based on a Meta-Template

To create a new report based on a meta-template, follow these steps:

1. Click the ‘New’ button on the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, click the ‘Report’ node.

3. In the right ‘Type’ panel, select a meta-template on which to base
the report.

The default installation provides several predefined meta-
templates, such as ‘Standard Report’. The ‘Type’ panel lists both
the predefined meta-templates and any custom meta-templates that
you have designed.

4. Click ‘OK’.

REPORT DESIGN

586 of 2477

This opens a new report based on the selected meta-template. (The
report may prompt you to first enter some customization
information, such as data binding specification.)

A. report based on a meta-template generally contains a set of predefined
report components (created by the meta-template designer to enforce a
common look-and-feel) one or more editable regions. You can add new
report components and modify predefined report components only within
the editable regions. You cannot modify components or report properties
(including page setup) that are outside of the editable regions.

When you save the report, changes that you made within an editable region
(including modifications to pre-defined components within the editable
region) are embedded together with the report template (.srt file).
Subsequently, when you open or execute the report, layout and properties
of components within the editable regions are read from the report file.
However, layout and properties of components outside of the editable
regions are always read from the external meta-template definition.

4.5.2 Designing a Meta-Template

Before you begin designing a meta-template, think about which properties
and elements are common to the reports which will be created from the
meta-template. For example, the layout will be identical for each report, as
well as the page orientation. The reports will also generally share some
elements as well, particularly in the report headers and footers.

When you design your meta-template, try to factor out as many of these
common report components as possible, and design them into the meta-
template. By incorporating these common components in the meta-
template definition, you will be able to make future modifications in a
single location, greatly improving maintainability. The changes that you

REPORT DESIGN

587 of 2477

make to the meta-template (outside of editable regions) will be
automatically propagated to all reports that are based on the meta-template.

To define a new meta-template, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Component’ node.

3. In the right ‘Type’ panel, select either the ‘Flow Meta Template’ or
‘Tabular Meta Template’.

The distinction between flow and tabular is the same as for blank
reports, and determines the way that elements are positioned on the
page. See Tabular Report Layout and Flow Report Layout for
further details.

4. Click ‘OK’ to open the new meta-template.

5. Click the ‘Layout View’ toolbar button. Create a layout for the
template as described earlier (i.e., Setting up the Layout Grid for
tabular layout).

6. Click the ‘Layout View’ toolbar button again to exit Layout Mode.

7. Add editable regions to all the areas of the meta-template that you
want the report designer to be able to modify. Follow the steps
below:

a. Click the report area where you want to add the editable region.
This places the insertion point at that location.

REPORT DESIGN

588 of 2477

b. Click the ‘Editable Region’ button in the Toolbox panel. This
adds a new editable region at that location

8. Insert report elements into the meta-template (inside or outside of
the editable regions), as desired. See Inserting Elements.

Report element that you insert within an editable region can be
modified by the report designer when they create a new report
based on this meta-template. Report elements that you insert
outside of an editable region cannot be modified by the report
designer (i.e., these elements are always referenced from the
central meta-template definition). If you add a data element (chart
or table) into an editable region, the report designer will be
prompted to specify the ‘Data Binding’ for that element when they
create a new report based on the meta-template.

Note: Meta-templates
are saved together
with other reusable
components in the
stylereport.srl file.

9. Click the ‘Save’ button. This opens the ‘Save As’ dialog box.

10. In the ‘Save As’ dialog box, enter a name for the meta-template
and optional description, and click ‘OK’.

You should enter a meaningful name and useful description so that
report designers can understand the proper utilization of the meta-

REPORT DESIGN

589 of 2477

template. The name and description will appear in the ‘New Asset’
dialog box.

See Also
Creating a Report Based on a Meta-Template, for details on using a meta-
template.

4.6 Report Properties
You can change global report settings from the ‘Report Properties’ dialog
box. To open the ‘Report Properties’ dialog box, select ‘Report Properties’
from the Style Studio ‘File’ menu. The dialog box contains four tabs:
Options, Document Info, Settings, and Viewer Actions.

The Options tab provides properties related to report features.

• CSS Location: Location of a CSS file which specifies formatting
information for the report element styles. The location can be specified
as a resource path (path relative to any folder on the classpath) or an
absolute path. See CSS Styles for more information.

• Max Number of Pages: Sets the maximum number of report pages to
be displayed in the Portal. This prevents a user from accidently
generating an unexpectedly large report (for example, by entering an
unreasonably large date range as a parameter). When the report exceeds
the explicit limit, the displayed report is truncated as required, and an
optional warning message is issued to the user (see below). To specify a
global maximum for all reports, see the ‘Report Maximum Page Count’
property in the Performance Options and Safeguards section of the
Administration Reference.

• Save Parameter Values: Causes user-entered parameter values to be
saved and reused every time the report is opened. (This applies to all
types of parameters.) Users can change parameters by using the
‘Customize’ button in the Portal toolbar. See Report Toolbar in End
User for more information.

REPORT DESIGN

590 of 2477

• View as Single Page: Causes the report to be generated in the Portal as a
single HTML page, without any pagination. This is useful for
applications such as parameter sheets, where pagination is not desired.
For most other cases, leave this option disabled.

• Auto Page Width: Specifies that the report width should expand to fit
its contents. This only works if all table elements in the report are
configured for ‘Fit to Page’. See Table Element for more details.

• Sort On Header: Adds sorting functionality to table and crosstab
headers. This allows the user to click the table column header to sort the
corresponding data in ascending or descending order.

• Display Warning Information: If the ‘Max Number of Pages’ setting
results in truncation of the displayed report, this options displays a
warning message to the user on the final page of the report. The
warning.position.onheader in the sree.properties file determines the
position of the warning message. A value of true displays the message
in the top right corner of the page header, while a value of false
(default) displays the message in the bottom right corner of the page
footer.

The Document Info tab lists special document properties. The Author
property is set automatically when the report is initially saved.

The Settings tab contains options for default date format and text
wrapping. See Formatting for more information about the available date
format options.

REPORT DESIGN

591 of 2477

The Viewer Actions tab lets you specify custom ViewerAction classes
(implementing the ViewerAction interface; see the API documentation for
more information). A ViewerAction object represents a custom button in
viewer, specifying the icon and the label for the button, as well as its
behavior.

4.7 Page Setup
The default page setup places the header ½" from the top, and footer ¾"
from the bottom. The printable area is the paper size minus the one-inch
margins.

4.7.1 Configuring Page Properties

To configure page properties, select ‘Page Setup’ from the Style Studio
‘File’ menu. This opens the ‘Page Properties’ dialog box.

REPORT DESIGN

592 of 2477

In addition to the paper size and orientation controls, the ‘Margin’ and
header/footer ‘From Edge’ parameters control the size and position of the
header and footer areas. ‘Start at Page Index (0)’ changes the page
numbering starting page index, which also affects the total page count.

Figure 3. Page Margins, Headers and Footers

The ‘Top’ value in the ‘Margin’ panel and the ‘Header’ value in the ‘From
Edge’ panel controll the position and size of the header. In the same
manner, the ‘Bottom’ value in the ‘Margin’ panel and ‘Footer’ value in the
‘From Edge’ panel control the position and size of the footer.

4.7.2 Setting Page Orientation

To change the default page orientation (landscape/portrait) for a tabular
report or a flow report, follow these steps:

1. Select ‘Page Setup’ from the Style Studio ‘File’ menu. This opens
the ‘Page Properties’ dialog box.

Document

Footer
Paragraph

Header
Paragraph

Header from edge

Top Margin

Footer from edge

Bottom Margin

L
e

ft
M

ar
gi

n

R
ig

h
t M

a
rg

in

REPORT DESIGN

593 of 2477

2. Choose the desired orientation from the ‘Orientation’ panel.

3. Click ‘OK’.

For a tabular report layouts (only), you can change the orientation for a
particular page by associating a new layout with a particular row in the
layout grid. Follow the steps below:

1. Click the ‘Layout View’ button in the toolbar to enter Layout
mode.

2. Right-click the cell whose orientation you wish to change, and
select ‘Properties’ from the context menu. This opens the ‘Cell
Properties’ dialog box.

3. In the ‘Cell Properties’ dialog box, select the Row tab.

4. Select the desired orientation (‘Portrait’ or ‘Landscape’) and click
‘OK’.

For flow report layouts, you can also change the orientation for a particular
page. To do this, follow the steps below:

1. Click the ‘Layout View’ button in the toolbar to enter Layout
mode.

2. Right-click anywhere on the page (outside of the page areas) and
select the appropriate orientation from the context menu.

REPORT DESIGN

594 of 2477

See Also
Setting up the Layout Grid, for more information about report layouts.
Setting Layout Grid Properties, for more information about grid cell
properties.

4.7.3 Setting a Background Color/Image

To set a background color or image for a report, follow the steps below:

1. Select ‘Page Setup’ from the Style Studio ‘File’ menu. This opens
the ‘Page Properties’ dialog box.

2. Select the Background tab.

3. To set a background color, click the ‘Color’ button, and select a
color from the menu.

4. To set a background image, click the ‘Image’ button, and specify
the location of the ‘Image’.

The options available for specifying a background image (i.e.,
‘Resource’, ‘URL’, ‘Full Path’, ‘Embed’) are the same as those for
the Image report element. See Image for more details.

5. (Optional) Specify the ‘Size’ and ‘Layout’ options for your image.

REPORT DESIGN

595 of 2477

See Also
Freehand Shapes, for information on adding shapes to the background of a
report.

4.8 Headers and Footers
Most reports use headers and footers to display report information, such as
the report title, date/time, and page numbering.

4.8.1 Adding Headers and Footers to a Report
Walkthrough The following example shows you how to add headers and footers that

display title, page, and date information:

1. Click the header area or the ‘Header’ button to select the Header as
the current editing target. The insertion point moves to the header
area, indicating that new elements will be inserted into the header
(rather than the report body).

2. Click the ‘Text’ button in the Toolbox panel. This adds a text
element into the header.

3. Type the static text “Revenue Report” into the text element, and
click away from the element.

4. Click the text element to select it. In the Style Studio toolbar, click
the ‘Center’ alignment button and the ‘Bold’ button to change the
formatting.

5. Click the ‘Footer’ button in the toolbar to move the insertion point
to the footer.

6. Click the ‘Text’ button in the Toolbox panel. This adds a text
element into the footer.

7. Type the text “Page {P} of {N}” in the text element. The symbols
“{P}” and “{N}” are special page number tags that can only be used
in headers and footers. When the report is generated, these tags are
replaced with the current page number and the total number of
pages, respectively. (See Adding Page Numbers and Dates in
Headers/Footers for additional information.)

REPORT DESIGN

596 of 2477

8. Select the footer again, and click the ‘Text’ button to add a second
text element to the footer.

9. Enter the text “{D} {T}” in the text field. The symbols “{D}” and
“{T}” are special date/time tags that can only be used in headers
and footers. When the report is generated, the tags are replaced
with the current date and time, respectively.

10. Click the new text element to select it. Click the ‘Right’ alignment
button in the Style Studio toolbar to position the element as shown
below.

The completed example is saved as headerfooter1.srt in the /examples/
docExamples/design directory.

4.8.2 Adding Page Numbers and Dates in Headers/Footers
Note: The final page
count of a report
depends on several
factors, including cur-
rent records in the
database and any end-
user parameter selec-
tions.

To insert page numbers or current date/time into a report, use the special
page number and time/date tags ({P},{N},{D},{T}) within a Text element. In
general, this is much more reliable and robust than hard-coding these
values into the report template itself.

The following table lists the special tags with their complete syntax:

Table 2. Header and Footer Tags (Page Numbers, Date/Time)

To edit a Text element that contains these special tags, use one of the
regular methods for editing text:

• Right-click the Text element, and select ‘Edit’ from the context menu.

• Right-click the Text element, and select ‘Properties’ from the context
menu (or double-click the Text element) to open the ‘Properties’ dialog
box. Select the Contents tab, and edit the contents as desired.

TAG DESCRIPTION

{P} Page number

{P,format} Page number and number format

{N} Number of pages

{N,format} Number of pages and number format

{D} Generation date

{D,format} Date and format (java.text.SimpleDateFormat)

{T} Generation time

{T,format} Generation time and format (java.text.SimpleDateFormat)

REPORT DESIGN

597 of 2477

These special tags for page number and date/time are only effective when
used within headers and footer Text (or Textbox) elements. If you use these
tags within any other report element or in the report body, the runtime
substitution is not performed. However, you can insert runtime page-
numbering and date/time information into other elements or the report
body by using script. For more information, see the onPageBreak Handler
section the Report Scripting, as well as Appendix JS.7.1, Date and Time
Functions.

4.8.3 Displaying a Header/Footer for Specific Page Types

To display a header or footer only on a a specific page type (first page, even
pages, odd pages, or all pages default), follow the steps below:

1. Click the “arrow” icon next to the ‘Header’ or ‘Footer’ menu. This
opens the ‘Header’ or ‘Footer’ menu.

2. Select the desired page type to which the header or footer should be
applied. The available targets are first page, even pages, odd pages,
or all pages (default).

3. Add components to the header or footer, as desired.

The components that you add to the header or footer will only display on
pages of the selected type. To target headers or footers to specific elements,
see Associating Headers/Footers with Specific Elements.

4.8.4 Associating Headers/Footers with Specific Elements

Sometimes you may need to specify headers and footers independent of the
page numbering. For example, in a report that consists of multiple sections,
you may need to display a different header and footer for each section.

To do this, you can associate the header/footer specification with an
element in the report (any element). Then, whenever the specified element
is displayed on the page, the associated header/footer will be displayed as
well. You can choose whether this element-associated header/footer should
remain in effect only on pages where the specified element is displayed, or
persist until a new element-associates header/footer is encountered in the
report.

REPORT DESIGN

598 of 2477

This element-based header/footer mechanism is more flexible than
specifying the header/footer for specific pages using page numbers (see
Displaying a Header/Footer for Specific Page Types). Because the page
layout is based on the flow model, contents can shift and print on different
pages depending on previous elements. By associating the header/footer
with an element, you can ensure that the flow does not change the header/
footer association.

To associate a header/footer with an element, follow these steps:

1. Click the “arrow” icon next to the ‘Header’ or ‘Footer’ button. This
opens the ‘Header’ or ‘Footer’ menu.

2. Select the ‘Edit’ option. This opens the ‘Edit Target’ dialog box.
This lists all elements in the report.

3. Select an element to associate with the header (footer), and click
‘Add’. Repeat to add any additional elements that will have distinct
headers/footers.

To display distinct headers/footers for different sections of the
report, add the heading elements (e.g., section titles) to the list. You
can then create a distinct header for each section. If more than one
element on a page has an associated header/footer, the header/
footer corresponding to the last element is used.

If necessary, you can insert invisible elements into the report for the
purpose of changing the header/footer on the page. For example,
the last page of the report requires a different header, you can add a
“space” element at the end of the report, and associate a new header
with this element.

REPORT DESIGN

599 of 2477

4. (Optional) Select ‘Continue after element’ to make the header/
footer continue until the next element-associated header/footer.
Otherwise, the header/footer will display only on pages that contain
the element.

5. Click ‘OK’ to close the dialog box.

6. Again click the “arrow” icon next to the ‘Header’ or ‘Footer’
button to open the menu. Observe that the elements which you
added are now listed in the menu.

7. Select the element from the list to which you want to associate the
distinct header/footer.

8. Add components to the header or footer, as desired.

To create a header/footer for a different report element, again click the
‘Header’ (‘Footer’) button, and select the desired target from the menu.

REPORT DESIGN

600 of 2477

5 Report Elements

A report consists of a sequence of report elements. The report engine
processes elements sequentially during formatting and printing in the order
that they appear in the report.

5.1 Element ID and Alias
Each element is identified by a unique element ID. The element ID is
assigned dynamically when you add an element to the report. The element
ID allows you to refer to an element from within report script, when the
template is accessed programmatically, and for many other purposes.

You should strive to
use meaningful names
as the element IDs.
This provides a great
aid to maintenance
and debugging.

You can view the ID of the currently selected element in the status bar at
the bottom of the Style Studio window. Likewise, in the Style Studio
Report Explorer panel, report elements are identified by their element
IDs.

To change an element’s ID, follow the steps below:

1. Right-click the element, and select ‘Properties’ from the context
menu. This opens the element’s ‘Properties’ dialog box.

2. Enter a meaningful name in the ‘ID’ field, and click ‘OK’.

3. (Optional) Enter a meaningful name in the ‘Alias’ field. This is the
name that identifies the element in the User Portal’s Report
Explorer tool. If left unspecified, the ID will be displayed for this
purpose.

5.2 Inserting Elements
To insert an element into a report, follow these steps:

REPORT DESIGN

601 of 2477

1. Click in the region of the report (body, header, etc.) where you wish
to insert the element. This moves the insertion point (black triangle)
to indicate the specified location.

If an existing element is already selected, the new element will be
inserted before the selected element.

2. In the Toolbox panel, click the element you wish to insert. This
inserts the element at the specified location.

Alternatively, you can drag the element from the Toolbox panel to
the desired location in the report.

The alignment of consecutive elements determines which element is placed
on a new line. When the alignment changes from one element to the next in
a leftward direction (right centered, centered left), the next element is
automatically placed on a new line. The element type also affects its
placement on a new line.

To position elements with complete freedom, place the elements inside a
Section. See Section Element for full details.

5.2.1 Text Mode vs. Insertion Mode

By default, when you click in a report, this places the insertion point at the
specified location. However, you can also use Style Studio in a “text
insertion” mode, similar to a word processor. To do this, click the ‘Text
Tool’ button in the toolbar. Now, when you click in the report, this
automatically opens a text element for editing.

To return to the default insertion behavior, click the ‘Pick’ tool.

5.3 Property Dialog Boxes
Every element has a ‘Property’ dialog box that allows you to modify
attributes of the corresponding element. To open the ‘Property’ dialog box,
do one of the following:

• Right-click on the element and select ‘Properties’ from the context
menu.

• Double-click on the element.

REPORT DESIGN

602 of 2477

To simultaneously edit the attributes of multiple elements (of the same
element type), Ctrl-click the elements to select them all. Then right-click on
one of the elements, select ‘Properties’ from the context menu. This will
open a dialog box exposing the common properties that you can set.

Most element ‘Properties’ dialog boxes consist of several tabbed panes.
The common Attributes tab offers common features such as alignment,
font, color and options to hide the element on print/export. Many elements
also have a Layout tab, which has the anchor, size, and wrapping
attributes.

You can also set properties for single or multiple components by using the
Property panel of the Report Explorer. See Report Explorer View for full
details.

5.4 Positioning and Sizing a Report Element
You can reposition and resize a report element from within its ‘Properties’
dialog box. (See Property Dialog Boxes for more information.) For an
anchored element, or an element placed within a Section, you can also
move and resize the element by dragging the element handles.

5.5 Brushing Element Styles
You can copy or brush visual properties from one element to another
element. This provides a quick way to give the same style to multiple
elements. The following properties can be brushed:

• Font

REPORT DESIGN

603 of 2477

• Foreground color

• Background color

To brush styles from one element to another element, follow the steps
below:

1. Select (click) the report element from which to copy the styles.

2. Click the ‘Brush’ button in the toolbar. (The pointer icon changes
to indicate that a brushing operation is in progress.)

3. Click the report element to which you want to apply the styles.

This applies the styles from the first element to the second. You can make
further modifications to the copied styles in the usual manner (see Property
Dialog Boxes for information on modifying visual properties).

Example:
Brushing

In the following example, you will copy styles from one Text element to
another Text element.

1. Create a new report. (See Creating a Blank Report Template.)

2. Click the ‘Text’ button on the left-side toolbar to add a new Text
element to the report.

3. Type the text “All Sales” into the element, and then click away
from the element to end editing.

4. Right-click the Text element and select ‘Properties’ from the
context menu. This opens the ‘Text Properties’ dialog box.

5. In the ‘Text Properties’ dialog box, make the following settings:

a. Click the ‘Font’ button, and select “Verdana Bold 12pt.”

b. Click the ‘Foreground’ menu, and select a light-gray color.

c. Click the ‘Background menu, and select a dark-gray color.

REPORT DESIGN

604 of 2477

6. Click ‘OK’ to close the ‘Text Properties’ dialog box.

7. Click to the right of the Text element to place the insertion point
there, and press ‘Enter’ twice on the keyboard to insert two line
feeds.

8. Click the ‘Text’ button on the left-side toolbar to add a second Text
element. The new Text element is in edit mode by default.

9. Enter the text “Top Sales” into the element, and then click away
from the element to end editing.

10. Brush the style of the first Text element onto the second Text
element. Follow these steps:

a. Click the first Text element to select it.

b. Click the ‘Brush’ button in the toolbar. (The pointer icon
changes to indicate that a brushing operation is in progress.)

c. Click second Text element.

This applies the styles from the first element to the second, so that they both
share the same font, foreground color, and background color.

REPORT DESIGN

605 of 2477

¢

5.6 Text Element
Text is one of the most basic components of a report. Style Studio offers
two elements for adding text, the Text element and the Textbox element.
The following sections explain these two elements and their differences.

5.6.1 Text Element

Text elements are the basic elements for adding text. They possess
relatively few properties, and these relate mostly to font and positioning.

Figure 4. Text Properties Dialog Box

When you plan to enter a large amount of text, you may find it useful to
select the ‘Text Tool’ button in the toolbar. This allows you to click in the
report and start typing (similar to a word processor). You can also use the
‘Text Tool’ to easily modify text elements that already exist in the report.

Adding a New Text Element

To add a text element, follow these steps:

REPORT DESIGN

606 of 2477

1. Click in the report to place the insertion point at the desired
location.

2. In the Toolbox panel, click the ‘Text’ icon. This creates a gray
shaded box to the right of the last element added.

You can also bind the
Text element to a data
source. See Binding
Data to a Text Ele-
ment.

3. Type the desired text into the box.

The Text element resizes itself dynamically based on the text that
you enter. The familiar text formatting controls apply are available
in the Style Studio toolbar.

Text Wrapping

When one or more anchored elements exist on the same line as the Text
element, the Text element can wrap around the anchored elements. The
wrapping style is specified on the Layout tab of the ‘Properties’ dialog box
for the anchored component.

Table 3. Text Wrapping

Wrapping occurs on both sides of the element (if the wrapping style
allows).

To specify a vertical wrapping direction (rather than the default horizontal),
follow the steps below:

1. Select ‘Report Properties’ from the Style Studio ‘File’ menu.

Flow overlaps the float element.

Wraps around the left side of the float element.

Wraps around the right side of the float element.

Wraps around both sides of the float element.

No contents allowed on either side of the float element.

REPORT DESIGN

607 of 2477

2. Select the Settings tab.

3. In the ‘Text Wrapping’ panel, disable the ‘Horizontally wrapping
around images’ option.

The wrapping direction is a global attribute for the report template;
therefore, it affects the wrapping of the elements in the entire report.

Vertical wrapping divides the area between the edges of the page and the
anchored element into printable sub-areas. Text is shown in each sub-area
before advancing to the next sub-area.

Figure 5. Vertical Text Wrapping for Anchored Float Element

If the wrapping direction is set to horizontal, the flow of text occurs across
the sub-areas, from left to right, until the text is exhausted or the flow
continues onto the next line (below the anchored element).

Figure 6. Horizontal Text Wrapping for Anchored Float Element

See Also
Positioning and Sizing a Report Element, for more information about
anchoring.

Anchored
Image

Anchored
Image

REPORT DESIGN

608 of 2477

5.6.2 TextBox

The TextBox element has a defined rectangular area around which borders
can be placed. (The basic Text element does not have this feature). You can
control the border style, corner style, color, and other attributes from the
‘TextBox Properties’ dialog box.

To open the ‘TextBox Properties’ dialog box, right-click the TextBox and
select ‘Properties’ from the context menu.

• Border Style: The default border uses thin lines. To change the line
style, use the ‘Top’, ‘Bottom’, ‘Right’ and ‘Left’ menus under the Text
Box tab. To provide a simple shadow effect, select the ‘Shadow’ option.

• TextBox Color: To change the TextBox border color, use the ‘Color’
chip under the Text Box tab. To change the TextBox text color or the fill
color, use the ‘Foreground’ and ‘Background’ color chips under the
Attributes tab.

• Rounded Borders: The default box uses square corners. To change the
style to rounded corners, select the ‘Rounded Box’ option under the
Text Box tab. Then enter values (in pixels) for the ‘Corner Width’ and
‘Corner Height’ fields to set the corners’ horizontal and vertical radii,
respectively. Larger radius values produce softer corners.

• Padding: You can add padding around the inner border of the TextBox
so that text contents do not run too close to the border. Under the Text
Box tab, enter the desired spacing values using the ‘Padding Space’
panel.

REPORT DESIGN

609 of 2477

5.7 Table Element
There are two elements that display tabular data: Table and Section. This
section explains how to use the Table element. See Tables vs. Sections for a
discussion of the differences between Table and Section elements.

5.7.1 Adding a Blank Table to a Report

To add a blank Table element to the report, drag the ‘Table’ icon from the
Toolbox panel to a place in the report. This adds a blank table element at
the insertion point.

See Creating a New Table Using Freehand Operations to add data fields to
the Table.

See Also
Binding Data to a Table Element, to add a Table containing data.

5.7.2 Table Properties

The ‘Table Properties’ dialog box allows you to specify layout and style for
a Table. The following sections explain the available features.

Table Layout

To specify a table’s layout properties, follow the steps below:

1. Right-click the table, and select ‘Properties’ from the context
menu. This opens the ‘Table Properties’ dialog box.

REPORT DESIGN

610 of 2477

2. In the ‘Layout’ panel, select one of the available layouts, and click
‘OK’.

When the table is bound to a data source (see Binding Data to a Table
Element), the table column widths are calculated automatically based on
the size of the result set. Use the layout options in the ‘Table Properties’ to
modify how these widths are calculated:

• Fit Page
The table width is set to the width of the page. The column widths are
approximately proportional to the size of the data they hold. If the
contents are too wide to fit in the column, the size of the row is increased
and/or the contents are wrapped.

• Fit Content
The column widths are sized to fit the data they contain. If a row is
wider than the page, the table is wrapped around as shown below.

• Fit Content and Page
This is a variation of the ‘Fit Content’ layout option. In this case, the last
column of each table region is always adjusted to fill the entire page
area. In other words, all columns are sized to exactly fit their contents
with the exception of the last column in each table region, which is sized
to fit the remaining page width.

• Equal Width
The table width is calculated in the same way as in the ‘Fit Page’ layout.
Instead of distributing width to the columns based on their contents, all
columns are assigned the same width.

REPORT DESIGN

611 of 2477

• Fit Content (Wrap One Table Region Per Page)
This layout option is similar to ‘Fit Content’. It is particularly useful for
cross-tab (pivot) tables, where the number of column headers is
dynamic. This could cause the horizontal span of the table to get quite
large. If a table is too wide, the table is horizontally ‘chopped’ up into
multiple regions, with each region displayed on a new page.

Figure 7. Fit Content vs. Fit Content (Wrap One Table Region Per
Page)

‘Keep Span Together’ applies to tables with multiple levels of headers, and
ensures that parent-child header combinations are displayed on the same
page. The ‘Keep Group Together’ option applies to tables with grouping,
and uses forced page breaks to keep all detail rows of a group together on
the same page if possible.

REPORT DESIGN

612 of 2477

Note: there is a global
maximum of 450
which can be changed
by setting prefer-
ence.trail.max in the
.stylereport file.

It may be useful to set the maximum width of the table columns,
particularly when one of the ‘Fit Content’ layout types is selected. The
‘Table Properties’ dialog box allows the maximum width in points to be
entered.

To resize a table column manually, simply drag the table cell border with
the mouse. (This enables the ‘Manual Column Widths’ option in the ‘Table
Properties’ dialog box, and disables the automatic layout specification).

Matching Column Sizes in Two Tables

Column matching is not available for Crosstabs.

You can match the column widths of one table to the column widths of
another table. For example, assume that you have created a freehand table
with customized column widths, and you want to match the widths of
another table’s columns to this table. You can set up an exact match one-to-
one column matching, or configure a more customized matching, such as
matching the width of multiple columns in one table to a single column in
the other.

To match column sizes between two tables, follow the steps below:

1. Right-click the table whose column size you wish to change. Select
‘Properties’ from the context menu to open the ‘Table Properties’
dialog box.

2. Select the Advanced tab.

3. In the ‘Column Width’ panel, select ‘Match Column Width’.

4. If the two tables contain the same number of columns, and you
wish to perform a one-to-one sequential column match, click the
‘Exact Match’ button.

5. If the two tables contain different numbers of columns, follow the
steps below to perform a custom match:

a. In the ‘Column Matching’ panel, click to select a column in the
left list (Ctrl-click or Shift-click to select multiple columns.)

b. Click (Ctrl-click or Shift-click) to select the column or columns
in the right list that should be matched to the selected columns
in the left list.

c. Click the ‘Match’ button.

REPORT DESIGN

613 of 2477

d. Repeat the above steps to match additional sets of columns.

6. Click ‘OK’ to close the dialog box.

Adding a Table Style

A table style is a set of predefined table presentation elements, such as
colors, borders, fonts, and other visual attributes. Table styles allow you to
set a visual treatment for the table as a whole.

To apply a table style to a table, follow the steps below:

1. Right-click the table and select ‘Properties’ from the context menu.
This opens the ‘Table Properties’ dialog box.

2. Select the Table tab.

3. In the ‘Style’ panel, click ‘Select Style’. This opens the ‘Style
Viewer’ dialog box, which displays a hierarchical list of styles.

REPORT DESIGN

614 of 2477

4. Select a style from the list, and click ‘OK’.

See Also
Table Formatting, for information on styling individual cells, rows, or
columns.

Creating a Custom Table Style

In addition to using the predefined table styles (see Adding a Table Style or
Table Properties in Dashboard Design), you also can create your own
custom table styles. A custom table style is a reusable component that can
be applied to multiple tables in reports or Viewsheets.

To create a custom table style, follow the steps below:

You do not need to
open a report or View-
sheet in order to cre-
ate a table style.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Component’ node.

3. In the right ‘Type’ panel, select the ‘Table Style’ node.

REPORT DESIGN

615 of 2477

4. Click ‘OK’. This opens the Table Style Editor.

The table diagram in the top panel is an interactive interface that
has several selectable regions. See Table Style Regions for a list of
the different areas that you can style.

5. (Optional) If desired, create a custom region to style. See Creating
a Custom Style Pattern for more details.

6. Click on the region of the table diagram that you wish to style (or
click the region name in the Regions panel). The bottom panel
displays the visual property settings for the region you selected.

REPORT DESIGN

616 of 2477

7. Modify the properties to achieve the desired appearance for the
selected region of the table.

8. Click the ‘Save’ button in the Style Studio toolbar. This opens the
‘Save’ dialog box.

9. Enter a name for the new table style, and select a category (folder)
into which the style should be placed.

10. Click ‘OK’. This saves the table style into the library file
(stylereport.srl file).

You can use the new style in the same way that you use the predefined
styles. See see Adding a Table Style or Table Properties in Dashboard
Design for details.

Creating a Table Style Folder

The existing table styles are stored in a predefined set of folders (e.g.,
‘Bands’, ‘Columns’, ‘Light’, etc.). You can store your custom styles in any
of these predefined folders, or you can define your own folders.

REPORT DESIGN

617 of 2477

To define a new folder for your custom table styles, follow the steps below:

1. Expand the Style Studio Asset panel. (Select ‘Asset Pane’ from the
Style Studio ‘Window’ menu.)

2. Expand the ‘Component’ node, and then expand the ‘Table Style’
node.

3. Right-click the ‘Table Style’ node or any sub-folder, and select
‘New Folder’ from the context menu.

4. When prompted, enter a name for the new folder, and click ‘OK’.

Deleting a Table Style

To delete a table style, follow the steps below:

1. Expand the Style Studio Asset panel. (Select ‘Asset Pane’ from the
Style Studio ‘Window’ menu.)

2. Expand the ‘Component’ node, and then expand the ‘Table Style’
node.

3. Right-click on the table style that you wish to delete, and select
‘Delete’ from the context menu.

Creating a Custom Style Pattern

In Creating a Custom Table Style, you learned how to specify your own
table style by applying visual formats to different regions of the table. You
can create more complex visual styles by specifying a row/column pattern
for the table styles. The pattern is a mathematical rule that determines the
rows or columns to which the formatting is applied. For example, you can
add a background color to every other row, or you can add a heavy border
to every 3rd column.

To create a pattern for use in a table style, follow the steps below:

REPORT DESIGN

618 of 2477

1. Create a new table style and open the Table Style Editor as
described in Creating a Custom Table Style.

2. In the Regions panel, right-click the ‘Custom Patterns’ node, and
select the ‘New Pattern’ option.

This opens the ‘Row/Column Pattern’ dialog box.

3. On the Row/Column tab, select ‘Row’ to designate a row-based
pattern rule, or select ‘Column’ to designate a column-based
pattern rule.

4. In the ‘Row’ or ‘Column’ text field, enter an integer value to the
indicate the interval at which the style should be applied. For
example, a value of “4” indicates that the style will be applied to the
4th row or column.

5. Select the ‘Repeat’ option to repeat this pattern for subsequent
rows/columns. For example, this would repeat the formatting in the
previous step to every 4th row or column in the specified range.

6. In the ‘Cell Range’ field, indicate whether the specified pattern
should be in effect for ‘All’ rows or columns, or only for a specified
range of cells.

7. (Optional) Click the Grouping tab to specify formatting pattern for
group headers and footers.

REPORT DESIGN

619 of 2477

8. Click ‘OK’ to save the style pattern. The new pattern is now listed
under the ‘Custom Patterns’ node in the Regions panel.

Editing a Custom Style Pattern

To edit a pattern for a custom table style, follow these steps:

1. Right-click the pattern name under the ‘Custom Patterns’ node in
the Regions panel.

2. Select ‘Edit’ from the context menu.

This opens the ‘Row/Column Pattern’ dialog box. See Creating a Custom
Style Pattern for further details.

Table Style Regions

The table is divided into nine regions, each of which has its own set of
attributes.

Note: When there is a conflict between row and column settings, row
settings take precedence over column settings. For instance, if you

REPORT DESIGN

620 of 2477

set the background of the Header Row to green and the background of
the Header Column to red, the top-left cell of the table which is
common to both will have a green background (adopting the Row
setting).

Table 4. Table Regions

Complex Table Layout

You can construct more complex table layouts, requiring specific
formatting at the cell level. Please see Setting Cell and Row Visual
Properties in the Report Scripting for more information.

5.8 Crosstab Element
A Crosstab presents a compact summary of data in a tabular format. To add
a blank Crosstab element to the report, drag the ‘Crosstab’ icon from the
Toolbox panel to an empty location in the report. This adds a blank
Crosstab element at the insertion point.

See Creating a Crosstab Using Freehand Operations for information on
how to add data fields to the Crosstab.

To specify layout and style for a Crosstab, right-click the Crosstab element
and select ‘Properties’ from the context menu. This opens the ‘Table
Properties’ dialog box, which provides largely the same features as those
available for a regular Table element. See Table Properties for more details.

See Also
Binding Data to a Crosstab Element, to add a Crosstab containing data.

 REGION SELECTION

 Header Row Click on the first row.
 Header Column Click on the first column.
 Trailer Row Click on the last row.
 Trailer Column Click on the last column.

 Body
 Click in the middle of the table (cells excluding header/
trailer).

 Top Border Click on the Top Border arrow.
 Left Border Click on the Left Border arrow.
 Right Border Click on the Right Border arrow.
 Bottom Border Click on the Bottom Border arrow.

REPORT DESIGN

621 of 2477

5.9 Section Element
There are two elements that display tabular data: Table and Section. This
section explains how to use the Section element. See Tables vs. Sections for
a discussion of the differences between Table and Section elements.

The Section element behaves as a container of other elements, and is very
useful for application requiring fixed positioning of element, such as forms.
The Section provides a canvas in which you can freely place and position
any other elements, including other Sections. For example, the Section
below contains a TextBox element, an Image element, and a Table.

The following sections explain how to create a Section, and how to
manually add components to a Section.

You can also bind a Section to a data source so that the Section displays a
pseudo-table. When you use a Section as a pseudo-table, Text elements
within the Section display data from fields of the data source, which
produces a tabular data display. For information on how to bind a Section
to a data source to produce a pseudo-table, see Binding Data to a Section
Element.

5.9.1 Adding a Section Element

To add a Section element to the report, click the ‘Section’ button in
Toolbox panel. This adds a blank Section at the insertion point.

See Creating a Section Using Freehand Operations to add data fields to the
Section.

The section consists of a set of bands. (The default bands are ‘Header’,
‘Detail’, and ‘Footer’.) Each band can contain other fixed-position
elements as sub-elements. The sub-elements of a band are positioned
relative to the top-left corner of the band. Each section band can be
decorated with borders and a background color. (See Setting Global
Section Options.)

REPORT DESIGN

622 of 2477

When you use a Section as a pseudo-table to display grouped data, the
Section may display multiple levels of headers and footers. These header
and footer bands display group labels and group summaries, while the
‘Detail’ band always show the detail records. See Grouping and
Summarization in Data Binding Wizard for more details.

See Also
Binding Data to a Section Element, to create a new Section containing data.

5.9.2 Setting Global Section Options

To specify global default settings for all Sections in a report, select
‘Preferences’ from the ‘Report’ menu. This opens the ‘Preferences’ dialog
box. Click the Section tab.

The settings here specify the defaults for the ‘Section Options’ dialog box.
See Section Options for a Freehand Section for details about the available
properties.

5.9.3 Section Properties

Most Section properties are associated with the individual bands in the
Section. To set the properties for a Section’s bands, right-click in the left
margin of the Section, and select ‘Properties’ from the context menu.

REPORT DESIGN

623 of 2477

This opens the ‘Section Properties’ dialog box. In the ‘Section Properties’
dialog box, the various section bands are listed in a tree structure. For a
simple section, there are three bands under the root node: ‘Header’,
‘Detail’, and ‘Footer’.

Click on a band in the tree to view the corresponding in band properties.
The following properties are available:

• Hide Band makes the specified band invisible. When a band is hidden,
it is not used when rendering a page. However, all elements in the band
are still intact, and are restored when the band is made visible again.

• New Page Before forces the corresponding band to always be displayed
at the top of a new page, thus changing the pagination of the flow. The
pagination is enforced so that either the band is the first band of a
section, or in the middle of a section.

• New Page After forces a new page following the displayed band. These
attributes are ignored for the top-level header band because they would
cause an infinite loop in the layout.

• Force New Page forces a page break rather than an area break when
‘New Page Before’ or ‘New Page After’ is in effect. This operation is
only available for flow layout. (See Flow Report Layout for more
information about flow reports.)

• Sheet Break causes a new sheet to be created in Excel exports
whenever a new page is created by the ‘New Page Before’ or ‘New
Page After’ properties.

• Shrink to Fit collapses any space used by hidden elements in a band so
there is no white space in the middle of a band if elements are hidden
(through script or other means).

REPORT DESIGN

624 of 2477

• Breakable causes the specified band to break across pages when it
cannot be displayed in its entirety on the current page. If this property is
disabled, the entirely of the band is pushed to the following page.

• Print at bottom causes the section band to be printed at the bottom of
the page. If the band repeats, such as for the detail rows of the content
band, each repeated band is placed on a separate page.

• Suppress Blank hides the section band when it contains no content. If
some of the elements in the band are bound to data, the band is
considered to have no content when all of the bound elements for a
particular row are blank. If binding is not defined for any of the elements
in the band, the band is considered to have no content only if all the
elements in the band are invisible.

• Underlay following bands causes fields in one band to be printed on
the same line as fields in the following band. As a result, multiple rows
are written over one another. An example application is when the first
band contains a picture of an item and the second band contains the item
description. These can be displayed on a single line by setting ‘Underlay
following bands’.

• Keep Together, for a group header, causes the report to attempt to keep
all of the group’s bands on the same page. If this is not possible, the
contents are moved to the top of the next page. This setting is not
compatible with ‘Repeat Header’. (See note below.)

• Widow/orphan control, for any header band or for the innermost
footer band, prevents a single header band from being printed at the
bottom of a page or a single footer band from being printed at the top of
a page.

• Background Color sets the fill for a section band.

• Borders adds borders to any of the four sides of the specified band.

• Height sets the height of the specified section band. This can also be
manipulated by manually dragging the section band borders.

Note: When 'Repeat Header' is set for a section or group header,
this disables the ‘Keep Together’ option for all subordinate
groups.

• Repeat Header displays the section or group header on each page. This
setting is not compatible with ‘Keep Together’.

5.9.4 Viewing Information for Elements Inside a Section

To view information about an element contained within a Section, click on
the desired element. The Style Studio status bar (at the bottom of the
screen) displays the relevant information, including any data binding
infomrtaion.

REPORT DESIGN

625 of 2477

5.9.5 Manually Adding Elements to a Section

You can manually add any element from the Toolbox panel into a Section
band. To add an element to a Section, use one of the following methods:

• Drag an element from the Toolbox panel into the Section.

• Select the section, right-click, and choose ‘Insert’ from the context
menu. Then select the desired element.

Adding a Table or Chart to a Section

A table contained within a section can dynamically grow within the bounds
of that section. By setting the position and layout properties for the table,
you can control how it spans across multiple pages, wraps, etc.

For charts, the data binding must be associated with the chart after the chart
is placed in the section. If you place a chart into a Header band in a section,
the chart will only reflect data in the current group for the corresponding
data binding.

Adding Text Elements to a Section

If you add a Text or Textbox element to a section, the element immediately
enters editing mode, allowing you to enter the desired text. The height of
the Text element is a multiple of the height of a single text row, and
therefore depends on the current font settings.

To change the format of a Text element, follow these steps:

1. Click the Text element in the Section to select it.

2. Expand the Properties panel (at bottom of Style Studio window).

3. Select the Format tab, and enter the desired format. See
Formatting for more details on the format settings.

To change the location and size of a Text element, simply click and drag on
the element handles. Alternatively, you can right-click the element, and
select ‘Properties’ from the context menu. This opens the ‘Text Properties’
dialog box. Click the Position tab to access position settings.

REPORT DESIGN

626 of 2477

Enable ‘Auto size’ to allow the element to grow or shrink based on its
content.

Adding Heading Elements to a Section

In a Section that displays grouped data, you can use the heading element to
generate a table of contents (TOC) listing the different groups. To do this,
add a heading element into the header band of the Section as follows:

1. Right-click in the header band of the Section that represents the
group you wish to display in the TOC.

2. Select ‘Insert’ > ‘Special Field’ > ‘Heading’ from the context
menu. This changes the pointer to a crosshair.

3. Drag the crosshair in the Section to draw the heading element.

4. Bind the new heading element to the desired grouping field. Follow
the steps below:

a. Click the header element to select it.

REPORT DESIGN

627 of 2477

b. Click the ‘Properties’ button at the bottom of the Style Studio
window to open the Properties panel.

c. Select the Data tab on the Properties panel.

d. In the ‘Binding’ area of the Properties panel, select the desired
field from the ‘Column’ menu. This field will supply the values
that the heading element will display.

e. Click the ‘Apply’ button at the top right of the Properties panel.

5. Preview the report. The heading element now displays the group
name for each group in the Section header. (Each repetition of the
Section header band – for each group – displays the corresponding
group name.)

You can add a TOC element to the report to list these groups within a table
of contents. See Table of Contents for more information.

See Also
Heading, for information on how to use a heading.
Table of Contents, for information on how to use a TOC.

5.9.6 Moving and Resizing Elements in a Section

To move, resize, or copy an element in a Section, first click the element to
select it. (Ctrl-click to select multiple elements.) Then move, resize, or
copy the selected element(s) as described below:

• To move the selected element(s) with the mouse, drag on an element
body. To constrain the movement to the horizontal or vertical direction,
hold down the Shift key while dragging.

• To move the selected element(s) with the keyboard, press the arrow keys
on the keyboard to move the element(s) in 5-pixel increments. Hold
down the Ctrl key or Shift key while pressing the arrow keys to move in
1-pixel or 10-pixel increments, respectively.

• To resize the selected element(s), drag an element border in the desired
direction.

REPORT DESIGN

628 of 2477

• To copy the selected element(s) using the mouse, Ctrl-click and drag on
an element. Alternatively, right-click on an element and select ‘Copy’
from the context menu. Then right-click in an empty region of the
Section and select ‘Paste’ from the context menu.

• To copy the selected element(s) using the keyboard, press Ctrl-C on the
keyboard to copy. Then click at the location where you want to paste the
copied element(s), and press Ctrl-V on the keyboard.

To help control the position of element that you move or resize, you can
turn on the grid-snap feature. This snaps the elements to the grid (whether
the grid is visible or not) as you move them.

To turn on grid-snap, select ‘Snap to Grid’ from the Style Studio ‘View’
menu. See Using Grids and Rulers for information about configuring the
report grid.

See Also
Changing Sizes of Elements in a Section, to automatically change element
sizes.
Aligning Elements in a Section, for information on automatic alignment
features.

5.9.7 Aligning Elements in a Section

To align two or more elements in a Section, follow these steps:

1. Ctrl-click the elements desired elements to select them. (You can
also drag across the elements to select them.)

2. Right-click on any one of the selected elements. From the context
menu, select ‘Arrange’ > ‘Align’.

This opens the ‘Align Elements’ dialog box.

REPORT DESIGN

629 of 2477

3. Select a vertical and/or horizontal alignment option, and click
‘OK’.

The selected elements are aligned according to the specified alignment
options.

5.9.8 Distributing Elements in a Section

You can automatically space elements so that they are distributed at equal
intervals (horizontally or vertically) based on their edges or centers.

To distribute three or more elements within a section, follow the steps
below:

1. Ctrl-click the desired elements to select them. (You can also drag
across the elements to select them.)

2. Right-click on any one of the selected elements. From the context
menu, select ‘Arrange’ > ‘Distribute’.

This opens the ‘Distribute Elements’ dialog box.

REPORT DESIGN

630 of 2477

3. Select the appropriate spacing option. The spacing calculation can
be based on the left or right edges of elements, center of elements,
or the distances between elements.

4. Click ‘OK’.

The elements are now spaced according to the distribution strategy that you
specified.

5.9.9 Changing Sizes of Elements in a Section

You can automatically change the sizes of multiple elements so that all
sizes are equal. This is useful when you need to lay out data or form fields
with similar-sized elements.

To force a set of elements to adopt the same size, follow the steps below:

1. Ctrl-click the desired elements to select them. (You can also drag
across the elements to select them.)

2. Right-click on any one of the selected elements. From the context
menu, select ‘Arrange’ > ‘Change Sizes’.

This opens the ‘Change Sizes’ dialog box.

3. Check the desiired option to specify how the sizes should be
adjusted. Select the ‘Width’ or ‘Height’ option to manually enter
the exact size for the elements in points (1/72’’).

REPORT DESIGN

631 of 2477

5.10 Chart Element
Charts display summarized data in an easy-to-understand visual form. Style
Intelligence provides over 30 built-in chart types to designed to satisfy the
needs of all business users.

5.10.1 Adding a Chart Element

To add a chart element, follow the steps below:

1. Click the ‘Chart’ button in the Toolbox panel. This adds a new
chart to the report, and opens the Data Source tab and Binding
panel.

2. Resize the chart by dragging the resize handles. (The default size
for the chart is the entire width of the page.)

3. Drag fields from the Data Source panel to the appropriate regions
(‘X’, ‘Y’, ‘Color’ etc.) of the Binding panel to display the data on
the chart. See Binding Data to a Chart Element for more
information about displaying data.

4. To customize the appearance of the chart, right-click the chart, and
select ‘Properties’ from the context menu. This opens the ‘Chart
Properties’ dialog box. See Chart Properties for more information.

5.10.2 Chart Properties

The following sections discuss configuration settings available for charts in
the ‘Chart Properties’ dialog box. To open the ‘Chart Properties’ dialog
box, do one of the following:

• Right-click the chart, and select ‘Properties’ from the context menu.

• Double-click the chart.

Not all chart attributes
are mutually compati-
ble.

To set the properties for a particular aspect of the chart (e.g., X-axis, legend,
etc.), click the desired region in the chart diagram. This displays the
corresponding chart properties in the panel at the bottom.

REPORT DESIGN

632 of 2477

Plot Property

In the ‘Chart Properties’ dialog box, click on the plot region on the chart
graphic to open the ‘Plot Property’ panel.

REPORT DESIGN

633 of 2477

Figure 8. Plot Property

Plot properties include a number of common properties for all the chart
styles and also some style-specific properties. The common properties are
listed in the following table.

Table 5. Plot Properties

PROPERTY DESCRIPTION

X Grid Chart x-axis grid line style and color.
Y Grid Chart y-axis grid line style and color.

Quadrant Grid
The style and color for a set of perpendicular line segments
which divide the plot area into quadrants.

Diagonal Line
The style and color for a line segment which originates at
the lower-left corner of the plot area and terminates at the
upper-right corner of the plot area.

Trend Line

Specifies whether an interpolated trend line is displayed,
and the method by which the trend line should be fit to the
data (linear, quadratic, etc.). The menu and color chip
below the ‘Trend Line’ menu specify the trend line style
and color. If there is a dimension associated with the chart’s
‘Color’ binding, select the ‘One Per Color’ option to create
an independent trend line for each color group. (The trend
line colors are matched to the corresponding data colors
unless you explicitly specify a trend line color. In that case,
all trend lines share the same color.)

REPORT DESIGN

634 of 2477

Custom Tooltip

You can create a custom tooltip that incorporates data values in
java.text.MessageFormat format.

To create a custom tooltip, follow the steps below:

1. Right-click the chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Chart tab, and click on the body of the chart.

3. In the ‘Plot Properties’ panel, press the ‘Customize’ button next to
‘Tooltip’.

Show Values
Label the chart elements with corresponding values. See
Showing Values on a Chart.

Stack Values
Displays a single aggregate value for each primary (X-
axis) grouping, rather than for each individual subseries
grouping.

Alpha
Sets transparency for the chart elements. If disabled, the
default transparency for the particular chart type is used.

Keep Element in
Plot

Automatically extend the chart boundaries to display chart
elements that exceed the specified axis maximum.

Tooltip
Value is displayed as tooltip when mouse hovers over
corresponding chart area. To display custom HTML in the
tooltip, see Custom Tooltip.

Always Show Color
in Map

When a column is bound to the ‘Color’ field of the Visual
panel in the Chart Editor, this setting ensures that the color
is always used to fill the map regions. Otherwise, if another
column is simultaneously bound to the ‘Shape’, ‘Size’, or
‘Text’ fields of the Visual panel, the color generated for the
‘Color’ binding will be applied to the plotted points rather
than to the map regions.

Banding
Adds alternating colored bands to the specified axis. Select
the desired band color from the color picker.

Fill Time-Series
Gaps

When the ‘As time series’ option is set for a dimension (see
Editing a Dimension), the ‘Fill Time-Series Gaps’ option
specifies how missing data should be represented on the
chart. When the option is disabled, plotted lines simply
ignore the missing data and connect adjacent points. When
the option is enabled, you can choose to represent gaps
with either ‘Null’, which leaves an empty space at the
location, or with ‘Zero’, which inserts a numerical value of
0 at the location.

Explode Pie
For the pie chart style, create a separation between the
slices.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

REPORT DESIGN

635 of 2477

This opens the ‘Customize Tooltip’ dialog box.

4. Select the ‘Custom’ option, and enter the desired tooltip markup
into the edit box.

The indices for the
available columns are
listed at the bottom of
the dialog box.

To insert data into the tooltip, enter the index of a data column
within curly braces, e.g., {1}. Use java.text.MessageFormat format
to format the inserted data. For example:

See Formatting for
information about for-
mat masks.

Date: {0, date, MMM-yy}
Sales: {1, number, $#,###.00}

Example:
Custom Tooltip

In this example, you will create a chart that displays quantity purchased by
company. When the user hovers the mouse over a given company (e.g.,
“Rutgers Bank”), the Chart will display a tooltip similar to the following:

Rutgers Bank
27 units purchased

Follow the steps below:

1. Create a new report, and drag a Chart element into the report. Click
on the Chart to select it.

2. In the Data Source panel, expand the ‘Global Worksheet’ node
and the ‘Tutorial’ node. Expand the ‘US Sales’ Worksheet.

3. Drag the ‘Company’ dimension to the ‘X’ field in the Binding
panel.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

REPORT DESIGN

636 of 2477

4. Drag the ‘Quantity Purchased’ measure to the ‘Y’ field in the
Binding panel. This creates a chart that displays quantity
purchased for each company.

5. Click the ‘Edit Dimension’ button next to the ‘Company’ field, and
select ‘Ranking’ to display only the top 10 companies. Click the
‘Apply’ button.

6. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

7. Under the Chart tab, click on the Chart body to display the ‘PLot
Property’ panel.

8. Next to the ‘Tooltip’ option, press ‘Customize’ button. This opens
the ‘Customize Tooltip’ dialog box.

9. Select the ‘Custom’ option and enter the following in the text field:

{0}
{1} units purchased

10. Press ‘OK’ to close the ‘Customize Tooltip’ dialog box, and press
‘OK’ again to close the ‘Chart Properties’ dialog box.

11. Save the report, and then view the report

REPORT DESIGN

637 of 2477

When you hover the mouse over the bars on the chart, you will now see the
custom tooltip you specified.

¢

See Also
Adding a Non-Displaying Measure to a Chart, to utilize a measure in the
tooltip which is not displayed on the chart.

Showing Values on a Chart

To display values in the plot area of a chart, follow the steps below.

1. In the ‘Chart Properties’ dialog box, click the plot area in the chart
graphic to open the ‘Plot Property’ panel.

2. Select the ‘Show Values’ option, and click the ‘Apply’ button. This
displays the values on the chart image.

REPORT DESIGN

638 of 2477

3. Click a value on the chart image to display the ‘Format’ options.

4. Specify the desired display format for the values, and click ‘OK’.

See Also
Format Types, for more details on the available formats.

Legend Property

In the ‘Chart Properties’ dialog box, click on the legend region of the chart
graphic to open the ‘Legend Property’ panel.

REPORT DESIGN

639 of 2477

Figure 9. Legend Region

Table 6. Legend Properties

Creating a Chart Legend

To create a chart legend, do one of the following:

• Drag a measure or dimension to one of the regions in the Visual panel of
the Chart Editor (‘Color’, ‘Shape’, or ‘Size’). See Working with Multiple
Measures and Subseries for more information.

PROPERTY DESCRIPTION

Title Font and Color The appearance of the legend title text.

Alignment
The alignment (left, right, or center) for legend title and
content.

Dataset Label Font
and Color

The appearance of the legend dataset labels

Legend Border
The line style to be used for the border around the legend.
Setting it to none removes any existing border around the
legend.

Dataset Label
Format

Format for converting the values to strings for legend
labels.

Legend Position
Sets the position of the legend on the plot. Legend position
can also be changed by dragging with the mouse. See
Moving the Legend.

REPORT DESIGN

640 of 2477

• Drag two or more measures to the ‘X’ or ‘Y’ regions in the Binding
panel of the Chart Editor.

For information about modifying the legend, see Legend Property.

See Also
Legend Property, for information about modifying a chart legend.
Changing Legend Labels, for information on modifying the legend text.
Moving the Legend, for information about moving a chart legend.

REPORT DESIGN

641 of 2477

Moving the Legend

To change the position of the legend, click the legend in the ‘Properties’
dialog box graphic, and drag to the desired location.

By default, the legend snaps to one of four predefined positions (Top,
Bottom, Left, Right) outside the plot area. To manually position the legend
within the plot region, follow the steps below:

1. From the ‘Legend Position’ menu of the ‘Legend General
Property’ panel, select the ‘In Place’ option.

2. In the chart diagram, click-and-drag on the legend to position as
desired.

To hide a legend, right-click the legend you want to hide, and select ‘Hide
Legend’ from the context menu. To show all legends, right-click in the plot
area, and select ‘Show Legend’.

Changing Legend Labels

You can change the text of the labels displayed in the legend. To modify the
labels of a legend, follow the steps below.

1. In the Style Studio toolbar, click the ‘Live Edit’ button to switch the
report to live edit mode.

REPORT DESIGN

642 of 2477

2. Right click the chart, and select ‘Properties’ from the context menu
to open the ‘Properties’ dialog box.

3. Click on the legend to activate the ‘Legend Content Property’
panel, and click the ‘Edit Legend’ button.

This displays a table containing the mapping between original
legend labels and new legend labels.

4. Double-click the cells in the ‘Alias’ column that correspond to the
legend labels that you wish to rename, and enter the desired
replacement text.

REPORT DESIGN

643 of 2477

5. Click ‘OK’ to close the dialog box. This updates the legend labels
with the specified replacement text.

See Also
Displaying a Report in Live Edit View, for information on live edit mode.
Adding a Sub-Series, for information about adding a sub-series and legend.

X-Axis Label Property

In the ‘Chart Properties’ dialog box, click on the X-axis label region of the
chart image to open the ‘X Axis Label Property’ panel.

Figure 10. X-Axis Label Region

Table 7. X-Axis Label Properties

PROPERTY DESCRIPTION

Show Axis Labels Enables display of X-axis labels.
Rotation Rotation angle for X-axis labels.
Font/Color The font and text color of the X-axis labels.

Format
Format for converting the values to strings for X-axis
labels.

Show Axis Line
Enables display of the horizontal X-axis line (above the
labels).

Show Ticks Enables display of X-axis tick marks.

REPORT DESIGN

644 of 2477

X-Axis Title Property

In the ‘Chart Properties’ dialog box, click on the X-axis title region of the
chart image to open the ‘X Axis Title Property’ panel.

Figure 11. X Axis Title Region

Table 8. X-Axis Title Properties

Y-Axis Label Property

In the ‘Chart Properties’ dialog box, click on the Y-axis region of the chart
graphic to open the ‘Y Axis Label Property’ panel.

PROPERTY DESCRIPTION

Title

Text of the X-axis title. (The title text you enter will persist
even if you later change the axis data.) To add the default
axis name into your custom title, insert a placeholder such
as {0} in the title. For example, if the chart displays ‘Date’
on the X-axis, you can enter a custom title such as
“Breakdown by {0}” to display the following X-axis title:
“Breakdown by Date”.

Rotation Rotation angle for X-axis title.
Font/Color The font and text color of the X-axis title.
Alignment The alignment (left, right, or center) for the X-axis title.

REPORT DESIGN

645 of 2477

Figure 12. Y Axis Label Region

Table 9. Y-Axis Label Properties

PROPERTY DESCRIPTION

Show Axis Labels Enable the display of Y-axis labels.
Rotation Rotation angle for Y-axis labels.
Alignment The alignment (left, right, or center) for the Y-axis labels.
Font Font and color for the Y-axis labels.

Format
Format for converting the values to strings for Y-axis
labels.

Logarithmic Scale Enables logarithmic scaling on the Y-axis.
Show Axis Line Enables display of the vertical Y-axis line (next to labels).
Show Ticks Enables the display of Y-axis ticks marks.
Minimum The value at the bottom of the Y axis.
Maximum The value at the top of the Y axis.
Major Increment Increment value between ticks on Y axis.

Minor Increment

Minor increment on Y axis. (For log scales, a minor
increment n generates 10/n–1 minor tick marks between
labels. For example, n=5 generates one tick mark, n=2
generates four tick marks, etc. Use n=0 to suppress tick
marks completely.)

REPORT DESIGN

646 of 2477

Y Axis Title Property

In the ‘Chart Properties’ dialog box, click on the Y-axis title region of the
chart image to open the ‘Y Axis Title Property’ panel.

Figure 13. Y Axis Title Region

Table 10. Y Axis Title Properties

PROPERTY DESCRIPTION

Title

Text of the Y-axis title. (The title text you enter will persist
even if you later change the axis data.) To add the default
axis name into your custom title, insert a placeholder such
as {0} in the title. For example, if the chart displays two
measures on the Y-axis, ‘Total’ and ‘Quantity’, you can
enter a custom title such as “{0} and {1} for all
Employees” to display the following Y-axis title:
“Sum(Total) and Sum(Quantity) for all Employees”.

Rotation Rotation angle for Y-axis title.
Font/Color The font and text color of the Y-axis title.
Alignment The alignment (left, right, or center) for the Y-axis title.

REPORT DESIGN

647 of 2477

Chart Properties: Advanced Tab

The Advanced tab in the ‘Chart Properties’ dialog box provides the
following chart-specific properties.

See Also
X-Axis Title Property, Y Axis Title Property, to change title text or hide
axes.

Adding a Target Line

A target line is a horizontal or vertical line drawn on the chart that
generally denotes either an ideal value (goal or threshold) or representative
value (average, minimum, etc.). Regions above and below the target value
can be assigned independent colors.

To add a target line, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

Apply Effect Applies a 3D effect to the Chart as a whole.
Sparkline Hides all axes and legends. For a line chart, the ‘Sparkline’ also

adds a point to the end of the line, and for a bar chart, displays
negative values in red.

Target Lines Specify fixed horizontal marker lines to be placed in the plot
area. See Adding a Target Line for more information.

REPORT DESIGN

648 of 2477

2. Select the Advanced tab of the ‘Properties’ dialog box. In the
‘Target Lines’ panel, press the ‘Add’ button. This opens the ‘Add
Target’ dialog box.

3. Select the Line option.

4. In the ‘Field’ menu, select the chart measure to which you want to
add the target line.

5. In the ‘Value’ field, type a numerical value at which to place the
target line for the selected measure, or choose one of the following
options to compute the target value from the data: ‘Average’,
‘Minimum’, ‘Maximum’, ‘Median’, ‘Sum’. (For example, select
‘Average’ to place the target line at the average value of the
selected measure.)

6. (Optional) If you select one of the available target line
computations (‘Average’, ‘Minimum’, etc.), enable the ‘Entire
Chart’ option to compute the target value based on measure data
from the entire chart. Disable the ‘Entire Chart’ option to compute
the target value for each sub-chart based only on measure data from
the same sub-chart.

The following illustration demonstrates the effect of the ‘Entire
Chart’ setting (‘Value’ is set to ‘Maximum’ in both cases).

REPORT DESIGN

649 of 2477

7. From the ‘Label’ menu, select one of the following label options:

a. Select ‘Enter a Value’ to type a custom label for the target line.

b. Select ‘(Target Value)’ to insert the numerical value of the target
line as the label.

c. Select ‘(Target Formula)’ to insert the name of the computation
method (‘Average’, ‘Minimum’, etc.) as the label, if applicable.

d. Select ‘(Field Name)’ to insert the field name for the selected
measure as the label; for example, “Sum(Total)”.

Note: The custom-
ized label supersedes
any previous selec-
tion from the ‘Label’
menu.

8. (Optional) To further customize the label, press the ‘Edit’ button
next to the ‘Label’ field. This opens a panel in which you can
manually enter the label. Press the green ‘Apply’ button when you
have finished entering the label.

If desired, you can add the target value, target formula, and field
name into the label by inserting the corresponding codes
({0},{1},{2}) shown at the bottom of the panel. You can apply
formats to the inserted values by using the same syntax for Custom
Tooltip. Some examples are shown below:

{1} = {0,number,$#,##0} yeilds “Average = $383,485”
{1} of monthly {2} yeilds “Average of monthly
Sum(Total)”

REPORT DESIGN

650 of 2477

9. Select a ‘Line Style’ and ‘Line Color’ in which to display the target
line.

10. (Optional) Select a ‘Fill Above’ color and ‘Fill Below’ color to fill
the regions of the chart above and below the target line
respectively.

11. Press ‘OK’ to close the ‘Add Target’ dialog box, and press ‘OK’ to
close the ‘Chart Properties’ dialog box.

By default, the target line appears on the chart even if its value is greater
than the largest data point. This may sometimes cause the data points on the
chart to be compressed into a small region of the plot area, which makes the
chart difficult to read. To correct this, turn off the ‘Keep Element in Plot’
option in the ‘Plot Properties’ dialog box. See Plot Property for more
information.

See Also
Adding a Target Band, to demarcate a specified data region on the chart.
Adding a Statistical Measure, to display statistical measures on the chart.

Adding a Target Band

A target band is a horizontal or vertical band drawn on the chart that
generally denotes either an ideal range (e.g., goal zone) or representative
range (e.g., span of maximum to minimum). The region within the target
band, as well as the regions above and below, can be assigned independent
colors.

REPORT DESIGN

651 of 2477

To add a target band, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Advanced tab of the ‘Chart Properties’ dialog box. In
the ‘Target Lines’ panel, press the ‘Add’ button. This opens the
‘Add Target’ dialog box.

3. Select the Band option.

4. In the ‘Field’ menu, select the chart measure to which you want to
add the target band.

5. In the ‘From Value’ field, enter a numerical value at which to place
the lower band range for the selected measure, or choose one of the
following options to compute the lower band range from the data:
‘Average’, ‘Minimum’, ‘Maximum’, ‘Median’, ‘Sum’. (For
example, select ‘Average’ to place the lower band boundary at the
average value of the selected measure.)

6. In the ‘From Label’ menu, select one of the following label
options:

REPORT DESIGN

652 of 2477

a. Select ‘Enter a Value’ to type a custom label for the lower band
boundary.

b. Select ‘(Target Value)’ to insert the numerical value of the lower
band boundary as the label.

c. Select ‘(Target Formula)’ to insert the name of the computation
method (‘Average’, ‘Minimum’, etc.) as the lower band
boundary label, if applicable.

d. Select ‘(Field Name)’ to insert the field name of the selected
measure as the lower band boundary label, e.g., “Sum(Total)”.

Note: The custom-
ized label supersedes
any previous selec-
tion from the ‘From
Label’ menu.

7. (Optional) To further customize the label, press the ‘Edit’ button
next to the ‘From Label’ field. This opens a panel in which you can
manually enter the label. Press the green ‘Apply’ button when you
have finished entering the label.

If desired, you can add the target band value, target band formula,
and field name into the label by inserting the corresponding codes
({0},{1},{2}) shown at the bottom of the panel. You can format the
inserted values using the same syntax as Custom Tooltip. Some
examples are shown below:

{1} = {0,number,$#,##0} yeilds “Average = $383,485”
{1} of monthly {2} yeilds “Average of monthly
Sum(Total)”

REPORT DESIGN

653 of 2477

8. (Optional) If you select one of the available target band
computations (‘Average’, ‘Minimum’, etc.), enable the ‘Entire
Chart’ option to compute the target band value based on measure
data from the entire chart. Disable the ‘Entire Chart’ option to
compute the target band value for each sub-chart based only on
measure data from the same sub-chart.

The following illustration demonstrates the effect of the ‘Entire
Chart’ setting. (In both cases, ‘From Value’ is set to ‘Minimum’
and ‘To Value’ is set to ‘Maximum’).

9. Repeat the previous steps to set the ‘To Value’ and ‘To Label’
properties, which specify the position and label of the upper band
boundary.

10. Select a ‘Line Style’ and ‘Line Color’ in which to display the upper
and lower target band boundaries.

11. (Optional) Press the ‘Fill Band’ button and select a background
color to fill the band between the lower and upper boundaries.
Select a ‘Fill Above’ color and ‘Fill Below’ color to fill the regions
of the chart above and below the band boundaries, respectively.

12. Press ‘OK’ to close the ‘Add Target’ dialog box, and press ‘OK’ to
close the ‘Chart Properties’ dialog box.

REPORT DESIGN

654 of 2477

By default, the target band appears on the chart even if its upper or lower
range values are greater than the largest data point. This may sometimes
cause the data points on the chart to be compressed into a small region of
the plot area, which makes the chart difficult to read. To correct this, turn
off the ‘Keep Element in Plot’ option in the ‘Plot Properties’ dialog box.
See Plot Property for more information.

See Also
Adding a Target Line, to place a target line or representative line on the
chart.
Adding a Statistical Measure, to display statistical measures on the chart.

Adding a Statistical Measure

A statistical measure is represented by one or more lines drawn on the
chart to indicate the values of statistical quantities derived from the data
(confidence intervals, percentages, percentiles, quantiles, or standard
deviation).

To add a statistical measure, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Advanced tab of the ‘Properties’ dialog box.

3. In the ‘Target Lines’ panel, press the ‘Add’ button. This opens the
‘Add Target’ dialog box.

4. Select the Statistics option.

5. In the ‘Field’ menu, select the chart measure to which you want to
add the statistical measure.

6. In the ‘Computation’ field, select one of the following options to
compute statistics from the data: ‘Confidence Interval’,
‘Percentages’, ‘Percentile’, ‘Quantiles’, ‘Standard Deviation’. (See
explanations below.)

REPORT DESIGN

655 of 2477

7. To modify the statistical measure, press the ‘Edit’ button. The
following settings are available:

a. Confidence Interval: For the ‘Confidence Interval’ option,
enter a value as a percentage.

The resulting top and bottom confidence bounds indicate the
interval of values in which the “true” value is expected to be
found. For example, the “true” temperature in the chart below
would be expected to fall within the displayed confidence
interval in 99 out of 100 such samples. (In other words, the true
temperature is expected to be outside the confidence bounds
purely by chance in 1 out of 100 samples.)

b. Percentages: For the ‘Percentages’ option, enter a value or
comma-separated list of values as percentages. In the ‘Of’ field,
specify the basis on which the percentage should be computed.
You can type a fixed value or select from the following presets:
‘Average’, ‘Minimum’, ‘Maximum’, ‘Median’, ‘Sum’.

REPORT DESIGN

656 of 2477

For example, to display percentage lines at 70% and 90% of the
Maximum, enter “70,90” in the ‘Percentages’ field and select
the ‘Maximum’ option from the ‘Of’ field.

c. Percentiles: For the ‘Percentiles’ option, enter a value or
comma-separated list of values as percentages.

The resulting percentile lines indicate the levels below which
the specified percentages of values are found. For example,
percentile lines at 70% and 90% (“70,90” in the ‘Percentages’
field) designate the levels, respectively, below which 70% and
90% of the data are found.

d. Quantiles: For the ‘Quantiles’ option, enter the number of
quantiles to display.

The resulting quantile lines are evenly distributed between 0%
and 100% and indicate the levels below which the specified
percentage of values are found. For example, enter “4” as the
‘Number of Quantiles’ to generate lines designating the levels

REPORT DESIGN

657 of 2477

below which 25%, 50%, and 75% of the data are found. This
creates four regions in the data: 0-25%, 25%-50%, 50%-75%,
and 75%-100%.

e. Standard Deviation: For the ‘Standard Deviation’ option, enter
a comma-separated list of factors. Each successive pair of
factors represents, respectively, the lower and upper multipliers
for the standard deviation.

For example, enter “-1,1,-2,2” in the ‘Factors’ field to draw
lines, respectively, at 1 standard deviation below the mean, 1
standard deviation above the mean, 2 standard deviations below
the mean, and 2 standard deviations above the mean.

Select the ‘Sample’ option to compute the sample standard
deviation or select the ‘Population’ option to compute the
population standard deviation. (The distinction between sample
and population standard deviation can be found in any statistical
reference.)

8. (Optional) Enable the ‘Entire Chart’ option to compute the
statistical values based on measure data from the entire chart.
Disable the ‘Entire Chart’ option to compute the statistical values

REPORT DESIGN

658 of 2477

for each sub-chart based only on measure data from the same sub-
chart.

The following illustration demonstrates the effect of the ‘Entire
Chart’ setting (‘Computation’ is set to ‘Standard Deviation’ in both
cases).

9. From the ‘Label’ menu, select one of the following label options:

To enter a literal
comma in the label,
escape the comma
with a backslash (e.g.,
“Q1\,25% below, Q2\,
50% below, Q3\,75%
below”).

a. Select ‘Enter a Value’ to type custom labels for the statistical
measures. Labels for individual lines should be separated by
commas. For example, if you are generating the 4-quantile
(which creates three lines), enter three labels separated by
commas, e.g., “Q1: 25% below, Q2: 50% below, Q3: 75%

below”.

REPORT DESIGN

659 of 2477

If you enter only a single label, this label will be attached to all
of the lines. This can be useful when you include customization
codes in the label, as described below.

b. Select ‘(Target Value)’ to insert the numerical value of the lines
as the labels.

c. Select ‘(Target Formula)’ to insert the name of the computation
method (e.g., ‘Quantile 1’, ‘Quantile 2’, etc.) as the label, if
applicable.

d. Select ‘(Field Name)’ to insert the field name for the selected
measure as the label, e.g., “Sum(Total)”.

Note: The custom-
ized label supersedes
any previous selec-
tion from the ‘Label’
menu.

10. (Optional) To further customize the labels, press the ‘Edit’ button
next to the ‘Label’ field. This opens a panel in which you can
manually enter the labels. Press the green ‘Apply’ button when you
have finished entering the labels.

To enter a literal
comma in the label,
escape the comma
with a backslash (e.g.,
“Q1\,25% below, Q2\,
50% below, Q3\,75%
below”).

Labels for individual lines should be separated by commas. For
example, if you are generating the 4-quantile (which creates three
lines), enter three labels separated by commas, e.g., “Q1: 25%

below, Q2: 50% below, Q3: 75% below”.

If desired, you can add the target value, target formula, and field
name into a label by inserting the corresponding codes
({0},{1},{2}) shown at the bottom of the panel. You can format the
inserted values using the same syntax as Custom Tooltip. Some
examples are shown below:

{1} = {0,number,$#,##0} yeilds “70% of Max = $383,485”
{1} for monthly {2} yeilds “70% of Max for monthly
Sum(Total)”

11. Select a ‘Line Style’ and ‘Line Color’ in which to display the
statistical lines.

12. (Optional) Press the ‘Fill Band’ button to open a color picker and
select a set of colors for the specified bands (i.e., the regions

REPORT DESIGN

660 of 2477

between the statistical lines). Select one color for each band. The
colors are applied to the bands from left to right; the left-most color
is applied to the lowest band, and so on. When you have selected
the desired colors, press the green ‘Apply’ button.

For more information about the features of the color-picker, see
Adding Color Coding to Dimensions.

13. (Optional) Select a ‘Fill Above’ color and ‘Fill Below’ color to fill
the regions of the chart above and below the maximum and
minimum statistical lines, respectively.

14. Press ‘OK’ to close the ‘Add Target’ dialog box, and press ‘OK’ to
close the ‘Chart Properties’ dialog box.

By default, a statistical line appears on the chart even if its value is greater
than the largest data point. This may sometimes cause the data points on the
chart to be compressed into a small region of the plot area, which makes the
chart difficult to read. To correct this, turn off the ‘Keep Element in Plot’
option in the ‘Plot Properties’ dialog box. See Plot Property for more
information.

See Also
Adding a Target Line, to place a target line or representative line on the
chart.
Adding a Target Band, to demarcate a specified data region on the chart.

5.11 Special Elements
This section covers several special report elements.

REPORT DESIGN

661 of 2477

5.11.1 Report Bean

A Report Bean is a reusable, customizable, composite report element. In
other words, a bean is a group of “bundled” report elements that can be
reused in multiple reports. When you design the report bean, you can
decide which properties of these bundled elements will be exposed for
customization in the individual report, and which properties will be fixed
by the bean definition.

Like all reusable report components, report beans are stored in the
stylereport.srl library file in the repository. See Configuring a Repository in
Getting Started for information on setting the location of this file.

Creating and Saving a Report Bean

To create a report bean, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. Click the ‘Component’ node in the left panel.

3. In the right ‘Type’ panel, select ‘Report Bean’ and click ‘OK’.

This create a new blank bean to which you can add report elements. The
icon in the tab indicates that this asset is a bean, rather than a report.

Note that the ‘Deploy’ toolbar option is disabled, because a bean cannot be
deployed independently. It can only be used within a report.

Walkthrough In this example, you will create a composite component (bean) that
consists of a text element and a chart. In order to allow report designers to
customize the bean for the particular report in which they use it, you will
expose certain bean properties for modification. In this case, you will
expose the contents and alignment of the text element, and the chart type
and legend position for the chart element.

Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

REPORT DESIGN

662 of 2477

2. Click the ‘Component’ node in the left panel.

3. In the right ‘Type’ panel, select ‘Report Bean’ and click ‘OK’. This
creates a new report bean.

4. Click the ‘Text’ button in the Toolbox panel to insert a text element
into the bean.

5. Enter the following text as the contents of the Text element: “A Bar
Chart”.

6. Use the toolbar buttons to change the text alignment to ‘horizontal
center’, and increase the font size to 14 point.

7. Click below the Text element to place the insertion point after the
text element. Clicking the ‘Chart’ button in the Toolbox panel to
add a chart.

8. Click the chart to select it. This opens the Data Source and
Binding panels.

9. On the Data Source panel, expand the ‘Orders’ data source and the
‘All Sales’ query.

10. From the Data Source panel, drag the ‘Employee’ field to the ‘X’
region of the Binding panel.

11. From the Data Source panel, drag the ‘Total’ field to the ‘Y’
region of the Binding panel.

12. From the Data Source panel, drag the ‘Company’ field to the
‘Color’ region of the Binding panel.

REPORT DESIGN

663 of 2477

13. Right-click the chart, and select ‘Condition’ from the context
menu. This opens the ‘Conditions’ dialog box.

14. In the ‘Conditions’ dialog box, enter the following condition:

[Company][is][one of][Eastern Data,Ernst Handel,FISGA Corp]

15. Click ‘OK’ to close the ‘Conditions’ dialog box.

16. Click the ‘Save’ button on the Style Studio toolbar. This opens the
‘Save As’ dialog box.

REPORT DESIGN

664 of 2477

17. Enter the name “chartbean,” and type a description (if desired).

18. Click ‘OK’ to save the bean in the bean library.

This example continues in Exposing the Properties of Report Bean
Elements.

Exposing the Properties of Report Bean Elements

Walkthrough You will now expose certain properties of the report bean that you created
in the previous example, Creating and Saving a Report Bean. This will
allow report designers to customize these properties of the bean for the
particular report in which they use the bean. For the text element, you will
expose the text contents and the text alignment property. For the chart
element you will expose the chart type and the legend position.

Continuing the previous example (with the bean open for editing in Style
Studio), follow the steps below:

1. Select ‘Bean Definition’ from the Style Studio ‘Report’ menu. This
opens the ‘Bean Definition’ dialog box.

2. Expand the ‘Text1’ node in the ‘Bean Elements’ pane. Select ‘Text’
and click the right-arrow. This opens a dialog box that allows you
to name the exposed property.

3. Enter “Title” as the name, and click ‘OK’. This adds the ‘Text’
property to the ‘Bean Properties’ list with the alias “Title”.

REPORT DESIGN

665 of 2477

4. Select the ‘Alignment’ property from beneath the ‘Text1’ node in
the ‘Bean Elements’ pane.

5. Click the right-arrow, and label the exposed property “Justify”.
Click ‘OK’.

6. Expand the ‘Chart1’ node, select the ‘ChartStyle’ property, and
click the right-arrow. Name the property “ChartType”.

7. Select the ‘LegendPosition’ property from beneath the ‘Chart1’
node in the ‘Bean Elements’ pane.

8. Click the right-arrow, and label the exposed property “Legend”.
Click ‘OK’.

9. Click ‘OK’ to close the ‘Bean Definition’ dialog box.

10. Click the ‘Save’ button in the Style Studio toolbar to save the bean.

REPORT DESIGN

666 of 2477

11. Close the ‘X’ button in the bean tab, or press Ctrl-W on the
keyboard.

This example continues in Using a Report Bean in a Report.

Editing a Report Bean

To open a report bean for editing, follow the steps below:

1. Click the ‘Open’ button on the Style Studio toolbar.

2. Select the Component tab.

3. Expand the ‘Report Bean’ node. This displays a list of all beans
saved in the stylereport.srl library.

4. Select the bean you wish to edit and click ‘OK’. This opens the
bean for editing.

Using a Report Bean in a Report

Walkthrough You will now insert the bean you created earlier into a report. This example
continues from Exposing the Properties of Report Bean Elements.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Type’ panel, select
‘Blank Tabular Report’ and click ‘OK’. This opens a new report for
editing.

3. Click the ‘Bean’ component in the ‘Special’ region of the Toolbox
panel. This opens the ‘Open a Report Bean’ dialog box.

REPORT DESIGN

667 of 2477

4. Select “chartbean” and click ‘OK’. This places the bean into the
report. (The bean contains a Text element and a Chart element.)

5. Double-click anywhere on the inserted bean. This opens the ‘Bean
Properties’ dialog, which lists the bean’s exposed properties. (See
Exposing the Properties of Report Bean Elements.)

6. Make the following modifications:

a. From the ‘ChartType’ menu, select ‘3D Bar’.

b. From the ‘Justify’ menu, select ‘Right Center’.

c. From the ‘Legend’ menu, select ‘Left’.

d. In the ‘Title’ field, type “A 3D Bar Chart”.

7. Click ‘OK’. Observe the changes to the report bean.

REPORT DESIGN

668 of 2477

8. Save the report.

If you close the report and then reopen it, you will observe that the property
modifications that you made have been saved with the report. These
properties are no longer referenced from the bean definition, so changes to
the bean definition do not affect these properties. All other properties of the
bean (i.e., those that were not exposed) are referenced from the original
bean definition.

By default, elements that you insert following the bean will appear on a
new line. To permit these elements to appear on the same line as the bean,
open the Report Element panel, and deselect the ‘LineAfter’ option from
the Properties tab.

5.11.2 Subreport

A subreport is a report embedded within another report. A subreport can
only be embedded within a Section element. See Subreports for more
information.

5.11.3 Heading

A Heading element is a special kind of text element, which has an
additional heading level attribute. The heading level has two effects on the
element:

• The report engine automatically generates a heading number and
(optionally) prints the number to the left of the text.

REPORT DESIGN

669 of 2477

• The report engine uses the heading level to generate a Table Of Contents
(TOC) if a TOC element exists in the report. (See Table of Contents for
details.)

To add a Heading element to a report, follow these steps:

1. Click in the report to place the cursor at the location where you
want to add the new heading.

2. Click the ‘Heading’ component in the Toolbox panel. This opens a
popup menu containing the available level options.

3. Select the heading level from the popup menu. This inserts a new
Heading element at the cursor location. (The heading level can be
changed later.)

4. Enter the desired heading text into the text field. (See the Text
Element section for details about text elements.)

5. Right-click the heading element, and select ‘Properties’ from the
context menu. This opens the ‘Heading Properties’ dialog box.

6. Select the Heading tab in the ‘Heading Properties’ dialog box.

7. Enter the ‘Level’ of the heading, and select a heading ‘Format’.

The dot-separated formats, such as “1.2.3.4.5.6.7.8” and
“a.b.c.d.e.f.g.h,” indicate that the number or letter of the selected
heading will be prefixed with the numbers/letters of its
superordinate headings. The single-character formats, such as “8”
or “h,” indicate that the number of the selected heading will be
displayed without any prefixed digits. To define a custom heading
format, select the ‘Custom’ option, and specify a class that
implements the inetsoft.report.HeadingFormat class.

REPORT DESIGN

670 of 2477

8. Select ‘Show Number’ to display the heading number to the left of
the heading text (default).

9. Select ‘Show Page Number’ to display the heading page number in
a generated TOC (default).

To set a default heading numbering style, follow these steps:

1. Select ‘Preferences’ from the Style Studio ‘Report’ menu.

2. Select the Format tab.

3. Enter the default ‘Format’ to be used for newly created headers.

See Also
Adding Heading Elements to a Section, to use heading elements to generate
a TOC of group names.

5.11.4 Table of Contents

To add a TOC element, follow these steps:

1. Click in the report to place the cursor at the location where you
want the Table of Contents to be inserted.

2. Click the ‘TOC’ component in the Toolbox panel. This
automatically generates a TOC based on the headings already
defined in the report.

3. Right-click the TOC, and select ‘Properties’ from the context
menu. This opens the ‘TOC Properties’ dialog box.

REPORT DESIGN

671 of 2477

Additional styles can
be created using the
Java API.

4. Select a TOC style from the ‘Style’ menu. There are seven built-in
styles.

5. Format the page number display in the TOC by using the ‘Page
Number Format’ option.

There are two special tags available for use in formatting: The
“{0}” tag inserts the section number on the TOC, and the “{1}” tag
inserts the actual page number. For example, the format “Topic {0}
found on page {1}” would translate to something similar to “Topic
1.2 found on page 5.”

Figure 14. A Report with Table of Contents (toc1.srt)

REPORT DESIGN

672 of 2477

5.11.5 Painter

To add a painter, click the ‘Painter’ component in the Toolbox panel. This
opens the ‘Painter Properties’ dialog, where you can set attributes such as
the anchor, text wrapping, margin, and rotation for the Painter. The Painter
appears as a gray box area on the report, indicating where the actual Painter
will be drawn. You need to associated a Painter object with a report
programmatically.

5.11.6 Image

The image element is commonly used to decorate a page (e.g., adding a
corporate logo or fancy report header).

Adding an Image Element

To add an image to a report, follow the steps below:

1. Click in the report to place the cursor at the location where you
want to place the image.

You can also simply
copy-and-paste an
image onto the report
page. This creates an
embedded image of
type ‘Imported’.

2. Click the Image component in the Toolbox panel. This opens the
‘Image Properties’ dialog box.

3. Uncheck the ‘(none)’ option, and enter the image location. See
Specifying the Image Location below.

4. Select ‘Embed Image’ to embed the image data in the report
template as an XML object (convenient for smaller images). See
Specifying the Image Location below.

5. Click ‘OK’ to close the dialog box.

REPORT DESIGN

673 of 2477

Specifying the Image Location

You can specify the location of image files using any of the following
methods:

• Java resource file loaded by the class loader

• URL

• Relative file path on local file system

• Absolute file path on local file system

The specification for the image location depends on how the application is
deployed. The types of supported image files are the same as the Java
implementation, which include GIF, JPEG, and PNG (with JDK 1.3 and
higher).

When you ‘Embed’ an image in a report, the image data is saved in the
report template as an XML object. Subsequently, the image is loaded from
the template directly without consulting the specified image path.

Image embedding is very convenient for smaller images, eliminating the
need to manage the deployment of image files. If the image is very large,
however, the resulting template file will be large. If multiple template files
share the image, it is best to deploy the image as a resource file; thus the
overall size of the template files remain small.

5.12 Decorative Elements
This section discusses various decorative report elements.

5.12.1 Tab

A Tab is a simple mechanism for aligning elements vertically at specified
tab stop positions. This is useful for creating forms, where field labels and
values are lined up vertically in multiple rows. One disadvantage of the tab
is that if the size of an element causes the cursor to move past the tab stop,
it automatically advances to the next tab stop. This results in the vertical
alignment of the elements being incorrect. You can avoid this by increasing
the size of the default tab stops.

Defining a Tab Stop

To set a Tab stop, follow these steps:

1. Open the ‘Report’ menu in the Style Studio toolbar, and select
‘Preferences’. This opens the ‘Preferences’ dialog box.

2. Select the Tab Stops tab. (The default tab stops are placed every
half inch across the page.)

REPORT DESIGN

674 of 2477

3. (Optional) To clear all default tabs, click ‘Clear All’. Click ‘Reset’
to restore the default tabs.

4. Enter a value for the new tab location in the text field, and click the
‘Set’ button (or press ‘Enter’ on the keyboard).

5. Click ‘OK’ to close the dialog box.

This setting will be inherited by all new Tab elements that you add
to the report.

Adding a Tab

To insert a Tab, click the ‘Tab’ component on the Toolbox panel or press
‘Tab’ on the keyboard.

Creating a Right-Aligned Tab

Text elements are left-aligned by default. To align components on their
right edges, you can use right-aligned tabs.

To create a right-aligned tab, follow the steps below:

1. Add the Tab to the page (click the ‘Tab’ component on the Toolbox
panel or press ‘Tab’ on the keyboard).

2. Right-click the Tab element and select ‘Properties’ from the
context menu. This opens the ‘Tab Properties’ dialog box.

3. Select the Tab tab.

4. Check the ‘Right Aligned’ option, and click ‘OK’.

REPORT DESIGN

675 of 2477

The tab arrows will now point to the left and the text element will
be right-aligned.

Adding a Tab Leader (Filling)

The space occupied by a Tab can be filled with a line (leader). The leader
line is placed at the bottom of the tab.

To create a tab with leader, follow the steps below:

1. Add the Tab to the page (click the ‘Tab’ component on the Toolbox
panel or press ‘Tab’ on the keyboard).

2. Right-click the Tab element and select ‘Properties’ from the
context menu. This opens the ‘Tab Properties’ dialog box.

3. Select the Tab tab.

4. Select the desired leader style from the ‘Fill’ menu, and click ‘OK’.

REPORT DESIGN

676 of 2477

5.12.2 Space

A Space element adds horizontal space between the element preceding the
space and the element that follows. The space is specified in points.

To adjust the size of the space, follow the steps below.

1. Right-click the Space element and select ‘Properties’ from the
context menu. This opens the ‘Space Properties’ dialog box.

2. Enter a value for ‘Number of Points’, and click ‘OK’.

5.12.3 Bullet

A Bullet is a special image element that uses the internal bullet icon. Text
that follows the bullet aligns flush with the bullet position.

To add a bullet and its associated text, follow the steps below:

1. Click in the report to place the cursor at the location where you
want to add the bulleted text.

2. Click the ‘Bullet’ component in the Toolbox panel. This adds the
bullet image to the report, as well as the associated Text element.

3. Enter the desired text in the Text element.

4. (Optional) To change the size of the bullet, follow these steps:

a. Right-click the bullet icon (not the text), and select ‘Properties’
from the context menu. This opens the ‘Bullet Properties’ dialog
box.

b. Click the ‘Font’ button, and adjust the font size as desired.

In general, the bullet font should be the same as the accompanying text font
to maintain appropriate typographical appearance.

5.12.4 Editable Region

An Editable Region is a container that allows you to position editable
components within a meta-template. Components that appear within an
editable region can be modified within the report that is based on the meta-

REPORT DESIGN

677 of 2477

template, and those modifications are then saved with the individual report
template. See Designing a Meta-Template for full details on how to use
Editable Regions.

5.12.5 Separator

A Separator adds a horizontal line which occupies the entire width of the
printable area.

To add a Separator to the report, follow the steps below:

1. Click in the report to place the cursor at the location where you
want to add the separator.

2. Click the ‘Separator’ component in the Toolbox panel. This adds
the horizontal line to the report.

3. Right-click the Separator, and select ‘Properties’ from the context
menu. This opens the ‘Separator Properties’ dialog box.

4. From the ‘Line’ menu, select the desired line style for the separator.

5. Click ‘OK’ to close the dialog box.

5.12.6 Newline

The ‘Newline’ object (carriage return) advances printing to the next line. If
a Newline exists on a line by itself, the vertical advance is determined by
the Newline size in points (1/72 inch).

To add a Newline, follow these steps:

1. Click in the report to place the cursor at the location where you
want to add the Newline.

2. Click the ‘Newline’ component in the Toolbox panel. This adds the
Newline element to the report.

3. Right-click the Newline element, and select ‘Properties’ from the
context menu. This opens the ‘Newline Properties’ dialog box.

REPORT DESIGN

678 of 2477

4. Specify the ‘Number of Newlines’ to add, as well as the ‘Newline
Size’ or vertical displacement.

5. (Optional) Select ‘Break’ to mark the new line as a ‘break’. (See
below for details.)

6. Click ‘OK’ to close the dialog box.

When you select the ‘Break’ option from the ‘Properties’ dialog box,
elements following the Newline component are not forced onto a new line.
Rather, the cursor is advanced according to the ‘Newline Size’
specification. In normal flow, a ‘Break’ behaves in the same way as a
‘Newline’. However, if anchored elements are used on the same line., this
changes the flow.

For example, consider a text element that is followed by a break, which is
in turn followed by another text element. When an anchored element is
placed after the second text element, both text elements are printed to the
left of the anchored element. If you change the break to a newline, the
second text element and the anchored element are printed below the first
element.

With the line break, all elements are processed in one pass to determine if
they fit on the same line. Standard anchored element wrapping is then
applied. When the break is changed to a newline, the elements up to the
newline are processed first. After the cursor is advanced by the newline, the
elements following the newline are then processed. This causes the
elements following a newline to always be placed below the newline
element.

5.12.7 Page Break

To add a Page Break, follow these steps:

REPORT DESIGN

679 of 2477

1. Click in the report to place the cursor at the location where you
want to add the Page Break.

2. Click the ‘Page Break’ component in the Toolbox panel. This adds
the Page Break element to the report.

3. Right-click the Page Break element, and select ‘Properties’ from
the context menu. This opens the ‘Page Break Properties’ dialog
box. There are two options for inserting page breaks.

a. Select ‘Page Break’ to immediately advance printing to the next
page for reports that are exported in paginated format.

b. Select ‘Sheet Break’ to immediately advance printing to a new
“sheet” for reports exported to Excel format. Enter a label for
the new sheet in the adjacent text field.

4. Click ‘OK’ to close the dialog box.

See Also
Exporting a Report, for information about presenting reports in particular
formats.

5.12.8 Area Break

An area break serves a similar function to the page break (Page Break).
However, instead of advancing the printing to the next page, an area break
moves the flow to the next area on the page. If the area break is in the last
area, it is the same as a page break.

REPORT DESIGN

680 of 2477

To configure an Area Break element, right-click the element and select
‘Properties’ from the context menu. This opens the ‘Area Break Properties’
dialog box.

5.13 Report Explorer View
The Report Explorer provides a tree view of report elements to help you
navigate your report design. This can be very effective when used together
with the Element Property View.

• You can easily visualize element sequence and ordering, which may not
be as obvious on the report page itself.

• You can filter the tree view to display only certain element types, such as
elements containing script.

• You can select an element name in the tree to select the corresponding
element on the page.

To open the Report Explorer panel, select ‘Explorer Pane’ from the Style
Studio ‘Window’ menu.

The ‘Views’ menu at top of the Report Explorer provides three different
displays of the report elements.

• Page: The tree lists each page as a node, and beneath each page all of
the elements on that page.

• Elements: Lists all elements without pagination information.

• Type: Lists all elements grouped by their type, e.g., “Tables,” “Charts,”
“Sections,” etc.

REPORT DESIGN

681 of 2477

To display only elements containing script, click the ‘Filter Script
Elements’ button.

To hide whitespace characters (spaces, tabs, pagebreaks, etc.), deselect the
‘Filter Whitespace Elements’ button.

5.14 Element Property View
The Report Element panel lists the properties of the currently selected
element. To open the Report Element panel, select ‘Element Pane’ from
the ‘Window’ menu.

Keep this panel open while you work to rapidly access element properties.
This can be very effective when used together with the Report Explorer
View.

Note that the full suite of properties available for a report element is
available through the element’s ‘Properties’ dialog box. To access the
dialog box, right-click the element, and select ‘Properties’ from the context
menu.

REPORT DESIGN

682 of 2477

6 Data Binding

Data binding is the process of associating a report element with a dataset,
usually provided by a data model or a query. In most cases, the binding
information is stored in the report template, while the data itself is
referenced from an external database. The data binding specifies the data
source from which the report element draws data, as well as any filtering,
sorting, grouping, or summarization that should be applied to the data prior
to display.

The following report elements support data binding:

• Table (see Binding Data to a Table Element)

• Crosstab (see Binding Data to a Crosstab Element)

• Chart (see Binding Data to a Chart Element)

• Section (see Binding Data to a Section Element)

• Text and Textbox (see Binding Data to a Text Element)

Table, Crosstab, and Section elements offer a Data Binding Wizard to
simplify and centralize the binding process. The following sections explain
the various aspects of binding a report element to a data source.

See Also
The element’s query property (e.g., query for Tables), to bind data using
script.
Formula Tables, in Report Scripting, to populate a Table without global
binding.

6.1 Data Binding Toolbar Buttons
The Style Studio toolbar contains several buttons for binding-related
functions.

Table 11. Data Binding Toolbar Buttons

Live Edit: Populates report elements with data using the elements’ data
binding information. You can continue to add and edit elements while
previewing how the data will affect the layout. (See Displaying a Report
in Live Edit View for more details.)
Preview: Previews the current report by executing all queries and scripts,
so that the report appears in its final generated state. (See Displaying a
Report in Live Edit View for more details.)
Refresh: Rebuilds the metadata for queries and data models from their
definitions, and refreshes the report. This is needed if query or data model
definitions change and Style Studio does not detect the changes.

REPORT DESIGN

683 of 2477

6.2 Creating a New Table, Crosstab, or Section
using a Wizard

Data binding examples
can be found in the
examples/docExam-
ples/datasource direc-
tory.

Style Studio provides a Data Binding Wizard for Table, Crosstab, and
Section elements. This Wizard makes it easy to rapidly bind these elements
to a data source. The features provided by the Wizard vary for the different
elements. This section provides an outline of the general procedure for
using the

To create and bind a new Table, Crosstab, or Section, follow the steps
below:

1. Click in the report to place the cursor at the location where you
would like to insert the new element.

2. In the Toolbox panel, click the element that you want to insert and
bind to data: ‘Table’, ‘Crosstab’, or ‘Section’. This opens the ‘Data
Binding’ dialog box for the element.

3. Click the Data tab, and select the desired data source. See
Walkthrough: Choosing the Binding Data Source for more details.

4. Click the Columns tab. Select the desired columns to display, and
create any desired formula columns. See Specifying Columns in
Data Binding Wizard for more details.

5. Click the Condition tab, and specify a filtering condition (if
desired). See Filtering Data in Data Binding Wizard for more
details.

6. Click the Grouping and Summary tab, and select grouping and
aggregation options (if desired). See Grouping and Summarization
in Data Binding Wizard for more details.

REPORT DESIGN

684 of 2477

7. Click the Options or Section Options tab, and make additional
settings as described in Table Grouping Options, Crosstab Options,
or Section Options for Data Binding Wizard.

6.2.1 Walkthrough: Choosing the Binding Data Source
Walkthrough Use the Data tab of the ‘Data Binding’ dialog box to specify the source of

the dataset for an element binding. Follow the steps below.

1. Click the Data tab in the Data Binding dialog box.

2. Select the desired data source. The binding source can be a data
model, query, Worksheet, or another report element.

For this walkthrough example, select the query ‘Orders’ > ‘Order
Model’.

This example continues in the next section, Walkthrough: Selecting and
Creating Columns in Data Binding Wizard.

See Also
Data Sources Available for Binding, for details regarding the data source
types.
Data Modeling, for information on creating data models and queries.
Data Mashup, for information on creating Data Worksheet assets.

6.2.2 Data Sources Available for Binding

There are five types of data sources available for data binding:

• Query: A global query stored in query.xml.

• Local Query: A query embedded within a report template.

REPORT DESIGN

685 of 2477

• Data Model: An entity-attribute model providing a broad view of the
database

• Report Data: Data bound to another report element (chart, table,
section).

• Worksheet: A Data Block created in a Data Worksheet.

• Local Worksheet: A Data Block embedded within a report template.

• Parameter: named input parameter for the report.

The data binding process is similar for the first four sources, but parameter
binding uses a different procedure. See Binding Data to a Text Element for
an example of parameter binding.

Queries and data models are listed under their respective data sources in the
tree, worksheets are listed under the ‘Worksheet’ node, and report data and
parameters are listed underneath the ‘Report’ node.

Data source information (by default) is also embedded in the report
template file. However, if a matching data source exists in the
datasource.xml registry file, the information will be drawn from there
rather than from the embedded data.

Local Queries and Local Worksheets

Local queries are listed under the ‘Report’ > ‘Local Query’ node in the
Style Studio Asset panel. Local queries are regular queries that are stored
within the report template rather than in the query.xml file. See Creating a
Local Query in Data Modeling for more information.

Local Worksheets are listed under the ‘Report’ > ‘Local Worksheet’ node
in the Style Studio Asset panel. Local Worksheets are regular Data
Worksheets that are stored within the report template rather than in the
asset.dat file. See Creating a Local Worksheet in Data Mashup for more
information.

Because local queries and local Worksheets are not saved in the global
query.xml and asset.dat registry files, they are not available to reports other
than the parent report. However, you can export a local query or local
Worksheet to the global query or asset registry file (query.xml and
asset.xml) to make it publicly available. See Exporting a Local Query to
the Global Repository in Data Modeling and Exporting a Local Worksheet
to the Global Repository in Data Mashup for more information.

See Also
Independent Query, in Data Modeling, for information on queries.
Creating a Local Query, in Data Modeling, for information on embedded
queries.

REPORT DESIGN

686 of 2477

Creating a Local Worksheet, in Data Mashup, for information on
embedded Worksheets.
Semantic Layer – Data Model, in Data Modeling, for logical models.
Creating a Data Table, in Data Mashup, for Worksheet queries.
Parameterization, for information on named input parameter.

6.2.3 Specifying Columns in Data Binding Wizard

In the ‘Data Binding’ dialog box, the Columns tab allows you to select the
fields from data source to include in the binding, as well as to create
derived columns (i.e., formula/expression columns) and to specify sorting.

Selecting Columns in Data Binding Wizard

The fields that you select from the Columns tab will be returned by the
data source and displayed by the report element. To select columns from
the data source, follow the steps below:

1. In the ‘Data Binding’ dialog box, select the Columns tab. (See
Creating a New Table, Crosstab, or Section using a Wizard for
information on how to access the ‘Data Binding’ dialog box.)

2. Add the desired columns from the ‘Available Columns’ panel to
the right panel. You can do this by any of the following methods:

a. Double-click a column in the ‘Available Columns’ panel to add
it to the right-side panel.

b. Click to select a column (or Shift/Ctrl-click to select multiple
columns) in the ‘Available Columns’ panel. Drag the selected
column(s) to the right-side panel.

The left arrow
removes a selected
field.

c. Click to select a column (or Shift/Ctrl-click to select multiple
columns) in the ‘Available Columns’ panel. Click the right-
arrow button to add the selected column(s) to the right-side
panel.

REPORT DESIGN

687 of 2477

The left “multi-arrow”
removes all of the
selected fields.

d. Click the right “multi-arrow” to select all of the fields in the
‘Available Columns’ panel.

e. For a data model, click to select an entity (or Shift/Ctrl-click to
select multiple entities) in the ‘Available Columns’ panel. Click
the right-arrow button to add all of the selected attributes from
the selected entity to the right-side panel.

3. To change the ordering of a selected column, click to highlight the
column, and then press the ‘Move up’ and ‘Move down’ buttons.

REPORT DESIGN

688 of 2477

4. Click ‘Finish’ to close the ‘Data Binding’ dialog box, or continue
with other desired modifications.

To remove a field from the right-side panel, select the field and click the
left-arrow button. In general, fields that are not among the selected fields
(in the right-side panel) are removed from the query that is sent to the
database. However, in cases where the data binding specifications cannot
be merged into the original query, the full query is executed and all query
fields are returned. Nevertheless, only the selected fields are displayed in
the report element.

Sorting Columns in Data Binding Wizard

You can sort columns in original, ascending, or descending order. (For
string data, ascending order is alphabetical, and descending order is
reverse-alphabetical.)

To sort a column, follow the steps below:

1. In the ‘Data Binding’ dialog box, select the Columns tab. (See
Creating a New Table, Crosstab, or Section using a Wizard for
information on how to access the ‘Data Binding’ dialog box.)

2. Click the desired column in the right-side panel to select it.

3. Click the ‘Sort column’ button once to set ascending order. Click a
second time to set descending order, and a third time to restore the
original sorting.

REPORT DESIGN

689 of 2477

The sort order is indicated by the icon to the left of the field name.
An “up-arrow” indicates ascending order, while a “down-arrow”
indicates descending order.

Figure 15. Column sorted in original, ascending, and descending order

Hiding Columns in Data Binding Wizard

To remove columns
from the query
entirely, see Selecting
Columns in Data
Binding Wizard.

The Columns tab of the ‘Data Binding’ dialog box allows you to hide
particular columns so that these columns are not displayed by the report
element. Hidden columns are still included in the query that is sent to the
database, which means that you can still access these fields for purposes of
grouping and summarization (see Grouping and Summarization in Data
Binding Wizard).

To hide a column follow the steps below:

1. In the ‘Data Binding’ dialog box, select the Columns tab. (See
Creating a New Table, Crosstab, or Section using a Wizard for
information on how to access the ‘Data Binding’ dialog box.)

2. Click the desired column in the right-side panel to select it.

3. Click the ‘Hide/show column’ button to hide the column. (Click a
second time to show the column.)

REPORT DESIGN

690 of 2477

Creating a Formula Column in Data Binding Wizard

In addition to selecting existing columns directly from a data source (query,
data model, etc.) you can also create new columns that are derived from
existing columns. The values in these derived columns are computed by
using SQL or JavaScript commands, and are called formula columns or
expression columns.

To create a formula column, follow the steps below:

1. In the ‘Data Binding’ dialog box, select the Columns tab. (See
Creating a New Table, Crosstab, or Section using a Wizard for
information on how to access the ‘Data Binding’ dialog box.)

2. Click the ‘Expression’ button (labeled ‘fx’) above the right-side
panel. This opens the ‘Formula’ dialog box.

3. With the ‘Formula’ dialog box open, follow the steps below:

a. In the ‘Formula Name’ field, enter a name for the new column.

b. For ‘Return Data Type’, select the data type of values that will
populate the new column. This data type should match the type
of value returned by your script.

Note: In cases where the data binding specifications cannot be
merged into the query, the ‘SQL’ option is not available. (This may
be due to the presence of grouping and aggregation at the query
level.)

c. For ‘Formula Type’ select ‘SQL’ or ‘Script’, and then click the
corresponding ‘Edit’ button. This opens the Script Editor.

REPORT DESIGN

691 of 2477

4. Enter the desired script, using the syntax (SQL or JavaScript) that
you specified in the previous step. To data values, use the following
syntax:

a. To access the value in another column of the current row, use
the “field['field name']” syntax.

b. To access the value in another column of a row at a certain
offset (i.e., relative position) from the current row use the
following syntax:

field[relative position]['field name'];

For example, field[-1]['Product.Total'] contains the value
in the Product.Total field for the previous record.

For more information on scripting, see Report Scripting. For a
simple example of a formula column script, see Walkthrough:
Selecting and Creating Columns in Data Binding Wizard.

5. Close the Script Editor, and click ‘OK’ to close the ‘Formula’
dialog box. This adds the new formula column (indicated by
“script” icon) to the list of selected columns.

6. Click ‘Finish’ to close the ‘Data Binding’ dialog box, or continue
with other desired modifications.

To edit an existing formula column, select the desired column, and then
click the ‘Edit’ button. This will reopen the Script Editor. You can also
hide, sort, reorder, or remove a formula column in the same way as other
columns. See the appropriate section in Specifying Columns in Data
Binding Wizard for instructions.

See Also
Selecting Columns in Data Binding Wizard, for information on selecting
existing columns.

REPORT DESIGN

692 of 2477

Walkthrough: Selecting and Creating Columns in Data Binding Wizard

Walkthrough This example is continued from the previous section, Walkthrough:
Choosing the Binding Data Source.

1. In the ‘Data Binding’ dialog box, select the Columns tab. (See
Creating a New Table, Crosstab, or Section using a Wizard for
information on how to access the ‘Data Binding’ dialog box.)

2. Add the following columns from the tree on the left by selecting
the column and clicking on the right-arrow button:

You can remove any
selected fields by
using the left-arrow
button.

‘Customer.Company’
‘Product.Quantity Purchased’
‘Order.Discount’
‘Product.Name’
‘Product.Price’

For data models only, if you want the generated query to use full-
outer joins rather than the model’s predefined joins, select ‘Include
all rows’, beneath the right panel. (Note: This may return a very
large amount of data.)

3. Select ‘Price’ and click the ‘Hide/show column’ button to hide the
column.

4. Select the ‘Create formula’ button.

REPORT DESIGN

693 of 2477

5. Enter the name “TotalDiscount” and select ‘Float’ for the return
data type.

6. Make sure ‘Script’ is selected and click on the ‘Edit’ icon.

7. Enter the following formula either by typing directly or by
selecting the appropriate fields from the GUI:

field['Order.Discount'] * field['Product.Total'];

8. Click the ‘Save and Close’ button, and click ‘OK’ in the ‘Formula’
dialog box to add the formula column to the columns list.

This example is continued in the following section, Walkthrough: Adding
Conditions in Data Binding Wizard.

REPORT DESIGN

694 of 2477

6.2.4 Filtering Data in Data Binding Wizard

Use the Condition tab to add filtering conditions to the result set. You can
compare field values to a specified fixed value or to a parameter (variable).
The Condition tab also enables the use of nested conditions (defining an
explicit evaluation order).

See Also
Parameterizing a Condition, for details on using a variable in a condition.

Walkthrough: Adding Conditions in Data Binding Wizard

Walkthrough This example is continued from the previous section, Walkthrough:
Selecting and Creating Columns in Data Binding Wizard. Assume you
want to list all the orders for the “Computer Tech” or “Eastern Data”
company which have a quantity greater than or equal to a parameter
‘minimum order size’.

1. In the ‘Data Binding’ dialog box, select the Columns tab. (See
Creating a New Table, Crosstab, or Section using a Wizard for
information on how to access the ‘Data Binding’ dialog box.)

2. Create the following condition by selecting the appropriate entries
in the drop-down menus:

[Customer.Company][is][equal to][Computer Tech]

3. Click the ‘Append’ button. The newly defined condition is now
displayed in the ‘Clause’ panel.

4. Enter a second condition clause as follows:

[Customer.Company][is][equal to][Eastern Data]

REPORT DESIGN

695 of 2477

5. Select ‘Or’ from the ‘Operator’ panel, and click ‘Insert’.

6. Enter the third condition as follows:

a. Make the following menu choices:

[Product.Quantity Purchased][is][greater than]

b. Select the ‘or equal to’ checkbox.

c. Click the ‘arrow’ button at the right side of the condition, and
select ‘Variable’ from the menu.

d. In the ‘Label’ field, enter “minimum order size” (without
quotes).

e. Select ‘And’ from the ‘Operator’ panel, and click ‘Insert’.

REPORT DESIGN

696 of 2477

7. In the ‘Clauses’ panel, select the “[or]” between the two Company
conditions, and click on the ‘Indent’ button to create the proper
nesting.

This example is continued in the next section, Walkthrough: Grouping and
Summary in Data Binding Wizard.

Removing or Modifying a Condition in Data Binding Wizard

To remove or modify a condition under the Conditions tab of the ‘Data
Binding’ dialog box, select the desired clause and click the ‘Delete’ or
‘Modify’ button. The ‘Delete All’ button removes all the conditions listed
in the ‘Clauses’ window. A condition can also be repeated by selecting the
condition and clicking on the ‘Insert’ button. Use the ‘Indent’ and
‘Unindent’ buttons to modify nested conditions.

Reserved Parameter Names

Conditions for date-time fields can utilize several standard date values for
comparison:

To use one of these values, select the ‘Parameter’ checkbox, and choose the
desired value from the menu.

In addition, conditions can use system parameters _USER_ and _ROLES_ for
the current user’s name and roles respectively. See RepletParameters
Object in Report Scripting for the complete list.

Dynamically Dropping a Filter Condition in the Data Binding Wizard

A parameterized filter condition can be dynamically dropped by passing
null as the parameter value. To allow a condition to be dropped this way,
follow the steps below:

_TODAY

_BEGINNING_OF_WEEK

_END_OF_WEEK

_BEGINNING_OF_MONTH

_END_OF_MONTH

_BEGINNING_OF_QUARTER

_END_OF_QUARTER

_BEGINNING_OF_YEAR

_END_OF_YEAR

REPORT DESIGN

697 of 2477

1. Specify the desired parameterized condition using the Conditions
tab (see Filtering Data in Data Binding Wizard), and exit the ‘Data
Binding’ dialog box.

2. Select the ‘Parameter’ option from the Style Studio ‘Report’ menu.
This opens the ‘Parameter Definition’ dialog box.

3. In the ‘Parameter List’ panel, select the desired parameter name.

4. Click the ‘Set Selection List’ button.

5. Under the List tab, click the ‘Add’ button.

6. In the ‘Label’ column, enter the text “All” (without quotes) or
something similar.

7. In the ‘Value’ column, enter “null” (without quotes).

8. Click ‘OK’ to close the ‘Selection List’ dialog box.

9. Click ‘OK’ to close the ‘Parameter Definition’ dialog box.

You can achieve the same effect by using the onLoad script of a report by
using the following syntax.

parameter.{parameter name} = null;

For example, “parameter.state = null” drops any condition that uses the
‘state’ parameter. See onLoad Handler in Report Scripting for more
details.

As described above, setting the value of a parameter (in a parametrized
filter condition) to NULL effectively drops the filtering condition. In order to
explicitly filter null values or empty string values, you should use the key
words. ‘NULL_VALUE’ and ‘EMPTY_STRING’.

6.2.5 Grouping and Summarization in Data Binding Wizard

When you group a given field in a Table or Section, this causes rows with
the same value for the field to be positioned consecutively. When you
summarize a given field, this adds a row containing the summary or
aggregate value of the field to the end of the grouped records. You can
apply summarization to individual groups or to the dataset as a whole (e.g.,
grand total).

To add grouping and summarization to a Table or Section using the Data
Binding Wizard, follow these steps:

REPORT DESIGN

698 of 2477

1. In the ‘Data Binding’ dialog box, select the Grouping &
Summary tab. (See Creating a New Table, Crosstab, or Section
using a Wizard for information on how to access the ‘Data
Binding’ dialog box.)

2. Drag the desired grouping field from the ‘Available Columns’
panel to the ‘Grouping’ panel.

3. Drag the desired summary field from the ‘Available Columns’
panel to the ‘Summary’ panel.

4. Repeat the above steps to add additional grouping and summary
fields.

5. (Optional) To customize sort order, ranking, and granularity for a
given group, follow the steps below:

a. Click the desired group in the ‘Grouping’ panel to select it.

b. Click the Sort tab in the ‘Grouping’ panel.

c. From the top menu, select the desired sort order for the group.

The ‘By Value(Asc)’ and ‘By Value(Desc)’ options are only available
when a measure is specified in ‘Summary’ panel.

REPORT DESIGN

699 of 2477

The ‘Ascending’ option orders the groups alphabetically, while
‘Descending’ orders the groups reverse-alphabetically. The ‘By
Value(Asc)’ and ‘By Value(Desc)’ options rank the groups
according to the summarized measure specified by the
‘Column’ menu.

d. For a date-time field, use the ‘Group by’ field to specify the
granularity of the date binning: day, month, year, etc.

e. To specify a coarser grouping granularity by defining more
inclusive grouping categories, select ‘Define Named Group’,
and click the ‘Edit’ button. See Named Groups for information
on how to specify the groups.

f. To use a named group that you previously created in a Data
Worksheet, select ‘Predefined Named Group’ and choose the
desired grouping from the menu. See Creating a Named
Grouping in Data Mashup for information on creating such
groupings.

6. (Optional) To filter and rank a specified number from among the
top or bottom groups (according to a given summarized measure)
follow these steps:

a. Click the desired group in the ‘Grouping’ panel to select it.

b. Select the TopN tab in the ‘Grouping’ panel.

c. Select ‘Top’ or ‘Bottom’ from the menu.

d. Choose the desired number of groups, and specify the
aggregated measure that should be used to determine the
ranking.

e. Select ‘Group all others together’ to include as a separate
category groups that are not amongst the specified top or bottom
groups. Otherwise, these groups do not appear in the Table or
Section.

REPORT DESIGN

700 of 2477

7. (Optional) To selectively summarize certain groups and force
group-based page breaks, follow these steps:

a. Click the desired group in the ‘Grouping’ panel to select it.

b. Select the Options tab in the ‘Grouping’ panel.

c. Select ‘Summarize Group’ to display the aggregate value
specified in the ‘Summary’ panel for the selected group.
Deselect this option to suppress the summary for this group.

d. Select ‘Page Break After Group’ to force a page break after the
final record in the selected group (or after the summary, if one is
displayed).

8. (Optional) To customize the calculation method for a given
aggregate or summary, follow the steps below:

a. Click the desired measure in the ‘Summary’ panel to select it.

b. Select the desired summarization method. See Summarization
Formulas for an explanation of the available options.

c. To automatically represent values as a percentage, make a
selection in the ‘Percentage’ menu. The percentage can be
computed on the basis of the parent ‘Group’ (if multiple
grouping levels are specified) or on the basis of the
‘GrandTotal’.

Summarization Formulas

The following standard summarization formulas are available for use in the
‘Summary’ field of the data binding.

REPORT DESIGN

701 of 2477

Table 12. Summarization Formulas

FORMULA DESCRIPTION

Sum Calculating the sum total of numbers.
Average Calculating the average (mean) of numbers.
Count Count the number of elements.
Max Find the largest number.
Min Find the smallest number.
Distinct Count Count the number of distinct elements.
Product Calculate the product (multiplication) of numbers.
Standard Deviation Calculate the standard deviation of the number series.

Variance
Variance is a measure of dispersion. The mean of the
square of the deviations is called the variance

Population Variance
This is the average of squared differences between the
mean and each item in the population.

Population Standard
Deviation

Standard deviation is a measure of dispersion. It is the
positive square root of the variance. See also variance.

Correlation

The correlation coefficient indicates the degree of linear
relationship between two variables. The correlation
coefficient always lies between -1 and +1. -1 indicates a
perfect negative linear relationship between two variables,
+1 indicates a perfect positive linear relationship, and 0
indicates a lack of any linear relationship.

Covariance

The covariance between two random variables X and Y is
the expected value of the product of the variables'
deviations from their means. If there is a high probability
that large values of X go with large values of Y and small
values of X go with small values of Y, then the covariance
between X and Y will be positive; if there is a high
probability that small values of X go with large values of Y
and large values of X go with small values of Y, then the
covariance will be negative.

Weighted Average
A weighted average is a modified version of an arithmetic
mean. An average of 5 and 7 is 12/2=6, but you can count 5
twice so that a weighted average is 17/3=5.67, etc.

Median
Calculates the value that is in the middle of a list. The
median of a population is the point that divides the
distribution of scores in half.

pth Percentile

The pth percentile of a data set is defined as that value
where p percent of the data is below that value and (1-p)
percent of the data is above that value. For example, the
50th percentile is the median.

nth Largest Returns the nth largest number in a list.
nth Smallest Returns the nth smallest number in a list.
Mode Returns the value that occurs most frequently.
nth Most Frequent Returns the nth most frequent value in a list.
Concat Concatenates values into a comma-separated list.

REPORT DESIGN

702 of 2477

Walkthrough: Grouping and Summary in Data Binding Wizard

Walkthrough This example is continued from the previous example, Walkthrough:
Adding Conditions in Data Binding Wizard.

1. In the ‘Data Binding’ dialog box, select the Grouping &
Summary tab. (See Creating a New Table, Crosstab, or Section
using a Wizard for information on how to access the ‘Data
Binding’ dialog box.)

2. Drag the ‘Customer.Company’ field from the ‘Available Columns’
panel to the ‘Grouping’ panel.

3. Drag the ‘Product.Name’ field from the ‘Available Columns’ panel
to the ‘Grouping’ panel. Drop it below ‘Customer.Company’.

4. Drag the ‘TotalDiscount’ field from the ‘Available Columns’ panel
to the ‘Summary’ panel.

5. In the ‘Grouping’ panel, select ‘Product.Name’ and click the Top
N tab.

6. Select ‘Top’ from the drop-down list, enter “3” for the number of
groups, and select ‘Sum(TotalDiscount)’ from the second list.

REPORT DESIGN

703 of 2477

7. Click ‘Finish’ to complete the data binding.

8. Click ‘Preview’ in the Style Studio toolbar. When prompted, enter
“10” for the ‘minimum order size’ filter parameter.

Notice how the data now displays only records with quantities greater than
or equal to 10, and where the customer company was either ‘Computer
Tech’ or ‘Eastern Data’. Additionally, the data only displays records for the
top three products based on summarized total.

6.2.6 Data Binding Options

The settings in the Options tab of the ‘Data Binding’ dialog box are
specific to particular report element types, and are discussed together with
the corresponding report elements.

See Also
Binding Data to a Table Element, for Table options.
Binding Data to a Section Element, for Section options.

6.3 Binding Data to a Text Element
You can bind a Text/Textbox element to one of the following data sources:

• Query

• Data Worksheet

• Report parameter

In general, the Text element displays a single aggregate value. If the Text
element is bound to a query or a Data Worksheet, the result set is converted
to a single string value using the following rules:

REPORT DESIGN

704 of 2477

• If the result is a table, the value in the first column on the first row is
converted to a string and used as the contents of the Text element.

• Otherwise, the tree is searched to find the first non-null value on the tree
branch. The search is conducted on the first branch of each sub-tree until
a value is found.

6.3.1 Binding a Text Element to a Query
Walkthrough The following example shows how to bind a Text element to the sample

‘Order details’ query, and display the summarized ‘Total’ column. Follow
the steps below:

1. Add a Text element to the report, and type some text into the
element. (See Text Element for instructions.)

2. Click the Text element to select it. This opens the Data Source
panel and Binding panel.

3. In the Data Source panel, expand the ‘Orders’ data source, and
expand the ‘Order details’ query.

4. Drag the ‘Total’ column from the ‘Order details’ query to the
‘Aggregate’ region of the Binding panel.

5. Click the ‘Edit Measure’ button next to the ‘Aggregate’ region.
This opens a pop-up panel.

REPORT DESIGN

705 of 2477

6. In the pop-up panel, choose the desired aggregation formula, and
click the ‘Apply’ button (green arrow).

Note that the Text element does not display meta-data information (unlike a
Table or Section element that is bound to data). To preview the result of the
Text element binding, click the ‘Preview’ button in the Style Studio toolbar.

6.3.2 Binding a Text Element to a Parameter

To bind a text element to a report parameter, follow these steps:

1. Define the report parameter to which the text element will be
bound. (See Defining and Editing Report Parameters for more
information.)

2. Click the Text element to select it. This opens the Data Source
panel and Binding panel.

3. In the Data Source panel, expand the ‘Report’ node and then
expand the ‘Parameter’ node.

4. From the ‘Parameter’ node listing, drag the desired parameter to
the ‘Source’ region of the Binding panel.

The Text element will now display the value of the specified report
parameter.

REPORT DESIGN

706 of 2477

See Also
Defining and Editing Report Parameters, for information on report
parameters.

6.4 Binding Data to a Table Element
The following sections explain how to create and bind data to a Table. In
general, to create a Table follow the steps below:

1. Use the Data Binding Wizard to help you create the desired table in
a step-by-step manner. See Creating a Table Using the Data
Binding Wizard.

You can also create a
Table using freehand
operations. See Creat-
ing a New Table
Using Freehand
Operations.

2. (Optional) To further modify the appearance and contents of the
Table, use additional freehand operations. See Creating a Table
Using Freehand Operations.

3. (Optional) To create more complex structures with custom column
and row interdependencies, convert the Table to a Formula Table.
See Formula Tables for more details.

6.4.1 Creating a Table Using the Data Binding Wizard

When you bind a Table to a data model or a query is, the result set meta-
data is displayed in the Table element. The meta-data contains the
definition for each table column, including its type and name, which helps
designers to specify appropriate column widths, column formats,
alignments, etc.

Walkthrough: Selecting Data Source Columns using the Wizard

Walkthrough This example creates a simple report to demonstrate how you can use the
Data Binding Wizard to populate a Table with data.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’, and click ‘OK’. This creates a new blank
report.

3. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane
from the Style Studio ‘Window’ menu.)

4. Click the ‘Table’ button in the Toolbox panel. This opens the ‘Data
Binding’ dialog box for the Table.

5. Under the Data tab, expand the ‘Orders’ data source and select the
‘Order Model’ data model.

REPORT DESIGN

707 of 2477

Note: The ‘Clear’ but-
ton can be used to
remove the data bind-
ing from an element.

6. Select the Columns tab. Drag the following columns from the
‘Available Columns’ panel to the right panel:

‘Customer.Company’
‘Product.Name’
‘Product.Total’
‘Product.Price’
‘Order.Discount’

This example continues in Walkthrough: Adding Table Grouping using the
Wizard.

Walkthrough: Adding Table Grouping using the Wizard

Walkthrough This example continues from Walkthrough: Selecting Data Source
Columns using the Wizard. Now you will add grouping to the table.

1. In the ‘Data Binding’ dialog box, select the Grouping &
Summary tab. (See Creating a New Table, Crosstab, or Section
using a Wizard for information on how to access the ‘Data
Binding’ dialog box.)

To remove grouping,
click the ‘Clear All’
button (the dashed
left-arrow at the cen-
ter of dialog box).

2. Drag the ‘Customer.Company’ field from the ‘Available Columns’
panel into the ‘Grouping’ panel.

3. (Optional) Click the ‘Customer.Company’ field in the ‘Grouping’
panel to select it. Click the Option tab in the ‘Grouping’ panel.

a. Check ‘Summarize Group’ to create a summary row (subtotal)
after every group (if a summary measure has been defined).

b. Check ‘Page Break After Group’ to force each group to appear
on a separate page.

REPORT DESIGN

708 of 2477

4. Drag the ‘Product.Total’ field from the ‘Available Columns’ panel
into the ‘Summary’ panel.

5. Click the ‘Product.Total’ field in the ‘Summary’ panel, and
confirm that the selected aggregation method is ‘Sum’.

6. (Optional) Click the Options tab in the ‘Data Binding’ dialog box,
and specify any additonal grouping options. See Table Grouping
Options for further details.

Note: After you click ‘Finish’, you cannot return to the ‘Data
Binding’ dialog box.

7. Click ‘Finish’ to close the ‘Data Binding’ dialog box. The table in
should appear as shown:

Note that the table columns only display the table meta-data in
Design mode.

8. Click the ‘Preview’ button in the Style Studio toolbar to see the
data displayed in the table. Close the preview.

9. Click the ‘Save’ button in the Style Studio toolbar. Save the report
in the templates directory as “sample1.srt”.

REPORT DESIGN

709 of 2477

Table Grouping Options

You can set a number of different display options under the Table Options
tab of the ‘Data Binding’ dialog box.

The figures below illustrate the effects of the ‘Group Header in Place’ and
‘Show Group Columns’ options.

Figure 16. Group Header In-Place

REPORT DESIGN

710 of 2477

Figure 17. Show Group Column

Other options are described below:

• Repeat Group Header: Repeats the group header at the top of each
page spanned by the group.

• Merge Group Cells: Removes the borders between cells in the
grouping column, which can make the grouping more easily visible.

• Hide Subtotal for a Single Row: Suppresses the summary row when
there is only a single detail record.

• Show Summary Only: Displays only the grouping and summary rows
and not the detail rows.

• Keep Group Hierarchy: Maintains the group hierarchy in the
summary.

• Compute Totals for Displayed Groups Only: Computes the totals
based only on the groups that are actually displayed in the table, i.e.,
groups selected by any Top- or Bottom-N filtering that you have
specified. Disable this option to aggregate the totals based on all groups,
including those groups that are not displayed in the table.

Figure 18. Show Summary Only.

REPORT DESIGN

711 of 2477

6.4.2 Creating a Table Using Freehand Operations

After you have created a Table with the Table Wizard (see Creating a New
Table, Crosstab, or Section using a Wizard), you can continue to make
additional modifications by using freehand operations. You can also create
a Table using freehand operations. The following sections explain how to
use freehand operations to create or modify an existing table.

For greater control of individual cell bindings and table layout, you can
convert the Table to a Formula Table. See Formula Tables for more
information.

See Also
Binding Data to a Section Element, to create more flexible layouts with
arbitrary element positioning.

Creating a New Table Using Freehand Operations

In Creating a Table Using the Data Binding Wizard, you learned how to
use the Data Binding Wizard to bind a Table to a data source. You can also
create a new Table bound to a data source by using freehand operations.

Display All Query Fields

To create a new Table that displays the results from an entire query, data
model entity, or Data Block, follow the steps below:

1. Click in the report to place the insertion point at the desired
location.

2. Open the Data Source panel. (Select ‘Data Source Pane’ from the
‘Window’ menu.)

3. Drag a query, data model entity, or Data Block from the Data
Source panel into the report.

REPORT DESIGN

712 of 2477

This creates a new Table that is bound to the selected query, data
model entity, or Data Block, and displays the entire result set.

4. Modify this table as desired using freehand operations. See
Creating a Table Using Freehand Operations.

Display a Subset of Query Fields

To create a new Table that displays a subset of fields from a query, data
model entity, or Data Block, follow the steps below:

1. Click in the report to place the insertion point at the desired
location.

2. Open the Data Source panel. (Select ‘Data Source Pane’ from the
‘Window’ menu.)

3. Expand a query, data model entity, or Data Block in the Data
Source panel.

4. Click to select a field (or Ctrl-click to select multiple fields) from
the data source, and drag the field(s) into the report.

This creates a new Table that is bound to the selected data source,
and displays only the selected fields from result set.

REPORT DESIGN

713 of 2477

5. Modify this table as desired using freehand operations. See
Creating a Table Using Freehand Operations.

Creating a Blank Table

To create a blank Table, with no data fields, follow the steps below:

1. Click in the report to place the insertion point at the desired
location.

2. Open the Toolbox panel. (Select ‘Toolbox Pane’ from the
‘Window’ menu.)

If you click (instead of drag) the ‘Table’ component, this opens
the Data Binding Wizard. See Creating a Table Using the Data
Binding Wizard for more details.

3. Drag the ‘Table’ component onto the report. This creates a new
blank Table.

4. Modify this table as desired using freehand operations. See
Creating a Table Using Freehand Operations.

Inserting Rows and Columns into a Table

To insert an arbitrary number of rows or columns into a table, follow the
steps below:

1. Click in the Table to select a cell, row, or column. (See Selecting a
Cell, Row, or Column of a Table.)

2. Right-click and select ‘Table’ > ‘Insert Rows/Columns’ from the
context menu.

REPORT DESIGN

714 of 2477

This opens the ‘Insert Rows/Columns’ dialog box.

3. Select the number of rows or columns to insert, and whether the
insertion should take place ‘Before the Selection’ (i.e., to the left or
top of the selected cells) or ‘After the Selection’ (i.e., to the right or
bottom of the selected cells).

4. Click ‘OK’. This inserts the specified number of rows or columns
into the table.

To insert a single row or column into a table, follow the steps below:

1. Click in the Table to select a cell, row, or column. (See Selecting a
Cell, Row, or Column of a Table.)

2. Right-click and select one of the following options from the
context menu:

a. ‘Row’ > ‘Insert Row’ to add a new row above the selection, or
‘Row’ > ‘Append Row’ to add a new row below the selection.

REPORT DESIGN

715 of 2477

b. ‘Column’ > ‘Insert Column’ to add a new column to the left of
the selection, or ‘Column’ > ‘Append Column’ to add a new
column to the right of the selection.

See Also
Inserting New Columns with Data Binding, to add a new column together
with binding.
Changing a Table Cell Data Binding, to change the data binding for a cell
or column.

Deleting Rows and Columns from a Table

To delete a row or column from a Table, follow the steps below:

1. Select the rows or columns you wish to delete (or select a set of
cells within those row or column). See Selecting a Cell, Row, or
Column of a Table.

2. Right-click on the selected elements, and make one of the
following choices from the context menu:

a. ‘Row’ > ‘Delete Row’ to delete the corresponding rows.

b. ‘Column’ > ‘Delete Column’ to delete the corresponding rows,
or ‘Row’ > ‘Append Row’ to add a new row below the
selection.

This deletes the selected elements from the table.

Inserting New Columns with Data Binding

You can insert one or more new columns that display data from fields of the
data source to which the Table is bound. To add a new column or columns
to a table, follow the steps below:

1. Click on the Table to select it. This opens the Data Source panel
and Binding panel.

2. (Optional) To see only fields from the data source to which the
Table is bound, disable ‘Show All’ in the Data Source panel.

REPORT DESIGN

716 of 2477

3. Expand the data source (query, data model entity, or Data Block) to
which the Table is bound.

4. Click to select a field (or Ctrl-click to select multiple fields) from
the data source, and drag the field(s) into the Table.

As you drag the fields over the Table, a green highlights indicates
the available positions for placement.

5. Drag the fields until the green highlight appears between the
columns where you want to place the new fields, and drop the
fields at that location.

This adds the new columns with their data bindings at the specified
location.

REPORT DESIGN

717 of 2477

See Also
Inserting Rows and Columns into a Table, to add blank rows or columns.
Changing a Table Cell Data Binding, to change the data binding for a cell
or column.

Selecting a Cell, Row, or Column of a Table

This section explains how to select various regions of a Table.

Cell in a Table

You cannot select a discontiguous set of cells, rows, or columns.

To select a cell of a table, click on the desired cell.

Range of Cells in a Table

To select a range of cells in the table, do one of the following:

The selected range is
indicated by square
brackets.

1. Click to select a cell to start the range. Shift-click a cell to end the
range. This select all cells in between the chosen cells.

2. Hold down the Shift key, and drag across the desired range of cells.

Rows in a Table

To select one or more rows of the table, do one of the following:

1. Select one or more cells in the table. Right-click the selection, and
choose ‘Row’ > ‘Select Row’.

2. Move the mouse over the left margin of the table so that the pointer
displays as an “arrow”. Click to select a row to start the range.
Shift-click to select a row to end the range. This selects all rows
between the chosen rows.

REPORT DESIGN

718 of 2477

3. Move the mouse over the left margin of the table so that the pointer
displays as an “arrow”. Hold down the Shift key, and drag across
the desired range of rows to select them.

Columns in a Table

To select one or more columns of the table, do one of the following:

1. Select one or more cells in the table. Right-click the selection, and
choose ‘Column’ > ‘Select Column’.

2. Move the mouse over the top margin of the table so that the pointer
displays as an “arrow”. Click to select a column to start the range.
Shift-click to select a column to end the range. This selects all
columns between the chosen columns.

3. Move the mouse over the top margin of the table so that the pointer
displays as an “arrow”. Hold down the Shift key, and drag across
the desired range of columns to select them.

Splitting and Merging Table Cells

To create a “span cell,” i.e., a cell that spans multiple columns, you can
merge multiple cells into one. Follow the steps below:

1. Select the range of cells that you wish to merge. See Selecting a
Cell, Row, or Column of a Table.

2. Right-click in the selected region, and select ‘Table’ > ‘Merge
Cells’ from the context menu. This merges the cells together into a
single span cell.

To undo the merge operation, right-click on the span cell, and select ‘Table’
> ‘Split Cells’ from the context menu.

Resizing Table Rows and Columns

To manually resize rows and columns, click and drag the border between
cells.

REPORT DESIGN

719 of 2477

To automatically resize table columns, follow the steps below:

1. Right-click the table and select ‘Properties’ from the context menu.
This opens the ‘Properties’ dialog box.

2. Select an automatic layout option from ‘Layout’ panel (under the
Table tab). See Table Layout for a description of the options.

Changing the Table Column Order

To change the position of a column or range of columns, follow the steps
below:

1. Select the column or range of columns you wish to move. See
Selecting a Cell, Row, or Column of a Table.

2. Drag the columns to the desired position in the table. A green
highlight indicates the new placement.

Changing a Table Cell Data Binding

You can alter the binding of a table cell to display static text, values from a
different field of data, or values computed by a formula. To modify a cell
binding, follow the steps below:

1. Click the desired cell in the table to select it.

1. Click the ‘Properties’ link at the bottom of the Style Studio
window. This expands the ‘Properties’ panel.

2. Click the Data tab. In the ‘Binding’ panel, make one of the
following selections:

a. To enter static text in the cell, select the ‘Text’ option, and
entered the desired contents.

b. To bind the cell to a different data field, select the ‘Column’
option, and choose the desired data field from the adjacent
menu.

REPORT DESIGN

720 of 2477

c. To enter an expression, select ‘Formula’, and click the ‘Edit’
button. This opens the Script Editor, which allows you to create
and save the desired formula. See Formula Tables for more
details about formulas.

3. Click the ‘Apply’ button to submit the changes.

Changing the Table Data Source

To change the data source to which the table is bound, follow the steps
below:

1. Click on the Table to select it. This opens the Data Source panel
and Binding panel.

2. To see all available data sources, enable ‘Show All’ in the Data
Source panel.

You can also drag
fields from the new
data source onto the
table itself.

3. Drag the desired data source (query, data model entity, or Data
Block) from the Data Source panel onto the top field in the
Binding panel.

REPORT DESIGN

721 of 2477

This operation will generate a warning, which advises you that
changing the binding will destroy the current table configuration.
Click ‘Yes’ to proceed.

This rebinds the table to the new data source.

Changing the Column Sort Order

To change the sorting order for one or more columns in a table, follow the
steps below:

1. Right-click the table, and select ‘Sorting’ from the context menu.
This opens the ‘Sorting’ dialog box.

Grouping fields are not listed. To sort a grouping field, see
Grouping Data in a Table.

2. In the ‘Sorting’ dialog box, click to the left of the field you wish to
sort. A small arrow indicates the prevailing sort. Click once to set
ascending (alphabetical) order, click a second time to set
descending (reverse alphabetical) order, and click a third time to
remove the sorting.

REPORT DESIGN

722 of 2477

3. (Optional) Repeat the above step to simultaneously sort additional
fields.

Sorting on multiple fields creates a nested sorting. The position of a
given field in the sorting hierarchy is defined by its position in the
‘Sorting’ dialog box. For example, consider a sort specified for
both a ‘State’ field and ‘City’ field. If the ‘State’ field appears
above the ‘City’ field in the dialog box, then the records are sorted
primarily by ‘State’, and are sorted secondarily (i.e., within each
state) by ‘City’.

4. (Optional) To change the nesting order for multiple-field sorting,
change the order of the fields in the ‘Sorting’ dialog box. Use one
of the following approaches:

a. Click in the ‘Sorting’ dialog box to select a sorted field. Then
click the “arrow” buttons at the top of the dialog box to change
the field’s relative position.

b. Click on the field name, and drag the field to the desired
position.

5. Click ‘OK’ to close the dialog box.

Filtering Data in a Table

To apply a filtering condition to a table, follow the steps below.

1. Right-click the table, and select ‘Condition’ from the context
menu. This opens the ‘Condition’ dialog box.

2. Use the menus to enter the desired condition clause(s). See
Filtering Data in Data Binding Wizard for information about the
controls, and an example of constructing a condition.

3. Click ‘OK’ to close the dialog box, and apply the condition.

REPORT DESIGN

723 of 2477

See Also
Parameterizing a Condition, for details on using a variable in a condition.

Grouping Data in a Table

There are two ways to group data in a table. You can keep the grouping
field in the same row as the detail records, or you can display the grouping
field in its own group region. The following sections explain the two
approaches.

Displaying the Grouping Field in the Detail Row

To group the data in a table and display the grouping field in the detail row,
follow the steps below:

For a categorical field,
select ‘Default’. For a
Date field, select a
Date level such as
‘Year’ or ‘Month’.

1. Right-click on the detail cell that you want to group.

2. From the context menu, select ‘Cell’ > ‘Group’, and choose the
desired grouping.

This defines the field as a grouping field, and adds the selected field to the
grouping area of the Binding panel. See Modifying Table Grouping
Properties to make further adjustments to the grouping process.

Displaying the Grouping Field in a Group Region

To group the data in a table and display the grouping field in a dedicated
grouping region, follow the steps below:

For a categorical field,
select ‘Default’. For a
Date field, select a
Date level such as
‘Year’ or ‘Month’.

1. Right-click on the detail row, and select one of the following:

a. ‘Region’ > ‘Insert Group’ to insert a new grouping region with
both header and footer.

REPORT DESIGN

724 of 2477

b. ‘Region’ > ‘Insert Group Header’ to insert a new grouping
region with only header.

2. Drag the desired grouping field from the detail row to a cell in the
new grouping header region.

This defines the field as a grouping field in its own region, and adds the
selected field to the grouping area of the Binding panel. See Modifying
Table Grouping Properties to make further adjustments to the grouping
process.

Modifying Table Grouping Properties

To customize sort order, ranking, and granularity for a given group, follow
the steps below:

1. Click the ‘Edit Dimension’ button in the Binding panel for the
desired group.

2. From the top menu, select the desired sort order for the group.

REPORT DESIGN

725 of 2477

The ‘By Value(Asc)’ and ‘By Value(Desc)’ options are only available
when a measure is specified in ‘Summary’ panel.

The ‘Ascending’ option orders the groups alphabetically, while
‘Descending’ orders the groups reverse-alphabetically. The ‘By
Value(Asc)’ and ‘By Value(Desc)’ options rank the groups
according to the summarized measure specified by the ‘Column’
menu.

3. For a date-time field, use the ‘Level’ field to specify the granularity
of the date binning: day, month, year, etc.

4. To specify a coarser grouping granularity by defining more
inclusive grouping categories, select the ‘Customize’ option in the
‘Named Groups’ menu, and click the ‘Edit’ button. See Named
Groups for information on how to specify the groups.

5. To use a named group that you previously created in a Data
Worksheet, select the desired group from the ‘Named Groups’
menu. See Creating a Named Grouping in Data Mashup for
information on creating such groupings.

6. To filter and rank a specified number from among the top or bottom
groups (according to a given summarized measure) follow these
steps:

a. Select ‘Top’ or ‘Bottom’ from the ‘Ranking’ menu.

b. Choose the desired number of groups, and specify the
aggregated measure that should be used to determine the
ranking.

REPORT DESIGN

726 of 2477

When you specify
multiple grouping
fields, ‘Group all oth-
ers together’ is avail-
able only for the
lowest grouping level.

c. Select ‘Group all others together’ to include as a separate
category groups that are not amongst the specified top or bottom
groups. Otherwise, these groups do not appear in the Table or
Section.

7. Select ‘Page Break After Group’ to force a page break after the
final record in the selected group (or after the summary, if one is
displayed).

8. Click the ‘Apply’ button (green arrow) to submit the changes.

Setting Global Grouping Options

To set global grouping options (which apply to all groups), right-click on
the Table, and select ‘Options’ from the context menu. This opens the
‘Group Options’ dialog box.

The options are as follows:

• Repeat Group Header: Repeat the group name at the top of each page
on which the group’s records are displayed.

• Hide Subtotal for a Single Row: Suppress display of a group’s
aggregate(s) when the group contains only one detail record.

Setting Group Cell Display Options

You can set additional options for grouped table cells in the Options tab of
the bottom Properties panel.

REPORT DESIGN

727 of 2477

The available options are as follows:

• Suppress If Zero: Suppress the display of a zero value, and instead
display an empty cell.

• Suppress If Duplicate: Suppress the display of duplicate rows, and
instead display just a single representative row.

• Line Wrap: Allow text to wrap in cell.

• New Page Before: Insert a page break before the cell.

• New Page After: Insert a page break after the cell.

• Merge Expanded Cells: Merge automatically expanded cells into a
single cell. This is a useful way to simplify the table when expanded
cells all contain the same text. The ‘Row Group’ and ‘Column Group’
properties determine which row and column grouping the merging
should follow. See Spanning Cells for an example.

• As Group: Specifies that a grouped cell that appears in the ‘Detail’ row
displays the group value only once.

• As Detail: Specifies that a grouped cell that appears in the ‘Detail’ row
displays the group value once for each detail record.

Summarizing Data in a Table

When you aggregate data in a table, you can compute summaries on a
group-by-group basis and/or on a global basis (e.g., grand total).

To create a summary based on a particular grouping level, follow the steps
below:

For a categorical field,
select ‘Default’. For a
Date field, select a
Date level such as
‘Year’ or ‘Month’.

1. Right-click on the detail cell that you want to summarize.

2. From the context menu, select ‘Cell’ > ‘Summarize’, and choose
the desired aggregation method (e.g., ‘Average’, ‘Max’, etc.)

REPORT DESIGN

728 of 2477

This defines the field as a summary field. Because the field resides
in the detail row, it only summarizes a single detail value. To
summarize a particular group, or the entire table, proceed to the
next steps.

To add a grouping
region, see Displaying
the Grouping Field in
a Group Region.

3. To summarize a particular group, Ctrl-drag (or copy and paste) the
summary field to the corresponding grouping header or footer
region.

This adds the selected field to the summary area of the Binding
panel.

4. To summarize all records in the table, follow the steps below:

a. Right-click on any cell in the table, and select ‘Region’ > ‘Insert
Table Footer’ from the context menu. This adds the table footer
region.

REPORT DESIGN

729 of 2477

b. Ctrl-drag (or copy and paste) the summary field to the table
footer region.

This adds the selected field to the summary area of the Binding
panel.

See Modifying Summary Properties to make further adjustments to the
summarization process.

Modifying Summary Properties

To customize the calculation method for a given aggregate or summary,
follow the steps below:

1. Click the ‘Edit Measure’ button in the Binding panel for the
desired summary measure.

2. Select the desired summarization method. See Summarization
Formulas for an explanation of the available options.

REPORT DESIGN

730 of 2477

3. To automatically represent values as a percentage, make a selection
in the ‘Percentage’ menu. The percentage can be computed on the
basis of the parent ‘Group’ (if multiple grouping levels are
specified) or on the basis of the ‘GrandTotal’.

Walkthrough: Freehand Operations on a Table

The following sample report illustrates these features. Consider the
‘customers’ entity from the ‘Order Model’ in the ‘Orders’ data source.
When you create the report with this data model bound to a rigid table
structure, the output is shown below.

Walkthrough Consider a case where it is necessary to move the cell elements so that the
entire address is grouped together line-by-line, one below the other. You
can create this table using freehand table operations.

Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. Select ‘Report’ from the left panel, then select ‘Blank Tabular
Report’ from the ‘Types’ panel, and click ‘OK’.

3. Click the ‘Table’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new table.

4. Under the Data tab, expand the ‘Orders’ data source, and select the
‘Order Model’ data model.

REPORT DESIGN

731 of 2477

5. Under the Columns tab, select the ‘Customer’ node. Click the
right-arrow button to add all the attributes from the ‘Customer’
entity.

6. Remove the following attributes by using the left-arrow button:

‘Customer.Contact First Name’
‘Customer.Contact Last Name’
‘Customer.Region’

7. Click ‘Finish’. This adds the new table to the report.

The ‘Table’, ‘Row’,
and ‘Column’ options
provide Freehand
operations.

8. Select a cell in the detail row. Right-click, and select the ‘Table’ >
‘Insert Rows/Columns’ option from the context menu. This opens
the ‘Insert Rows/Columns’ dialog box.

REPORT DESIGN

732 of 2477

9. Specify that three rows should be inserted before the selection (the
detail row).

10. Click ‘OK’ to add the new rows.

11. Right-click any cell of the detail row, select ‘Row’ > ‘Select Row’.
This selects the entire detail row.

12. Click and drag the detail row to move the detail row up three rows
(right below the header row).

13. Select the [Customer.City] cell, right-click the cell, and select
‘Cut’ from the context menu.

REPORT DESIGN

733 of 2477

14. Right-click the empty cell below the [Customer.Address] cell, and
select ‘Paste’ from the context menu.

This pastes the [Customer.City] field into that table location.

Tip: You can use the
Ctrl-X and Ctrl-V
keyboard shortcuts, or
simply drag the fields
to the desired loca-
tion.

15. Repeat the above steps to cut and paste the [Customer.State] and
the [Customer.Zip] fields into the empty cells below the
[Customer.City] field.

Tip: You can also
click above the col-
umn to select the
whole column, and
then press ‘Delete’ on
the keyboard.

16. Right-click the ‘Customer.City’ column and select ‘Column’ >
‘Delete Column’ from the context menu to delete the column.

17. Repeat the above step to delete the ‘Customer.State’ and
‘Customer.Zip’ columns.

REPORT DESIGN

734 of 2477

18. Right-click the table and select ‘Properties’ from the context menu.
This opens the ‘Table Properties’ dialog box.

19. Click the ‘Select Style’ button to open the ‘Style Viewer’ dialog
box.

20. Select the ‘Modern’ > ‘Shaded’ style. Click ‘OK’ to close the
‘Style Viewer’ dialog box.

21. Click ‘OK’ to close the ‘Table Properties’ dialog box.

22. Save the report.

23. Preview the report and observe the table with data arranged using
Freehand layout.

You could create a similar layout by using a Section Element (pseudo-
table), but this would not allow you to make use of the table grid and styles.

REPORT DESIGN

735 of 2477

Walkthrough: Defining Formulas

Walkthrough The Freehand Table Layout allows you to define a formula within a cell,
similar to a spreadsheet application. The example below demonstrates this
feature:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. From the right ‘Types’
panel, select ‘Blank Tabular Report’, and click ‘OK’

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Table’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new table.

5. Under the Data tab, bind the table to the ‘Order details’ query from
the ‘Orders’ data source. Under the Columns tab, select all of the
columns. Click ‘Finish’ to perform the binding.

6. Select the last column in the table, right-click on the column, and
select ‘Column’ >‘Append Column’ from the context menu. This
adds an additional column.

You will use this new column to calculate the profit/gain to a
customer who has obtained a discount.

7. Select the header cell of the new column and type “Profit/Gain”.

8. Expand the Style Studio Properties panel.

REPORT DESIGN

736 of 2477

9. Select the detail cell of the new column.

10. In the Properties panel, click the Data tab. Select the ‘Formula’
option in the ‘Binding’ panel, and click on the ‘Edit’ button to open
the Script Editor.

11. In the Script Editor, enter the following formula:

field['Price']*field['Discount']

12. Click on the ‘Save and Close’ button, then click the ‘Apply’ button
in the Data tab.

13. Preview the report to observe the effect. (Page forward in the report
to see the non-zero values of ‘Profit/Gain’.)

REPORT DESIGN

737 of 2477

14. Save the report.

6.5 Binding Data to a Crosstab Element
The following sections explain how to create and bind data to a Crosstab.
In general, to create a Crosstab follow the steps below:

1. Use the Data Binding Wizard to help you create the desired
crosstab in a step-by-step manner. See Creating a Crosstab Using
the Data Binding Wizard.

You can also create a
Crosstab using free-
hand operations. See
Creating a New Table
Using Freehand
Operations.

2. (Optional) To further modify the appearance and contents of the
Crosstab, use additional freehand operations. See Creating a
Crosstab Using Freehand Operations.

3. (Optional) To create more complex structures with custom column
and row interdependencies, convert the Crosstab to a Formula
Table. See Formula Tables for more details.

6.5.1 Creating a Crosstab Using the Data Binding Wizard

A Crosstab summarizes information in a tabular format. It displays the
values from one or more fields as row headers, and from one or more fields
as column headers. At the intersections of the row and columns, the
Crosstab displays the aggregate values computed from a measure field for
the records that match the row and column headers.

For example, consider the following result set:

CUSTOMER PRODUCT QUANTITY

Customer1 Product1 1

Customer1 Product1 2

REPORT DESIGN

738 of 2477

If you use the ‘Customer’ column as the row header, the ‘Product’ column
as the column header, and the ‘Quantity’ column as the aggregated
measure, the resulting Crosstab appears as follows:

It is possible to report the same information by using a regular table with
grouping on both the ‘Customer’ and ‘Product’ columns and
summarization on ‘Quantity’ column. However, the Crosstab presentation
is often more readblae.

Walkthrough: Creating a Crosstab using Data Binding Wizard

Walkthrough In this example, you will create a Crosstab with ‘Company’ and ‘Product’
as headers, and ‘Quantity’ as the aggregated measure.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’, and click ‘OK’. This creates a new blank
report.

3. Click the ‘Crosstab’ button in the Toolbox panel. This opens the
‘Data Binding’ dialog box for the crosstab

4. Under the Data tab of the ‘Data Binding’ dialog box, expand the
‘Orders’ node, and select the ‘Order Model’ data model.

5. Click the Columns tab. Drag the following columns from the
‘Available Columns’ panel to the right panel:

‘Customer.Company’
‘Product.Total’
‘Product.Name’

6. Click the Crosstab tab.

Customer1 Product2 30

Customer2 Product1 4

Customer2 Product2 50

Customer2 Product2 60

Product1 Product2

Customer1 3 30

Customer2 4 110

REPORT DESIGN

739 of 2477

You can add multiple columns as column headers, row headers, or
summary fields by selecting the filed name and clicking the
appropriate ‘Add’ button (or by dragging the field to the desired
region). The ‘Percentage’ option allows a column to be calculated
as a percentage of some other row.

7. Drag ‘Product.Name’ from the ‘Available Column’ panel into the
‘Column Header’ panel.

8. Drag ‘Customer.Company’ from the ‘Available Column’ panel
into the ‘Row Header’ pane.

9. Drag ‘Product.Total’ from the ‘Available Column’ panel into the
‘Summary’ panel.

10. Click on ‘Product.Total’ in the ‘Summary’ panel, and choose the
following options:

a. Select ‘Sum’ as the aggregation method in the menu.

b. In the ‘Percentage’ menu, select ‘GrandTotal’. This displays the
‘Sum(Total)’ measure as a percentage of the Grand Total.

REPORT DESIGN

740 of 2477

11. (Optional) Set any desired options for the Crosstab under the
Options tab in the ‘Data Binding’ dialog box. See Crosstab
Options for more details.

Walkthrough: Setting Layout for a Crosstab

Walkthrough This example continues from Walkthrough: Creating a Crosstab using
Data Binding Wizard.

Note: After you click ‘Finish’, you cannot return to the ‘Data
Binding’ dialog box.

12. Click the ‘Finish’ button in the ‘Data Binding’ dialog box.

13. Preview the report.

The generated crosstab has many columns, with one for each
product. However, the table columns do not fit nicely on one page.

REPORT DESIGN

741 of 2477

To allow the table to wrap to the next page, you will change the
table layout options.

14. Return to the design view. (You can keep the ‘Preview’ tab open as
well.)

15. Click the Table element to select it. Click the summary cell to select
the cell.

16. Click the ‘Properties’ link at the bottom of the Style Studio
window. This expands the ‘Properties’ panel.

17. Click the Format tab, and select ‘Percent’ as the format.

18. Click the ‘Apply’ button (check mark) to finalize the settings.

19. Right-click on the Table, and select ‘Properties’ from the context
menu. This opens the ‘Table Properties’ dialog box.

20. Click the Table tab, and select the ‘Fit Content’ layout option.

21. In the ‘Style’ panel, click the ‘Select Style’ button. This opens the
‘Style Viewer’ dialog box.

22. In the ‘Styles’ tree, expand the ‘Simple’ folder, and select the
‘PlainCross’ table style.

23. Select ‘OK’ to save the settings and exit the ‘Style Viewer’ dialog
box.

24. Click ‘OK’ to exit the ‘Table Properties’ dialog box.

REPORT DESIGN

742 of 2477

25. Click the ‘Preview’ button in the Style Studio toolbar to preview
the report.

6.5.2 Creating a Crosstab Using Freehand Operations

In Creating a Crosstab Using the Data Binding Wizard, you learned how to
use the Data Binding Wizard to bind a Crosstab to a data source. You can
also bind a Crosstab to a data source by using freehand operations.

To create a new Crosstab that displays fields from a query, data model
entity, or Data Block, follow the steps below:

1. Click in the report to place the insertion point at the desired
location.

REPORT DESIGN

743 of 2477

2. Open the Toolbox panel. (Select ‘Toolbox Pane’ from the
‘Window’ menu.)

If you click (instead of drag) the ‘Crosstab’ component, this opens
the Data Binding Wizard. See Creating a Crosstab Using the Data
Binding Wizard for more details.

3. Drag the ‘Crosstab’ component onto the report. This creates a new
blank Crosstab.

4. Open the Data Source panel. (Select ‘Data Source Pane’ from the
‘Window’ menu.)

5. Expand a query, data model entity, or Data Block in the Data
Source panel.

You can also drag the
field to the ‘Column
Header’ region in the
Binding panel.

6. To specify the Crosstab column headers, click to select a field (or
Ctrl-click to select multiple fields) from the data source. Drag the
field(s) into the Crosstab Header region.

You can also drag the
field to the ‘Row
Header’ region in the
Binding panel.

7. To specify the Crosstab row headers, click to select a field (or Ctrl-
click to select multiple fields) from the data source. Drag the
field(s) into the Crosstab Detail region.

You can also drag the
field to the ‘Aggre-
gate’ region in the
Binding panel.

8. To specify the Crosstab aggregates, click to select a field (or Ctrl-
click to select multiple fields) from the data source. Drag the
field(s) into the ‘Aggregate’ cell.

REPORT DESIGN

744 of 2477

This completes the Crosstab data binding.

To change the grouping and aggregation options, see Modifying Table
Grouping Properties and Modifying Summary Properties. For greater
control of individual cell bindings and table layout, you can convert the
Crosstab to a Formula Table. See Formula Tables for more information.

Crosstab Options

To specify additional attributes for a Crosstab, right-click on the Crosstab,
and select ‘Options’ from the context menu. This opens the ‘Crosstab
Options’ dialog box, with the following tabs: Option and Grid.

The available properties include the following:

To change the text in
the summary headers,
apply a text format to
those cells. See For-
mat Types for more
information.

• Show Summary Headers: Displays the column header names for the
summary (aggregated measure) fields.

• Summary Cells Side by Side: Displays summary headers just above
the data cells (otherwise, on the left).

REPORT DESIGN

745 of 2477

• Show Row Grand Total: Displays the global aggregate computed
across all row groups in the last row of the Crosstab.

• Show Column Grand Total: Displays the global aggregate computed
across all column groups in the last column of the Crosstab.

This option is not
available when both
row and column totals
are suppressed.

• Compute Totals for Displayed Groups Only: Computes the totals
based only on the groups that are actually displayed in the table, i.e.,
groups selected by any Top- or Bottom-N filtering that you have
specified. Disable this option to aggregate the totals based on all groups,
including those groups that are not displayed in the table.

• Row Total on Top: Places the row grand total (if displayed) in the first
row following the columns headers, rather than in the last row.

• Column Total on Left: Places the column grand total (if displayed) in
the first column following the row headers, rather than in the last
column.

• Fill Blank Cell with Zero: Place zeros in aggregate cells for which
there are no corresponding records. Otherwise, the cells are left blank
(default).

REPORT DESIGN

746 of 2477

• Keep Original Column Headers: Places the field names for the
Crosstab row headers at the top of the corresponding column.

• Grand Total Label: Sets the header text for the row grand total and
column grand total, when displayed.

• Percentage: Specifies the basis on which percentages are computed
when you select the ‘Percent’ option from a measure in the Binding
panel. (See Modifying Summary Properties for information on editing a
measure representation.) The ‘By columns’ option computes the
percentage so that the sum of the measure across columns in a single
row is 100%, either within each group or across all groups (depending
on the specified ‘Percent’ option in the Binding panel). The ‘By rows’
option computes the percentage so that the sum of the measure across
rows in a single column is 100%, either within each group or across all
groups (depending on the specified ‘Percent’ option in the Binding
panel).

The Borders tab allows you to change the visual appearance of the
Crosstab. Click a border in the ‘Crosstab Grid’ area to define crosstab
border formatting.

REPORT DESIGN

747 of 2477

6.6 Binding Data to a Chart Element
This section explains how to bind a chart to a data source, set ranking order,
aggregation method, and chart style. For information on setting conditions,
see Filtering Data in a Table.

See Also
Binding Data to a Chart Element, for more details chart on data binding.
Chart Properties, for information on setting formats and controlling
appearance.

6.6.1 Binding a Chart to a Data Source

After you have added a new chart element to the report (see Adding a
Chart Element), follow the steps below to bind the chart to a data source:

1. Click on the chart to select it. This opens the Data Source panel
and the Binding panel.

2. Drag a field from the desired query or data model in the Data
Source panel onto the ‘X’ field in the Binding panel.

REPORT DESIGN

748 of 2477

This field provides the chart’s X-axis data, and the field name is
automatically used as the axis label. The X-axis field should
generally be configured as a dimension. See Editing Dimensions
and Measures for more information.

Ranking requires a
measure to be defined
(next step). To rank a
dimension based on a
measure that is not
displayed in the chart,
see Adding a Non-
Displaying Measure
to a Chart.

3. Click the ‘Edit Dimension’ button, and select the desired ordering
and ranking for the X-axis data.

Tip: You can drag a
measure field from
the Data Source panel
directly onto the
Viewsheet grid to cre-
ate a Range Slider
component that filters
the chart data.

4. Drag a field from the desired query or data model in the Data
Source panel onto the ‘Y’ field in the Binding panel.

This field provides the Chart’s Y-axis data, and the field name is
automatically used as the axis label. The Y-axis field should
generally be configured as a measure. See Editing Dimensions and
Measures for more information.

5. Click the ‘Edit Measure’ button, and select the desired aggregation
method for the Y-axis data.

REPORT DESIGN

749 of 2477

6. For a line-type chart or map-type chart (see Setting the Chart Style),
optionally drag a field to the ‘P’ region. The values in this path
field are used to assign the sort order for the plotted data.
Connecting lines are drawn between points which are adjacent in
the path sort order, rather than between points which are adjacent
on the axis.

See the next sections for information about changing other aspects of the
chart, including visual properties, labeling, and sub-series.

Example: Chart
Data Binding

In this example, you will create a chart that displays Sales vs. State.

1. Create a new blank tabular report. (See Creating a Blank Report
Template.)

2. Add a text element at the top of the report. Set the text to “Total
Sales by State”. Center the text, and make the font Bold 14-point.
This will be the chart title.

3. Click the ‘Chart’ button to add a blank chart to the report.

4. Click on the chart to select it. This opens the Data Source panel
and the Binding panel.

5. Under the Data Source tab, expand the ‘Orders’ data source, and
expand the ‘sales by state’ query.

6. Drag the ‘State’ field from the ‘sales by state’ query onto the ‘X’
field in the Binding panel.

7. Drag the ‘Sales’ field from the ‘sales by state’ query onto the ‘Y’
field in the Binding panel.

REPORT DESIGN

750 of 2477

8. Click the ‘Edit Dimension’ button next to the ‘State’ field.

9. From the ‘Ranking’ menu, select ‘Top’, enter “2” for the number of
groups, and select ‘Sum(Sales)’ for the aggregate.

This specifies that the chart should display only the top two state
records, according to their sales.

10. Click the ‘Apply’ button (green arrow).

11. Click the ‘Preview’ button in the Style Studio toolbar to view the
report.

REPORT DESIGN

751 of 2477

¢

See Also
Text Element, for more information about text properties.
Binding a Chart to Geographical Data (Map), for instructions on
representing geographic data.
Editing Dimensions and Measures, for more information on ranking and
ordering.
X-Axis Label Property, Y-Axis Label Property, to modify chart labels.
Adding a Sub-Series, for information on using the ‘Visual’ panel.

6.6.2 Working with Multiple Measures and Subseries

To plot multiple datasets on the same chart, simply drag multiple measures
into the ‘Y’ field of the Binding panel. To break out a dataset into a
subseries, drag the desired subseries dimension into one of the fields in the
‘Visual’ panel (‘Color’, ‘Shape’, ‘Size’, ‘Text’).

The following sections explain how to work with multiple datasets and
subseries.

Setting a Chart Style for an Individual Dataset

To set the chart style for an individual dataset on a multi-dataset chart,
follow the steps below:

1. Click on the chart to select it. This opens the Chart Editor.

Note: The ‘Auto’
chart type automati-
cally selects an appro-
priate chart type for
the provided data.

2. In the Binding panel of the Chart Editor, press the ‘Select Chart
Type’ button. This opens the chart styles panel.

REPORT DESIGN

752 of 2477

3. In the chart styles panel, enable the ‘Multiple Styles’ option (below
the chart style options).

This automatically closes the panel, and enables you to set styles
individually for each data set.

4. Press the ‘Select Chart Type’ button next to dataset you wish to
change.

This opens the chart styles panel for the specified dataset.

Note: Only certain compatible style combinations can be selected
(e.g., Pie style and Line style are incompatible).

5. Click a chart type to select it, and then click the ‘Apply’ button.
(You can also double-click the desired chart type.)

See Also
Setting the Chart Style, for information on setting a single style for all
datasets.

Single Chart vs. Separate Charts

By default, when you specify two datasets on the Y-axis, the datasets are
plotted on two adjacent sets of axes. If you want the two datasets to appear
on the same set of axes, follow the steps below:

REPORT DESIGN

753 of 2477

1. Click on the chart to select it. This opens the Binding panel.

2. Click the ‘Switch to Single Graph’ button.

The graph must be in
single-graph style to
use a secondary axis.

3. (Optional) To display a dataset on the right-side secondary Y-axis,
follow these steps:

a. Click the ‘Edit Measure’ next to the measure that you wish to
display against the secondary Y-axis.

b. Enable the ‘Secondary Axis’ option at the bottom of the panel.

c. Click the ‘Apply’ button (green arrow).

To return to the multiple axis style, click the corresponding ‘Switch to
Separate Graph’ button.

Adding a Sub-Series

A sub-series represents an additional level of grouping within an individual
dataset or measure. Beyond the categories represented by the X-axis labels,
the subseries breaks an individual measure down into a secondary level of
categories.

REPORT DESIGN

754 of 2477

You can create a subseries with or without visual formatting.

Adding a Visually-Formatted Subseries

To add a visual-formatted subseries to an existing chart, follow the steps
below:

1. Click on the chart to select it. This opens the Data Source panel
and Binding panel.

2. Drag the desired subseries field from the Data Source panel to one
or more of the fields in the ‘Visual’ region of the Binding panel.

The ‘Color’ field distinguishes the subgroups by color. The ‘Shape’
field discriminates the subgroups by data point shape or fill pattern.
The ‘Size’ field discriminates the subgroups by the thickness (bar
and line) or size (point) of the representation element. The ‘Text’
field discriminates the subgroups by placement of appropriate text
labels.

3. Click the appropriate ‘Edit’ button (‘Edit Color’, ‘Edit Shape’,
‘Edit Size’, ‘Edit Text’), and select the desired representation. For
more information, see Representing Data With Color, Representing
Data With Shape, Representing Data With Size, and Representing
Data With Text.

REPORT DESIGN

755 of 2477

Ranking requires a
measure to be defined.

4. Click the ‘Edit Dimension’ button, and select the desired ordering
and ranking for the subseries values. (See Editing Dimensions and
Measures for more information.)

When you create a sub-series, this creates a corresponding legend as well.
For information on controlling the legend display, see Legend Property.
For information on further modifying the visual format of the subseries, see
Representing Data with Visual Formats.

Example: Adding
a Subseries

In this example, you will plot ‘Total Purchased’ vs. ‘State’ for a particular
dataset. Additionally, you will break down the sales in each region
according to ‘Category’. Therefore, ‘State’ will be the main grouping,
represented by the labels on the X-axis, and ‘Category’ will be the
subseries.

Follow the steps below:

1. Click the Chart element in the Toolbox panel to add a new chart to
the report.

2. Click on the chart to select it. This opens the Data Source panel
and Binding panel.

3. In the Data Source panel, expand the ‘Orders’ data source and the
‘All Sales’ query.

REPORT DESIGN

756 of 2477

4. From the Data Source panel, drag the ‘Company’ field onto the
‘X’ region in the Binding panel.

5. From the Data Source panel, drag the ‘Total’ field onto the ‘Y’
region in the Binding panel.

6. Click the ‘Edit Dimension’ button next to the ‘Company’ field.
Under Ranking, select the “Top 5 of Sum(Total)” to select just the
top five companies.

7. From the Data Source panel, drag the ‘Employee’ field onto the
‘Color’ region in the Binding panel.

This will create an ‘Employee’ subseries, differentiating the
employees with color, and will automatically create a
corresponding legend.

8. Click the ‘Preview’ button to display the resulting chart.

REPORT DESIGN

757 of 2477

Notice that data for the four different employees is now distinguished by
four different colors.

¢

See Also
Adding a Non-Formatted Subseries, for information on subseries without
format.
Legend Property, for information on controlling the legend display.
Representing Data with Visual Formats, for information about ordering
styles.

Adding a Non-Formatted Subseries

To add a subseries to an existing chart without visual formatting, follow the
steps below:

1. Click on the chart to select it. This opens the Data Source panel
and Binding panel.

2. Drag the desired subseries field from the Data Source panel to the
‘Break By (Dimension) / Tooltip (Measure)’ region of the Binding
panel.

REPORT DESIGN

758 of 2477

This creates a subseries without visual formatting and without a legend.
This is useful when you want to represent an additional dimension on the
chart without complicating the presentation.

See Also
Adding a Visually-Formatted Subseries, for information on subseries with
format.

Adding a Non-Displaying Measure to a Chart

In some cases, you may wish to add a non-displaying measure to a chart.
This is useful when you want to utilize the measure for purposes of ranking
or as part of a tooltip, but do not wish the measure to be displayed on the
chart itself.

To add a non-displaying measure to a chart, simply drag the desired
measure field to the ‘Break By (Dimension) / Tooltip (Measure)’ region.
This will add the measure to the chart tooltip, and make the measure
available for ranking.

REPORT DESIGN

759 of 2477

See Also
Custom Tooltip, for information on customizing the text in a tooltip.
Editing a Dimension, for information on ranking dimension values.

6.6.3 Representing Data with Visual Formats

You can represent data values using the following visual formats: Color,
shape/pattern, size, or text. These formats can be applied to an entire
dataset or to a subseries within a dataset.

The following sections explain how to add visual formats to a dataset. For
information on adding formats to subseries, see Adding a Sub-Series.

Adding a Fixed Visual Format

To add a fixed visual format (not keyed to data values), follow the steps
below:

1. If the chart contains multiple measures with individual styles, click
on one of the arrows in the ‘Visual’ panel title bar to select the par-
ticular measure that you want to format. (Or click the area between
the arrows to select the measure from a menu.)

If desired, select ‘all’ to apply visual formatting (selected in the
next step) to all measures.

REPORT DESIGN

760 of 2477

2. Click the ‘Edit’ button in one of the format fields in the ‘Visual’
region of the Binding panel: ‘Color’, ‘Shape’, ‘Size’.

3. Press the green ‘Apply’ button to apply the format.

Note: The available
shape options vary
depending on the
Chart type.

The following shapes are available for point-type charts:

To hide a measure’s data points in cases where the measure is being used to
anchor text on the chart, press the ‘Clear’ button on the ‘Shape’ panel. (The
‘Clear’ button is only available when the ‘Text’ field is in use.) See
Representing Data With Text for an example.

An administrator can make custom shapes available by placing image files
(png, gif, jpg) in the WEB-INF/classes/portal/shapes directory on the
server. The icons are sorted alphabetically by file name. Custom shape
images can be any size, and are scaled according to the ‘Size’ setting in the
Chart Editor.

See Also
Setting a Chart Style for an Individual Dataset, to assign individual styles
to multiple measures.
Adding Formats to Dimensions, for information on keying formats to
grouping.

REPORT DESIGN

761 of 2477

Adding Formats to Measures, for information on keying formats to data
values.
Adding a Sub-Series, for information on using format to create groupings.

Adding Formats to Dimensions

To add a visual format to a dimension, follow the steps below:

1. If the chart contains multiple measures with individual styles, click
on one of the arrows in the ‘Visual’ panel title bar to select the par-
ticular measure that you want to format. (Or click the area between
the arrows to select the measure from a menu.)

If desired, select ‘all’ to apply visual formatting (selected in the
next step) to all measures.

2. Drag the desired field from the Data Source panel to the desired
format field in the ‘Visual’ region (‘Color’, ‘Shape’, ‘Size’, or
‘Text’) of the Binding panel. This creates a new subseries using the
specified formatting.

REPORT DESIGN

762 of 2477

See Also
Editing Dimensions and Measures, to convert between measure and
dimension.
Setting a Chart Style for an Individual Dataset, to assign individual styles
to multiple measures.
Legend Property, for information on controlling the legend display.
Adding a Sub-Series, for information on using format to create groupings.

Adding Formats to Measures

To add a visual format to a measure, follow the steps below:

1. If the chart contains multiple measures with individual styles, click
on one of the arrows in the ‘Visual’ panel title bar to select the par-
ticular measure that you want to format. (Or click the area between
the arrows to select the measure from a menu.)

If desired, select ‘all’ to apply visual formatting (selected in the
next step) to all measures.

2. Drag the desired field from the Data Source panel to the desired
format field in the ‘Visual’ region (‘Color’, ‘Shape’, ‘Size’, or
‘Text’) of the Binding panel.

REPORT DESIGN

763 of 2477

By default, string-type measures are represented categorically. Other
measures are represented linearly unless you select the ‘Discrete’ option.
See Displaying a Measure as Discrete Values for more information.

See Also
Setting a Chart Style for an Individual Dataset, to assign individual styles
to multiple measures.
Editing Dimensions and Measures, to convert between measure and
dimension.

Representing Data With Color

To represent a dimension or measure using color, drag a field from the
Data Source panel to the ‘Color’ field in the ‘Visual’ region of the
Binding panel.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Color Coding to Dimensions

To specify the order in which the colors are applied to the levels of a
dimension, follow the steps below:

1. Click the ‘Edit’ button next to the ‘Color’ field. This opens the
color selection menu.

REPORT DESIGN

764 of 2477

2. Press the ‘Select Palette’ button to open the ‘Select Palette’ dialog
box.

If the selected palette
does not contain
enough colors to rep-
resent all of the dis-
tinct data groups,
additional groups will
be represented by col-
ors from the default
palette.

3. Select the desired palette from ‘Select Palette’ the menu, and click
‘OK’.

4. Click on the color chips to create the desired color order.

5. Click the ‘Apply’ button (green triangle) to finalize the setting.

To reset the color order, click the ‘Reset’ button on the color menu. To
synchronize the color mapping to that of other charts (in the report) which
display the same dimension, click the ‘Shared’ button in the color panel.

To specify one or more custom palettes using your own color choices,
create a file called colorpalettes.xml in the portal directory of the working
repository (WEB-INF\classes\portal, by default). The structure of the file
should be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<palettes>
<palette name="MyPalette_1">
<colors>
<color value="#ff0000"/>
<color value="#00ff00"/>
<color value="#0000ff"/>

...
<color value="#00ffff"/>

REPORT DESIGN

765 of 2477

</colors>
</palette>
<palette name="MyPalette_2">
<colors>
<color value="#000000"/>
<color value="#222222"/>
<color value="#444444"/>

...
<color value="#eeeeee"/>

</colors>
</palette>

</palettes>

If you designate a custom palette which has the same “palette name” as
one of the built-in palettes, the custom palette will be used in place of the
built-in palette.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Color Coding to Measures

To specify the manner in which colors are used to code measure values,
follow the steps below:

1. Click the ‘Edit’ button next to the ‘Color’ region of the Binding
panel. This opens the color selection menu.

2. Select a gradient style for the color coding. If required, click the
color chip to specify the desired color.

3. Click the ‘Apply’ button (green arrow) to finalize the setting.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

REPORT DESIGN

766 of 2477

Representing Data With Shape

To represent data using fill pattern or shape, drag a field from the Data
Source panel to the ‘Shape’ region in the Binding panel.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Shape Coding to Dimensions

To specify the order in which the patterns/shapes are applied to the levels of
a dimension, follow the steps below:

1. Click the ‘Edit’ button next to the ‘Shape’ field. This opens the
shape selection menu.

Note: The available
shape options depend
upon the Chart type.

2. Click on the individual shape menus to create the desired pattern/
shape order. The following shapes are available for point-type
charts:

An administrator can make custom shapes available by placing the
image files (png, gif, jpg) in the WEB-INF/classes/portal/shapes
directory on the server. The icons are sorted alphabetically by file
name. Custom shape images can be any size, and are scaled
according to the ‘Size’ setting in the Chart Editor.

3. Click the ‘Apply’ button (green arrow) to finalize the setting.

To reset the shape order, click the ‘Reset’ button on the shape menu. To
synchronize the shape mapping to that of other charts (in the report) which
display the same dimension, click the ‘Shared’ button in the shape panel.

REPORT DESIGN

767 of 2477

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Shape Coding to Measures

To specify the manner in which shapes are used to code the measure
values, follow the steps below:

1. Click the ‘Edit’ button next to the ‘Shape’ field. This opens the
shape selection menu.

Note: The available
shape options depend
upon the Chart type.

2. Select a pattern style for the value coding.

For the ‘Left Tilt’, ‘Right Tilt’ and ‘Grid’ options, the density of the
pattern represents the measure value. For the ‘Orientation’ option,
the angle of the hashing represents the measure value.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Representing Data With Size

To represent a dimension or measure using size, drag a field from the Data
Source panel to the ‘Size’ region in the Binding panel.

To specify the range of sizes that should be used in representing the levels
of a dimension or values of a measure, follow the steps below:

1. Click the ‘Edit’ button next to the ‘Size’ field. This opens a size
range slider.

REPORT DESIGN

768 of 2477

2. Adjust the sliders to select the smallest and largest element size.

3. Click ‘Apply’ to finalize the setting.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Representing Data With Text

To display dimension or measure values using text, drag the desired field
from the Data Source panel to the ‘Text’ region in the Binding panel.

Note: By default,
dimension and mea-
sure values are auto-
matically displayed
by tooltip when the
report is deployed.

To format the text displayed for the dimension or measure, follow the steps
below:

1. Click the ‘Edit’ button next to the ‘Text’ field. This opens the ‘Text
Format’ dialog box.

2. Select the text size, font, and color.

3. Select the format for the displayed text. See Formatting for an
explanation of the format options.

4. Click ‘OK’ to finalize the settings.

Example: :
Superimposing
Measure Values
Over a Bar Chart

When you display a measure on a chart as text, the text is placed next to the
corresponding data points. For example, in the chart below (based on the
‘Order Model’ data model), the bars represent the ‘Total’ values, and the
‘Text’ binding (in the Visual panel) displays the ‘Quantity Purchased’
values as text next to the bars.

REPORT DESIGN

769 of 2477

In some cases, it may be desirable to display the ‘Quantity Purchased’
value superimposed on top of the bars:

To do this, you can introduce a dummy measure to act as an anchor for the
text. Follow the steps below to create this example:

1. Create a new report and add a Chart component from the Toolbox
panel into the report.

2. Click on the Chart to select it. In the Data Source panel, expand
the ‘Orders’ data source and expand the ‘Order Model’.

3. From the Data Source panel, drag the ‘State’ field from the
‘Customer’ entity to the ‘Y’ region of the Data panel.

4. From the Data Source panel, drag the ‘Total’ field from the
‘Product’ entity to the ‘X’ region of the Data panel.

5. In the Data Source panel, right-click on the ‘Order Model’, and
select ‘Create Calculated Field’.

REPORT DESIGN

770 of 2477

This opens the ‘Formula’ dialog box.

6. Name the field ‘TextAnchor’ and set the ‘Return Data Type’ to
‘Double’. Press the ‘Edit’ button to open the Script Editor.

7. In the Script Editor, enter the formula “1”, and press ‘Save and
Close’. Press ‘OK’ in the ‘Formula’ dialog box.

This creates a new measure that has the uniform value “1”. You
will use this measure to anchor the ‘Quantity Purchased’ values to
the left side of the plot region.

8. Drag the new ‘TextAnchor’ measure from the Data Source panel
to the ‘X’ region of the Data panel, under the ‘Total’ field.

9. Press the ‘Select Chart Style’ button, and enable the ‘Multiple
Styles’ option. Press the green ‘Apply’ button to close the panel.

REPORT DESIGN

771 of 2477

10. Press the ‘Select Chart Style’ button next to the ‘Total’ field, and
switch the chart style to ‘Bar’.

11. Press the ‘Select Chart Style’ button next to the ‘TextAnchor’ field,
and switch the chart style to ‘Point’.

12. Press the ‘Switch to Single Graph’ button to place both data sets on
the same axis.

13. In the Properties tab of the Report Element panel, set
‘LegendPosition’ to ‘(none)’.

14. In the Visual panel, click the title bar between the arrows and select
the ‘Sum(TextAnchor)’ measure.

REPORT DESIGN

772 of 2477

15. From the Data Source panel, drag the ‘Quantity Purchased’ field
from the ‘Product’ entity to the ‘Text’ region of the Visual panel.

16. In the Visual panel, press the ‘Edit’ button in the ‘Shape’ region,
and press the ‘Clear’ button. This hides the points for the
‘TextAnchor’ measure.

17. In the Visual panel, press the ‘Edit’ button in the ‘Color’ region,
and set a black color for the text.

18. Right-click on the chart and select ‘Script’. Enter the following
script in the Editor, and press ‘Save and Close’.

graph.getElement(1).setLabelPlacement(GraphConstants.RIGHT)

REPORT DESIGN

773 of 2477

This sets the alignment appropriately, and yields the desired result:

¢

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

6.6.4 Setting the Chart Style

To set the style of the chart (one style for all datasets), follow the steps
below:

Note: The ‘Auto’
chart type automati-
cally selects an appro-
priate chart type for
the provided data.

1. In the Binding panel of the Chart Editor, click the ‘Select Chart
Type’ button.

REPORT DESIGN

774 of 2477

2. (Optional) Select the ‘Stack’ option at the bottom of the panel to
view the stack-type charts.

3. Click a chart type to select it, and then click the ‘Apply’ button.
(You can also double-click the desired chart type.)

Chart Examples

The following sections provide examples of how to create charts in
different styles.

Creating a Pie Chart

This example illustrates how to create a pie chart. Follow the steps below to
create a pie chart that displays Total Sales according to Year.

1. Create a new report, and add a blank chart element. Click the chart
to open the Chart Editor.

2. In the Data Source panel, expand the ‘Global Worksheet’ node,
and expand the ‘Tutorial’ folder and the ‘ProductSales’ Data
Worksheet.

REPORT DESIGN

775 of 2477

3. From ‘ProductSales’ Data Worksheet, drag the ‘Total’ field from
the Data Source panel to the ‘Y’ region of the Binding panel.

4. Drag the ‘Month(Date)’ field from the Data Source panel to the
‘Color’ region of the Visual panel.

5. Click the ‘Select Chart Type’ button in the Binding panel, and
choose ‘Pie’. This converts the chart into a pie-chart representation.

REPORT DESIGN

776 of 2477

6. Add the respective year values to the pie slices: Drag the
‘Month(Date)’ field from the Data Source panel to the ‘Text’
region of the Visual panel.

7. (Optional) Remove the legend. Follow the steps below:

a. Right-click the chart and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

b. Right-click on the legend, and select ‘Hide Legend’ from the
context menu.

REPORT DESIGN

777 of 2477

c. Press ‘OK’ to close the dialog box.

8. Preview the chart.

The pie chart is now complete. To place a small gap between the slices, set
the ‘Explode Pie’ plot property. See Plot Property for more information.

Creating a Candle Chart

A candle chart displays four different measures, “low,” “high,” “opening,”
and “closing,” and is most often used to plot trading information. A candle
chart is functionally similar to a stock chart.

To create a candle chart that displays the averaged high, low, opening, and
closing prices by quarter, follow the steps below:

1. Create a new report, and add a blank chart element. Click the chart
to open the Chart Editor.

2. In the Data Source panel, expand the ‘Stock History’ node, and
expand the ‘Stock Prices’ query.

3. Drag the ‘Date’ field from the ‘Stock Prices’ query to the ‘X’
region of the Binding panel.

4. Press the ‘Edit Dimension’ button next to the ‘Date’ field, and
choose ‘Quarter’ from the ‘Level’ menu. Then press the green
‘Apply’ button.

REPORT DESIGN

778 of 2477

5. Drag the ‘High’ field of the ‘Stock Prices’ query to the ‘Y’ region
of the Binding panel.

6. Press the ‘Select Chart Style’ button in the Binding panel, and
select the ‘Candle’ style. Press the green ‘Apply’ button.

Note that the Binding panel now provides binding regions for
‘High’, ‘Close’, ‘Open’, and ‘Low’.

7. Drag the ‘Close/Last’, ‘Open’, and ‘Low’ measures from the
‘Stock Prices’ data block to the appropriate regions of the Binding
panel, as shown below.

REPORT DESIGN

779 of 2477

8. Press the ‘Edit Measure’ button next to the ‘High’ field, and choose
‘Average’ from the ‘Aggregate’ menu. Then press the green
‘Apply’ button.

9. Repeat the above step to set the aggregate to ‘Average’ for the other
measures: ‘Close/Last’, ‘Open’, and ‘Low’.

10. Preview the chart.

11. To observe the structure of the chart more closely, set a condition
on the chart to limit the date range (e.g., limit to the second half of
2002), enlarge the chart element, and/or change the axis limits.

REPORT DESIGN

780 of 2477

Note that for each quarter, the values of each of the measures (High, Low,
Close/Last, Open) have been independently averaged. The “high” and
“low” measures are represented by the extremes of the candle “wick,” and
the “open” and “close” measures are represented by the extremes of the
candle “body.” Candles for which the “open” measure exceeds the value of
the “close” measure are shown filled. Candles for which the “close”
measure exceeds the value of the “open” measure are shown unfilled.

See Also
Binding a Chart to Geographical Data (Map), for details on binding
geographical data.
Setting a Chart Style for an Individual Dataset, to set distinct styles for
individual datasets.

Creating a Table-Chart Hybrid

This example illustrates how to create a chart that has features of a table, in
particular, a columnar display of data. Follow the steps below:

1. Create a new report. Drag a Chart element from the Toolbox panel
into the report.

2. Click on the Chart to open the Chart Editor.

3. In the Data Source panel, expand the ‘Data Source’ node, then
expand the ‘Orders’ data source, and then expand the ‘Order
Model’.

4. From the Data Source panel, drag the ‘Total’ field of the ‘Product’
entity to the ‘X’ region of the Data panel.

5. From the Data Source panel, drag the ‘Category’ field of the
‘Product’ entity to the ‘Y’ region of the Data panel.

REPORT DESIGN

781 of 2477

6. From the Data Source panel, drag the ‘Quantity Purchased’ field
of the ‘Product’ entity to the ‘Y’ region of the Data panel (under
‘Category’).

7. Press the ‘Edit Measure’ button next to ‘Quantity Purchased’. Set
the ‘Aggregate’ property to ‘Sum’ and enable the ‘Discrete’ option.
This allows the measure to behave as a dimension.

8. Press the green ‘Apply’ button.

Preview the report and observe that the chart now displays a
column of values giving the aggregated ‘Quantity Purchased’ value
for each ‘Category’ group.

9. From the Data Source panel, drag the ‘Discount’ field of the
‘Order’ folder to the ‘Y’ region of the Data panel (under ‘Quantity
Purchased’).

REPORT DESIGN

782 of 2477

10. Press the ‘Edit Measure’ button next to ‘Discount’. Set the
‘Aggregate’ property to ‘Average’ and enable the ‘Discrete’ option.
This again allows the measure to behave as a dimension

11. Press the green ‘Apply’ button.

Preview the report and observe that the chart now displays a
column of values giving the aggregated ‘Discount’ value for each
‘Category’ group.

12. Right-click on the chart, and select ‘Properties’ to open the ‘Chart
Properties’ dialog box.

13. Click in the plot area to open the ‘Plot Property’ panel below.

14. Enable the ‘Show Table Grid’ option, and press ‘Apply’. This
displays grid lines around the plot area, and around each text
column.

REPORT DESIGN

783 of 2477

15. Drag on the boundaries between columns to adjust the spacing
between the columns as desired.

16. Click on each column of text in turn and set the desired formatting
in the ‘Axis Label Property’ panel below. (See Formatting for
more information about formats.)

For example, set a number format for the ‘Quantity Purchased’
column and set a percent format for the ‘Discount’ column. Center-
align both of these columns, and left-align the ‘Category’ column.

17. Right-click the X-axis title, and select ‘Hide Title’ from the context
menu. Do the same for the Y-axis title.

18. Press ‘OK’ to close the ‘Chart Properties’ dialog box, and preview
the report.

REPORT DESIGN

784 of 2477

19. Resize the chart as desired. Add text elements above the chart to
provide any desired column headers. (For precise positioning,
place the text elements within a Section Element.)

Creating a Dot Plot

A dot plot represents a measure by its individual data points (without
aggregation). This type of chart can be useful when the dataset is very
small, with fewer than approximately 20 data points for each dimension
value.

Note: If the dataset contains too many records, the chart will not
be able to display all of the data points.

In this example, you will create a dot plot that displays the companies in
each state. Follow the steps below:

1. Create a new report and add a Chart to the report. Click on the
Chart to open the Chart Editor.

2. In the Data Source panel, expand the ‘Data Source’ node, and
expand the ‘Orders’ data source.

3. Expand the ‘customers’ query, and drag the ‘state’ field from the
Data Source panel to the ‘X’ region of the Data panel.

4. Drag the ‘customer_id’ field from the Data Source panel to the
‘Break By’ region of the Data panel.

REPORT DESIGN

785 of 2477

Alternatively, you can drag the ‘customer_id’ field to the ‘Color’,
‘Shape’, or ‘Size’ regions of the Visual panel if you wish to
distinguish the data points using a visual format.

5. Press the ‘Select Chart Style’ button in the Data panel. Select the
‘Point’ type chart, and enable the ‘Stack’ option. Press the green
‘Apply’ button.

6. Press the ‘Edit Measure’ button next to ‘customer_id’. Set the
‘Aggregate’ property to ‘None’, and press the green ‘Apply’
button.

7. Preview the report. You have now created a basic dot plot.

REPORT DESIGN

786 of 2477

8. (Optional) Right-click on the chart and select ‘Properties’ from the
context menu. This opens the ‘Chart Properties’ dialog box. In the
diagram in the ‘Chart Properties’ dialog box, right-click the Y-axis
title and select ‘Hide Title’ from the context menu. Press ‘OK’ to
close the dialog box.

9. (Optional) Drag the ‘company_name’ field from the Data Source
panel to the ‘Break By’ region of the Data panel. Place it under the
existing ‘customer_id’ field.

This allows the chart tooltip to display both the ‘customer_id’ and
‘company_name’ values. (The tooltip is available when the report
is displayed in the User Portal.)

To further customize the tooltip, see Custom Tooltip.

6.6.5 Binding a Chart to Geographical Data (Map)

You can bind a chart to a datasource containing geographical data to create
a map chart. A map chart displays summarized data grouped by physical

REPORT DESIGN

787 of 2477

location in the form of a geographical map. It has many of the same
properties of other chart types, but also differs in some ways. The following
sections explain how to create and modify map charts.

To create a map chart, first add a chart element to the report. (See Adding a
Chart Element for more details.) Then follow the steps below to bind the
chart to a data source:

1. Click on the chart to select it. This opens the Data Source panel
and Binding panel.

2. In the Binding panel, click ‘Select Chart Style’, and choose the
‘Map’ chart type.

3. Click the ‘Apply’ button (or double-click the ‘Map’ icon). The
Binding panel changes to display a ‘Geographic’ field.

If your columns con-
tain longitude and lat-
itude data (in decimal
format) rather than
location names, use
the X (Longitude) and
Y (Latitude) fields of
the Binding panel.

4. From the Data Source panel, drag a geographic dimension onto
the ‘Geographic’ field in the Binding panel.

5. To change the default map settings (default map is ‘World’, and
default level is ‘City’), click the red “?” button to open the
geographic level editor.

REPORT DESIGN

788 of 2477

The map that you
select for a geo-
graphic field applies
to all other geographi-
cal fields.

6. In the level editor, select the desired region from the ‘Map’ menu:
Asia, Canada, Europe, Mexico, U.S., or World.

7. From the ‘Layer’ menu, select the geographical layer that
corresponds to the data in the selected field.

This specifies the layer of the geographical database against which
field values should be matched (e.g., city names should be matched
against the city layer, etc.). The options available in the ‘Layer’
menu depend on the previously selected ‘Map’ option.

8. From the ‘Mapping’ menu, select the desired mapping definition.
The options will include “Built-in” and any custom mappings.

The Chart Editor attempts to resolve values in the selected
geographic field against the corresponding layer in the map
database. If all data values are successfully matched, a green check
mark is displayed. If some data values cannot be matched, a red “?”
is displayed.

9. To resolve any unmatched names, click the red question mark. This
opens the ‘Geographical Mapping’ dialog box. See Resolving
Geographical Data for further instructions.

10. Click the green ‘Apply’ button.

11. Repeat the previous steps to bind additional ‘Geographic’ levels.
For example, you can bind ‘City’ and ‘State’ fields.

12. From the Data Source panel, drag a measure onto one of the fields
in the ‘Visual’ region of the Binding panel (‘Color’, ‘Shape’,
‘Size’, or ‘Text’).

REPORT DESIGN

789 of 2477

This binding will display the measure on the chart using the visual
coding you selected, and automatically creates a corresponding
legend. See Adding a Sub-Series for more information on using the
‘Visual’ panel.

13. Click the ‘Edit Measure’ button, select the desired aggregation
method for the measure, and click ‘Apply’.

14. (Optional) For any geographical fields that you specified, click the
‘Edit Dimension’ button, and select the desired ranking for the
geographical data. For example, you can display just the top three
states according to the measure. Click ‘Apply’.

15. (Optional) To create a particular trajectory through the points on
the chart, drag a path field to the ‘P’ region. The values of this field
are used to assign the sort order for the plotted data so that

REPORT DESIGN

790 of 2477

connecting lines are drawn between points which are adjacent in
the path sort order.

16. Click ‘Finish’ to close the ‘Data Binding’ dialog box.

See Also
Resolving Geographical Data, for information on specifying a new
mapping.
Creating a Custom Map, in Administration Reference, to create a map
based on a custom shapefile.
Chart Properties, for information on changing chart labels.
Adding a Sub-Series, for information on using the ‘Visual’ panel.

Resolving Geographical Data

When you specify a geographical field, the data binding attempts to resolve
values in the field against the corresponding layer in the map database. If
all data values are successfully matched, a green check mark is displayed.
If some data values cannot be matched, a red question mark (“?”) is
displayed.

When the data binding cannot automatically match your geographical data
to the locations in the geographical database, you can use the ‘Geographic
Mapping’ dialog box to manually create the correct mapping.

To set the mapping for geographical data, follow the steps below.

1. Click the red question mark. This opens the ‘Geographical
Mapping’ dialog box.

a. Select one of the unmatched names in the top-left panel. The
right panel displays a list of candidate matches.

b. If the list does not contain the intended match, select another
matching method from the ‘Algorithm’ menu.

c. Select the correct match and click the ‘Add’ button.

REPORT DESIGN

791 of 2477

This creates the desired mapping between the data value and the
geographical information in the map database.

2. Repeat the above steps until all values have been matched. (You
can match multiple data values to a single geographical location.)

3. (Optional) When you have completed making all matches, press
‘Save’ to save the mapping for future use. The next time you create
a map chart, you can select the saved mapping from the ‘Mapping’
menu in the geographical editing panel.

4. Press ‘OK’ to close the dialog box.

5. Press the ‘Apply’ button in the geographical editing panel.

Example:
Resolving
Geographical
Data

In this example, you will create a Worksheet Data Block that contains state
names that have an unusual format. Because of the unusual format, you
will need to manually map these state name to the correct geographical
locations.

This example assumes that you are familiar with Data Worksheets,
and requires some scripting. See Creating an Expression/Formula
Column in Data Mashup for complete information.

1. Click the ‘Open’ button in the Style Studio toolbar.

2. In the ‘Open’ dialog box, select the Worksheet tab.

3. Expand the ‘Tutorial Folder’ and select the ‘US Sales’ Worksheet.
Click ‘OK’ to open the Worksheet.

4. Save a copy of the worksheet as ‘US Sales Copy’. (See Data
Mashup for details on opening and saving Worksheets.)

REPORT DESIGN

792 of 2477

5. In the ‘US Sales Copy’ Worksheet, create a formula column that
contains variations of the state names in the ‘State’ column. Follow
the steps below:

a. Click the ‘Create Expression’ button in the title bar of the
‘Sales’ table.

b. When Style Studio prompts you for the expression name, enter
‘New State’ for ‘Expression Name’. Click ‘OK’ to open the
Formula Editor.

c. Deselect the ‘SQL’ option. The formula will use JavaScript
syntax rather than SQL.

d. In the Formula Editor, enter an expression that will change two
of the names in the ‘State’ column:

if (field['State'] == 'NJ') {
'Jersey';

}
else if (field['State'] == 'CT') {

'Conn';
}
else {

field['State']
}

This simply changes the values ‘NJ’ and ‘CT’ to ‘Jersey’ and
‘Conn’ in the expression column, respectively, leaving all other
state values the same.

Note: Click the ‘Show
Live Data’ button in
the table title bar to
view the actual data.

e. Click ‘OK’ to exit the Formula Editor. This creates the new
column called ‘New State’.

6. Save the Worksheet.

7. Create a new report, and add a chart.

8. Click the chart to select it. This opens the Data Source panel and
Binding panel.

REPORT DESIGN

793 of 2477

9. In the Binding panel, click ‘Select Chart Style’, and choose the
‘Map’ chart type. Click the ‘Apply’ button (or double-click the
‘Map’ icon).

The Binding panel changes to display a ‘Geographic’ field.

If your columns con-
tain longitude and lat-
itude data (in decimal
format) rather than
location names, use
the ‘Longitude’ and
‘Latitude’ fields of the
Binding panel.

10. In the Data Source panel, expand the ‘Global Worksheet’ node,
and expand the ‘US Sales Copy’ Worksheet.

11. Drag the ‘New State’ dimension onto the ‘Geographic’ region in
the Binding panel.

Note the red “?” that appears beside the field name. This indicates
that at least some geographical names in that field could not be
successfully matched.

12. Click the red “?” to open the geographical editing panel.

13. Select ‘U.S.’ from the ‘Map’ menu, and select ‘State’ from the
‘Layer’ menu.

REPORT DESIGN

794 of 2477

14. Click the red “?” next to the ‘Mapping’ field to open the
‘Geographical Mapping’ dialog box.

Observe that in the left panel of the ‘Geographical Mapping’ dialog
box, two states are not mapped: ‘Jersey’ and ‘Conn’.

15. Resolve these unmatched states manually. Follow the steps below:

If the suggestions are
unsatisfactory, select a
different matching
method from the
‘Algorithm’ menu.

a. In the left panel, select the state ‘Conn’. The right panel suggests
a set of likely matches.

b. Select the correct match (‘Connecticut’), and click the ‘Add’
button. This creates a new mapping between the value ‘Conn’

REPORT DESIGN

795 of 2477

and the location ‘Connecticut’, and removes ‘Conn’ from the
left panel.

c. Click ‘Jersey’ in the left panel. The right panel suggests a set of
likely matches.

d. Select the correct match (‘New Jersey’), and click the ‘Add’
button. This creates a new mapping between the value ‘Jersey’
and the location ‘New Jersey’, and removes ‘Jersey’ from the
left panel.

16. Since all unmatched locations have now been resolved, click ‘OK’
to close the ‘Geographic Feature Names’ dialog box.

17. Click ‘Apply’ in the geographical editing panel for the ‘New State’
field.

18. In the Data Source panel, drag the ‘Quantity Purchased’ measure
from Worksheet to one of the ‘Visual’ regions (‘Color’, ‘Shape’,
etc.) in the Binding panel.

19. Preview the report to display the completed map chart.

¢

Using Latitude and Longitude Data

You can use raw latitude and longitude to designate location, rather than
specifying place names (city, state, etc.). The following example provides
an illustration.

Walkthrough In this example, you will label a map with a list of landmarks along
Historic Route 66. The locations of the landmarks are provided by a
Worksheet Data Block containing raw latitude and longitude. Follow the
steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

REPORT DESIGN

796 of 2477

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’, and click ‘OK’. This opens a new report
for editing.

3. From the Style Studio Toolbox panel, drag a Chart component into
the report. This opens the Data Source and Binding panels.

4. In the Binding panel, click the ‘Select Chart Style’ button. From
the pop-up panel, select the ‘Map’ style, and click the green
‘Apply’ button.

5. In the Data Source panel, expand the ‘Global Worksheet’ node.
Expand the ‘Tutorial’ > ‘Map Points’ Worksheet node.

The ‘Long’ field con-
tains longitude values.

6. From the ‘Map Points’ Worksheet node, drag the ‘Long’ field to
the ‘X’ region of the Binding panel.

The ‘Lat’ field con-
tains latitude values.

7. From the ‘Map Points’ Worksheet node, drag the ‘Lat’ field to the
‘Y’ region of the Binding panel.

REPORT DESIGN

797 of 2477

8. In the Binding panel, click the ‘Edit Map Type’ button next to the
‘Long’ field. From the ‘Map’ menu, select ‘U.S.’, and click the
green ‘Apply’ button

9. Preview the report. Observe how data points now mark the
locations specified by the latitude and longitude data, and outline
the progression of Historic Route 66.

10. To add the landmark labels to the points on the map, return to the
design view. Drag the ‘Name’ field from the Data Source panel to
the ‘Text’ field in the Binding panel.

REPORT DESIGN

798 of 2477

11. Preview the report again.

Transforming Longitude/Latitude for Alaska and Hawaii

For convenience, the default ‘U.S.’ map does not display Alaska and
Hawaii in their geographical locations, but shifts and (in the case of Alaska)
re-scales them to an inset position below California. For this reason, you
should transform your raw latitude and longitude data for Alaska and
Hawaii prior to generating the chart.

To remap your raw longitude and latitude data, [long lat], to the corrected
values, [long' lat'], apply the following matrix transformations:

Figure 19. Transformation for Alaska

Figure 20. Transformation for Hawaii

6.6.6 Editing Dimensions and Measures

In a Chart data binding, fields are classified as “measures” and
“dimensions.” Typically, dimensions contain categorical data and are

long
lat
1

0.204 0 85.0–

0 0.354 5.0

0 0 1

long

lat

1

=

long
lat
1

1 0 50.0

0 1 5.0

0 0 1

long

lat

1

=

REPORT DESIGN

799 of 2477

plotted against the X-axis, while measures contain numerical data and are
plotted against the Y-axis data.

Measures and dimensions have different properties. Dimension data can be
sorted and ranked, while measure data can be aggregated by various
methods. The following sections explain how to edit dimensions and
measures.

Editing a Dimension

To edit the properties of a dimension in a chart, follow the steps below:

1. Click on the chart to select it. This opens the Data Source panel
and the Binding panel.

2. Click the ‘Edit Dimension’ button next to the desired field in the
Binding panel, and select the desired sorting or ranking option.

3. Click the ‘Apply’ button (green arrow).

Note: A measure must
be defined in order to
rank or sort by value.

The following settings are available:

Sort

Change the ordering of the X-axis labels:
None: Use the default label order.
Ascending: Place the labels in alphabetically ascending order.
Descending: Place the labels alphabetically descending order.
By Value(Asc): Place the labels in ascending order based on the
selected measure.
By Value(Desc): Place the labels in descending order based on the
selected measure.
Manual: Click the ‘Edit’ button to open the ‘Manual Ordering’
dialog box, and manually reorder the X-axis labels. This
automatically creates a custom named grouping with the desired
ordering. To remove the manual sort, simply clear the named
grouping. (See below.)

Ranking

Filter the axis labels by aggregate measure value.
None: No ranking of X-axis labels.
Top: Select the top N labels based on the selected measure.
Bottom: Select the bottom N labels based on the selected measure.

REPORT DESIGN

800 of 2477

Editing a Measure

To edit the representation of a measure, follow the steps below:

1. Click on the chart to select it. This opens the Data Source panel
and the Binding panel.

2. Click the ‘Edit Measure’ button next to the desired field in the
Binding panel, and select the desired measure options.

3. Click the ‘Apply’ button (green arrow).

The following settings are available:

Named
Group

Select a predefined named group from a Data Worksheet (see
Creating a Named Grouping in Data Mashup), or specify a custom
named grouping. See Named Groups for information on how to
design a named grouping.

Level

Set the grouping level for dates. Note the distinction between
options such as ‘Month’ and ‘Month of Year’: The ‘Month’ option
groups each date according to composite month and year, e.g.,
Jan’07, Feb’07, ..., Dec’07, Jan’08, Feb’08, ..., Dec’08. The ‘Month
of Year’ option groups each date strictly on the month component,
e.g., Jan, Feb, ..., Dec, so that each group may include data from
multiple years. Likewise, for the other ‘of Year/of Month/of Week/
of Day’ options.

As time
series

Specifies that gaps in Date data should be retained. For example, if
the data in the chart is grouped by month, and there is no data for the
month of June, the ‘As time series’ property ensures that the month
of June is still retained in the chart. To change the way that the gap
is displayed, see Plot Property.

Aggregate The method by which measure data should be aggregated to
generate Y-axis values. See Summarization Formulas for a
description of the methods.

With For bivariate aggregations (such as ‘Covariance’ and ‘Correlation’),
the second operand.

Percentage
of

For univariate aggregations, the value on which percentage
representations should be based.

Calculate The computation that determines how values are represented on the
chart (i.e., moving average, percentage, difference, etc.). See
Calculating a Measure Representation.

REPORT DESIGN

801 of 2477

6.6.7 Filtering Data in a Chart

To apply a filtering condition to a chart, follow the steps below.

1. Right-click the chart, and select ‘Condition’ from the context
menu. This opens the ‘Condition’ dialog box.

2. Use the menus to enter the desired condition clause(s). See
Filtering Data in Data Binding Wizard for information about the
controls, and an example of constructing a condition.

3. Click ‘OK’ to close the dialog box, and apply the condition.

See Also
Parameterizing a Condition, for details on using a variable in a condition.

6.6.8 Calculating a Measure Representation

There are many different ways to represent an aggregated measure on a
chart. For example, you can represent the aggregated measure (for an X-
axis group or subseries group) in terms of its percentage of a total, or by its
difference from a preceding group, or by a moving average based on
adjacent groups, etc.

To use one of these representations, set the appropriate calculation method.
Follow the steps below:

1. In the Binding panel, click the ‘Edit Measure’ button next to a
measure.

Select ‘None’
(default) to use the
raw aggregate. Select
‘Custom’ to create a
new calculation
method.

2. Select one of the calculation methods from the ‘Calculate’ menu.

REPORT DESIGN

802 of 2477

3. Click the ‘Edit’ button. This opens the ‘Calculation’ dialog box,
which allows you to modify the properties of the calculation
method. To do this, follow the steps below:

a. From the ‘Calculate’ menu, select a type of calculation:
‘Percent’, ‘Change’, ‘Running’, or ‘Sliding’.

b. Select any additional options to fully specify the calculation
method. (The options vary for the different methods. See
Calculation Methods for more detail.)

c. Click ‘OK’ to close the dialog box. This adds the new method to
the ‘Calculate’ menu.

4. Click the green ‘Apply’ button.

The aggregated measure will now be displayed on the chart using the
particular representation that you have specified.

See Also
Calculation Methods, for details on configuring the various methods.
Chart Element, for step-by-step instructions on creating a chart.

6.6.9 Calculation Methods

There are three basic types of calculations: ‘Percent’, ‘Change’, ‘Running’,
and ‘Sliding’. These methods are described in greater detail below.

REPORT DESIGN

803 of 2477

Percent Calculation

The ‘Percent’ calculation allows you to express the measure based on
‘Grand Total’, ‘Subtotal’, or a particular dimensional group.

• Dimension: Expresses the value of the aggregated measure for each
group as a percentage of the measure aggregated across the selected
dimension.

• Grand Total: Expresses the value of the aggregated measure for each
group as a percentage of the measure aggregated across all groups.

• Subtotal: For a facet-type chart (i.e., a chart with both a measure and
dimension on Y-axis), this expresses the value of the aggregated
measure for each group as a percentage of the measure aggregated
across all groups on the same sub-chart.

Change Calculation

The ‘Change’ calculation allows you to express the group aggregate in
terms of its deviation (or percent deviation, if ‘As percent’ is selected) from
the preceding, succeeding, first, or last group in the series. The ‘From’
menu specifies the baseline value.

REPORT DESIGN

804 of 2477

• First: Expresses the value of the aggregated measure for each group as a
difference from the corresponding first value for the parent group
selected in the ‘Value of’ menu.

• Previous: Expresses the value of the aggregated measure for each group
as a difference from the corresponding previous value for the parent
group selected in the ‘Value of’ menu.

• Next: Expresses the value of the aggregated measure for each group as a
difference from the corresponding next value for the parent group
selected in the ‘Value of’ menu.

• Last: Expresses the value of the aggregated measure for each group as a
difference from the corresponding last value for the parent group
selected in the ‘Value of’ menu.

Running Calculation

The ‘Running’ calculation allows you to express each group aggregate as
an accumulation of previous aggregate values in the series. The method of
accumulation is specified by the ‘Aggregate’ menu in the ‘Calculation’
dialog box. (See Summarization Formulas for more about the different
methods.)

The ‘Reset at’ option, available for date fields, allows you to specify the
date interval (e.g., year, quarter, week, etc.) at which the accumulation
should be cleared.

See Also
Sliding Calculation, to accumulate values over a limited sliding range.

Sliding Calculation

The ‘Sliding’ calculation allows you to express each group’s value as an
accumulation of neighboring aggregate values in the series, specified by a
rectangular sliding window. This generally has the effect of smoothing
(low-pass filtering) the displayed data.

REPORT DESIGN

805 of 2477

The method of accumulation is specified by the ‘Aggregate’ menu in the
‘Calculation’ dialog box. (See Summarization Formulas for more
information about the different methods.) The ‘Previous’ and ‘Next’ values
specify the span of the sliding window as the number of preceding and
succeeding groups, respectively, to include in the calculation. All included
groups have equal weight in the calculation.

The ‘Include current value’ options incorporates each group’s aggregate
value into its own calculation. When this option is not enabled, the
calculation for a group uses only its neighboring groups’ values. For
example, assume the chart displays sales totals for March, April, May,
June, and July, and the sliding window is 3 units wide (‘Previous’=1 and
‘Next’ =1). If ‘Include current value’ is enabled, the displayed value for
May is aggregated from three months’ data, April, May, and June.
However, if ‘Include current value’ is not enabled, the displayed value for
May is aggregated from two months’ data, April and June.

The ‘Null if not enough values’ option suppresses chart points for which
the sliding window does not obtain the required span. For example, assume
the chart displays sales totals for March, April, May, June, July, August,
and September, and that the sliding window is 5 units wide (‘Previous’=2
and ‘Next’ =2). If ‘Null if not enough values’ is enabled, then no points are
displayed on the chart for the months of March and April because the
calculation cannot be performed for these groups as specified (there is no
data available preceding March.) However, if ‘Include current value’ is not
enabled, the aggregates for March and April will be computed and
displayed using the data available within the sliding window.

See Also
Running Calculation, to accumulate values from the start of the series.

Converting between a Measure and Dimension

By default, dimensions are displayed as discrete values, whereas measures
are aggregated and displayed as a continuous range. To toggle a field
between dimension and measure representations, follow the steps below:

1. Click on the chart to select it. This opens the Binding panel.

REPORT DESIGN

806 of 2477

2. In the Binding panel, click the ‘Convert to Measure’ or ‘Convert to
Dimension’ button next to the field name. The icon changes to
indicate the representation.

To specify that a particular measure be displayed using discrete values
(rather than a continuous spectrum), see Displaying a Measure as Discrete
Values.

Displaying a Measure as Discrete Values

By default, dimensions are displayed as discrete values, and measures are
displayed as a continuous range.

To force a measure to display as discrete values, follow the steps below:

1. Press the ‘Edit Measure’ button next to the measure name. This
opens the ‘Edit Measure’ panel.

2. Enable the ‘Discrete’ option, and press the green ‘Apply’ button.

The measure will now display as discrete values rather than as a continuous
spectrum.

To convert a measure to a dimension, see Converting between a Measure
and Dimension.

REPORT DESIGN

807 of 2477

6.6.10 Rotating a Chart

To rotate a chart (switch the X- and Y-axes), follow the steps below:

1. Click on the chart to select it. This opens the Binding panel.

2. Click the ‘Swap XY’ button in the Binding panel.

This will position the X-axis vertically, and position the Y-axis horizontally.

6.6.11 Setting Date Grouping Properties

When you use a date field as a dimension, you can specify the level of date
grouping (month, year, etc.). To do this, click the ‘Edit Dimension’ button
for the desired date field, and choose the desired grouping from the ‘Level’
menu.

If the data represents a series of measurements at uniformly-spaced time
intervals, select ‘As Time Series’. This forces the chart to display all
measurement periods, even those for which no corresponding data is
available. Otherwise, these “empty” periods are suppressed.

REPORT DESIGN

808 of 2477

Figure 21. Effect of ‘TimeSeries’ option on display of missing data

It is important to set the format of the labels to the match the grouping
level. For example, dates grouped by year should have a format such as
“yyyy” to display just the year component of the date. For information on
setting chart label formats, see Chart Properties.

6.7 Binding Data to a Section Element
Sections and Tables can both present tabular data. However, in a Section,
each section row, or “band,” is just a container for other elements. To
display tabular data, each Text element in a section is bound to an
appropriate data field. By adding Text elements to a Section and manually
binding these elements, you can create very precise layouts.

The following sections explain how to create and bind data to a Section.

6.7.1 Creating a Section Using the Data Binding Wizard

Style Studio also allows you to automatic generate and bind section
elements in the form of a pseudo-table, which you can then tailor to suit
your needs.

Walkthrough The simplest way to generate a Section is by using the Section Wizard. The
Section Wizard lets you select the data binding, define grouping and
summarization, and generate a section with appropriate section structure
and elements. After the wizard generates the Section, you can adjust the
element positions and sizes.

Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

REPORT DESIGN

809 of 2477

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’.

3. Click the ‘Section’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new Section.

You cannot bind a
Section to a Crosstab.

4. Under the Data tab, expand the ‘Orders’ data source, and select the
‘Order Model’ data model.

5. Under the Columns tab, select the ‘Customer’ node and click on
the right-arrow button to add all the attributes from the ‘Customer’
entity.

6. Remove the following columns by using the left-arrow button:

‘Customer.Contact First Name’
‘Customer.Contact Last Name’
‘Customer.Region’

7. Click the Grouping & Summary tab.

8. Drag ‘Customer.State’ from the ‘Available Columns’ panel to the
‘Grouping’ panel.

9. Drag ‘Customer.Reseller’ from the ‘Available Columns’ panel to
the ‘Summary’ panel.

10. Select the ‘Customer.Reseller’ field in the ‘Summary’ panel, and
choose ‘Count’ for the summarization formula.

REPORT DESIGN

810 of 2477

This will provide a count of the customers in each state. (In this
case, it does not matter which field is chosen for the
summarization, because the count will be the same for all.)

You will now create a Named Group that groups data from states NJ and
NY together into a single group called ‘Local’. (See Named Groups for
more information about this kind of grouping.)

11. Click the ‘Customer.State’ field in the ‘Grouping’ pane, and select
the ‘Define Named Group’ option.

12. Click the ‘Edit’ button to open the ‘Named Group Definition’
dialog box.

13. In the ‘Named Group Definition’ dialog box, click ‘New’ and enter
“Local” as the group name.

14. Specify the following condition:

[Customer.State][is][one of][NJ, NY]

REPORT DESIGN

811 of 2477

15. In the ‘Others’ panel at bottom, select ‘Leave others in their own
group’ and click ‘OK’.

16. Click ‘Finish’ to generate the section.

The Section Wizard generates a new Section based on the data binding and
grouping definitions, with nested bands corresponding to the grouping
levels. All generated Section elements are bound to the appropriate query
fields.

The top-level header band contains text elements for the column labels.
Header bands in each subsection contain fields for the group header, and
footer bands in each subsection contain fields for the summarization
columns. Detail fields appear in the detail band.

Finish the example by adjusting the appearance of the Section:

17. Delete the ‘Customer.State’ field from the Header band and from
the Detail band.

18. Right-click on the ‘Customer.Company’ field in the Header band,
and select ‘Edit’ from the context menu. Change the text to
“Company”.

19. Repeat the above step to change the text of the
‘Customer.Address’, ‘Customer.City’, ‘Customer.Zip’, and

REPORT DESIGN

812 of 2477

‘Customer.Reseller’ fields to “Address”, “City”, “Zip”, and
“Reseller”, respectively.

20. Ctrl-click all the fields in the Header band to select them, and use
the Style Studio toolbar to change the font to 11pt Bold.

21. Drag the ‘Customer.State’ field in the GH1 band slightly to the
right (to create additional space on the left side).

22. Right-click in the space to the left of the ‘Customer.State’, and
choose ‘Insert’ > ‘Basic Element’ > ‘Text’ from the context menu.
This changes the pointer to a crosshair.

23. Use the crosshair to draw a small Text element to the left of the
‘Customer.State’ field. Edit the Text element to display the text
“State”, and set the font to 11pt Bold.

24. Drag the bottom border of the GF1 band down to create additional
space. (It is often easiest to move a band border by dragging in the
left margin of the Section, to avoid accidently dragging an element
within the Section.)

25. From the Toolbox panel, drag a Text element into the GF1 footer
band. Edit the Text element to display the text “Count for ”.

26. Ctrl-click on the ‘Customer.State’ field in the GH1 header band,
and (while holding down Ctrl key) drag the field into the GF1

REPORT DESIGN

813 of 2477

footer band. This creates a copy of the ‘Customer.State’ group field
in that band.

27. Expand the Style Studio Properties panel.

28. Select the ‘Customer.State’ field in the GF1 footer band.

29. Select the Format tab of the Properties panel. Select the ‘Text’
format, and enter the following (without quotes): “{0}:”

30. In the GF1 footer band, select the ‘Customer.Reseller’ element.
Use the Style Studio toolbar to set the font to 11pt Bold.

31. Position the three Text elements in the GF1 footer band as shown
below.

32. From the Toolbox panel, drag a Separator element below the three
Text elements in the GF1 footer band. Adjust the length as desired.

33. Right-click the Separator element, and select ‘Properties’ from the
context menu. In the ‘Properties’ dialog box, select a double-line
style, and click ‘OK’.

34. Resize and reposition other elements (as needed) to improve
layout.

35. Right-click in the left margin of the Section, and select ‘Properties’.
This opens the ‘Section Properties’ dialog box.

REPORT DESIGN

814 of 2477

36. In the left panel tree, select ‘Group Header’ under the ‘Group #1’
node. In the right panel, select ‘Keep Together’, and click ‘OK’.
This will keep records from the same group together on the same
page.

37. Preview your changes.

See Also
Creating a Section Using Freehand Operations, to build a Section without
the Wizard.

Named Groups

The default grouping procedure (see Grouping and Summarization in Data
Binding Wizard) partitions a data column based on its distinct values. For
example, if a column contains state abbreviations CA, NY, and WA, then
the default grouping produces one group for CA, one group for NY, and
one group for WA.

If this default grouping is not satisfactory, you can create a different column
partition by using Named Grouping. A Named Grouping is a set of custom
conditions (i.e., rules) that partition the data set into desired groups. For
example, you can create the named groups “East Coast,” “Central,” and
“West Coast,” and define the conditions that determine which states belong
in each of the named groups.

Named Groups in Data Binding Wizard

To define a Named Grouping for the data bound to a report element using
the Data Binding Wizard, follow the steps below:

1. Click the Grouping & Summary tab.

REPORT DESIGN

815 of 2477

2. If a grouping column has not yet been specified, add the desired
grouping column to the ‘Grouping’ panel by clicking the right-
arrow.

3. Select the column in the ‘Grouping’ panel for which you want to
define named groups, and choose the ‘Define Named Group’
option.

4. Click the ‘Edit’ button to open the ‘Named Group Definition’
dialog box.

5. In the ‘Named Group Definition’ dialog box, click ‘New’ and enter
a name for the first group.

6. In the ‘Condition’ panel, enter a condition that assigns particular
column elements to the specified named group. (See Filtering Data
in Data Binding Wizard for more information about specifying
conditions.)

7. Click ‘Append’ to add the condition. Repeat the above two steps to
add additional named groups and conditions.

8. In the ‘Others’ panel at the bottom, specify how to treat column
elements that do not satisfy any of the grouping conditions. ‘Group
all others together’ groups these elements into a single catch-all
group called “Others.” ‘Leave others in their own group’ allows
each of these distinct values to define its own group.

See the Creating a Section Using the Data Binding Wizard section for an
example of data binding using named grouping.

Named Groups in Chart Binding

To define a Named Grouping for data bound to a Chart, follow the steps
below:

1. In the Binding panel of the Chart Editor, press the ‘Edit
Dimension’ button next to the field for which you want to define
named grouping.

REPORT DESIGN

816 of 2477

See Creating a Named
Grouping in Data
Mashup for instruc-
tions on how to create
a reusable named
group.

This opens the ‘Edit Dimension’ panel. If a named grouping
already exists in a Data Worksheet, you can simply select it from
the ‘Named Group’ menu. However, to define a custom named
grouping, continue with the steps below.

2. In the ‘Named Group’ menu, select ‘Customize’ and press the
‘Edit’ button. This opens the ‘Named Group Definition’ dialog
box.

3. In the ‘Named Group Definition’ dialog box, press ‘New’ and enter
a name for the first group.

4. In the ‘Condition’ panel, enter a condition that assigns particular
column elements to the specified named group. (See Filtering Data
in Data Binding Wizard for more information about specifying
conditions.)

5. Click ‘Append’ to add the condition. Repeat the above two steps to
add additional named groups and conditions.

6. In the ‘Others’ panel at the bottom, indicate how the chart should
display column elements that do not satisfy any of the specified
grouping conditions:

a. ‘Group all others together’ groups these elements into a single
catch-all group with the label “Others.”

b. ‘Leave others in their own group’ displays each of these
elements as its own group.

7. Press ‘OK’ to close the dialog box, and press the ‘Apply’ button
(green arrow) in the ‘Edit Dimension’ panel to apply the grouping.

REPORT DESIGN

817 of 2477

See the Creating a Section Using the Data Binding Wizard section for an
example of data binding using named grouping.

Section Options for Data Binding Wizard

The Section Options tab in the ‘Data Binding’ dialog box provides the
following options:

• Use TextBox for fields: Use Textbox elements for fields, instead of Text
elements.

• Display contents in table: Display the content band data as a table
contained within the content band, rather than as individual text
elements.

• Vertical Gap: Vertical spacing between adjacent fields.

• Horizontal Gap: Horizontal spacing between adjacent fields.

• Fit One Row: Place all text fields on a single row.

• Fit Multiple Rows: Allow text fields to wrap across multiple rows.

• As a Form: Remove header band, and stack fields vertically in content
band, side-by-side with their corresponding labels.

• Suppress Blank Band: Do not display empty bands.

See Also
Section Options for a Freehand Section, to set options for a freehand
Section.

6.7.2 Modifying a Section Using Freehand Operations

After you have created a Section with the Section Wizard (see Creating a
New Table, Crosstab, or Section using a Wizard), you can continue to make
additional modifications by using freehand operations. You can also create

REPORT DESIGN

818 of 2477

a Section using freehand operations. The following sections explain how to
use freehand operations to create or modify an existing Section.

See Also
Binding Data to a Table Element, to create more tabular layouts with
optional global styles.

Creating a Section Using Freehand Operations

In Creating a Section Using the Data Binding Wizard, you learned how to
use the Data Binding Wizard to bind a Section to a data source. You can
also bind a Section to a data source by using freehand operations.

To create a new Section that displays a set of fields from a query, data
model entity, or Data Block, follow the steps below:

1. Expand the Style Studio Toolbox panel.

2. Drag a ‘Section’ element from the Toolbox panel to the desired
location in the report. This creates a blank Section in the report.

3. Open the Style Studio Data Source panel.

4. Expand a query, data model entity, or Data Block in the Data
Source panel.

5. Click to select a field (or Ctrl-click to select multiple fields) from
the data source, and drag the field(s) into the Detail band of the
Section.

REPORT DESIGN

819 of 2477

This binds the Section to the selected data source, and displays only
the selected fields from result set. Detail records are displayed in
the Detail band, and field headers are displayed in the Header band.

6. Modify this Section as desired using freehand operations. See
Modifying a Section Using Freehand Operations.

Inserting Bands into a Section

To insert a new band into a Section, right-click on a band in the Section,
and select ‘Band’ > ‘Insert Band’ from the context menu.

This inserts a new band below the selected band.

See Also
Inserting New Fields with Data Binding, to add a new column together
with binding.
Changing a Section Element Data Binding, to change the data binding for a
cell or column.

Deleting/Hiding a Section Band

To delete a band from a Section, or to hide a Section band, right-click the
desired band and select one of the following from the context menu:

• ‘Band’ > ‘Delete Band’

• ‘Band’ > ‘Hide Band’

You cannot delete a band that is part of a group, although you can hide the
band. To remove a grouping level entirely, see Grouping Data in a Section.

REPORT DESIGN

820 of 2477

Displaying Section Details within a Table

You can display the Section detail rows inside a Table within the Detail
band. Follow the steps below:

1. Right-click the Section, and select ‘Option’ from the context menu.
This opens the ‘Section Options’ dialog box.

2. Enable ‘Display contents in table’, and click ‘OK’.

See Also
Setting Global Section Options, to specify a global default.
Section Options for a Freehand Section, for information on other options.

Inserting New Fields with Data Binding

You can insert one or more new fields into the Section to display data from
the data source to which the Section is bound. To add a new field or fields
to a Section, follow the steps below:

1. Click on the Section to select it. This opens the Data Source panel
and Binding panel.

2. (Optional) To see only fields from the data source to which the
Table is bound, disable ‘Show All’ in the Data Source panel.

REPORT DESIGN

821 of 2477

3. Expand the data source (query, data model entity, or Data Block) to
which the Section is bound.

4. Click to select a field (or Ctrl-click to select multiple fields) from
the data source, and drag the field(s) into the Detail band of the
Section.

Drop the field(s) in the desired location. This adds the new fields
with their data bindings at the specified location.

See Also
Inserting Bands into a Section, to add blank bands.
Changing a Section Element Data Binding, to change the data binding for a
field.

Moving Fields within a Section

To move text fields within a Section, see Moving and Resizing Elements in
a Section. When you move or copy a bound Text element from one band to
another, the data displayed by the Text element is determined by the band
in which the Text element is placed.

REPORT DESIGN

822 of 2477

For example, if you move a Text field from the Detail band to the GF 1
(grouping footer) band, the Text element will be automatically adapted to
display aggregate data. (To change the aggregation method, see Modifying
Summary Properties.) If you move a Text field from the Detail band to the
GH 1 (grouping header) band, the Text element will be automatically
adapted to display group data. (To change the grouping properties, see
Modifying Table Grouping Properties.)

Changing a Section Element Data Binding

You can alter the binding of a Text element in a Section to display static
text or values from a different field of data. To modify a Text binding,
follow the steps below:

1. Expand the Style Studio Properties panel. (Click the ‘Properties’
link at the bottom of the Style Studio window.)

2. Click the desired Text element in the Section to select it.

3. Click the Data tab of the Properties panel. In the ‘Binding’ panel,
make one of the following selections:

a. To enter static text in the field, select the ‘Text’ option, and enter
the desired contents.

b. To bind the field to a different data column, select the ‘Column’
option, and choose the desired data column from the adjacent
menu.

4. Click the ‘Apply’ button to submit the changes.

Changing the Section Data Source

To change the data source to which the Section is bound, follow the steps
below:

1. Click on the Section to select it. This opens the Data Source panel
and Binding panel.

2. To see all available data sources, enable ‘Show All’ in the Data
Source panel.

REPORT DESIGN

823 of 2477

You can also drag
fields from the new
data source onto the
Section itself.

3. Drag the desired data source (query, data model entity, or Data
Block) from the Data Source panel onto the top field in the
Binding panel.

This operation will generate a warning, which advises you that
changing the binding will destroy the current Section
configuration. Click ‘OK’ to proceed.

This rebinds the Section to the new data source.

Changing the Element Sort Order

To change the sorting order for fields in a Section, right-click the Section
and select ‘Sorting’ from the context menu. This opens the ‘Sorting’ dialog
box. The ‘Sorting’ dialog box is the same for Sections and for Tables. See
Changing the Column Sort Order for further details.

REPORT DESIGN

824 of 2477

Filtering Data in a Section

To apply a filtering condition to a Section, right-click the Section, and
select ‘Condition’ from the context menu. This opens the ‘Condition’
dialog box. The ‘Condition’ dialog box is the same for Sections and for
Tables. See Filtering Data in a Table for further details.

Grouping Data in a Section

There are two ways to group data within a Section. You can keep the
grouping field in the same row as the detail records, or you can display the
grouping field in its own group region. The following sections explain the
two approaches.

Displaying the Grouping Field in the Detail Row

To group the data in a Section and display the grouping field in the detail
row, follow the steps below:

For a categorical field,
select ‘Default’. For a
Date field, select a
Date level such as
‘Year’ or ‘Month’.

1. Right-click on the Text element in the Section that represents the
grouping field.

2. From the context menu, select ‘Text Field’ > ‘Group’, and choose
the desired grouping.

This defines the field as a grouping field, and adds the selected field to the
grouping area of the Binding panel. See Modifying Table Grouping
Properties to make further adjustments to the grouping process.

Displaying the Grouping Field in a Group Region

To group the data in a Section and display the grouping field in a dedicated
grouping region, follow the steps below:

For a categorical field,
select ‘Default’. For a
Date field, select a
Date level such as
‘Year’ or ‘Month’.

1. Right-click on the Detail band, and select ‘Region’ > ‘Insert
Group’. This inserts a new grouping region with both header and
footer bands.

REPORT DESIGN

825 of 2477

2. Drag the desired grouping field from the Detail band to the new
grouping header region.

This defines the field as a grouping field in its own region, and adds the
selected field to the grouping area of the Binding panel. See Modifying
Table Grouping Properties to make further adjustments to the grouping
process.

Summarizing Data in a Section

When you aggregate data in a Section, you can compute summaries on a
group-by-group basis and/or on a global basis (e.g., grand total).

To create a summary based on a particular grouping level, follow the steps
below:

For a categorical field,
select ‘Default’. For a
Date field, select a
Date level such as
‘Year’ or ‘Month’.

1. Right-click on the Text element displaying the field that you want
to summarize.

2. From the context menu, select ‘Text Field’ > ‘Summarize’, and
choose the desired aggregation method (e.g., ‘Average’, ‘Max’,
etc.)

REPORT DESIGN

826 of 2477

This defines the field as a summary field and adds it to the
summary area of the Binding panel. Because the field resides in
the detail row, it only summarizes a single detail value. To
summarize a particular group, or the entire table, proceed to the
next steps.

To add a grouping
region, see Displaying
the Grouping Field in
a Group Region.

3. To summarize a particular group, Ctrl-drag (or copy and paste) the
summary field to the corresponding grouping header or footer
region.

If the desired footer region is not visible, open the ‘Section
Properties’ dialog box, and enable the footer visibility. See Section
Properties for more information.

See Modifying Summary Properties to make further adjustments to the
summarization process.

Section Options for a Freehand Section

To set options for an existing Section, right-click on the Section, and select
‘Options’ from the context menu.

This opens the ‘Section Options’ dialog box.

REPORT DESIGN

827 of 2477

The ‘Section Options’ dialog box provides the following options:

• Use TextBox for fields: Use Textbox elements for fields, instead of Text
elements.

• Display contents in table: Display the content band data as a table
contained within the content band, rather than as individual text
elements.

• Suppress Blank Band: Do not display empty bands.

The default values of these settings are specified in the ‘Preferences’ dialog
box. See Setting Global Section Options.

6.7.3 Running Total

Walkthrough A ‘Running Total’ has much in common with a summary field. The
difference is that a ‘Running Total’ can be maintained independently of any
predefined grouping characteristics. You can use running totals to show
how a field increments row by row, or apply a formula to a value
irrespective of the grouping and summarization.

Consider the following example:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Section’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new Section.

5. Under the Data tab, select the ‘Order Model’ data model from the
‘Orders’ data source. Under the Columns tab, select the following
columns:

‘Customer.Company’
‘Product.Name’
‘Product.QuantityPurchased’
‘Product.Price’
‘Product.Description’
‘Order.Discount’

6. Under the Grouping & Summary tab, group on the
‘Customer.Company’ field, and summarize on the ‘Product.Price’
field.

REPORT DESIGN

828 of 2477

7. Click ‘Finish’.

A ‘Running Total’ can
also be used with a
summarized table.

8. Create space for the new running total column:

a. Rename the header fields as follows:
‘Product.Quantity Purchased’ > ‘Quantity’
‘Product.Name’ > ‘Product’
‘Customer.Company’ > ‘Company’
‘Product.Price’ > ‘Price’
‘Product.Description’ > ‘Description’
‘Order.Discount’ > ‘Discount’

b. Move the existing header and content fields to the left to create
empty space on the right side of the section.

c. In the space you created, add a text element in the header with
text “Running Total”.

To do this, right-click the Section, and choose ‘Insert’ > ‘Basic
Element’ > ‘Text’ from the context menu. Then click in the
Header band with the crosshair to place the Text element in the
desired location.

9. Define the running total by following the steps below:

a. Right-click the Section, and choose ‘Insert’ > ‘Special Field’ >
‘Running Total’ from the context menu. This opens the
‘Running Total’ dialog box.

b. In the ‘Running Total’ dialog box, click the ‘New’ button. This
opens the ‘Running Total Property’ dialog box.

REPORT DESIGN

829 of 2477

To edit the running total at a later time, click the ‘Running
Total’ button in the Toolbox panel. This opens the ‘Running Total’
dialog box. Click ‘Edit’ to modify an existing running measure.

c. In the ‘Running Total Name’ field, enter “running_price”.

d. In the ‘Data Element’ menu, select “Section1”. This is the report
element with which the running total should be associated.

e. From the ‘Summary Field’ menu, select ‘Product.Price’. Set
‘Sum’ as the formula.

(Optional) In the ‘Evaluate’ panel, you can choose ‘For each
record’ to evaluate the running total increment for each record.
Choose ‘On change of’ to evaluate the running total increment
at each group change. Similar options are available to reset the
running total.

f. Click ‘OK’. The running total is now listed in the ‘Running
Total’ dialog box.

g. Click to select the ‘running_price’ measure, and click ‘OK’.
The pointer now turns into a crosshair.

10. Click with the crosshair in the Detail band under the ‘Running
Total’ header. This adds the running total to the Detail band. Resize
and format the Text element as desired.

11. Preview the report.

REPORT DESIGN

830 of 2477

6.7.4 Subreports

A subreport is a report that is embedded inside another report. The
subreport can only be embedded within a section element, and is displayed
within this section band when the report is generated. Because a section
band is repeated for every row in the query that the section is bound to, the
subreport is also repeated as part of the band repetition.

A subreport is often used to present detail information for a band. For
example, if a section is showing the product sales summary, the subreport
could be used to present the sales details. This means a subreport needs to
accept parameters from the band, so each subreport would present different
information when it is repeated.

To design a subreport, follow the general steps below:

Note: Report paper
size is ignored when a
report is printed inside
another report as a
subreport.

1. Design the report that will be used as the subreport. If desired, a
report bean can also be used as a subreport. See Walkthrough:
Designing the Subreport.

2. Design the master report.

3. Embed the subreport within a Section in the master report. See
Walkthrough: Embedding the Subreport.

4. Define the parameter links from the Section band to the subreport.

In general, do not use headers, footers, or decorative elements in
subreports.

REPORT DESIGN

831 of 2477

Walkthrough: Designing the Subreport

Walkthrough In this example, the subreport will contain a Table bound to the ‘customers’
query. The ‘customers’ query accepts a ‘state’ parameter, and lists all
customers from the specified state.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Table’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new Table.

5. Under the Data tab, bind the table to the ‘customers’ query from
the ‘Orders’ data source.

6. In the Columns tab, click the left-arrow to remove the following
columns from the ‘Columns’ pane:

‘customer_id’
‘state’
‘zip’

Note: The parameter
for the subreport must
be set prior to its
insertion into the main
report.

7. In the Condition tab, specify the beginning of the condition:

[state][is][equal to]

8. Select the ‘Variable’ option in the menu at right.

9. Type “state” into the ‘Label’ field, and click ‘Append’ to insert the
complete condition:

[state][is][equal to][$(state)]

10. In the Grouping & Summary tab, drag ‘city’ into the ‘Grouping’
pane, and click ‘Finish’.

REPORT DESIGN

832 of 2477

11. Save this subreport as “customer_subreport.srt”. The example
continues in Walkthrough: Embedding the Subreport.

Walkthrough: Embedding the Subreport

Walkthrough This example continues from Walkthrough: Designing the Subreport. Now
you will design the master report, and then embed the subreport in the
master report.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Section’ component in the Toolbox panel to open the
‘Data Binding’ dialog box for a new section.

5. Under the Data tab, bind the section to the ‘sales by state’ query
from the ‘Orders’ data source.

6. Click ‘Finish’ to exit the ‘Data Binding’ dialog box.

7. Click the Section to select it. Drag the bottom border of the section
downward to create more space within the content band.

8. Right-click the section, and select ‘Insert’ > ‘Special Fields’ >
‘Subreport’ from the context menu.

9. Click in the content band of the Section to embed the subreport.

REPORT DESIGN

833 of 2477

10. Right-click the Subreport element and select ‘Properties’ from the
context menu. This opens the ‘Subreport Properties’ dialog box.

11. Select the Subreport tab, and click the ‘Browse’ button in the
‘Template’ tab. Select the subreport you previously created,
customer_subreport.srt.

(Note: To open the selected subreport for editing, click the ‘Edit’
button. Enable the ‘Share Page Numbering’ option to continue the
subreport page numbering set by “{P}” and “{N}” header/footer
tags across multiple instances of the rendered subreport. When this
option is disabled, numbering restarts at each subreport
occurrence.)

12. Click the Links tab, and select ‘State’ in the ‘Available Fields’
drop-down list.

This associates the ‘state’ parameter of the subreport with the
‘State’ field of the main report. As a result, the subreport that

REPORT DESIGN

834 of 2477

appears within each band contains only the table rows
corresponding to the ‘State’ value of that particular band.

13. Preview the report. The master report now displays a section with
the subreport embedded in each band.

6.8 Calculating a New Query Field
You can create a new query field (also known as a formula column) by
performing a calculation on existing query fields. To create a new field,
follow the steps below:

1. Expand the Style Studio Data Source panel.

2. Right-click on the query to which you want to add the new field,
and select ‘Create Calculated Field’ from the context menu.

This opens the ‘Formula’ dialog box.

REPORT DESIGN

835 of 2477

3. With the ‘Formula’ dialog box open, follow the steps below:

a. In the ‘Formula Name’ field, enter a name for the new column.

b. For ‘Return Data Type’, select the data type of values that will
populate the new column. This data type should match the type
of value returned by your script.

Note: In cases where the data binding specifications cannot be
merged into the query, the ‘SQL’ option is not available. (This may
be due to the presence of grouping and aggregation at the query
level.)

c. For ‘Formula Type’ select ‘SQL’ or ‘Script’, and then click the
corresponding ‘Edit’ button. This opens the Script Editor.

4. Enter the desired script, using the syntax (SQL or JavaScript) that
you specified in the previous step. To data values, use the following
syntax:

a. To access the value in another column of the current row, use
the “field['field name']” syntax.

b. To access the value in another column of a row at a certain
offset (i.e., relative position) from the current row use the
following syntax:

field[relative position]['field name'];

For example, field[-1]['Product.Total'] contains the value
in the Product.Total field for the previous record.

REPORT DESIGN

836 of 2477

For more information on scripting, see Report Scripting. For a
simple example of a formula column script, see Walkthrough:
Selecting and Creating Columns in Data Binding Wizard.

5. Close the Script Editor, and click ‘OK’ to close the ‘Formula’
dialog box. This adds the new formula column (indicated by the
“fx” icon) to the query.

To edit an existing calculated field, right-click the desired column, and
select ‘Edit’ from the context menu. This reopens the Script Editor, where
you can proceed to edit the expression.

See Also
Creating a Formula Column in Data Binding Wizard, to create fields at
Wizard level.
Creating a New Query, in Data Modeling, to create fields at the query
level.
Defining Expression Attributes, in Data Modeling, to create fields at the
data model level.

6.9 Updating Data Binding After Query
Modification
If the structure of the underlying data source (query, Worksheet, etc.)
changes, any existing bindings that utilize the data source will generate the
following alert when you open the report in Style Studio.

To proceed with the original binding, press the ‘Ignore changes’ button. To
adapt the binding to the changes in the data source, press the ‘Update
binding’ button. This opens the ‘Edit Binding’ dialog box.

Follow the steps below to update the bindings:

1. In the ‘Edit Binding’ dialog box, select the element you wish to
update in the ‘Elements with modified queries’ list.

REPORT DESIGN

837 of 2477

2. Press the ‘Update Table’ button to add or remove columns from the
table as necessary to match the altered query.

3. Repeat the above steps for any elements listed the ‘Elements with
modified queries’ panel.

4. Press ‘Close’ to dismiss the dialog box.

REPORT DESIGN

838 of 2477

7 Advanced Topics

This section discusses various advanced topics, some of which are
available only in the Enterprise products (Style Intelligence and Style
Report EE).

7.1 Form Design
A form is a collection of input fields into which user can enter information.
User interactions with the form elements are generally handled by server-
side Java objects.

The following sections present some basic information about the available
form elements.

See Also
Interactive Forms, in Report Scripting, for information about processing.
Parameter Sheets, for common ways of using form elements to acquire
user input.

7.1.1 Accessing the Form Controls

To access the form controls, expand the Style Studio Toolbox panel. The
controls are available in the Form panel. To add a form element to the
report, simply drag the element from the Toolbox panel to the desired
location.

Form fields do not need to be consecutive in the element flow. However,
when designing a form, it is beneficial for ease of positioning to place form
elements within a Section Element. It is also useful to add text elements
next to form fields to provide labeling.

7.1.2 Form Elements

Each form consists of one or more fields. Fields are on-screen controls
which can be used by end users to interact with the report. They are most
commonly used in Parameter Sheets, but can be placed anywhere within a
report as well.

Table 13. Form Controls

ELEMENT FUNCTION

Button Submits the form to the server when activated.
ImageButton Submits the form to the server when activated.
CheckBox Enters boolean values.
RadioButton Make mutually exclusive selections.
Choice Select choice from a list.
List Select one or more choices from a list.

REPORT DESIGN

839 of 2477

All form field elements are float elements. This means they share the layout
properties of float elements, and can be positioned using an anchor.

To access the properties of a form element, right-click the element and
select ‘Properties’ from the context menu. This opens the relevant
‘Properties’ dialog box.

A ‘Submit’ button
submits only values
from form elements
which have the same
‘Form Name’ as the
‘Submit’ button itself.

Every form field element has ‘Form Name’ and ‘Field Name’ properties.
The ‘Form Name’ is used to group fields into one form. All elements
sharing the same ‘Form Name’ belong to the same form, and are packaged
into a single repletRequest object to be forwarded to the server. The
RepletRequest object contains values from the fields in the form. The field
values are identified by the ‘Field Name’.

Button

The Button element allows the user to submit the selections they have
made on a form. To configure the Button, right-click the element, and
select ‘Properties’ from the context menu. This opens the ‘Button
Properties’ dialog box.

Use the ‘Label’ attribute under the Button tab to specify the label that
appears on the button.

Image Button

The Image Button is functionally the same as a Button, but displays a user-
supplied image. To configure the Image Button, follow the steps below:

DateCombo Specify date.
TextField Enter single line text data.
TextArea Enter multi-line text data.

REPORT DESIGN

840 of 2477

1. Right-click on the Image Button, and select ‘Properties’ from the
context menu. This opens the ‘ImageButton Properties’ dialog box.

2. Select the ImageButton tab.

3. In the ‘Image Resource’ field, specify the image file by resource
name.

The image resource file is loaded from the classpath (specified on
the Classpath tab of the ‘Style Studio Configuration’ dialog
box). Make sure that the directory which contains the image is
on the classpath. (See Configuring Style Studio in Getting
Started for more information).

Note that the Image Button does not add any additional decoration to the
image. The look-and-feel of the Image Button is completely determined by
the image that you speicfy.

Check Box

A CheckBox field represents a Boolean value. To configure the Check
Box, right-click the element, and select ‘Properties’ from the context menu.
This opens the ‘CheckBox Properties’ dialog box.

The Check Box has a ‘Label’ property, which specifies the text at the right
side of the CheckBox icon.

REPORT DESIGN

841 of 2477

Radio Button

The Radio Button has a similar appearance to a Check Box. To configure
the Radio Button, right-click the element, and select ‘Properties’ from the
context menu. This opens the ‘RadioButton Properties’ dialog box.

In addition to the ‘Label’ and default state attributes, each Radio Button has
a ‘Group’ name. The Radio Button ‘Group’ is used to group radio buttons
in the same form, with the result that Radio Buttons in the same group
make mutually exclusive selections. When one Radio Button is selected, all
other Radio Buttons in the same group are automatically deselected.

Choice

A Choice element is a menu from which the user can select a single item.
To add a Choice element and populate the menu with values, follow the
steps below:

REPORT DESIGN

842 of 2477

1. Expand the Style Studio Toolbox panel. Drag a Choice component
from the Toolbox panel to the desired location in the report.

2. Right-click the Choice element, and select ‘Properties’ from the
context menu. This opens the ‘Choice Properties’ dialog box.

3. Select the Choice tab.

4. To populate the menu options from an existing data source, follow
the steps below:

If you select the
‘Query’ option in
addition to the
‘Embedded’ option,
the query results are
merged with the
embedded list values.

a. In the ‘List Values’ panel, select the ‘Query’ option and press
‘Edit’. This opens the ‘Selection List’ dialog box.

b. Select the Data tab. Choose the data source that will provide the
labels and values for the Choice element.

REPORT DESIGN

843 of 2477

If you want the labels
and values to be the
same, select only a
single column.

c. Select the Columns tab. Choose one column to provide the
labels for the Choice element, and one column to provide the
values for the Choice element.

The labels determine the choices that are displayed to the user in
the menu. The values determine the corresponding data that is
submitted when the user makes a selection. To swap the ‘label’
field with the ‘value’ field, click the ‘Move up’ or ‘Move down’
arrow above the right panel. For information about the other
buttons, see Binding Data to a Table Element.

To adapt the menu
choices based on user
input, specify a
parameterized condi-
tion. See Parameteriz-
ing a Condition.

d. (Optional) Select the Condition tab. Specify a condition to filter
the options (labels/values) displayed by the Choice element. See
Filtering Data in Data Binding Wizard for more information on
specifying a filter.

REPORT DESIGN

844 of 2477

e. Press ‘OK’ to close the ‘Selection List’ dialog box.

5. To populate the menu options by manually entering the label/value
pairs, follow the steps below:

If you select the
‘Embedded’ option in
addition to the
‘Query’ option, the
embedded values are
merged with the query
results.

a. In the ‘List Values’ panel, select the ‘Embedded’ option and
press ‘Edit’. This opens the ‘Selection List’ dialog box.

b. Press the ‘Add’ button to add a new label/value pair. Double-
click on a label or value to edit the text.

The labels determine the choices that are displayed to the user in
the menu. The values determine the corresponding data that is
submitted when the user makes a selection.

c. Check the ‘Selected’ box to make the corresponding label/value
pair the default option in the Choice box.

d. Repeat the above steps to add additional labels.

e. To reorder the label/value pairs, press the arrow buttons above
the label/value list.

f. Press ‘OK’ to close the ‘Selection List’ dialog box.

6. (Optional) To enable the Choice element to submit the user’s
selection immediately (without requiring a ‘Submit’ button),
enable the ‘Submit on Change’. This is especially useful in
conjunction with parameter staging, because it allows the user’s
selection to enable the next control in the input sequence. See
Staged Parameters for more information.

REPORT DESIGN

845 of 2477

7. Press ‘OK’ to close the ‘Choice Properties’ dialog box.

List

The List element is similar to the Choice element, but allows the user to
make multiple selections. To configure the List element, right-click the
element, and select ‘Properties’ from the context menu. This opens the
‘List Properties’ dialog box.

See the Choice element for information about how to display selections in
the list by specifying a query or by entering a manual list in the ‘Selection
List’ dialog box.

Date Combo

A Date Combo element allows the user to select a date using a calendar
widget. To configure a Date Combo element, follow the steps below:

1. Right-click the Date Combo element, and select ‘Properties’ from
the context menu. This opens the ‘DateCombo Properties’ dialog
box.

REPORT DESIGN

846 of 2477

2. (Optional) Click in the ‘Default’ field, and enter the default date
setting.

3. (Optional) Select the ‘Prompt Time’ options to prompt the user to
enter a time.

4. (Optional) Select the ‘Submit on Change’ option to allow the user
to submit a date by simply clicking the desired day on the calendar
popup (without clicking the popup’s ‘OK’ button).

5. Click ‘OK’ to close the dialog box.

Text Field

The Text Field element is a simple control for entering a single line of text.
To configure the control, follow these steps:

1. Right-click on the element and select ‘Properties’ from the context
menu. This opens the ‘TextField Properties’ dialog box.

REPORT DESIGN

847 of 2477

2. Select the TextField tab.

3. In the ‘TextField’ panel, enter a value for the ‘Columns’ attribute to
set the default size for the Text Field.

4. Enter a value for ‘Max Length’ to limit the maximum number of
characters that the user can enter in the Text Field.

5. In the ‘Default’ field, enter the desired default text to appear in the
Text Field.

6. Click ‘OK’ to close the dialog box.

Text Area

The Text Area element is a multi-line text editor. To configure the control,
follow these steps:

1. Right-click on the element and select ‘Properties’ from the context
menu. This opens the ‘TextArea Properties’ dialog box.

REPORT DESIGN

848 of 2477

2. Select the TextArea tab.

These values do not
limit the amount of
the text that the user
can enter.

3. In the ‘TextArea’ panel, enter values for the ‘Rows’ and ‘Columns’
fields to specify the default size of the Text Area.

4. In the ‘Default’ field, enter the default text to appear in the Text
Area.

5. Click ‘OK’ to close the dialog box.

7.2 Parameterization
It is often desirable to allow the user to customize certain aspects of report
display. For example, the user might want to view only records that satisfy
a specific filter condition (e.g., ‘State’ is one of NJ, MD, NY), or they may
wish to hide certain report elements and display others.

To provide users with this kind of control, you can define report
parameters. Parameters are variables whose values are specified when the
report is generated. The following sections explain how to define
parameters, and how to prompt the user for their values.

Parameter values can also by set by script, drill-down report, Enterprise
Manager, scheduled task, or JSP/HTTP request. See the sources below for
more information on these topics.

See Also
Hyperlinks, for report drill-down parameters
Filtering Data in Data Binding Wizard, for element data-binding condition
parameters
Advanced Toolbar Buttons, in Data Modeling, for query-level parameters
Auto-Drilldown, in Data Modeling, for auto-drill parameters

REPORT DESIGN

849 of 2477

Hyperlinks, in Dashboard Design, for Viewsheet drill-down parameters
onLoad Handler, in Report Scripting, for report parameters in script
Parameter Tab, in Administration Reference, for information about setting
parameters in Enterprise Manager.
Creation Parameters, in Administration Reference, for information about
scheduled task parameters.
Parameter Tag, in Integration, for JSP parameter specification
Passing a Parameter to a Report, in Integration, for HTTP parameters

7.2.1 Parameterizing a Condition

As explained in Filtering Data in Data Binding Wizard, you can restrict the
data that is displayed by a report element (e.g., table, chart, text) by adding
filtering conditions to the Condition tab of the ‘Data Binding’ dialog box.
The example in Walkthrough: Adding Conditions in Data Binding Wizard
illustrates how to add a fixed condition, i.e., a condition that is fully
specified at design-time and that performs the same filtering operation each
time the report is generated. In addition to such fixed conditions, you can
also create adaptive conditions, i.e., conditions which can be modified at
runtime.

To create an adaptive condition on a report element, follow the steps below.

To specify a condition on an exiting report element, see Filtering
Data in a Table.

1. Select the Condition tab of the ‘Data Binding’ dialog box. (See
Filtering Data in Data Binding Wizard for information on the
‘Data Binding’ dialog box.)

2. Use the menus to specify the first part of the condition. For
example, for binding to the sample ‘All Sales’ query, you could
create the following condition:

[Employee][is][equal to]

3. To use a variable in the condition, click the “arrow” button at the
right side of the condition, and select the ‘Variable’ option. Then
follow the steps below:

a. In the adjacent ‘Name’ field, enter a name for the parameter.
(For example, enter “stateVar” as the parameter name.)

REPORT DESIGN

850 of 2477

See Defining and
Editing Report
Parameters to set the
variable data type.

This is the name (case sensitive) by which you will refer to the
parameter in hyperlinks, scheduled tasks, and scripts. If the
condition operator is “one of”, then the variable represents an
array. Otherwise, it is a scalar value.

b. Enable ‘Use Selection List’ if you want to prompt the end user
with a list of available choices for the parameter. (The choices
are drawn from the conditionalized data field, e.g.,
Customer.State.)

Note that the adjacent
menu automatically
chooses the ‘equal to’
or ‘one of’ operator to
match your selection.

4. To use session data in the condition, click the “arrow” button at the
right side of the condition, and select the ‘Session Data’ option.

In the menu, choose one of ‘User’, ‘Roles’, or ‘Groups’. These
parameters return information about the user who is currently
accessing the report; respectively, the user name, the array of roles
to which the user belongs, and the array of groups to which the user
belongs.

5. Click ‘Append’. This adds the new condition to the ‘Clauses’
panel. For the above example, the following clause is added:

[Customer.State][is][one of][$(stateVar)]

6. Click ‘Finish’ to close the ‘Data Binding’ dialog box, or continue
making other data binding modifications as described in Creating a
New Table, Crosstab, or Section using a Wizard.

By default, users will be prompted during report loading to enter a value for
the specified variable. The variable name that you enter in the ‘Name’ field
of the condition is used as the label in the user prompt unless you provide
an alternate label for this purpose. See Defining and Editing Report
Parameters to set a variable label and to enable or disable user prompting.

The value of a variable can also be acquired from sources other than user
input. See Acquiring a Parameter Value for the available alternatives.

REPORT DESIGN

851 of 2477

7.2.2 Defining and Editing Report Parameters

In addition to defining parameters within data binding conditions (see
Parameterizing a Condition), you can also define parameters at the report
level within the ‘Parameter Definition’ dialog box. The ‘Parameter
Definition’ dialog box also provides a single location for managing all
parameters in the report, including those defined within data binding
conditions.

To define a report parameter, follow the steps below:

To edit an existing
parameter, select the
parameter, and then
skip to the appropriate
step below.

1. Select Report > Parameter from the Style Studio menu. This
opens the ‘Parameter Definition’ dialog box.

See Creating a New
Query in Data Model-
ing for information on
setting query parame-
ters.

The Parameters tab displays all existing report, data-binding, and
query parameters. Existing data binding condition parameters and
query condition parameters are shown italicized in the Parameters
tab.

2. Click ‘New’. Specify the name of the new parameter in the dialog
box, and click ‘OK’. (You can change the name later by editing the
text in the ‘Name’ field.)

3. Click ‘Set Selection List’ to open the ‘Selection List’ dialog box.
(The button’s label is displayed in green if the selected parameter
already has a list associated.)

4. To enter a fixed set of labels/values for the parameter, follow the
steps below:

a. Click the List tab.

b. Click ‘Add’ to add a new label/value pair.

REPORT DESIGN

852 of 2477

c. Enter the desired ‘Label’ and ‘Value’. (The ‘Label’ text is
displayed to the user in the interface element; the corresponding
‘Value’ is assigned to the parameter.)

5. To acquire parameter labels/values from a query at runtime, follow
these steps:

a. Click the Query tab.

b. Select the query that contains the label/value pairs.

The data in the first column of the query are used as the
parameter values; the data in the second column of the query are
used as the labels. (Query conditions can reference other report
parameters if those parameters possess default values.)

6. (Optional) Select ‘Allow multiple selections’ to permit the user to
select multiple values for the parameter.

To remove values
associated with a
parameter, click the
‘Clear’ button in the
‘Selection List’ dia-
log box.

7. Click ‘OK’ to close the ‘Selection List’ dialog box.

8. Make the following optional selections in the ‘Parameter
Definition’ dialog box, if desired:

a. Select ‘As customization parameter’ to expose the parameter as
a customization parameter. Customization parameters are
displayed when the user clicks the ‘Customize’ button on the
report toolbar. (See Report Toolbar in End User.)

b. Select ‘Prompt User’ if the user should be automatically
prompted to enter a value for this parameter. (Disable this option
for parameters set by script and drill-down reports.)

c. Select ‘Sort Values’ if you want the list to be sorted
alphabetically.

d. Enter text in the ‘Tooltip’ field to display when the user hovers
the mouse over the corresponding parameter control on the
input form.

9. Click ‘OK’ to close the ‘Parameter Definition’ dialog box.

If multiple conditions use parameters with the same name, you can specify
whether parameters sharing a name should be treated as the same
parameter. To treat them as the same parameter (and prompt the user only
once) select File > Configure from the Style Studio menu, click the
General tab, and enable the ‘Parameter Name Unique’ option (enabled by
default).

REPORT DESIGN

853 of 2477

7.2.3 Acquiring a Parameter Value

The value of a parameter (variable) is assigned only at runtime, and can be
acquired from various sources, as described below:

• End-user prompting: By default, the end user is automatically
prompted for parameters (variables) used in conditions. To manage user
prompting, see Defining and Editing Report Parameters. To customize
prompting, see Parameter Sheets.

• Drill-down hyperlinks: Parameter values can be supplied from a drill-
down hyperlink in a separate report (see Hyperlinks), or by a script-
based hyperlink. (See showReplet and sendRequest in Report Scripting
for details.)

• Report scripts: Report script placed in the onLoad Handler or formula
column can set parameter values by accessing the parameter array. See
Accessing Report/Request Parameters in Report Scripting.

• User session: A report can obtain an external parameter value from the
SRPrincipal object associated with the user session. See Accessing the
User Session with SRPrincipal in Integration for further details.

• Scheduled task: A scheduled task can pass values to condition
parameters at the time that it automatically executes a report. See
Scheduler Actions for more details.

7.2.4 Parameter Sheets

If query or report parameters are defined for a report (see Parameterization
above), then the user is prompted with a default parameter screen when
they first open the report. This screen prompts the user for all of the
parameters for which ‘Prompt User’ is enabled in the Style Studio
‘Parameter Definition’ dialog box.

You can also create custom parameter prompting by designing an input
form (“parameter sheet”) with Style Studio’s Form Elements. This gives
you much greater flexibility positioning and styling the input controls. It
also allows you to sequence and adaptively populate the input controls so
as to smoothly guide the user through the input process, and prevent the
report from returning empty result sets.

There are two types of parameter sheets:

• Reusable parameter sheet: A reusable parameter sheet is an
independent asset, and can be associated with any number of reports.
See Reusable Parameter Sheets for an example of how to create this
type of parameter sheet.

• Embedded parameter sheet: An embedded parameter sheet is a basic
parameter sheet that is saved with a particular report, and can only be

REPORT DESIGN

854 of 2477

used by that report. See Embedded Parameter Sheets for more about
this type of parameter sheet.

Reusable Parameter Sheets

The following walkthrough explains how to create a reusable parameter
sheet component, and how to associate the parameter sheet with a
particular report.

Walkthrough: Creating a Reusable Parameter Sheet

To create a custom reusable parameter sheet, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Component’ node. From the right
‘Types’ panel, select ‘Parameter Sheet’. Click ‘OK’.

3. Add a form element to the new report which has a ‘Field Name’
identical to the name of the parameter. For this example, follow the
steps below to add a Choice element:

a. Drag a Choice element to the report.

b. Right-click the Choice element, and select ‘Properties’ from the
context menu. This opens the ‘Choice Properties’ dialog box.
Click on the Choice tab.

c. For the ‘Field Name’ specify “StateList”.

REPORT DESIGN

855 of 2477

d. In the ‘List Values’ panel, enable the ‘Embedded’ option, and
press the ‘Edit’ button. This opens the ‘Selection List’ dialog
box.

e. Press the ‘Add’ button, and enter “NY” for both the ‘Label’ and
the ‘Value’. Repeat to add “NJ” and “PA” as additional choices.
Press ‘OK’ to close the dialog box.

f. Enable the ‘Submit on Change’ option. This automatically
submits the form when the element is used to make a selection,
without requiring the user to explicitly click a ‘Submit’ button.

g. In the ‘Tooltip’ field, enter the text “Select a state.” This text
will display when the user hovers the mouse over the input
control.

h. Click ‘OK’ to close the ‘Choice Properties’ dialog box.

4. Add a Text element to complete the form. Set the text contents to
“State”. (See Text Element for more information.)

REPORT DESIGN

856 of 2477

5. Click the ‘Save’ button. In the dialog box, enter “StateList” as the
name of the parameter sheet, and click ‘OK’.

The parameter sheet is saved inside the stylereport.srl file, which
stores all reusable report components. This parameter sheet is now
available for use with any report.

See Also
Creating an Embedded Parameter Sheet, for information about how to
create an internal parameter sheet.

Walkthrough: Associating a Reusable Parameter Sheet with a Report

To associate a reusable parameter sheet with a particular report so that the
parameter sheet is used to acquire user input for the report, follow the steps
below:

1. Open the report to which you wish to add the parameter sheet.

2. Select ‘Report’ > ‘Parameter’ from the Style Studio main menu.
This opens the ‘Parameter Definition’ dialog box.

3. Click the Prompting tab, and select ‘Use Parameter Sheets’.

REPORT DESIGN

857 of 2477

The ‘End point’ box
displays in red all
report parameters
defined in queries,
data bindings, and in
the ‘Parameters’ dia-
log box. As you link
parameter sheets to
the report, the param-
eters provided by
those sheets turn from
red to black in the
‘End point’ box. Note
that a parameter needs
to be provided only on
a single path – not on
every possible path –
in order for its name
to appear in black.

4. Click the ‘Edit’ button. This opens the ‘Parameter Flow’ dialog
box.

5. Select the “StateList” parameter sheet from the left panel, and drag
it into the window containing the ‘Start point’ and ‘End point’
boxes.

6. Click on the ‘Start point’ box, and drag the mouse over the
‘StateList’ box. This creates a link between the two boxes.

7. Click on the ‘StateList’ box, and drag the mouse over the ‘End
point’ box. This creates a link between the two boxes which is
labeled “condition1.

For more information
about the features of
the ‘Parameter Flow’
dialog box, see Cas-
cading Parameter
Sheets.

8. Click ‘OK’ in the ‘Parameter Flow’ dialog box, and then click
‘OK’ to exit the ‘Parameter Definition’ dialog box.

9. Select File Configure in the Style Studio menu. Click the
General tab of the ‘Style Studio Configuration’ dialog box, and
enable ‘Preview Server Features’. Click ‘OK’ to close the dialog
box.

REPORT DESIGN

858 of 2477

10. Preview the report and observe the custom parameter prompting.

See Also
Embedded Parameter Sheets, for information about creating simplified
embedded parameter sheets.
Parameter Dialog HTML Template, in Administration Reference, for
information on customizing the default parameter prompting screen.
Parameter Dialog CSS File, in Administration Reference, for information
on styling the default parameter prompting screen.

Adding a ‘Clear’ button to a Parameter Sheet

You can add a ‘Clear’ button to the parameter sheet to allow the user to
clear the current selections. To do this, follow the steps below:

1. Drag a Button element into the parameter sheet in the desired
location.

2. Right-click on the Button and select ‘Properties’. This opens the
‘Button Properties’ dialog box.

3. (Optional) Select the Button tab in the ‘Button Properties’ dialog
box. Enter the word “Clear” in the ‘Label’ field.

4. Select the HTML tab in the dialog box, then select the onClick
sub-tab.

REPORT DESIGN

859 of 2477

5. Enter the following script in the onClick sub-tab:

clear();

6. Press ‘OK’ to close the dialog box.

Note: The onClick script cannot be processed in Style Studio
preview, but will function correctly when the report is viewed in
the Portal.

The parameter sheet now contains a ‘Clear’ button. When the user presses
the ‘Clear’ button, this clears the currently selected values in all parameter
sheet input elements.

Staged Parameters

When you prompt the user for a series of related parameters, it is often
desirable to guide the user through these choices in a certain order. This is
called parameter staging. This technique allows you to constrain the
options presented to the user at each stage so that only compatible
parameter combinations can be selected.

For example, consider a Parameter Sheet that has two menus, one for
‘State’ and one for ‘City’. Initially, you want only the ‘State’ menu to be
enabled, so that the user is forced to select a state first. After the user selects
a state, you want to then enable the ‘City’ menu, but restrict its values to
those cities that fall within with the selected state.

There are therefore several aspects to parameter staging, as described in the
following sections:

REPORT DESIGN

860 of 2477

• Creating a Parameter Sheet Layout
Add controls, and set ‘Field’ values to map to corresponding
parameters.

• Defining a Staged Parameter Flow
Specify the order for parameter control activation.

• Filtering Parameter Options
Populate parameter controls with options that are consistent with
previous selections.

• Linking a Parameter Sheet to a Report
Link the parameter sheet to a report that has corresponding parameters.

Creating a Parameter Sheet Layout

Walkthrough To add controls to a parameter sheet, and associate them with report
parameters, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Component’ node. From the right
‘Types’ panel, select ‘Parameter Sheet’. Click ‘OK’.

3. Expand the Style Studio Toolbox panel.

4. Drag a Section component from the Toolbox panel into the report.
(Sections allow very precise positioning of elements. See Section
Element for more details.)

5. Drag a Text element from the Toolbox panel into the Section. Enter
“Select State and City” as the contents of the Text element, and set
the font to 14pt bold. Center-align the Text element. (See Text
Element for more information.)

Note: The steps below assume that the report to which this
Parameter Sheet will be linked contains parameters named ‘st’ and
‘ct’. The ‘Field’ names of the input controls must exactly match
the corresponding report parameter names. (You will create a report
with these parameters in Linking a Parameter Sheet to a Report.)

6. Drag two Choice boxes from the Toolbox panel into the Section.

7. Right-click the first Choice box, and select ‘Properties’. This opens
the ‘Choice Properties’ dialog box. Make the following settings:

REPORT DESIGN

861 of 2477

a. Set ‘ID’ to “StateChoice”.

b. Set ‘Field Name’ to “st”.

c. Set ‘Enable’, ‘Submit on Change’, and ‘Optional’.

d. Click ‘OK’.

8. Right-click the second Choice box, and select ‘Properties’. In the
‘Choice Properties’ dialog box, make the following settings:

a. Set ‘ID’ to “CityChoice”.

b. Set ‘Field Name’ to “ct”.

c. Set ‘Enable’, ‘Submit on Change’, and ‘Optional’.

d. Click ‘OK’.

REPORT DESIGN

862 of 2477

The next step is to sequence the controls so that the user must first select a
state, and then select a city. You will do this in the next section, Defining a
Staged Parameter Flow.

Defining a Staged Parameter Flow

This example continues from Creating a Parameter Sheet Layout. To
specify the sequence in which the controls are activated, follow the steps
below.

1. Select Report Staged Parameters from the Style Studio menu.
This opens the ‘Staged Form Element Population Hierarchy’
dialog box.

2. In the dialog box, drag the ‘Form.st’ element from the top panel to
the area on the right which reads: ‘Drag here to add a flow’. This
adds a new parameter flow.

3. Drag the ‘Form.ct’ element to the area which reads ‘Drag here to
add a stage’.

This places the ‘ct’ parameter under the ‘st’ parameter in the flow
hierarchy, which means that the ‘CityChoice’ control will be
enabled only after the user submits a selection in the ‘StateChoice’
control. (This sequential control activation only functions when the
Parameter Sheet is launched by the linked report, not when the
Parameter Sheet is previewed by itself.)

4. Click ‘OK’ to close the dialog box.

REPORT DESIGN

863 of 2477

The next step is to filter the ‘CityChoice’ control so that it only presents
choices that are compatible with the user’s selection in the ‘StateChoice’
field. You will do this in the next section, Filtering Parameter Options.

Note: You can create parallel flows of multiple stages in a staged parameter
sheet. This is desirable when multiple stages are independent of one
another. For example, one stage may possess the levels ‘Country’ and
‘State’, while another stage may possess the levels ‘Product Category’ and
‘Product Name’. These two stages are independent, so it would not be
logical to place them into a single flow.

To add a parallel stage, simply drag an element to the region titled ‘Drag
here to add a flow’ on the right of the Staged Parameter dialog box.
Elements in the ‘Default Level’ are always enabled.

Filtering Parameter Options

This example continues from Defining a Staged Parameter Flow. Because
of the parameter flow you defined there, the ‘CityChoice’ control is
enabled only after the user selects a ‘StateChoice’ option. In such a case, it
is also desirable to limit the options shown in the ‘CityChoice’ control to
only those that are consistent with the given ‘StateChoice’ selection.

REPORT DESIGN

864 of 2477

To populate the ‘CityChoice’ control with values that are consistent with
the user’s ‘StateChoice’ selection, follow the steps below.

1. Bind the ‘StateChoice’ control to a data source. Follow these steps:

a. Right-click the ‘StateChoice’ control, and select ‘Properties’
from the context menu. This opens the ‘Choice Properties’
dialog box.

b. In the ‘List Values’ panel, select ‘Query’ and press the ‘Edit’
button.

This opens the ‘Selection List’ dialog box.

c. Under the Data tab, expand the ‘Orders’ node in the tree, and
select ‘Order Model’.

REPORT DESIGN

865 of 2477

d. Click the Columns tab. Select the ‘Customer.State’ column in
the list, and click the right-arrow. Then click ‘OK’.

This will populate the ‘StateChoice’ control with the data from
the ‘Customer.State’ column. (It is assumed that this is the same
‘State’ data that will be used in the linked report.)

e. Press ‘OK’ to close the ‘Choice Properties’ dialog box.

2. Bind the ‘CityChoice’ control to a data source:

a. Right-click the ‘CityChoice’ control, and select ‘Properties’
from the context menu. This opens the ‘Choice Properties’
dialog box.

b. In the ‘List Values’ panel, select ‘Query’ and press the ‘Edit’
button. This opens the ‘Selection List’ dialog box.

c. Under the Data tab, expand the ‘Orders’ node in the tree, and
select ‘Order Model’.

REPORT DESIGN

866 of 2477

d. Click the Columns tab. Select the ‘Customer.City’ column in
the list, and click the right-arrow.

This will populate the ‘CityChoice’ control with the data from
the ‘Customer.City’ column. (It is assumed that this is the same
‘City’ data that will be used in the linked report.)

e. Click the Condition tab. Using the menus, select the following
condition: “[Customer.State] [is] [equal to]”.

f. Click the “arrow” button at the right side of the condition, and
select ‘Variable’ from the menu.

g. Enter “st” in the ‘Label’ field, and click ‘Append’ to apply the
condition.

REPORT DESIGN

867 of 2477

This will populate the ‘CityChoice’ control with data from the
‘Customer.City’ field where the ‘Customer.State’ value is equal
to the value of the ‘st’ parameter set by the user’s ‘StateChoice’
selection. As a result, the ‘CityChoice’ control displays only
cities within the selected state.

h. Press ‘OK’ to close the ‘Selection List’ dialog box.

i. Press ‘OK’ to close the ‘Choice Properties’ dialog box.

3. Click the Style Studio ‘Save’ button, and save this Parameter Sheet
under the name “StateAndCity”.

The next step is to link the Parameter Sheet to the desired report. In the next
section, Linking a Parameter Sheet to a Report, you will create a new
report, and link it to the parameter sheet.

Linking a Parameter Sheet to a Report

This example continues from Filtering Parameter Options. To link the
‘StateAndCity’ parameter sheet to a new report, follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Table’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new table.

REPORT DESIGN

868 of 2477

5. Under the Data tab, bind the table to ‘Order Model’ from the
‘Orders’ data source.

6. In the Columns tab, click the right-arrow to select the following
columns from the ‘Available Columns’ pane:

‘Product.Name’
‘Product.Quantity Purchased’
‘Customer.Company’
‘Customer.City’
‘Customer.State’

7. In the Condition tab, specify the following compound condition.

[Customer.State][is][equal to][$(st)]
[and]

[Customer.City][is][equal to][$(ct)]

To enter the parameter names ‘st’ and ‘ct’ in the statements, select
the ‘Parameter’ option on the right side of the condition, and enter
these names into the corresponding text field. Enable ‘Use
Selection List’ for each parameter. (See Filtering Data in Data
Binding Wizard for more details on specifying conditions.)

8. Click ‘Finish’ to exit the ‘Data Binding’ dialog box.

9. Save this report as “parameterReport.srt”.

In the next steps, you will link this ‘parameterReport.srt’ report to the
‘StateAndCity’ parameter sheet developed earlier (see Creating a
Parameter Sheet Layout). When you do this, the default parameter
prompting mechanism is automatically replaced by the staged parameter
prompting mechanism you designed.

REPORT DESIGN

869 of 2477

10. Click the ‘Open’ button in the Style Studio toolbar. Locate and
open the parameterReport.srt report.

11. Select ‘Report’ > ‘Parameter’ from the main menu. This opens the
‘Parameter Definition’ dialog box.

Note that the Parameters tab of the ‘Parameter Definition’ dialog
box already lists the ‘st’ and ‘ct’ parameters defined earlier (in the
data binding condition).

12. Click the Prompting tab, and select ‘Use Parameter Sheets’.

13. Click the ‘Edit’ button. This opens the ‘Parameter Flow’ dialog
box.

14. In the ‘Parameter Flow’ dialog box, drag the ‘StateAndCity’
Parameter Sheet into the right panel.

15. Click on the ‘Start point’ box, and drag the mouse over the
‘StateAndCity’ box. This creates a link between the two boxes.

16. Click on the ‘StateAndCity’ box, and drag the mouse over the ‘End
point’ box. This creates a link between the two boxes which is
labeled “condition1”.

REPORT DESIGN

870 of 2477

For more information
about the features of
the ‘Parameter Flow’
dialog box, see Cas-
cading Parameter
Sheets.

17. Click ‘OK’ in the ‘Parameter Flow’ dialog box, and then click
‘OK’ to exit the ‘Parameter Definition’ dialog box.

18. Select ‘File’ > ‘Configure’ in the Style Studio menu. Click the
General tab in the ‘Style Studio Configuration’ dialog box, and
enable ‘Preview Server Features’. Click ‘OK’ to close the dialog
box.

19. Preview the report.

The Parameter Sheet is now loaded in place of the default parameter
prompting mechanism. The parameters are staged as desired: The user
must specify the state before the city, and can only select cities that are
within the selected state.

Cascading Parameter Sheets

You can define multiple parameter sheets for a given report, and control the
sequence in which these parameter sheets are presented to the user. This
approach is called cascading parameter sheets. You can specify
conditional branching for these parameter sheets, so that user selections on
one parameter sheet determine which parameter sheet is next displayed.

It is possible to design a similar kind of adaptive prompting through the use
of Staged Parameters and scripting. However, by designing multiple
parameter sheets in a cascading sequence, you retain the flexibility of
reusing each parameter independently.

REPORT DESIGN

871 of 2477

Walkthrough: Cascading Parameter Sheets

Assume that a company needs a simple report which generates an invoice
for the orders placed by its customers. The report displays order
information such as product, price, and discount, as well as customer
information such as Company Name and Customer ID, which the user will
enter as parameters.

Walkthrough If some customers are resellers to whom the company provides a special
discount scheme, it will be necessary to display different parameter sheets
depending on the type of customer. You can easily create the required
conditional prompting sequence with cascading parameter sheets.

Create the following three parameter sheets: ‘customers’, ‘reseller
discount’, and ‘customer discount’.

For information on how to create these kinds of parameter sheets,
see Parameter Sheets.

1. The ‘customers’ parameter sheet is a simple form that accepts some
initial customer information. It has some text labels and fields and a
Choice element.

The Choice element has two choices: ‘Customers’ and ‘Resellers’.
The user can choose one and click ‘Submit’.

2. The ‘reseller discount’ parameter sheet accepts some inputs for the
reseller details. It has a Choice element which lets the user enter the
order quantity.

To assign a label and value to the choices, select the Choice
element and right-click to open the ‘Choice Properties’ dialog box.
In the dialog box, on the Choice tab, click the ‘Advanced’ button to
open the ‘Selection List’ dialog box. You can assign labels and
values for the list as shown below.

REPORT DESIGN

872 of 2477

3. The ‘customer discount’ sheet has a different set of inputs.

When you link these cascading sheets to a report (discussed next in Using
Cascaded Parameter Sheets in a Report), the report is automatically
provided with an accumulation of the parameters entered in all of the sheets
that are part of the user’s selection flow. Therefore, the report will always
get all parameters from either the ‘customer’ and ‘reseller discount’ sheets
or the ‘customer’ and ‘customer discount’ sheets, the two possible user
selection flows.

REPORT DESIGN

873 of 2477

Using Cascaded Parameter Sheets in a Report

This example continues from Walkthrough: Cascading Parameter Sheets.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’.

3. Select Report Parameter. This opens the ‘Parameter Definition’
dialog box. Select the Prompting tab and choose the ‘Use
Parameter Sheets’ option.

4. Click on the ‘Edit’ button. This opens the ‘Parameter Flow’ dialog
box, in which you can set cascaded parameter sheets with
conditional branching.

REPORT DESIGN

874 of 2477

5. Drag and drop the ‘customers’, ‘customer discount’, and ‘reseller
discount’ parameter sheets to the center. The ‘Start point’ and ‘End
point’ boxes are the two terminal points of the flow.

6. You can now specify different flow sequences for the parameter
sheets. Drag-and-drop from one sheet to another to connect them as
shown.

7. Specify conditions at the different branch points:

a. Select ‘condition1’ and click on the ‘Edit’ button in the bottom
right corner to open the condition dialog box.

b. Add the following condition: ‘[CustomerType] [is] [equal

to] [Customer]’. Click ‘OK’.

REPORT DESIGN

875 of 2477

c. Select ‘condition2’ and click on the ‘Edit’ button in the bottom
right corner to open the condition dialog box.

d. Add the following condition: ‘[CustomerType] [is] [equal

to] [Reseller]’. Click ‘OK’.

8. Click the ‘Verify’ button. If the links are correct, you will see a
‘Links verified successfully’ message.

REPORT DESIGN

876 of 2477

9. Click ‘OK’ to close the ‘Parameter Flow’ dialog box. The
parameter sheets are now ready to be added to the report.

Note that in addition to proceeding strictly in the forward direction, the
cascading parameter sheet flow can also conditionally return to previous
parameter sheets in the sequence.

Embedded Parameter Sheets

The Parameter Sheets section explains how to create a reusable parameter
sheet, a reusable parameter entry form that is stored in the stylereport.srl
file. This type of parameter entry form is very flexible, because it can be
reused in multiple reports and can make use of a wide variety of report
components. This is the preferred way to create a custom parameter entry
form.

A reusable parameter sheet cannot be converted into an embedded
parameter sheet, and an embedded parameter sheet cannot be
converted into a reusable parameter sheet.

However, in some cases you may want to create a simpler parameter sheet
that provides parameter input for just a single report and is saved together
with the report itself (rather than in the global stylereport.srl file). This is
called an embedded parameter sheet, and is the same type used by Ad Hoc
reports (see Parameter Sheets in Ad Hoc Reporting). An embedded
parameter sheet can only be used by the report in which it is embedded, and
provides only a limited set of design components.

The following sections explain how to create an embedded parameter
sheet.

See Also
Reusable Parameter Sheets, for information about how to create external
(reusable) parameter sheets.

Creating an Embedded Parameter Sheet

To create an embedded parameter sheet, follow the steps below:

REPORT DESIGN

877 of 2477

1. In Style Studio, open the report to which you want to add an
embedded parameter sheet.

2. Expand the Style Studio Asset panel.

3. Expand the ‘Report’ node on the tree. Right-click on the
‘Parameter Sheet’ option, and select ‘New Embedded Parameter
Sheet’.

A report has at most
one embedded param-
eter sheet.

4. This opens the embedded parameter sheet for editing.

5. Drag Text and TextBox components from the Toolbox panel into
the parameter sheet to display labels and other static text.

6. Drag a Parameter component into the parameter sheet for each
report parameter that you want the user to enter.

7. Right-click each parameter component, and select ‘Properties’
from the context menu. This opens the ‘Properties’ dialog box.

8. Adjust the desired settings in the ‘Properties’ dialog box:

a. Press the ‘Browse Report Parameters’ button, and select the
parameter that the Parameter component should control.

REPORT DESIGN

878 of 2477

b. In the ‘Label’ field, enter the label that should appear on the
Parameter input control.

c. In the ‘Tooltip’ field, enter the text of a tooltip to appear when
the user hovers the mouse over the Parameter input control.

d. In the ‘Type’ menu, select the data type of the parameter.

e. In the ‘Depends On’ menu, select the parameter on which the
current parameter depends (if any). When the user runs the
report they will need to supply a value for the ‘Depends On’
parameter before they can enter a value for the current
parameter.

f. If you want the form to be submitted immediately when the user
chooses a value for the parameter, enable ‘Submit on Change’.

In general, you should also enable ‘Submit on Change’ if
another parameter depends on this parameter (i.e., if another
parameter has this parameter specified in its ‘Depends On’
field). If you do not enable ‘Submit on Change’ in this case, the
user will not be able to enter a value for the dependent
parameter.

g. Select ‘Optional’ if the user does not need to supply a value for
the parameter.

REPORT DESIGN

879 of 2477

h. To populate the Parameter options from an existing data source,
in the ‘Selection List’ panel select the ‘Query’ option and press
‘Edit’. This opens the ‘Selection List’ dialog box.

Select the Data tab, and choose the data source that will provide
the labels and values for the parameter.

If you want the labels
and values to be the
same, select only a
single column.

Select the Columns tab. Choose one column to provide the
labels for the Parameter, and one column to provide the values
for the Parameter.

REPORT DESIGN

880 of 2477

The labels determine the choices that are displayed to the user in
the Parameter. The values determine the corresponding data that
is submitted when the user makes a selection. To swap the
‘label’ field with the ‘value’ field, click the ‘Move up’ or ‘Move
down’ arrow above the right panel.

To adapt the Parame-
ter choices based on
user input, specify a
parameterized condi-
tion. See Parameteriz-
ing a Condition.

(Optional) Select the Condition tab. Specify a condition to filter
the options (labels/values) displayed by the Parameter. See
Filtering Data in Data Binding Wizard for more information on
specifying a filter.

Press ‘OK’ to close the ‘Selection List’ dialog box.

i. To populate the Parameter options by manually entering the
label/value pairs, in the ‘Selection List’ panel select the
‘Embedded’ option and press ‘Edit’. This opens the ‘Selection
List’ dialog box.

Press the ‘Add’ button to add a new label/value pair. Double-
click on a label or value to edit the text.

REPORT DESIGN

881 of 2477

The labels determine the choices that are displayed to the user in
the Parameter. The values determine the corresponding data that
is submitted when the user makes a selection. To reorder the
label/value pairs, press the arrow buttons above the label/value
list.

Repeat to add additional labels. Press ‘OK’ to close the
‘Selection List’ dialog box.

j. To supply a default value for the parameter, uncheck the ‘None’
option, and enter a value in the ‘Default Value’ field.

k. To sort the labels in ascending order, select the ‘Sort
Labels(asc)’ option. To sort the labels in descending order,
select the ‘Sort Labels(desc)’ option. To restore the original
order, select the ‘Sort Labels(none)’ option.

l. In the ‘Display Style’ panel, select the type of input control that
should be used for the parameter.

m. Press ‘OK’ to close the ‘Parameter Properties’ dialog box.

9. Add a ‘Button’ component to allow the user to submit the form.

To add a ‘Clear’ but-
ton, see Adding a
‘Clear’ button to a
Parameter Sheet.

10. Arrange the components on the parameter sheet as desired.

Note that the parameter sheet canvas is the ‘Detail’ band of a
Section component, and provides all of the arrangement features of
a section band (align, distribute, etc.) See the following sections for
more information about arranging components: Moving and
Resizing Elements in a Section, Aligning Elements in a Section,

REPORT DESIGN

882 of 2477

Distributing Elements in a Section, Changing Sizes of Elements in
a Section.

11. Press the ‘Save’ button in the toolbar to save the embedded
parameter sheet.

See Also
Reusable Parameter Sheets, for information about how to create external
(reusable) parameter sheets.

Walkthrough: Embedding a Parameter Sheet in a Report

In the example that follows, you will create an embedded parameter sheet
that prompts the user for a list of products. First, you will need to create a
new report that uses parameter prompting. Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’. This creates a new
report.

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Table’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new table.

5. Under the Data tab, bind the table to ‘Order Details’ query from
the ‘Orders’ data source.

6. In the Condition tab, specify the following parameterized
condition.

[Product][is][one of][$(products)]

To enter the parameter name ‘products’ on the right side of the
statement, select the ‘Variable’ option from the pop-up menu on the
right side of the condition, and type “products” into the ‘Name’
field. (See Filtering Data in Data Binding Wizard for more details
on specifying conditions.)

REPORT DESIGN

883 of 2477

7. Enable the ‘Use Selection List’ option. (This provides a selection
list when default prompting is used.)

8. Click ‘Append’ to add the condition to the table.

9. In the Grouping & Summary tab, drag the ‘Product’ field to the
‘Grouping’ panel. Drag the ‘Total’ field to the ‘Summary’ panel.

10. In the Table Options tab, enable the ‘Show Summary Only’
option.

REPORT DESIGN

884 of 2477

11. Press ‘Finish’ to close the Wizard and create the table.

12. Press the ‘Save’ button on the toolbar and select the Repository
Report tab. Save the report under the name “Parameter Sheet
Report”.

13. Press the ‘Preview’ button on the toolbar to preview the report.
Observe that the report prompts the user to enter a value for the
‘products’ parameter using the default parameter prompting
mechanism.

14. Select a set of products, and press ‘OK’. The generated report
contains a table that lists only the selected products.

You have created a report that uses the default parameter prompting
mechanism to obtain a value for the “products” parameter. You will now
add a custom parameter sheet to the report. This parameter sheet will
replace the default prompting mechanism.

15. Expand the Style Studio Asset panel.

REPORT DESIGN

885 of 2477

16. Expand the ‘Report’ node on the tree. Right-click on the
‘Parameter Sheet’ option, and select ‘New Embedded Parameter
Sheet’.

17. This opens a new embedded parameter sheet for editing.

18. Drag a Text component from the Toolbox panel to the parameter
sheet. Enter the text “Select products:”. This will be the input label.

19. Drag a Parameter component from the Toolbox panel into the
parameter sheet. This will be product input list.

20. Drag a Button component from the Toolbox panel to the parameter
sheet. This will be the Submit button.

21. Position the elements as shown. Make the Parameter element taller
by selecting it and dragging its bottom border downward.

22. To configure the Parameter element to control the “products”
parameter, follow these steps:

REPORT DESIGN

886 of 2477

a. Right-click the Parameter component, and select ‘Properties’
from the context menu. This opens the ‘Parameter Properties’
dialog box.

a. Press the ‘Browse Report Parameters’ button, and select the
“products” parameter. This will allow the Parameter
component to set the value of the ‘products’ parameter.

b. In the ‘Label’ field enter “Products”.

c. In the ‘Tooltip’ field enter text to display when the user hovers
the mouse over the input control. For example, type “Select
product name.”

d. In the ‘Selection List’ panel, select ‘Query’ and click the
‘Select’ button. This opens the ‘Selection List’ dialog box.

REPORT DESIGN

887 of 2477

e. In the bottom Data tab, select ‘Order Model’ from the ‘Orders’
data source.

f. In the bottom Columns tab, select ‘Product.Name’. This field
will provide both the labels and values for the Parameter input
control.

REPORT DESIGN

888 of 2477

g. Press ‘OK’ to close the ‘Selection List’ dialog box.

h. In the ‘Display Style’ panel, select the ‘List’ option.

i. Press ‘OK’ to exit the ‘Parameter Properties’ dialog box and
return to the parameter sheet.

23. Press the ‘Save’ button in the toolbar to save the embedded
parameter sheet. (The parameter sheet is saved together with the
report.)

24. Close the parameter sheet.

25. Verify that the parameter sheet is now functional:

a. Press the ‘Preview’ button in the report toolbar to preview the
report. The report should prompt you for the ‘products’
parameter using the parameter sheet you just created.

b. Select the first three products and click ‘Submit’.

REPORT DESIGN

889 of 2477

The report is now filtered based on your input.

7.3 Hyperlinks
Note: Hyperlinks are not available in Style Report Pro.

You can add hyperlinks to Text, Textbox, Table, Section, and Chart
elements. These hyperlinks can direct the user to another report, Viewsheet,
or URL. For exported reports, hyperlinks are supported in ‘PDF’, ‘HTML’
and ‘RTF’ formats. If the hyperlink is associated with a Table, Section, or
Chart, you can pass the contents of the clicked element as a parameter to
the drill-down report or URL.

7.3.1 Defining a Hyperlink

To define a hyperlink, follow the steps below:

1. Select the component on which to place the hyperlink. This can be
a Text element, Crosstab cell, Table cell, Chart dimension label, or
Chart display element (slice of a pie chart, bar in a bar chart, point
in a point chart, etc.).

Hyperlinks cannot be
defined on radar plot
dimension labels.

For a Table or Section element, you can place a hyperlink on any
column; the values of all columns are then available as hyperlink
parameters. In a crosstab, hyperlinks on the row and column
headings can pass the heading text as parameter, while hyperlinks
on data cells can pass both header and cell data values. For a Chart
element, a hyperlink on the display element can pass X-axis labels,
Y-axis values, and subseries (legend) values as parameters. A
hyperlink on the dimension label itself can pass only the dimension
labels as parameters.

2. Open the Style Studio Properties panel. (Select ‘Properties Pane’
from the ‘Windows’ menu.)

3. Click the component to which you want to add hyperlinks. Select
the Hyperlink tab in the Properties panel.

4. Select the ‘Asset Link’ option to target a drill-down report or
Viewsheet, or select the ‘Web Link’ option to target a web page.

5. If you selected ‘Asset Link’, choose the desired drill-down report
or Viewsheet from the ‘Link’ menu.

REPORT DESIGN

890 of 2477

To make the report
link dynamic, enter
{param_name} as the
‘Link’ text, where
param_name is a
hyperlink parameter
that contains the
deployed report name.

Assets are populated in this ‘Link’ menu from the repository.xml
and asset.dat files in the repository. The repository.xml file lists
reports that have been deployed to the server (see Incremental
Deployment of Assets in Administration Reference and Deploying a
Report, Data Source, or Other Asset in Getting Started), and
asset.dat lists Viewsheets that have been saved on the server. If
there are no deployed assets visible in the ‘Link’ menu, you can
manually enter the name as it appears in the repository. See
Configuring a Repository in Getting Started for information on
specifying the repository location.

6. If you select ‘Web Link’, enter the target URL in the ‘Link’ field.
(For example, “http://www.google.com/search”.) You can also
specify a table column to provide the URL links by selecting the
desired column from the ‘Link’ menu.

7. (Optional) Enable ‘Send report parameters’ to pass all existing
report parameters to the drill-down report, Viewsheet, or URL.
(See Passing Report Parameters for details on synchronizing
parameters.)

8. Select ‘Disable parameter prompt’ to suppress the default
parameter prompt produced by the drill-down report or Viewsheet.
(Prompting is automatically suppressed for parameters explicitly
selected in the ‘Parameters’ panel.)

9. In the ‘Parameters’ panel, press the ‘Add Parameter’ button. This
opens the ‘Parameter’ dialog box.

Enable ‘Preview
Server Features’ on
the General tab of the
‘Style Studio Config-
uration’ dialog box
(select ‘Configure’
from the ‘File’ menu).

10. In the ‘Name’ field of the dialog box, select the name of the
parameter expected by the receiving report, Viewsheet, or URL.

11. Select ‘Field’ if the value passed in the hyperlink should be
provided by a field value. Select the desired field name from the
‘Value’ menu. (See Passing Report Parameters for details on
synchronizing parameters.)

REPORT DESIGN

891 of 2477

12. Select ‘Constant’ if the value passed in the hyperlink should be a
fixed value. Specify the data type of the constant in the ‘Type’ field,
and enter the desired value in the ‘Value’ field.

13. Repeat the above steps to add additional parameters to the
hyperlink.

14. In the ‘Target Frame’ field, specify a target window for the
hyperlink.

You can enter a name or an HTML target keyword, such as
“_blank,” to open the target in a new window or tab. If you leave
the ‘Self’ option enabled, the target report or web-page will replace
the parent report in the browser.

15. If applicable, in the ‘Bookmark’ field, select the Viewsheet
bookmark that you want the hyperlink to target. The Viewsheet will
automatically open this bookmark when the user clicks the
hyperlink.

16. In the ‘Tool Tip’ field, specify the text that should appear when the
user hovers the mouse over the hyperlink in the report.

For Table hyperlinks only, the tool tip can include field values for
the current record. To insert the field value into the tooltip, use the
placeholder “{field name}”. For example, for a Table with fields
‘Order Number’ and ‘Employee’, you can specify the following
tooltip: “Invoice for order {Order Number} placed by {Employee}”.

17. Press the ‘Apply’ button.

REPORT DESIGN

892 of 2477

To display hyperlink
underlining by
default, set hyper-
link.indicator=true in
sree.properties.

18. Add any desired visual formatting to the hyperlinks (e.g.,
underlining).

19. Preview the report to test the hyperlinks.

Passing Report Parameters

You can pass report parameters to a target report, Viewsheet, or web page.
The following rules apply:

• Passing parameters to a report: When you pass parameters to a drill
down report, the parameter names in the sending report must exactly
match the parameter names in the receiving report. See Defining and
Editing Report Parameters for more information.

• Passing parameters to a Viewsheet: When you pass parameters to a
Viewsheet, the parameter names in the sending report must exactly
match the Variable names in the associated Worksheet. (See Using a
Variable in Data Mashup.) Alternatively, you can access the parameters
within Viewsheet script via the parameter object (see parameter in
Dashboard Scripting).

• Passing parameters to a web page: When you pass parameters to a
web page, the parameter names should exactly match the parameter
names expected by the receiving web page.

7.3.2 Hyperlinks to a Target (Anchor)

You can designate any report element as a target (similar to an HTML
anchor), and hyperlink to the target from another element within the same
report. You can hyperlink to a fixed target, or dynamically select the target
based on user action. Targeted hyperlinks can also be exported to PDF
format.

Defining a Target (Anchor)

To define an element (Tables, Charts, Text) as a target, follow the steps
below:

1. Right-click on the element, and select ‘Properties’ from the context
menu. This opens the ‘Properties’ dialog box.

For a Section Element, you can specify dynamic target names for
elements within the bands. This is useful when you wish to link to a
specific data record within an element, as opposed to the element
itself.

2. Click the Attributes tab of the ‘Properties’ dialog box, and enter a
valid target name in the ‘Target’ field.

3. Click ‘OK’ to close the dialog box.

REPORT DESIGN

893 of 2477

Hyperlinking to a Target

To define a hyperlink to a target, follow the steps in Defining a Hyperlink.
Choose the ‘Asset Link’ option, and enter one of the following in the
‘Link’ field:

• #targetName to link to fixed target with name “targetName”

• #{HyperlinkParameterName}, to dynamically link to a target whose
name is supplied by “HyperlinkParameterName,” where
HyperlinkParameterName is one of the parameters listed in the ‘Name’
field of the ‘Parameters’ panel (under the Hyperlink tab).

Walkthrough In the next example you will create a report with a Chart and a Section, one
below the other. Both elements will be bound to the ‘All Sales’ query. You
will define hyperlinks for the Chart so that when you click on an
employee’s bar in the Chart, you will be directed to the page of the report
containing the Section group header for the corresponding employee.

To create the report, follow the steps below:

1. Click the ‘New’ button on the Style Studio menu. This opens the
‘New Asset’ dialog box.

2. In the left panel select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’ and click ‘OK’.

3. From the Style Studio Toolbox panel, drag a Chart component into
the new report. This opens the Data Source and Binding panels.
Make the following selections:

a. In the Data Source panel, expand the ‘Orders’ data source and
the ‘All Sales’ query.

b. Drag the ‘Employee’ field from the ‘All Sales’ query to the ‘X’
region in the Binding panel.

c. Drag the ‘Total’ field from the ‘All Sales’ query to the ‘Y’
region in the Binding panel

4. Click below the Chart to place the insertion point at that location.

REPORT DESIGN

894 of 2477

5. In the Style Studio Toolbox panel, click the Section button. This
opens the ‘Data Binding’ dialog box for a new Section. Make the
following selections:

a. Select the Data tab. Expand the ‘Orders’ data source and the
‘All Sales’ query.

b. Select the Grouping & Summary tab. Drag the ‘Employee’
field to the ‘Grouping’ panel, and drag the ‘Total’ field to the
‘Summary’ panel.

c. Click ‘Finish’ to close the ‘Data Binding’ dialog box.

6. Define a target for every ‘Employee’ group header in the Section.
Note that the ‘Employee’ group header is generated once for each
employee name. To label each generated header target with the
actual employee name, follow the steps below:

a. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the ‘Window’ menu.)

b. Select the ‘Employee’ Text element in the ‘GH1’ band.

c. In the Properties panel, click the Script tab. Enter the
following script:

target = field.Employee

Click the green ‘Apply’ button. This script will set the ‘Target’
property of the header text element in each iteration of the
header band to the corresponding employee name. (See Target
Property in Report Scripting for more information).

d. Set the font of the header Text element to Bold-12 Point. (Use
the buttons in the Style Studio toolbar.)

REPORT DESIGN

895 of 2477

7. Hyperlink the chart to the Section header targets. Follow the steps
below:

a. Click on one of bars in the Chart.

b. Select the Hyperlink tab in the Properties panel.

c. Select the ‘Asset Link’ option.

d. In the ‘Link’ field, type “#{emp}”.

e. In the ‘Parameters’ panel, press the ‘Add Parameter’ button.
This opens the ‘Parameter’ dialog box.

Enable ‘Preview
Server Features’ on
the General tab of the
‘Style Studio Config-
uration’ dialog box
(select ‘Configure’
from the ‘File’ menu).

f. In the ‘Name’ field of the dialog box, enter “emp” as the
parameter name.

g. Select the ‘Field’ option and select ‘Employee’ from the ‘Value’
menu.

h. Click the green ‘Apply’ button.

8. Preview the report. Verify that you can click on any bar in the chart
to link to the corresponding Section header.

7.4 Highlighting
When you bind a Text, Textbox, Table, or Chart element to data, you can
specify a highlight for the element. A highlight is a conditional format that
applies a visual effect based on the value of the data displayed by the
element. A highlight it comprised of a foreground color, a background
color, and a font, which are applied to the element when a specific data
condition is met.

7.4.1 Highlighting a Text or Textbox Element

To add a highlight to a Text or Textbox element, follow these steps:

1. Open the Style Studio Properties panel. (Select ‘Properties Pane’
from the Style Studio ‘Window’ menu.)

2. Click on the Text element that you wish to highlight.

REPORT DESIGN

896 of 2477

3. Select the Highlight tab in the Properties panel.

4. Click the ‘New’ button. Enter a name for the new highlight.

5. Select a foreground color, background colors, and/or a specific font
to apply when the highlight condition is satisfied.

6. Click ‘Edit Condition’, and specify the condition that determines
when the highlight is applied. (See Filtering Data in Data Binding
Wizard for more information about setting conditions.)

You can create multiple highlights for the same Text element, with each
highlight representing a different condition. The Text displays the highlight
whose corresponding condition is met by the current data.

7.4.2 Highlighting Data in a Table

To highlight data in a Table, follow these steps:

1. Open the Style Studio Properties panel. (Select ‘Properties Pane’
from the Style Studio ‘Window’ menu.)

2. Select the data cell or row of the Table to which you want to apply
the highlight. (See Selecting a Cell, Row, or Column of a Table for
more information.)

3. Click the Highlight tab in the Properties panel.

4. Specify the highlight formatting and condition. This is the same
procedure as for a Text element highlight. See Highlighting a Text
or Textbox Element for details.

REPORT DESIGN

897 of 2477

Walkthrough In this example, you will highlight the cells in the ‘Total’ column with a a
red background when they contain a value under $5000, and highlight the
entire row with a green background when the total is above $20,000.
Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel.

4. Click the ‘Table’ button in the Toolbox panel to open the ‘Data
Binding’ dialog box for a new table.

5. Under the Data tab, bind the table to the ‘All Sales’ query from the
‘Orders’ data source, and click ‘Finish’.

Add the red highlights for low totals (under $5000):

6. Open the Style Studio Properties panel. (Select ‘Properties’ from
the ‘Window’ menu.)

7. Select the body cell under the ‘Total’ header of the Table.

8. Select the Highlight tab in the Properties panel.

9. Click ‘New’ to add a new highlight, and name it “Poor
Performance”.

10. Select a red color for the ‘Background’ in the ‘Properties’ pane.

11. Click the ‘Edit Condition’ button, and append the following
condition:

[Total] [is] [less than] [5000]

12. Click ‘OK’ to close the dialog box.

REPORT DESIGN

898 of 2477

Next, add the green row-based highlights for high totals (over $20,000):

13. Select the body row of the table by clicking next to it in the left
margin. You will see an arrow indicating that the row is now
selected.

14. Select the Highlight tab in the Properties panel.

15. Click ‘New’ to add a new highlight, and name it ‘Good
Performance’.

16. Select a green color for the ‘Background’ in the ‘Properties’ panel.

17. Click the ‘Edit Condition’ button, and append the following
condition:

[Total] [is] [greater than] [20000]

18. Preview the table and observe the cell and row highlighting.

REPORT DESIGN

899 of 2477

The existence of a row-based highlight is indicated by an asterisk in the left
margin next to the row, as shown below. To edit a row-based highlight,
click the asterisk to select the row, and then proceed as shown above.

7.5 Formatting
A format specifies the algorithm for converting an object to and from a
string value. Several common format types can be specified in the Format
tab of Style Studio’s Properties panel.

7.5.1 Format Types

The formats available on the visual interface do not include all possible
formats. If a format is not on the supported list, it can be specified using the
reporting API from the application.

Table 14. Format Types available in Style Studio

Date and Time Formats

For date and number formats, an optional format pattern string can be
specified. The date format pattern must conform to the patterns specified

FORMAT
TYPE

DESCRIPTION

Date Format
Specify conversion for date/time values. See Date and
Time Formats.

Text Format Specify formatting of string values. See Text Formats.

Number Format
Specify conversion for numeric values. See Number
Formats.

Currency Format
Specify formatting of numbers as currency (with a
currency symbol)

Percent Format Specify formatting of numbers as percentages

REPORT DESIGN

900 of 2477

by the java.text.SimpleDateFormat class. For example, to format a date as
‘Jan 01, 2000’, use ‘MMM dd, yyyy’.

Date and time formats can be specified at a number of levels:

1. Object Level: Date or time format applied to a specific report
element (e.g., table column) using the Format tab of the
Properties panel in Style Studio.

2. Report Level: Date or time format applied to a specific report using
the ‘Report Properties’ dialog box in Style Studio. (See Report
Properties.)

3. Data Model Level: Date or time format applied to a specific data
field. (See Adding a Format to a Data Field in Data Modeling.)

4. Server Level: Default date or time format applied to all reports
using the ‘Presentation’ page of Enterprise Manager. (See
Presentation in the Administration Reference.)

5. Worksheet Level: Date or time format applied to a specific column
in an Embedded Table in a Worksheet. (See Changing the Column
Type in an Embedded Table in Data Mashup.)

The more specific formatting instruction overrides the more general
formatting instruction. For example, the format applied to a particular
report element (e.g., table) overrides any formatting specified at the report,
model, or server levels.

Different geographical regions format dates differently. Instead of
explicitly specifying a format for date fields, you can specify a Local Date
format (e.g., ‘Full’, ‘Long’, ‘Medium’, ‘Short’) that automatically adapts
itself to the locale of the reporting environment.

When no date or time format is found at any level (element, report, model,
or server), an un-localized default format is used.

Text Formats

The ‘Text’ format allows you to add a prefix or suffix to string data. The
special tag ‘{0}’ acts as a placeholder for the actual data.

Example 1: Adding a Prefix

Consider a text column containing the following values:

Annie
Eric
Robert
Sue

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

REPORT DESIGN

901 of 2477

The text format “Employee name: {0}” will display these values as follows:

Employee Name: Annie
Employee Name: Eric
Employee Name: Robert
Employee Name: Annie

Example 2: Adding a Prefix and Suffix

Consider a text column containing the following values:

NJ
NY
CA
AZ

The text format “-{0}-” will display these values as follows:

-NJ-
-NY-
-CA-
-AZ-

Localizing a Text Format

To apply localization within a text format, use a string identifier in curly
braces within the text format. The identifier in curly braces is used as a Text
ID to locate the corresponding replacement text (usually a translation into
another language) within the SreeBundle localization file. For example, the
string “{replacementText}” within a text format will use
“replacementText” as the Text ID.

For information on how to map Text IDs to replacement text in the
SreeBundle localization file, see Localizing Reports, Viewsheets, Data
Models/Queries in Administration Reference.

Number Formats

Decimal formatting
only works if the
value is truly a
numeric type. If the
numeric value you
wish to format is actu-
ally text, convert the
type using JavaScript
so that formatting can
be applied.

The number format pattern string uses the pattern defined by the
java.text.DecimalFormat class. For example, to add commas to a number,
use ‘#, ###, ###. ##’. Using a ‘#’ will show a digit if needed, a ‘0’ will
display zero if the digit is not needed. Adding a ‘%’ at the end of the format
will multiply the value by 100 and display as a percentage.

You can add a suffix “K”, “M”, or “B” to the pattern string to automatically
divide the numerical value by 103, 106, or 109, respectively.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html

REPORT DESIGN

902 of 2477

To create custom multipliers, see Defining Custom Number Format
Multipliers in Administration Reference.

7.5.2 Table Formatting

A few formatting options are normally only applicable to tables with query
binding. Although the options can be applied to any table, they are
dependent on knowing the exact table columns, which is normally only
available during design time if a query binding exists.

Cell Alignment

Row attributes over-
ride column attributes.

Cell alignment affects the position of the cell contents inside the cell
boundaries. Style Studio allows you to control both vertical and horizontal
alignments, and to apply the alignment setting to an individual cell, or to an
entire column or row. See Selecting a Cell, Row, or Column of a Table for
more information.

Walkthrough In this example, you will create a new table and add formatting to one of
the columns.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel select the ‘Report’ node, and in the right ‘Types’
panel select ‘Blank Tabular Report’. Click ‘OK’.

3. Open the Style Studio Toolbox panel, and click the ‘Table’ button.
This opens the ‘Data Binding’ dialog box for a new Table.

4. Under the Data tab, bind the table to the ‘Order details’ query from
the ‘Orders’ data source, and click ‘Finish’.

5. Select the Table. Click in the margin above the ‘Total’ column to
select the entire column. (See Selecting a Cell, Row, or Column of a
Table.)

6. Expand the Style Studio Properties panel. (Select ‘Properties’
from the Style Studio ‘Window’ menu.)

REPORT DESIGN

903 of 2477

7. Click the Alignment tab. Select the ‘Right’ radio button to align
the contents of the ‘Total’ column to the right.

All cells in the ‘Total’ column are now aligned right. Select the ‘Default’
option to clear the alignment setting.

Cell Data Format

Walkthrough Next, you will add some formats to the table. Both the ‘Price’ and ‘Total’
columns display currency values, so you will apply a currency format to
these columns. The ‘Discount’ column contains percentages, so you will
apply a percentage format to that column.

1. Expand the Style Studio Properties panel. (Select ‘Properties’
from the Style Studio ‘Window’ menu.)

2. Select the Format tab in the Properties panel.

3. Select the detail cell in the ‘Price’ column of the table. In the
Format tab of the Properties panel, select the ‘Currency’ option.

4. Select the detail cell in the ‘Total’ column of the table. In the
Format tab of the Properties panel, select the ‘Currency’ option.

5. Select the detail cell in the ‘Discount’ column of the table. In the
Format tab of the Properties panel, select the ‘Percent’ option.

6. Preview the report.

REPORT DESIGN

904 of 2477

Cell Presenter

Walkthrough A ‘Presenter’ is a graphical representation of a numeric value. This can
range from a simple text string to a complex graphical presentation.
Follow these steps to select a Table Presenter.

1. Expand the Style Studio Properties panel. (Select ‘Properties’
from the Style Studio ‘Window’ menu.)

2. Select the Format tab in the Properties panel.

3. Select the detail cell in the ‘Quantity’ column.

See Available Pre-
senters for additional
options.

4. Click the ‘Presenter’ menu in the ‘Attribute’ panel of the Format
tab in the Properties panel, and select the ‘Horizontal Bar’
Presenter (in the ‘Presentation’ folder).

5. Click the button next to the ‘Presenter’ menu. This opens the
‘Presenter’ dialog box. Change the ‘maximum’ to “20”, and click
‘Close’.

REPORT DESIGN

905 of 2477

6. Preview the report. Note that the numerical display for the
‘Quantity’ column has been replaced by the specified graphical
display.

Available Presenters

Presenters are grouped under categories of Presentation, Barcode, Rotation,
Decorative. They can be assigned to a column or row of a table. The
following table presents some commonly used presenters.

Table 15. Presenters

Creating Custom Presenters

The reporting API allows an application to create any presenters by
implementing the presenter interface and creating a presenter class. These
custom built presenters are automatically displayed in the ‘Presenter’ menu
in the Format tab of the Properties panel.

To specify a custom presenter in Style Studio, follow these steps:

1. Add the custom presenter class to the classpath:

PRESENTER DESCRIPTION

Basic HTML
Display strings with embedded tags, such as for
bold and <u> for underline

Horizontal Bar
Draws a horizontal bar based on the numeric cell value,
similar to the bar chart.

Horizontal Bar +/-
Same as Horizontal Bar, but handles both positive and
negative numbers.

Barcode
Barcode presenters can be used to support various bar
code displays.

2D Code Two-dimensional QR Code for alphanumeric data.

Checkmark
If a cell contains a true Boolean value, the presenter
draws a check mark in the cell. Otherwise, the cell is left
blank.

Button Adds a 3D border around cells.

Stars(Counter)

Draws icons (stars) horizontally. The number of icons is
determined by cell values. For example, two icons are
drawn for a cell with a value of two. If a cell does not
contain a numeric value, the presenter leaves the cell
blank.

Shadow Adds a shadow to cells.
Clockwise Rotation Rotates cells by 90 degrees in clockwise direction.
Counterclockwise
Rotation

Rotates cells by 90 degrees in counter-clockwise
direction.

REPORT DESIGN

906 of 2477

a. Select ‘Configure’ from the Style Studio ‘File’ menu. This
opens the ‘Style Studio Configuration’ dialog box.

b. Select the Classpath tab. Click ‘Add Directory’, and select the
directory containing the required class.

c. Click ‘OK’ to close the ‘Style Studio Configuration’ dialog box.

2. Load the custom presenter into the Style Studio environment:

a. Select ‘Preferences’ from the Style Studio ‘Report’ menu. This
opens the ‘Preferences’ dialog box.

Click ‘Delete’ to
remove a custom pre-
senter.

b. Select the Components tab. Click ‘Add’ and enter the name of
the presenter class, e.g.,
com.mycompany.presenter.BarPresenter (the location of which
has been previously specified in the classpath).

c. Click ‘OK’.

The custom presenter will now be visible in the ‘Presenter’ menu
in the Format tab of the Properties panel.

7.6 Report Bursting
In a large enterprise reporting deployment, it is important to handle both a
large amount of data and a large number of users. Consider a case where a
single report such as a monthly statement needs to be delivered to
thousands of users. This could present certain inefficiencies, because to
ensure data security, the same report will need to be regenerated for each
user. This means that the same queries are run multiple times, taxing the
database.

Report bursting is a feature that allows a report to run only once, and yet
still provide the appropriate output to each consumer of the report. This
greatly reduces the load on the database and the reporting server, while still
ensuring data security. For example, in the case of a monthly statement, a
single query can be executed to return the data for all users. When the
report is distributed to users, it is “burst” into parts, and each user receives
the partial report containing only the information pertaining to them. Each
user thus receives a report personalized with information relevant to their
needs.

REPORT DESIGN

907 of 2477

7.6.1 Implementing Report Bursting

The are two stages to implement ‘Report Bursting’:

1. Create a report with customized bursting settings. See Report
Partitioning for more information.

2. Execute the report to generate with the full data set. See Report
Bursting in Administration Reference.

7.6.2 Report Partitioning

Bursting relies on the action of partitioning, or splitting, a report based on a
username (or role)/data value pair. A report can only be partitioned on one
data element (Table or Section), and you must perform the partition
mapping using Style Studio. Partitions are created by running a query
against a live data source and retrieving a list of unique rows, then mapping
that data set to another query result set. The users and roles are defined in
the Enterprise Manager and cannot be changed in Style Studio. See the
Users Tab section of the Administration Reference for more information.

Walkthrough You will now implement a simple example report and set its bursting
conditions. (This example is available as bursting1.srt in the
examples\docExamples\design directory.)

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. From the right ‘Types’
panel, select ‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

4. Click the ‘Table’ button in the Toolbox panel. This opens the ‘Data
Binding’ dialog box for a new Table.

5. Under the Data tab, bind the table to the ‘All Sales’ query from the
‘Orders’ data source.

6. In the Grouping & Summarization tab, specify grouping by
‘Employee’ and summarization by ‘Total’.

REPORT DESIGN

908 of 2477

7. Press ‘Finish’ to close the dialog box.

8. Select ‘Bursting’ from the Style Studio ‘Report’ menu. This opens
the ‘Report Bursting’ dialog box.

9. Select ‘Enable Report Bursting’.

10. Select ‘Table1’ as the partition element, and select ‘Employee’ as
the ‘Partition Column’.

11. Click on the User tab.

12. In the ‘User Mapping’ panel, select the ‘Orders’ > ‘Sales by
Employee’ query from the ‘Query’ menu.

This query returns the names of each user for whom you will filter
and burst the data. You can also create this mapping for roles using
a query that returns role names.

13. Select ‘First Name’ as the ‘User’. This is the column that returns
the user names on which the data will be filtered.

Similar settings can
be used in the Role tab
to perform role map-
ping.

14. In the ‘Data Mapping’ pane select ‘First Name’ as the ‘Employee’
value.

REPORT DESIGN

909 of 2477

15. Click on ‘OK’ to save the bursting settings, and save the report.

16. Save the report into the current working repository with the name
“Bursting Example”. (See Saving a Report into the Working
Repository.)

This completes the first phase of implementing report bursting. To
complete the example and then run the report for multiple users, see Report
Bursting in Administration Reference.

7.7 Localization/Internationalization
If deployed reports are viewed in multiple locales, it may be desirable to
configure report elements to display text in a language specific to the user
locale. You can configure a report element for localization by associating
one or more Text ID properties with the element. The specified Text ID for
each element is then used to create a mapping between the text string in the
element and the replacement text string to be shown to the user.

To specify the Text ID for an element, follow the steps below:

1. Select ‘Localization’ from the Style Studio ‘Report’ menu. This
opens the ‘Localization’ dialog box.

2. Select the element you wish to localize from the element tree.

3. Enter a label for the element in the ‘Text ID’ field.

The Text ID that you enter here is the label used to represent the
text of the corresponding component in the localization mapping
file, discussed below. Some elements, such as tables, may have
multiple components which can each be given an independent Text
ID.

4. Click ‘OK’ to exit the ‘Localization’ dialog box.

REPORT DESIGN

910 of 2477

The mapping between the specified Text IDs and the replacement text for
each locale is specified in a resource bundle specific to that locale. The
resource bundle is a “.properties” file, and must be available on the
classpath, preferably in the sree\WEB-INF\classes directory. The file
should be named using the ISO-standard two-letter codes for language and
country; for example, a property file supporting Canadian French speakers
would be called ‘SreeBundle_fr_CA.properties’. See the Localization/
Internationalization section of the Administration Reference for details on
configuring resource bundle contents.

When the end-user selects a locale from the User Portal login menu, the
mapping in the corresponding resource bundle is used to display the
replacement text for all mapped elements. If a resource bundle
corresponding to the user’s locale selection is not found on the classpath,
no localization will be performed.

In addition to localizing report elements, you can also configure
localization for User Portal interface components (tabs, tree elements, etc.).
See the Localization/Internationalization section of the Administration
Reference for instructions.

7.8 Viewer Actions
Classes that implement the ViewerAction interface can specify user-
defined actions to perform on replets. These may be added in the form of
toolbar buttons to every report. Through Style Studio, they may be added to
individual reports. Follow the steps below:

1. Select ‘Report Properties’ from the Style Studio ‘File’ menu. This
opens the ‘Properties’ dialog box.

2. Select the Viewer Actions tab.

3. Enter the name of the Viewer Action class, and click ‘Add’.

REPORT DESIGN

911 of 2477

4. Click ‘OK’ to close the dialog box.

7.9 HTML Report Features
This section covers various features relating to the HTML content of
reports.

7.9.1 Adding HTML to a Report

In addition to using the regular report elements, it is possible to add report
content in the form of HTML. The HTML will be added inside a paintable
element that controls the location and bounds of the HTML contents.

To add HTML to a report, follow these steps:

1. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

2. Click in the report to place the insertion point at the desired
location.

3. Click the ‘Painter’ button in the Toolbox panel. This opens the
‘Painter Properties’ dialog box.

4. Click on the HTML tab.

5. Add the desired HTML string, for example:

<h2>HTML Header</h2>
<p>This element will be rendered as verbatim HTML by the
server</p>

REPORT DESIGN

912 of 2477

6. Press ‘OK’.

7. Preview the report.

Style Studio’s preview simulates common HTML rendering, but
the HTML will be rendered directly by the browser when the user
views the report in the Portal.

See Also
Cell Presenter, to display HTML within a table cell.

7.9.2 CSS Styles

The Attributes tab of every element’s ‘Properties’ dialog box contains
properties relating to the appearance and formatting of the element. Among
these properties, the following can also be set by using CSS (Cascading
Style Sheets) styles:

 – font
 – background color
 – foreground color

To set an element’s properties by using CSS, follow the steps below:

1. Using a text editor, create a CSS file containing the desired class
definitions.

REPORT DESIGN

913 of 2477

For example, create a text file called ‘myStyle.css’ containing the
definition for a ‘header2’ class:

.header2 {
font-size: 22pt;
font-family: "Verdana", sans-serif;
font-weight: bold;
background-color: rgb(100,100,100);
foreground-color: rgb(200,200,255);

}

2. Save the CSS file (e.g., myStyle.css).

See Report Proper-
ties for more informa-
tion.

3. Select ‘Report Properties’ from the Style Studio ‘File’ menu. This
opens the ‘Properties’ dialog box.

4. Click the Options tab.

See Configuring the
Style Studio Class-
path in Getting
Started for informa-
tion about classpath
directories.

5. In the ‘CSS Location’ field, enter a resource or absolute path for the
CSS file. For example, if the file ‘myStyle.css’ resides in a directory
on the classpath, simply enter ‘/myStyle.css’ as the ‘CSS
Location’.

6. Click ‘OK’ to close the dialog box.

7. Right-click the element in the report to which you want to apply the
CSS style, and select ‘Properties’ from the context menu. This
opens the ‘Properties’ dialog box.

8. In the ‘CSS Class’ field, select or type the name of a class that will
define the element’s style. (Example: Class ‘header2’ for a Text
element.)

REPORT DESIGN

914 of 2477

The specified formatting will be applied to all elements that are assigned
the given class, and the CSS style overrides the corresponding settings in
the ‘Properties’ dialog box.

7.10 Page Areas
Page Areas are used in Flow Layout templates. (See Flow Report Layout
for more information.) The following sections explain how to add and
configure page areas.

7.10.1 Adding a New Page Area

To add a new page area to the flow report layout, follow the steps below:

1. Click the ‘Layout View’ button in the Style Studio toolbar. This
switches the report to layout mode.

2. Click the ‘Draw Area’ button. This switches the report to drawing
mode.

3. Drag with the mouse to draw a page area with the desired position
and size.

4. Repeat the previous step to add additional areas.

REPORT DESIGN

915 of 2477

Each area displays a sequence number at the top-left corner. This
determines the order in which contents will flow from one region
into another.

5. To change the area flow order, click the ‘Order Area’ button. This
changes the cursor is to a “hand” pointer.

6. Click all the areas, one after the other, in the order that you wish
them to be used. After you have clicked on every area, Style Studio
returns to its normal editing mode.

If report elements do not need to appear in a particular page area, you do
not need to use area breaks. However, if you require that certain elements
remain in a particular area, you must use area breaks to make sure that the
element stays in its intended area. The example below (Associating a Page
Area with a Report Element) illustrates the use of page breaks.

See Also
Creating a Blank Report Template, for information on creating a new flow
report.

7.10.2 Associating a Page Area with a Report Element

To change the page layout in the middle of an element, use an element-
associated page area, which allows you to associate a page layout with a
particular element. The following example is saved as layout2.srt in the
examples\docExamples\design directory.

REPORT DESIGN

916 of 2477

Preview the layout2.srt report, and observe the problem: The third page of
the report uses the same page areas as the second page, which creates an
undesirable break in the middle of the table.

To overcome this problem, use an element-associated page area to change
the page layout in the middle of the table element. When you associate a
page area with an element, the page areas are set up according to the
following rules:

• If the element is the first element on a page and there is no ‘default’ set
for that page, the associated page areas are used on the current page.

• If the element is not the first element on a page, or there is a ‘default’ set
for that page, the associated page areas are used on the next page.

To add an element-associated page area for the table in this example,
follow these steps:

REPORT DESIGN

917 of 2477

1. Click the ‘Layout View’ button in the Style Studio toolbar.

2. Click the ‘Layout View’ button in the Style Studio toolbar, and
select the ‘Edit’ option. This opens the ‘Edit Target’ dialog box.

3. From the menu in the ‘Edit Target’ dialog box, select ‘Table1’ as
the target element.

4. Click the ‘Add’ button to add ‘Table1’ to the list, and then click
‘OK’.

5. Click the ‘Layout View’ button in the Style Studio toolbar again,
and select the ‘Table1’ option.

This updates the layout view to show the page areas defined for the
‘Table1’ element. However, because you have not yet defined any
page areas, no page areas are displayed in the layout view.

6. Click the ‘Draw Area’ button. Draw a page area that covers the
whole page.

REPORT DESIGN

918 of 2477

7. Click the ‘Layout View’ button again to return to the design view.

The revised report is
saved as layout3.srt in
examples\docExam-
ples\design.

8. Preview the report. Observe that ‘Table1’ is now displayed
correctly.

REPORT DESIGN

919 of 2477

7.10.3 Non-Flow Page Areas

Another special type of page area is the non-flow page area. Unlike regular
page areas, non-flow page areas do not participate in the normal flow of the
element. The elements in the main flow are never placed in a non-flow
page area. The simplest usage for a non-flow area is to create a rectangular
box on a page. If no element is attached to the non-flow area, the area
appears as a rectangle with the selected border.

A non-flow area can be created in the Layout View like a regular page area.
Use the ‘Draw Area’ button to create the area and after the area is created,
right-click on it to open the ‘Area Properties’ dialog box where it can be
marked as a non-flow area by deselecting the ‘Flow Area’ attribute.

REPORT DESIGN

920 of 2477

Figure 22. Area Properties Dialog Box

Fixed Position Elements

A more interesting application of the non-flow page area is the ability to
place elements in these areas. Elements added to a non-flow page area do
not belong to the main document flow. They are only printed in the non-
flow area to which they belong. Another important difference is that all
elements in a non-flow area have fixed positions and sizes.

Elements in non-flow areas do not flow like regular elements. Instead, the
position and size of the elements are fixed at the time they are created. The
position and size of the elements do not change regardless of the size of
other elements. If the contents of an element are larger than the size
assigned to it, the element is only partially printed.

Adding elements to a non-flow area is similar to adding elements to the
main document. The same element buttons are used. To add elements to a
non-flow area, first select the area on the page design view. When a non-
flow area is selected, a thick border is placed around the area.

Elements can be added to the non-flow area by clicking on one of the
element buttons. When an element button is clicked, Style Studio enters
element insertion mode, where an element can be positioned in the area by
clicking the mouse at the starting position and dragging the mouse to set the
size.

This procedure is the same for all elements. If an element does not take up
the entire space assigned to it, it is formatted using the same algorithm as
when it is the only element on a report with the specified printable area. For
example, a text element is wrapped inside the area and flows down until it
reaches the end of the area assigned to it.

REPORT DESIGN

921 of 2477

Figure 23. Report with Elements in a Non-flow area (layout4.srt)

Advantages and Disadvantages of Fixed Position Elements

Fixed position elements are useful in form design and in other situations
where the positions of the elements are fixed, such as mailing labels, pre-
printed forms, etc. While the ability to easily position an element at any
location on a page seems very attractive, there are some disadvantages of
using fixed elements. First, if an element outgrows the space assigned to it,
its size will not change dynamically, and this could cause truncation.
Second, since the positions of the elements are fixed at design time, they
cannot be adjusted if the size of the elements expands. If care is not taken,
fixed position elements could potentially overlap other elements that flow
on the same area.

Walkthrough: Fixed Position Elements

Walkthrough In the next example, you will create a template with a non-flow area on the
top. It is used to hold the title and fixed information about the report. The
second half of the report is assigned to a flow area, where the main table is
placed. A page layout (page areas) is also associated with the table, so
when the table flows to the next page, it starts at the top of the page instead
of from the same position as the first page.

The generated report contains a fixed portion on the top of second page,
and the rest of the document flows as usual.

REPORT DESIGN

922 of 2477

Figure 24. Report using Non-flow area and Fixed Elements (layout4.srt)

Parallel Report Flows

When the contents of a fixed element do not fit in the space assigned to it,
there are two options. By default, the element is partially printed in the
space, and any leftover contents are discarded. Alternatively, the element
can continue onto the next page, in the same non-flow area, if the non-flow
area is repeated. This behavior is controlled by the ‘Repeat Contents on
Each Page’ attribute of the non-flow area. This is enabled by default.

The non-repeat mode of a non-flow area has an interesting property. The
element by itself, ‘flows’ across multiple pages, in the same fixed position.
While this is not a true flow since only one element is involved, it does
allow contents of one element to continue across pages. This is a useful
feature for creating a sidebar on a document, where the sidebar flows inside
the sidebar from one page to the next, apart from the main report elements.

Walkthrough: Parallel Report Flows

In this example, you created a sidebar on the report page. Three regular
page areas cover the leftover space.

REPORT DESIGN

923 of 2477

Figure 25. Report With a Simulated Sidebar (flow1.srt)

A border is added to the non-flow area by using the ‘Area Properties’
dialog box in the Layout View. Mark the area as a non-flow and non-repeat
area by deselecting ‘Flow Area’ and ‘Repeat Contents on Each Page’ so
the text inside the area is continued onto the next page.

Figure 26. Area Properties

REPORT DESIGN

924 of 2477

Figure 27. Report with a Simulated Sidebar

7.11 Formula Tables
Previous sections have presented a variety of techniques for displaying data
within a Table element, including the following:

• Creating a Table Using the Data Binding Wizard

• Creating a Crosstab Using the Data Binding Wizard

• Creating a New Table Using Freehand Operations

• Creating a Crosstab Using Freehand Operations

However, these methods may not be flexible enough to create very specific
layouts, display hybrid data from multiple queries, or address other
advanced display needs. For such cases, you can gain greater flexibility by
using a Formula Table.

REPORT DESIGN

925 of 2477

The easiest way to use a Formula Table is to follow the steps below. See
Walkthrough: Creating a Formula Table for an example.

1. Create a regular Table or Crosstab.

2. Modify the Table or Crosstab until it is as close as possible to the
final design you desire.

3. Convert the Table or Crosstab to a Formula Table. (Right click the
table, and select ‘Table’ > ‘Convert to Formula Table’ from the
context menu.

4. Add additional rows, columns, and fields and set expansions,
references, and formulas, as described in the following sections, to
further enhance the table.

Note: To use advanced Formula Tables effectively, you should
possess a working knowledge of JavaScript. See General JavaScript
Functions for an introduction.

5. (Optional) If required, use advanced formula table script to create
the final table. Advanced features are covered in the following
sections: See Creating a Formula Table Using Script (Advanced)
for more details.

Formula tables bridge the gap between spreadsheet applications (like
Excel) and traditional reporting tools. In a spreadsheet, you usually start
with columns of data and then define formulas that reference other cells. To
copy these formulas with appropriate references you can ‘fill-down’ in a
range of cells.

A formula table is similar. You can extract parts of a query result set and
then dynamically fill the rows and columns of the table. You can then
reference these cells to perform statistical calculations in formulas. The
‘fill-down’ operation happens automatically when the table expands to
show actual data.

You can therefore use formula tables to create real-time, spreadsheet-like
reports with very specific and complex layouts, grouping of data, and
aggregation which are commonly required in accounting and financial
applications.

See Also
Binding Data to a Table Element, to display tabular data from a single
result set.
Creating a Crosstab Using the Data Binding Wizard, to display
summarized data in compact form.

REPORT DESIGN

926 of 2477

Creating a Table Using Freehand Operations, to flexibly position data
from a single result set.

7.11.1 Walkthrough: Creating a Formula Table

The following walkthrough illustrates the ability of a formula table to
satisfy complex data layout needs.

Walkthrough In this example, you will create a crosstab that breaks down sales totals
both according to individual ‘State’ and ‘Category’ combinations and
simultaneously according to ‘Order Date’ and ‘Category’ combinations.

If you were to use a regular Crosstab for this purpose, the data will be
represented with a nested header structure, such as that below. Note that the
aggregate (‘Total’) is represented for every combination of ‘State’, ‘Date’,
and ‘Category’.

Instead, in this example you will create a table where the ‘Date’ headers are
not nested within the ‘State’ headers, but are rather displayed separately, as
shown below.

To create this table, you will begin by creating a regular Crosstab that
contains just the ‘State’ and ‘Category’ combinations. You will then
convert this table to a Formula Table, and use basic Formula Table
techniques to add the ‘Date’ headers.

Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’ This creates a new
report.

3. Select ‘Page Setup’ in the Style Studio ‘File’ menu. Make the
following changes:

REPORT DESIGN

927 of 2477

a. Choose the ‘Landscape’ page option in the ‘Orientation’ panel

b. In the ‘Margin’ panel, set the ‘Right’ margin to 0.5 inches.

c. Click ‘OK’.

4. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

5. Click the ‘Crosstab’ component in the Toolbox panel. This opens
the Data Binding Wizard for a Crosstab.

6. Select the Data tab. Expand the ‘Orders’ data source, and select the
‘Order Model’ data model.

7. Select the Crosstab tab. Bind the headers and summary fields in
the following way:

a. Drag the ‘Product.Category’ field from the ‘Available Columns’
panel to the ‘Row Header’ panel.

b. Drag the ‘Customer.State’ field from the ‘Available Columns’
panel to the ‘Column Header’ panel.

c. Drag the ‘Product.Total’ field from the ‘Available Columns’
panel to the ‘Summary’ panel

d. Select the Customer.State’ field in the ‘Column Header’ panel,
and click the TopN tab in the ‘Setting’ panel.

e. Select ‘Top’ in the menu, and enter ‘10’ as the number of
groups. This will return the top 10 groups according to the
summed total.

REPORT DESIGN

928 of 2477

f. Click ‘Finish’ to close the Data Binding Wizard. This creates a
new Crosstab in the report.

8. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio ‘Window’ menu.)

9. Right-click the Table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

Observe that some of the cells have now changed to display a
formula. To edit the formula for a cell, select the cell and view the
Data tab of the Properties panel. You will make a simple formula
modification later in this example. For more complete information
on editing formulas, see Formula Tables.

10. Click the top-left corner cell of the table to select it. Type the text
“Category” into the cell.

(Optional) Use the Style Studio toolbar buttons to make the text
large and bold.

REPORT DESIGN

929 of 2477

11. Click the top-right corner cell of the table to select it. Select the
Format tab in the Properties panel.

12. In the ‘Attribute’ panel, select a blue color for the ‘Background’
property.

13. Right-click the Table, and select ‘Properties’ from the context
menu. This opens the ‘Table Properties’ dialog box.

14. In the ‘Table Properties’ dialog box, select the Table tab. In the
‘Layout’ panel, select ‘Fit Content’ and click ‘OK’.

15. Click the ‘Preview’ button in the Style Studio toolbar, and view the
resulting table.

16. Close the preview and return to the design view.

17. You will now use formula table operations to add the ‘Date’
headers to the table. Follow the steps below:

a. Right-click the top-right corner cell and select ‘Column’ >
‘Append Column’ from the context menu. This adds a new
column.

b. In the Style Studio Data Source panel, expand the ‘Orders’ data
source and the ‘Order Model’ data model.

c. Expand the ‘Orders’ node, and drag the ‘Date’ attribute to the
new top-right corner cell of the table. This adds the ‘Order.Date’
attribute as a column header.

REPORT DESIGN

930 of 2477

d. Right-click this new ‘Order.Date’ cell, and select ‘Cell’ >
‘Group’ > ‘Year’ from the context menu. This will group the
values in the ‘Date’ field by unique year, resulting in a set of
year-based headers.

e. Select the Data tab in the Style Studio Properties panel. In the
‘Expansion’ panel, select the ‘Horizontal’ option. This sets the
year groups in the ‘Order.Date’ field to display horizontally, as
multiple columns headers.

f. Select the Format tab in the Style Studio Properties panel. In
the ‘Attribute’ panel, set a yellow ‘Background’ color for the
‘Order.Date’.

18. You will now use formula table operations to add an aggregate
‘Total’ measure corresponding to the year groups. Follow the steps
below:

a. In the Style Studio Data Source panel, expand the ‘Orders’ data
source and the ‘Order Model’ data model.

b. Expand the ‘Product’ node, and drag the ‘Total’ attribute to the
bottom-right corner cell of the table. This adds the
‘Product.Total’ attribute as a measure.

REPORT DESIGN

931 of 2477

c. Right-click this new ‘Product.Total’ cell, and select ‘Cell’ >
‘Summarize’ > ‘Sum’ from the context menu. This will
aggregate the totals for each combination of ‘Category’ and
‘Date’.

19. Click the ‘Preview’ button in the Style Studio toolbar to preview
the table.

You can make further modifications to the table by editing the underlying
formulas. In the design view, simply select the cell that you want to edit,
and open the Data tab of the Style Studio Properties panel. In the
‘Binding’ panel, edit the existing cell formula as desired. For more details
on formula syntax see Creating a Formula Table Using Script (Advanced)
and Formula Tables in Report Scripting.

For example, observe that the ‘Category’ row headers are currently sorted
alphabetically (e.g., Business, Educational, Games, etc.). If you wish to

REPORT DESIGN

932 of 2477

instead sort them in reverse alphabetical order, you can make a small
change to the existing formula. Follow the steps below.

20. Click the bottom-left cell of the table to select it.

21. Select the Data tab in the Style Studio Properties panel

22. In the ‘Binding’ panel, change the ‘Formula’ for the cell from

toList(data['Product.Category'],'sort=asc')

to

toList(data['Product.Category'],'sort=desc')

23. Preview the report again, and note the change in the order.

If you wish to instead sort the categories by the value of the corresponding
aggregate total, you can do this by making another change to the formula.
First, observe that the ‘State’ row headers are ordered by the aggregate
value. You can therefore modify and reuse the ‘State’ header formula to
achieve the same effect for the ‘Category’ headers.

Follow the steps below.

24. Click on the top-middle (‘State’ header) cell, and select the Data
tab in the Style Studio Properties panel.

25. In the ‘Binding’ panel, copy the text from the ‘Formula’ field. The
formula should be as follows:

toList(data['*'],'sort=desc,field=Customer.State,sorton=sum
(Product.Total),maxrows=10')

26. Click on the bottom-left (‘Category’ header) cell, and again select
the Data tab in the Style Studio Properties panel.

27. In the ‘Binding’ panel, select the ‘Formula’ option, and paste the
copied formula into the text field.

28. Modify the formula as follows:

toList(data['*'],'field=Product.Category,sort=desc,sorton=s
um(Product.Total)')

This orders the categories according to the summed total, from
greatest to least (descending order).

29. Click the green ‘Apply’ button to save the formula.

REPORT DESIGN

933 of 2477

30. Preview the report again. Observe that the categories are now
ordered according to the totals (e.g., Business, Hardware, Personal,
etc.).

7.11.2 Combining Multiple Data Sources in a Formula Table

You can use a formula table to represent data from more than one data
source. To bind more that one data source in a formula table, follow the
steps below:

1. Create a formula table with a binding to a single data source, as you
usually would. (The easiest way to do this is to convert a regular
table. See Walkthrough: Creating a Formula Table for an
example.)

2. Click on the formula table to select it. In the Data Source panel,
press the ‘Show All’ button. This displays all available data
sources.

3. Bind the second data source to the formula table. You can do this in
one of two ways:

a. Insert a new column or columns into the table (see Inserting
Rows and Columns into a Table), and then drag a field from the
desired second data source in the Data Source panel directly
into the formula table.

REPORT DESIGN

934 of 2477

This adds the second data source to the Binding panel under the
original data source, and makes all of the remaining fields in the
second data source available for binding within the table.

b. Alternatively, drag the desired second data source from the
Data Source panel into the Binding panel below the first data
source. This will make the fields from the second data source
available for binding within the formula table.

4. Repeat the above steps to bind additional data sources to the Table.

5. Press the ‘Define Join Columns’ button in the Binding panel.

This opens the ‘Joins’ dialog box. The ‘Joins’ dialog box allows
you to specify the relationships between the multiple data sources
so that corresponding rows from each source can be appropriately

REPORT DESIGN

935 of 2477

aligned in the table. To do this, in the following steps you will
select one or more pairs of columns (“join columns”) that will be
used to align rows from the different data sources.

6. In the ‘Joins’ dialog box, drag a desired join column from the first
data source in the ‘Available Columns’ tree to the ‘Columns To
Join’ region.

Look for the green
highlight immedi-
ately below the exist-
ing column.

7. Drag a corresponding join column from the second data source in
the ‘Available Columns’ tree to the ‘Columns To Join’ region.
Drop the column immediately below the first join column.

8. (Optional) Repeat the above steps to add join columns from any
additional available data sources to this join association.

By joining different data sources on a particular set of “join
columns,” you specify that the records displayed in the formula
table will be matched based on the values in these columns. For
example, if the table contains columns ‘company_name’,
‘address’, and ‘city’ from query A, and contains columns
‘Company’, ‘Employee’, and ‘Total’ from query B, by joining the
‘company_name’ field to the ‘Company’ field, you ensure that
records corresponding to the same company (from the two queries)
are printed on the same table row.

9. Press the ‘Union’/’Intersection’ button to select the desired type of
join.

REPORT DESIGN

936 of 2477

The ‘Union’ option provides the equivalent of a full outer join.
When this option is selected, all values that appear in a join column
will be represented in the table, even if those values have no match
in the other join columns. For example, if the ‘Company’ field
from query B contains the value “InetSoft” but the
‘company_name’ field from query A does not contain this value,
the ‘Union’ option will still display the “InetSoft” rows from query
B in the table. This means that the corresponding rows from query
A will appear empty in the table, because query A contains no data
corresponding to the value “InetSoft”.

The ‘Intersect’ option provides the equivalent of an inner join.
When this option is selected, only values that have a match in all
join columns will be represented in the Table. For example, if the
‘Company’ field from query B contains the value “InetSoft” but the
‘company_name’ field from query A does not contain this value,
the ‘Intersect’ option will not display the “InetSoft” rows from
query B in the table. The ‘Intersect’ option therefore produces a
table with no empty records.

10. (Optional) To specify another set of join columns, drag the first
column of the new join set to an empty region within the ‘Columns
To Join’ panel. Then proceed to add the additional columns and set
the join types as described above.

By specifying multiple join sets, you introduce additional
constraints on the records that the Table displays. For example, in
the above illustration, the only complete rows displayed are those
for which the value of ‘company_name’ matches the value of
‘Company’, and simultaneously the value of ‘customer_id’
matches the value of ‘EmployeeID’. However, as mentioned
above, the ‘Union’ option will generate partially empty rows where
matching values do not exist in all join columns.

REPORT DESIGN

937 of 2477

Join columns in the table must be grouped.

11. Assign grouping to the join column in the table. See Grouping
Data in a Table for more details.

The formula table will now display data from the multiple data sources you
specified in the Binding panel, and records from these various data sources
will be coordinated according to the join relationships you specified in the
‘Joins’ dialog box. The example below provides additional guidance about
formatting and display considerations.

Example:
Multiple Data
Sources

In this example, you will create a formula table that displays data drawn
from two different queries, the ‘All Sales’ query and the ‘customers’ query.
The ‘customers’ query will provide company addresses, and the ‘All Sales’
query will provide the sales details.

To build this formula table, follow the steps below:

1. Create a new blank report.

2. From the Style Studio Data Source panel, drag the entire ‘All
Sales’ query into the report.

REPORT DESIGN

938 of 2477

This creates a new table based on the ‘All Sales’ query.

3. Click the ‘Company’ detail cell to select it. Right-click the cell, and
select ‘Region’ > ‘Insert Group Header’ from the context menu.
This creates ‘GH1’ header row.

4. Drag the ‘Company’ field from the ‘Detail’ row to the cell in the
‘Employee’ column of the new ‘GH1’ row. This creates a new
grouping based on ‘Company’.

5. Click any cell in the table to select it. Right-click, and select ‘Table’
> ‘Convert to Formula Table’ from the context menu. This changes
the table to a formula table, which will allow you to perform
advanced operations such as binding multiple data sources.

REPORT DESIGN

939 of 2477

6. Click any cell in the middle row to select it. Right-click, and select
‘Row’ > ‘Append Row’ from the context menu. This adds a new
row above the final row.

7. Shift-click to select all cells in the top row except for ‘Company’.
Drag these cells together into the new row that you created in the
previous step.

8. Click any cell in the top row to select it. Right-click the cell, and
select ‘Row’ > ‘Delete Row’ from the context menu. This deletes
the top row of the table.

9. In the top-left corner cell, type the text “Customer:”.

10. In the Style Studio Data Source panel, press the ‘Show All’ button
to display all available data sources. Expand the ‘customers’ query.

11. From the ‘customers’ query, drag the ‘address’ field into the table
next to the ‘Company’ field.

REPORT DESIGN

940 of 2477

12. Repeat the above step to bind the ‘city’ and ‘state’ fields from the
‘customers’ query.

The table now contains fields from the two different queries.
However, because the queries have not yet been related to one
another (“joined”), the table cannot yet represent the data correctly.
In the next steps, you will specify the association between the two
queries based on the company names.

13. In the Style Studio Binding panel, press the ‘Define Join Columns’
button. This opens the ‘Joins’ dialog box.

14. In the ‘Joins’ dialog box, drag the ‘Company’ field from the
‘Available Columns’ list into the ‘Columns To Join’ list.

Join fields that are displayed in the table must have grouping
applied. (The ‘Company’ field was already specified as a grouping
field in an earlier step.)

15. Drag the ‘company_name’ field from the ‘Available Columns’ list
into the ‘Columns To Join’ list. Drop it immediately below the
‘Company’ field when you see the green highlight.

REPORT DESIGN

941 of 2477

16. Press the ‘Union/Intersect’ button to select the ‘Intersect’ option
(see above). This ensures that only those companies that appear in
both queries will be represented in the table.

17. Press ‘OK’ to exit the ‘Joins’ dialog box.

18. Click in the left margin immediately next to the top row of the
table. This selects the top row of the table. Use the Style Studio
toolbar or Properties panel to apply any desired visual formatting
to the top row, such as fonts or colors.

19. Select the non-empty cells in the middle row, and apply any desired
additional desired formatting, such as background color or a data
format (for example, a Date format for the ‘Order Date’ field).

20. Preview the report.

REPORT DESIGN

942 of 2477

The table now displays data drawn from the two different queries. Records
from the two queries are correctly synchronized by the join which you
defined on the respective company name fields.

¢

See Also
Advanced Formula Table Walkthrough, for example of binding multiple
data sources using script (runQuery).

7.11.3 Creating a Formula Table Using Script (Advanced)

The fundamental approach to creating formula tables in script is as follows:

1. Fill out row and/or column headers. (Cell Expansion)

2. If there are multiple level row/column headers, set up an expansion
hierarchy. (Expansion Hierarchies)

3. Define aggregation formulas by referencing the header cells or
other summarized cells. (Defining Formulas by Referencing Cells).

Cell Expansion

If you assign a formula to a cell of a table, and this formula returns an array
of values, you can specify that the cell should expand in the horizontal/
vertical direction to ‘fill’ the table with the values of the array.

Walkthrough In this example, you will create a formula table, and ‘fill’ it with
dynamically-generated row and column headers extracted from a query.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

REPORT DESIGN

943 of 2477

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’

3. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

4. Drag the ‘Table’ component from the Toolbox panel to the report.
This creates a new Table without a binding.

5. Right click the table and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

6. Right-click on a blank area of the report, and select ‘Script’ from
the context menu. This opens the Script Editor.

7. Add the following script in the onLoad tab.

var q = runQuery('Order details');

This script runs the ‘Order details’ query and stores the result set in
a variable ‘q’.

8. Click the ‘Save and Close’ button.

9. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio ‘Window’ menu.)

10. Select cell[1,0] (second row, first column) and select the Data tab
in the Properties panel.

11. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option, and enter the following formula:

q['Company']

12. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio button.
This sets the cell to expand (fill) vertically.

REPORT DESIGN

944 of 2477

13. Click the ‘Apply’ button.

14. Preview the report and notice how the cell fills out all the values of
the ‘Company’ column from the query result set. Notice how each
Company name repeats multiple times.

Note: q['Company'] will return an array of records under the
'Company' column of the query result set. For more information on
how to extract and manipulate data from a query result set, see
Formula Tables in Report Scripting.

See toList in Report
Scripting for more
information.

15. To retrieve a distinct set of companies, use the toList() function,
which returns an array of unique values from a given input array.
Change the previous formula to the following:

toList(q['Company'])

16. Preview the report and notice the unique listing of companies.

17. Select cell[0,1] (first row, second column).

18. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option. Add the following formula:

toList(q['Product'])

19. Check the ‘Expand Cell’ box and select the ‘Horizontal’ radio
button. This sets this cell to expand (fill) horizontally.

20. Click the ‘Apply’ button.

21. Double-click to open the ‘Table Properties’ dialog box. Click the
Table tab, and select the ‘Fit Content’ radio button. Click ‘OK’.

22. Preview the report, and notice the horizontal and vertical
expanding rows and columns.

REPORT DESIGN

945 of 2477

Expansion Hierarchies

It is common to have multiple levels of row/column headers nested in a
hierarchy, e.g., State and City. Formula tables accommodate this structure
in the following ways:

• Two or more vertically expanding cells defined on the same row will
automatically expand in hierarchy. The order of the hierarchy moves
from left to right.

• Two or more horizontally expanding cells defined under the same
column will automatically expand in hierarchy. The order of the
hierarchy moves from top to bottom.

Walkthrough In this example, you will create a formula table which uses data from the
‘customers’ query. The query is executed in the onLoad script and is stored
in a variable called ‘q’:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’ and click ‘OK’

3. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

4. Drag the ‘Table’ component from the Toolbox panel to the report.
This creates a new Table without a binding.

5. Right-click the table and select ‘Convert to Formula Table’ from
the context menu.

6. Right-click on a blank area of the report, and select ‘Script’ from
the context menu. This opens the Script Editor.

7. Add the following script in the onLoad tab.

var q = runQuery('customers');

This script runs the ‘customers’ query and stores the result set in a
variable ‘q’.

REPORT DESIGN

946 of 2477

8. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio ‘Window’ menu.)

9. Select cell[1,0] (second row, first column) and select the Data tab
in the Properties panel.

10. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option, and enter the following formula:

toList(q['state'])

11. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio button.
This sets the cell to expand (fill) vertically.

12. Set the ‘Cell Name’ field in the ‘Cell’ panel to be “st”. Click the
‘Apply’ button.

13. Select cell[1,1] (second row, second column).

14. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option, and enter the following formula

toList(q['city'])

15. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio button.
This sets the cell to expand (fill) vertically.

16. Set the ‘Cell Name’ field in the ‘Cell’ panel to be “ct”. Click the
‘Apply’ button.

17. Preview the report.

REPORT DESIGN

947 of 2477

In the preview, all cities are shown for each state, not just the
cities actually belonging to the given state. See Formula Tables in
Report Scripting and the Sales Revenue Ledger (formula_table1.srt)

example for an illustration of how to filter the field so that only
cities within the given state are listed.

Note that the two cells expand in a hierarchy (i.e., for each state in
the ‘State’ field, the table displays every city from the ‘City’ field).
The cell to the left is the parent (State) and the cell to the right is the
child (City). These state and city cells expand in hierarchy
automatically because they share the same row. By default, two
vertically expanding cells on different rows will expand
independently of each other. To make them expand in a hierarchy
you need to explicitly group them together. (The same applies to
two horizontally expanding cells on different columns).

18. Right-click cell[1,0] (second row, first column), and select ‘Row’
> ‘Append Row’ from the context menu. This adds a new row
beneath the two existing rows.

19. Drag the exiting formula from cell[1,1] to cell[2,0] (third row
first column).

20. Preview the report.

REPORT DESIGN

948 of 2477

Notice how the two cells expand independently. To force them to
expand in a hierarchy, you must explicitly group them together.

21. Select cell[2,0]. From the ‘Row Group’ menu of the ‘Cell’ panel,
select ‘st’. This specifies that the ‘City’ field should expand in
hierarchy with the ‘State’ field.

22. Preview the table and notice how the cells expand in a hierarchy.

REPORT DESIGN

949 of 2477

Defining Formulas by Referencing Cells

Once you have defined row/column headers, you can define aggregation
formulas. These formulas summarize (sum, count, average, etc.) data
returned by the data source for a given row header element and/or column
header element. For example, you can count the number of customers
within each city and each state.

Walkthrough Consider the table you designed in the Expansion Hierarchies section,
which contains a listing of states and cities. You will now add formulas to
count the number of customers within each city and each state. To do this,
you will use cell referencing to aggregate data for a specific city and state.

Note: Do NOT set the cells to expand. The formula will
automatically be calculated for each cell of the expanding “st” and
“ct” cells.

1. Add the following formulas to cell[1,1] (second row, second
column) and cell[2,1] (third row, second column), respectively

cell[1,1]: count(q['customer_id@state:$st'])
cell[2,1]: count(q['customer_id@city:$ct'])

For more details on
extracting data from a
query result set, see
Formula Tables in
Report Scripting.

The formula q['customer_id@state:$st'] returns an array of all
the ‘customer_id’ records where the corresponding ‘state’ record is
equal to ‘$st’ (‘$st’ refers to the current value of the expanding cell
‘st’). The count() formula counts the number of elements in this
array.

2. Preview the report and notice the counts. You can verify them by
inspecting the output of the base query.

REPORT DESIGN

950 of 2477

Page Break on Group in Formula Tables

When you define multiple row headers in a hierarchy (e.g., State and City),
you can add a page break and print each member of a (parent) group on a
new page (e.g., print each state on a new page). To do this, select the ‘New
Page After’ option under the Option tab of the Properties panel.

Suppressing Duplicates and Zeros in Formula Tables

To suppress the display of a zero value (and instead display an empty cell),
select the ‘Suppress if zero’ option in the Option tab of the Properties
panel. To suppress the display of duplicate rows (and instead display just a
single representative row), select the ‘Suppress if duplicate’ option.

Spanning Cells

Walkthrough When you create multiple levels of grouping, you can set a ‘parent’ to
merge across each instance of its ‘child’. For example, you can merge a
‘State’ cell over the ‘City’ cells. You can also make a static cell span an
expanding cell, e.g., a title for a column header span across the horizontal
cells.

The following example illustrates simple cell spanning. Follow the steps
below:

1. Start with the formula table discussed in the Expansion Hierarchies
example.

REPORT DESIGN

951 of 2477

2. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio ‘Window’ menu.)

3. Select cell[1,0] (second row, first column) and select the Option
tab in the Properties panel.

4. In the ‘Dynamic Cell’ region, enable ‘Merge expanded cells’. From
the ‘Row Group’ menu select ‘st’.

5. Preview the report to observe how the cells of the parent row group
are merged together.

Advanced Formula Table Walkthrough

This section walks you through the creation of two advanced formula table
reports:

• Sales Revenue Ledger (formula_table1.srt)

• Employee Performance (formula_table2.srt)

REPORT DESIGN

952 of 2477

Note: You may wish
to review Formula
Tables in Report
Scripting, which
explains the scripting
elements that are used
in the current section.

The completed reports (formula_table1.srt and formula_table2.srt) are
included in the examples/docExamples/script folder of your installation.

To create more basic formula tables using drag-and-drop techniques, see
Walkthrough: Creating a Formula Table.

Sales Revenue Ledger (formula_table1.srt)

The sales revenue ledger is a commonly used report layout. An example is
shown below.

Walkthrough The sales revenue ledger report contains a vertical listing of grouped
entities (e.g., State and Customers), and a horizontal multi-layered listing of
headers. The headers might correspond directly to a column of data, or to
calculated fields. In this example, the table is populated with data from two
separate queries ‘customers’ and ‘Order details’.

Follow the steps below to create this formula table:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’, and click ‘OK’.

3. Right-click on an empty region of the report and select ‘Script’
from the context menu. This opens the Script Editor.

4. Select the onLoad tab of the Script Editor, and enter the following
lines:

var q1 = runQuery('customers');
var q2 = runQuery('Order details');

REPORT DESIGN

953 of 2477

This script executes the ‘customers’ and ‘Order details’ queries and
stores the resulting tabular data in variables q1 and q2, respectively.

5. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

6. Drag the ‘Table’ component from the Toolbox panel to the report.
This creates a new Table without a binding.

7. Right-click the Table and select ‘Convert to Formula Table’ from
the context menu.

8. Change the Table dimensions to 6 rows and 4 columns. See
Inserting Rows and Columns into a Table for details.

In the following steps, you will fill the table with the vertical listing of
‘companies’ grouped by ‘state’, starting with the top level of grouping
(state), followed by the sub-group (company within each state).

9. Select cell[2,0] (third row, first column) and select the Data tab in
the Properties panel.

10. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option, and enter the following formula:

toList(q1['state'])

The “q1['state']” construct extracts all the values from the ‘state’
column of the query result set ‘q1’. The toList function extracts
only the unique values from that result set. (See toList in Report
Scripting for more information.)

11. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio button.
This sets the cell to expand (fill) vertically.

12. Set the ‘Cell Name’ field in the ‘Cell’ panel to be “st”. Click the
‘Apply’ button.

REPORT DESIGN

954 of 2477

Note: To merge two
cells: left click on the
first cell and drag
your mouse over the
second cell to select
both, then right-click
> ‘Table’ > ‘Merge
Cells’.

13. Shift-click on both cell[3,0] (fourth row, first column) and
cell[4,0] (fifth row, first column) to select both cells.

14. Right-click on the selected region, and choose ‘Table’ > ‘Merge
Cells’ from the context menu.

15. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option, and enter the following formula for the merged cell:

toList(q1['company_name@state:$st']);

This extracts a unique list of companies for a given state ‘st’. The
‘@state:$st’ clause ensures that you obtain only companies within
the particular state ‘st’. If this clause were omitted, you would
obtain a list of all the companies in the result set.

16. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio button.

17. Set the ‘Cell Name’ to ‘comp’, and select ‘st’ from the ‘Row
Group’ menu. This creates the grouping hierarchy between ‘State’
and ‘Company’.

18. Merge cell[0,3] (first row, fourth column) and cell[1,3] (second
row, fourth column) as described earlier.

See Changing a Table
Cell Data Binding for
information on set-
ting static text.

19. Add the following headers using static text:

Cell[0,1] = ‘Total Quantity’
Cell[0,2] = ‘Gross Revenue’
Cell[1,1] = ‘Average Price’
Cell[1,2] = ‘Discounted Revenue’
Cell[5,0] = ‘Total Revenue’
Merged Cell[0,3] = ‘Net Revenue’

REPORT DESIGN

955 of 2477

20. Add the summary formulas. These return summaries of numeric
data fields for a given entity in the group/sub-group, e.g., sum of
the quantity purchased for a given company. You will add formulas
to the lowest level of grouping, and then work your way up.

a. Add the following summary formulas to the following cells:

Cell[3,1]: sum(q2['Quantity@Company:$comp']);
Cell[4,1]: average(q2['Price@Company:$comp']);
Cell[3,2]: sum(q2['Total@Company:$comp']);
Cell[4,2]: sum(q2['=Total*Discount@Company:$comp']);

b. For cell[3,2], set the ‘Cell Name’ to ‘grossRevenue’.

c. For cell[4,2], set the ‘Cell Name’ to ‘discountRevenue’.

21. Calculate the ‘Net Revenue’ by subtracting the ‘grossRevenue’
from the ‘discountRevenue’.

a. Merge cell[3,3] (fourth row, fourth column) and cell[4,3]
(fifth row, fourth column) as described earlier.

b. Add the following formula to the merged cell:

$grossRevenue-$discountRevenue

c. For the merged cell, set the ‘Cell Name’ to ‘netRevenue’. This
is the net revenue for every company within a state.

22. Add the following formula to cell[2,3]:

sum($netRevenue);

This is the total net revenue for each state.

23. Add the following formula to cell[5,3]:

sum($netRevenue);

This is the grand total of the net revenue.

REPORT DESIGN

956 of 2477

Note: Define the formulas at the lowest grouping level, and then
use the cell reference to perform summaries at the higher levels of
grouping. The same formula, ‘sum($netRevenue)’, yields different
results based on the context of the cell to which it is added.

24. (Optional) To match the example, add appropriate number and
currency formats to the formula and static text cells, merge adjacent
blank cells, and set the desired cell alignments. Bolding, italics, and
larger font size help make the row and column headers stand out.

25. Preview the report to view the output, which should match the
figure at the beginning of this section, Sales Revenue Ledger
(formula_table1.srt).

Employee Performance (formula_table2.srt)

This example is an Employee Performance report which displays the sales
made by sales employees to clients in different states, and breaks down
performance by fiscal year and product category.

Walkthrough This report uses dynamic listing in both the horizontal and vertical
directions. It also demonstrates how to manipulate date fields in formula
tables and how to implement hybrid column or row headers.

For this example, you will use a query called ‘Employee Sales’. This query
is embedded (i.e., stored locally) in the sample ‘formula_table2.srt’
template. Before you can use this query, you must make it accessible within

REPORT DESIGN

957 of 2477

the global scope. To import the query into the shared query registry, follow
the steps below:

1. Open the ‘formula_table2.srt’ report in Style Studio. You can find
this report template in the
StyleIntelligence\examples\docExamples\script directory.

2. Expand the Style Studio Asset panel.

3. Expand the ‘Report’ > ‘Local Query’ node on the tree.

4. Expand the ‘Data Source’ node on the tree.

5. Drag the ‘Employee Sales’ query from the ‘Local Query’ node to
the ‘Orders’ node.

This exports the query to the global query registry, where it will be
accessible to other reports. (See Creating a Local Query in Data
Modeling for more details.)

6. Close the ‘formula_table2.srt’ report. (Do not save it.)

Now that the ‘Employee Sales’ query is available in the shared registry,
follow with the steps below to create the desired formula table:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select the ‘Report’ node. In the right ‘Types’ panel,
select ‘Blank Tabular Report’, and click ‘OK’.

3. Right-click on an empty region of the report and select ‘Script’
from the context menu. This opens the Script Editor.

4. Select the onLoad tab of the Script Editor, and enter the following
line:

REPORT DESIGN

958 of 2477

var q = runQuery('Employee Sales');

5. Expand the Style Studio Toolbox panel. (Select ‘Toolbox Pane’
from the Style Studio ‘Window’ menu.)

6. From the Toolbox panel, drag a Table component into the report.

7. Right-click the table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

8. Resize the Table to have 4 rows and 4 columns. (See Inserting
Rows and Columns into a Table for details.)

9. Fill the table with the vertical listing of sales employees, grouped
by state. To do this, start with the top level of grouping (Employee)
followed by the sub-group (State). Follow the steps below:

a. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio ‘Window’ menu.)

b. Select cell[2,0] (third row, first column) and select the Data
tab in the Properties panel.

c. In the ‘Binding’ region of the Data tab, choose the ‘Formula’
option, and enter the following formula:

toList(q['Employee']);

d. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio
button.

e. Set the ‘Cell Name’ to ‘emp’.

f. Select cell[3,0] (fourth row, first column), and add the
following formula:

toList(q['State']);

The formula toList(q['State']) will list all states, regardless
of employee. If you prefer to list only those states within which
the given employee has sales, change the formula to the
following:

toList(q['State@Employee:$emp']);

REPORT DESIGN

959 of 2477

g. Check the ‘Expand Cell’ box and select the ‘Vertical’ radio
button.

h. Set the ‘Cell Name’ to ‘st’, and select ‘emp’ as the ‘Row
Group’. This creates the grouping hierarchy between ‘emp’ and
‘State’.

10. Fill the table with the horizontal listing of years, a horizontal listing
of product categories, and an empty cell between them. To do this,
follow the steps below:

a. Select cell[1,1] (second row, second column), and add the
following formula:

toList(q['OrderDate'], 'date=year');

b. Check the ‘Expand Cell’ box and select the ‘Horizontal’ radio
button.

c. Set the ‘Cell Name’ to be “yr”.

d. Select cell[1,3] (second row, fourth column), and add the
following formula:

toList(q['Category']);

e. Check the ‘Expand Cell’ box and select the ‘Horizontal’ radio
button.

f. Set the ‘Cell Name’ to be “cat”.

You have now configured the headers, and you can add the summary
formulas. These formulas return summaries of numeric data fields for a
given entity in the vertical and horizontal group/sub-group, e.g., sum of the
quantity purchased for a given employee, in a given year, or sum of the
quantity purchased in a given state, for a given employee, in a given year.
etc.

First add formulas to the lowest level of grouping, and then work your way
up.

11. Select cell[3,1] (fourth row, second column), and add the
following formula:

sum(q['Quantity@=year(OrderDate):$yr;Employee:$emp;State:$s
t']);

12. Set the ‘Cell Name’ to be “salesEmpYearState”.

REPORT DESIGN

960 of 2477

Note the difference in the syntax of the two formulas. The formula
for cell[3,1] uses a function “year(OrderDate)” to extract the year
of a given order date. (See the Formula Tables section of the
Report Scripting for more details).

13. Select cell[3,3] (fourth row, fourth column), and add the
following formula:

sum(q['Quantity@Employee:$emp;State:$st;Category:$cat']);

14. Set the ‘Cell Name’ to be “salesEmpCatState”.

You should define the formulas at the lowest grouping level, and
use the cell reference to perform summaries at the higher levels of
grouping.

15. Add the summary formulas at the Employee level (the higher level
of grouping). Follow these steps:

a. Select cell[2,1] (third row, second column), and add the
following formula:

sum($salesEmpYearState);

b. Select cell[2,3] (third row, fourth column), and add the
following formula:

sum($salesEmpCatState);

16. Now add column title cells which span their entire datasets:

a. Click to select cell[0,1] (first row, second column), and type
the text “Year”.

b. Select the Option tab in the Properties panel, and enable
‘Merge Expanded Cells’.

c. Click to select cell[0,3] (first row, fourth column), and type the
text “Category”.

d. Select the Option tab in the Properties panel, and enable
‘Merge Expanded Cells’.

REPORT DESIGN

961 of 2477

17. Resize the columns, modify the fonts, assign borders, etc., so that
the report displays nicely.

18. Preview the report to view the output. The final result can be seen
in the report named ‘formula_table2.srt’.

REPORT DESIGN

962 of 2477

8 Viewing a Report

Report elements do not display data when Style Studio is in its default
design view. The suppression of data allows you to focus on overall report
design and layout, and avoids delays associated with query execution.

However, during the design process you may want to view the report with
actual data so that you can evaluate how well the report page is being used
when the data is rendered on the elements. The following sections explain
various methods for viewing a report together with its data.

8.1 Displaying a Report in Live Edit View
To display actual data in the Style Studio design view, click the ‘Live Edit’
button in the Style Studio toolbar. This populates the report elements with
data retrieved from the database, and permits you to continue making
design manipulations.

Because displaying a large dataset may slow down editing, the retrieved
result set is limited to 500 rows by default. To change the data size limit,
follow the steps below:

1. Select ‘Preferences’ from the Style Studio ‘Report’ menu. This
opens the ‘Preferences’ dialog box.

2. Select the Misc tab.

3. In the ‘Query Max Row’ field of the ‘Live Edit’ panel, enter the
maximum number of query rows that the database should return in
Live Edit mode.

4. In the ‘Query Timeout’ field, enter the maximum duration (in
seconds) that a query should be permitted to execute in Live Edit
mode before timing out.

REPORT DESIGN

963 of 2477

5. Click ‘OK’ to close the ‘Preferences’ dialog box.

To disable Live Edit mode, click the ‘Live Edit’ button again.

8.2 Displaying a Report in the Preview Tab
To close the preview,
click the ‘X’ in the
‘Preview’ tab.

To display a rendering of the report as it will appear to users (including all
data and scripting), click the ‘Preview’ button in the Style Studio toolbar.
This opens a new tab to display the rendered report.

The row immediately below the ‘Preview’ tab contains the report paging
controls and the following additional options:

• Save Parameters: The ‘Save Parameters’ option caches the parameter
values that you enter when first previewing the report. Subsequent
report previews automatically reuse these same cached parameters,
bypassing the parameter prompting, until you disable the ‘Save
Parameters’ option. This feature is useful in cases when you need to
repeatedly preview a report (for example, when making layout or
formatting adjustments), and do not wish to repeatedly re-enter
parameter values.

• Enter Parameters: The ‘Enter Parameters’ button reopens the
parameter prompt dialog box, allowing you to enter a new set of report
parameters.

Note: For reports containing scripted behavior, you may need to
press the ‘Preview’ button in order to correctly re-execute the
scripts.

• Refresh on Change: The ‘Refresh on Change’ option regenerates the
preview whenever you click the existing ‘Preview’ tab. When this

REPORT DESIGN

964 of 2477

option is enabled, you do not need to press the ‘Preview’ button in the
Style Studio toolbar to regenerate a preview; instead, simply click the
existing ‘Preview’ tab to regenerate the preview. This prevents the
proliferation of tabs, and reduces memory consumption.

You can set other preview options under the General tab of the ‘Style
Studio Configuration’ dialog box. (Select ‘Configure’ from the Style
Studio ‘File’ menu) See Configuring General Style Studio Properties in
Getting Started for more information about the available options.

8.3 Displaying a Report in the User Portal
To display a report in the User Portal, you must first save or deploy the
report into a repository that is accessible to the Style Intelligence server.
See Saving a Report into the Working Repository or Deploying a Report,
Data Source, or Other Asset in Getting Started.

For information on how to open the report within the User Portal, see
Using a Report in Getting Started.

REPORT DESIGN

965 of 2477

9 Saving a Report

Style Studio allows you to save a report to the local file system or into a
repository, where is can be made accessible to a server. You can also export
a report to one of a variety of formats or a portable JAR archive. The
following sections explain these options in detail.

9.1 Saving a Report into the File System
To save a report to the local file system, follow the steps below:

1. From the Style Studio ‘File’ menu, select ‘Save’ or ‘Save As’. This
opens the ‘Save As’ dialog box.

If the report has been saved previously, the ‘Save’ command
simply saves the current version under the same name and location,
whereas the ‘Save As’ command allows you to specify a new name
and location. If the report has not previously been saved, the ‘Save’
and ‘Save As’ commands produce the same results.

2. In the ‘Save As’ dialog box, select the Report tab.

3. Navigate to the location in the file system where you want to save
the report, and enter the desired report name in the ‘File name’
field.

4. Press ‘Save’ to save the report in the specified location.

Report names end with the extension .srt, which designates “style report
template.” A saved report is referred to as a “template” because it does not
contain the data that will ultimately be displayed. The saved report

REPORT DESIGN

966 of 2477

contains only formatting and data-binding information; the data itself is
retrieved “live” from the database at the time that the report is generated.

To save the report template together with its data, follow these steps:

1. Preview the report. (See Displaying a Report in the Preview Tab.)

2. Save the preview as an .sro file.

The .sro format is chiefly useful for debugging purposes. To create a
distributable copy of the report containing data, see Exporting a Report.

9.2 Saving a Report into the Working Repository
To view a report within the User Portal, you must deploy the report to a
repository that can be accessed by a Style Intelligence server.

Note: To deploy the report to an alternate repository, see
Deploying a Report, Data Source, or Other Asset in Getting Started.

To save (deploy) a report to the working repository, follow the steps below.

1. In Style Studio, open the report you wish to save if it is not already
open.

2. From the Style Studio ‘File’ menu, select the ‘Save As’ command.
This opens the ‘Save As’ dialog box.

3. In the ‘Save As’ dialog box, click the Repository tab.

The Repository tab provides access to the working repository, the
location from which Style Studio accesses reports and other assets.
The physical storage of reports and assets depends on the type of
repository that you have configured in Style Studio. (See
Configuring a Repository in Getting Started for further
information.)

4. In the ‘Name’ field, enter a name for the deployed report.

This name that you enter is used as the name of the physical report
file (a “.srt” extension is added automatically). The name is also
displayed as the report’s label in the ‘Repository’ listing in the User
Portal, unless you specify an alternate ‘Alias’ for this purpose
(below).

5. (Optional) In the ‘Alias’ field, enter the label under which the
report should be displayed in the ‘Repository’ listing of the User
Portal. If you do not supply an ‘Alias’, the ‘Name’ field is used to
provide this label.

REPORT DESIGN

967 of 2477

6. (Optional) Enter a ‘Description’ for the report. The description is
displayed to users when they hover the mouse over the report name
in the ‘Repository’ listing of the User Portal.

7. Press ‘Save’ to deploy the report into the working repository.

To verify that the report has been successfully deployed into the working
repository, follow the steps below:

1. Expand the Style Studio Asset panel.

2. Expand the ‘Report Repository’ node on the tree.

REPORT DESIGN

968 of 2477

3. Verify that the deployed report is displayed in the ‘Report
Repository’ listing. Note that in the Style Studio Asset panel the
report is displayed using the label supplied by the ‘Name’ field
rather than the label supplied by the ‘Alias’ field.

The deployed report will be available in the User Portal of a server that
shares the same working repository. If the repository is of type ‘Local’, the
report template file (.srt) is copied to a folder called ‘templates’ in that
location.

See Using a Report in Getting Started for information on how users can
access this report in the User Portal.

9.3 Opening a Report in Style Studio
To open an existing report, follow the steps below:

1. From the Style Studio ‘File’ menu, select ‘Open’.

See Saving a Report
into the File System
for more information.

2. If the report was saved in the local file system, select the Report
tab.

See Saving a Report
into the Working
Repository for more
information.

3. If the report was saved in the working repository, select the
Repository tab.

REPORT DESIGN

969 of 2477

4. Navigate to the location in the file system or repository listing that
contains the report you wish to open.

5. Select the desired report, and press ‘Open’. This opens the selected
report for editing in Style Studio.

You can also open a repository report from within the Style Studio Asset
panel. Follow the steps below:

1. Expand the Style Studio Asset panel.

2. Expand the ‘Report Repository’ node on the tree.

REPORT DESIGN

970 of 2477

You can also double-
click on the report
name.

3. Right-click the report you wish to open, and select ‘Open’ from the
context menu.

9.4 Deploying a Report
You can easily deploy a report to a repository other than the working
repository (i.e., a remote repository) or to a JAR file for later use. See
Deploying a Report, Data Source, or Other Asset in Getting Started.

9.5 Exporting a Report
To export a report from Style Studio, open the report and select ‘Export’
from the Style Studio ‘File’ menu. The following export formats are
available:

Table 16. Export Format Options

EXPORT OPTION DESCRIPTION

PDF Exports the report as a .pdf file.

Excel (match exact layout)

Exports the report as an Excel (.xls) file which
includes the headers and footers of all the report
pages. (Report headers/footers are exported to Excel
headers/footers.)

Excel (no pagination)
Exports the report as a .xls file with only one header
and footer, i.e., without pagination.

Excel (best data editing)

Exports the report as a .xls file with two sheets. The
version of the report on the first sheet is the same as
the ‘Excel (match exact layout)’ version, while the
version of the report on the second sheet attempts to
preserve the report layout without using any cell
spanning.

RTF (editable document) Exports the report as a .rtf file.
RTF (match exact layout) Exports the report as a .rtf file without pagination.
HTML (match exact
layout)

Exports the report as a .html file.

HTML (no pagination)
Exports the report as a single page HTML file, i.e.,
the html file consists of only one header and one
footer.

CSV Exports the report as a comma separated file.
SVG Exports the report as a .svg file.

Text

Exports the report as a pure text file. The text file
approximates the report layout as much as possible
and is suitable for sending reports to line printers or
e-mailing to people with low bandwidth.

REPORT DESIGN

971 of 2477

See Also
Deploying a Report or Asset to a JAR File, in Getting Started, to bundle a
report together with its required assets.
Displaying a Report in the Preview Tab, to view a report in Style Studio or
generate an debugging output (.sro) file.
Page Break, for information on breaking a report across multiple Excel
sheets.

PowerPoint
Exports the report as a .ppt file. Each page will be a
separate slide in the presentation.

XML

Exports the report as a well-formed XML file,
intended for data analysis, including data from Text
elements, Tables, Charts, and Sections. Crosstab
and Chart data are represented in flattened form.
Section data appears without group or band
delimitation.

REPORT DESIGN

972 of 2477

10Best Practices

The following sections present techniques and strategies to make report
development easier and more efficient.

10.1 Planning a Group of Reports
Style Intelligence provides a number of features to improve reusability.
Most reports are not completely unique, but are created among a set of
related reports. These reports may share just a few elements, an entire
layout, or may be entirely identical except for the data bound to the
elements. Try to decide, in advance, how much overlap there will be
among the reports. Then follow an appropriate strategy for reusability:

• If the reports share a common layout and some elements (such as
headers, footers, or a title page) use a meta-template to serve as a basis
for the reports. See Meta-Templates for further details.

• If the reports will share just a few common elements, such as a header,
(while the layout may vary) create report beans to capture the common
features. See Report Bean for further details.

• If the reports are identical except for the data source bound to the
elements, you do not need to create multiple template files. Instead,
create a single template file and bind the data dynamically using script.

10.2 Planning Report Design
When you design a report, some initial planning can help streamline the
design process.

10.2.1 Deciding on Elements and Queries

First, examine what data needs to be presented and decide which report
elements will best capture the information. Make sure that the existing
queries will provide the data in a usable form, subject to the modifications
available during data binding.

In some situations, queries are required for a particular report, but will not
be used in other reports. These queries should be created as local queries,
which are embedded and saved within the report template (.srt) file, as
opposed to global queries which are stored in the query registry (query.xml)
file. This avoids unnecessary clutter within the query registry. See Creating
a Local Query in Data Modeling for more information.

10.2.2 Determining the Appropriate Layout

Next, determine the best layout. The Flow Report Layout is ideal for
newsletters and similar reports where specific areas on the page must be
delineated. A flow report without page areas is identical to a Tabular

REPORT DESIGN

973 of 2477

Report Layout with only one cell, but the tabular layout type has many
advantages. For example, two grid cells forming two columns enable side-
by-side tables or table and chart combination.

For small reports in particular, the tabular layout provides great control
over the placement of elements. When there are many fixed-size elements,
such as charts and text, you can designate the element location precisely.
With dynamically-sized elements, the grid cells grow to accommodate the
contents, so the element placement remains the same relative to the
contents of other grid cells.

10.2.3 Specifying Preferences

Set your preferences before creating your report. Select ‘Preferences’ from
the Style Studio ‘Report’ menu to open the ‘Preferences’ dialog box. This
allows you to specify defaults for font, textbox and separator styles,
margins, section properties, etc. (See the following sections for more
information: Using Grids and Rulers, Setting Global Section Options, Tab.)

To set other report-wide settings, select ‘Report Properties’ from the Style
Studio ‘File’ menu to open the ‘Report Properties’ dialog box.

10.2.4 Tables vs. Sections

Tables and Sections can both present tabular data, but there are major
differences in the corresponding presentation options:

• Table elements always use a tabular grid to display data. Sections allow
completely free data positioning.

• Tables can be assigned a predefined or custom table style that globally
defines aesthetic attributes such as colors, fonts, and borders. Sections
do not offer global style specification.

REPORT DESIGN

974 of 2477

• The Table element can automatically size itself to the data that it
contains, which is very important for user customization, such as Ad
Hoc report editing. (See Ad Hoc Reporting for more information). A
Section presents data within individual Text elements. Because the
elements do not automatically resize to fit the data, some contents may
be truncated

10.2.5 Design for Accessibility

To design reports for compliance with Section 508 of the federal
Rehabilitation Act of 1973, see Section 508 Accessibility Compliance in
Administration Reference.

10.3 Performance Tuning
Text and Textbox elements are both commonly used to add text to a report.
The Textbox element differs from the Text element in that it can have
borders and be anchored to a particular position. However, if you do not
need these features of Textbox, it more efficient to use the Text element.
This also applies to data displayed inside a Section. (See Section Options
for a Freehand Section for information on selecting Text or Textbox
representation for data in a Section.)

It is generally more efficient to specify sorting at the query level, rather
than at the data-binding level. See Creating a New Query in Data Modeling
for more information.

10.4 Precautions and Safeguards
When you develop reports for an enterprise deployment, you should take
precautions to restrict user actions that might negatively affect server
performance. The following are some examples of potential problems:

• Most reports contain certain parameters that can be specified by the user
at runtime. However, a user might unwittingly set a combination of
parameters that retrieves a very large number of records, which could
impact database performance.

• Users can create and modify reports using Ad Hoc reporting tools,
which include the capability to modify filtering conditions. Again, a
user might unwittingly change or remove a filter in such a way that the
report retrieves an excessive number of records.

• Many reports make heavy use of scripting, and user modification of
such reports (using the Ad Hoc tools) can have undesirable results.

To prevent these kinds of potential problems, consider taking the following
precautions when you design your reports.

REPORT DESIGN

975 of 2477

Disabling Ad Hoc Analysis

Deselect the ‘Enable Adhoc Analysis’ option in the Data Options tab of a
component ‘Properties’ dialog box to prevent a user from modifying that
report component using the Ad Hoc tools. This may be necessary, for
example, when Ad Hoc modifications could conflict with a script that is
attached to the element.

Limiting the Maximum Number of Rows

Set the ‘Maximum Number of Rows’ option in the Data Options tab of a
component ‘Properties’ dialog box to limit the number of rows returned by
the raw query. This limit overrides all other maximum settings defined in
Style Studio or Enterprise Manager.

Setting a Query Timeout

Set the ‘Query Timeout’ option in the Data Options tab of a component
‘Properties’ dialog box to specify the amount of time (in seconds) allowed
for query execution. If no response is received from the database within
this time, the reporting engine will attempt to cancel the execution of the
query by the database, and will then proceed to complete report execution.
(It may not be possible to cancel the query in all cases.)

Limiting the Maximum Number of Pages

It is especially important to limit the maximum number of pages for
prototype reports that will be used by the Ad Hoc Wizards.

Specify a value for the ‘Max Number of Pages’ option in the ‘Report
Properties’ dialog box to restrict the number of pages generated by the
report engine. (See Report Properties for more details.) Although you can
also limit the raw number of records returned by a query (as discussed
above), in some cases an Ad Hoc report user can make layout selections
that nevertheless would generate a very large number of pages. Therefore,
it is still valuable to set a maximum page limit.

See Also
Limiting Query Size and Execution Time, in Administration Reference, for
global safeguards.
Limiting the Number of Rows in a Table, in Data Mashup, for Worksheet-
level safeguards.

10.5 Designing Reports for Section 508 Compliance
Consider the following points when designing reports for compliance with
Section 508 of the federal Rehabilitation Act of 1973.

REPORT DESIGN

976 of 2477

• Set the ‘Tooltip’ property for all Image elements.

• Set the ‘Tooltip’ property for all Form Elements.

• Do not convey information solely by using color. Augment color cues
with other visual cues or text.

• Avoid complex table structures such as those created with Formula
Tables. Complex tables may not be representable to users in an
accessible manner.

• Avoid using components that cause the screen to flicker. For example,
do not use animated images or background color changes with
frequencies between 4Hz and 59Hz.

• Use Heading numbering in reports to comply with PDF export
accessibility requirements.

• Set the ‘Title’ property for the report (under the Document Info tab of
the ‘Report Properties’ dialog box).

See Also
Section 508 Accessibility Compliance, in Administration Reference, for
further information about accessibility.

AD HOC REPORTING

977 of 2477

Ad Hoc Reporting

This Guide explains how to use the Ad Hoc tool, which allows you to
create and modify reports from within the web-based User Portal.

AD HOC REPORTING

978 of 2477

1 Contents

This Guide covers the following topics:

This guide uses some
examples from the
‘Tutorial’ folder in the
Repository. If you do
not see these exam-
ples, please ask your
system administrator
to set them up before
you begin.

• Introduction to Ad Hoc Reporting

An explanation of the unique advantages offered by Style
Intelligence’s Ad Hoc reporting capabilities.

• New Report Wizards

Creating new reports to suit your needs.

• Editing Report Layout

Adapting the page layout and flow of a report.

• Editing Report Elements

Changing report element properties.

• Editing Data Binding

Binding report elements to new or different data sources.

• Filtering

Selecting the data to display in an element.

• Highlighting

Adding conditional formatting to elements.

• Parameter Sheets

Prompting the user for information to customize reports.

AD HOC REPORTING

979 of 2477

2 Introduction to Ad Hoc Reporting

Reporting has always been tightly coupled to everyday business activities.
As a result, reporting requirements tend to change very often. Traditionally,
when such changes occurred, you were forced to rely on developers or IT
staff to revise your reports to meet the new requirements. However,
because developers often do not correctly anticipate the needs of report
users, the resulting report designs may be inadequate, requiring further
iteration and re-implementation.

InetSoft believes the solution to this problem is user empowerment. Instead
of requiring you to communicate your needs to developers and then iterate
over successive changes, Style Intelligence gives you direct access to
powerful “ad hoc reporting” tools that allow you to rapidly and easily
design your reports yourself.

Other BI tools have previously attempted to provide ad hoc reporting.
However, these tools have not reached a significant level of prevalence due
to the following factors:

• Business reports are complex. Report writers are often large applications
that have a steep learning curve.

• Business information is complex. Report writers often require that you
understand the database query language and know how the data is
stored.

Style Intelligence solves both these problems. It addresses the first with an
Ad Hoc tool that is lightweight, web-based, and easy to use. It addresses
the second by automatically handling all the technical details of accessing
data.

AD HOC REPORTING

980 of 2477

3 New Report Wizards

The Ad Hoc tool allows you to create new reports from scratch by using a
step-by-step wizard. This section explains how to use the different wizards.

3.1 Creating a New Report
To create a new report, follow these steps:

1. Click on the Design tab in the Portal.

2. Select the ‘Report’ option. This displays a list of the available
wizards.

3. Click on one of the Wizards. The Wizard will lead you through a
series of steps to design the report.

3.2 Chart Wizard
Walkthrough The chart is a widely used element in data presentation. It presents data in a

graphical form and is very useful to convey implications of certain data in a
succinct manner.

Use the ‘Previous’
and ‘Next’ Buttons to
navigate the data
binding process. Use
‘Preview’ to view the
report and ‘Finish’ to
generate the final
report.

For instance, a corporate presentation may use a pie chart to show the
market share of the industry leaders. This is more easily understood than a
table of numbers.

1. Choose ‘Chart Wizard’. In Step 1, select ‘Order details’ within
‘Orders’. Click ‘Next’ to proceed.

AD HOC REPORTING

981 of 2477

2. In Step 2 you can select the desired chart style. Leave it as ‘Auto’.

3. In Step 3, select the ‘Company’ field for the X-axis.

Note that you can also derive new columns from existing columns.
See Creating an Expression Column for more information.

AD HOC REPORTING

982 of 2477

4. In Step 4, select ‘Total’ for the Y-axis. Select ‘Sum’ from the drop-
down menu.

5. In Step 5, you can select columns to be represented by various
visual properties. Select ‘Product’ to be displayed as ‘Color’.

6. For Step 6, specify the condition “Discount is greater than 0,” and
click ‘Append’ to insert the condition. (See the Filtering section for
more information on setting conditions).

7. Click ‘Finish’. To edit this report further, skip to Editing Report
Elements.

AD HOC REPORTING

983 of 2477

3.3 Table Wizard
A table is a standard element used in most reports to display data. You can
also group the data, and calculate subtotals and grand totals. There are also
Crosstab and Section Wizards which provide similar results. Learn the
difference between these three and understand when to use each.

3.3.1 Creating a Table-Based Report
Walkthrough To create a report using the Table Wizard, follow the steps below:

1. Choose ‘Table Wizard’. In Step 1, select ‘Order details’ within
‘Orders’. Click ‘Next’ to proceed.

To search for col-
umns, type in the
‘Search’ box above
the panel.

2. In Step 2, you can select detail columns. By default, all the columns
from the query are automatically selected. For this example,
remove them all.

AD HOC REPORTING

984 of 2477

Note that you can also derive new columns from existing columns.
See Creating an Expression Column for more information.

To search for a col-
umn, start typing the
desired column name
into the menu.

3. In Step 3, use the menus to group by ‘Company’ and ‘Product’.

4. In Step 4, select ‘Total’ as a Summary Column and set ‘Sum’ as the
aggregation function. (See Editing Data Binding for a list of
aggregation functions.)

AD HOC REPORTING

985 of 2477

5. In Step 5, add a condition for “Discount is greater than 0,” and click
‘Append’ to insert the condition. (See the Filtering section for
more information on setting conditions).

6. In Step 6, you can add a ranking condition to groups which have
been summarized. Rank the Top 5 Customers by Sum(Total).

AD HOC REPORTING

986 of 2477

7. Click ‘Finish’. To edit this report further, skip to Editing Report
Elements.

3.3.2 Creating an Expression Column
Walkthrough An expression column is a custom formula that generates a new column

based on the values in other fields. You can use any valid JavaScript syntax
within an expression. Power users are encouraged to read Appendix JS:
General JavaScript Functions to learn about JavaScript functions.

To create an expression column, follow the steps below:

1. Launch any one of the Ad Hoc Wizards. In Step 1, select the
desired data source.

The ‘Create Expres-
sion Column’ link is
available on subse-
quent Wizard screens
as well.

2. Proceed to Step 2 of the Wizard. Note the ‘Create Expression
Column’ link at bottom.

AD HOC REPORTING

987 of 2477

3. Click the ‘Create Expression Column’ link. This opens the
Formula Editor.

4. In the ‘Name’ field, enter a name for the new column.

5. Select the ‘Return Data Type’, which is the type of data the new
column contains.

6. In the Formula Editor, select the ‘sql’ checkbox to enter the
formula using SQL syntax. Leave the box unchecked to use
JavaScript syntax.

7. Construct the desired formula using appropriate operators (SQL or
JavaScript). To add a field name to the formula, click the desired
name in the ‘Fields’ list.

For example, you can specify an SQL formula such as

field['Price'] * field['Discount']

AD HOC REPORTING

988 of 2477

with return data type ‘Double’. You can specify a JavaScript for-
mula such as the following with return data type ‘String’:

if (field['Discount'] > 0) {
'Yes'; // return Yes

} else {
'No'; // return No

}

Accessing Java in Script

You can call both JavaScript and Java functions from within scripts.
However, scripts are executed in a restricted environment that provides
access only to the following Java packages: java.awt, java.text,
java.util, java.sql, inetsoft.graph.*, inetsoft.report,
inetsoft.report.lens, inetsoft.report.filter, inetsoft.uql, and
inetsoft.report.painter.

To permit scripts to access Java packages other than those listed, an
administrator can set the javascript.java.packages property in the
sree.properties file to specify additional packages. To add package contents
to the current namespace, use importPackage('packageName'). For
example, importPackage('java.lang') or importPackage(java.lang)

allows scripts to refer to object names without full qualification (i.e.,
'String' rather than 'java.lang.String').

3.4 Crosstab Wizard
Walkthrough A crosstab table (pivot table) is a very useful way to summarize

information in a tabular format. Records can be grouped vertically and
horizontally, creating a grid of data.

To create a crosstab table, follow the steps below:

1. Choose ‘Crosstab Wizard’. In Step 1, select ‘Order details’ within
‘Orders’. Click ‘Next’ to proceed.

AD HOC REPORTING

989 of 2477

To search for a col-
umn, start typing the
desired column name
into the menu.

2. In Step 2, select ‘Company’ as a row header.

Note that you can also derive new columns from existing columns.
See Creating an Expression Column for more information.

3. In Step 3, select ‘Product’ as a column header.

4. In Step 4, select ‘Total’ as the Summary column and select ‘Sum’
as the aggregation function. (See Editing Data Binding for a list of
aggregation functions.)

5. In Step 5, add the condition “Discount is greater than 0,” and click
‘Append’ to insert the condition. (See the Filtering section for
more information on setting conditions).

AD HOC REPORTING

990 of 2477

6. In Step 6, choose ‘Modern’ > ‘Shaded’ as the Table Style.

7. Click ‘Finish’. This displays the report in design view, which shows
only meta-data and layout.

AD HOC REPORTING

991 of 2477

8. Click the ‘live data’ link at the top right to display the report with
actual data.

9. Click the ‘Save’ button in the report toolbar. This opens the ‘Save
As’ dialog box.

10. Enter a name for the new report in the ‘Name’ field, and select
‘Save as Live Report’. Then click ‘OK’ to save the report to the
Repository.

AD HOC REPORTING

992 of 2477

Tip: You can access
and edit a report from
both the Design tab
and the Report tab.
The Design tab lets
you modify the report
template without exe-
cuting the report.

11. Select the Report tab at the top of the Portal, and then click the
report name in the Repository tree to execute and view the report.

See Also
Production Reports, in End User, for information on executing a report.
Editing Report Elements, to further add, change, or remove report
elements.

3.5 Section Wizard
A Section is a very useful element in report design. A Section consists of
bands. Each band is a container that holds fixed position elements. In the
simplest case, a Section can display the same data as a table but give you
control over the position and size of each cell. An advanced user may
create a Section that contains tables and charts to create a master-detail or
subreport.

To use the Section Wizard, follow the same steps as for the Table Wizard.
To edit the report further, see Editing Report Elements.

AD HOC REPORTING

993 of 2477

4 Editing Report Layout

In the User Portal, you can change the layout, page size, and orientation of
reports that use Tabular layout. This section demonstrates these features
using the ‘Ad Hoc’ report, located in the ‘Tutorial’ folder within the
Repository panel.

4.1 Enabling Ad Hoc Mode
You can enable Ad Hoc mode for a report either before or after generating
the report. The following sections discuss the two approaches:

4.1.1 Editing a Report Before Generation

To make Ad Hoc edits to a report before generating the report, follow the
steps below:

1. Click the Design tab in the User Portal.

2. Under the Design tab, click the ‘Report’ link. This opens the
‘Report Wizard’ page.

3. Click the desired report in the Repository tree. This opens the
report template without generating the report. Only meta-data is
shown.

AD HOC REPORTING

994 of 2477

4. Click the ‘Ad Hoc’ button in the report toolbar to enter Ad Hoc
mode.

5. Edit the report using the Ad Hoc tools.

4.1.2 Editing a Report After Generation

To make Ad Hoc edits to a report after generating the report, follow the
steps below:

1. Click the Report tab in the User Portal.

2. Click the desired report in the Repository tree in the left panel. If
the report contains parameters, a parameter screen may be shown at
this point.

3. Enter parameters (if needed) and click ‘Submit’. This generates the
report, and opens the report for viewing.

AD HOC REPORTING

995 of 2477

4. Click the ‘Ad Hoc’ button in the report toolbar to enter Ad Hoc
mode.

5. Edit the report using the Ad Hoc tools.

Example: Ad
Hoc Mode

To open the ‘Ad Hoc’ report for Ad Hoc editing, follow the steps below:

1. Click the ‘Ad Hoc’ report in the ‘Tutorial’ folder in the Repository
panel. You will be prompted to select some states for which to
generate the report.

2. Select MD, CO, and WA, and click ‘Submit’. This generates the
report, and opens the report for viewing.

3. Click the ‘Ad Hoc’ button in the report toolbar to enter Ad Hoc
mode.

4. Edit the report using the Ad Hoc tools. For example, right click
some text, and select ‘Properties’ to edit the text element’s
properties.

AD HOC REPORTING

996 of 2477

¢

See Also
Ad Hoc Toolbar, for information on the Ad Hoc editing buttons.

4.1.3 Ad Hoc Toolbar

The figure below shows the Ad Hoc toolbar. (Some buttons may not be
visible for a given report.)

Figure 1. Ad Hoc Toolbars

The buttons that are specific to Ad Hoc editing are listed below. The other
toolbar buttons are discussed in the Report Toolbar section of the End
User.

Table 1. Ad Hoc Toolbar Buttons

4.2 Page Setup
To set page size and orientation, click the ‘Page Setup’ button on the Ad
Hoc toolbar. You can select from various predefined sizes and portrait or

BUTTON FUNCTION

Returns to the default toolbar

Deletes the selected element

Creates new parameter sheet

Launches the Visual Composer

Page setup

Report layout

AD HOC REPORTING

997 of 2477

landscape layout, or you can customize the size to suit your needs. When
you are satisfied with your selections, click ‘OK’.

4.3 Report Layout
To change the page-region layout of the report, follow the steps below:

1. Click the ‘Report Layout’ button in the Ad Hoc toolbar. This dims
the report contents, and outlines the report regions in gray.

2. Click on a report region (cell) to select it, or drag the mouse to
select multiple cells. (Selected cells have a darker outline).

3. Right-click on the selected cells to open the ‘Report Layout’
context menu. The ‘Report Layout’ context menu allows you to
merge, split, insert, and delete row and column cells.

4. Drag the cell boundary to resize the corresponding report region.

AD HOC REPORTING

998 of 2477

5 Editing Report Elements

A report is made up of multiple elements. Examples of report elements are
Text, Table, Chart, etc. You can manipulate the properties of each element
independent of the others in that report.

This section reviews the properties of each element using the ‘Ad Hoc’
report in the ‘Tutorial’ folder, but you can follow along with any report.
Menu items that are common to all elements (e.g., ‘Data Binding’) are
discussed later.

5.1 Manipulating a Report Element
You can change any element’s position or add additional elements using
‘Move’, ‘Insert’, and ‘Append’. Make sure you are in Ad Hoc mode. Right-
click on any element and you will see a menu like those below. (The
‘Append’ menu is identical to the ‘Insert’ menu). Additional options might
be available depending on the element.

You can use ‘Move’ to move an element up or down. ‘Insert’ allows you to
insert an element in the report. ‘Append’ allows you to add an element after
the current one. Following are the elements that can be inserted/appended
using the above feature:

• Table

• Chart

• Section

• Text

• TextBox

• Image

• Separator

• Newline

5.2 Table Element
This section presents attributes of the Table element.

AD HOC REPORTING

999 of 2477

5.2.1 Table Properties

Right-click on a Table element, and select ‘Properties’ from the context
menu.

The properties dialog allows you to modify color, alignment, font, and table
style, as well controlling the table flow.

5.2.2 Table Format

Right-click on a Table element, and select ‘Format’ from the context menu.

In the ‘Format’ dialog, you can assign format options such as the type/style
of entry in the cell, the alignment, the color properties, and suppression
options. For further information on table formatting, see Table Formatting
in the Report Design.

AD HOC REPORTING

1000 of 2477

5.2.3 Table To Crosstab

You can switch between tables and crosstabs (pivot tables) depending on
your needs. Right-click on a Table element, and select ‘To Crosstab’. Note
that the ‘Data Binding’ interface now permits crosstab grouping.

5.3 Crosstab Element
A crosstab or pivot table has row and column grouping, and displays a lot
of information in a concise aggregated form. Right-click on a table, and
select ‘To Crosstab’ to change the grouping type and expose the crosstab
options. All other functions, like formatting and properties, are just like a
Table element.

Crosstab Options

Right-click on a Crosstab and choose ‘Options’.

Crosstab To Table

Right-click on a Crosstab element, and choose ‘To Table’. Note the ‘Data
Binding’ interface now permits table grouping.

AD HOC REPORTING

1001 of 2477

5.4 Chart Element
A Chart is similar to a Crosstab, but displays the information graphically.

Chart Properties

To set chart properties, follow the steps below:

1. Right-click on the Chart element, and select ‘Properties’ from the
context menu. This opens the properties dialog box.

2. Right-click the region of the chart that you want to edit (e.g., axis
labels, axis title, plot area, legend, etc.), and select the appropriate
‘Property’ option from the right click menu.

This opens a ‘Properties’ dialog box which allows you to configure
the selected element.

AD HOC REPORTING

1002 of 2477

5.5 Section Element
In the ‘Interactive’ report, the ‘Sales by Geography’ element is a section.
You must be in Ad Hoc mode to modify a section.

5.5.1 Section Properties

Right-click on the section (if you right-click on a field within the section,
use the ‘Section’ sub menu) and select ‘Properties’.

You can change the color, visibility, and borders for all the bands in the
section. The three bands in a Section are ‘Header’, ‘Content’, and ‘Footer’.

5.5.2 Section Layout

Right-click on a section, and choose ‘Section Layout’.

You can add new elements from the left pane by dragging them into the
layout on the right. You can change the position and size of elements on the

AD HOC REPORTING

1003 of 2477

right by selecting them, then dragging the element or its resize handles.
You can also modify the properties of elements in the layout by selecting
them, right-clicking, and choosing ‘Properties’.

For text elements that are bound to data, the ‘Column’ control at the bottom
displays the current binding field, and allows you to choose an alternate
binding. For text elements that display static text, the ‘Text’ control at the
bottom allows you to modify the text contents.

5.6 Other Elements
This section discusses several of the other report elements.

Text and TextBox

Properties include font, color, alignment, format, contents, and (TextBox
only) borders.

AD HOC REPORTING

1004 of 2477

Image

You can upload an image, and set its size.

Separator

You can change the style of the Separator.

AD HOC REPORTING

1005 of 2477

6 Editing Data Binding

This section illustrates how to modify an existing data binding.

6.1 Walkthrough: Modifying a Data Binding
Walkthrough The ‘Data Binding’ interface can be used to edit the data binding of an

element. Right-click on an element and choose ‘Data Binding’.

1. Open the ‘Ad Hoc’ report (choose ‘MA’ and submit). Right-click
on the ‘Count of Orders by State’ element, and select ‘Data
Binding’.

Note: Certain data model attributes may appear disabled (grey).
This is a warning that selecting these fields may create a
defective query.

2. Move the ‘Order.Num’ field from ‘Summary Columns’ to ‘Detail
Columns’ by dragging it.

3. Click ‘OK’. The modified report now shows the list of orders
within each state.

AD HOC REPORTING

1006 of 2477

6.2 Features of the Data Binding Interface
The following sections discuss the buttons and features in the ‘Data
Binding’ interface.

6.2.1 Global Features

This section discusses some general features of the ‘Data Binding’ dialog
box.

• Select Data Source: Press the button to open the ‘Select Data Source’
dialog box, and select a new data source from the tree. To filter the data
source list, type the name of the desired data source in the ‘Find’ field.

• New Expression: This button is used to create a new formula. Selecting
this button will invoke the ‘Formula Editor’, where you may write an
expression involving the query fields. Checking the ‘SQL’ box will
enable you to include SQL functions in the editor, otherwise it provides
you with simple JavaScript functions.

AD HOC REPORTING

1007 of 2477

• Delete: Clicking on the ‘Delete’ button at the top of the ‘Columns’
element toggles delete mode. In this mode you delete columns with a
click.

• Up/Down: These arrows can be used to set the display order of any of
the columns in a report. Assume that you have multiple detail columns
in a report, i.e. ‘State’, ‘Customer’, and ‘Email’ in that order of display.
If you want ‘Customer’ to be the first column in the report then click on
the up-arrow and then click on that particular detail column to move it
up. The down arrow is used to move the columns down.

6.2.2 Column Features

There are additional buttons whose functions are related to specific
columns.

Grouping order

This button is found next to grouping columns. Click this button to open
the ‘Grouping Order’ dialog box and define sorting options.

Grouping options

This button is also available for grouping columns. Click the button to open
the ‘Grouping Options’ dialog box. The dialog allows you to perform the
following operations:

• Toggle summarization for the group

• Rank groups by aggregate value (e.g., Top 5)

• Define Named Groups (custom grouping criteria)

• Insert Page Break after each group

AD HOC REPORTING

1008 of 2477

Sort

The detail columns have this Sort button available. By clicking on this
button, you toggle among: ‘ascending’, ‘descending’, and ‘none’.

Show/Hide

This feature is provided with detail columns. This button is used to control
the visibility of a column. Selecting ‘Hide’ will make the column invisible.

Aggregate formula

This button lets you change the summary function. See Aggregation
Functions below for a list of available functions.

6.2.3 Aggregation Functions
Table 2. List of Aggregation Functions

Sum The additive sum of all values.
Average The arithmetic mean of all values.
Count The number of items.
Distinct Count The number of unique values.
Max The maximum value, highest number, latest date.
Min The minimum value, lowest number, earliest date.
Product The result of multiplication of all values in the column.
Concat If a column has Strings, the result is a concatenated String of

all values in the column.
Standard
Deviation

A statistic that is a measure of dispersion in a distribution. The
square root of the variance.

AD HOC REPORTING

1009 of 2477

Variance Another statistic that measures dispersion.
Population
Standard
Deviation

Dispersion within the current subset. The square root of the
population variance.

Population
Variance

Another measure of dispersion within a subset. Consult a
resource on statistics.

Median The middle value in a sorted list.
Mode The most frequently occurring value.

AD HOC REPORTING

1010 of 2477

7 Filtering

When you customize a report to your requirements, you will often set
conditions to select datasets of interest. If you have a report of expenses in
your organization and wish to know only about those whose value is
greater than or equal to $10,000, you will need specify this requirement as a
filter condition on your element.

This chapter discusses some of the basic options available for filtering.

7.1 Comparison Operators
Open the ‘Ad Hoc’ report. Right-click on a table and choose ‘Filtering’.

Multiple conditions can be added by using ‘AND’ or ‘OR’ logical
operators.

Table 3. List of Comparison Operators.

equal to It equates two entities.
one of Checks if the value is a member of a list. Values can

be entered one at a time, or comma separated.
less than Less than numerically, earlier date, etc.
greater than Greater than numerically, later date, etc.
between Checks if the value is in a range.
starting with Checks the beginning of a string.
contains Checks if the value contains a substring.
null Checks if the value is null.

AD HOC REPORTING

1011 of 2477

7.2 Create Expression
The ‘Create Expression’ link can be used to create a new formula using the
Formula Editor, just like creating a new expression in the ‘Data Binding’
interface.

7.3 Indent/Unindent Conditions
When there are multiple conditions you need nested conditions to define
the order in which the conditions are evaluated by the logical operators.
Consider a scenario where you want to find exceptional orders at both the
low and high end. To satisfy this constraint the first two conditions are
connected by ‘or’ and indented. Then ‘and’ this pair with the third
condition.

If you add all three conditions first, you can then select and move them into
the proper order (use ‘Up’ and ‘Down’). Then select the logical operator
(i.e. ‘or’) and click ‘indent’. The ‘unindent’ button performs the inverse.

7.4 Browse Data
The ‘Browse Data’ button displays a list of the unique values in the
selected column. (For performance reasons, only the first 1000 rows are
scanned.) For example, in the filtering dialog box, the ‘Browse Data’
button reveals all the distinct values in the ‘Product.Category’ column.

AD HOC REPORTING

1012 of 2477

7.5 Parameterizing a Condition
If desired, you can prompt the user to enter a condition value when the
report is generated. Select the ‘Variable’ option from the right-side pop-up
menu and enter a name for the variable, e.g., ‘category’. Check the ‘use
selection list’ box to allow the user to choose the category from a list.

Press ‘OK’. When the report is generated, the user will be prompted to
select a category.

AD HOC REPORTING

1013 of 2477

8 Highlighting

When you create reports, you will often need to highlight important data.
For example, a Sales Manager reading a report on sales and profit might
appreciate the states providing maximum profit to be highlighted for quick
analysis.

Style Intelligence provides the ‘Highlight’ (conditional formatting)
function as a convenient means to make important data more noticeable.

Walkthrough You will now explore all of the features available using the ‘Highlight’
function.

1. Open the ‘Interactive’ report.

2. Click the ‘Ad Hoc’ button on the toolbar to enter Ad Hoc mode.

3. Right-click on one of the sales figures in the ‘Sales by Geography’
section and select ‘Highlight’. This opens the ‘Highlight’ dialog
box.

In the ‘Highlight’ dialog box, you can select the table cell or row to
highlight. This dialog box lists the highlights that are currently
defined for the selection. (The table has an existing highlight called
‘High’.)

AD HOC REPORTING

1014 of 2477

You will now walk through the creation of a new highlight.

4. Click ‘Add’ and name the highlight “SampleHighlight”. Click
‘Next’.

5. Define the following highlight condition: “Total is less than
300000.” Click ‘Append’.

AD HOC REPORTING

1015 of 2477

6. Click ‘Next’. The next dialog lets you define the formatting to
apply when the condition is met. Check ‘Background’, and choose
yellow.

7. Click ‘Finish’. Now the ‘Highlight’ dialog box shows the new
highlight.

8. Click ‘OK’ to regenerate the report. Notice that the appropriate
values are now highlighted.

AD HOC REPORTING

1016 of 2477

9 Parameter Sheets

In the Filtering section, you created a report with a parameterized
condition. When you launch this report, it automatically generates a
prompting screen to obtain the value of the parameter from the user. While
this automatically-generated prompting screen is often adequate, you can
also create a custom prompting screen called a parameter sheet.

9.1 Designing a Parameter Sheet
To design your own parameter sheet, open a parameterized report, and
click the ‘Parameter’ button on the Ad Hoc toolbar. This opens the
‘Parameter’ dialog box, which enables you to lay out a parameter sheet and
to specify the selection lists and display properties for each of the required
parameters.

The ‘Parameter’ dialog box allows you to insert the following elements
into the parameter sheet.

9.2 Walkthrough: Designing a Parameterized
Report

Walkthrough In the example that follows, you will create a parameter sheet that prompts
the user for a list of products. First, you will need to create a new report that
uses parameter prompting. Follow the steps below:

1. Click the Design tab in the Portal, and select ‘Report’. This opens
the Report Wizard screen.

2. Click the ‘Table Wizard’ link to create a new report. (See New
Report Wizards for more information about creating reports.)

Hint: To filter the data
source list, you can
start typing “Order
Details” in the text
field above the list.

3. On the ‘Select a data source’ screen, select the ‘Order Details’
query from the ‘Orders’ node. Click ‘Next.’

4. Click ‘Next’ on each subsequent screen until you reach the
‘Filtering conditions’ screen.

ELEMENT DESCRIPTION

Text Text element
TextBox Textbox element
Button At least one button (submit button) is required for each

parameter sheet.
Parameter A parameter for which the user should be prompted. This can be

a text field, combo box, list, radio button, check box, or a date
combo, based on the selected display option.

AD HOC REPORTING

1017 of 2477

5. On the ‘Filtering conditions’ screen, enter “[Product] [is] [one
of]” for the beginning of the condition.

6. From the right-side pop-up menu, select ‘Variable’. Enter
“product” in the ‘Name’ field. This will be the parameter name.

7. Enable the ‘Use Selection List’ option. (This provides a selection
list when default prompting is used.)

8. Click ‘Append’ to add the condition to the table. (See Filtering for
full information on adding conditions.)

9. Click ‘Finish’. This closes the Wizard, and loads the new report.
Because the report’s table uses a parameter (“product”), the report
automatically displays the default parameter input screen.

10. In the ‘product’ menu of the input screen, make a selection, and
then click ‘OK’. This loads the report with only the selected
products shown in the table.

11. Click the ‘Save Report As’ button on the Ad Hoc toolbar, and
name the report “Parameter Sheet Report”. Select ‘Save as Live
Report’, and click ‘OK’.

AD HOC REPORTING

1018 of 2477

You have now created a report called “Parameter Sheet Report” that has a
single parameter called “product”. When a user launches this report, they
will be automatically prompted for the parameter value. In the next section,
Walkthrough: Adding a Parameter Sheet, you will add a custom parameter
sheet that prompts the user for this parameter. This parameter sheet will
replace the default prompting screen.

9.3 Walkthrough: Adding a Parameter Sheet
You will now add a parameter sheet to the report designed in the previous
section, Walkthrough: Designing a Parameterized Report. Follow the steps
below:

1. Open the new “Parameter Sheet Report,” and click the Ad Hoc
button to enter Ad Hoc mode.

2. Click the ‘Parameter’ button, located on the Ad Hoc toolbar. This
opens the ‘Parameter’ dialog box.

3. Follow the steps below to add the parameter choice menu, a label,
and a Submit button:

a. Drag the ‘Parameter’ element from the left panel to the
parameter layout region. This will be parameter choice menu.

b. Drag the ‘Text’ element from the left panel to the parameter
layout region. This will be the menu label.

c. Drag the ‘Button’ element from the left panel to the parameter
layout region. This will be the Submit button.

AD HOC REPORTING

1019 of 2477

4. Position the elements as shown. Make the ‘Parameter’ element
taller by selecting it and then dragging its bottom border
downward.

5. Select the text element, right-click, and select ‘Properties’ from the
context menu.

6. Modify the text contents to read “Products.” Click ‘OK’.

AD HOC REPORTING

1020 of 2477

7. To configure the Parameter element to control the “product”
parameter, and to display the appropriate list of products in the
parameter sheet menu, follow these steps:

a. Select the Parameter element, right-click, and choose
‘Properties’ from the context menu.

b. In the ‘Name’ field, select the parameter that you defined in the
filter condition. (In this case, it is “product”.) This will allow the
‘Parameter’ interface element (menu) to set the filter parameter

c. For the ‘Parameter’ element label, enter “Product”.

d. For the ‘Tooltip’ field, enter some text to display when the user
hovers the mouse over the input control. For example, type
“Select product name.”

e. In the ‘Selection List’ panel, select ‘Query’ and click the
‘Select’ button. This opens the ‘Query List’ dialog box.

f. Select ‘Order Model’ from the ‘Orders’ data source. Select
‘Product.Name’ for both the ‘Label’ and the ‘Value’ field, and
click ‘OK’.

AD HOC REPORTING

1021 of 2477

(Note that you can also specify an expression by clicking the
‘fx’ button. This expression will then appear as an option in both
the ‘Value’ and ‘Label’ fields. In addition, you can set
conditions to further filter the data from the query before
displaying the selection list. See Creating an Expression
Column and Filtering for more information on these topics.)

g. Select ‘List’ as the display type. Click ‘OK’ exit the ‘Parameter
Properties’ dialog box.

8. Click ‘OK’ to exit the ‘Parameter’ dialog box, and return to the
report.

9. Click the ‘Save’ button to save the new parameter sheet along with
report.

10. Verify that the parameter sheet is now functional:

a. Click the report in the Repository tree. You should now be
prompted for the ‘Product’ parameter using the parameter sheet
you just created.

b. Select the first three products and click ‘Submit’.

The report is now filtered based on your input.

AD HOC REPORTING

1022 of 2477

You can further modify the parameter sheet by clicking the ‘Parameter’
button in the Ad Hoc toolbar.

REPORT SCRIPTING

1023 of 2477

Report Scripting

The Report Scripting provides comprehensive coverage of the JavaScript-
based scripting language in Style Intelligence. Scripts can be associated
with a report or report element to provide interactive behavior and
implement data processing logic.

REPORT SCRIPTING

1024 of 2477

1 Contents

This Guide covers the following major topics.

• Introduction

Introduction to scripting in Style Intelligence.

• Element Script

Elements have properties which can be modified to determine their
presentation characteristics.

• Report Handlers

Scripts can be associated with particular events to support user
clicks and special issues related to page breaks.

• Server-Side Features

Scripts can handle many of the interactive features of server
reports.

REPORT SCRIPTING

1025 of 2477

2 Introduction

Many reporting environments require dynamic report customization and
implementation of specialized business logic. These needs can range from
simply changing text colors based on field values to creating hyperlinks
and drilldowns between reports. Style Intelligence provides a complete
scripting environment to support such dynamic report behavior.

The Style Intelligence scripting language is based on the ECMA-262
(JavaScript) standard. The scripting environment provides full access to all
report elements, and can be used to perform actions on report initialization
and loading, as well as handling ongoing user interactions.

The following sections introduce you to the basics of JavaScript
programing, and explain how to apply JavaScript in the reporting
environment. Since there are many publicly available JavaScript resources,
this Guide concentrates mostly on the Style Intelligence host environment,
and provides extensive examples of report scripting.

2.1 Introduction to JavaScript Programming
The purpose of this section is to provide a broad overview of JavaScript
programming, and to explain how JavaScript works within reports.

See Also
Appendix JS:General JavaScript Functions, for a simple JavaScript
reference.
http://www.w3schools.com/js, for one of the publicly-available tutorials.

2.1.1 The JavaScript Language

Netscape originally introduced JavaScript as the scripting language for its
Navigator web browser. This scripting language allows code to be
embedded in HTML pages and executed inside a browser, which acts as
the host environment for the scripts. The browser exposes HTML page
elements and browser controls to the scripts as host objects and functions.
By manipulating these host objects, JavaScript is able to control the
behavior of the browser and add interactivity to the web pages.

Since the release of Netscape Navigator 2.0 and Microsoft Internet
Explorer 3.0, JavaScript has established itself as the standard browser
scripting language. Subsequent standardization efforts have produced the
specification known as ECMA-262, which is the standard implemented in
Style Intelligence.

As a standardized scripting language, JavaScript provides an excellent
foundation for report scripting needs. Its origin as a web scripting language
makes it ideal for the reporting environment. The integration of JavaScript

http://www.w3schools.com/js/
http://www.ecma-international.org/publications/standards/Ecma-262.htm

REPORT SCRIPTING

1026 of 2477

with Style Intelligence therefore combines two powerful paradigms for
report generation and gives developers maximum flexibility in controlling
reports and user interactions.

2.1.2 Object-Oriented Concepts

JavaScript is an object-oriented programming (OOP) language, and
provides various objects and methods, as well as the ability to create user-
defined methods. To use JavaScript effectively, it is important to
understand the following concepts:

• Properties: Properties are predefined data-storage locations associated
with an object. You can ‘get’ or ‘set’ these properties to observe or alter
the corresponding attributes of the object. For example, every report
element has a visibility property:

Table1.visible = false;

• Methods: Methods are predefined functions associated with an object.
(In general, these functions operate on the object itself.) For example,
the CALC object provides a method for obtaining today’s date:

Text1.text = CALC.today();

• Events: Events are predefined actions that are recognized by an object,
such as mouse movement or clicking. For example, the onPageBreak
handler executes every time a page-break event occurs.

2.1.3 JavaScript Syntax Basics

JavaScript syntax is very similar to that of C++ and Java. It uses the same
construct for all loops and has similar syntax for operators. The following is
a typical script:

var total = 0;

for(var i = 1; i < Table1.table.length; i++) {
total += parseInt(Table1.table[i][1]);

}

text = (total / Table1.table.length).toFixed(2);

The following sections cover the basics of programming with JavaScript.

Comments and Names

JavaScript uses double slashes ‘//’ to start a single line comment, and ‘/* */
’ to enclose a multi-line comment.

// single line comment
/* multi-line

comment */

The semicolon is used as a statement separator:

REPORT SCRIPTING

1027 of 2477

var n = 0;
k = parseInt(123);

Variable names can only contain alphanumeric characters plus the
underscore character (_). They cannot start with a digit and cannot use
reserved JavaScript keywords.

All symbols in JavaScript are case-sensitive.

Declaration and Assignment

JavaScript is a weakly-typed language. This means that variables are not
assigned a type when they are declared. A variable can be assigned any
value, and its type is determined by the value currently assigned.
Consequently, a local variable does not need to be declared before it is
used.

var variable_name = "Hello"; // -- recommended
message1 = "Hello"; // -- without “var” also works
var count = 100;

If a variable is used as a report-level variable, it must be declared using the
‘var’ keyword.

// Place declaration in the onLoad handler:
var pageTotal = 0;

After the variable is declared, it can be used everywhere as a shared report
instance variable.

Object Types and Scopes

JavaScript is object-based. This means that every value in JavaScript is an
object. As with any Object Oriented (OOP) language, properties and
methods associated with each object generally need to be invoked by
qualifying the names with the object name.

// the following statements are equivalent
var name = first_name.concat(last_name);
name = first_name + last_name;

As is the case in C++ and Java, if a script is running inside an object scope,
it can reference its properties and methods without qualifying the name.

Text1.text = "Hello"; // in report script
text = "Hello"; // in Text1 script

JavaScript also has a global scope which provides common methods. Since
every script runs within global scope, these methods do not need to be
qualified.

// parseInt() is a global method
var num = parseInt(parameter['count']);

REPORT SCRIPTING

1028 of 2477

// toFixed() is a number method, so it needs to be qualified
var int_num = num.toFixed(0);

Number Type

JavaScript does not have an integer type and a float type. All numbers are
treated as float by default.

var total = 2 + 3;
text = total; // this will convert the number to 5.0

To force a number to be treated as an integer, use the toFixed() method of
the number object and give a decimal point of zero:

text = total.toFixed(0); // generates the string “5”

A number constant is in decimal format by default, hexadecimal format if it
starts with ‘0x’, and octal format if it starts with ‘0’.

decimal_number = 255 // -- Decimal is the default
hex_number = 0xff
fp_number = 2.456 // -- Floating point number

Numerical computations are performed with the usual operators, +, *, /, -.
The increment and decrement operators (++, --–) are also available.

Boolean Type

A Boolean has a value of true or false.

while(true) {
...

}

All undefined values are treated as false Boolean values when used in the
context of a condition. You can check whether a value is defined by using
the value in an if/else condition. For example:

if(parameter['start_time']) {
// action if 'start_time' is defined
...

else {
// action if 'start_time' is not defined
...

}

String Type

You can designate String constants using single or double quotes:

var mystring = "InetSoft Technology Corp."
mystring = 'InetSoft Technology Corp.'

Concatenate strings with the plus operator:

var str = 'Total: ' + total;

REPORT SCRIPTING

1029 of 2477

If a value concatenated to a string is of a different type, it is converted to a
string automatically. Strings have many methods, for example, substring(),
toLowerCase(), toUpperCase() and indexOf().

var str = 'abcd';
str = str.toUpperCase(); // converts to ABCD
var bIdx = str.indexOf('B'); //return 1
str = str.substring(1, 2); // return 'b'

Strings have built-in support for regular expressions. You can find a regular
expression in a string using the match() or search() method:

str = 'this is a test of regular expression';
re = /test/; // create a regular expression
var idx = str.search(re); // return the position of the
regular expression

Date Type

Date is represented as milliseconds since EPOC (Equipment Point of
Connection). Creating a date object without specifying any parameters
gives the current time:

var now = new Date();

Convert a Date to a string using the global function formatDate().

str = formatDate(now, 'yyyy-MM-dd'); // 2002-02-21

The Date format uses the same syntax as the java.text.SimpleDateFormat
class.

Arrays

An array is a list contained in a single variable. Each item in the list is
known as an “element,” and the entire list is enclosed in square brackets
([]). When you create an array, it is initialized with the specified values as
its elements. The following example creates the coffeelist array with
three elements and a length of three:

var coffeelist = ["French Roast", "Columbian", "Kona"];

Multidimensional arrays are represented as an array of arrays. A two-
dimensional array (rows and columns) may be created as follows:

var monthly_rain = [['Jan', 'Feb', 'Mar'],
[100, 10, 30],
[30, 10, 300],
[10, 10, 10]];

Conditionals

The if/else statement evaluates a Boolean expression to decide between
two alternative actions.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

REPORT SCRIPTING

1030 of 2477

if (x > 0) {
reg = event.region;

}
else {
reg = event.firstRegion;

}

The “else if” construct allows you to test additional cases, similar to the
Switch Statement.

var day = CALC.weekdayname(CALC.today())

if (day == 'Thursday') {
Text1.text = 'Note: ' + day + ' hours are 10am-4pm.';

}
else if (day == 'Friday') {
Text1.text = 'Note: ' + day + ' hours are 10am-12pm.';

}
else if (day == 'Sunday') {
Text1.text = 'Note: ' + day + ' office closed.';

}
else {
Text1.text = 'Note: ' + day + ' hours are 9am-5pm.';

}

For Loop

A for loop instructs the server to repeat an action a specific number of
times.

//for (initial, condition-check, increment)
for (var j = 1; j < 10; j++) {

total = parseFloat(report['Table'].table[reg.y + j][3]);
}

The first expression in the loop (j = 1) initializes the loop variable. The
second expression (j < 10) is a condition used to check when to terminate
the loop (i.e., when the condition evaluates false). The third expression
(j++) is the variable increment that is evaluated at the end of every iteration.
The “j++” notation is the same as “j=j+1,” i.e., increment by one.

While Loop

The while loop iterates the contents of the loop until the loop condition
becomes false.

var n = 5;
Text1.text = "The factorial of " + n;
var fact = 1;

// -- Compute n!, where n is a non-negative integer
while (n > 1) {

fact = fact * n;
n = n -1;

}

Text1.text += " is " + fact;

REPORT SCRIPTING

1031 of 2477

Use the “break” command inside any loop to exit the loop, or use
“continue” to skip to the next iteration.

Switch Statement

The switch statement is similar to the if/else if/else structure. However,
rather than choosing a branch to execute based on a binary condition, the
Switch chooses a branch (i.e., a case) based on a value.

var day = CALC.weekdayname(CALC.today())

switch(day) {
case 'Sunday':
Text1.text = 'Note: ' + day + ' office closed.';
break;

case 'Thursday':
case 'Friday':
case 'Saturday':
Text1.text = 'Note: ' + day + ' hours are 10am-12pm.';
break;

default:
Text1.text = 'Note: ' + day + ' hours are 9am-5pm.'
break;

}

Note that one or more values can be listed on each case (e.g., Thursday,
Friday, Saturday). A ‘break’ statement should be included at the end of
each case to terminate the switch statement.

The “default” label at the end serves as the catch-all case. If the switch
value does not match any of the explicit case values, then the “default”
block is executed.

Functions

JavaScript allows you to package a block of code into a function, which is a
subprogram that performs a particular task. To execute the block of code,
you simply “call” the function that contains the code. By packaging code
into a function, you can easily this common code in multiple elements and
reports, which makes script maintenance much easier.

JavaScript functions behave a little differently than functions in other
languages:

• Input arguments do not require reference vs. value specification.
(Primitive types are passed by value, whereas objects are passed by
reference.)

• Input arguments do not require data type specification

• Return values are optional and do not require data type specification

function max(a,b) // -- Two input arguments
{

if (a > b)

REPORT SCRIPTING

1032 of 2477

return(a); // -- Return a because it is larger
else

return(b); // -- Return b because it is larger
}

To create and save a custom JavaScript function, see Using the Script
Library.

2.2 Editing Script
This section explains how to create and edit scripts using the Script Editor.

Adding Element-Level Script

To attach a script to a report element, follow the steps below:

1. Right-click the desired report element and select ‘Script’ from the
context menu. This opens the Script Editor.

2. Click the Script or onClick tab, and enter the desired element-level
script.

Alternatively, you can follow the steps below:

The Script tab in the
Properties panel pro-
vides quick access for
making minor edits.

1. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio Window menu.)

2. Select the Script tab in the Properties panel. Click the ‘Script’ or
‘onClick’ radio button, and enter the desired element-level script.

Adding Report-Level Script

To create a report level handler, follow the steps below:

Hint: Check the sta-
tus bar at the bottom
of Style Studio to
make sure no element
is selected.

1. Click in a blank area of the report to deselect all elements.

2. Right-click in a blank area of the report and select ‘Script’ from the
context menu.

This opens the Script Editor, which has four tabs corresponding to
the four report-level handlers: onLoad, onInit, onPageBreak, and
onPrint.

3. Click the desired tab, and enter the report-level script.

See Also
Element Script, for information about scripting elements.
Report Handlers, for information about onLoad, onInit, onPageBreak,
onPrint.
Using the Default Script Editor, for information about entering the script.

REPORT SCRIPTING

1033 of 2477

2.2.1 Locating Scripted Elements

To find all scripts in a report, open the Report Explorer. Elements with
script attached are displayed in the Report Explorer with a special “script”
icon. To edit an element’s script, select a scripted element node in the
Explorer, right click and select ‘Script’.

See Also
Report Explorer View, in Report Design, for more information.

2.2.2 Using an External Script Editor

To specify an external script editor, follow the steps below:

1. Select ‘Preferences’ from the Style Studio Report menu. This
opens the ‘Preferences’ dialog box.

2. Select the Misc tab.

3. In the ‘External Script Editor’ panel, click the ‘Browse’ button.
Locate the desired text editor, and click OK.

REPORT SCRIPTING

1034 of 2477

4. Click ‘OK’ to close the ‘Preferences’ dialog box.

When you select the ‘Script’ option for a report or report element, the script
now opens with the specified external editor. Element script and report
script are stored in different “.js” files, with bracketed headings
demarcating the script scopes.

2.2.3 Using the Default Script Editor

The Script Editor provides a large text area where you can enter the desired
script. The three panels above the text area show the ‘Properties’,
‘Functions’, and ‘Operators’ available for each type of element and object.

Figure 1. Script Editor

Script Editor Options

Click the ‘Edit Option’ button in the toolbar to configure the Script Editor.
This opens the ‘Edit Option’ dialog box.

REPORT SCRIPTING

1035 of 2477

Note: If 'High Contrast' is enabled in the Windows-platform
Accessibility Options, text that you type in the Editor may appear
black on a black background. To make the text white, add
'high.contrast=true' to the .stylereport file (located in the
user’s home directory). To change the text color, set
'high.contrast.color' to a hex value, e.g., 0000EE.

Enable ‘Show Live Objects’ to allow the ‘Properties’ tree to display
properties for current (“live”) elements contained in the report, rather than
all available element and property types. Enable ‘Show Line Numbers’ to
display line numbers beside the script.

Syntax Auto-Completion

The Editor’s auto-completion feature dynamically suggests valid syntax
completions for the object and property names you type. This can help you
avoid many errors caused by misspellings.

To use one of the suggestions in the auto-completion list, do one of the
following:

• Continue typing until the correct option is highlighted. Then press ‘Tab’
or ‘Enter’ on the keyboard to make the completion.

• Press the cursor keys on the keyboard to highlight the desired option.
Then press ‘Tab’ or ‘Enter’ on the keyboard to make the completion.

• Click the desired option with the mouse to make the completion.

Auto-completion is available in the following cases:

REPORT SCRIPTING

1036 of 2477

• Completing object names (e.g., “Table1,” “CALC”).

• Completing global function names (e.g., “dateAdd()”).
The Editor shows a
complete list of prop-
erties when you type
the dot (.) after the
object name.

• Completing object property names (e.g., “Table1.visible”).

• Completing report parameter names (e.g., “parameter.companyName”).

• Completing the right-hand side of an assignment (e.g.,
“foreground = ...”). Note that when you type the assignment operator
(=), the initial auto-complete list contains an ‘Edit Value’ option as an
aid to specifying fixed values. See Fixed Value Selection for more
information.

Note that the auto-complete feature cannot provide auto-completions for all
possible cases. For example, variables declared within the current script are
not auto-completed.

See Also
Common Element Properties for information on graphically selecting
property values.
Editing Script, for information on how to access the Script Editor.
Basic Editing Functions, for information on the Script Editor toolbar.
Script Debugging, for tips on preventing and trapping script errors.

Fixed Value Selection

When you use the Script Editor to assign a value to a property, the Editor
can provide you with a menu of available values. This helps you to avoid
syntax errors and choose an acceptable values.

To use the Editor’s menu of values, follow the steps below:

1. In the Script Editor, type a property name followed by an “equals”
sign. For example:

Text1.font =

When you enter the “equals” sign, the Editor prompts you with a
menu of available options.

2. Select the ‘Edit Value’ option in the menu. This opens the ‘Property
Value’ dialog box.

REPORT SCRIPTING

1037 of 2477

3. Choose the desired value in the dialog box, and click ‘OK’.

This adds the appropriate value to your script (e.g., [255,0,0] for the color
red).

See Also
Syntax Auto-Completion, for information on property name suggestions.

Syntax Checking

To manually check the
syntax, click the
‘Check’ button in the
toolbar.

When you save a script, the Script Editor automatically checks the script’s
syntax. If the Editor finds a syntax problem, it provides a description and
location for the error. Because the source of the error may not lie on the
flagged line, you should always check the lines adjacent to the flagged
location. Mismatched parentheses and missing delimiters/operators on the
preceding lines are a very common cause of errors.

Because JavaScript is a weakly-typed language, it is not possible for the
Editor to check for correct variable usage. For example, the syntax checker
cannot detect whether a script references a non-existent variable. However,
this kind of error will be reported in the Console window when you
preview the report in Style Studio. See Script Debugging for more
information about using the Console window.

See Also
Editing Script, for information on how to access the Script Editor.
Basic Editing Functions, for information on the Script Editor toolbar.
Script Debugging, for tips on preventing and trapping script errors.

2.2.4 Basic Editing Functions

The Script Editor toolbar provides basic editing and syntax checking
functions listed below.

REPORT SCRIPTING

1038 of 2477

Table 1. Script Editing Toolbar Icons

2.2.5 Editing Multiple Element Scripts

When the Script Editor is open, you can access scripts for multiple report
elements, as well as report-level scripts. Follow the steps below:

1. In the Script Editor, click the ‘Script Explorer’ button. This
displays a report element tree.

2. Select an element from the tree to view and/or edit the element’s
script.

See Also
Locating Scripted Elements, to determine which report elements are
scripted.
Editing Script, for information on how to open the Script Editor.

Save script and close the window. The syntax of the script is
checked before saving, and error information is displayed. See
Syntax Auto-Completion.
Save the script. This is similar to the Save and Close button
except that it does not close the script window after saving the
changes.
Check the script syntax. See Syntax Auto-Completion.

Clear the current script.

Cut the selected text into clipboard.

Copy the selected text into clipboard.

Paste clipboard contents into editing area.

Enable text Search and Replace in the Script Editor.

Undo the last edit action.

Enable/disable auto-completion.

Enable/disable auto-completion on mouse click.

Open the script explorer to edit other element and report
scripts. See Editing Multiple Element Scripts.
Toggle the script explorer between a full element tree and a
script-only element tree, showing only elements that have
scripts attached.
Edit options for Script Editor.

 Close Close the window and discard changes.

REPORT SCRIPTING

1039 of 2477

2.2.6 Using the Script Library

You can save commonly-used scripts as functions in the Script Library.
This allows you to easily reuse these scripts in multiple report elements and
multiple reports. By saving common script tasks to the script library, you
can keep your main scrips short, simple, and easy to maintain.

To understand the advantages of the Script Library, consider the script
below, which computes the total of a table column in a report:

var total = 0;

for(var r = 1; r < table.length; r++) {
total += table[r][col];

}

This is a common task, which you might need to perform on different table
columns, on different tables, and in different reports. Rather than writing
the same script again and again for each case, you should reuse the original
script. For example, you can save this simple script into the Script Library
as a function called “tableTotal()”.

function tableTotal() {
var total = 0;

for(var r = 1; r < table.length; r++) {
total += table[r][col];

}
return total;

}

You can then execute the script by calling the “tableTotal()” function
from within any element or report script. The following sections explain
how to create and use JavaScript functions and the Script Library.

See Also
Functions, in Report Scripting, for details of the JavaScript function syntax.
Functions, in Dashboard Scripting, for details of the JavaScript function
syntax.
Client-Side JavaScript, in Report Scripting, for information on storing
client-side JavaScript functions.
Adding a Function to the Script Library, for instructions on adding a
function to the Script Library.

Adding a Function to the Script Library

The Script Library is a collection of functions, which can be called from
any report or Viewsheet with access to the Library. To add a new function
to the library, follow the steps below.

Note: The Script Library is independent of any report or Viewsheet.
You do not need to open a report or Viewsheet in order to access
the Script Library.

REPORT SCRIPTING

1040 of 2477

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the ‘New Asset’ dialog box, select the ‘Component’ node in the
right panel.

3. In the left ‘Types’ panel, select ‘Script Function’, and click ‘OK’.

4. This opens the new script for editing, and displays the Properties
and Functions panels as an aid to composing the script.

5. Write the desired script, beginning with “function” keyword.

Since JavaScript does
not support type dec-
laration, parameters
are not qualified with
types.

Any parameters (e.g., “col”) should be placed in a comma-sepa-
rated list inside the parentheses that follow the function name.
These parameters can then be used inside the function body.

6. Click the ‘Save’ button in the Style Studio toolbar.

REPORT SCRIPTING

1041 of 2477

A function name should begin with an uppercase or lowercase letter,
followed by letters, digits, or ‘_’. No spaces or other special
characters should be used.

7. When prompted, enter a valid name for the function, and click
‘OK’. This saves the script into the Script Library.

Note in the above function that the property “table” is not qualified by an
element ID (e.g., “Table1.table”). Functions are scoped dynamically (see
Function Scope); therefore, the property “table” refers to whichever Table
element called the tableTotal() function. You can therefore call this
tableTotal() function from within any table element to operate on that
particular table element.

See Also
Editing a Function in the Script Library, to edit an existing function.
Functions, in Report Scripting, for details of the JavaScript function syntax.
Functions, in Dashboard Scripting, for details of the JavaScript function
syntax.

Editing a Function in the Script Library

The Script Library is a collection of functions, which can be called from
any report with access to the Library. To edit a function in the library,
follow the steps below.

Note: The Script Library is independent of any report. You do not
need to open a report in order to access the Script Library.

1. Expand the Style Studio Asset panel.

2. Expand the ‘Component’ > ‘Script Function’ node.

You can also double-
click the desired
script.

3. Right-click on the script that you wish to edit, and select ‘Open’
from the context menu.

REPORT SCRIPTING

1042 of 2477

This opens the Script Editor to display the chosen script.

4. Make the desired edits.

5. Click ‘Save’ to save the script into the Library.

See Also
Adding a Function to the Script Library, to create a new function.
Functions, in Report Scripting, for details of the JavaScript function syntax.
Functions, in Dashboard Scripting, for details of the JavaScript function
syntax.

Function Scope

Function scoping is dynamic. This means that the scope in which the
function executes is the scope of the function caller. For example, if a
function is called from the scope of a script on the element with ID Table1,
then all of the properties of element Table1 are available to the function.
Properties that are not qualified with an element ID (e.g., “table,”
“visible,” as opposed to “TableX.table,” “TableX.visible”) refer to the
caller, Table1.

This scope rule means that if a variable is not declared within a function,
the script engine will try to find it in the enclosing scopes. Exactly which
object will be located depends on where the function is called. To avoid
ambiguity, when you use a variable in a function, you should either declare
it in the function, or pass it in as a parameter.

2.3 Script Debugging
Even though the Script Editor makes scripting fast and convenient, the
JavaScript language poses its own special challenges. One of the biggest
challenges is debugging. Unlike strongly typed languages, JavaScript does
not have fixed type for variables, which means that no compile type error
checking can be done.

This chapter offers a few tips and hints on how to deal with debugging in
JavaScript.

REPORT SCRIPTING

1043 of 2477

2.3.1 Keep the Script Small

The smaller the code, the easier it is to debug if anything goes wrong. Since
scripts are normally used to perform relatively simple calculations, there is
little reason to introduce complicated structures or organizations. Use
functions and the Script Library to help keep your code concise. (See Using
the Script Library.)

2.3.2 Associate Script with Elements

Since a script can access any element in a report, in many cases it is
possible to write a single large script to perform all tasks. This poses a few
problems, however:

• A large script tends to grow and become more complicated over time.
This makes debugging the script much more difficult.

• If a single script affects many elements, whenever you rename or delete
one of those elements, the script will generate an “object not defined”
error. This kind of dependency makes report maintenance difficult,
because it is not clear to developers which report elements might be
under the influence of a remote script.

• When a script on one element affects the properties of other element, the
efficacy of the script depends on the order in which the elements are
evaluated. Because the rules for element evaluation (see Script
Evaluation) are varied, it can be difficult to predict the final result of the
script.

To avoid all of these problems, the script that you place on an element
should affect only the properties of that element. For example, if you need a
script that modifies the properties of element Text1, then add this script to
element Text1. The majority of scripts are element-specific and should
therefore each be attached to their associated element.

However, certain scripts need to access multiple elements in order to
perform calculations, and it would be difficult to break these up into
smaller pieces. In general, if a script works on multiple elements, it should
be placed in the onLoad Handler. This eliminates the ambiguity of
evaluation order: Since the onLoad handler is called before any element-
script is evaluated, all onLoad actions take effect in the current thread.

See Also
Editing Script for information on adding element-level script.
Script Evaluation, for information about the order of element-script
evaluation.
onLoad Handler, for information on placing script for pre-query execution.

REPORT SCRIPTING

1044 of 2477

2.3.3 Use log() to View Diagnostic Messages

Log() is a global function that can be called to send a message to the log. In
Style Studio, log messages are displayed in the Console window. On the
report server, log messages are added to the sree.log file and printed to
stderr. Log messages can be used to verify whether a script is invoked or to
check the order of script execution.

log("Text changed to: " + text);

See Also
Log Service Properties, in Administration Reference, for instructions on
how to set the “stderr” option.

2.3.4 Protect Reports from Script Errors

Because scripts are executed when the report is generated on the server, a
script error can cause report generation to fail. To prevent this from
happening, you should wrap failure-prone code inside a “try-catch” block,
which allows you to trap errors before they affect report execution. See
JS.10.4, The ‘try-catch’ Statement, for more information.

2.4 Script Evaluation
Unlike conventional JavaScript on web pages, JavaScript that you embed
in a Style Intelligence report is executed as part of the report generation
process on the server, not the client browser. However, scripts can control
certain client-side interactions through event handlers and hyperlinks.

The overall sequence of report script evaluation is as follows.

1. Execute the onInit Handler.

2. Prompt the user for any parameters, and processes element data
bindings. (Queries are not yet executed.)

Tip: Because of its
sequence position, the
onLoad handler has
access to all parame-
ters and data binding
information (meta-
data), but not to actual
data returned by que-
ries.

3. Execute the onLoad Handler.

4. Execute all element queries.

5. Evaluate all formula column scripts.

6. Execute all element-level scripts.

REPORT SCRIPTING

1045 of 2477

Figure 2. Evaluation Sequence

The last stage in the script evaluation sequence above (element-level
scripts), is governed by the following rules:

• Elements in the body of each page are evaluated before elements in the
page header and footer.

• Header elements on each page are evaluated before footer elements.

• In a flow report, elements are evaluated in flow order: Scripts attached
to elements at the front of the flow are evaluated before scripts attached
to elements at the rear of the flow.

• In a tabular report, elements within a grid cell are evaluated in flow
order: Scripts attached to elements at the front of the flow within a given
cell are evaluated before scripts attached to elements at the rear of the
flow in the same cell.

• In a tabular report, elements within the grid are evaluated in row order:
Scripts attached to elements in an earlier grid row are evaluated before
scripts attached to elements in later grid rows.

• In a tabular report, elements within different grid cells of the same row
do not have a pre-determined evaluation sequence.

If a script modifies only the properties of the same element to
which it is attached, the evaluation order does not matter.

In practice, if an element is visually below another element in the report, it
is normally safe to assume that the lower element is evaluated after the
upper element. The primary exception is elements residing in different
tabular report cells.

See Also
Script Debugging, for evaluation order-issues, and scripting best practices.
Bean Handlers, for information about execution of scripts within beans.

Execute
online
handlers

Execute element
scripts

Run queries,
compute formula
columns

Execute onInit,
onLoad script

Browser

Server-side

Client-side

Request
report

REPORT SCRIPTING

1046 of 2477

Client-Side JavaScript, for information about attaching client-side
JavaScript.

2.5 Host Environment
The JavaScript specification defines the language’s syntax and semantics.
It also defines a few built-in object types together with their properties and
functions. The host environment defines other objects that can be accessed
and controlled by scripts.

All packages starting with java, inetsoft, com, and org are
automatically available to the scripting environment. Other
packages must be registered either by using the registerPackage()
function or by setting the javascript.java.packages property for
the application using the script.

The host environment of Style Intelligence is similar to the Document
Object Model (DOM) used in browser environments. Scripts can access
report elements as JavaScript objects to read or modify their properties.

See Also
Appendix SI:Style Intelligence Object Reference, for the objects and
functions that are available in the Style Intelligence host environment.
Appendix JS:General JavaScript Functions, for core JavaScript functions.

2.6 Accessing Element Properties
You can refer to an element in a report by its element ID. For example, to
set the “text” property of an element with ID ‘Text1’, preface the property
name with the element ID:

Text1.text = "testing";

The ID in this case needs to conform to JavaScript naming requirements
(see Comments and Names). If the ID contains special characters or white
space characters that do not conform to JavaScript naming, you can
reference the element as a property of the top-level “report” object.

report["Text1"].text = "testing";

This is equivalent to the previous form of reference.

The script environment is organized into three scope levels. A script
attached to an element runs within element scope. When a symbol
(variable, property) is encountered in the script, the server checks for the
reference in the following sequence:

1. Search element scope.

2. Search report scope.

http://www.ecma-international.org/publications/standards/Ecma-262.htm

REPORT SCRIPTING

1047 of 2477

3. Search global scope.

In practice, this means that in an element script, you can reference the
element’s own properties without the qualifying element ID. This is
recommended.

background = java.awt.Color.red; // recommended
Text1.background = java.awt.Color.red; // this also works

In contrast, report-level script (e.g., onLoad Handler) can only reference
element properties by qualifying with the element ID:

Text1.background = java.awt.Color.blue;

An element script can use the fully-qualified syntax to reference properties
of other elements as well. However, see the precautions noted in Script
Debugging.

See Also
Bean Scripting Scopes, for information on scoping issues related to report
beans.
Report Handlers, for information on adding script at the report level.
Element Script, for information on adding script to elements.

Global scope

Report scope

Element scope

REPORT SCRIPTING

1048 of 2477

3 Element Script

A script attached to a report element is evaluated before the element is
processed. The script can change the properties of the element, including
visibility. Because element script executes after query execution, the script
also has access to the element’s data.

In fact, an element script can access any element in the report. However, it
is not good practice to modify the properties of one element from within
the script of another element. See Script Debugging for alternative
approaches.

See Also
Editing Script, for instructions on accessing and using the Script Editor.
Script Evaluation, for the order of script evaluation.

3.1 Element Inheritance Hierarchy
Report elements are organized in the object inheritance structure shown
below. Properties defined in base classes are inherited by their subclasses.

3.2 Common Element Properties
All elements share a basic set of properties, including foreground,
background, font, alignment, visibility, etc. The following sections explain
how to use these properties.

Element

Tab Text

Heading
Painter

Textbox

Chart

Image

Button

Checkbox

Choice

Image Button

Text Field

Text Area

Table

Forms

Section

Newline

Space

PageBreak

Separator

TOC

Field

List

Date Combo

Radio Button

REPORT SCRIPTING

1049 of 2477

3.2.1 Color Property

Color properties (foreground/text and background/fill) are frequently used
to highlight a text or textbox element. The simplest way to specify a color
property is to assign a string containing one of the constants from the
java.awt.Color class: black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white, and yellow.

foreground = 'red';

Since color is a Java type, the class name must be fully qualified.

You can also specify a color as java.awt.Color object, an integer (e.g.,
hexadecimal) representing the RGB value of a color, an array of RGB
values, or a JSON object.

foreground = java.awt.Color.red;
background = 0xFF00FF; // RRGGBB
foreground = [255, 255, 0];
foreground = {r:255,g:255,b:0};

Alternatively, you can create a color object by calling the constructor with
the the ‘new’ operator.

foreground = new java.awt.Color(0.5, 1, 0);

Note that the parameters to the color constructor have type float. Because
JavaScript treats all numbers as float by default, you have to explicitly
convert them to integer if you want to specify the RGB values in the range
of 0-255. The default float parameters pass the RGB value in the range of
0-1, where 1 is equivalent to 255 in the integer version.

3.2.2 Font Property

You can specify the font property with a string containing the font name,
style, and size, separated by dashes, or by creating a java.awt.Font object.

font = 'Verdana-BOLD-12';
font = new java.awt.Font('Verdana', java.awt.Font.BOLD, 12);

The name of the font can be a TrueType font name, or a logical font name.
Logical font names are not recommended, however, because the logical
font may be replaced by a different font in the runtime environment.

There are three font styles, Font.PLAIN, Font.BOLD and Font.ITALIC. The
styles can be combined with a bitwise OR.

font = new java.awt.Font('Verdana', java.awt.Font.BOLD |
java.awt.Font.ITALIC, 12);

The final parameter specifies the size of the font.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://json.org/
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

REPORT SCRIPTING

1050 of 2477

Style Intelligence provides an extended font that supports additional styles:

Table 2. Font Styles

To create an extended font, you must use the fully qualified name of
inetsoft.report.StyleFont class.

font = new inetsoft.report.StyleFont('Verdana',
java.awt.Font.BOLD |
inetsoft.report.StyleFont.UNDERLINE, 12,
StyleConstant.THIN_LINE);

The final parameter specifies the line style used to draw the underline.

See Also
SI.41, StyleReport Object, for commonly-used constant values.

3.2.3 Visibility Property

You can dynamically hide or show an element using script. Typically, you
would test a condition or user input at runtime, and then hide one or more
elements to present an appropriate view.

if(field['discount'] == 0) {
Text8.visible = false;

}

As for all element properties, you should change the visibility of an
element only from within a script attached to the same element, or from
within the onLoad Handler. Otherwise, the location of the element in the
report may influence the outcome.

See Also
Script Debugging, for information on making scripts self-contained.
Script Evaluation, for information about order of evaluation and its effects.

FONT STYLE DESCRIPTION

UNDERLINE Draw an underline below the text. The line style can be
any one of the Style Intelligence Line Styles.

STRIKETHROUGH Draw a line through the text in the middle.
SUPERSCRIPT Draw the text at the upper corner of the previous text.
SUBSCRIPT Draw the text at the lower corner of the previous text.
SMALLCAPS Draw all letters in capital letter, but draw the lowercase

letters in a smaller size.
ALLCAPS Convert all letters to uppercase.
SHADOW Draw the text with a shadow effect.

REPORT SCRIPTING

1051 of 2477

3.2.4 Alignment Property
To align text within
Text elements, use the
Style Studio align-
ment controls.

The Alignment property controls both the horizontal and vertical alignment
of report elements in the page layout. The horizontal alignment is specified
by the alignment constants H_LEFT, H_CENTER, and H_RIGHT. (See
Alignments.)

alignment = StyleConstant.H_CENTER;

The vertical alignment property can be combined with the horizontal
alignment property by using the bitwise OR.

alignment = StyleConstant.H_CENTER |
StyleConstant.V_CENTER;

The four vertical alignment options are V_TOP, V_CENTER, V_BOTTOM, and
V_BASELINE.

See Also
SI.41, StyleReport Object, for commonly-used constant values.
Text and TextBox, for more information about Text properties.

3.2.5 fullName Property

Each element has a unique name, contained in the fullName property. For
regular elements, this is the same as the element ID. For elements within a
bean, this is given by the bean ID appended with the element ID. For
example, an element with ID “TitleText” that is contained within a bean
with ID “HeaderBean” has a fullName property of “HeaderBean.TitleText”.

3.2.6 Target Property

The target name for an element can be used to make the element the
destination of a hyperlink (similar to an HTML anchor).

target = 'SalesTitle' // e.g., static target text
target = text // e.g., dynamic target text

As shown above, you can set the target property dynamically, for example,
to the text property of a Text element. See Hyperlinks to a Target
(Anchor), in Report Design, for information about targeting hyperlinks to
report elements.

See Also
target, in SI.2.1, General Properties, for reference information.
SI.4, Text Object, for information about Text hyperlinks.
SI.8, Painter Object , for information about Painter hyperlinks.
addLink, in SI.37, Replet Object, information on general hyperlinks.

REPORT SCRIPTING

1052 of 2477

3.3 Common Constants
Many properties use predefined constant values. Some of these constants
are defined in individual classes, such as the StyleFont styles. But most of
the constants are defined in the global StyleReport Object. This includes all
line styles, chart types, table layout options, wrapping styles, page
orientation, alignments, point shapes, and textbox shapes.

See Also
Appendix SI:Style Intelligence Object Reference, for a complete reference
to all constants.

3.4 Adding Tooltips to Elements
To add a tooltip to a report element, use the function addStatus(eid, item,
message). The ‘message’ string is shown as a tooltip when the user moves
the mouse over the report element with ID specified by ‘eid’. If the user’s
browser permits status bar scripting, the ‘message’ string is also displayed
in the status bar. (Status bar scripting is disabled by default in modern
browsers.)

Note: Tooltips are not
displayed in Style Stu-
dio preview. In the
Style Studio preview,
tooltip text is dis-
played in the status
bar.

As an example, consider the following script, which you could place either
in element-level or report-level script:

replet.addStatus("Title",null,"Example report");

The element with the ID “Title” will now display the tooltip text “Example
report” when viewed in the User Portal.

See Also
addStatus(eid, item, message), in Appendix SI:Style Intelligence Object
Reference.
toolTip, for a simple way to construct custom Chart tooltips.
Adding Tooltips to a Table or Chart, for information about the ‘item’
parameter.
Report Elements, in Report Design, for information on element IDs.
Element Script, for information on element-level scripting.
Report Handlers, for information on report-level scripting.

3.4.1 Adding Tooltips to a Table or Chart

To specify tooltips for individual table cells or chart data, use the following
syntax:

replet.addStatus("ElementID", item, "Tooltip");

The ‘item’ parameter specifies the particular table cell or chart data that
should display the tooltip. The ‘item’ parameter is an EventPoint object,
[column, row].

REPORT SCRIPTING

1053 of 2477

For example, consider the following element-level script for a chart with
ID ‘Chart1’. Note the index order in the ‘item’ parameter.

for(var i = 1; i < data.length; i++) {
replet.addStatus("Chart1", [1,i-1], data[i][1]);

}

The loop iterates through every value in the first chart dataset (index ‘1’),
given by “data[i][1],” and assigns each value to the tooltip of the
corresponding chart graphical element. Use “data[i][0]” to obtain the X-
labels.

To perform a similar assignment of tooltips to individual cells in a table (ID
‘Table1’), you can use the following script. Again, note the index order.

for(var i = 1; i < table.length; i++) {
for(var j = 0; j < table.size; j++) {

replet.addStatus("Table1",[j,i],table[i][j]);
}

}

To add a single tooltip to an entire table or chart element, leave the ‘item’
parameter as ‘undefined’ or ‘null’:

replet.addStatus("Table1",null,"Example table");
replet.addStatus("Chart1",null,"Example chart");

See Also
toolTip, for a more straightforward approach to Chart tooltips.

3.4.2 Specifying a Data Format for Tooltip Text

To specify a data format for the tooltip text, format the ‘message’
parameter input using the ‘formatNumber()’ function. In the example
below, the tooltips on ‘Chart1’ are given a particular numeric format:

for(var i = 1; i < data.length; i++) {
var fdata = formatNumber(data[i][1],"#,###");
replet.addStatus("Chart1", [1,i-1], fdata);

}

3.5 Text and TextBox
The Text and TextBox elements are the most commonly used elements in a
report. They can display static text such as titles, headers, footers, and
descriptions, or data retrieved from a query (for example, in a Section
element).

You can modify the properties of a Text and TextBox from within script,
including font, color, and text contents.

See Also
Text Element, in Report Design, for basic properties of Text and Textbox.

REPORT SCRIPTING

1054 of 2477

Common Element Properties, for properties that are shared by various
elements.

3.5.1 Text Property

You can access the contents of a Text or TextBox element through the
‘text’ property. To change the contents, simply assign a new value.

Text1.text = CALC.today(); // display current date/time

A TextBox element has several properties in addition to those of the Text
element. The ‘alignment’ property controls the alignment of the TextBox
within the document flow. The ‘textAlignment’ property controls the
alignment of the text within the TextBox boundaries.

// right align on the page
alignment = StyleConstant.H_RIGHT;

// center align text inside textbox
textAlignment = StyleConstant.H_CENTER;

See Also
textAlignment, for more information on the property.
Alignment Property, for more information on setting alignments.

3.5.2 Useful Text/String Functions

Two common string operations are changing case and searching for
substrings.

Changing a String to Upper/Lower Case

To change a string to uppercase or lowercase, use the ‘toUpperCase()’ and
‘toLowerCase()’ functions, respectively. For example:

var s = ‘John Lennon’;
Text1.text = s.toLowerCase();

For example, to change the header cells of a table to uppercase, add the
following lines to the table script:

for(var col = 0; col < table.size; col++) {
table[0][col] =
table[0][col].toUpperCase();

}

Searching Within a String

To find one string within another string, use the ‘indexOf()’ function. The
‘indexOf’ function returns the starting index of the substring within the
parent string. If the substring is not found, the function returns a value of -1.
For example:

var state = ‘New Jersey’;

REPORT SCRIPTING

1055 of 2477

if(state.indexOf(‘New’) > -1) {
Text1.text = ‘With New’;

}
else {
Text1.text = ‘Without New’;

}

3.5.3 Useful Date Functions

This section discusses several basic date functions: computing the
difference between dates, computing a date in the past or future, formatting
a date, and extracting date components.

Finding the Difference Between Dates

Use the ‘dateDiff()’ function to find the difference between two dates in
terms of days, months, or years.

dateDiff('d', fromDate, toDate); // days
dateDiff('m', fromDate, toDate); // months
dateDiff('yyyy', fromDate, toDate); // years

For example, if a table displays the column ‘Birth Date’, you can create a
formula column to calculate the current age of an individual by subtracting
the ‘Birth Date’ from today’s date:

dateDiff('yyyy', field['Birth Date'], CALC.today())

See Also
Creating a Formula Column in Data Binding Wizard, in Report Design, for
more on formula columns.

Calculating a Past or Future Date

Use the ‘dateAdd()’ function to find a date which is n units (days, months,
or years) into the past or future.

// 1 day before today
dateAdd('d', -1, CALC.today());

// 5 months after today
dateAdd('m', 5, CALC.today());

// 3 years before Order Date
dateAdd('yyyy', -3, field['Order Date']);

For example, consider a query ‘Order Bookings’ that accepts two date
parameters, ‘StartDate’ and ‘EndDate’. Assume you want the query to
return data from the date range of 15 days before today’s date until 15 days
after today’s date. Use the dateAdd() function to obtain these dates as
follows:

var sd = dateAdd('d', -15, CALC.today());
var ed = dateAdd('d', 15, CALC.today());
var q = runQuery('Order Bookings',

[['StartDate', sd], ['EndDate', ed]]);

REPORT SCRIPTING

1056 of 2477

Extracting a Date Component

The CALC library provides a number of functions to extract different
components of a date object: year, month, day, quarter, etc.

// extract the current date and time
var todDate = CALC.today(); //e.g., Feb-21-2007

// extract the year
var y = CALC.year(todDate); // 2007

// extract the quarter
var q = CALC.quarter(todDate); // 1

// extract the day of the week
var dow = CALC.weekdayname(todDate); // Wednesday

// extract the date
var d = CALC.day(todDate); // 21

// extract the month
var m = CALC.month(todDate); // 2

Formatting a Date

Use the ‘formatDate()’ function to format a Date field. For example:

// Get today’s date, e.g., Thur Oct 01 16:54:22 EDT 2009
var d = CALC.today();

// Format as “Today Is: 10/01/09”
Text1.text = 'Today Is: ' + formatDate(d, 'MM/dd/yy');

3.6 Data Tables
Tables offer a number of special properties that allow you to access the data
values from script, and to add visual style to rows, columns, and individual
cells. The following sections explain how to use these properties.

See Also
SI.6, Table Object , for functions pertaining to Tables.
SI.2.3, Fixed Tables, for additional functions pertaining to Tables.

3.6.1 Accessing Table Data

There are two key properties for accessing the values in a table, table and
data.

• table – A two-dimensional array containing the table data as displayed.
The array includes header rows as well as data rows.

• data – A two dimensional array containing the raw table data (prior to
grouping and summarization). It does not include header rows.

Two sub-properties that are especially useful when looping through the
rows or columns of tables are ‘length’ and ‘size’.

REPORT SCRIPTING

1057 of 2477

Note: A table that returns no data still displays the column header
row. Therefore, table.length is 1 in the no-data case.

• table.length/table.size – The number of rows and columns
(respectively) in the table, as displayed, including column header row.

• data.length/data.size – The number of rows and columns
(respectively) in the original table (prior to grouping and
summarization), including column header row.

As an example, consider the following table script, which iterates through
all data rows (beginning with row index 1, the first data row) and columns
of a table, and cumulatively sums these values.

var tot = 0;
for(var row = 1; row < table.length; row++) {

for(var col = 0; col < table.size; col++) {
tot = tot + table[row][col];

}
}

The data attribute can also be accessed using formula table syntax, for
example:

data['Total@Company:$Company?inGroups(["Company",Company])'
]

See Formula Tables for more information on this syntax.

3.6.2 Setting Cell and Row Visual Properties

There are variety of properties for setting aspects of row, column, and cell
visual presentation. Some common properties are listed below:

• cellForeground – Text color of the cell specified by row and column
indices.

cellForeground[1][3] = [123,0,123]

• cellBackground – Fill color of the cell specified by row and column
indices.

cellForeground[1][3] = [123,0,123]

• colFont – Font settings for column specified by integer index or name.

colFont['Total']='Verdana-Bold-14'

• colWidth – Width in points for column specified by integer index or
name.

colWidth['Total Sales'] = 0

• rowHeight – Width in pixels for row specified by integer index.

rowHeight[3] = 0

REPORT SCRIPTING

1058 of 2477

• rowBackground – Fill color of the row specified by the integer index

rowBackground[5] = [255,0,0]

• setHyperlink(row, col, hyperlink) – Hyperlink for cell specified by row
and column indices.

setHyperlink(1, 1, "Tutorial/Ad Hoc");

3.6.3 Displaying Images in Table Cells

A script can load an image file from a URL or as a resource, as long as the
file is located on the classpath (i.e., within a classpath directory, or within a
JAR file on the classpath). To load the image into a report, use the global
getImage() method.

Note: The 'checkon.gif' and 'checkoff.gif' images are packaged in
the JAR files inside the webapp lib folder (e.g., sree.jar,
bisuite.jar, etc.)

var onIcon =
getImage('/inetsoft/report/painter/images/checkon.gif');

var offIcon =
getImage('/inetsoft/report/painter/images/checkoff.gif');

Note: A painter/image
element has an
‘image’ property that
contains the current
image. It can also be
assigned an image
object from a script.

Once you have loaded an image, you can assign it to a table cell as a regular
data object. For example, the script below replaces true and false with the
“checkmark” images loaded earlier.

for(var r = 1; r < table.length; r++) {
if(table[r][1]) {
table[r][1] = onIcon;

}
else {
table[r][1] = offIcon;

}
}

You can load an image from an ASCII-encoded string, such as an XML
file. (ASCII Hex and ASCII85 are supported.) If the argument to
getImage() does not point to a valid resource, then the parameter is treated
as an encoded image.

// picture column is ascii85-encoded gif image
for(var r = 1; r < table.length; r++) {
var img = getImage(table[r]['picture']);
table[r]['picture'] = img;

}

You can also specify the image to display in a table cell by calling
getImage() from within the cell ‘Formula’ in the Data tab of the
Properties panel. For example, select a cell of a table (regular table or
formula table), and enter the following text in the Data tab of the
Properties panel:

REPORT SCRIPTING

1059 of 2477

getImage('http://visualizefree.com/images/inetsoft.png')

Press ‘Apply’ and preview the report. The image is displayed in the
selected table cell.

3.7 Formula Tables
Formula tables are used to create real-time, spreadsheet-like reports with
highly specific or complex layouts. These tables can be used to implement
the kind of data grouping and aggregation which is commonly required in
accounting and financial applications.

Formula tables bridge the gap between spreadsheet applications (like
Excel) and traditional reporting tools. In a spreadsheet, you usually start
with columns of data and then define formulas that reference other cells. To
copy these formulas with appropriate references you can ‘fill-down’ in a
range of cells.

A formula table is similar. You extract parts of a query result set and then
dynamically fill the rows and columns of the table. You can then reference
these cells to perform statistical calculations in formulas. The ‘fill-down’
operation happens automatically when the table expands to show actual
data.

Most of the common ways of using a formula table can be accomplished
through the point-and-click GUI of Style Studio. Sometimes the GUI is not
enough. The next sections discuss the fundamentals of using scripting to
reference data from query results and table cells.

See Also
Formula Tables, in Report Design.
Accessing Table Data, for information about the table and data attributes.

3.7.1 Extracting Data from a Query

To populate a formula table with data from a query result set, execute the
query using the runQuery() method and save the result in a variable.

REPORT SCRIPTING

1060 of 2477

You should generally
call the runQuery()
method within the
onLoad Handler.

var q = runQuery('customers');

You can then selectively extract parts of that query result set (see
Referencing Query Data) and fill the cells of your formula table.

3.7.2 Extracting Data from a Report Element

To extract data from another report element (Table/Section) use the
element’s table or data attributes:

var q = Table1.table['column_name']

See Also
Data Tables, for information about accessing tabular data.

3.7.3 Referencing Query Data

Once you have executed the query (see Extracting Data from a Query),
you can access specific ranges of the query result set. The data-referencing
syntax allows you to also group and filter the results, and to create
expressions.

Referencing a Query Column

You can reference all cells of a field (column) in the result set by using the
field name:

q['state'];

The following example illustrates this approach.

Walkthrough Consider the sample ‘customers’ query. In this example, you will extract all
the values under the ‘state’ column and use them to populate a formula
table. Follow the steps below.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel, and drag a Table element
into the report. This creates a new blank Table.

4. Right-click the table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

5. Right-click the table, and select ‘Table’ > ‘Insert Rows/Columns’
from the context menu.

REPORT SCRIPTING

1061 of 2477

6. Insert two additional columns so that the table has two rows and
four columns.

7. Click away from the Table to deselect it.

8. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio Window menu.) Click the Script tab in
the Properties panel.

9. Select the ‘onLoad’ button in the Script tab, and enter the
following script:

var q = runQuery('customers')

This executes the ‘customers’ query in the onLoad script. (See
Extracting Data from a Query for more details.)

10. Click cell[1,0] in the Table (second row, first column) to select it.

11. Click the Data tab in the Properties panel. Select the ‘Formula’
button in the ‘Binding’ section, and enter the following formula for
cell[1,0]:

q['state']

This extracts the entire ‘state’ column from the ‘customers’ query
to populate the table.

12. In the ‘Expansion’ region of the Data tab, select ‘Expand Cell’ and
choose ‘Vertical’. (This causes the extracted data to fill down
vertically.)

13. Preview the report and see how the table is populated with all of the
records from the ‘state’ column.

REPORT SCRIPTING

1062 of 2477

Deriving a Result Set from Query Columns

In some cases you may need to calculate the data you want to display from
existing query columns. To do this, modify the formula by placing ‘=’ in
front of the expression string.

For example, consider the formula table described previously (Referencing
a Query Column). To merge the ‘state’ and the ‘zip’ fields into a single cell,
separated by a comma (e.g., NJ, 08901), use the following formula:

 q['=state + ", " + zip'];

Referencing a Query Column With Field Filtering

You can filter out records of a field (column) based on the values of other
fields in the result set. To do this, use ‘@’ as the delimiter between the
column name and the filtering expression and ‘:’ to introduce the values to
filter.

For example, consider the formula table described previously (Referencing
a Query Column). To extract all the companies within a certain state (NJ),
you can adapt the formula as follows:

q['company_name@state:NJ'];

Note: To retrieve a
sub-table rather than
an array, add an initial
asterisk:
q['*@state:NJ'];

To filter based on multiple fields, use ‘;’ as the delimiter between the
filtering expressions. For example, to find all the companies within a
certain city (New Brunswick) and state (NJ), adapt the formula as follows:

q['company_name@state:NJ;city:New Brunswick'];

If the filtering expression is based on a derived field, place ‘=’ in front of
the expression. For example, to find all the companies within a certain
‘state, zip’ pair (see Deriving a Result Set from Query Columns), adapt the
formula as follows:

REPORT SCRIPTING

1063 of 2477

q['company_name@=state + ", " + zip:NJ, 08854'];

If the column name contains a space, use the rowValue operator:

q['company_name@=rowValue["US State"] + ", " + zip:NJ,
08854'];

Referencing a Column With Expression Filtering

You can filter out the records of a column based on a conditional
expression. Use ‘‘?” as the delimiter between the filtering expression and
the column name.

Note: Although Expression Filtering can achieve the same result as
Field Filtering, use Field Filtering wherever possible, since it is
better optimized.

For example, consider the table described previously (Referencing a Query
Column). To extract all the customers whose customerIDs are between 20
and 30, adapt the formula as follows:

q['company_name?customer_id > 20 && customer_id < 30'];

See Also
Referencing a Query Column With Field Filtering, for optimized filtering
of the result set.

Referencing a Column with Positional (Index) Filtering

You can filter out records of a column based on a range of row indices. For
example, consider the table described previously (Referencing a Query
Column). To extract the first five records from the ‘company_name’ column,
adapt the formula as follows:

q['[0,company_name]:[4, company_name]'];

An asterisk ‘*’ in place of the row index represents the last row in the result
set.

3.7.4 Cell Referencing

You can assign a name to any cell within a formula table; expanding cell,
summary cell, or a static cell with a hard-coded value. You can then use the
cell’s name to reference the value of the cell from within another formula.

To reference a named cell from another formula, prefix the name with a ‘$’.
The following sections provide some examples.

Referencing a Cell for Column Filtering

The Referencing Query Data section explained how to extract and filter
records from a specified column of a query result set. All of the examples
in that section used hard-coded values as the filtering parameters.

REPORT SCRIPTING

1064 of 2477

To perform dynamic filtering, you can use cell references as the filtering
parameters. This is particularly useful when the table has multiple levels of
row/column headers, and you wish to filter the sub-level based on the
parent level.

Walkthrough In this example, you will create a formula table (based on the ‘customers’
query) with a two-level row header consisting of ‘State’ and ‘Cities within
the State’.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel, and drag a Table element
into the report. This creates a new blank Table.

4. Right-click the table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

5. Right-click the table, and select ‘Table’ > ‘Insert Rows/Columns’
from the context menu.

6. Insert an additional column so that the table has three columns.

7. Repeat the above step, and add two additional rows so that the table
has four rows. The table should now have four rows and three
columns

8. Click away from the Table to deselect it.

9. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio Window menu.) Click the Script tab in
the Properties panel.

10. Select the ‘onLoad’ button in the Script tab, and enter the
following script:

var q = runQuery('customers')

This executes the ‘customers’ query in the onLoad script. (See
Extracting Data from a Query for more details.)

11. Click cell[1,0] in the Table (second row, first column) to select it.

12. Select the Data tab in the Properties panel. Follow the steps
below:

REPORT SCRIPTING

1065 of 2477

a. In the ‘Binding’ panel of the Data tab, select the ‘Formula’
option. Enter the formula ‘q['state']’ for cell[1,0].

b. In the ‘Expansion’ panel of the Data tab, select ‘Expand Cell’
and choose ‘Vertical’.

c. In the ‘Cell’ panel of the Data tab, set the ‘Cell Name’ to ‘st’.

d. In the ‘Row Group’ menu, select ‘default’. In the ‘Column
Group’ menu, select ‘default’.

The Data tab of the
‘Format’ panel should
still be open.

13. Select cell[1,1] in the table (second row, second column).

a. In the ‘Binding’ panel of the Data tab, select the ‘Formula’
option. Enter the formula q['city'] for cell[1,1].

b. In the ‘Expansion’ panel of the Data tab, select ‘Expand Cell’
and choose ‘Vertical’.

c. In the ‘Cell’ panel of the Data tab, set the ‘Cell Name’ to ‘ct’.

d. In the ‘Row Group’ menu, select ‘default’. In the ‘Column
Group’ menu, select ‘default’.

The table should appear as below.

14. Preview the report.

REPORT SCRIPTING

1066 of 2477

Notice that all of the cities are listed for each state, not just the cities within
the corresponding state. In most cases, it is desirable to see only those cities
within the corresponding state. To filter out the cities based on the state,
include a field-filtering condition with a reference to the cell ‘st’.

Note: When making
comparisons with
'null', use the syntax
“$st['.']” to ref-
erence the cell value.

15. Change the formula in cell[1,1] to ‘q['city@state:$st']’.

16. Preview the report.

Notice that the table now lists only those that correspond to the given state.
(This example continues in the next section, Referencing Cells in Summary
Formulas.)

Referencing Cells in Summary Formulas

Walkthrough Consider the formula table from the previous example in Referencing a
Cell for Column Filtering. It consists of a two-level row header listing
‘States’ and ‘Cities within a State’.

In the following example, you will add a formula to count the number of
customers within each city.

1. Add the following formula to cell[1,2] (second row, third
column):

count(q['customer_id@state:$st;city:$ct'])

This counts all the customers within the given city and state. The
table should now appear as shown below.

2. Preview the report and note the output.

Group Numbering

To obtain the sequence number of an element within an expanding cell, use
the ‘#’ qualifier. (This is useful when you wish to add numbering to row/
column headers.)

REPORT SCRIPTING

1067 of 2477

Walkthrough For example, consider the formula table from the example in Referencing
Cells in Summary Formulas. You will now add numbering for the
expanding row header cell ‘st’.

1. Expand the Style Studio Properties panel.

2. Right-click any cell in the first column and select ‘Column’ >
‘Insert Column’ from the context menu. This adds a new column to
the left.

3. Select cell[1,0] (second row) in the newly inserted column.

Do not specify any
cell expansion. Note
that numbering starts
with 0, hence the ‘+1’.

4. Select the Data tab in the Properties panel. In the ‘Binding’ panel,
select the ‘Formula’ option, and add the formula ‘$st['#'] + 1’.

5. Select the Option tab. Enable ‘Merge expanded cells’, and select
‘st’ from the ‘Row Group’ menu.

Note: The toList() function extracts a unique list of values from a
given array. It can also extract a unique set of years, months,
etc., from a set of date fields.

6. Select cell[1,1] (second row, second column) in ‘State’ column.
Under the Data tab, change the formula to ‘toList(q['state'])’,
which will show only unique values.

7. Under the Option tab, select ‘Merge expanded cells’, and select
‘st’ from the ‘Row Group’ menu.

8. Select cell[1,2] (second row, third column) in the ‘City’ column.
Under the Data tab, change the formula to
‘toList(q['city@state:$st'])’, which will show only unique
values.

9. Select cell[1,3] (second row, fourth column) in the ‘Count’
column. Under the Option tab, select ‘Merge expanded cells’, and
select ‘ct’ from the ‘Row Group’ menu.

The table should appear as shown below:

10. Preview the report and notice the numbering of the groups.

REPORT SCRIPTING

1068 of 2477

Referencing a Cell with Relative Parent Group Reference

Relative cell referencing is used primarily when comparing different
summary cells with respect to their header cell. For example, you might
want find the difference between the total sales for the current year and the
previous year.

The syntax for relative cell referencing is as follows:

$cellName['grpName:+/-relative_index']

e.g., $sales['state:-1']
$sales['yr:+1']

Here, $cellName is the name of the cell/column containing the value(s) to
be compared, and grpName is name of the cell/column that indexes the
different values.

Walkthrough Consider a formula table based on the ‘All Sales’ query. In this example,
you will find the difference in sales between successive fiscal years. Follow
the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel, and drag a Table element
into the report. This creates a new blank Table.

4. Right-click the table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

5. Right-click the table, and select ‘Table’ > ‘Insert Rows/Columns’
from the context menu.

6. Insert an additional column so that the table has three columns.

REPORT SCRIPTING

1069 of 2477

7. Repeat the above step, and add an additional row so that the table
has three rows. The table should now have three rows and three
columns

8. Click away from the Table to deselect it.

9. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio Window menu.) Click the Script tab in
the Properties panel.

10. Select the ‘onLoad’ button in the Script tab, and enter the
following script:

var q = runQuery('All Sales');

This executes the ‘All Sales’ query in the onLoad script. (See
Extracting Data from a Query for more details.)

11. Click cell[1,0] in the table (second row, first column) to select it.

12. Select the Data tab in the Properties panel. Follow the steps
below:

The second toList
argument groups the
returned dates by year.

a. In the ‘Binding’ panel, select the ‘Formula’ option, and enter
‘toList(q['Order Date'],'date=year')’ as the formula.

b. In the ‘Expansion’ panel of the Data tab, select ‘Expand Cell’ to
set cell[1,0] to expand ‘Vertical’.

c. In the ‘Cell’ panel of the Data tab, enter ‘yr’ for the ‘Cell
Name’ of cell[1,0].

The Data tab of the
‘Format’ panel should
still be open.

13. Select cell[1,1] in the table (second row, second column).

a. Select the Data tab. In the ‘Binding’ panel, select the ‘Formula’
option, and enter the following formula:

sum(q['Total@=year(field["Order Date"]):$yr'])

In words, this says: “For each year in column ‘yr’, find the
‘Order Dates’ falling within that year, and sum the ‘Totals’ for
those order dates.” Effectively, this calculates the total revenue
generated for a given fiscal year.

b. In the ‘Cell’ panel of the Data tab, enter ‘tot’ for the ‘Cell
Name’ of cell[1,1].

REPORT SCRIPTING

1070 of 2477

14. Select cell[1,2] (second row, third column). In the ‘Binding’
panel of the Data tab, select the ‘Formula’ option, and enter the
following formula.

$tot - $tot['yr:-1']

This formula uses relative cell referencing to calculate the differ-
ence between the total revenue (computed in the column named
‘tot’) of the current year and the previous year. The table should
appear as shown below:

15. Preview the table:

Referencing a Cell with Absolute Parent Group Reference

You can also use the value of the parent group to compare summary cells.
To refer to a summary cell in another header group, use the absolute value
of the header group, as shown below:

$cellName['grpName:absolute_value']

e.g., $sales['state:NJ']
$sales['yr:"2008"'] (specify numeric values in quotes)

Walkthrough Consider a formula table based on the ‘All Sales’ query. In this example,
you will find the relative sales for each year compared to the fixed year
2008. Follow the steps below:

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel, and drag a Table element
into the report. This creates a new blank Table.

4. Right-click the table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

5. Right-click the table, and select ‘Table’ > ‘Insert Rows/Columns’
from the context menu.

REPORT SCRIPTING

1071 of 2477

6. Insert an additional column so that the table has three columns.

7. Repeat the above step, and add an additional row so that the table
has three rows. The table should now have three rows and three
columns

8. Click away from the Table to deselect it.

9. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio Window menu.) Click the Script tab in
the Properties panel.

10. Select the ‘onLoad’ button in the Script tab, and enter the
following script:

var q = runQuery('All Sales');

This executes the ‘All Sales’ query in the onLoad script. (See
Extracting Data from a Query for more details.)

11. Click cell[1,0] in the table (second row, first column) to select it.

12. Select the Data tab in the Properties panel. Follow the steps
below:

The second toList
argument groups the
returned dates by year.

a. In the ‘Binding’ panel, select the ‘Formula’ option, and enter
‘toList(q['Order Date'],'date=year')’ as the formula.

b. In the ‘Expansion’ panel of the Data tab, select ‘Expand Cell’ to
set cell[1,0] to expand ‘Vertical’.

c. In the ‘Cell’ panel of the Data tab, enter ‘yr’ for the ‘Cell
Name’ of cell[1,0].

The Data tab of the
‘Format’ panel should
still be open.

13. Select cell[1,1] (second row, second column) in the table.

a. Select the Data tab. In the ‘Binding’ panel, select the ‘Formula’
option, and enter the following formula:

sum(q['Total@=year(field["Order Date"]):$yr'])

In words, this says: “For each year in column ‘yr’, find the
‘Order Dates’ falling within that year, and sum the ‘Totals’ for
those order dates.” Effectively, this calculates the total revenue
generated for a given fiscal year.

b. In the ‘Cell’ panel of the Data tab, enter ‘tot’ for the ‘Cell
Name’ of cell[1,1].

REPORT SCRIPTING

1072 of 2477

14. Select cell[1,2] (second row, third column). In the ‘Binding’
panel of the Data tab, select the ‘Formula’ option, and enter the
following formula.

$tot - $tot['yr:"2008"']

This formula uses absolute cell referencing to calculate the differ-
ence between the total revenue (computed in the column named
‘tot’) of the current year and the year 2008.The table should appear
as shown below:

15. Preview the table:

See Also
Referencing a Cell with Relative Parent Group Reference, to compare
based on relative location.

Referencing a Cell with Parent Group Reference as an Expression

You can also specify the referenced group with a JavaScript expression.
The JavaScript expression should be prefixed to the expression string with
an ‘=’, as shown below:

$company['state:=iif($type == "T", $state, $province)']

The syntax of the iif function used above is CALC.iif(logical_test,
value_if_true, value_if_false).

See Also
Referencing a Column With Expression Filtering, for another use of
expressions.
CALC.iif(logical_test, value_if_true, value_if_false), for more information
about the iif syntax.

3.7.5 Special Functions

The functions listed below are commonly used to populate cells in a
formula table.

inArray

The inArray() function determines whether a value is part of an array.

REPORT SCRIPTING

1073 of 2477

inArray(array, value);
e.g., inArray([1,2,3], $num);

This function is useful as a condition check together with the iif operator.

toArray

The toArray() function converts a tableLens object or a delimited string to
a JavaScript Array.

toArray(tableLens);
toArray(delimString);
e.g., var a = toArray(Table1.tableLens);

var a = toArray('1,2,3');

You can use the returned JavaScript Array to access table data in the usual
fashion:

e.g., a[1][2] is the data in 2nd row, 3rd column

rowList

The rowList() function generates a list of values from a result set with
column grouping, conditional filtering, and other sorting options.

rowList(tableLens, 'conditional spec', 'options string');
e.g., rowList(q, 'quantity ? discount > 0','sort=asc');

Here, conditionalspec is the column name with grouping or conditional
specifications, and the options string values are as follows (multiple
options are separated by a comma delimiter):

• sort=asc/desc/false: Sort the values in ascending or descending order.
Default is false.

• distinct=true/false: Retrieve only distinct values. Default is false.

• maxrows=num: Limit the number of elements returned.

• sortcolumn=column_name: Sort data according to a specific query
column which is not returned in the list.

The variable ‘q’ contains the results of a query. It is usually generated in
onLoad Handler script by the runQuery function, e.g.,

var q = runQuery('All Sales').

The rowList() function also adds the fields of the result set to the formula
scope of the table cells, so that they can be accessed as field['colName'].
Therefore, you can use rowList() to extract a portion of a query result set,
and then fill out the table with other fields of the result set which
correspond to the records of the extracted row:

REPORT SCRIPTING

1074 of 2477

Example: The
rowList Function

Consider a formula table based on the ‘All Sales’ query. Assume that you
want to extract all of the ‘Order Numbers’ where the total sales are greater
than 6000, and then fill the next cell with the employee associated with the
order.

The output is shown below.

¢

See Also
field, for more information about accessing columns of a result set.

mapList

The mapList() function groups a list of values according to a specified
mapping. The mapping array consists of hybrid alternating name-value
pairs or [name array]-value pairs.

mapList(list, mapping_array, 'options string')
e.g.,
mapList(q['State'],[['AZ','CA'],'West',['NY','NJ'],'East'])

The options string values are as follows (multiple options are separated by
a comma delimiter):

• others=groupOthers/leaveOthers: Group all unmapped values in a
generic group called ‘Others’ (groupOthers), or display each unmapped
value as its own group (leaveOthers). Default is ‘groupOthers’.

• sort=asc/desc/false: Sort the values in ascending or descending order.
Default is false.

• remainder: Specifies the label for the ‘Others’ group when Top/Bottom-
N filtering is in effect. If not specified, the ‘Others’ group is not
displayed.

• distinct=true/false: Retrieve only distinct values. Default is false.

rowList(q,'Order Number? Total
>6000');

field['Employee']

REPORT SCRIPTING

1075 of 2477

toList

The toList(list [,options]) function is the most commonly used formula
table function. It generates a unique, sorted, and grouped list from the
values in a JavaScript Array or tableLens.

In most cases, you will use toList() to obtain distinct values from a query
array when you create header rows/columns. For example,
“toList(q['state'])” obtains a distinct list of states in ascending order
from query variable “q”.

The full syntax of the function is as follows,

toList(list, 'options string');

where options string values are as follows (multiple options are separated
by a comma delimiter):

• sort = asc/desc/false: Sort the values in ascending or descending
order. Default is asc.

• sorton: Sort the values according to a specified measure, e.g.,
sorton=sum(Total). Sorting by sorton is applied before Top/Bottom-N
filtering implemented by maxrows.

• sorton2: Sort the values according to a specified measure, e.g.,
sorton2=sum(Total). Sorting by sorton2 is applied after Top/Bottom-N
filtering implemented by maxrows.

• remainder: Specifies the label for the ‘Others’ group when Top/Bottom-
N filtering is in effect. If not specified, the ‘Others’ group is not
displayed.

• maxrows = num: Limits the number of rows returned.

• distinct = true / false: Retrieve only distinct values. Default is true.

• date = year / quarter / month / week / day / hour / minute /

second / weekday / monthname / weekdayname: Group date values
according to specified period, and return the period designation.

• rounddate = year / quarter / month / week / day / hour / minute

/ second / weekday / monthname / weekdayname: Group date values
according to specified period, and return the rounded date value.

The rounddate option is useful when you want to group by month and year,
(e.g., Jan 2005 and Jan 2006, etc.). For example, if the ‘Order Date’ field in
a query has the following values,

[Jan-2-2002, Feb-21-2004, Feb-25-2004, Nov-25-2005]

then the toList function with a rounddate grouping of month,

REPORT SCRIPTING

1076 of 2477

toList(q['Order Date'], 'rounddate=month');

returns a unique list of dates containing the first day of the month of the
given year:

[Jan-1-2002, Feb-1-2004, Nov-1-2005]

See Also
Referencing a Cell with Relative Parent Group Reference, for a complete
example.
Extracting Data from a Query, to extract query data into a JavaScript
Array.

3.7.6 Visual Properties

You can set the visual properties (font, alignment, background, etc.) of
expanding cells, rows, and columns in the formula table script. There are
three general steps:

1. Call functions to modify the visual properties of the “pre-
expansion” table.

2. Call the “expandCalcTable()” function to expand formula table.

3. Call functions to modify the visual properties of the “post-
expansion” table.

Any script that precedes the “expandCalcTable()” command applies to the
table prior to expansion. Any script that follows the “expandCalcTable()”
command applies to the expanded table.

To use ‘expandCalcTable()’, make sure to disable automatic table
expansion. (It is disabled by default for new reports.) To disable automatic
table expansion, select ‘Report Properties’ from the ‘File’ menu. In the
‘Report Properties’ dialog box, deselect ‘Expand calc table automatically
on script reference’.

REPORT SCRIPTING

1077 of 2477

See Also
SI.6, Table Object , for formula table functions.

Walkthrough: Formula Table Expansion

Walkthrough Construct a formula table based on the ‘customers’ query, with a multilevel
header comprising ‘State’ and ‘City’.

1. Click the ‘New’ button in the Style Studio toolbar. This opens the
‘New Asset’ dialog box.

2. In the left panel, select ‘Report’. In the right ‘Types’ panel, select
‘Blank Tabular Report’ and click ‘OK’.

3. Expand the Style Studio Toolbox panel, and drag a Table element
into the report. This creates a new blank Table.

4. Right-click the table, and select ‘Table’ > ‘Convert to Formula
Table’ from the context menu.

5. Right-click the table, and select ‘Table’ > ‘Insert Rows/Columns’
from the context menu.

6. Add two additional rows so that the table has four rows. The table
should now have four rows and two columns

7. Click away from the Table to deselect it.

8. Expand the Style Studio Properties panel. (Select ‘Properties
Pane’ from the Style Studio Window menu.) Click the Script tab in
the Properties panel.

9. Select the ‘onLoad’ button in the Script tab, and enter the
following script:

var q = runQuery('customers');

REPORT SCRIPTING

1078 of 2477

This executes the ‘customers’ query in the onLoad script. (See
Extracting Data from a Query for more details.)

10. Select cell[1,0] (second row, first column). Click the Data tab in
the Properties panel.

a. In the ‘Binding’ panel of the Data tab, select the ‘Formula’
option. Enter the formula ‘toList(q['state'])’.

b. In the ‘Expansion’ panel of the Data tab, set ‘Expand Cell’ to
expand ‘Vertical’.

c. In the ‘Cell’ panel of the Data tab, set the ‘Cell Name’ to be
“st”.

The Data tab of the
‘Format’ panel should
still be open.

11. Select cell[2,1] (third row, second column).

a. In the ‘Binding’ panel of the Data tab, select the ‘Formula’
option. Enter the formula ‘toList(q['city@state:$st'])’.

b. In the ‘Expansion’ panel of the Data tab, set ‘Expand Cell’ to
expand ‘Vertical’.

c. In the ‘Cell’ panel of the Data tab, set the ‘Cell Name’ to be
“ct” and set the ‘Row Group’ to ‘st’.

The table should appear as shown below.

12. Preview the table.

REPORT SCRIPTING

1079 of 2477

This example continues in the next section, Pre-Expansion Script, where
you will add visual formatting to the table prior to expansion.

See Also
Creating a Formula Table Using Script (Advanced), in Report Design, for
basic information on cell expansion.

Pre-Expansion Script

Walkthrough This section continues the example from the previous section
(Walkthrough: Formula Table Expansion). In this example, you will format
the ‘State’ rows with a red background color, and format the ‘City’ cells
with a yellow background color.

It is easiest to color these cells using pre-expansion script, because the
formatting that you add to pre-expansion rows and cells is repeated for all
corresponding rows and cells in the post-expansion table. Thus, the
automatic table expansion takes the place of the Iteration Statements that
you would otherwise need to write.

To add the pre-expansion script, follow the steps below:

1. Right-click anywhere on the table and select ‘Script’ from the
context menu. This opens the Script Editor to edit the element
script.

2. Add the following script to the table element.

rowBackground[1] = [255,0,0];
cellBackground[2][1] = [255,255,0];
expandCalcTable();

The first line of the script specifies a red background for the second
row of the pre-expansion table (the row containing ‘State’). The
next line of the script specifies a yellow background for the cell in
the third row, second column of the pre-expansion table (the row
containing ‘City’). The third line of the script initiates table expan-
sion, which propagates the specified formatting to all correspond-
ing cells in the expanded table.

3. Click ‘Save and Close’ to exit the Editor.

4. Preview the result.

REPORT SCRIPTING

1080 of 2477

This example continues in Post-Expansion Script, where you will add post-
expansion script to modify some further table properties.

Post-Expansion Script

This section continues the example from the previous section (Pre-
Expansion Script).

In this example, you will assign every fifth row of the table a thick border.
This formatting should be applied to the post-expansion table, so you will
place the code for this after the expandCalcTable() function.

1. Right-click anywhere on the table, and select ‘Script’ from the
context menu. This opens the Script Editor to edit the element
script.

2. Add a “for” loop after the expandCalcTable() function. The full
script should appear as follows:

rowBackground[1] = [255,0,0];
cellBackground[2][1] = [255,255,0];
expandCalcTable();

for (i=4; i<table.length; i+=5) {
rowBorder[i] = StyleConstant.THICK_LINE;

}

3. Preview the result.

REPORT SCRIPTING

1081 of 2477

3.8 Charts
Charts display grouped and aggregated data in a graphical manner. The
‘Properties’ and ‘Data Binding’ dialog boxes for Charts provide many
options for customization, including style, formatting, axis information,
ranking, sorting, and so on. All of these various options are also accessible
through script, as well as many others.

There are two levels at which you can target a Chart script:

• Chart Data Binding: Modify properties of Chart’s data binding by
accessing the bindingInfo attribute. See Modifying Chart Properties
and Modifying a Chart Data Binding for more information.

• Chart Structure: Modify the primitive objects which define a Chart
(Scales, Forms, VisualFrames, GraphElements, etc.) by using low-level
Chart API functions. See Modifying a Chart Element using API
Functions and Creating a Chart Using API Functions for more
information.

Both methods enable you to modify an existing Chart or build a completely
new Chart from scratch. The Chart API provides the highest level of
control over chart appearance, but requires a more complex syntax. See
Chart Script Tutorial for examples.

See Also
Chart Properties, for details on Chart properties.
Binding Data to a Chart Element, in Report Design, for binding details.

3.9 Sections
A Section is a container of other elements. In most cases, you add script to
the individual elements within the Section, rather than to the Section
element itself. However, Section scripts also have some special behaviors,
which are discussed below.

See Also
Tables and Sections, for element functions pertaining to Sections.

REPORT SCRIPTING

1082 of 2477

SI.22, Section Object, for functions pertaining to Sections.
Section Element, in Report Design, for general information on Sections.

3.9.1 Accessing Data

When you bind a Section to a data source (i.e., to generate a pseudo-table),
each band of the Section is repeated multiple times, corresponding to the
number of rows returned by the query. For example, the Content band of
the Section is repeated once for each detail record returned by the query.

If you place a script on a component within a repeating band, this script is
re-executed for every band repetition. This has the effect of wrapping the
script in an implicit “for” loop. Within the script, you can reference the
values of elements in the same band:

• value – the value (in current band iteration) of the element to which the
script is attached.

Use auto-complete to
enter the correct syn-
tax.

• field['column_name'] or field.column_name – the value (in current
band iteration) of the element in the specified field.

You can also refer to an element in the band by its Element ID (e.g.,
“Text1.text”) to obtain the current value. To obtain the row number
corresponding to the current band iteration, use the sectionRow property.

Example:
Referencing
Section Data

In the following example, you will read the value of an element in a
Section, and use that value to conditionally hide or show another element.
Follow the steps below:

1. Create a new report, and add a Section element. Bind the Section to
the ‘All Sales’ query.

2. Right-click the Text element in the ‘Total’ column content band
(detail row), and select ‘Script’. This opens the Script Editor to edit
the Text element.

3. Enter the following script for the Text element.

REPORT SCRIPTING

1083 of 2477

if (field.Employee != 'Annie') {
visible=false

}
else {
visible=true

}

The if/else statement checks the value of the ‘Employee’ field, and
hides the current ‘Total’ element if the employee is other than
Annie.

In this example, you may note that the “else” block of the “if/else”
statement is not strictly required. However, when you use the above
method to set visual properties of the Section, you will need to include the
“else” block to obtain the desired results. See Setting Visual Properties for
an example.

¢

3.9.2 Setting Visual Properties

If you place a script on a component within a repeating band, this script is
re-executed for every band repetition. This has the effect of wrapping the
script in an implicit “for” loop. You can take advantage of this repetition to
compactly and effectively add visual style to the entire Section.

To access the visual properties of current band, use the ‘band’ object.

Walkthrough In this example, you will modify the Section content band when the query
fields meet certain conditions. Follow the steps below:

1. Create a new report, and add a Section element. Bind the Section to
the ‘Order details’ query.

2. Select any Text element in the Content band of the Section. Right-
click the element, and select ‘Script’ from the context menu. This
opens the Script Editor for the Text element.

3. Add a script that hides the current band if the value of the ‘Price’
field is less than 100.

if(field['Price'] < 100) {
band.visible = false;

} else {
band.visible = true;

}

4. Add an additional script that colors the band red if the value of the
‘Quantity’ field is less than or equal to 2.

REPORT SCRIPTING

1084 of 2477

if(field['Quantity'] <= 2) {
band.background = [255,0,0];

} else {
band.background = [255,255,255];

}

See Also
band, for more information about the band object, and its properties.

3.10 Report Beans
A report bean is a reusable set of report components that can be managed as
a single unit. It is a very effective tool for building component-based
reports, improving reusability and reducing report development time.

You can configure report beans (without scripting) to expose certain sets of
properties to the report developer, and this approach is sufficient for most
reports. However, you can also implement reusable report logic by
embedding scripts within beans. The following sections discuss issues
related to placing script inside report beans.

See Also
Using the Script Library, for another method of reusing report logic.
Report Bean, in Report Design, for examples of bean usage.

3.10.1Bean Handlers

A report bean is treated as a mini-report. The bean has its own onLoad
Handler and onInit Handler, just like a regular report. However, a bean
does not have an onPageBreak Handler or onPrint Handler. All page break
events are handled by the parent report.

The bean’s onInit handler is invoked when the report loads, before the
report parameters are prompted. Like the report onInit handler, the bean’s
onInit handler is invoked exactly once per instance. If a report bean is used
in multiple instances in one report, the onInit handler for each instance is
executed once.

REPORT SCRIPTING

1085 of 2477

Script that you attach to a bean runs within bean scope. This means that you
can have multiple instances of a bean within the same report, and any script
reference to an element within the bean is resolved to the instances inside
the self-same bean.

See Also
Script Evaluation, for the general order of execution of report scripts.

3.10.2Bean Scripting Scopes

A bean has its own scripting scope, similar to a report’s scope, and all
elements within the bean fall within the bean’s scope. Therefore, if you
place a script on an element within a bean, when the script encounters a
symbol (variable, property), the server checks for the reference in the
following sequence:

1. Search element scope (i.e., properties defined by the element to
which the script is attached).

2. Search the bean “report” scope (i.e., properties defined by the
onInit Handler and onLoad Handler of the bean containing the
element).

3. Search the bean “element” scope (i.e., properties defined by
element-level script attached to the bean element within the parent
report).

4. Search parent report scope.

5. Search global scope.

Accessing Report Elements of Same Name

Because the server searches bean scope first, variables and elements in the
bean will hide objects of the same name in the containing report. To access
such objects in the containing report, use the ParentReport Object. For
example, if the bean contains a text element with Element ID of ‘Title’, and
the parent report also contains a text element with Element ID of ‘Title’,
you can access the parent report instance as follows:

Global scope

Report scope

Bean element scope

Element scope

REPORT SCRIPTING

1086 of 2477

parentReport.Title
or

parentReport['Title']

Dynamically Modifying the Parent Report

Scripts in a bean can dynamically access elements and variables in the
parent report scope. For example, you could develop a “toolbar bean” that
contains different chart type “buttons”. When the user clicks a button, this
changes a chart in the parent report to the selected type. To do this, you
could add an onClick Handler script to each button, such as the following:

// script for line chart button
Chart1.singleStyle['Count(Total)'] = Chart.CHART_LINE

This bean can then be embedded in any report that has a chart called
‘Chart1’. The bean itself contains no chart called ‘Chart1’; the server
locates the parent report’s ‘Chart1’ at runtime by looking up the name in
the scope hierarchy.

Accessing Bean Properties from Parent Report

From within the parent report scope, you can modify the properties of
elements located in a bean by using the ‘elements’ property of the bean.

For example, consider a report that contains a bean called “Bean1,” which
in turn contains a text element called “Text1” and a table element called
“Table1.” To access the properties of these bean elements from with parent
report script, using the following syntax.

Bean1.elements.Text1.text= 'hello';
Bean1.elements.Table1.table[0][0] = 'Order ID';

See Also
Server-Side Features, for an example of reusing bean script across reports.
Accessing Element Properties, for the general scope hierarchy within a
report.

3.10.3Report Bean Example

This example (bean.srt in the examples/docExamples/script directory) is
based on the table example. It changes two parts of the report into report
beans:

Note: Set your Repository location to examples/docExamples/script.
See Configuring a Repository in Getting Started for instructions.

• The report header section is converted into a bean, and the script for
calculating the date range is contained in the bean. This allows the bean
to be reused across multiple reports without re-implementing the script.

• The table label and field are changed to a bean. The bean is used to
create a total over 1,000 and a total under 1,000.

REPORT SCRIPTING

1087 of 2477

Figure 3. Report Bean Example (bean.srt)

Report Header Bean

Walkthrough No additional design work is required to create a report bean from the
existing report header. Simply copy and paste the appropriate elements into
a report bean and define the appropriate properties.

1. Copy and paste the title elements into a report bean.

2. Select ‘Bean Definition’ from the Style Studio Report menu. This
opens the ‘Bean Definition’ dialog box.

3. Add the ‘Text’ property of the subtitle element to the right frame,
and enter ‘subtitle’ for the property name.

4. Add the ‘Text’ property of the section title element to the right
frame, and enter ‘section title’ for the property name.

The script on the date field remains the same:

var now = new Date();

switch(now.getMonth()) {
case 0: case 1: case 2:

text = "1sr Qtr";
break;

case 3: case 4: case 5:
text = "2nd Qtr";
break;

case 6: case 7: case 8:
text = "3rd Qtr";
break;

case 9: case 10: case 11:
text = "4th Qtr";
break;

}

text = text + ", " + formatDate(now, 'yyyy');

REPORT SCRIPTING

1088 of 2477

Since the script uses the property of the text element to which it is attached,
references are automatically resolved to the current element. To use the
bean, simple replace the elements in the report with the bean.

Total Field Bean

Walkthrough The elements for displaying the two totals are almost identical. You will
now replace these elements with a report bean following a similar
procedure:

1. Copy and paste the total label and textbox fields into a report bean.

2. Select ‘Bean Definition’ from the Style Studio Report menu. This
opens the ‘Bean Definition’ dialog box.

3. Add the label and total field ‘Text’ properties to the bean properties
in the ‘Bean Definition’ dialog box.

4. Replace the total fields with two ‘total field’ beans.

5. Change the table script to assign the calculation results to the bean

var total1 = 0, total2 = 0;

for(var i = 1; i < table.length; i++) {
var price = table[i]['Total'];

if(price > 1000) {
for(var c = 0; c < table[i].length; c++) {

cellBackground[i][c] = 0xBBFFBB;
}

total1 += price;

}
else {

total2 += price;
}

}

totalOver.value = formatNumber(total1, '$#,###.00');
totalBelow.value = formatNumber(total2, '$#,###.00');

A report bean can include presentation elements, properties, and dynamic
behaviors to create a self-contained module.

REPORT SCRIPTING

1089 of 2477

4 Queries

The following sections explain how to execute a query in script and save
the results to an array, and also how to modify an element’s data binding to
utilize a different query.

4.1 Running a Query
Normally, you will bind a query to a report element using the ‘Data
Binding’ dialog box (or the equivalent property, e.g., query). The query that
you bind will execute automatically when the report is generated, and the
data returned by the query will populate the associated element.

In some situations, however, a report element must contain results from
more than one query. For example, a summary table may display summary
data generated from different queries. One way to do this is to construct a
“master query” that provides all the desired aggregates, and then bind this
single query to the element. However, this kind of query might prove very
complex and difficult to write.

An easier way to bind multiple queries is to run the individual queries using
script. You can then bind results from each distinct query to the individual
table cells that you want to display those results. The following sections
examine how to do this.

See Also
Formula Tables, for the most common application of multiple query
binding.
Data Binding, in Report Design, to bind an element to a query.

4.1.1 Running a Query from Script
If possible, use Style
Studio to bind queries
to elements. See
Query Performance
Considerations. Note:
runQuery does not
retrieve data from
Data Models.

To run a query defined in the query registry (query.xml) or any available
Data Worksheet, use the runQuery() command.

// Run a query:
var q = runQuery('total sales');

// Run the query for primary Data Block in a Worksheet:
var q = runQuery('ws:global:path/worksheetName');

// Run the query for primary Data Block in a user-scope
Worksheet:
var q = runQuery('ws:user_name:path/worksheetName');

// Run the query for primary Data Block in a local report-
scope Worksheet:
var q = runQuery('ws::path/worksheetName');

To run the query for a non-primary Data Block in a Worksheet, simply
append the desired table name to the specified string. For example:

REPORT SCRIPTING

1090 of 2477

// Run the query for non-primary Data Block in a Worksheet:
var q = runQuery('ws:global:path/worksheetName:tableName');

// Run the query for non-primary Data Block in a local
report-scope Worksheet:
var q = runQuery('ws::path/worksheetName:tableName');

In all cases, the runQuery() results are returned as a two-dimensional array,
whose first row contains the column headers. You can access the query
values using standard array indexing, and assign them to a table cell or text
element:

// Assign first column of first data row to a table cell:
Table1.table[1][1] = q[1][0];

Query parameters (if any) can be passed as part of the runQuery() call. For
example, to pass the report ‘start_time’ parameter to the query as
‘start_time’ and pass the current date/time as ‘end_time’:

var q = runQuery('total sales', [['start_time',
parameter['start_time'],['end_time', new Date()]]);

See Also
Independent Query, in Data Modeling, to design a new query.
Data Mashup, for information on creating Worksheet assets.

4.1.2 Query Performance Considerations

For performance reasons, you should avoid using too many large queries in
one report. In addition, you should only run a query from script in cases
where you cannot directly bind the query. In general, it is more efficient to
use the ‘Data Binding’ dialog box to bind the query to an element, which
allows the query to automatically run as part of report generation.

There are two complimentary methods for controlling and improving the
performance of a report.

• Size limit: You can limit the number of rows that the query returns.

• Time limit: You can limit the amount of time a query may execute.

For example, if you only use the first few rows of a query, you should set a
tight limit on the query size. You can make these settings at the query level
or data binding level. See Advanced Toolbar Buttons in the Data Modeling
to limit at query level, and Precautions and Safeguards in the Report
Design to limit at binding level.

See Also
Performance Options and Safeguards, in Administration Reference, for
other limits.

REPORT SCRIPTING

1091 of 2477

4.1.3 Query Example

Assume that you need to create a table containing sales summary
information: Total sales volume, product with highest volume, and
customer with the highest volume. There are several possible ways that you
can design this table:

• Write a stored procedure to return the three unrelated aggregates as the
result of a single query, and bind the table to this query. However,
designing such a stored procedure is awkward and requires advanced
knowledge of database programming. Therefore, this approach is not
recommended.

• Use a Data Worksheet to compute the three desired aggregates, and
merge these into a single Data Block. Then bind the table to this Data
Block. (See the Data Mashup for details).

• Design three simple queries to return the three desired aggregates. Use
script to independently run the three queries, and then explicitly assign
the results to corresponding table cells.

Walkthrough The following example illustrates the third approach. Assume that you
have defined the following three simple queries in Style Studio:

• 'total sales' – returns total sales volume

• 'top product' – returns product with highest volume

• 'top customer' – returns customer with the highest volume

Follow the steps below to create the table that displays these values:

1. Create a new table with three rows and two columns.

2. Select each of the three cells in the left column, and enter the
following strings into the cells:

a. “Total Sales”

b. “Top selling product”

c. “Highest Volume Customer”

3. Right-click the table, and select ‘Script’ from the context menu.
This opens the Script Editor for the table.

4. Enter the following script. This runs each query in turn, and assigns
the result to the corresponding table cell.

var sales = runQuery('total sales');
var product = runQuery('top product');
var customer = runQuery('top customer');

REPORT SCRIPTING

1092 of 2477

table[0][1] = formatNumber(sales[1][0], "$#,###.00");
table[1][1] = product[1][0];
table[2][1] = customer[1][0];

Note: Set your Repository location to examples/docExamples/script.
See Configuring a Repository in Getting Started for instructions.

See the summary.srt report in the examples/docExamples/script directory
for a similar example.

Figure 4. Query Example (summary.srt)

See Also
Data Tables, for further information about scripting tables.
Table Element, in Report Design, for information on creating a table.
Formula Tables, for more advanced use of query data in tables.

4.2 Binding Queries
You can dynamically change the data binding of an element from within
script by setting the “query” property.

if(parameter['type'] == 'Details') {
Table1.query = 'sales details';

}
else {

Table1.query = 'sales summary';
}

You should only change the “query” property from within the onInit
Handler or onLoad Handler.

Query Compatibility

The data binding of an element specifies information other than just the
query name, such as grouping and summary fields, and formula columns.
If you change a query from within script, you must make sure that the new
query is compatible with these other specifications.

For Table and Chart elements, a query is considered compatible if it
contains the same grouping and summary columns specified in data
binding. Since the table can adjust itself to accommodate any tabular data,
no change in table layout is necessary.

REPORT SCRIPTING

1093 of 2477

Because Section elements have fixed layout, the compatibility rules are
stricter. If you use script to change the query binding for a Section, the new
query must contain exactly the same columns as the query that it replaces.
Otherwise, the Section will not display the new columns and will use
default values for all columns that are missing in the new query.

In practice, dynamic query binding is most useful when your reports have
tables with the exact same columns, but with different conditions or data
sources. Keep in mind however, that Report Bean are the preferred way to
achieve component-based reporting and report reuse.

See Also
Binding Data to a Table Element, in Report Design.
Binding Data to a Chart Element, in Report Design.
Binding Data to a Section Element, in Report Design.
Running a Query, for information on executing a query without binding.

REPORT SCRIPTING

1094 of 2477

5 Report Handlers

Previous chapters explained how you can add scripts to various report
elements (Tables, Charts, etc.) to modify those elements’ properties. These
element-level script are executed when the element is processed in the
course of report generation.

The current chapter explains how you can use various report handlers to
implement advanced business logic. This includes adding actions to report
elements, and modifying report generation based on user input or the
runtime environment.

See Also
Server-Side Features, for information on interactivity (drilldown,
parameters, etc.)

5.1 onClick Handler
An element’s onClick handler is executed when a “selection” event (i.e.,
mouse click) takes place on the element. You can use the onClick handler
to implement interactions such as hyperlinks and drilldowns, or to initiate
any other business logic in response to user selections.

To access the onClick handler for an element, right-click the element, and
select ‘Script’ from the context menu. Then select the onClick tab at the
top of the Script Editor.

Figure 5. The onClick tab of the Script Editor

REPORT SCRIPTING

1095 of 2477

5.1.1 Using the onClick Handler
For simple hyperlinks,
use the ‘Hyperlink’
dialog box: See
Hyperlinks in the
Report Design.

The onClick handler is executed on the report server, as are all scripts.
Because the handler does not execute on the client browser, it cannot
perform client-side actions directly. Instead, the handler controls the
behavior of the report by returning one of the pre-defined viewer actions.
Actions related to hyperlinks are showReplet() and showURL(). Other
viewer actions are discussed in a later chapter.

Note: The viewer action functions (showReplet, sendRequest, etc.)
should be the final statement of the onClick script.

The onClick handler is primarily used for Tables and Text elements, in
situations where you cannot completely define the hyperlinks at design
time. For example, if a hyperlink is required to pass parameters that might
change as a result of user interactions, you can compute the parameter
values in the onClick handler, and then create the hyperlink by using the
showReplet() action.

For example, consider the following onClick script attached to an element.
When the user clicks the element, the script tests a condition, and then
loads one of two possible reports.

if(condition) {
showReplet("order info",[["start_date",CALC.today()]]);

}
else {

showReplet("customer info",[["state", "NJ"]]);
}

See Also
Style Intelligence Global Object, for a list of available viewer functions.

5.1.2 Setting the onClick Range

For a Table, the onClick range specifies the range of cells for which the
onClick script is active. To set the onClick range for an element, right-click
the element, and select ‘Script’ from the context menu. In the Script Editor,
select the onClick Range tab. The options for the onClick range are as
follows:

• All rows

• All columns

• Specific column

• Header row

• Trailer row

• Header column

• Trailer column

REPORT SCRIPTING

1096 of 2477

It is very common to pass the value in the clicked cell as a parameter in the
hyperlink. For example, the user clicks a state name in the ‘State’ column,
and you want to pass this clicked value to the drill-down report. To obtain
the clicked value, first find the row and column indices of the cell by using
the event.getRow() and event.getColumn() functions.

var rowIx = event.getRow();
var colIx = event.getColumn();

Then use these indices with the Table’s table property to obtain the data
value.

showReplet("customers",[["state",table[rowIx][colIx]]]);

5.2 onInit Handler
A report’s onInit script is executed only once, before the report is
processed. Because all parameter prompting and automatic query
execution occurs after the onInit script executes, onInit script is ideal for
one-time initialization tasks. The typical usages are as follows:

• Defining report parameters: Because all other scripts execute after
parameter prompting, parameter definitions can only be changed from
the onInit script.

• Defining report parameter default values: You can manually run a
query to supply the default values. (See Running a Query for details.)

Note: A variable declared in onInit script will have global scope.
To declare a local variable with the same name elsewhere, use the
keyword ‘var’ in the declaration to remove ambiguity.

• Creating session-level variables.
For example, you can use the onInit script to perform all one-time
calculations, then store the results in global variables so that you can
access them from other scripts.

See Also
onLoad Handler, to declare report-level variables, or validate user
parameters.

5.3 onLoad Handler
The onLoad handler is similar to the onInit handler, and is also executed at
the beginning of report generation. It differs from onInit in two important
ways:

• onLoad script is executed every time a report is processed.

• onLoad script is executed after report parameter prompting.

The typical usages of the onLoad handler are the following:

REPORT SCRIPTING

1097 of 2477

• Declaring report-level variables.
For example, to keep a subtotal on each page, declare the ‘subtotal’
variable in the onLoad script and then update it using onPageBreak
Handler script.

• Initializing the report based on user input parameters.
For example, onLoad script can set chart styles, report headers, element
visibility, etc. The onLoad handler has access to the ‘parameter’ array
that contains all report parameter values. For example, to hide a chart if
a parameter is false:

if(!parameter['showChart']) {
Chart1.visible = false;

}

• Dynamically running queries.
An element’s ‘query’ property can only be set in the onLoad handler,
not in element-level script. See Binding Queries for details.

• Modifying binding characteristics (column visibility, grouping and
summarization, etc.) using the element’s bindingInfo attributes.

• Modifying multiple elements from a central location.

See Also
The Table bindingInfo Property, for information on data binding for Tables.
The Chart bindingInfo Property, for information on data binding for
Charts.
The Section bindingInfo Property, for information on data binding for
Sections.
onInit Handler, to declare session-level variables or report parameters.

5.4 onPageBreak Handler
The onPageBreak handler is executed at the end of every page, after all
elements on the page have been processed (except for headers and footers).
Because the onPageBreak handler follows body-element processing, it
should not modify the body contents on the current page. It can, however,
modify contents in the header and footer of the current page.

The main use of onPageBreak is to calculate page-level summarization. It
is also useful in cases where you wish to display page numbering in the
body of the report. You can use the onPageBreak handler to increment a
“page number” variable, and then reference that variable in the desired
elements.

See Also
Headers and Footers, in Report Design, to implement page numbering
without scripting.

REPORT SCRIPTING

1098 of 2477

The OnPageBreak Event Handler

A special variable, ‘event’, is available in the onPageBreak handler. This
object contains information about what is on the current page. It has the
following properties:

Table 3. OnPageBreak Event Handler Properties

Example:
onPageBreak
Handler

The following onPageBreak script displays a Text element (in the header)
that says “continued…” if the current page is a continuation of a table from
the previous page. The Text element has ID of “continuteLabel”.

if(event.elementID == 'Table1' && event.region.y > 1) {
continueLabel.visible = true;

}
else {
continueLabel.visible = false;

}

¢

See Also
SI.30, PageBreak Event Object, for more detail on handler properties.

The rewound property

The “rewound” property has special significance in Section scripting. When
a Section is printed on a page, the bands are repeated for each row of the
table. If a band goes outside of the boundary of the page, the band is
“rewound” and printed on the next page.

Normally this does not cause a problem, because when the band is
rewound, it does not re-execute any associated scripts. The only time this is
an issue is when the calculation of elements in a band is used in the page
header and footer. For example, if a script is attached to an element in the
band for calculating a running total on the page, the total would contain an
extra value from the next page.

PROPERTY DESCRIPTION

elementID The ID of the last element on the current page.
region A rectangle containing the last table region on the page:

region.x is the left-most column number, region.y is the top
row number, region.width is the number of columns,
region.height is the number of rows. This property is only
defined if the last element on the page is a table element.

firstElementID The ID of the first element on the current page.
firstRegion A rectangle containing the first table region on the page. This

property is only defined if the first element is a table element.
lastPage True if this is the last page of the report.
rewound True if the last band on the page has been rewound.
pageIndex The current page index (first page = 0)

REPORT SCRIPTING

1099 of 2477

To correct this problem, you need to handle rewinding for scripts in the
onPageBreak handler. First, check if the rewound property is set. If it is, the
script undoes the effect of the previous script and pushes the value to the
next page.

// assume the band script saves the last value added to the
total
// in a report variable 'lastValue'
if(event.rewound) {

// assume total is the report variable used to hold the
page total

total -= lastValue;
}

// Text1 is the text element on footer for displaying the
page total
Text1.text = total;

// reset page total for next page
if(event.rewound) {

total = lastValue;
}
else {

total = 0;
}

5.5 onPrint Handler
The onPrint handler is executed before a report is printed or exported. The
typical usages of onPrint handlers are as follows:

Note: The best way to
do this is to set ‘Hide
on Print and Export’.
See Property Dialog
Boxes in the Report
Design for details.

• Hiding non-printable elements.

• Including a title page in a report

• Performing logic specific to printing and exporting.

The onPrint event handler offers a special property, ‘report.format’,
through the ‘docInfo’ object.

docInfo['report.format']

When the user exports a report to a specific format, this property holds the
file extension of the specified format (e.g., xls, html, rtf, txt, etc.) This
allows you to implement different logic based on the selected export
format.

5.6 Report Handler Example
In this example (handlers.srt in the examples/docExamples/script

directory) you will use report-level scripts to calculate the per-page total of
sales over and below $1,000. It uses handlers to perform the following
tasks:

Note: Set your Repository location to examples/docExamples/script.
See Configuring a Repository in Getting Started for instructions.

REPORT SCRIPTING

1100 of 2477

• In the page footer, display the sales totals for the current page over and
below $1,000.

• Highlight the rows with sales over $1,000.

Figure 6. Report Handler Example (handlers.srt)

5.6.1 Calculate Page Total

Calculating the page total itself is very simple. First declare two report-
level variables in the onLoad Handler, total1 and total2. These will be
used to store the totals over 1000 and below 1000 on the current page.

var total1 = 0; // for total over 1000
var total2 = 0; // for total under 1000

Next, add a script to the total field (Text) in the Content band to add the
total value to the two total variables, and to display the appropriate
highlighting.

// calculate page total and highlight
if(value > 1000) {

total1 += value;
band.background = [0,255,0]; // green

}
else {

total2 += value;
band.background = [255,255,255]; // white

}

Finally, add an onPageBreak Handler script to display the two totals in the
footer, and to reset the total variables.

// assign to footer text element
totalOver.text = formatNumber(total1, "$#,##0.00");
totalBelow.text = formatNumber(total2, "$#,##0.00");

// reset totals
total1 = 0;
total2 = 0;

5.6.2 Band Rewinding

One complication of page-level calculation is the fact that a band can be
rewound to a new page during printing. Therefore, if you leave the report

REPORT SCRIPTING

1101 of 2477

as it currently is, the page total may contain an extra value from the next
page. To address this, you will add logic to handle the rewinding of a band.

To “undo” the effect of rewinding, you first need to determine what the last
band did before it was rewound. In the onPageBreak Handler handler, you
can check if the last band was rewound, and undo the last action. For this
example, declare a report-level variable in the onLoad Handler to hold the
last value added to the total variables.

var lastValue = 0;

In the script for the total field, simply store the last number added to the
total in the variable.

lastValue = value;

Finally, add code to the onPageBreak script to determine if rewinding
occurred, and to undo its effect.

// if rewound, undo the last value total
if(event.rewound) {

if(lastValue > 1000) {
total1 -= lastValue;

}
else {

total2 -= lastValue;
}

}

Since you don’t want to lose the last value for the next page, add another
block at the end of the onPageBreak to push the lastValue to the next
page’s totals.

// if rewound, push last value to next page
if(event.rewound) {

if(lastValue > 1000) {
total1 = lastValue;

}
else {

total2 = lastValue;
}

}

REPORT SCRIPTING

1102 of 2477

6 Server-Side Features

Note: Features cov-
ered in this chapter
are not available in
Style Report Pro.

Previous chapters discussed scripts for controlling report contents,
performing calculations, and other presentation-oriented tasks. Another
class of scripts deals with user interactions. By adding scripts that respond
to user actions, you can turn a report from a static presentation into an
interactive experince. All user interactions are controlled by the report
server.

6.1 Accessing Report/Request Parameters
You can access all parameters defined in a report by using the parameter
object. Two forms of syntax are available:

1. parameter.{parameter name}

e.g.,
parameter.start_date = CALC.today();
Table1.visible = parameter.table_visible;

2. parameter['{parameter name}']

e.g.,
parameter['StartDate'] = CALC.today();
Table1.visible = parameter['table_visible'];

6.2 HTTP Request, Session, and Principal
When you use the servlet-based report server (Repository Servlet) you can
access the http request and session objects via script. Use the parameter
array to access the HttpServiceRequest/HttpServiceResponse object, which
are wrappers, respectively, for the HttpServletRequest/HttpServletResponse
objects.

Note: Although you can set HttpSession properties directly, the it
is best to set them on the SRPrincipal. SRPrincipal can be accessed
universally within the script of a report or a VPM trigger.

For example, the script below handles the http session attributes and
request parameters via the HttpServiceRequest object.

//accessing the service request object
var serReq = parameter['__service_request__'];

// getting session attributes
var sessAttr = serReq.getAttribute('attribute_name');

// setting session attributes
serReq.setAttribute('attribute_name', value_object);

// setting HTTP request parameter
serReq.setParameter('param_name', 'param_value');

// getting the SRPrincipal object

REPORT SCRIPTING

1103 of 2477

var p = parameter['__principal__'];

// getting a standard SRPrincipal property, user locale:
var locale = p.getLocale();

// getting a custom principal property
var prop = p.getProperty("myprop");

To get a direct handle on the HttpServletRequest object, use the following
syntax:

var httpReq = serReq.getRequest();

Use the following simplified syntax to acquire the current username:

var userName = parameter['_USER_'];

See Also
Changing the Server Type, in Administration Reference, to configure
servlet.
Accessing SRPrincipal via Login Listener, in Integration, for the
recommended approach.
RepletParameters Object, for a complete list of special parameters.

6.3 Interactive Forms
Style Intelligence supports data entry and report customization through
interactive forms. A form is a collection of interactive controls, such as
Text fields, Radio Buttons, and Combo Boxes. Interactive forms are used
primarily in two roles: Embedded in reports to allow report customization,
and embedded in parameter sheets to allow parameter entry.

See the Parameterization section of Report Design for the basic methods of
obtaining user input (without scripting). The following sections here
expand on some of the more advanced features available for user
interaction. There are two basic aspects:

• Creating a Form: Client-side presentation and event scripting

• Processing a Form: Server side scripting

See Also
Parameterization, in Report Design, for automatic user prompting.
Parameter Sheets, in Report Design, for common form deployment.

6.3.1 Creating a Form

There are two steps in creating a form: Adding form controls, and adding
client-side script.

REPORT SCRIPTING

1104 of 2477

Adding Form Controls

The first step in creating an interactive form is to add form controls to a
report or parameter sheet. (These form elements are represented as basic
HTML form elements when the report is rendered in the User Portal.) Form
control elements all share two properties:

• ‘Form Name’

• ‘Field Name’

Controls with the same form name are grouped into a single form. To add
form elements, follow the steps below:

1. Open the Style Studio Toolbox panel.

2. Drag a form element from the Toolbox panel into the report.

3. Right-click the new report element and select ‘Properties’ from the
context menu.

4. Enter a ‘Form Name’ for the element. Use the same form name for
all elements belonging to the same form.

The specified 'Field Name' is assigned as the name of the HTML
control in the Portal, and is used by client-side and server-side
script to access the control’s value.

5. Enter a unique ‘Field Name’.

For Radio Buttons, use the same Field Name for buttons in the
same Radio Button group. The group is then treated as a single
field, with the value of the group being the value of the selected
Radio Button.

REPORT SCRIPTING

1105 of 2477

6. (Optional) Click the HTML tab to open the client-side JavaScript
editor.

7. In the onSubmit and onClick tabs, enter JavaScript commands to
be executed on the client side when an ‘onSubmit’ or ‘onClick’
event occurs in the browser. See Client-Side JavaScript below.

8. Repeat the above steps to add the desired controls, including at
least one button or image button to use for submitting the form.

See Also
Parameter Sheets, in Report Design, for example of form usage.
Form Design, in Report Design, for information about the various form
controls.

Client-Side JavaScript

Script that you enter in the onSubmit and onClick tabs (see Adding Form
Controls) is standard JavaScript that is executed by the client browser when
the corresponding event occurs.

Within the context of these scripts, you can use the ‘Form’ variable to
reference all elements on the form. For example, if the form contains a
Choice element with field name ‘Choice1’ and a TextField element with
field name ‘TextField1’, you can add an onSubmit script on the Choice1
element to set the value of TextField1:

Form.TextField1.value = Form.Choice1.value;
return true;

This script executes whenever a “submit” action occurs in the form
(triggered by any form element). Although you can attach the ‘onSubmit’
script to any element, a given form should contain only a single ‘onSubmit’

REPORT SCRIPTING

1106 of 2477

script. To assign a submit action to a form element (other than a Button),
enable the ‘Submit on Change’ option in the element’s ‘Properties’ dialog
box.

If the ‘onSubmit’ script returns “true,” the form data is sent on to the
server; otherwise, it is not sent. This allows you to use client-side script to
verify input values before the form is sent to the server. For example, the
‘onSubmit’ script below verifies the value entered in TextField1:

if (Form.TextField1.value < 10) {
return true; //send to server

}
else {
alert('Maximum value exceeded.');
return false; //do not send to server

}

Storing JavaScript in an External File

You can store client-side JavaScript function definitions in an external file.
This JavaScript file must reside in the SREE Home directory (WEB-INF/
classes, by default) or in one of its subdirectories, and must be registered
by setting the ‘replet.custom.js’ property in the sree.properties

properties. For example, if the function definition file is named
‘JSFunctions.js’ and resides in the ‘WEB-INF/classes/JS’ directory,
register the file in sree.properties as follows:

replet.custom.js = JS/JSFunctions.js

The JavaScript file is imported into the report when the report loads so that
functions defined in the file are accessible to client-side scripts (i.e., scripts
in the HTML tab of Form elements).

6.3.2 Processing a Form

A form is submitted to the server whenever a “submit” action occurs on the
form (e.g., ‘Submit’ button is pressed or an ‘onSubmit’ script returns
“true”). The submission contains a single repletRequest object that includes
all form values.

Scripting the onClick Handler

To process the form on the server end, add script to the onClick Handler
handler of the Form elements. To do this, open the Form in Style Studio,
and follow the steps below:

1. Select a form element to which you want to add an ‘onClick’ script.

Note: This is the server-side ‘onClick’ handler, not the client-
side ‘onClick’ handler described in Creating a Form. You can also
edit the server-side ‘onClick’ handler from the Style Studio
Properties panel.

REPORT SCRIPTING

1107 of 2477

You can add ‘onClick’ script to any Form element. (If you add
‘onClick’ scripts to multiple elements, all of these scripts are exe-
cuted when the form is submitted, and all have access to the same
set of form values.)

2. Right-click the Form element, and select ‘Script’ from the context
menu. This opens the Script Editor.

3. Select the onClick tab at the top of the Editor.

4. Enter the commands to be executed by the report server when the
form is submitted. See Server-Side JavaScript below for more
details.

Server-Side JavaScript

The server-side ‘onClick’ script has access to a RepletRequest Object
containing all form element values. You can access a particular field value
by using the element ‘Field Name’ as index:

request['FieldName'] or request.FieldName

Field names must be unique within a form (with the exception of Radio
Buttons).

REPORT SCRIPTING

1108 of 2477

If there are multiple “submitting” form elements, use
‘request.__eventSource__’ to obtain the field name of the element that
triggered the submit action. For example:

if(request.__eventSource__ == 'Choice1') {
...

}
else if(request.__eventSource__ == 'Button1') {

...
}
else {

...
}

Note: If the ‘onClick’ script of a form element on a Parameter
Sheet calls the sendRequest() function, the submission from
sendRequest() is sent in place of the normal form submission
request.

If your script modifies element values and needs to refresh the screen, it
should call the reprint() or refresh() function. The ‘reprint’ action
causes the report pages to be regenerated without refreshing the data
binding. The ‘refresh’ action forces the report data to be refreshed before
the report is reprinted. If the onClick Handler does not change the data or
the way the data is bound to report elements, the reprint action is sufficient.

Example: Server
-Side JavaScript

The following sample code is taken from the form.srt report in the
examples/docExamples/script directory. The script checks various form
field values, and sets report characteristics appropriately.

Note: Set your Repository location to examples/docExamples/script.
See Configuring a Repository in Getting Started for instructions.

if(request['values']) {
Chart1['value.visible'] = true;

}
else {
Chart1['value.visible'] = false;

}

switch(request['hGrid']) {
case '(none)':
Chart1.yGridStyle = Chart.NONE;
break;

case 'Thin Line':
Chart1.yGridStyle = Chart.THIN_LINE;
break;

case 'Dot Line':
Chart1.yGridStyle = Chart.DOT_LINE;
break;

}

REPORT SCRIPTING

1109 of 2477

Figure 7. Form Example (form.srt)

¢

REPORT SCRIPTING

1110 of 2477

APPENDIX SI: Style Intelligence Object
Reference

This appendix describes all objects in the Style Intelligence host reporting
environment.

See Also
Common Function Reference, for general JavaScript and charting
functions.
Dashboard Scripting, for functions specific to the Viewsheet environment.

SI.1 Global Functions

Style Intelligence provides a few global functions in addition to those
defined by the standard JavaScript runtime (see Appendix JS:General
JavaScript Functions). This section presents the additional functions.

ADDPARAMETER(NAME, DEFAULT, TYPE, ALIAS, HIDDEN)

Adds a parameter to the report. This function is available only within the
onInit Handler, and is equivalent to defining a report parameter using the
‘Parameter Definition’ dialog box in Style Studio.

Parameters
name name of the parameter (String)
default parameter default value
type an XType Data Types constant
alias label to use when prompting (String)
hidden Boolean:

false (default): prompt user
true: do not prompt user

Example
addParameter('start_time', new Date(), XType.DATE,

'Start date', false);

The ‘hidden’ flag allows you to suppress user prompting for the parameter,
equivalent to deselecting the ‘Prompt User’ option in the ‘Parameter
Definition’ dialog box.

See Also
Defining and Editing Report Parameters, in Report Design, for the
parameter interface.

NEWINSTANCE(NAME)

Creates a new Java object.

Parameters
name name of the class to instantiate (String)

REPORT SCRIPTING

1111 of 2477

Example
var presenter =
newInstance('inetsoft.report.painter.IconCounterPresenter')
;

You can usually accomplish the same thing using the ‘new’ operator, but
this sometimes does not handle Java packages correctly.

GETIMAGE(STRING)

Loads an image file from a Java resource or string. The getImage()
method checks whether the argument specifies a valid resource. If it does
not specify a resource, then getImage() treats the parameter as an encoded
image. Both ASCII Hex and ASCII85 are supported (useful for XML
data).

Parameters
string image file resource path or URL

or
ascii hex/ascii85 encoded gif/jpeg image data

Example
var img = getImage('/com/mypackage/icon.gif');
img = getImage('http://visualizefree.com/images/
inetsoft.png');

Example
// picture column is ascii85 encoded gif image
for(var r = 1; r < table.length; r++) {

var img = getImage(table[r]['picture']);
table[r]['picture'] = img;

}

See Also
Displaying Images in Table Cells, for a common application of getImage().

ISNULL(OBJECT)

Tests for null value.

Parameters
object a report object

Example
if(isNull(Text1.text)) {
// perform action when text for element Text1 is null

}

DOCINFO(STRING)

Returns information specified in the Document Info tab of the ‘Report
Properties’ dialog box. The fields include the following:

REPORT SCRIPTING

1112 of 2477

 – report.title
 – report.subject
 – report.author
 – report.keywords
 – report.comments
 – report.created
 – report.modified
 – report.format
 – report.format (available in onPrint Handler only).

Parameters
string String containing document property

Example
var text = docInfo['report.title'];

See Also
Report Properties, in Report Design, to set document information.

LOG(STRING)

Prints a log message to the server log. If the script is running inside Style
Studio, the log message is displayed in the Console window.

Parameters
string log message string

Example
log('onLoaded called');

See Also
Use log() to View Diagnostic Messages, for a common debugging
application.

RUNQUERY(QUERY_NAME [,PARAMETERS])

Returns a result set as a two-dimensional array that can be assigned to a
Table, Chart, or Section.

Parameters
query_name a string containing the query name
parameters (optional) a two dimensional string array,

each row containing a name-value pair
that corresponds to a query parameter

Example
var rs =
runQuery('orders',[['category','Business'],['price',100]]);

See Also
Running a Query, for common applications of runQuery().

REPORT SCRIPTING

1113 of 2477

SI.2 Element Object

The Element object is the base object of all other report objects. All other
objects share its methods and properties.

SI.2.1 General Properties

This section lists general properties of the Element object.

ALIGNMENT

Specifies the horizontal and vertical alignment of an element. Its value is a
bitwise OR of a horizontal alignment option and a vertical alignment
option.

Type
integer

Example
alignment = StyleConstant.H_CENTER | StyleConstant.V_CENTER;

See Also
Alignment Property, for more information about setting alignments.

BACKGROUND

Specifies the background color that fills the entire area of the element.

Type
java.awt.Color

Example
background = java.awt.Color.lightGray;

See Also
Color Property, for more information about setting color.

FONT

Specifies the font for this element.

Type
java.awt.Font

HORIZONTAL ALIGNMENT VERTICAL ALIGNMENT

StyleConstant.H_LEFT StyleConstant.V_TOP
StyleConstant.H_CENTER StyleConstant.V_CENTER
StyleConstant.H_RIGHT StyleConstant.V_BOTTOM
StyleConstant.H_CURRENCY StyleConstant.V_BASELINE

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

REPORT SCRIPTING

1114 of 2477

Example
font = new java.awt.Font("Arial", java.awt.Font.BOLD, 12);

See Also
Font Property, for more information about setting font.

FOREGROUND

Specifies the foreground (text) color of the element.

Type
java.awt.Color

Example
foreground = java.awt.Color.red;

See Also
Color Property, for more information about setting color.

INDENT

Specifies the indentation (in inches) if the element is the first on the line.

Type
double

Example
indent = 0.5;

KEEPWITHNEXT

Specifies that the element should be kept on the same page as the next
element.

Type
Boolean

Example
keepWithNext = true;

SCHEDULEACTION(BOOLEAN[,EMAILS])

Specifies whether the report should be executed as part of a scheduled task.
Set to false (for any element in the report) to override the scheduled task
setting and suppress report execution.

Parameters
Boolean true (default): execute task

false: do not execute task
emails Array of emails

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

REPORT SCRIPTING

1115 of 2477

You can use the scheduleAction function to conditionalize the execution of
a scheduled report task based on actual report data. For example, the
following script uses the value in a text element to determine whether the
report task should execute as scheduled.

Example
if (Text1.value > 10000) {
Text1.scheduleAction(true)

}
else {
Text1.scheduleAction(false)

}

If the scheduled action is a user notification (for example), then the user
will receive the alert only when the value of the ‘Text1’ component
exceeds the specified threshold.

Use the optional second parameter, emails, to dynamically set the list of
emails for the ‘Deliver To Emails’ scheduled action. The list that you
provide in the emails array supersedes any emails specified on the
Scheduler Action tab (both for user-scheduled tasks and administrator-
scheduled tasks), and automatically enables the ‘Deliver To Emails’ task
action.

Example
if (Text1.value > 10000) {
emails = ['joe@inetsoft.com', 'sue@inetsoft.com',

'mark@inetsoft.com'];
}
else {
emails = ['joe@inetsoft.com'];

}
Text1.scheduleAction(true, emails);

See Also
Scheduler, in Administration Reference, for information on administrator
scheduling.
Scheduling Reports and Dashboards, in End User, for information on end-
user scheduling.

REPORT SCRIPTING

1116 of 2477

ADHOCENABLED(BOOLEAN)

Specifies whether the component (Table, Crosstab, Section, or Chart) is
available for ad hoc editing by the end-user.

Parameters
Boolean true (default): ad hoc editing is available

false: ad hoc editing is not available

Example
if (parameter._USER_=='admin') {

Chart1.adhocEnabled=true;
}
else {

Chart1.adhocEnabled=false;
}

See Also
Ad Hoc Reporting, for information on end-user ad hoc editing.

SECTIONID

The ID of the Section containing the element. If the element is not in a
Section, then sectionID is undefined.

Type
string

Example
var table1 = report['sectionID'].table;

See Also
Sections, for scripting issues related to Sections.

SECTIONLEVEL

If the element is contained in a grouped Section, returns the grouping level
of the element’s sub-group. Otherwise, sectionLevel is undefined.

Type
integer

Example
var level = sectionLevel;

See Also
Sections, for scripting issues related to Sections.

SECTIONROW

The index of the Section row with which the element is associated. If the
element is not in a Section, then sectionRow is undefined.

REPORT SCRIPTING

1117 of 2477

Type
integer

Example
var table1 = report['sectionID'].table;
var row = table1[sectionRow];

See Also
Sections, for scripting issues related to Sections.

SECTIONTYPE

The type of Section band that contains the element. The type values are
‘Header’, ‘Content’, and ‘Footer’. If the element is not in a Section, then
sectionType is undefined

Type
string

Example
if(sectionType == "Footer") {
...

}

See Also
Sections, for scripting issues related to Sections.

SPACING

Specifies the line spacing (points) for a Text element.

Type
integer

Example
spacing = 1;

See Also
Text and TextBox, for scripting issues related to text.

TARGET

Specifies a target (anchor for a hyperlink) on this element.

Type
string

Example
target = text;

See Also
Target Property, for information about directing hyperlinks to a target.

REPORT SCRIPTING

1118 of 2477

VISIBLE

Specifies the visibility of the element. This property can be used to
dynamically hide elements in a report.

Type
Boolean

Example
visible = parseInt(text) > 0;

See Also
Visibility Property, for more information and examples.

VALUE

Returns the integer value of an element within a Section.

Type
integer

Example
if(text54.value < 100) {

...
}

See Also
Sections, for scripting issues related to Sections.

POSITION

Specifies the position of an element within a Section.

Type
number array

Example
position = [80, position.y];

See Also
Sections, for scripting issues related to Sections.

FIELD

Returns the current value bound to an element within a Section. The field
property uses the name of the bound data field (rather than the element’s
ID) to refer to the element’s value. If the element that references the field
array is not within a Section, then the field property is undefined.

REPORT SCRIPTING

1119 of 2477

Modifications to the
field array have no
effect on elements.

The field array provides read-only access to the values of all bound
elements in the current band/row, and is accessible from every element
inside the band.

The field array provides the original data bound to the element, not the
string representation provide by the Text Property. Therefor, if a column
has type Date, the field array returns a Date object.

Return
original value bound to an element in the Section

Example
field['customer_id'] + ':' + field['quantity'];

See Also
Text Property, for an alternative method of referring to text contents.
Formatting a Date, for information on formatting Date-type data as a
string.
Sections, for scripting issues related to Sections.

HINTS

Specifies that a column added to a Section using script is included when the
report is exported in CSV format. The value you specify for the property
becomes the name of the column in the exported file.

Example
hints['csv.column'] = 'NewColumn';

This property must be set in the Section element’s script, not in the script of
an element within the Section.

See Also
Element Script, for information about adding script to report elements.
Sections, for scripting issues related to Sections.

TOLIST(LIST [,OPTIONS])

Remove duplicate entries from input array to yield a list of unique elements
with optional sorting and grouping.

Parameter
list the array to filter
options a comma-separated Options String specifying

property-value pairs below:

Options String
sort Return sorted values {asc,desc,false}
sorton Measure by which to sort, e.g., sum(Total),

prior to filtering by maxrows
sorton2 Measure by which to sort, e.g., sum(Total),

REPORT SCRIPTING

1120 of 2477

after filtering by maxrows
remainder Label for 'Others' group in Top/Bottom-N

filtering. Omit option to suppress 'Others'.
maxrows Limits the number of rows returned.
distinct Return only distinct values {true,false}

The default is true.
date Return values grouped by date

{year/quarter/month/week/day/hour/minute/
second/weekday/monthname/weekdayname}

rounddate Same as 'date', but returns an array of dates

Example
Array1 = [2,3,1,2,3,3,2,2,1,0];
Array2 = toList(Array1,'sort=desc'); // returns [3,2,1,0]

See the toList section in the Report Scripting for applications and usage.

SI.2.2 Tables and Sections

This section presents functions for Table and Section operations.

See Also
SI.22, Section Object, for additional functions pertaining to Sections.
Data Tables, for scripting issues related to Tables.
Formula Tables, for scripting issues related to Formula Tables.
Sections, for scripting issues related to Sections.

AVERAGE(COLUMN[, GROUP[,CONDITION]])

Calculates the average of values in the specified column inside a group.
This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
average of all values in a group

Example
text = average("Quantity", "State", "field['Discount']>0");

See Also
average(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

CONCAT(COLUMN[, GROUP[,CONDITION]])

Concatenates all values in the specified column inside a group. This
function is only available to elements within a Section.

REPORT SCRIPTING

1121 of 2477

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
concatenation of all values in a group

Example
text = concat("Quantity", "State", "field['Discount']>0");

See Also
concat(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

CORRELATION(COLUMN, COLUMN2[, GROUP[,CONDITION]])

Calculates the correlation between two columns. This function is only
available to elements within a Section.

Parameters
column column label of the primary column
column2 column label of the column to correlate
group column label of the group to summarize
condition condition on the group to summarize

Return
correlation between the two columns

Example
text = correlation('Quantity','total','State',

"field['Discount']>0");

See Also
correlation(tablelens,column1,column2 [,condition]), for the Table
version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

COUNT(COLUMN[, GROUP[,CONDITION]])

Calculates the number of values in the specified column inside a group.
This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
number of values in a group

REPORT SCRIPTING

1122 of 2477

Example
text = count("Quantity", "State", "field['Discount']>0");

See Also
count(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

COUNTDISTINCT(COLUMN[, GROUP[,CONDITION]])

Calculates the number of distinct values in the specified column inside a
group. This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
number of distinct values in a group

Example
text = countDistinct("Quantity", "State",

"field['Discount']>0");

See Also
countDistinct(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

COVARIANCE(COLUMN, COLUMN2[, GROUP[,CONDITION]])

Calculate the covariance of two columns. This function is only available to
elements within a Section.

Parameters
column column label of the column to summarize
column2 second column used in calculating covariance
group column label of the group to summarize
condition condition on the group to summarize

Return
covariance of the two columns

Example
text = covariance('Quantity','Total',"State",

"field['Discount']>0");

See Also
covariance(tablelens,column, column2[, group[,condition]]), for the Table
version.
SI.22, Section Object, for additional functions pertaining to Sections.

REPORT SCRIPTING

1123 of 2477

Sections, for scripting issues related to Sections.

MAX(COLUMN[, GROUP[,CONDITION]])

Calculates the maximum of values in the specified column inside a group.
This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
maximum of all values in a group

Example
text = max("Quantity", "State", "field['Discount']>0");

See Also
max(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

MEDIAN(COLUMN[, GROUP[,CONDITION]])

Calculates the median number in the specified column inside a group. This
function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
median number of all values in a group

Example
text = median("Quantity", "State", "field['Discount']>0");

See Also
median(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

MIN(COLUMN[, GROUP[,CONDITION]])

Calculates the minimum of values in the specified column inside a group.
This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize

REPORT SCRIPTING

1124 of 2477

condition condition on the group to summarize

Return
minimum of all values in a group

Example
text = min("Quantity", "State", "field['Discount']>0");

See Also
min(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

MODE(COLUMN[, GROUP[,CONDITION]])

Calculates the mode of values in the specified column inside a group. This
function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
mode of all values in a group

Example
text = mode("Quantity", "State", "field['Discount']>0");

See Also
mode(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

NTHLARGEST(N, COLUMN[, GROUP[,CONDITION]])

Calculates the nth largest value in the specified column inside a group. This
function is only available to elements within a Section.

Parameters
n the nth largest value to search
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
nth largest value in a group

Example
text = nthLargest(2, "Quantity","State",

"field['Discount']>0");

REPORT SCRIPTING

1125 of 2477

See Also
nthLargest(n, cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

NTHMOSTFREQUENT(N, COLUMN[, GROUP[,CONDITION]])

Calculates the nth most frequently occurring value in the specified column
inside a group. This function is only available to elements within a Section.

Parameters
n nth most frequent occurring value to search
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
nth most frequent occurring value in a group

Example
text = nthMostFrequent(2,"Quantity","State",

"field['Discount']>0");

See Also
nthMostFrequent(n, cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

NTHSMALLEST(N, COLUMN[, GROUP[,CONDITION]])

Calculates the nth smallest value in the specified column inside a group.
This function is only available to elements within a Section.

Parameters
n the nth smallest value to search
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
nth smallest value in a group

Example
text = nthSmallest(2,"Quantity","State",

"field['Discount']>0");

See Also
nthSmallest(n, cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

REPORT SCRIPTING

1126 of 2477

POPULATIONSTANDARDDEVIATION(COLUMN[, GROUP,CONDITION])

Calculates the population standard deviation of values in the specified
column inside a group. This function is only available to elements within a
Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
population standard deviation of all values in a group.

Example
text = populationStandardDeviation("Quantity", "State",

"field['Discount']>0");

See Also
populationStandardDeviation(cellRange), for the Table version.
standardDeviation(column[, group[,condition]]), for sample version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

POPULATIONVARIANCE(COLUMN[, GROUP[,CONDITION]])

Calculates the population variance of values in the specified column inside
a group. This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
population variance of all values in a group

Example
text = populationVariance("Quantity","State",

"field['Discount']>0");

See Also
populationVariance(cellRange), for the Table version.
variance(column[, group[,condition]]), for the sample version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

PTHPERCENTILE(P, COLUMN[, GROUP[,CONDITION]])

Calculates the pth percentile, by group, of values in a specified column.
The pth percentile is the value below which p percent of the records in the

REPORT SCRIPTING

1127 of 2477

group fall. The pthPercentile() function is only available to elements
within a Section.

Parameters
p desired percentile value
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
p-th percentile of all values in a group

Example
text = pthPercentile(p,"Quantity", "State",

"field['Discount']>0");

See Also
pthPercentile(tablelens,p,column[, group,condition]), for the Table
version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

PRODUCT(COLUMN[, GROUP[,CONDITION]])

Calculates the product of values in the specified column inside a group.
This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
product of all values in a group

Example
text = product("Quantity", "State", "field['Discount']>0");

See Also
product(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

STANDARDDEVIATION(COLUMN[, GROUP[,CONDITION]])

Calculates the (sample) standard deviation of values in the specified
column inside a group. This function is only available to elements within a
Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize

REPORT SCRIPTING

1128 of 2477

condition condition on the group to summarize

Return
standard deviation of all values in a group

Example
text = standardDeviation("Quantity","State",
"field['Discount']>0");

See Also
standardDeviation(cellRange), for the Table version.
populationStandardDeviation(column[, group,condition]), for population
version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

SUM(COLUMN[, GROUP[,CONDITION]])

Calculates the sum of values in the specified column inside a group. This
function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
sum of all values in a group

Example
text = sum("Quantity", "State", "field['Discount']>0");

See Also
sum(cellRange), for the Table version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

VARIANCE(COLUMN[, GROUP[,CONDITION]])

Calculates the (sample) variance of values in the specified column inside a
group. This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
variance of all values in a group

Example
text = variance("Quantity", "State", "field['Discount']>0");

REPORT SCRIPTING

1129 of 2477

See Also
variance(cellRange), for the Table version.
populationVariance(column[, group[,condition]]), for the population
version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

WEIGHTEDAVERAGE(COLUMN, COLUMN2[, GROUP[,CONDITION]])

Calculates the weighted average of values in the specified columns inside a
group. This function is only available to elements within a Section.

Parameters
column column label of the column to summarize
column2 column label of the second column to summarize
group column label of the group to summarize
condition condition on the group to summarize

Return
weighted average of all values in a group

Example
text = weightedAverage("Total","Quantity","State",

"field['Discount']>0");

See Also
weightedAverage(tablelens,column,column2 [,condition]]), for the Table
version.
SI.22, Section Object, for additional functions pertaining to Sections.
Sections, for scripting issues related to Sections.

SI.2.3 Fixed Tables

This section describes functions that are provided for operations on fixed
Tables.

See Also
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

AVERAGE(CELLRANGE)

Calculates the average of values in the specified column inside a cell range.
This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cellrange whose average
is to be calculated.

Return
average of all values in a cell range

REPORT SCRIPTING

1130 of 2477

Example
text = average('[1,quantity]:[5,quantity]');
text = average('[1,0]:[5,0]');

See Also
average(tablelens,column[,condition]), for the tableLens version.
average(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

CONCAT(CELLRANGE)

Concatenates all values in the specified column inside a cell range. This
function is only available to fixed Table elements.

Parameters
cellrange start and end of cell range for concatenation

Return
concatenation of all values in a cellrange

Example
text = concat('[1,state]:[5,state]');
text = concat('[1,0]:[5,0]');

See Also
concat(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

COUNT(CELLRANGE)

Calculates the number of non-empty values in the specified column inside
a cellrange.This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range of the column
to be counted.

Return
number of values in a cellrange

Example
text = count('[1,state]:[1,state]');
text = count('[1,0]:[5,0]');

See Also
count(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

REPORT SCRIPTING

1131 of 2477

COUNTDISTINCT(CELLRANGE)

Calculates the number of distinct values in the specified column inside a
cell range. This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range of the column
to be counted (distinctly)

Return
number of distinct values in a cellrange

Example
text= countDistinct('[1,state]:[5,state]');

See Also
countDistinct(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

MAX(CELLRANGE)

Calculates the maximum of values in the specified column inside a
cellrange. This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose
aggregate is to be calculated

Return
maximum of all values in a group

Example
text = max('[1,state]:[5,state]');

See Also
max(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

MEDIAN(CELLRANGE)

Calculates the median number in the specified column inside a cell range.
This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose median
is to be calculated

Return
median number of all values in a cell range

REPORT SCRIPTING

1132 of 2477

Example
text = median('[1,price]:[5,price]');

See Also
median(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

MIN(CELLRANGE)

Calculates the minimum of values in the specified column inside a cell
range. This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose minimum
value is to be calculated

Return
minimum of all values in a cellrange

Example
text = min('[1,price]:[5,price]');

See Also
min(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

MODE(CELLRANGE)

Calculates the mode of values in the specified column inside a cell range.
This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose mode is
to be calculated

Return
mode of all values in a cellrange

Example
text = mode('[1,quantity]:[5,quantity]');

See Also
mode(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

REPORT SCRIPTING

1133 of 2477

NTHLARGEST(N, CELLRANGE)

Calculates the nth largest value in the specified column inside a cell range.
This function is only available to fixed Table elements.

Parameters
n the nth largest value to search
cellrange the start and end of cell range whose

nth largest value is to be calculated

Return
nth largest value in a cellrange

Example
text=nthLargest(2, '[1,price]:[5,price]');

See Also
nthLargest(n, column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

NTHMOSTFREQUENT(N, CELLRANGE)

Calculates the nth most frequently occurring value in the specified column
inside a cell range. This function is only available to fixed Table elements.

Parameters
n the nth most frequent occurring value to search
cellrange the start and end of cell range whose

nth most frequent value is to be calculated

Return
nth most frequent occurring value in a cellrange

Example
text=
nthMostFrequent(2,'[1,state]:[5,state]');

See Also
nthMostFrequent(n, column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

NTHSMALLEST(N, CELLRANGE)

Calculates the nth smallest value in the specified column inside a cell
range. This function is only available to fixed Table elements.

Parameters
n the nth smallest value to search
cellrange the start and end of cell range whose

aggregate is to be calculated

REPORT SCRIPTING

1134 of 2477

Return
nth smallest value in a cellrange

Example
text = nthSmallest(2,'[1,price]:[5,price]');

See Also
nthSmallest(n, column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

POPULATIONSTANDARDDEVIATION(CELLRANGE)

Calculates the population standard deviation of values in the specified
column inside a cellrange. This function is only available to fixed Table
elements.

Parameters
cellrange the start and end of cell range whose

population standard deviation is to be
calculated

Return
population standard deviation of all values in a cellrange.

Example
text=populationStandardDeviation('[1,sales]:[5,sales]');

See Also
populationStandardDeviation(column[, group,condition]), for the Section
version.
standardDeviation(cellRange), for the sample version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

POPULATIONVARIANCE(CELLRANGE)

Calculates the population variance of values in the specified column inside
a cellrange. This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose

population variance is to be calculated

Return
population variance of all values in a cellrange

Example
text=populationVariance('[1,sales]:[5,sales]');

REPORT SCRIPTING

1135 of 2477

See Also
populationVariance(column[, group[,condition]]), for the Section version.
variance(cellRange), for the sample version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

PRODUCT(CELLRANGE)

Calculates the product of values in the specified column inside a cell range.
This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose

price is to be calculated

Return
product of all values in a cellrange

Example
text = product('[1,price]:[5,price]');

See Also
product(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

STANDARDDEVIATION(CELLRANGE)

Calculates the (sample) standard deviation of values in the specified
column inside a cellrange. This function is only available to fixed Table
elements.

Parameters
cellrange the start and end of cell range whose

standard deviation is to be calculated

Return
standard deviation of all values in a cellrange

Example
text=standardDeviation("[1,price]:[5,price]");

See Also
standardDeviation(column[, group[,condition]]), for the Section version.
populationStandardDeviation(cellRange), for the population version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

REPORT SCRIPTING

1136 of 2477

SUM(CELLRANGE)

Calculates the sum of values in the specified column inside a cell range.
This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose

sum is to be calculated

Return
sum of all values in a cellrange

Example
text = sum("[1,quantity]:[5,quantity]");

See Also
sum(column[, group[,condition]]), for the Section version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

VARIANCE(CELLRANGE)

Calculates the variance of values in the specified column inside a cell
range. This function is only available to fixed Table elements.

Parameters
cellrange the start and end of cell range whose

price is to be calculated

Return
variance of all values in a cellrange

Example
text = variance("[1,price]:[5,price]");

See Also
variance(column[, group[,condition]]), for the Section version.
populationVariance(cellRange), for the population version.
SI.6, Table Object , for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

SI.2.4 Global Objects

The functions in this section operate on a tableLens object. The
‘Table1.Tablelens’ parameter in the examples below refers to the
TableLens class of the Table element ‘Table1’.

AVERAGE(TABLELENS,COLUMN[,CONDITION])

Calculates the average of values in the specified column.

REPORT SCRIPTING

1137 of 2477

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
average of all values in a column

Example
text = average(Table1.tableLens, "Quantity", "Discount>0");

See Also
average(cellRange), for the Table version.

CONCAT(TABLELENS,COLUMN[,CONDITION])

Concatenates all values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
concatenation of all values in a column

Example
text = concat(Table1.tableLens,"State","Discount>0");

See Also
concat(cellRange), for the Table version.

CORRELATION(TABLELENS,COLUMN1,COLUMN2 [,CONDITION])

Calculates the correlation between two columns.

Parameters
tableLens the tableLens object of the table
column1 column label of the primary column
column2 column label of the column to correlate
condition condition on the group to summarize

Return
correlation between the two columns

Example
text = correlation(Table1.tableLens,'Quantity','Total',

"Discount>0");

See Also
correlation(column, column2[, group[,condition]]), for the Section
version.
SI.6, Table Object , for additional functions pertaining to Tables.

REPORT SCRIPTING

1138 of 2477

Data Tables, for scripting issues related to fixed Tables.

COUNT(TABLELENS,COLUMN[,CONDITION])

Calculates the number of values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
number of values in a column

Example
text = count(Table1.tableLens,'Quantity',"Discount>0");

See Also
count(cellRange), for the Table version.

COUNTDISTINCT(TABLELENS,COLUMN[,CONDITION])

Calculates the number of distinct values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
number of distinct values in a column

Example
text=countDistinct(Table1.tableLens,'Quantity',

"Discount>0");

See Also
countDistinct(cellRange), for the Table version.

COVARIANCE(TABLELENS,COLUMN, COLUMN2[, GROUP[,CONDITION]])

Calculates the covariance of two columns.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
column2 second column used in calculating covariance
condition condition on the group to summarize

Return
covariance of the two columns

REPORT SCRIPTING

1139 of 2477

Example
text =
covariance(Table1.tableLens,'Quantity','Total',

"Discount>0");

See Also
covariance(column, column2[, group[,condition]]), for the Section
version.

MAX(TABLELENS,COLUMN[,CONDITION])

Calculates the maximum of values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
maximum of all values in a column

Example
text = max(Table1.tableLens,'Quantity',"Discount>0");

See Also
max(cellRange), for the Table version.

MEDIAN(TABLELENS,COLUMN[,CONDITION])

Calculates the median number in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
median number of all values in a column

Example
text = median(Table1.tableLens, 'Quantity', "Discount>0");

See Also
median(cellRange), for the Table version.

MIN(TABLELENS,COLUMN[,CONDITION])

Calculates the minimum of values in the specified column inside a group.
This function is only available to elements in a section.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize

REPORT SCRIPTING

1140 of 2477

condition condition on the column to summarize

Return
minimum of all values in a column

Example
text = min(Table1.tableLens,'Quantity',"Discount>0");

See Also
min(cellRange), for the Table version.

MODE(TABLELENS,COLUMN[,CONDITION])

Calculate the mode of values in the specified column inside a group. This
function is only available to elements in a section.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
mode of all values in a column

Example
text = mode(Table1.tableLens,'Quantity',"Discount>0");

See Also
mode(cellRange), for the Table version.

NTHLARGEST(TABLELENS,N,COLUMN[,CONDITION])

Calculate the nth largest value in the specified column.

Parameters
tableLens the tableLens object of the table
n the nth largest value to search
column column label of the column to summarize
condition condition on the column to summarize

Return
nth largest value in a column

Example
text = nthLargest(Table1.tableLens,2,'Quantity',

"Discount>0");

See Also
nthLargest(n, cellRange), for the Table version.

NTHMOSTFREQUENT(TABLELENS,N,COLUMN [,CONDITION])

Calculate the nth most frequently occurring value in the specified column.

REPORT SCRIPTING

1141 of 2477

Parameters
tableLens the tableLens object of the table
n the nth most frequent value to search
column column label of the column to summarize
condition condition on the column to summarize

Return
nth most frequently occurring value in a column

Example
text =
nthMostFrequent(Table1.tableLens,2,'Quantity',

"Discount>0");

See Also
nthMostFrequent(n, cellRange), for the Table version.

NTHSMALLEST(TABLELENS,N,COLUMN[,CONDITION])

Calculate the nth smallest value in the specified column.

Parameters
tableLens the tableLens object of the table
n the nth smallest value to search
column column label of the column to summarize
condition condition on the column to summarize

Return
nth smallest value in a column

Example
text = nthSmallest(Table1.tableLens,2,'Quantity',

"Discount>0");

See Also
nthSmallest(n, cellRange), for the Table version.

POPULATIONSTANDARDDEVIATION(TABLELENS,COLUMN
[,CONDITION])

Calculate the population standard deviation of values in the specified
column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
population standard deviation of all values in a column.

Example
text = populationStandardDeviation(Table1.tableLens,

'Quantity',"Discount>0");

REPORT SCRIPTING

1142 of 2477

See Also
populationStandardDeviation(cellRange), for the Table version.

POPULATIONVARIANCE(TABLELENS,COLUMN [,CONDITION])

Calculate the population variance of values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
population variance of all values in a column

Example
text=
populationVariance(Table1.tableLens,'Quantity',

"Discount>0");

See Also
populationVariance(cellRange), for the Table version.

PTHPERCENTILE(TABLELENS,P,COLUMN[, GROUP,CONDITION])

Calculate the pth percentile of values in the specified column inside a
group.

Parameters
tableLens the tableLens object of the table
p the pth percentile to be calculated
column column label of the column to summarize
condition condition on the column to summarize

Return
p-th percentile of all values in a group

Example
text = pthPercentile(Table1.tableLens,99,'Quantity',

"Discount>0");

See Also
pthPercentile(p, column[, group[,condition]]), for the Section version.

PRODUCT(TABLELENS,COLUMN[, CONDITION])

Calculate the product of values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

REPORT SCRIPTING

1143 of 2477

Return
product of all values in a column

Example
text = product(Table1.tableLens,"Quantity","Discount>0");

See Also
product(cellRange), for the Table version.

STANDARDDEVIATION(TABLELENS,COLUMN [,CONDITION])

Calculate the standard deviation of values in the specified column

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
standard deviation of all values in a column

Example
text = standardDeviation(Table1.tableLens,"Quantity",

"Discount>0");

See Also
standardDeviation(cellRange), for the Table version.

SUM(TABLELENS,COLUMN[,CONDITION])

Calculate the sum of values in the specified column.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
condition condition on the column to summarize

Return
sum of all values in a column

Example
text = sum(Table1.tableLens,"Quantity","Discount>0");

See Also
sum(cellRange), for the Table version.

VARIANCE(TABLELENS,COLUMN[,CONDITION])

Calculate the variance of values in the specified column inside a group.
This function is only available to elements in a section.

Parameters
tableLens the tableLens object of the table

REPORT SCRIPTING

1144 of 2477

column column label of the column to summarize
condition condition on the column to summarize

Return
variance of all values in a column

Example
text = variance(Table1.tableLens,"Quantity","Discount>0");

See Also
variance(cellRange), for the Table version.

WEIGHTEDAVERAGE(TABLELENS,COLUMN,COLUMN2 [,CONDITION]])

Calculate the weighted average of values in the specified columns inside a
group. This function is only available to elements in a section.

Parameters
tableLens the tableLens object of the table
column column label of the column to summarize
column2 column label of the second column to summarize
condition condition on the group to summarize

Return
weightedAverage of all values in a column

Example
text = weightedAverage(Table1.tableLens,"Total",

"Quantity","Discount>0");

See Also
weightedAverage(column, column2[, group[,condition]]), for the Section
version.

SI.3 Tab Object

A Tab element advances the printing to the next tab stop. The Tab element
also serves as the superclass of the Text Object. The properties defined in
the Tab element are also available in a Text element for controlling the
behavior of tabs in the text string.

Super Class
Element Object

FILLSTYLE

The line style used to fill the tab space. Styles are defined in the StyleReport
Object.

Type
integer

REPORT SCRIPTING

1145 of 2477

Example
fillStyle = StyleConstant.THIN_LINE;

RIGHTTAB

Specifies that the tab is a right tab. A right tab advances the printing to the
next tab stop and right-aligns the following contents at that location.

Type
Boolean

Example
rightTab = true;

TABSTOPS

Specifies tab stop locations as an array. Locations are specified in inches
from the left edge of the page printable area.

Type
number array

Example
tabStops = [1, 2.5, 4, 5.5, 7];

SI.4 Text Object

Text elements are the most commonly used report element. They can
display simple lines of text or full paragraphs.

Super Class
Tab Object

See Also
Text Element, in Report Design, for basic information on Text elements.
Text and TextBox, for information on scripting Text.

HYPERLINK

Specifies a hyperlink to a report, element target, or a URL.

Type
String, or inetsoft.report.Hyperlink

Example
hyperlink = "Tutorial/Interactive";

See Also
Hyperlinks, in Report Design, for basic information on hyperlinks.
Using the onClick Handler, for other approaches to hyperlinking.

REPORT SCRIPTING

1146 of 2477

JUSTIFY

Specifies right-justification for text. When true, the right edge of the text is
aligned evenly.

Type
Boolean

Example
justify = true;

ORPHANCONTROL

Specifies text paragraph widow/orphan control. When true, the report
engine attempts to avoid single lines at the top or bottom of a page.

Type
Boolean

Example
orphanControl = false;

GROW

Specifies whether a text element (within a Section) can grow vertically to
display contents that exceed the element’s original size.

Type
Boolean true: grow vertically to display contents

false: keep current size, and crop contents

Example
grow = true;

See Also
Section Element, in Report Design, for information about Sections.

TEXT

The string displayed by the text element.

Type
string

Example
text = 'Hello.'
text = (new Date()).toString();

TEXTADVANCE

Specifies the amount of space (in points) to advance following the text
element.

REPORT SCRIPTING

1147 of 2477

Type
integer

Example
textAdvance = 0;

SI.5 Heading Object

A heading object is a special Text element. Like a regular Text element, a
heading object displays a block of text. In addition, a heading object has a
heading level, which has two uses:

• The heading level determines the heading number (e.g., 1.2, 2.1.1., etc.)
that is added to the heading text.

• The heading level is used to construct the Table of Contents, if the report
contains one.

Super Class
Text Object

See Also
Heading and Table of Contents, in Report Design, for general information.

LEVEL

Specifies the heading level (top-level = 1).

Type
integer

Example
level = 2;

SI.6 Table Object

Table elements display tabular data. Tables can flow across pages, or
horizontally break between pages. By default, table sizes (including
column width and row heights) are automatically calculated based on the
cell contents.

You can use built-in table styles to control display attributes such as font,
color, and alignment. Therefore, a report application normally does not
need to specify many table attributes in script.

Super Class
Element Object

See Also
Table Element, in Report Design, for general information on Tables.
SI.2.3, Fixed Tables, for additional functions pertaining to Tables.
Data Tables, for scripting issues related to fixed Tables.

REPORT SCRIPTING

1148 of 2477

SI.6.1 General Properties

This section presents general properties of the Table object.

FIXEDWIDTHS

Specifies fixed column widths (in points), which override the defaults
calculated by the report engine. Set the entire fixedWidths array in one
command, rather than modifying one item at a time.

Type
integer array

Example
fixedWidths = [80, 100, 100, 90, 40];

See Also
Table Layout, in Report Design, for more information on width.

LAYOUT

Specifies the table layout option, which controls how the table is formatted.
It must have one of the following values:

 – TABLE_FIT_CONTENT
 – TABLE_FIT_PAGE
 – TABLE_EQUAL_WIDTH
 – TABLE_FIT_CONTENT_1PP
 – TABLE_FIT_CONTENT_PAGE

Type
integer

Example
layout = StyleConstant.TABLE_FIT_CONTENT;

See Also
Table Layout, in Report Design, for more information on the options.

ORPHANCONTROL

Specifies table row widow/orphan control. When true, the report engine
attempts to avoid placing a single row at the top or bottom of a page.

Type
Boolean true: avoid orphan rows

false: allow orphan rows

Example
orphanControl = true;

REPORT SCRIPTING

1149 of 2477

COLUMNMATCHING

Specifies that table columns should match column widths from another
table. This is useful when one table follows another in the report, and you
want to align the columns of the second table with respect to the first.

Type
two dimensional array

Example
// Arbitrary matching:
columnMatching =
['tableElementId',[[0,0],[1,[1,2]],[[2,3],3]]];

// Exact (one-to-one) matching:
columnMatching =
['tableElementId',[[0,0],[1,1],[2,2],[3,3]]];

The mapping between columns of the adjusted table (i.e., the table being
modified) and the reference table is an array that contains the element ID of
the reference table followed by pairs of matched columns:

['RefId',[[col,Refcol],[col,Refcol],...,[col,Refcol]]]

In the above, col represents an individual index or arrays of indices from
the adjusted table, and Refcol represents an individual index or arrays of
indices from the reference table. For example, consider the following valid
matches:

• [[0,1,2],0]: First three columns (0, 1, 2) are adjusted to span the width
of the first column (0) in the reference table.

• [[0,1,2],[0,1]]: First three columns (0, 1, 2) are adjusted to span the
combined width of the first two columns (0, 1) in the reference table.

• [0,[0,1]]: First column (0) is adjusted to span the combined width of
the first two columns (0, 1) in the reference table.

Each column of each table must appear once in the mapping. Indices do not
need to appear in order; however, the matched columns must be alignable.
For example, the pairing [[0,1,2],[0,1]] is valid, but [[0,1,2],[1,2]] is
not, because it does not permit the first column (0) of the reference table to
be placed.

See Also
Matching Column Sizes in Two Tables, in Report Design, for more
information.

FILLPAGE

Specifies how a table is presented in a page. When true, the table is
stretched to the bottom of the page.

REPORT SCRIPTING

1150 of 2477

Type
Boolean

Example
fillPage = true;

ROWVISIBLE

Controls the visibility of the row in which it is placed. The rowVisible
property is only available to cell formulas within a Freehand Table.

Type
Boolean true: show corresponding row

false: hide corresponding row

Example
rowVisible = false;

See Also
Creating a Table Using Freehand Operations, in Report Design, for more
information.

REGIONVISIBLE

Controls the visibility of the region (header, body, etc.) in which it is
placed. The regionVisible property is only available to cell formulas
within a Freehand Table.

Type
Boolean true: show corresponding region

false: hide corresponding region

Example
regionVisible = false;

See Also
Creating a Table Using Freehand Operations, in Report Design, for more
information.

ROW

Returns the index of the base table row corresponding to current Freehand
Table cell. Hidden rows are not indexed. The row property is read-only, and
available only to cell formulas within a Freehand Table.

Type
integer

Example
row;

REPORT SCRIPTING

1151 of 2477

To reference the current row index of the source data table prior to row-
hiding, use dataRow().

DATAROW

Returns the index of the base table row corresponding to the current
Freehand Table cell. Both hidden and visible rows are indexed. The
dataRow property is read-only, and available only to cell formulas within a
Freehand Table.

Type
integer

Example
dataRow;

To reference the current row index of the displayed output table (i.e., to
ignore hidden rows), use row().

PADDING

Specifies the space (in pixels) between the table cell border and the table
cell contents, using array of form [top,left,bottom,right].

Type
java.awt.Insets or integer array

Example
padding = new java.awt.Insets(1, 2, 1, 2);

or
padding = [1, 2, 1, 2];

TABLE

Two dimensional array holding the table cell data as displayed (after any
grouping and aggregation). If no grouping or summarization is defined on
the table, the ‘table’ property is the same as the ‘data’ property. The data
can be referenced using the row number as the first array index and the
column number as the second array index.

Type
two dimensional array

Example
var total = 0;
for(var row = 1; row < table.length; row++) {
for(var col = 0; col < table.size; col++) {
total = total + table[row][col];

}
}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html

REPORT SCRIPTING

1152 of 2477

See Also
Accessing Table Data, for information about working with table data.

TABLE.LENGTH

Specifies the number of rows in a table, as displayed. This setting is
overwritten by the number of rows returned by the query that is bound to
the table. It counts the header rows as well as the data rows.

Type
integer

Example
table.length = 10;

See Also
Accessing Table Data, for information about working with table data.
data.length, for number of rows prior to grouping and summarization.

TABLE.SIZE

Specifies the number of columns in a table, as displayed. This setting is
overwritten by the number of columns returned by the query that is bound
to the table.

Type
integer

Example
table.size = 10;

See Also
Accessing Table Data, for information about working with table data.
data.size, for number of columns prior to grouping and summarization.

DATA

Two dimensional array containing the original table data (prior to grouping
and aggregation) If no grouping or summarization is defined for the table,
the ‘data’ property is the same as the ‘table’ property. Otherwise, ‘data’
holds the raw data and ‘table’ holds the summarized data. The data can be
referenced using the row number as the first array index and the column
number as the second array index.

Type
two dimensional array

Example
var total = 0;
for(var row = 1; row < data.length; row++) {

for(var col = 0; col < data.size; col++) {

REPORT SCRIPTING

1153 of 2477

total = total + data[row][col];
}

}

See Also
Accessing Table Data, for information about working with table data.

DATA.LENGTH

Returns the number of rows in a table, prior to aggregation and
summarization. This setting is overwritten by the number of rows returned
by the query that is bound to the table.

Type
integer

Example
if (data.length == 1) {
Text1.text = 'No data returned.'

}

See Also
table.length, for the length of post-aggregate (as-displayed) results table.
Accessing Table Data, for information about working with table data.

DATA.SIZE

Returns the number of columns in a table, prior to grouping and
aggregation. This setting is overwritten by the number of columns returned
by the query that is bound to the table.

Type
integer

Example
if (data.size > table.size) {
Text1.text = 'Some table columns are hidden.';

}

See Also
table.size, for the width of post-aggregate (as-displayed) results table.
Accessing Table Data, for information about working with table data.

CELLROWBORDERCOLOR

Specifies the Table cell row border color as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column number as the second index.

Type
two dimensional array of java.awt.Color

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

REPORT SCRIPTING

1154 of 2477

Example
cellRowBorderColor[0][0] = java.awt.Color.red;

CELLCOLBORDERCOLOR

Specifies the Table cell column border color as a two dimensional array.
The attribute can be referenced using the row number as the first index and
the column number as the second index.

Type
two dimensional array of java.awt.Color

Example
cellColBorderColor[0][0] = java.awt.Color.red;

CELLROWBORDER

Specifies the Table cell row border line style as a two dimensional array.
The attribute can be referenced using the row number as the first index and
the column number as the second index.

Type
two dimensional array of Line Styles constants

Example
cellRowBorder[0][0] = StyleConstant.DOUBLE_LINE;

See Also
SI.41, StyleReport Object, for more information on constants.

CELLCOLBORDER

Specifies the Table cell column border line style as a two dimensional
array. The attribute can be referenced using the row number as the first
index and the column number as the second index.

Type
two dimensional array of Line Styles constants

Example
cellColBorder[0][0] = StyleConstant.DOUBLE_LINE;

See Also
SI.41, StyleReport Object, for more information on constants.

CELLINSETS

Specifies the Table cell gap space as a two dimensional array. The attribute
can be referenced using the row number as the first index and the column
number as the second index.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

REPORT SCRIPTING

1155 of 2477

Type
two dimensional array of java.awt.Insets,
or array of four integers

Example
cellInsets[0][0] = [1, 2, 1, 2];

CELLSPAN

Specifies Table cell spanning as a two dimensional array. The attribute can
be referenced using the row number as the first index and the column
number as the second index.

Type
two dimensional array of java.awt.Dimension,
or array of row integers

Example
cellSpan[0][0] = [1, 2]; // span one column two rows

CELLFONT

Specifies the Table cell font as a two dimensional array. The attribute can
be referenced using the row number as the first index and the column
number as the second index.

Type
two dimensional array of java.awt.Font

Example
cellFont[0][0] = new java.awt.Font('Serif',

java.awt.Font.BOLD, 12);

CELLALIGNMENT

Specifies the Table cell alignment as a two dimensional array. The attribute
can be referenced using the row number as the first index and the column
number as the second index.

Type
two dimensional array of Alignments constants

Example
cellAlignment[0][0] = StyleConstant.H_CENTER;

See Also
SI.41, StyleReport Object, for more information on constants.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Dimension.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

REPORT SCRIPTING

1156 of 2477

CELLLINEWRAP

Specifies the Table cell line wrap settings as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column number as the second index.

Type
two dimensional array of Boolean

Example
cellLineWrap[0][0] = false;

CELLFOREGROUND

Specifies the Table cell foreground color as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column number as the second index.

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify colors.

Type
two dimensional array of java.awt.Color or RGB values

Example
cellForeground[0][0] = java.awt.Color.green;
cellForeground[1][3] = [255,0,0]

CELLBACKGROUND

Specifies the Table cell background color as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column number as the second index.

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify colors.

Type
two dimensional array of java.awt.Color or RGB values

Example
cellBackground[0][0] = java.awt.Color.green;
cellBackground[1][3] = [255,0,0]

CELLFORMAT

Specifies the Table cell data format as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column number as the second index.

Type
two dimensional array of java.text.Format

Example
cellFormat[0][0] = new
java.text.DecimalFormat('$#,##0.00');

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/Format.html

REPORT SCRIPTING

1157 of 2477

See Also
formatDate(), formatNumber(), for information on date/number formats.
Format Types, in Report Design, for general information.

CELLPRESENTER

Specifies the Table cell data presenter as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column number as the second index.

Type
two dimensional array of inetsoft.report.Presenter

Example
cellPresenter[0][0] =
‘inetsoft.report.painter.BooleanPresenter’;

See Also
Cell Presenter, in Report Design, for general information.

COLALIGNMENT

Specifies the Table column alignment as an array. Use the column number
or column header as the index to reference the attribute.

Type
array of Alignments constants

Example
colAlignment['Total'] = StyleConstant.H_RIGHT;

See Also
SI.41, StyleReport Object, for more information on constants.

COLBACKGROUND

Specifies the Table column background as an array. Use the column
number or column header as the index to reference the attribute.

Type
array of java.awt.Color

Example
colBackground['Total'] = java.awt.Color.green;

COLBORDER

Specifies the Table column border line style as an array. Use the column
number or column header as the index to reference the attribute.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

REPORT SCRIPTING

1158 of 2477

Type
array of Line Styles constants

Example
colBorder['Total'] = StyleConstant.DOUBLE_LINE;

See Also
SI.41, StyleReport Object, for more information on constants.

COLBORDERCOLOR

Specifies the Table column border color as an array. Use the column
number or column header as the index to reference the attribute.

Type
array of java.awt.Color

Example
colBorderColor['Total'] = java.awt.Color.yellow;

COLFONT

Specifies the Table column font as an array. Use the column number or
column header as the index to reference the attribute.

Type
array of java.awt.Font

Example
colFont['Total'] =
new java.awt.Font("Arial", java.awt.Font.PLAIN, 10);

COLFOREGROUND

Specifies the Table column foreground color as an array. Use the column
number or column header as the index to reference the attribute.

Type
array of java.awt.Color

Example
colForeground['Total'] = java.awt.Color.red;

COLINSETS

Specifies the Table column gap space as an array. Use the column number
or column header as the index to reference the attribute.

Type
array of java.awt.Insets

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

REPORT SCRIPTING

1159 of 2477

Example
// two points at left and right
colInsets['Total'] = [0, 2, 0, 2];

COLLINEWRAP

Specifies the Table column line wrap option as an array. Use the column
number or column header as the index to reference the attribute.

Type
array of Boolean

Example
colLineWrap['Total'] = false;

COLWIDTH

Specifies the table column width (in points) as an array. Use the column
number or column header as the index to reference the attribute.

Type
array of integers (in points)

Example
colWidth['Total'] = 50;

MAXCOLWIDTH

Specifies the maximum width for the columns. If a column exceeds the
width, the contents of the cell are automatically wrapped. This property
applies only to the ‘Fit Content’ and ‘Fit Page’ layouts.

Type
float

Example
maxColWidth = 50;

See Also
Table Layout, in Report Design, for information about Table layouts.

ROWALIGNMENT

Specifies the Table row alignment as an array. Use the row number as the
index to reference the attribute.

Type
array of Alignments constants

Example
rowAlignment[0] = StyleConstant.H_RIGHT;

REPORT SCRIPTING

1160 of 2477

See Also
SI.41, StyleReport Object, for more information on constants.

ROWBACKGROUND

Specifies the Table row background as an array. Use the row number as the
index to reference the attribute.

Type
array of java.awt.Color or RGB value

Example
rowBackground[1] = java.awt.Color.green;
rowBackground[1] = [0,0,255];

ROWBORDER

Affects the Table row border line style as an array. Use the row number as
the index to reference the attribute.

Type
array of Line Styles constants

Example
rowBorder[0] = StyleConstant.DOUBLE_LINE;

See Also
SI.41, StyleReport Object, for more information on constants.

ROWBORDERCOLOR

Specifies the Table row border color as an array. Use the row number as the
index to reference the attribute.

Type
array of java.awt.Color

Example
rowBorderColor[0] = java.awt.Color.yellow;

ROWFONT

Specifies the Table row font as an array. Use the row number as the index
to reference the attribute.

Type
array of java.awt.Font

Example
rowFont[0] = new java.awt.Font("Arial",
java.awt.Font.PLAIN, 10);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

REPORT SCRIPTING

1161 of 2477

ROWFOREGROUND

Specifies the Table row foreground color as an array. Use the row number
as the index to reference the attribute.

Type
array of java.awt.Color

Example
rowForeground[0] = java.awt.Color.red;

ROWINSETS

Specifies the Table row gap space as an array. Use the row number as the
index to reference the attribute.

Type
array of java.awt.Insets

Example
// two points at left and right
rowInsets[0] = [0, 2, 0, 2];

ROWLINEWRAP

Species the Table row line wrap option as an array. Use the row number as
the index to reference the attribute.

Type
array of Boolean

Example
rowLineWrap[0] = false;

ROWHEIGHT

Specifies the table row heights as an array, with row number as the array
index. The following rules apply:

• A positive integer value specifies a fixed row height in pixels.

• A value of -1 specifies automatic row height calculation (default).

• A negative integer value (other than -1) specifies a fixed minimum row
height in pixels. In this case, the row height is calculated automatically
but constrained to be no smaller than the specified value.

• A value of 0 specifies that the row should be hidden (i.e., zero height).

Type
array of integers

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html

REPORT SCRIPTING

1162 of 2477

Examples
rowHeight[1] = -50; // minimum height of 50 for row 1
rowHeight[2] = -1; // auto-height for row 2
rowHeight[3] = 0; // hide row 3
rowHeight[4] = 99; // fixed height of 99 for row 4

FORMAT

Specifies the format of a Table column.

Type
array of java.text.Format

Example
format['price'] =

java.text.NumberFormat.getCurrencyInstance();

See Also
formatDate(), formatNumber(), for information on date/number formats.
Format Types, in Report Design, for general information.

ROWFORMAT

Specifies the format of a Table row.

Type
array of java.text.Format

Example
rowFormat[0] = java.text.DateFormat.getDateInstance();

See Also
formatDate(), formatNumber(), for information on date/number formats.
Format Types, in Report Design, for general information.

HYPERLINK

Add hyperlinks to a Table column. Hyperlinks can point to a report,
element target, or a URL.

Type
array of string, or inetsoft.report.Hyperlink

Example
hyperlink['State'] = "Tutorial/Interactive";

See Also
Hyperlinks, in Report Design, for basic information on hyperlinks.
Using the onClick Handler, for other approaches to hyperlinking.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/Format.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/Format.html

REPORT SCRIPTING

1163 of 2477

HIGHLIGHTED(NAME)

Identifies whether a highlight with the specified name has been applied to
the table (i.e., whether the highlight condition has been satisfied.)

Parameter
name name of the highlight

Example
if(Table1.highlighted.lowSales) {
log('lowSales highlight was applied')

}

See Also
Highlighting, in Report Design, for basic information on highlights.

SETHYPERLINK(ROW, COL, HYPERLINK)

Creates a hyperlink for an individual table cell.

Parameter
row row index
col column index
hyperlink string or

inetsoft.report.Hyperlink.Ref object

Example
setHyperlink(1, 1, "Tutorial/Ad Hoc");
setHyperlink(1, 1, null); // remove hyperlink

See Also
Hyperlinks, in Report Design, for basic information on hyperlinks.
Using the onClick Handler, for other approaches to hyperlinking.

PRESENTER

Adds a presenter to a column of the Table.

Type
array of inetsoft.report.Presenter

Example
presenter[2] =
newInstance('inetsoft.report.painter.IconCounterPresenter')

Note that the ‘newInstance(name)’ method is used to create the object
instead of the ‘new’ operator, because otherwise the painter package will
confuse the JavaScript class loader.

See Also
Cell Presenter, in Report Design, for general information.

REPORT SCRIPTING

1164 of 2477

ROWPRESENTER

Adds a presenter to a row of the Table.

Type
array of inetsoft.report.Presenter

Example
rowPresenter[0] =
newInstance('inetsoft.report.painter.HeaderPresenter');

Note that the ‘newInstance(name)’ method is used to create the object
instead of the ‘new’ operator, because otherwise the painter package will
confuse the JavaScript class loader.

See Also
Cell Presenter, in Report Design, for general information.

SIZE

Sets the size of the Table within a Section.

Type
inetsoft.report.Size

Example
size = [8,4];

See Also
Section Element, in Report Design, for information about Sections.

QUERY

Specifies the query, Worksheet, or data model bound to the Table element.

Type
string

Example
// Query:
Table1.query = 'customers';
Table1.query = 'DWS/Fast Go Game'

// Global Worksheet:
Table1.query = 'ws:global:State Stats';
Table1.query = 'ws:global:Sales/Sales Explore';

// Local Worksheet:
Table1.query = "ws:Sales Explore";

// User Worksheet:
Table1.query = "ws:Annie:Sales Explore";

// Data Model:
Table1.query = "Orders/logicModel::Return Model"

REPORT SCRIPTING

1165 of 2477

See Also
Binding Queries, for general information on the ‘query’ property.
Creating a Local Query, in Data Modeling, for information about local
queries.
Creating a Local Worksheet, in Data Mashup, for information about local
Worksheets.
Controlling Access to an Asset, in Data Mashup, for information about user
Worksheets.
query, for the equivalent Chart property.
query, for the equivalent Section property.

GROW

Specifies whether an element (inside a Section) can grow vertically in the
event that the element’s contents exceed its original size.

Type
Boolean

Example
grow = true;

See Also
Section Element, in Report Design, for information about Sections.

TABLELENS

Specifies the Table’s TableLens object, which can be used to access and
modify the table attributes.

Type
inetsoft.report.lens.AttributeTableLens

Example
tableLens = new inetsoft.report.lens.DefaultTableLens(2,2);
tableLens.setForeground(0, 2, java.awt.Color.red);

TABLEADVANCE

Specifies the amount of vertical space to advance following the Table. If
this property is set to 0, the next element will touch the bottom of the Table.

Type
integer

Example
tableAdvance = 0;

REPORT SCRIPTING

1166 of 2477

TABLEWIDTH

Specifies a fixed width (in inches) for a Table. This value overrides the
automatic table width calculation.

Type
double

Example
tableWidth = 5.5;

SI.6.2 The Table bindingInfo Property

The Table bindingInfo property provides access to functions controlling the
data binding of a table element. This includes changes to hidden columns,
summary columns, group columns, and option settings. The following
sections introduce the functions provided by the bindingInfo property.

See Also
The Chart bindingInfo Property, for the corresponding Chart functions.
The Section bindingInfo Property, for the corresponding Section functions.
Binding Data to a Table Element, in Report Design, for information on data
binding.

BINDINGINFO.ADDGROUPCOL(COLNAME)

Creates grouping for the specified Table column.

Parameter
colName name of the group column

Example
bindingInfo.addGroupCol('state');

See Also
bindingInfo.removeGroupCol(colName), for the inverse operation.
bindingInfo.setColorField(col, type), for color grouping in a Chart.
bindingInfo.setShapeField(col, type), for shape grouping in a Chart.
bindingInfo.setSizeField(col, type), for size grouping in a Chart.

BINDINGINFO.SETDATELEVEL(COLNAME, LEVEL)

Sets the grouping level for a grouped date column.

Parameter
colName name of the grouped date column
level grouping level, e.g.,
StyleConstant.QUARTER_DATE_GROUP

Example
// Group by two months (Jan-Feb, Mar-Apr, May-Jun, etc.)

REPORT SCRIPTING

1167 of 2477

bindingInfo.setDateLevel('Order.Date',StyleConstant.MONTH_D
ATE_GROUP);
bindingInfo.setDateInterval('Order.Date',2);

See Also
bindingInfo.setDateInterval(colName, value), to set the grouping interval.
bindingInfo.addGroupCol(colName), to add a new grouping column.

BINDINGINFO.SETDATEINTERVAL(COLNAME, VALUE)

Sets the grouping interval for a grouped date column, i.e., the number of
date units at the specified date grouping level to be included in each group.

Parameter
colName name of the grouped date column
value number of sequential date units to group

Example
// Group by two months (Jan-Feb, Mar-Apr, May-Jun, etc.)
bindingInfo.setDateLevel('Order.Date',StyleConstant.MONTH_D
ATE_GROUP);
bindingInfo.setDateInterval('Order.Date',2);

See Also
bindingInfo.setDateLevel(colName, level), to set the grouping level.
bindingInfo.addGroupCol(colName), to add a new grouping column.

BINDINGINFO.ADDHIDDENCOLUMN(COLNAME)

Hides the specified Table column from view.

Parameter
colName the column name

Example
bindingInfo.addHiddenColumn('state');

See Also
bindingInfo.removeHiddenColumn(colName), for the inverse operation.

BINDINGINFO.ADDSUMMARYCOL(COLNAME)

Creates summarization for the specified Table column. A column can be
used multiple times for summarization.

Parameter
colName column name on which to summarize

Example
bindingInfo.addSummaryCol('Price');

See Also
bindingInfo.removeSummaryCol(colName), for the inverse operation.

REPORT SCRIPTING

1168 of 2477

BINDINGINFO.GETCOLUMNORDER(COLNAME)

Returns the sort order of the specified column.

Parameter
colName name of column to test for sorting

Return
0: if the column is unsorted
1: if the column is sorted ascending
2: if the column is sorted descending

Example
bindingInfo.getColumnOrder('Employee');

See Also
bindingInfo.getColumnOrder(col), for the equivalent Chart function.

BINDINGINFO.GETFORMULA(I)

Returns the summarization formula for the specified column.

Parameter
i index of the column whose summary formula is desired

Return
The formula in String format

Example
bindingInfo.getFormula(2);

See Also
bindingInfo.getFormula(col,binding), for the equivalent Chart function.

BINDINGINFO.GETGROUPCOL(I)

Returns the column name of the specified grouping field.

Parameter
i index of the group column

Return
Column name of the ith group column

Example
bindingInfo.getGroupCol(1);

BINDINGINFO.GETGROUPCOLCOUNT()

Returns the total number of grouping columns.

REPORT SCRIPTING

1169 of 2477

Return
number of columns that are grouped

Example
bindingInfo.getGroupColCount();

BINDINGINFO.GETGROUPORDER(COLNAME)

Returns the sort order for a grouping column.

Parameter
colName column whose grouping order is desired

Return
Integer value representing the grouping order:

1: Ascending order
2: Descending order
4: Original order

Example
bindingInfo.getGroupOrder('State');

BINDINGINFO.GETSUMMARYCOL(I)

Returns the column name of the specifies summarization field.

Parameter
i index of the summary column

Return
Column name of the ith summary column

Example
bindingInfo.getSummaryCol(1);

BINDINGINFO.GETSUMMARYCOLCOUNT()

Returns the total number of summary columns.

Return
number of columns that are summarized

Example
bindingInfo.getSummaryColCount();

BINDINGINFO.GETTOPN(GROUPCOL)

Returns the “top N” setting for the specified grouping column.

Parameter
groupCol group column whose TopN setting is desired

REPORT SCRIPTING

1170 of 2477

Return
integer, the TopN value

Example
bindingInfo.getTopN('State');

See Also
bindingInfo.getTopN(col), for the equivalent Chart function.
bindingInfo.setTopN(groupCol, n), for the inverse operation.
Grouping and Summarization in Data Binding Wizard, in Report Design,
for details on Top-N filtering.

BINDINGINFO.GETTOPNGROUPCOL(GROUPCOL)

Returns the ‘Top N’ group column name. This can be used to test if the
‘Top N’ of a group column exists.

Parameter
groupCol the specified group column

Return
The group column name if exists, null otherwise

Example
bindingInfo.getTopNGroupCol('State');

BINDINGINFO.GETTOPNSUMMARYCOL(GROUPCOL)

Returns the ‘Top N’ summary column.

Parameter
groupCol the specified group column

Return
The summary column name if exists, null otherwise

Example
bindingInfo.getTopNSummaryCol('State');

See Also
bindingInfo.getTopNSummaryCol(col), for the equivalent Chart function.

BINDINGINFO.ISSUMMARIZE(COLNAME)

Returns true if a grouping column is summarized.

Parameter
colName name of a grouped column

Return
true if grouping column is currently summarized
false if grouping column is not summarized

REPORT SCRIPTING

1171 of 2477

Example
bindingInfo.isSummarize('State');

See Also
Walkthrough: Adding Table Grouping using the Wizard, in Report Design,
for information on the ‘Summarize Group’ option of the ‘Data Binding’
dialog box.

BINDINGINFO.ISTOPNREVERSE(GROUPCOL)

Returns true if specified ranking is ‘Bottom N’ rather than ‘Top N’.

Parameter
groupCol the specified group column

Return
true if topN reverse setting is true
false if not found, or not reverse

Example
bindingInfo.isTopNReverse('State');

See Also
bindingInfo.isTopNReverse(col), for the equivalent Chart function.
bindingInfo.setTopNReverse(groupCol, bottom), for the inverse operation.
Grouping and Summarization in Data Binding Wizard, in Report Design,
for details on Top-N filtering.

BINDINGINFO.REMOVEALLGROUPCOLS()

Removes grouping from all columns.

Example
bindingInfo.removeAllGroupCols();

See Also
bindingInfo.addGroupCol(colName), for the inverse operation.

BINDINGINFO.REMOVEGROUPCOL(COLNAME)

Removes grouping from the specified column.

Parameter
colName Name of column to be ungrouped

Example
bindingInfo.removeGroupCol('State');

See Also
bindingInfo.addGroupCol(colName), for the inverse operation.

REPORT SCRIPTING

1172 of 2477

BINDINGINFO.REMOVEHIDDENCOLUMN(COLNAME)

Displays the specified column.

Parameter
colName name of column to display

Example
bindingInfo.removeHiddenColumn('customer','state');

See Also
bindingInfo.addHiddenColumn(colName), for the inverse operation.

BINDINGINFO.REMOVESUMMARYCOL(COLNAME)

Removes summarization from the specified column.

Parameter
colName Name of column to be un-summarized

Example
bindingInfo.removeSummaryCol('Price');

See Also
bindingInfo.addSummaryCol(colName), for the inverse operation.

BINDINGINFO.SETCOLUMNORDER(COLNAME,ORDER)

Sets the sort order of the specified column.

Parameter
colName The name of column to sort
order The sort order for the specified column:

0: remove sorting
1: sort ascending
2: sort descending

Example
bindingInfo.setColumnOrder('Employee',2);
// sort 'Employee' column descending

See Also
bindingInfo.setColumnOrder(col,order), for the equivalent Chart function.
bindingInfo.getColumnOrder(colName), for the inverse operation.

BINDINGINFO.SETCOLUMNSEQUENCE(SEQ)

Arranges the Table columns in the left-to-right sequence specified. Omitted
columns are not displayed.

Parameter
seq A string specifying the desired column sequence

REPORT SCRIPTING

1173 of 2477

The parameter form 'idx:[ix1,ix2,...]' sets the sequence
using column indices ix1,ix2,...

The parameter form 'name:[col1,col2,...]' sets the sequence
using column names col1,col2,...

Example
bindingInfo.setColumnSequence('idx:[2,1,0]');
// Place third column first, and first column third

bindingInfo.setColumnSequence('name:[Col2,Col3,Col1]');
// Place column 'Col2' first, 'Col3' second, 'Col1' third

See Also
Specifying Columns in Data Binding Wizard, in Report Design, for
information on ordering.

BINDINGINFO.SETCOLUMNVISIBLE(COLNAME,VALUE)

Sets the visibility of the specified column.

Parameter
colName the column name
value true/false to show/hide column

Example
bindingInfo.setColumnVisible('state',false);

See Also
bindingInfo.addHiddenColumn(colName), for an alternative approach.

BINDINGINFO.SETFORMULA(COL, FORMULA)

Sets the summarization formula for the specified column.

Parameter
col The index of the column to be summarized
formula The summary formula

Example
bindingInfo.setFormula(5, 'Sum<0>');

See Also
bindingInfo.setFormula(col, formula, binding), for the equivalent Chart
function.
bindingInfo.getFormula(i), for the inverse operation.

BINDINGINFO.SETGROUPORDER(COLNAME, ORDER)

Sets the sort order of the specified grouping column.

Parameter
colName column whose grouping order is to be set

REPORT SCRIPTING

1174 of 2477

order order of this group column:
StyleConstant.SORT_ASC: Ascending order
StyleConstant.SORT_DESC: Descending order
StyleConstant.SORT_NONE: Original order

Example
bindingInfo.setGroupOrder('State',
StyleConstant.SORT_DESC);

See Also
bindingInfo.getGroupOrder(colName), for the inverse operation.

BINDINGINFO.SETSUMMARIZE(COLNAME, SUM)

Specifies whether summaries should be displayed for the indicated
grouping column.

Parameter
colName name of the group column to be summarized
sum true: show summarization for group

false: do not show summarization

Example
bindingInfo.setSummarize('State', true);

See Also
bindingInfo.addSummaryCol(colName), to specify the column to be
summarized.

BINDINGINFO.SETTOPN(GROUPCOL, N)

Sets the ‘Top N’ value for the specified grouping column.

Parameter
groupCol the specified group column name
n topN integer value

Example
bindingInfo.setTopN('State', 10);

See Also
bindingInfo.setTopN(col,N), for the equivalent Chart function.
bindingInfo.getTopN(groupCol), for the inverse operation.
Grouping and Summarization in Data Binding Wizard, in Report Design,
for details on Top-N filtering.

BINDINGINFO.SETTOPNGROUPCOL(GROUPCOL1, GROUPCOL2)

Transfers the ‘top-N’ ranking from one grouping column to another
grouping column.

Parameter
groupCol1 a grouped column with existing topN ranking

REPORT SCRIPTING

1175 of 2477

groupCol2 a grouped column to receive topN ranking

Example
bindingInfo.setTopNGroupCol('State','City');

See Also
bindingInfo.setTopN(groupCol, n), to specify ranking.
Grouping and Summarization in Data Binding Wizard, in Report Design,
for details on Top-N filtering.

BINDINGINFO.SETTOPNREVERSE(GROUPCOL, BOTTOM)

Sets reverse ‘Top N’ ranking (i.e., ‘Bottom N’ ranking) for the specified
grouping column.

Parameter
groupCol the specified group column
bottom true: reverse (Bottom N) ranking

Example
bindingInfo.setTopNReverse('State',true);

See Also
bindingInfo.setTopNReverse(col,boolean), for the equivalent Chart
function.
bindingInfo.isTopNReverse(groupCol), for the inverse operation.

BINDINGINFO.SETTOPNSUMMARYCOL(GROUPCOL, COL)

Assigns the summary column to use for ‘Top N’ ranking of the indicated
grouping column.

Parameter
groupCol the specified group column name
col the summary column name

Example
bindingInfo.setTopNSummaryCol('State', 'Price');

See Also
bindingInfo.setTopNSummaryCol(col,agg), for the equivalent Chart
function.
bindingInfo.getTopNSummaryCol(groupCol), for the inverse operation.

BINDINGINFO.SETOPTION(NAME, VALUE)

Specifies a grouping option.

Parameter
name the option name
value the option value

REPORT SCRIPTING

1176 of 2477

Example
Table1.bindingInfo.setOption('grandLabel', 'Total');

The valid option/value pairs are shown below.

OPTION NAME OPTION VALUE

grandLabel Specify the label of the grand total.

Type
String

Example
Table1.bindingInfo.setOption
('grandLabel','Total');

grandTotal Specify whether or not to add a grand total row.

Type
Boolean

Example
Table1.bindingInfo.setOption
('grandTotal',true);

inPlaceHeader Specify whether or not to use in-place group header (without
additional row).

Type
Boolean

Example
Table1.bindingInfo.setOption
('inPlaceHeader',true);

showGroupCols Hide / unhide the group column contents.

Type
Boolean

Example
Table1.bindingInfo.setOption
('showGroupCols',false);

summaryLabel Set the summary row label.

Type
string

Example
Table1.bindingInfo.setOption
('summaryLabel', 'Summary');

summaryOnly Set to true in order to display only the summary data.

Type
Boolean

Example
Table1.bindingInfo.setOption
('summaryOnly', true);

REPORT SCRIPTING

1177 of 2477

See Also
Grouping and Summarization in Data Binding Wizard, in Report Design,
for details on options.

SI.6.3 The groupedTable Property

The groupedTable property provides functions that return information
about group boundaries.

GROUPEDTABLE.GETAVAILABLELEVELS(ROW)

Returns the available grouping levels for the specified row.

Parameter
row The specified row

Return
ScriptbleObject

Example
groupedTable.getAvailableLevels(2);

GROUPEDTABLE.GETGROUPFIRSTROW(ROW)

Returns the first row from the highest available grouping level at the
specified row.

Parameter
row The specified row

Return
integer, -1 if not available

Example
groupedTable.getGroupFirstRow(2);

setKeepHierarchy Set to true to keep group hierarchy when only the summary
data is being displayed.

Type
Boolean

Example
Table1.bindingInfo.setOption
('setKeepHierarchy', true);

setMergeGroup-
Cells

Set to true to merge all the cells from the same group into one
span cell.

Type
Boolean

Example
Table1.bindingInfo.setOption
('setMergeGroupCells',true);

OPTION NAME OPTION VALUE

REPORT SCRIPTING

1178 of 2477

GROUPEDTABLE.GETGROUPLASTROW(ROW)

Returns the last row from the highest available grouping level at the
specified row.

Parameter
row The specified row

Return
integer, -1 if not available

Example
groupedTable.getGroupLastRow(2);

GROUPEDTABLE.GETGROUPFIRSTROWWITHLEVEL(ROW, LEVEL)

Returns the first row at the specified row and grouping level.

Parameter
row The specified row
level The specified level

Return
integer, -1 if not available

Example
groupedTable.getGroupFirstRowWithLevel(2, 1);

GROUPEDTABLE.GETGROUPLASTROWWITHLEVEL(ROW, LEVEL)

Returns the last row at the specified row and grouping level.

Parameter
row The specified row
level The specified level

Return
integer, -1 if not available

Example
groupedTable.getGroupLastRowWithLevel(2, 1);

SI.7 Freehand Table Object

In addition to all of the properties of a regular Table Object , the Freehand
Table has one property uniquely associated with it.

REGIONROW

Returns (read-only) the value of the current row index in the base table of a
Freehand table.

REPORT SCRIPTING

1179 of 2477

Type
integer

Example
regionRow;

SI.8 Painter Object

The Painter object serves as the base for all float elements: TextBox Object ,
Field Object , Chart Object, Image Object, etc. It defines common
properties for positions and sizes of float elements.

Super Class
Element Object

ANCHOR

Specifies the position of the element relative to the last element and the
edge of the page.

Type
inetsoft.report.Position, or number array

Example
anchor = new inetsoft.report.Position(0.5, 1);
or

anchor = [0.5, 1];

See Also
Property Dialog Boxes, in Report Design, for more information about
anchors.

HYPERLINK

Specifies a hyperlink to a report, element target, or a URL.

Type
string or inetsoft.report.Hyperlink

Example
hyperlink = "Tutorial/Ad Hoc";

See Also
Hyperlinks, in Report Design, for basic information on hyperlinks.
Using the onClick Handler, for other approaches to hyperlinking.

IMAGE

Assigns an image (GIF or JPEG) to a Painter.

Type
inetsoft.report.Painter

REPORT SCRIPTING

1180 of 2477

Example
image = getImage("/inetsoft/report/design/images/
center.gif");

LAYOUT

Sets the layout of the Painter element, specifically how the element is
printed if it is larger than the current available space on the page. the
property has a value of PAINTER_BREAKABLE or PAINTER_NON_BREAK.

Type
integer

Example
layout = StyleConstant.PAINTER_BREAKABLE;

See Also
SI.41, StyleReport Object, for more information on constants.

MARGIN

Specifies the margin (in points) around the Painter element.

Type
java.awt.Insets, or integer array

Example
margin = new java.awt.Insets(1, 1, 1, 1);
or

margin = [1, 1, 1, 1];

ROTATION

Specifies the angle to rotate the Painter element.

Type
degrees from 0 to 360

Example
rotation = 90;

SIZE

Specifies the size (inches) of the Painter element.

Type
inetsoft.report.Size, or number array

Example
size = new inetsoft.report.Size(2, 1);
or

size = [2, 1];

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html

REPORT SCRIPTING

1181 of 2477

WRAPPING

Specifies how contents wrap around the Painter element. Wrapping options
are defined in the StyleReport Object:

 – WRAP_NONE
 – WRAP_LEFT
 – WRAP_RIGHT
 – WRAP_BOTH
 – WRAP_TOP_BOTTOM

Type
integer

Example
wrapping = StyleConstant.WRAP_RIGHT;

See Also
SI.41, StyleReport Object, for more information on constants.

SI.9 TextBox Object

A TextBox element defines a rectangular area on the page in which to
display a text paragraph. It can have borders, and can be positioned on a
page using an anchor.

Super Class
Painter Object

See Also
Property Dialog Boxes, in Report Design, for more information about
anchors.
Text and TextBox, for additional information on text presentation elements.

BORDER

Specifies the border around the TextBox as a StyleReport Object line style.
This property is overridden by the ‘borders’ property, if set.

Type
Line Styles integer

Example
border = StyleConstant.DOUBLE_LINE;

See Also
SI.41, StyleReport Object, for more information on constants.
Text and TextBox, for additional information on text presentation elements.

REPORT SCRIPTING

1182 of 2477

BORDERS

Specifies the individual borders for each side of the TextBox, as Insets
object or array of form [top,left,bottom,right]. If set, this property
overrides the ‘border’ property setting.

Type
java.awt.Insets, or integer array of Line Styles

Example
borders =
[StyleConstant.DOUBLE_LINE,StyleConstant.NO_BORDER,
StyleConstant.THIN_LINE,StyleConstant.NO_BORDER];

See Also
Text and TextBox, for additional information on text presentation elements.

BORDERCOLOR

Specifies the TextBox border color.

Type
java.awt.Color or integer RGB value

Example
borderColor = 0xFF00FF;

See Also
Text and TextBox, for additional information on text presentation elements.

CORNERSIZE

Specifies the size of the corner (x radius and y radius) for a rounded-corner
TextBox.

Type
integer array: [x radius, y radius]

Example
cornerSize = [30,50];

See Also
shape, for information on changing corner style using script.
TextBox, in Report Design, for information on changing corner style.
Text and TextBox, for additional information on text presentation elements.

JUSTIFY

Specifies that text lines are aligned along the right edge.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html

REPORT SCRIPTING

1183 of 2477

Type
Boolean

Example
justify = true;

See Also
Text and TextBox, for additional information on text presentation elements.

PADDING

Specifies the size of the gap (in points) between the TextBox border and
text contents.

Type
java.awt.Insets or integer array

Example
padding = new java.awt.Insets(1, 2, 1, 2);

or
padding = [1, 2, 1, 2];

See Also
Text and TextBox, for additional information on text presentation elements.

SHAPE

Specifies the shape of the textbox as BOX_RECTANGLE or
BOX_ROUNDED_RECTANGLE.

Type
integer

Example
shape = StyleConstant.BOX_ROUNDED_RECTANGLE;

See Also
SI.41, StyleReport Object, for more information on constants.
Text and TextBox, for additional information on text presentation elements.

SHADOW

Adds a drop-shadow to a TextBox.

Type
Boolean

Example
shadow = true;

See Also
Text and TextBox, for additional information on text presentation elements.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html

REPORT SCRIPTING

1184 of 2477

TEXT

Specifies the text contents to be displayed inside the TextBox.

Type
string

Example
text = 'Hello\nWorld';

See Also
Text and TextBox, for additional information on text presentation elements.

TEXTALIGNMENT

Specifies the text alignment with the TextBox. It should specify a bitwise
OR of the Alignments values defined in the StyleReport Object.

Type
Alignments integer

Example
textAlignment = StyleConstant.H_CENTER;

See Also
SI.41, StyleReport Object, for more information on constants.
Text and TextBox, for additional information on text presentation elements.
Alignment Property, for more information on setting alignment.

SI.10 Chart Object

The Chart element presents a dataset as a visual graph.

Super Class
Painter Object

See Also
Modifying Chart Properties, for examples of setting chart properties in
script.
Modifying a Chart Data Binding, for examples of modifying field
bindings.
Modifying a Chart Element using API Functions, for examples of
modifying the contents of a chart.

SI.10.1General Properties

This section presents general Chart properties. See Appendix CR:, Chart
Script Reference for full list of Chart properties.

REPORT SCRIPTING

1185 of 2477

QUERY

Specifies the query, Worksheet, or data model bound to the Chart element.

Type
string

Example
// Query:
Chart1.query = 'customers';
Chart1.query = 'DWS/Fast Go Game'

// Global Worksheet:
Chart1.query = 'ws:global:State Stats';
Chart1.query = 'ws:global:Sales/Sales Explore';

// Local Worksheet:
Chart1.query = "ws:Sales Explore";

// User Worksheet:
Chart1.query = "ws:Annie:Sales Explore";

// Data Model:
Chart1.query = "Orders/logicModel::Return Model"

See Also
Binding Queries, for general information on the ‘query’ property.
Creating a Local Query, in Data Modeling, for information about local
queries.
Creating a Local Worksheet, in Data Mashup, for information about local
Worksheets.
Controlling Access to an Asset, in Data Mashup, for information about user
Worksheets.
Modifying a Chart Data Binding, for an example of data binding.
query, for the equivalent Table property.
query, for the equivalent Section property.

GRAPH

Specifies the EGraph object to be rendered by the Chart element.

Type
EGraph

Example
graph = new EGraph();

See Also
Creating a Chart Using API Functions, for an example of creating a new
graph.

REPORT SCRIPTING

1186 of 2477

SETHYPERLINK(COL, HYPERLINK)

Adds hyperlinks to a chart dataset. Use setParameterField to specify
values to pass as parameters in the link and setTargetFrame to specify the
link’s target frame. See the example below.

Parameter
col dataset index, first dataset is “1”
hyperlink string or

inetsoft.report.Hyperlink.Ref object

Example 1
var link = new inetsoft.report.Hyperlink("www.google.com",
inetsoft.report.Hyperlink.WEB_LINK);
link.setParameterField("test", "Sales");
link.setTargetFrame("_blank");
setHyperlink(1, link);

Alternatively, you can pass all of this information within a single array as
the second argument to the function. See the example below. The Boolean
item in the array indicates whether the hyperlink targets a report/Viewsheet
(true) or a web site (false).

Example 2
setHyperlink(1, ["report1", [["param1", "value1"],
["param2", "value2"],...]], true, "_blank")

See Also
Hyperlinks, in Report Design, for basic information on hyperlinks.
Using the onClick Handler, for other approaches to hyperlinking.

HIGHLIGHTED(NAME)

Identifies whether a highlight with the specified name has been applied to
the chart (i.e., whether the highlight condition has been satisfied.).

Parameter
name name of the highlight

Example
if(Chart1.highlighted.lowSales) {
log('lowSales highlight was applied')

}

See Also
Highlighting, in Report Design, for basic information on highlights.

SIZE

Specifies the chart size in page units (with resolution fixed at 72 pixels per
inch).

REPORT SCRIPTING

1187 of 2477

Type
Number Array: [width, height]

Example
Chart1.size = [6,4];

TOOLTIP

Specifies a tooltip to be displayed on chart elements. You can use
placeholders {0}, {1}, {2}, etc. to insert data values from the corresponding
fields into the tooltip text, and format the inserted data using
java.text.MessageFormat format. You may use the code “
” to insert a
line break into the tooltip, but other HTML markup is not supported.

Type
String The tooltip to display

Example
Chart1.toolTip = "Company: {0}
Total Sales:
{1,number,$##,###.00}";

SI.11 Field Object

Field object is the base class for all other form elements, including button,
image button, choice, text field, and text area.

Super Class
Painter

FORM

The name of the form to which this field belongs. The form name is used as
the request name in the request object. It also serves to group all fields into
one form. Fields sharing the same form name are considered part of the
same form and are added to the request object when this form is submitted.

Type
string

Example
if(form == 'quarterly') {

selectedItem = "Quarterly";
}

NAME

Sets the field name. The field name is used to construct a name value pair
in a request object when a form is submitted.

Type
string

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

REPORT SCRIPTING

1188 of 2477

Example
name = "firstname";

SI.12 Button Object

The Button element can be used inside a form for submitting the form. (See
Button in the Report Design.) When a button is clicked on a viewer, the
form is submitted as a request object to the server. A replet can handle the
request using an onClick JavaScript handler or a Java RequestListener.

Super Class
Field

TEXT

Determines the Button label string.

Type
string

Example
text = "OK";

SI.13 ImageButton Object

The ImageButton is similar to a button element. (See Image Button in the
Report Design.) Instead of displaying a text label inside the button, an
ImageButton displays an image icon.

Super Class
Field

RESOURCE

Affects the resource name of the image icon. The resource should be
reachable on the CLASSPATH and point to a valid image file in one of the
formats supported by Java (e.g., gif, jpg).

Type
string

Example
resource = "/app/images/go.gif";

SI.14 DateCombo Object

The DateCombo element can be used to display a date in a form. (See Date
Combo in the Report Design.) It provides a calendar popup which can be
used to select a date.

Super Class
Field

REPORT SCRIPTING

1189 of 2477

PROMPTTIME

This enables prompting for time in a DateCombo Element.

Type
Boolean

Example
promptTime = true;

SI.15 CheckBox Object

The CheckBox element adds an interactive checkbox to a form. (See Check
Box in the Report Design.) It has a state of on or off. The checkbox value is
added to the form request object when the form is submitted.

Super Class
Field

SELECTED

Affects the checkbox selection state. If the checkbox is selected, this
property is true.

Type
Boolean

Example
selected = ((new Date()).getDay() == 1);

TEXT

Determines the checkbox label. The label is displayed at the right side of a
checkbox icon.

Type
string

Example
text = "Last 30 days";

SI.16 Choice Object

A Choice element is a drop-down list for selecting a single item from a list
of choices. (See Choice in the Report Design.) This element can be used
inside a form for specifying a form value.

Super Class
Field

REPORT SCRIPTING

1190 of 2477

CHOICES

Determines the list of items to use in the drop-down list.

Type
array

Example
choices = ["Apple", "Orange", "Banana"];

SELECTEDITEM

This is the currently selected item in the list.

Type
any object (Should be the same type as the items in choices
array)

Example
selectedItem = 'Orange';

VALUES

Determines the values that correspond to the choices in the drop-down list;
values[i] is submitted when choices[i] is selected.

Type
array

Example
values = [1, 2, 3]; // numeric values
values = ['Robert', 'Sue', 'Eric']; // string values

SI.17 TextField Object

This is an interactive form element for entering a single line of text data.
(See Text Field in Report Design.) If a form contains a single TextField
element, hitting enter key in the TextField also submits the form.

Super Class
Field

COLS

This is the number of columns in the TextField. This value is used to
calculate the preferred size of a TextField element. It is ignored if the ‘size’
property has been set.

Type
integer

REPORT SCRIPTING

1191 of 2477

Example
cols = Math.max(cols, 15);

TEXT

This determines the text contents of a TextField.

Type
string

Example
if(text == "") {

text = "default";
}

MAXLENGTH

This is used to set the maximum number of characters allowed in the
TextField. (The limit is enforced in the deployed report, not in the Style
Studio preview.)

Type
integer

Example
maxLength=10;

SI.18 TextArea Object

A TextArea is an interactive form element for entering multiple lines of text
data.(See Text Area in Report Design.)

Super Class
Field

COLS

Affects the number of columns in a TextArea. This value is used to
calculate the width of the field if the ‘size’ property is not set.

Type
integer

Example
cols = 20;

ROWS

Affects the number of rows in a TextArea. This value is used to calculate
the height of the field if the ‘size’ property is not set.

REPORT SCRIPTING

1192 of 2477

Type
integer

Example
rows = 5;

TEXT

The text contents of a TextArea.

Type
string

Example
text = "First line\nsecond line";

SI.19 List Object

A List is an interactive form element for selecting one or more options.
(See List in Report Design.)

Super Class
Field

The following properties are available:

CHOICES

Determines the set of labels displayed in the list.

Type
array

Example
choices = ["Apple", "Orange", "Banana"];

SELECTEDITEMS

Returns array of selected list values (not labels).

Type
any object (Should be the same type as the items in choices
array)

Example
selectedItem2 = List1.selectedItems[1];

VALUES

Determines the set of values corresponding to the labels in the list.

REPORT SCRIPTING

1193 of 2477

Type
array

Example
values = ["Apple", "Orange", "Banana"];

SI.20 CondPageBreak Object

Conditional page break defines a page break which depends on the amount
of space left on the page. If the space is less than the conditional height, the
printing advances to the next page. Otherwise the page break is ignored.

Super Class
Element

CONDHEIGHT

Affects the conditional height in inches.

Type
double

Example
condHeight = 2.5;

SI.21 Newline Object

Newline object advances printing to the next line. (See Newline in Report
Design.)

Super Class
Element

COUNT

The number of lines that the Newline should advance.

Type
integer

Example
Newline1.count = 2;
// must be set before Newline element is rendered

SI.22 Section Object

A Section is normally used to display tabular data by repeating the section
bands. The elements inside a Section can be accessed individually as their
own objects. The Section element itself only defines a property for
accessing the table binding.

REPORT SCRIPTING

1194 of 2477

Super Class
Element

See Also
Sections, for scripting issues related to Sections.
Tables and Sections, for additional functions pertaining to Sections.

SI.22.1General Properties

This section presents general properties of the Section object.

TABLELENS

Affects table data binding. This affects binding of the section to a
TableLens object.

Type
tableLens object

Example
tableLens = new inetsoft.report.lens.DefaultTableLens(2,2);

TABLE

The data table associated with this section. It is a two-dimensional array
holding the table data.

Type
two dimensional array

Example
for(var row = 0; row < table.length; row++) {

for(var col = 0; col < table[row].length; col++) {
// table[row][col] contains the data at that cell

}
}

DATA

Affects the original table data. If no grouping or other summarization is
defined for this section element, this object is the same as the ‘table’
property. Otherwise, it holds the original data of the table, while ‘table’
contains the summarized data. This is a two dimensional array holding the
table cell data. To reference the data use the row number as the first array
index and column number as the second array index.

Type
two dimensional array

Example
for(var row = 0; row < data.length; row++) {

for(var col = 0; col < data[row].length; col++) {

REPORT SCRIPTING

1195 of 2477

...
}

}

QUERY

Specifies the query, Worksheet, or data model bound to the Section
element.

Type
string

Example
// Query:
Section1.query = 'customers';
Section1.query = 'DWS/Fast Go Game'

// Global Worksheet:
Section1.query = 'ws:global:State Stats';
Section1.query = 'ws:global:Sales/Sales Explore';

// Local Worksheet:
Section1.query = "ws:Sales Explore";

// User Worksheet:
Section1.query = "ws:Annie:Sales Explore";

// Data Model:
Section1.query = "Orders/logicModel::Return Model"

See Also
Binding Queries, for general information on the ‘query’ property.
Creating a Local Query, in Data Modeling, for information about local
queries.
Creating a Local Worksheet, in Data Mashup, for information about local
Worksheets.
Controlling Access to an Asset, in Data Mashup, for information about user
Worksheets.
Modifying a Chart Data Binding, for an example of data binding.
query, for the equivalent Chart property.
query, for the equivalent Table property.

BAND

The section bands in this Section. It is an associated array. Each band can
be referenced using its index or its name, such as ‘header1’, ‘footer1’,
‘content’, etc.

Type
associative array

Example
band['content'].pageAfter = true;

REPORT SCRIPTING

1196 of 2477

SI.22.2The Section bindingInfo Property

The Section ‘bindingInfo’ property provides access to functions controlling
the Section element’s data binding. This includes hidden columns,
summary columns, group columns, and option settings.

See The Table bindingInfo Property and The Chart bindingInfo Property
sections for the corresponding Table and Chart properties.

BINDINGINFO.ADDGROUPCOL(COLNAME)

Add a group column.

Parameter
colName name of the group column

Example
bindingInfo.addGroupCol('State');

BINDINGINFO.ADDHIDDENCOLUMN(COLNAME)

Hide a column.

Parameter
colName the column name

Example
bindingInfo.addHiddenColumn('customer');

BINDINGINFO.ADDSUMMARYCOL(COLNAME)

Add a summary column. A column can be used multiple times for
summarization.

Parameter
colName column name on which to summarize

Example
bindingInfo.addSummaryCol('Price');

BINDINGINFO.GETFORMULA(I)

Get the summary formula for a column.

Parameter
i index of the column whose summary formula is desired

Return
The formula in String format

REPORT SCRIPTING

1197 of 2477

Example
bindingInfo.getFormula(2);

BINDINGINFO.GETGROUPCOL(I)

Get the group column name.

Parameter
i index of the group column

Return
Column name of the ith group column

Example
bindingInfo.getGroupCol(1);

BINDINGINFO.GETGROUPCOLCOUNT()

Get the total number of columns that are grouped.

Return
integer number of columns that are grouped

Example
bindingInfo.getGroupColCount();

BINDINGINFO.GETGROUPORDER(COLNAME)

Get the ordering of a group column.

Parameter
colName column whose grouping order is desired

Return
The order of the group in integer

Example
bindingInfo.getGroupOrder('State');

BINDINGINFO.GETSUMMARYCOL(I)

Get the summary column name.

Parameter
i index of the summary column

Return
Column name of the ith summary column

Example
bindingInfo.getSummaryCol(1);

REPORT SCRIPTING

1198 of 2477

BINDINGINFO.GETSUMMARYCOLCOUNT()

Get the total number of columns that are summarized.

Return
integer number of columns that are summarized

Example
bindingInfo.getSummaryColCount();

BINDINGINFO.GETTOPN(GROUPCOL)

Get the TopN setting.

Parameter
groupCol group column name whose TopN setting is
desired

Return
The TopN value

Example
bindingInfo.getTopN('State');

BINDINGINFO.GETTOPNGROUPCOL(GROUPCOL)

Get the TopN group column. This function can be used to test if the TopN
of a group column exists.

Parameter
groupCol the specified group column

Return
The group column name if exists, null otherwise

Example
bindingInfo.getTopNGroupCol('State');

BINDINGINFO.GETTOPNSUMMARYCOL(GROUPCOL)

Get the TopN summary column.

Parameter
groupCol the specified group column

Return
The summary column name if exists, null otherwise

Example
bindingInfo.getTopNSummaryCol('State');

REPORT SCRIPTING

1199 of 2477

BINDINGINFO.ISSUMMARIZE(COLNAME)

Use to check if a group should be summarized.

Parameter
colName name of the group column that needs to be
checked for summarization

Example
bindingInfo.isSummarize('State');

BINDINGINFO.ISTOPNREVERSE(GROUPCOL)

Get the TopN reverse setting.

Parameter
groupCol the specified group column

Return
true if TopN reverse setting is true, false if not found or
not reverse

Example
bindingInfo.isTopNReverse('State');

BINDINGINFO.REMOVEALLGROUPCOLS()

Remove all of the group columns.

Example
bindingInfo.removeAllGroupCols();

BINDINGINFO.REMOVEGROUPCOL(COLNAME)

Remove the specified group column.

Parameter
colName The name of the group column to be removed

Example
bindingInfo.removeGroupCol('State');

BINDINGINFO.REMOVEHIDDENCOLUMN(COLNAME)

Remove the hidden column.

Parameter
colName the column name

Example
bindingInfo.removeHiddenColumn('customer','state');

REPORT SCRIPTING

1200 of 2477

BINDINGINFO.REMOVESUMMARYCOL(COLNAME)

Remove the specified summary column.

Parameter
colName The name of the summary column to be removed

Example
bindingInfo.removeSummaryCol('Price');

BINDINGINFO.SETFORMULA(COL, FORMULA)

Set the summary formula for a column.

Parameter
col The index of the column to be summarized
formula The summary formula for the column

Example
bindingInfo.setFormula(5, 'Sum<0>');

BINDINGINFO.SETGROUPORDER(COLNAME, ORDER)

Set the ordering of a group column.

Parameter
colName column whose grouping order is to be set
order order of this group column:

StyleConstant.SORT_ASC: Ascending order
StyleConstant.SORT_DESC: Descending order
StyleConstant.SORT_NONE: Original order

Example
bindingInfo.setGroupOrder('State',
StyleConstant.SORT_DESC);

BINDINGINFO.SETSUMMARIZE(COLNAME, SUM)

Set whether a group (specified as group column) should be summarized.

Parameter
colName name of the group column to be summarized
sum Boolean value specifying whether to summarize

Example
bindingInfo.setSummarize('State', true);

BINDINGINFO.SETTOPN(GROUPCOL, N)

Set the TopN value for a group column.

Parameter
groupCol the specified group column name

REPORT SCRIPTING

1201 of 2477

n TopN integer value

Example
bindingInfo.setTopN('State', 10);

BINDINGINFO.SETTOPNGROUPCOL(GROUPCOL, COL)

Set the group to extract based on the grouping column.

Parameter
groupCol the original group column
col the new group column

Example
bindingInfo.setTopNGroupCol('State', 'Price');

BINDINGINFO.SETTOPNREVERSE(GROUPCOL, BOOLEAN)

Set to true to get bottom N groups.

Parameter
groupCol the specified group column
bottom true is reverse

Example
bindingInfo.setTopNReverse('State',true);

BINDINGINFO.SETTOPNSUMMARYCOL(GROUPCOL, COL)

 Set the column to use for comparison when creating the TopN table.

Parameter
groupCol the specified group column name
col the summary column name

Example
bindingInfo.setTopNSummaryCol('State', 'Price');

SI.23 Section Band Object

A basic section consists of three Section Bands, a ‘Header’ band, a
‘Content’ band, and a ‘Footer’ band. The ‘Header’ and ‘Footer’ bands are
used for summarized data. The ‘Content’ band always shows the detail
record.

All properties in a section are associated with the section bands. The
properties of a section band can be accessed using the Report Explorer (see
Report Explorer View in the Report Design). Select a band on the Report
Explorer element tree to display all properties for that band in the right-side
Property pane.

REPORT SCRIPTING

1202 of 2477

ATBOTTOM

Determines if the Section Band is printed at the bottom of the page. Does
not apply to main header, band['header'].

Type
Boolean

Example
band['header1'].atBottom = true;
band[0].atBottom = true;

BACKGROUND

Sets the Section Band background color.

Type
java.awt.Color or integer value of RGB

Example
band['header1'].background = java.awt.Color.green;

BREAKABLE

Controls if the Section Band can span across pages.

Type
Boolean

Example
band['header1'].breakable = true;

HEIGHT

Affects the height of the Section Band in pixels.

Type
integer

Example
band['header1'].height = 10;

SHRINKTOFIT

Setting this property to true, the Section Band will shrink in height if the
elements in the band do not occupy the full size allocated to them at design
time.

Type
Boolean

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

REPORT SCRIPTING

1203 of 2477

Example
band['header1'].shrinkToFit = true;

VISIBLE

If a Section Band is not visible, it will not be printed.

Type
Boolean

Example
band['header1'].visible = false;

PAGEBEFORE

If this property is true, this Section Band always starts at a new page.

Type
Boolean

Example
band['header1'].pageBefore = true;

PAGEAFTER

If this property is true, the report always advances to a new page after this
Section Band.

Type
Boolean

Example
band['footer1'].pageAfter = true;

REPEATHEADER

Controls if this Section Band is repeated at the top of every page.

Type
Boolean

Example
band['header1'].repeatHeader = false;

SETPRESENTER(STRING, PRESENTER)

This option sets a presenter for a field. Built-in presenters include the
following:

 – inetsoft.report.painter.BarPresenter
 – inetsoft.report.painter.IconCounterPresenter
 – inetsoft.report.painter.BooleanPresenter

REPORT SCRIPTING

1204 of 2477

 – inetsoft.report.painter.Bar2Presenter
 – inetsoft.report.painter.ButtonPresenter
 – inetsoft.report.painter.ShadowPresenter

Parameter
string field name
presenter Presenter object

Example
setPresenter("Quantity",
newInstance('inetsoft.report.painter.BarPresenter'));

SUPPRESSBLANK

If this option is true, the Section Band is ignored if all elements in the band
are blank.

Type
Boolean

Example
band['header1'].suppressBlank = true;

UNDERLAY

If this option is true, the next Section Band is printed on top of this band.

Type
Boolean

Example
band['header1'].underlay = true;

TOPBORDER

This property controls the top border of a Section Band, which can be any
one of the available border styles.

Type
integer

Example
band['header1'].topBorder = StyleConstant.THIN_LINE;

LEFTBORDER

This property controls the left border of a Section Band, which can be one
of the available border styles.

Type
integer

REPORT SCRIPTING

1205 of 2477

Example
band['header1'].leftBorder = StyleConstant.THIN_LINE;

BOTTOMBORDER

This property controls the bottom border of a Section Band, which can be
one of the available border styles.

Type
integer

Example
band['header1'].bottomBorder = StyleConstant.THIN_LINE;

RIGHTBORDER

This property controls the right border of a Section Band, which can be one
of the available border styles.

Type
integer

Example
band['header1'].rightBorder = StyleConstant.THIN_LINE;

SI.24 Separator Object

A Separator is a horizontal line across a page. It can be drawn using any
one of the line styles supported by Style Intelligence.

Super Class
Element

SEPARATORADVANCE

Sets the amount of vertical space to advance below a Separator.

Type
integer

Example
separatorAdvance = 0;

STYLE

The Separator line style, specified as one of the line styles defined in the
StyleConstant Object.

Type
integer

REPORT SCRIPTING

1206 of 2477

Example
style = StyleConstant.ULTRA_THIN_LINE;

SI.25 Space Object

A Space element defines horizontal white space. The spacing is defined as
points.

Super Class
Element

SPACE

Affects the number of points to advance to the right.

Type
integer

Example
space = 20;

SI.26 TOC Object

The TOC element defines a Table Of Contents in a report. The items in a
TOC element are automatically discovered from heading elements. A
report only needs to specify the style of the TOC.

Super Class
Element

TOC

Determines TOC style. Options are any of the pre-defined styles defined in
the TOC global object.

TOC.DEFAULT
TOC.CLASSIC
TOC.DISTINCTIVE
TOC.FANCY
TOC.MODERN
TOC.FORMAL
TOC.SIMPLE

Type
inetsoft.report.TOC

Example
toc = TOC.SIMPLE;

SI.27 Bean Object

A Report Bean is a reusable, customizable composite report element. The
Bean object represents a report bean inside a report. Report Bean’s

REPORT SCRIPTING

1207 of 2477

properties are defined when a report bean is created in Style Studio. The
parameters defined on the bean can be accessed through the bean object.

Super Class
Element

See Also
Report Beans, for information and examples on scripting report beans.
Report Bean, in Report Design, for examples of bean usage.

BEAN PROPERTIES

The Bean properties can be accessed using the regular property syntax or
using the property name as the index on the Bean element.

Type
Type of the property depends on how the property is defined

Example
Bean1.title = 'Example';
Bean1['report title'] = 'Report Bean Example';

BEANNAME

The name of the Bean used in this Bean element. This property can be used
to select a bean from the Bean library to be used in this element.

Type
string

Example
beanName = 'title bean';

ELEMENTS

Provides access (from the parent report) to elements contained within the
bean.

Example
Bean1.elements.Text1.text= 'hello';
Bean1.elements.Table1.table[0][0] = 'Order ID';

LINEAFTER

Determines whether the element in the report following the bean appears
on a new line.

Type
Boolean

REPORT SCRIPTING

1208 of 2477

Example
lineAfter = false;

SI.28 XType Data Types

The XType object contains all data type constants. The constants are used
to specify the data type of a parameter when defining report parameters.
The following types are defined in the XType object.

SI.29 Toolbar Object

The ‘Toolbar’ object allows you to selectively enable or disable button in
the report toolbar (in the User Portal). It offers two functions,
setActionVisible() and isActionVisible(), which are described in the
following sections.

TOOLBAR.ISACTIONVISIBLE(NAME)

Returns the visibility of the specified report button.

Parameter
name Name of a custom or default button:

"PAGE DISPLAY"
"FIND"
"FIND_NEXT"
"PDF EXPORT"
"EMAIL"
"PRINT"
"SERVER PRINT"
"REPORT EXPLORER"
"EXPORT"
"REFRESH"
"RETURN"
"CUSTOMIZE"
"SAVE AS"
"AD HOC"
"ZOOM"
"REPORT NAME"

TYPE DESCRIPTION

BOOLEAN true or false
BYTE single byte number
CHAR character
DATE date with no time component
DOUBLE double number
ENUM user defined string constants
FLOAT float number
INTEGER integer number
LONG long integer number
SHORT short integer number
STRING text string
TIME time
TIME_INSTANT time and date

REPORT SCRIPTING

1209 of 2477

"CLOSE"

Example
Toolbar.isActionVisible("REPORT EXPLORER");

TOOLBAR.SETACTIONVISIBLE(NAME,BOOLEAN)

Sets the visibility of the specified report button. Use 'ALL' as the ‘name’
parameter to apply to all buttons.

Parameter
name Name of a custom or default button:

"PAGE DISPLAY"
"FIND"
"FIND_NEXT"
"PDF EXPORT"
"EMAIL"
"PRINT"
"SERVER PRINT"
"REPORT EXPLORER"
"EXPORT"
"REFRESH"
"RETURN"
"CUSTOMIZE"
"SAVE AS"
"AD HOC"
"ZOOM"
"REPORT NAME"
"CLOSE"
"ALL" or "all"

boolean true, to make the button visible
false, to make the button invisible

Example
Toolbar.setActionVisible("REPORT EXPLORER",false);

SI.30 PageBreak Event Object

A PageBreak Event object is available in page break listener scripts. The
event object can be used to check the information on the current page, such
as the first element on the page and the last element on the page.

Note: A pageEvent object is available and can be accessed by
scripts in the header and footer to access PageBreak event
information. It contains the same information as the PageBreak
event but can be accessed outside the PageBreak listener.

See Also
onPageBreak Handler, for an illustration of using the PageBreak handler.

ELEMENTID

The element ID of the last element on the page.

Type
string

REPORT SCRIPTING

1210 of 2477

Example
if(event.elementID == 'Table1') {

...
}

REGION

If the last element is a table element, this is the table region of the table on
the current page.

Type
java.awt.Rectangle

Example
for(var row = event.region.y; row < event.region.y +
event.region.height; row++) {

for(var col = event.region.x; col < event.region.x +
event.region.width; col++) {
...

}
}

FIRSTELEMENTID

The element ID of the first element on the page.

Type
string

Example
if(event.firstElementID == 'Table1') {

...
}

FIRSTREGION

If the first element is a table element, this is the table region of the table on
the current page.

Type
java.awt.Rectangle

LASTPAGE

This property is true if this is the last page of the return.

Type
Boolean

x left-most column index
y top-most row index
width number of columns
height number of rows

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Rectangle.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Rectangle.html

REPORT SCRIPTING

1211 of 2477

Example
if(event.lastPage) {

...
}

PAGEINDEX

The current page number (first page = 0).

Type
number

Example
Text1.text = event.pageIndex;

SI.31 Selection Event Object

A Selection Event object is accessible using the global ‘event’ object in an
onClick event handler. The event can be used to query event information.

ELEMENTID

Affects the ID of the element where the event occurred.

Type
string

Example
var id = event.elementID;

ITEM

Affects the location within the element where the mouse is clicked. This is
an EventPoint object, where the x value is the column index and the y value
is the row index.

Type
inetsoft.report.event.EventPoint

Example
if(event.item.y == 0) {

...
}

SI.32 Request Event Object

A Request Event is accessible in an onClick Handler script that is attached
to a Form field element. The Request element contains the values
submitted from a form. It is stored in the global ‘event’ object.

REPLETREQUEST

This is the request object containing all form values.

REPORT SCRIPTING

1212 of 2477

Type
inetsoft.sree.RepletRequest

Example
showReplet("report/details", event.repletRequest);

SI.33 Query Parameter Object

If a report has embedded query binding, the parameters used by the queries
are accessible as properties in a ‘parameter’ object. Each parameter is a
property in the ‘parameter’ object and can be accessed using regular
JavaScript object property notation.

text = "Customer list for " + parameter.state;

The parameter values can be modified by onLoad Handler script. The
modifications made in an onLoad script will be used when the queries are
executed. Modifications made in all other scripts are not effective in
queries.

SI.34 RepletRequest Object

A report is created with optional replet request parameters. The parameters
may be defined when a replet is registered with a server, or interactively
entered by end users when the report is created. The request parameters can
be accessed inside a script like the query parameters. The length of request
parameters is given by request.length.

The report creation request parameters are stored in a JavaScript object,
‘request’. The parameters can be accessed as properties in the object.

if(request.chartType == 'BAR') {
Chart1.separatedStyle = Chart.CHART_BAR;

}

The request parameter values are read-only. Modifying the parameter
values has no effect on the report creation process.

See Also
parameter, for an alternate method of accessing report parameters.

SI.35 ReportSheet Object

All scripts in a report can access the Java ReportSheet object as a top-level
object: ‘reportsheet’. All public methods in ReportSheet class are available.

Name
reportsheet

Type
inetsoft.report.ReportSheet

REPORT SCRIPTING

1213 of 2477

Example
reportsheet.background = java.awt.Color.lightGray;

SI.36 Style Intelligence Global Object

Style Intelligence scripts can access a set of functions only available in the
server environment. The functions are generally used in onClick Handler
scripts to create report viewer commands. In the Script Editor ‘Functions’
tree, these are listed under ‘StyleReportEE/Global’.

SHOWREPLET(REPLET, REQUEST)

This function creates a command to display a report, with optional report
request parameters. It should only be used in the onClick script.

Parameter
replet path/name of report in repository
request an array of parameter name-value pairs

Example
showReplet("sales/monthly", [['month',3], ['type','all']]);

SHOWURL(URL, TARGET)

This function creates a command to display a document at the specified
URL. Target frame name is optional.

Parameter
url URL string
target target frame name

Example
showURL("http://www.inetsoft.com")

PROMPTPARAMETERS(REQNAME)

This function creates a command to prompt for parameter values for the
specified request. The parameters must be declared in a replet explicitly.

Parameter
reqname request name

Example
promptParameters('customize');

SENDREQUEST(REQUEST)

This function creates a command to generate a request to a replet.

Parameter
request an array of pairs containing parameter name-
value pairs

REPORT SCRIPTING

1214 of 2477

Example
sendRequest([['name','value']]);

REFRESH()

This function creates a command that requests the viewer to refresh the
report. This causes the report to be re-generated on the server.

Example
refresh();

SCROLLTO(EID, ROW)

This function creates a command to scroll the report to the specified
location.

Parameter
eid target element ID
row if the element is a table, the target row number

Example
scrollTo('Table1', 200);

SHOWSTATUS(MESSAGE)

This function creates a command to show a message on the status bar of the
viewer.

Example
showStatus('This is a status');

PVIEWSHEET

For a report which is accessed via drilldown (hyperlink or auto-drill) from a
Viewsheet, the pviewsheet property provides access to the current settings
of components within the parent Viewsheet.

Example
If the parent Viewsheet contains a Selection List named ‘Company’, you
can obtain the array of currently selected companies in the ‘Company’
Selection List by using the following syntax within report script:

pviewsheet.Company.selectedObjects

See Also
Viewsheet Object Reference, in Dashboard Scripting, for a list of accessible
Viewsheet component properties.
pviewsheet, in Dashboard Scripting, to access component settings from
within a drilldown Viewsheet.

REPORT SCRIPTING

1215 of 2477

Auto-Drilldown, in Data Modeling, for information on configuring data-
level hyperlinks.
Hyperlinks, in Dashboard Design, for information on Viewsheet
drilldowns.

SI.37 Replet Object

In the User Portal, a report script can access its own instance of
BasicReplet. This allows a script to add interactive features to the report
without implementing onClick Handler. You can access the replet object
with the global JavaScript property ‘replet’.

PARAMETER

Used to access a report parameter definitions. Use parameter.length to
find the number of report parameters.

Type
array of parameters

Examples
parameter.state = 'NJ';
parameter.companies[0] = 'CA';
parameter['create'].addBoolean('Include All');

See Also
HTTP Request, Session, and Principal, for information on accessing http
session.
RepletParameters Object, for special user and principal parameters.

SORTONHEADER

If this property is true, actions are automatically generated to sort a table
when a column header is clicked.

Type
Boolean

Example
sortOnHeader = true;

PAGESIZE

Sets the page size of this report.

Type
page size in inches, an instance of inetsoft.report.Size

Example
pageSize = StyleConstant.PAPER_LEGAL;

REPORT SCRIPTING

1216 of 2477

ORIENTATION

Sets the orientation of the report, either landscape or portrait.

Type
orientation StyleConstant.LANDSCAPE or

StyleConstant.PORTRAIT

Example
orientation = StyleConstant.LANDSCAPE;

PRINCIPAL

The user ID of the user who opened this report. It can be used to add a
parameter to a query to perform a query based on user ID.

Type
string

Example
parameter['user_id'] = replet.principal;

ROLES

The roles assigned to the end user. A user may have multiple roles. Roles
are presented in an array.

Type
array of strings

Example
for(var r = 0; r < roles.length; r++) {

if(roles[r] == 'region_manager') {
summaryTable.visible = true;

}
}

ADDLINK(EID, [ITEM], REPLET [,REQUEST])

Adds a hyperlink to the specified element which targets another report.

Parameter
eid element ID
item row/column specifier,

an inetsoft.report.event object
replet report name
request report request,

an inetsoft.sree.RepletRequest instance,
or a parameter/value array (array of pairs)

Example
replet.addLink('Text1', 'Orders/Order Details');

REPORT SCRIPTING

1217 of 2477

Example
var req = new inetsoft.sree.RepletRequest("customize");
req.setParameter("name", "value");
replet.addLink("Text2",

new inetsoft.report.event.EventPoint.at(new
java.awt.Point()), "report/details", req);

// this is equivalent to
replet.addLink("Text2", [["name", "value"]]);

ADDLINKURL(EID, ITEM, URL, TARGET)

Adds a hyperlink to an element, which opens a URL in a specified window.

Parameter
eid element ID
item row/column specifier, an

inetsoft.report.event.EventPoint object
url a URL string
target A new frame name or predefined HTML target,

e.g., _blank, _self, _parent, _top.

Example
replet.addLinkURL("home", undefined,

'http://www.inetsoft.com', "frameName");

ADDREQUEST(EID, ITEM, REQUEST)

Adds a request link for an element (item). If the element/item is clicked, the
request is sent to the replet as a RequestEvent.

Parameter
eid element ID
item row/column specifier, a

inetsoft.report.event.EventPoint object
request report request object,

inetsoft.sree.RepletRequest

Example
replet.addRequest("link", undefined, [["name", "value"]]);

ADDSTATUS(EID, ITEM, MESSAGE)

Associates a status message with an element. The ‘message’ parameter is
displayed as a tooltip when the user moves the mouse over the element.
The message is also displayed in the browser status bar if permitted by
browser security. (Modern browsers disable status bar scripting by default.)

Parameter
eid element ID
item row/column specifier, a

inetsoft.report.event.EventPoint object
message status message

REPORT SCRIPTING

1218 of 2477

Example
replet.addStatus("Title", undefined, "This is an example
report");

See Adding Tooltips to Elements for further examples.

ADDPOPUPMENU(EID, ITEM, ITEMS)

Adds a popup menu for an element. The menu is popped when a menu
trigger mouse button is pushed inside the element (item). When a popup
menu is added to an element, the action to be performed should also be
specified. The actions are specified using addMenuAction() function.

Parameter
eid element ID
item row/column specifier, a

inetsoft.report.event.EventPoint object
items an array of menu item strings

Example
replet.addPopupMenu("Table1",

new inetsoft.report.event.EventPoint(0, -1), ["Sort"]);

ADDMENUACTION(EID, ITEM, MENUITEM, ACTION)

Adds a menu action to an element. The action is performed when a menu
item associated with the element is selected.

Parameter
eid element ID
item row/column specifier, a

inetsoft.report.event.EventPoint object
menuitem menu item string
action an action command,

inetsoft.sree.Repletcommand

Example
replet.addMenuAction("Text1", undefined, "Details",
showReplet("report/details"));

ADDFORMLINK(FORM, REPLET)

Adds a hyperlink from a form to a replet. When the form is submitted, the
request is used to create the specified replet.

Parameter
form form name
replet path/name of report

Example
replet.addFormLink("Form1", "report/details");

REPORT SCRIPTING

1219 of 2477

REMOVEALLACTIONS()

Removes all the actions (i.e., hyperlink and status actions) associated with a
replet.

Example
replet.removeAllActions();

SI.38 ParentReport Object

The nested scope of the bean and sub-report scripting environment results
in any variable or element in a bean or a sub-report hiding the objects with
same names in the parent report. However, such objects in the parent report
can be accessed using the ‘parentReport’ object. For example, say that a
bean has a text element whose id is set to ‘Title’ and its parent report also
has a text element with the id equal to ‘Title’. The ‘Title’ text element in the
parent report can be accessed using

parentReport.Title
or

parentReport['Title']

SI.39 RepletParameters Object

A RepletParameters object contains the replet parameter definitions. It is
accessed through replet.parameters.create, and can be used to add or
modify replet parameter definitions.

The replet.parameters.create.parameter array is available as a global
property called parameter. Here is a list of system parameters that are
available in the global parameter array:

ADDBOOLEAN(STRING, BOOLEAN)

Adds a Boolean parameter to the parameter list. A Boolean parameter is
prompted using a checkbox.

Parameter
string parameter name
boolean default Boolean value

PARAMETER NAME PURPOSE

USER The string containing the user id.
ROLES An array containing the role names. This can be used with

the ‘one-of’ condition operator.
__principal__ Retrieves the SRPrincipal object in both report script and

VPM triggers. Works in scheduled reports too.
__service_request__ Gets the HttpServiceRequest, only valid in a report script

when run live by a user.
Replet.RunType Returns the context of this report: live, pregenerated, or

archive (if the SRO is re-executed due to ad hoc changes)

REPORT SCRIPTING

1220 of 2477

Example
replet.parameters['create'].addBoolean('showChart', true);

ADDCHOICE(STRING, OBJECT, ARRAY)

Adds a choice parameter to the parameter list. A choice parameter is
prompted using a combo box.

Parameter
string parameter name
object default value
array array of items to select from

Example
replet.parameters['create'].addChoice('border', 0,
['Thin Line', 'Double Line']);

ADDDATE(STRING, DATE)

Adds a date parameter to the parameter list. A date parameter is prompted
using a date combo box.

Parameter
string parameter name
date default date value

Example
replet.parameters['create'].addDate('start_time', new
Date());

ADDDATETIME(STRING, DATE)

Adds a date/time parameter to the parameter list. A date/time parameter is
prompted using a combo box or a text field.

Parameter
string parameter name
date default date/time value

Example
replet.parameters['create'].addDate('start_time', new
Date());

ADDLIST(STRING, DEFAULT, LIST)

Adds a list parameter to the parameter list. A list is presented as a multi-
selection list on the prompt window.

Parameter
string parameter name
default array of default selections
list array of selection items

REPORT SCRIPTING

1221 of 2477

Example
replet.parameters['create'].addList('type', ['Grouping'],
['Grouping', 'Summarize']);

ADDOPTION(STRING, DEFAULT, LIST)

Adds a group of options to the parameter list. An option group is presented
as a group of checkbox controls.

Parameter
string parameter name
default array of default selections
list array of selection items

Example
replet.parameters['create'].addOptions('type',
['Grouping'], ['Grouping', 'Summarize']);

ADDPARAMETER(STRING, DEFAULT, FORMAT)

Adds a parameter with optional formatting. The parameter is prompted
using a text field. If the format is specified, it is used to convert the object to
and from its string representation.

Parameter
string parameter name
default parameter default value
format java.text.Format object for formatting object

Example
replet.parameters['customize'].addParameter('curr',
 new java.util.Date(),
 new java.text.SimpleDateFormat('yyyy-MM-dd'));

ADDPASSWORD(STRING)

Adds a password parameter to the parameter list. A password is prompted
using a text field with hidden text.

Parameter
string parameter name

Example
replet.parameters['create'].addPassword('password');

ADDRADIO(STRING, DEFAULT, LIST)

Adds a radio button group parameter to the parameter list. The parameter is
presented as a group of radio buttons.

Parameter
string parameter name
default default selection

REPORT SCRIPTING

1222 of 2477

list array of selection items

Example
replet.parameters['create'].addRadio('type', 'Grouping',
['Grouping', 'Summarize']);

ADDTEXTAREA(STRING, DEFAULT, ROWS, COLS)

Adds a text area parameter to the parameter list. The parameter is prompted
using a multi-line text area control.

Parameter
string parameter name
default default text
rows number of rows
cols number of columns

Example
replet.parameters['create'].addTextArea('comments', '', 5,
40);

ADDTIME(STRING, DATE)

Adds a time parameter to the parameter list. The parameter is prompted
using a time spinner or a text field.

Parameter
string parameter name
date default value

Example
replet.parameters['create'].addTime('time', new Date());

CLEAR()

Removes all parameter definitions.

Example
replet.parameters['create'].clear();

SETALIAS(NAME, ALIAS)

Sets the parameter alias. The alias is used as the label of the parameter on
the prompting window.

Parameter
name parameter name
alias parameter alias

Example
replet.parameters['create'].setAlias('time', 'Start Time');

REPORT SCRIPTING

1223 of 2477

SETVISIBLE(STRING, BOOLEAN)

Sets the visibility of a parameter. If a parameter is hidden, it is not prompted
on the parameter window. The default value is used as the value of the
parameter.

Parameter
string parameter name
boolean visibility flag

Example
replet.parameters['create'].setVisible('time', false);

SI.40 PDF Security Provider Subsets

This is the subset required in the report’s onLoad Handler script when used
in conjunction with an appropriate PDF security provider, and accessed
through the docInfo object.

The following properties are available:

• pdf.password.owner – password that provides owner access to
document (as entered in Adobe software).

• pdf.password.user – password that provides user access to document
(as entered in Adobe software); required to use any security property.

• pdf.permission.add [true/false] – provides the ability to add/modify;
maps to “Commenting” feature.

• pdf.permission.change [true/false] – provides the ability to change
anything; maps to “Changing the Document and Document Assembly”
feature.

• pdf.permission.copy [true/false] – provides the ability to copy; maps
to “Content Copying or Extraction” and “Content Extraction for
Accessibility” features.

• pdf.permission.print [true/false] – provides the ability to print;
maps to “Printing” feature.

To use these security features, you must have an implementation of the
Java Cryptography Extension on your classpath. Sun provides a default
implementation with the JRE. To use this, add the {JAVA_HOME}/jre/lib/
security folder to your classpath.

SI.41 StyleReport Object

The StyleReport object has been deprecated. Please use the StyleConstant
Object instead.

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html

DASHBOARD DESIGN

1224 of 2477

Dashboard Design

Visualization is a branch of analysis that turns data into visual insight.
Traditional data visualization tools were designed for highly trained
professionals, such as scientific researchers. These used complicated
outputs and statistical models to enable these users to discover low-level
patterns.

A Viewsheet is a business intelligence dashboard that brings the power of
visualization to business executives and mainstream users. Because
Viewsheets allow you to interact with data using familiar objects such as
charts, sliders, and check-boxes, they are quick to learn and easy to use.
They allow you to seamlessly integrate data warehouses and other BI data
stores with operational data sources for a complete view of your
organization.

Note: Viewsheets are available only in Style Intelligence and Style
Scope.

Visualization using Viewsheets goes far beyond the ad hoc querying you
might use to find answers to existing questions. With Viewsheets, you will
be able to explore your data from every angle, discover new patterns, test
new ideas, and envision new opportunities.

DASHBOARD DESIGN

1225 of 2477

1 Contents

This Guide covers the following topics:

• Visual Composer

Introduction to the Visual Composer, and an explanation of
Viewsheet creation and deployment.

• Using Viewsheet Components

Discussion of common component features, and how to manipulate
Viewsheet components within the Visual Composer.

• Data View Components

Discussion of data visualization elements (charts, crosstabs, maps,
etc.), their usage, and their properties.

• Selection Components

Discussion of data selection/filtering elements (Selection Lists,
selection trees, Range Sliders, calendars, etc.), their usage, and
their properties.

• Output Components

Discussion of data output elements (text, images, gauges, etc.),
their usage, and their properties.

• Input Components

Discussion of data input elements (sliders, radio buttons, check
boxes, etc.), their usage, and their properties.

• Shape Components

Discussion of shape components used for providing backgrounds
and aesthetic layout.

• Organization Components

Discussion of component grouping, its usage, and properties.

• Dynamic Properties

Discussion of advanced interactivity features.

DASHBOARD DESIGN

1226 of 2477

2 Visual Composer

The Visual Composer is a web-based tool for creating Data Worksheets,
Viewsheets, and other assets. You will use the Visual Composer to link
graphical components of a Viewsheet to the data supplied by a Worksheet,
query, data model, or database table. For example, you will link a Range
Slider to a date field, or link a Gauge to the aggregate of a numeric column.

Note: Visual Composer is available only in Style Intelligence and
Style Scope.

This chapter has a quick walk-through to get you started creating
Viewsheets followed by a discussion of some basic aspects of Viewsheets.

See Also
Data Mashup, for information on creating Worksheets and other assets.
Data Modeling, for information on creating queries and data models.
End User, for information on how end-users can apply Viewsheets.

2.1 Quick Start: Creating a Dashboard
To build a dashboard, you lay out components such as gauges, tables, and
charts on a simple canvas called a Viewsheet. Viewsheets can retrieve data
from queries, data models, or Data Worksheets.

Note: Creation of new dashboards is currently not supported on
Apple iPads.

The following example walks you through the creation of a simple
Viewsheet. You will use a Data Worksheet called ‘ProductSales’ as the data
source for the dashboard. (This Data Worksheet is included in the default
installation. Please contact your administrator if the Worksheet is not
available.)

Walkthrough You will configure output and selection components to allow users to
quickly analyze the ‘ProductSales’ data. Follow the steps below:

1. In the User Portal, press the Design tab, and select the ‘Visual
Composer’ link.

This opens Visual Composer in a new window. The left-side panels
in Visual Composer are labeled Asset and Component. The Asset
panel lists all Data Worksheets and Viewsheets. The Component
panel lists all of the components available to a Viewsheet.

DASHBOARD DESIGN

1227 of 2477

2. Press the ‘New Viewsheet’ button. This opens the ‘New
Viewsheet’ dialog box.

3. In the ‘New Viewsheet’ dialog box, expand the ‘Global Worksheet’
node and expand the ‘Tutorial’ folder. Select the ‘ProductSales’
Data Worksheet and press ‘OK’.

This creates a new Viewsheet that draws its data from the ‘Product-
Sales’ Worksheet.

4. Expand the ‘ProductSales’ node at the top of the Component panel
in Visual Composer. Drag the ‘SalesByDate’ data block into the
Viewsheet grid. This adds the ‘SalesByDate’ data block to the
Viewsheet as a Table component.

DASHBOARD DESIGN

1228 of 2477

5. Under the ‘ProductSales’ tree node, expand ‘SalesByDate’ to show
the list of fields within that data block.

6. Click and drag the ‘State’ field to an empty cell in the Viewsheet
grid. This creates a Selection List that will let the user choose the
states for which data is displayed.

DASHBOARD DESIGN

1229 of 2477

7. From the ‘Selection’ folder in the Component panel, drag a Range
Slider component into an empty cell in the Viewsheet grid. This
will let the user specify a time period for the displayed output.

8. Drag and drop the ‘Month(Date)’ field onto the Range Slider in the
grid. This links the Range Slider to the ‘Month(Date)’ field.

DASHBOARD DESIGN

1230 of 2477

Use the main toolbar
to change the fonts,
colors, and other
visual properties of
the elements. You can
right-click an element
to see further options.

This allows the Range Slider to filter the ‘Date’ field in the Work-
sheet data block.

9. Drag the handles on the Range Slider to adjust the size as desired.

10. Press the ‘Save’ button in the Viewsheet toolbar, and save the
Viewsheet under ‘Global Viewsheet’ with the name “Sample
Viewsheet”. This deploys the Viewsheet to the server under global
scope.

DASHBOARD DESIGN

1231 of 2477

11. Press the ‘Preview’ button on the main toolbar. This provides a
preview of what the user will see in the Portal, and allows you to
interact with the dashboard as a user would.

You have now completed construction of your first dashboard.

2.2 Exploratory Visualization
A Viewsheet provides a visualization of data provided by a Data
Worksheet, query, data model, or database table.

• A Data Worksheet is a graphically developed complex query, using
mashup to manipulate and combine data from multiple sources. See
Data Mashup for more information.

• A query is a specific request for data from a database, or other source.
You can create a query graphically with the Query Wizard, or by
entering a desired SQL string. See Independent Query in Data Modeling
for more information.

• A data model is an abstract representation of a database schema,
mapping database tables and columns into easy-to-understand entities
and attributes. See Semantic Layer – Data Model in Data Modeling for
more information.

The Viewsheet extracts the data relationships that you develop in the Data
Worksheet, query, model, or table and presents them in an intuitive and
interactive visual interface. You can use the Viewsheet to navigate any
inherent hierarchy in the data, and you can add new information for “what-
if” analysis and other advanced applications.

The example Viewsheet below is included in the default installation.

DASHBOARD DESIGN

1232 of 2477

Figure 1. Exploratory Visualization.

2.3 Using Visual Composer
This section introduces basic operations of the Visual Composer, including
creating, editing, and naming a Viewsheet.

2.3.1 Launching Visual Composer

To launch the Visual Composer, follow these steps:

1. Open the User Portal within a web browser. (Your administrator
can provide the correct web address.)

2. In the User Portal, select the Design tab.

3. Click the ‘Visual Composer’ link.

2.3.2 Visual Composer Interface

The pane on the left side of the Visual Composer contains two collapsible
panels, Asset and Component. You can toggle between the two panels by
clicking on their respective title bars.

DASHBOARD DESIGN

1233 of 2477

• The Asset panel lists all Data Worksheets and Viewsheets.

• The Component panel lists all the components and data sources
available to the Viewsheet.

Figure 2. Visual Composer

2.4 Managing Viewsheets
The following sections explain basic Viewsheet operations.

2.4.1 Creating a New Viewsheet

To create a new Viewsheet, follow these steps:

1. Click the ‘New Viewsheet’ button on the main toolbar. This opens
the ‘New Viewsheet’ dialog box.

DASHBOARD DESIGN

1234 of 2477

2. Select a data source for the Viewsheet:

a. Queries, data models, and database tables are listed under the
‘Query’ node. The Viewsheet will have access to all of the fields
in the selected query, model, or table.

b. Data Worksheets are listed under the ‘Global Worksheet’ and
‘User Worksheet’ nodes. The Viewsheet will have access to all
of the Data Blocks in the selected Worksheet.

You are not required to select a data source. If you wish to create
the Viewsheet without an associated data source, do not make any
selections here. (To clear an existing selection, press the ‘Clear’
button.) To bind the Viewsheet to a data source at a later time, see
Linking a Viewsheet to a Data Source.

3. Click ‘OK’.

2.4.2 Opening an Existing Viewsheet

To open an existing Viewsheet, follow these steps:

Viewsheets under
‘Global Viewsheet’
are visible to all users
of the Visual Com-
poser. Viewsheets
under ‘User Views-
heet’ are visible only
to their creator.

1. Select the Asset panel of the Visual Composer. The asset tree
contains two Viewsheet nodes labeled ‘Global Viewsheet’ and
‘User Viewsheet’.

2. Expand the nodes to see the list of Viewsheets.

3. Right-click the Viewsheet you wish to open, and select ‘Open
Sheet’ from the context menu.

DASHBOARD DESIGN

1235 of 2477

Alternatively, you can double-click the Viewsheet you wish to
open.

If you press the ‘Cancel’ button in the Viewsheet loading dialog box, the
Viewsheet is automatically displayed in meta-data mode. See Suppressing
Query Execution in Design View for more information about meta-data
mode.

See Also
Linking a Viewsheet to a Data Source, to link an existing Viewsheet to data
source.
Controlling Access to an Asset, in Data Mashup, for information on
Worksheet scope.

2.4.3 Saving a Viewsheet

This section illustrates how to save a Viewsheet, and explains the different
storage scopes available.

Saving a New Version of an Existing Viewsheet

To save a new version of an existing Viewsheet, click the ‘Save’ button in
the toolbar, or press Ctrl-S on the keyboard. This replaces the older version
with the current version, retaining the same name.

Note: You must possess write permission for the Viewsheet or a
folder in order to save changes. The 'Save As' option is not
available in Style Scope Free Edition.

To save the new version of the Viewsheet under a different name, click the
‘Save As’ button. This opens the ‘Save Viewsheet’ dialog box. Follow the
instructions in Saving a New Viewsheet.

Saving a New Viewsheet

To save a new Viewsheet, follow the steps below:

1. Click the ‘Save’ button in the toolbar, or press Ctrl-S on the
keyboard. This opens the ‘Save Viewsheet’ dialog box.

DASHBOARD DESIGN

1236 of 2477

2. Under the Repository tab, enter a name for the Viewsheet in the
‘Name’ field.

3. Select the appropriate scope for the saved Viewsheet (‘Global
Viewsheet’, ‘User Viewsheet’, or a sub-folder).

Note: You must possess write permission for the target scope (sub-
folder).

4. Under the Options tab, select ‘List on Portal Tree’ to make the
Viewsheet available to users in the User Portal.

5. Click ‘OK’ to save the Viewsheet.

The Viewsheet is saved to the Asset Repository, and appears in the Asset
Repository tree under the specified scope. Saved Viewsheets are stored in a
file called asset.dat within the SREE Home directory.

See Also
Deploying a Viewsheet, for information on Portal access to Viewsheets.
Setting Viewsheet Options, for general Viewsheet options.
Controlling Access to a Viewsheet, for information on setting Viewsheet
scope.

2.4.4 Renaming a Viewsheet

To rename a Viewsheet, follow these steps:

1. Select the Viewsheet in the Asset Repository.

2. Click the Viewsheet name a second time, or right-click and select
‘Rename’. This activates the edit mode.

DASHBOARD DESIGN

1237 of 2477

3. Enter the new name, and press Enter.

2.4.5 Linking a Viewsheet to a Data Source

To bind a Viewsheet to a new data source, follow the steps below:

1. Open the Viewsheet in the Visual Composer.

2. Click the ‘Options’ button in the Visual Composer toolbar. This
opens the ‘Viewsheet Options’ dialog box.

3. In the ‘Data Source’ region, click the ‘Select’ button.

4. Select a data source for the Viewsheet:

a. Queries, data models, and database tables are listed under the
‘Query’ node. The Viewsheet will have access to all of the fields
in the selected query, model, or table.

DASHBOARD DESIGN

1238 of 2477

Note: In general, if a Viewsheet contains controls that are already
bound to a Worksheet, those controls will stop functioning when the
Viewsheet is re-bound to a new Worksheet. However, the controls
will remain functional if the Data Blocks and columns in the new
Worksheet are named the same as the Data Blocks and columns in the
old Worksheet.

b. Data Worksheets are listed under the ‘Global Worksheet’ and
‘User Worksheet’ nodes. The Viewsheet will have access to all
of the Data Blocks in the selected Worksheet.

5. Click ‘OK’.

See Also
Controlling Access to an Asset, in Data Mashup, for information on the
Worksheet scopes.

2.4.6 Opening a Linked Worksheet

To open the Worksheet linked to a Viewsheet, click the Worksheet link at
the bottom of the Viewsheet.

2.4.7 Controlling Access to a Viewsheet

You can store Viewsheets under two different scopes. The scope
determines which users can access the Viewsheet in the Portal, Visual
Composer, and Dashboards.

The following two scopes are available for Viewsheets:

• Global scope: All of the users in the system have potential access to the
Viewsheet. The administrator assigns individual user permissions.

• User scope: Only the user who creates the Viewsheet can access it.

For Global scope only, an administrator can define subdirectories to
organize Viewsheets into different domains, for example:

 – Shared Viewsheets
 – Sales domain
 – Marketing domain
 – R&D domain
 – Support domain
 – Financial domain

Each domain can be given different access rights.

DASHBOARD DESIGN

1239 of 2477

See Also
Changing Viewsheet Scope, for information on toggling Global and Local
scope.
Creating Folders, in Administration Reference, to define sub-folders.
Repository Permissions, in Administration Reference, to assign
permissions.

2.4.8 Changing Viewsheet Scope

To change the scope of a Viewsheet in the Asset Repository, drag the
Viewsheet to the branch of the Repository tree corresponding to the desired
scope. The following rules apply:

• You must possess write permission to the target scope.

• If the Viewsheet is linked to a Worksheet that has User scope, the
Viewsheet cannot be moved to Global scope.

See Also
Controlling Access to an Asset, in Data Mashup, for information on the
Worksheet scopes.

2.4.9 Limiting Data Retrieved by a Viewsheet

It is common for administrators to limit data retrieved by user queries, in
order to avoid overtaxing database resources. Administrators can limit the
number of records retrieved in design mode, preview mode, and at runtime
(in the Portal). The design mode limit can also be set in the Worksheet. See
the related links for more information.

In cases where a Worksheet Data Block is slow or returns an empty result
set, you can apply formatting features (e.g., highlights) by Suppressing
Query Execution in Design View.

See Also
Web Properties and Safeguards, in Administration Reference
Limiting Query Size and Execution Time, in Administration Reference, for
global safeguards.
Setting Global Worksheet Options, in Data Mashup, to limit Viewsheet
data in design view.
Limiting the Number of Rows in a Table, in Data Mashup, for other
Worksheet-level safeguards.

2.4.10 Suppressing Query Execution in Design View
Note: If you press the
‘Cancel’ button in the
Viewsheet loading
dialog box, the Views-
heet is automatically
displayed in meta-data
mode.

The design view for a Viewsheet is intended to simulate the functional
Viewsheet as closely as possible, including all data representation and
interactivity. However, when a Viewsheet relies on large or complex
queries, retrieval of data from the database at design time can introduce
unnecessary delays into the design process. In such cases, it is convenient

DASHBOARD DESIGN

1240 of 2477

to suppress the execution of queries in the Viewsheet design view and
instead display only meta-data.

To manually suppress execution of queries in the design view, follow the
steps below:

1. Click the ‘Options’ button in the Visual Composer toolbar. This
opens the ‘Viewsheet Options’ dialog box.

2. Select the ‘Use Metadata’ option, and click ‘OK’.

With ‘Use Metadata’ enabled, data-view and selection components in the
design view display query meta-data rather than the query result set.

2.4.11 Suppressing Parameter Prompting

By default, a Viewsheet will prompt the user for all parameters in the
linked data source (query, Data Worksheet, etc.) and have not been
assigned a value. In some cases, you may want to suppress the prompting
for some or all of these parameters.

DASHBOARD DESIGN

1241 of 2477

To suppress prompting for all parameters, follow the steps below:

1. Press the ‘Options’ button in the toolbar to open the ‘Viewsheet
Options’ dialog box.

2. Disable the ‘Prompt for parameters’ option.

3. Press ‘OK’ to close the dialog box.

To suppress prompting for a subset of parameters, follow the steps below:

1. Press the ‘Options’ button in the toolbar to open the ‘Viewsheet
Options’ dialog box (as above).

2. Press the ‘Customize’ button next to the ‘Prompt for parameters’
option.

This open the ‘Customize Parameters’ dialog box.

DASHBOARD DESIGN

1242 of 2477

3. To disable one or more parameters, select the parameters you wish
to disable in the ‘Enabled Parameters’ panel, and press the ‘Add’
button. This moves the selected parameters to the ‘Disabled
Parameters’ panel.

To re-enable one or more disabled parameters, select the parame-
ters you wish to enable in the ‘Disabled Parameters’ panel, and
press the ‘Remove’ button. This moves the selected parameters to
the ‘Enabled Parameters’ panel.

4. Press ‘OK’ to close the ‘Customize Parameters’ dialog box.

5. Press ‘OK’ to close the ‘Viewsheet Options’ dialog box.

See Also
Setting Viewsheet Options, for more information about the ‘Viewsheet
Options’ dialog box.

2.5 Configuring Viewsheet Appearance
This section discusses several ways that you can modify the overall
appearance of a Viewsheet. These include alterations you can make to the
Viewsheet grid, and the use of tabbed controls and nested Viewsheets.

2.5.1 Viewsheet Toolbar

The table below describes the Visual Composer toolbar buttons available
for editing Viewsheets

BUTTON FUNCTION

New Worksheet: Create a new Data Worksheet.

New Viewsheet: Create a new Viewsheet based on a Worksheet,
query, data model, or database table.

DASHBOARD DESIGN

1243 of 2477

2.5.2 Tailoring the Viewsheet for Specific Screen Size

To lay out a Viewsheet to fit particular screen dimensions, use the ‘Target
Screen’ option to display appropriate guidelines on the Viewsheet grid.
Follow the steps below:

1. Press the ‘Options’ button in the toolbar to open the ‘Viewsheet
Options’ dialog box.

Save: Save the changes to Viewsheet. (Ctrl-S)

Save As: Save the Viewsheet under a new name or scope.

Options: Settings for the Viewsheet as a whole.

Preview: View the Viewsheet as the user does.

Undo: Undo the last operation. (Ctrl-Z)

Redo: Redo the last operation that was undone. (Ctrl-Y)

Format Painter: Copy text formatting from one object to another.

Currency Format: Apply a currency format.

Percentage Format: Apply a percentage format.

Comma Style: Apply a number format.

Increase Decimal: Increase the number of decimal places.

Decrease Decimal: Decrease the number of decimal places.

Borders: Apply borders to selected objects.

Font color: Select text color.

Fill color: Select background color of objects

Close: Close the Visual Composer

DASHBOARD DESIGN

1244 of 2477

2. Enable the ‘Target Screen’ option, and enter the desired screen
dimensions in pixels.

3. Press ‘OK’ to close the dialog box.

The Viewsheet grid now displays dashed border lines defining a region of
the size that you specified.

By laying out the Viewsheet components within these border lines, you can
ensure that the Viewsheet will fit within a screen of the specified
dimensions.

DASHBOARD DESIGN

1245 of 2477

See Also
Setting Viewsheet Options, for more information about the ‘Viewsheet
Options’ dialog box.

2.5.3 Modifying the Viewsheet Grid

It is possible to alter the Viewsheet grid by inserting or deleting cells, rows,
and columns. You can also resize the grid rows and column, and make the
grid invisible.

Inserting a Cell, Row, or Column into a Viewsheet

To insert a new cell, row, or column into the Viewsheet grid, follow these
steps:

1. Right-click on the cell, row, or column where you want the
insertion to take place, and select ‘Insert Cell(s)’ from the context
menu. This opens the ‘Insert Cell(s)’ dialog box.

2. In the ‘Insert Cell(s)’ dialog box, select the desired insertion type:

a. To insert a single blank cell at the current grid location, select
‘Shift cells down’ or ‘Shift cells right’.

Note: The position of
a Viewsheet compo-
nent will be shifted
only if the new cell is
inserted in the same
row or column as the
grid cell occupied by
the component’s top-
left corner.

This inserts the new cell, and displaces the currently selected
cell (and all subsequent cells) downward or to the right,
respectively.

b. To insert a blank row or column at the current grid location,
select ‘Entire row’ or ‘Entire column’.

This inserts the new row or column, and displaces the currently
selected row or column (and subsequent rows or columns)
downward or to the right, respectively.

Deleting a Cell, Row, or Column from the Viewsheet

To delete a cell, row, or column from the Viewsheet grid, follow these
steps:

DASHBOARD DESIGN

1246 of 2477

1. Right-click the cell, row, or column you want do delete, and select
‘Delete Cell(s)’ from the context menu. This opens the ‘Delete
Cell(s)’ dialog box.

2. In the ‘Delete Cell(s)’ dialog box, select the desired deletion type:

a. To delete the single cell at the current grid location, select ‘Shift
cells up’ or ‘Shift cells left’. This deletes the currently selected
cell, and displaces the following cells upwards or to the left,
respectively.

b. To delete the currently selected column or row, select ‘Entire
row’ or ‘Entire column’. This deletes the current row or column,
and displaces the following rows or columns upward or to the
left, respectively.

Resizing the Viewsheet Grid

To resize a row or column of the Viewsheet grid, follow these steps:

1. Move the mouse over a divider in the row or column header region.
The pointer changes to a resize tool.

2. Drag the row or column divider to change the row height or
column width.

See Also
Resizing a Table Row, to adjust row size independently of the grid.
Resizing a Table Column, to adjust table cell size independently of the grid.

DASHBOARD DESIGN

1247 of 2477

Zooming the Viewsheet Grid

The Viewsheet grid provides a “zoom” feature that uniformly scales the
entire Viewsheet. This allows you to simultaneously reduce or enlarge all
components on the Viewsheet while keeping their relative positions and
sizes intact.

To zoom into or out of a Viewsheet, right-click in an empty region of the
grid, and select ‘Zoom In’ or ‘Zoom Out’ from the context menu.

The Viewsheet remains fully functional even while it is in a zoomed state.

See Also
Resizing a Component, to adjust the size of an individual component.

2.5.4 Setting Viewsheet Options

You can set global options for the Viewsheet from the ‘Viewsheet Options’
dialog box. To open the ‘Viewsheet Options’ dialog box, do one of the
following:

• Click the ‘Options’ button in the main toolbar.

• Right-click in an empty location on the Viewsheet grid, and select
‘Options’ from the context menu.

DASHBOARD DESIGN

1248 of 2477

The Options tab of the ‘Viewsheet Options’ dialog box provides the
following settings:

SETTING DESCRIPTION

Data Source The Worksheet, query, data model, or table to which the current
Viewsheet is linked. Press ‘Select’ to choose a data source.
Press ‘Clear’ to unbind the data source.

Use Metadata Suppress the display of live data during Viewsheet design. See
Suppressing Query Execution in Design View.

Auto Save When enabled, automatically saves the current Viewsheet at the
specified interval (minutes). If you subsequently encounter a
problem that prevents you from saving the Viewsheet, you will
be prompted to load the auto-saved version when you reopen
the Viewsheet in Visual Composer.

Prompt for
parameters

Enables user prompting for any parameters defined in the linked
data source. Disable ‘Prompt for parameters’ to completely
suppress prompting. Press the ‘Customize’ button to selectively
disable prompting for certain parameters. (If disabled
parameters are used within filter conditions, the corresponding
filter conditions are dropped.) See Suppressing Parameter
Prompting for more information.

Target Screen Displays a dashed border of the specified pixel dimensions on
the Viewsheet grid to assist with Viewsheet sizing. See
Tailoring the Viewsheet for Specific Screen Size for more
information.

Scale to Screen When enabled, scales the Viewsheet to the size of the browser
window so that all components are visible on the screen without
scrolling.

DASHBOARD DESIGN

1249 of 2477

The Filters tab of the ‘Viewsheet Options’ dialog box allows you to
specify the manner in which selection elements in different Viewsheets
should interact within the Portal. See Synchronizing Selection Elements
and Input Elements for more information.

See Also
Linking a Viewsheet to a Data Source, to configure a Viewsheet data
source.
Deploying a Viewsheet to the Repository, for information on displaying
reports.
Using a Parameter in a Condition, in Data Mashup, for parameter usage.

2.5.5 Creating a Background

You can use an image or a shape component as a background for any
portion of a Viewsheet. For example, you can place an image behind a set
of components to provide the appearance of a frame or panel.

To use an image or shape as a background, follow the steps below:

1. Add an image component or shape component to the Viewsheet.

2. For an image component, follow the steps below:

Server-Side
Update

Automatically refreshes Viewsheet data at the period specified
by the ‘Refresh Interval’. To customize the refresh behavior, see
Enabling Server-Side Update for a Dashboard in
Administration Reference. Note that if a materialized view has
been created for the Viewsheet, server-side update is inactive.
(See Materialized Views in Administration Reference for more
information on materialized views.)

Design mode
sample data
size

Limits the number of records retrieved by a Viewsheet in design
mode. This setting applies only to Viewsheets based on queries
and data models. Viewsheets that are based on a Data
Worksheet are governed by the corresponding ‘Design mode
sample data size’ setting in the Worksheet, and the Viewsheet
setting is disabled. See Setting Global Worksheet Options in
Data Mashup for more information.

List on Portal
Tree

Determines whether the current Viewsheet will be visible in the
User Portal (subject to permissions set by administrator).

Alias Specifies a designation to be used in place of the actual
Viewsheet name. The alias replaces the Viewsheet name in all
contexts except the following: The Report tab and the ‘Export
Assets’ page in Enterprise Manager. These always display the
actual Viewsheet name.

Description A description to appear as a tooltip when the user hovers the
mouse over the Viewsheet in the Portal tree.

SETTING DESCRIPTION

DASHBOARD DESIGN

1250 of 2477

a. Right-click the image component, and select ‘Properties’ from
the context menu. This opens the ‘Properties’ dialog box.

b. Select the General tab. From the ‘Static Image’ panel, specify
an image to display as the background. (See Image for more
details.)

c. Select the Advanced tab, and enable the ‘Scale Image’ option.

d. Click ‘OK’ to exit the dialog box.

3. Right-click the image or shape component, and select ‘Send to
Back’ from the context menu.

4. Drag the image or shape into the desired position (usually behind
another component or components).

5. Resize the image or shape as desired.

You can continue placing other components on top of this background
image.

DASHBOARD DESIGN

1251 of 2477

See Also
Moving a Component, for information on resizing an element.
Scaling an Image, for methods of scaling an image without distortion.
Shape Components, for detailed information about setting shape properties.
Image, for detailed information about setting image properties.

2.5.6 Previewing a Viewsheet

To preview a Viewsheet, do one of the following:

• Click the ‘Preview’ button in the main toolbar.

• Right-click in an empty region of the Viewsheet grid, and select
‘Preview’ from the context menu.

This opens a new Preview tab that presents the Viewsheet with full
interactivity, just as end-users will experience it in the Portal. See The
Dashboard Toolbar in End User for information about the Preview toolbar.

The design view must
remain open for auto-
matic refresh.

If you preview a Viewsheet, and then (without closing the Preview tab)
return to the design view to make additional changes, you can refresh the
existing Preview with your changes by simply clicking the Preview tab
again. You can also click the ‘Refresh’ button in the toolbar. (The ‘Refresh’
button is not available for materialized Viewsheets.)

See Also
The Dashboard Toolbar, in End User, for information about the Preview
toolbar.

2.5.7 Refreshing a Viewsheet

To refresh a Viewsheet while in design view, right-click in an empty region
of the Viewsheet grid and select the ‘Refresh’ option from the context
menu.

Background image

Components overlapping image

DASHBOARD DESIGN

1252 of 2477

This refreshes the Viewsheet to reflect changes to the underlying data
source and embedded components. To refresh a Viewsheet while in
preview, see Previewing a Viewsheet.

2.5.8 Adding Annotations to a Viewsheet

You can add annotations to the following parts of a Viewsheet:

• Viewsheet body

• Output and data view components

• Chart data point

• Table data cell

To add an annotation to a Viewsheet, follow these steps:

1. Preview the Viewsheet. See Previewing a Viewsheet for details.

2. If necessary, select the bookmark in which you want to save the
annotation. (Annotations that you add will be saved with the active
bookmark.) See Restoring Settings from a Bookmark fin End User
or information on selecting a bookmark.

3. Right click on the Viewsheet body, a Viewsheet component, or a
data point that you want to annotate, and select ‘Annotate’ from the
context menu.

DASHBOARD DESIGN

1253 of 2477

4. Add the desired annotation, and press ‘OK’.

See Adding an Annotation to a Dashboard in End User for complete
information on adding, editing, and formatting annotations.

2.6 Deploying a Viewsheet
You can deploy a Viewsheet to the User Portal in a number of ways, and
Viewsheets can be synchronized so that the data presented by one will
reflect the selections made in others.

You can directly deploy a Viewsheet to the User Portal, where it will be
accessible in the Repository tree under the Report tab. You can also deploy
a Viewsheet under the Dashboard tab.

2.6.1 Deploying a Viewsheet to the Repository

To list a Viewsheet in the Portal Repository tree, follow these steps:

1. Click the ‘Options’ button in the toolbar. This opens the ‘Viewsheet
Options’ dialog box.

2. Select ‘List on Portal Tree’.

DASHBOARD DESIGN

1254 of 2477

3. Save the Viewsheet.

The accessibility of the Viewsheet to different users depends on the scope
under which you save the Viewsheet.

See Also
Saving a Viewsheet, for information on setting Viewsheet scope and
permission.

2.6.2 Deploying a Viewsheet as a Dashboard

To deploy a Viewsheet under the Dashboard tab of the Portal, see the
appropriate section below:

• Dashboards, in Administration Reference, to deploy a dashboard as an
administrator.

• Deploying a Dashboard, in End User, to deploy a dashboard as a user.

See Also
Quick Start: Creating a Dashboard, for an example of Viewsheet
deployment.
Dashboards, in End User, to subscribe to dashboards.
Building a Composite Dashboard, for information on Viewsheet nesting.
Dashboards, in Administration Reference, to configure and manage
dashboards.
Setting Permissions, in Administration Reference, for security
configuration.

DASHBOARD DESIGN

1255 of 2477

2.6.3 Building a Composite Dashboard

Some dashboards require a large number of input and output controls, and
would be complex to design using just a single Viewsheet. In such cases, it
is often easier to use a modular design, and build the final dashboard from a
set of simple Viewsheets. Each of the simple Viewsheets might contain just
a few controls, and provide specific functionality to the composite
dashboard.

Modular designs offer benefits in terms of reusability, because you can
deploy your simple Viewsheet modules in multiple dashboard applications.
For example, you can create a Viewsheet that contains a simple cluster of
Gauges, and then just plug that Viewsheet into any dashboard to provide
the dashboard with that Gauge cluster.

Modular design also simplifies maintenance. When you use a Viewsheet in
multiple composite dashboards, you can update all of the composite
dashboards simultaneously by making changes centrally to the shared
module.

To create a composite dashboard, simply nest a set of simple Viewsheets
within a parent Viewsheet. The following sections explain how to do this,
and how to synchronize the nested Viewsheets to work as a unified whole.

Nesting a Viewsheet

To embed or nest one Viewsheet within another Viewsheet, follow these
steps:

1. Create the Viewsheet that you wish to embed. (This is the
Viewsheet containing the common components that you wish to
embed in other Viewsheets.)

2. Save this common Viewsheet to the Repository (under ‘Global
Viewsheet’ or ‘User Viewsheet’, as desired.)

3. Open or create the host Viewsheet. (This is the Viewsheet within
which the common Viewsheet will be embedded.)

4. Open the Asset panel on the left side of the Visual Composer to
display the asset tree.

5. Drag and drop the common Viewsheet (saved in Step 2) from the
Repository into the host Viewsheet.

The common Viewsheet is now embedded within the host Viewsheet, and
all of the components marked ‘Visible in External Viewsheets’ within the
common Viewsheet are displayed. To synchronize selection and input

DASHBOARD DESIGN

1256 of 2477

components within two (or more) Viewsheets, see Synchronizing Selection
Elements and Input Elements.

See Also
General Tab, for information on marking components as ‘Visible in
External Viewsheets’.
Nesting Viewsheets, for information on nested Viewsheet properties.

Opening a Nested Viewsheet

To open an embedded Viewsheet for editing, move the mouse over the
embedded area in the host Viewsheet, and then click the Viewsheet icon in
the upper left corner of the area.

This feature is also available to end-users who view the host Viewsheet in
the Portal if there is at least one hidden element in the embedded
Viewsheet. (See Setting a Component to be Visible within External
Viewsheets for more information about hiding components.)

Configuring Interactivity among Nested Viewsheets

You can create interactivity between nested Viewsheets by synchronizing
their selection elements. See Synchronizing Selection Elements and Input
Elements for more information.

2.6.4 Synchronizing Selection Elements and Input
Elements

You can synchronize selection and input elements within a Viewsheet or
across multiple Viewsheets so that a selection in one element is
automatically propagated to other compatible elements. The following
elements can be synchronized:

 – Range Slider
 – Selection List
 – Selection Tree
 – Calendar
 – Radio Button, Check Box, Combo Box
 – Slider and Spinner
 – TextInput

There are three general cases where synchronization is useful:

DASHBOARD DESIGN

1257 of 2477

Note: Selection ele-
ments based on the
same Data Block in
the same Viewsheet
are always automati-
cally synchronized.

1. A Viewsheet displays data from multiple Data Blocks, and two or
more of these Data Blocks share a common field that you wish to
simultaneously filter.

For example, consider a Viewsheet which has two charts, one pre-
senting data from Data Block A and the other presenting data from
Data Block B. Assume that each of these Data Blocks contains an
‘Employee’ field. In order to allow the user to filter both charts
based on their respective ‘Employee’ fields, you need to create one
Selection List for each Data Block. However, these two
‘Employee’ Selection Lists are not synchronized by default, which
means that the user is free to select different values in each list. In
this case, you can synchronize the two elements as described
below, and then hide one of the two selection components (set ‘Vis-
ible’ property to ‘Hide’).

2. A “parent” Viewsheet contains a nested “child” Viewsheet, and the
child Viewsheet contains elements that should be filtered by
selections the user makes within the parent Viewsheet.

To synchronize ele-
ments across Views-
heets you must
specify a shared filter,
as described below,
even if the elements
utilize the same Work-
sheet Data Block.

For example, consider a Viewsheet that contains a chart displaying
‘Total’ vs. ‘Employee’ and also contains a Selection List to filter
the ‘Employee’ field. Nested within this parent Viewsheet is a child
Viewsheet that contains a chart displaying ‘Quantity’ vs.
‘Employee’ and also contains a Selection List to filter the
‘Employee’ field. The two ‘Employee’ Selection Lists (one in the
parent and one in the child) are not synchronized by default, which
means that the user is free to select different values in each list. In
this case, you can synchronize the two elements as described
below, and then disable the ‘Visible in External Viewsheets’ prop-
erty of the Selection List in the child Viewsheet. (This prevents the
child’s Selection List from appearing in the parent Viewsheet,
thereby avoiding duplication of components).

3. A “parent” Viewsheet contains hyperlinks to a “child” Viewsheet,
and the child Viewsheet contains elements that should be filtered
by selections the user makes within the parent Viewsheet.

For example, consider a parent Viewsheet that contains a chart dis-
playing ‘Total’ vs. ‘Employee’ and also contains a Selection List to
filter the ‘Employee’ field. Assume that this parent Viewsheet con-
tains hyperlinks to a child Viewsheet which contains a chart dis-
playing ‘Quantity’ vs. ‘Employee’ and also contains a Selection
List to filter the ‘Employee’ field. The two ‘Employee’ Selection
Lists (one in the parent and one in the child) are not synchronized
by default, which means that the user is free to select different val-

DASHBOARD DESIGN

1258 of 2477

ues in each list. In this case, synchronize the two elements as
described below.

To synchronize Selection Components and Input Components, assign them
the same ‘Shared Filter’ ID. Only elements that have the same data type
and same data binding should be synchronized. Follow the steps below:

1. Open the Viewsheet in the Visual Composer

2. Click on the ‘Options’ button in the toolbar. This opens the
‘Viewsheet Options’ dialog.

3. Select the Filters tab.

4. In the ‘Filters’ list, click on a selection or input component that you
would like to synchronize, and drag it into the ‘Shared Filters’ list.
(You can also double-click the item to add it to the list.)

Components that have the same ID (within the Viewsheet or across
Viewsheets) will be synchronized.

5. Click on the component label in ‘ID’ column of the ‘Shared Filters’
list, and enter a suitable name.

6. Repeat the above steps to add additional components to the ‘Shared
Filters’ list.

7. Press the ‘OK’ button to exit the dialog box.

8. Repeat the same process for other Viewsheets (nested Viewsheet or
hyperlinked Viewsheets).

DASHBOARD DESIGN

1259 of 2477

Use identical IDs for components you wish to synchronize with one
another. For example, to synchronize an ‘Employee’ Selection List in a
“parent” Viewsheet with an ‘Employee’ Selection List in a nested “child”
Viewsheet, follow the steps below:

1. Open the ‘Options’ dialog box for the parent Viewsheet. Assign the
‘Employee’ Selection List in the parent Viewsheet a shared filter
ID such as “SharedEmployeeFilter”, and press ‘OK’.

2. Open the ‘Options’ dialog box for the child Viewsheet. Assign the
‘Employee’ Selection List in the child Viewsheet the same shared
filter ID (“SharedEmployeeFilter”), and press ‘OK’.

This will synchronize the ‘Employee’ Selection Lists in the two
Viewsheets.

See Also
Hyperlinks, for information on configuring hyperlinks.
Nesting Viewsheets, for information on how to embed one Viewsheet
within another Viewsheet.

2.6.5 Enabling End-User Chart and Crosstab Editing

To provide end users with access to the Chart Editor and Crosstab Editor,
follow the steps below:

1. Right-click the desired chart or crosstab and select ‘Properties’
from the context menu. This opens the ‘Chart Properties’ or
‘Crosstab Properties’ dialog box.

2. Select the Advanced tab in the dialog box.

3. Select the ‘Enable Ad Hoc Editing’ option.

If this option is not selected, users will not have access to the Chart Editor
or Crosstab Editor. However, other features (brushing, show details, export,
zooming, etc.) will remain available.

See Also
Creating a Chart, for information on designing with the Chart Editor.
Creating a Crosstab, for information on designing with the Crosstab
Editor.
Table and Crosstab, in End User, for information on working with these
components.
Charts, in End User, for information on working with charting.

DASHBOARD DESIGN

1260 of 2477

2.6.6 Setting Default Viewsheet State

When you save a Viewsheet using the Visual Composer, the current state of
the Viewsheet (selection choices, menu choices, etc.) is saved as the
Viewsheet’s default bookmark. The default bookmark defines the default
state of the Viewsheet when it is first viewed by the user. (See Using
Bookmarks in End User for more information about bookmarks).
Therefore, to set the default Viewsheet state, simply arrange the Viewsheet
controls as desired in Visual Composer, and then save the Viewsheet.

See Also
Saving a Viewsheet, for information on saving a Viewsheet.
The Dashboard Toolbar, in End User, for information on resetting defaults.

2.6.7 Localization/Internationalization

If the dashboards you create are viewed from multiple locales, it may be
desirable to configure Viewsheet components to display text in a language
specific to the user locale. The following Viewsheet components can be
localized in this way:

• Table title and column header text

• Freehand Table title and text cell text

• Crosstab title, column header text, and grand total text

• Chart axis titles and legend titles

• Selection component titles

• Text component text

• Input component titles

• Submit button label

You can configure a Viewsheet component for localization by associating
one or more Text ID properties with the component. The specified Text IDs
for each component are then used to create a mapping between the text
string(s) in the component and the replacement text string(s) to be shown to
the user.

To specify a Text ID for a component, follow the steps below:

1. Press the ‘Options’ button in the Visual Composer toolbar to open
the ‘Viewsheet Options’ dialog box.

2. Select the Localization tab.

DASHBOARD DESIGN

1261 of 2477

3. In the left ‘Component’ panel, select the property in the element
tree that you wish to localize, and press ‘Add’. This adds the
property to the right ‘Localization Text ID’ panel.

4. In the ‘Localization Text ID’ panel, enter a label for the element in
the ‘Text ID’ field.

The Text ID that you enter here is the label used to represent the
text of the corresponding component in the localization mapping
file discussed below.

5. Press ‘OK’ to exit the ‘Viewsheet Options’ dialog box.

DASHBOARD DESIGN

1262 of 2477

The mapping between the specified Text IDs and the replacement text for
each locale is specified in a resource bundle specific to that locale. The
resource bundle is a “.properties” file, and must be available on the
classpath, preferably in the sree\WEB-INF\classes directory. The file
should be named using the ISO-standard two-letter codes for language and
country; for example, a property file supporting Canadian French speakers
would be called ‘SreeBundle_fr_CA.properties’. See the Localization/
Internationalization section of the Administration Reference for details on
configuring resource bundle contents.

When the end-user selects a locale from the User Portal login menu, the
mapping in the corresponding resource bundle is used to display the
replacement text for all mapped elements. If a resource bundle
corresponding to the user’s locale selection is not found on the classpath,
no localization will be performed.

In addition to localizing Viewsheet elements, you can also configure
localization for User Portal interface components (tabs, tree elements, etc.).
See the Localization/Internationalization section of the Administration
Reference for instructions.

DASHBOARD DESIGN

1263 of 2477

3 Using Viewsheet Components

Viewsheet components are listed under the ‘Toolbox’ node of the
Component tree, on the left side of the Visual Composer. Viewsheet
components share a number of common features, including certain
properties, formatting options, and hyperlinks. This section explains these
common features.

For options that are unique to a specific component, see the related section
in this guide.

See Also
Data View Components
Selection Components
Output Components
Input Components
Shape Components
Organization Components

3.1 Common Operations
The component context menu provides access to certain common
operations discussed in this section.

Data Block

DASHBOARD DESIGN

1264 of 2477

Figure 3. The component right-click context menu.

3.1.1 Adding a Component

To add a component to a Viewsheet, follow these steps:

1. Open the Component panel on the left-side of the Visual
Composer.

When no Viewsheet is
open for editing, the
components in the
Component panel
appear dimmed (dis-
abled). In this case,
verify that you are
editing Viewsheet, not
a Worksheet.

If the Component panel is not visible (i.e., the Asset panel is
showing), click the Component title bar at the bottom of the
screen.

2. Expand a node on the ‘Toolbox’ tree (Data View, Selection,
Output, Input).

DASHBOARD DESIGN

1265 of 2477

3. Click and drag the desired component onto the Viewsheet grid. If
there is sufficient grid space, this creates the new component on the
grid.

If there is not sufficient space on the grid to add the new component
(due to other components nearby), the ‘Layout Options’ dialog box
will open. This allows you to specify the method for repositioning
nearby components to create space for the new component, or to
overlap the exiting component on top of the exiting components.
See Overlapping Components for details about the available
options.

In many cases, after you add a component, you will need to bind the
component to a data field in the Data Block. For information on how to do
this, see the individual Component section.

See Also
Data View Components, for Table, Chart, Crosstab.
Selection Components, for Selection List/Tree, Range Slider, Calendar.
Output Components, for Text, Image, Gauge, Thermometer, Scale,
Cylinder.
Input Components, for Slider, Spinner, CheckBox, RadioButton,
ComboBox.

3.1.2 Deleting a Component

To delete an element from the Viewsheet grid, right-click the component
and select ‘Remove’ from the context menu (or press ‘Delete’ on the
keyboard).

You can also cut-and-paste the component so that it deleted from one
location and inserted at another.

DASHBOARD DESIGN

1266 of 2477

See Also
Moving Components using Cut and Paste, for information on cut, copy,
and paste.
Properties Dialog Box, for information on hiding elements.
Setting a Component to be Visible within External Viewsheets, for
information on hiding nested Viewsheets.

3.1.3 Positioning a Component

To position a components in a Viewsheet, you can either drag the
component to the desired location, or cut and paste the component. To
change the size of a component, drag the resizing handles on the
component’s borders. The following sections discuss these methods in
more detail.

Moving a Component

To move a component by dragging with the mouse, follow these steps:

To move a table, drag
the title bar. To move
an output component,
drag its body.

1. Click the component to select it. This enables the “move” handle at
the top left corner.

2. Click and drag on the “move” handle to move the component to the
desired location. (Hold down the ‘Alt’ key while dragging to snap
the component to the Viewsheet grid.)

You can also use the keyboard arrow keys to move the selected component.
Hold down the ‘Ctrl’ key together with the arrow keys to move the
component in smaller increments.

When exporting a Viewsheet to Excel, grid-aligned Text elements are
exported as editable values. Non-aligned Text elements are exported
as images.

Most components can be positioned and resized freely, independent of the
Viewsheet grid. However, the following components always snap the
Viewsheet grid: Checkbox, Radio Button, all Table types, Selection Lists/
Trees, and Groups.

See Also
Grouping Components, for information on creating component groups.

DASHBOARD DESIGN

1267 of 2477

Resizing a Component

To resize a component, follow these steps:

1. Click the component to select it. This enables the component
“resize” handles.

2. Click and drag on a resize handle or on the component border to
resize the component. (Hold down the ‘Alt’ key while dragging to
snap the component border to the grid.)

To align the border with the border of another component, drag
until you see the green alignment guide, and then release.

Most components can be positioned and resized independent of the
Viewsheet grid. However, the following components always snap the
Viewsheet grid: Checkbox, Radio Button, all Table types, and Groups.

Components such as Charts, Tables, and Selection Lists display a scroll bar
if the component is not large enough to display all information in a single
view.

See Also
Zooming the Viewsheet Grid, to resize all Viewsheet components
uniformly.
Grouping Components, for information on creating component groups.

Moving Components using Cut and Paste

Tip: To copy the con-
tents of a Text ele-
ment, double-click the
element.

To cut or copy a component, right-click the component and select ‘Cut’ or
‘Copy’ from the context menu. (Alternatively, click Ctrl-X or Ctrl-C on the
keyboard).

DASHBOARD DESIGN

1268 of 2477

To insert the component elsewhere in the Viewsheet, right-click the desired
region and select ‘Paste’ from the context menu (Ctrl-V on the keyboard).
If other components already occupy this region, the inserted component
will overlap those components. See Overlapping Components for more
information.

You can copy and move a component with a single action. Simply Ctrl-
click the element, and drag it to a new location. The cursor displays a ‘+’
sign while dragging to indicate that a copy is being created.

Overlapping Components

When you drag a new component from the Component tree onto an
existing Viewsheet component, you will see the ‘Layout Option’ dialog
box:

The following options are available:

• ‘Move component right’ places the new component in the first available
column to the right of your original placement (same row).

• ‘Move component down’ places the new component in the first
available row below your original placement (same column).

• ‘Place component into tabbed interface’ creates a tabbed interface with
each component in its own tab.

When you move or paste an existing component onto another existing
component, you will see a slightly different version:

DASHBOARD DESIGN

1269 of 2477

The following options are available:

• ‘Move component here’ permits the components to naturally overlap
each other.

• ‘Place component into tabbed interface’ creates a tabbed interface with
each component in its own tab.

To move an overlapping component behind other components, right-click
the component and select ‘Send to Back’ from the context menu. To move
an overlapping component in front of other components, right-click the
component and select ‘Bring to Front’ from the context menu.

See Also
Creating a Tabbed Interface, for information on using placing components
in tabs.
Setting Colors, for information setting transparency.

3.1.4 Setting a Component to be Visible within External
Viewsheets

To set a component to be visible within an external Viewsheet (i.e., within a
Viewsheet that hosts the component’s Viewsheet as an embedded
Viewsheet), follow the steps below:

Gauge overlapping chart

Tabbed interface

DASHBOARD DESIGN

1270 of 2477

1. Right-click the element and select ‘Properties’ from the context
menu. This opens the ‘Properties’ dialog box.

2. Enable the ‘Visible in External Viewsheets’ option in the dialog
box.

3. Click ‘OK’.

All elements set as ‘Visible in External Viewsheets’ will be visible (unless
explicitly hidden) when the Viewsheet is embedded (nested) within another
Viewsheet.

See Also
Building a Composite Dashboard, for information on embedding
Viewsheets.
Properties Dialog Box, for information on element visibility.

3.1.5 Selecting Components

To select a single component on the Viewsheet, click on the component
with the mouse. This activates the component’s “move” handle and
“resize” handles, which then allow you to position and size the component.

To simultaneously select multiple components on the Viewsheet, use one
of the following techniques.

Move Handle Resize Handles

DASHBOARD DESIGN

1271 of 2477

In some cases you
may need to Ctrl-click
on the component title
bar or “move” handle
to deselect the compo-
nent.

• Ctrl-click on each component in turn to add it to the selection. (Ctrl-
click an already-selected component to remove it from the selection.)

• Shift-click on each component in turn to add it to the selection. (Ctrl-
click an already-selected component to remove it from the selection.)

• Click in an empty region of the Viewsheet, and drag the mouse to draw
a selection region covering the desired components. When you release
the mouse, all components that are partially or wholly covered by the
selection region become selected.

You can also use these
techniques in combi-
nation with each
other.

For example, by dragging the mouse to create the selection region below,
you can easily select all three components. You only need to include part of
each component within the selection region.

Selecting multiple components allows you to move the components
together, group the components, and set common properties (e.g., font).

See Also
Grouping Components, for more information on keeping components
together.
Positioning a Component, for more information on moving and resizing.

3.1.6 Selecting Groups and Grouped Components

To select the Container component itself, click on any component within
the group, or click in any empty space between group components. This
activates the Container’s “move” handle and “resize” handles, which then
allow you to position and size the Container component.

DASHBOARD DESIGN

1272 of 2477

To select an individual component within a group, first select the group as
above, and then click the desired component.

See Also
Organization Components, for complete information on group behavior.

3.1.7 Grouping Components

When you need to position a set of components together, it is helpful to
combine the components into a group. Components within a group always
retain their relative positions when the group is moved, and cannot be
positioned independently.

Note: A group always snaps to the Viewsheet grid. Selection
Containers cannot be grouped.

To create a group, follow these steps:

1. Select the components you wish to group. (See Selecting
Components.) You can also select existing groups.

2. Right-click any selected component, and choose ‘Group’ from the
context menu (or press Ctrl-G on the keyboard).

Click between components Selected Container component

DASHBOARD DESIGN

1273 of 2477

This creates a new Container component to contain the selected
components. The components within a Container remain fully functional,
and you can adjust the component settings and properties in the usual
manner.

A Container component contains only individual components, not other
Container components. Therefore, if you group together two existing
groups, the existing Containers are deleted, and a single new Container is
created to contain all of the individual components from the two
preexisting groups. See Organization Components for complete
information about groups.

To undo a grouping, right-click the group and select ‘Ungroup’ from the
context menu (or press Ctrl-Shift-G on the keyboard).

See Also
Organization Components, for complete information on group behavior.
Building a Composite Dashboard, to nest or embed one Viewsheet in
another.
Creating a Tabbed Interface, to provide tab access to overlapping
components.

3.2 Properties Dialog Box
To set the properties of a Viewsheet component, right-click the component
in the Viewsheet grid, and select ‘Properties’ from the context menu (or
press Ctrl-R on the keyboard). This opens the ‘Properties’ dialog box for
the component.

To set the properties of a Container component, right-click in an empty
region between the components in the group, and select ‘Properties’ from
the context menu. This opens the ‘Properties’ dialog box for the Container
component.

DASHBOARD DESIGN

1274 of 2477

Many of the properties in the ‘Properties’ dialog box are common across
components. The following sections discuss these common properties.
Properties that are unique to a particular element are discussed in the
section for that element.

See Also
Table Properties
Crosstab Properties
Chart Properties
Map Chart Properties
Selection List Properties
Selection Tree Properties
Range Slider Properties
Calendar Properties
Slider and Spinner Properties
Radio Button/Check Box/Combo Box Properties
Container Properties
Selection Container Properties
Shape Properties

3.2.1 General Tab

The General tab of the ‘Properties’ dialog box is common to many
components. It has five standard properties, shown in the table below.

Name This name is used to refer to the component in binding and
scripting. For purposes of scripting, the name should contain no
spaces.

Visible in
External
Viewsheets

If checked, the component will be visible when this Viewsheet is
embedded in another Viewsheet (see Building a Composite
Dashboard).

Visible Show: Element is visible.
Hide: Element is invisible.
Hide on Print: Element is visible on screen but hidden when
exported.

Enabled true: Element is interactive.
false: Element is not interactive.
Note: For Selection components, when ‘Enabled’ is ‘false’,
existing selections in the component do not affect Viewsheet data.

Title The text that appears in the title bar (for components which have
one). The ‘Visible’ option determines whether the title bar itself is
displayed. Besides the ‘Title’ field, you can also edit title bar text
by double-clicking the title bar itself.

DASHBOARD DESIGN

1275 of 2477

3.2.2 Data Tab
Note: You can also
bind a component by
dragging a Data Block
from the Repository
Tree onto the compo-
nent. See Quick Start:
Creating a Dashboard.

The Data tab in the ‘Properties’ dialog box is common to many
components. This tab allows you bind the component to the data source
that supplies the data displayed by the component. The Data tab has the
standard properties shown below.

Note: The Data tab has a different layout for Selection components.
See Selection Components for more details.

Table The query, model, table, or Worksheet Data Block to which the
component is bound.

Target For input components (Radio Button, Spinner, etc.), the Embedded
Table or Variable in the Worksheet to which the input value is
passed. (See Using Input Components for further details.)

Column The field in the selected table that supplies data to the component.
Aggregate The method of data aggregation/summarization. (See Aggregation

Options for a description of the methods.)
With A second data field for aggregation methods requiring two operands.
Value The scaling factor used to display data on output components:

As Is: No scaling.

Thousands: Displayed values are divided by 103.

Millions: Displayed values are divided by 106.

Billions: Displayed values are divided by 109.

DASHBOARD DESIGN

1276 of 2477

3.2.3 Advanced Tab

The Advanced tab of the ‘Properties’ dialog box is common to many
components, but options presented vary for different components.

3.2.4 Script Tab

The Script tab of the ‘Properties’ dialog box is common to all components,
and contains a Script Editor that allows you to insert component-level
scripts. These scripts can modify component properties based on
programmatic logic. See Dashboard Scripting for complete information
about scripting. capabilities.

3.3 Format Dialog Box
The ‘Format’ dialog box provides options for changing the visual
appearance of elements and their representation of data. To open the
‘Format’ dialog box, right-click on a component and select ‘Format’ from
the context menu.

Certain components have multiple regions that can be selected and
formatted independently. For example, a component title bar can always be
formatted independently of the component body.

Title bar

Body

DASHBOARD DESIGN

1277 of 2477

A more specific for-
mat overrides a more
general format. For
example, a title bar
format overrides a
general component
format.

To format a particular region of a component, right-click on the desired
region, and select ‘Format’ from the context menu. To format the general
component (rather than a particular region), first make sure the component
is entirely deselected. Then right-click to select the general component (not
a region), and choose ‘Format’ from the context menu.

The table below lists the regions that can be independently formatted on
multiple-region components:

The ‘Format’ dialog box contains the following tabs: Format, Alignment,
Font, Border, Color, and CSS. The following sections describe each of
these tabs.

3.3.1 Format Tab

The Format tab allows you to specify a data format. Formatting is
available for the following data types: Date, Number, Currency, Text,
Percent.

A data format is a method for representing data as a string (for display
purposes). For example, the date December 31, 2008 might be displayed as
“12/31/08” or “Dec. 31, 2008” or simply “2008,” depending on the Date
format specified. Likewise, the number 123456 might be displayed as

COMPONENT SELECTABLE REGIONS

Table Title bar, column header, column body cells
Crosstab Title bar, column headers, row headers, summary cells
Chart Axis titles, axis labels, data label, legend title, legend

content, target label
Selection List Title bar, body cells
Selection Tree Title bar, nth-level body cells (levels are independent)
Selection
Container

Title bar.

DASHBOARD DESIGN

1278 of 2477

“123,456” or “123456.00” or “00123456,” depending on the Number
format specified.

The following sections explain these available formats.

Date Format

For ‘Date’ formatting, several predefined formats are available from the
pop-up menu.

Date masks follow the
java.text.SimpleDate-
Format format.

To create other formats, use the following date masks:

M = Month
d = date
y = year
E = day of the week

Example: Date
Format

For the date Nov 8, 2006:

M = 11; MM = 11; MMM = Nov; MMMM = November
d = 8; dd = 08;
yy = 06; yyyy = 2006
EEE = Wed

Predefined Formats

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

DASHBOARD DESIGN

1279 of 2477

EEEE = Wednesday

Therefore, the mask ‘MMM-dd-yyyy’ yields the string “Nov-08-2006.”

¢

Number Format

For ‘Number’ formatting, several predefined formats are available.

Decimal formatting
only works if the
value is truly a
numeric type. If the
numeric value you
wish to format is actu-
ally text, convert the
type using JavaScript
so that formatting can
be applied.

The number format pattern string uses the pattern defined by the
java.text.DecimalFormat class. For example, to add commas to a number,
use ‘#, ###, ###. ##’. Using a ‘#’ will show a digit if needed, a ‘0’ will
display zero if the digit is not needed. Adding a ‘%’ at the end of the format
will multiply the value by 100 and display as a percentage.

You can add a suffix “K”, “M”, or “B” to the pattern string to automatically
divide the numerical value by 103, 106, or 109, respectively.

To create custom multipliers, see Defining Custom Number Format
Multipliers in Administration Reference.

Predefined Formats

http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html

DASHBOARD DESIGN

1280 of 2477

Example:
Number Format:

For the number 124521.63:

#,###.## = 124,521.63
#,###.000 = 124,521.630

¢

Currency Format

The ‘Currency’ format represents the number as a currency rounded to two
decimal places For example, the number 25.867 displays as $25.87. The
currency symbol is automatically determined by the locale settings of the
Operating System.

To apply a fixed currency symbol for all locales, use the ‘Number’ format
option with a recognized currency symbol, e.g., ‘$#,###.##’.

Text Format

Use ‘Text’ format to add a prefix or suffix to string data. The special tag
‘{0}’ acts as a place holder for the actual data. Use the escape sequence
“\n” to insert a carriage return in the text.

Text Format Examples

1. Consider a text column containing the following values:

Annie
Eric
Robert
Sue

The text format “Employee name: {0}” will display these values as
follows:

Employee Name: Annie
Employee Name: Eric
Employee Name: Robert
Employee Name: Sue

2. Consider a text column containing the following values:

NJ
NY
CA
AZ

The text format “-{0}-” will display these values as follows:

-NJ-
-NY-
-CA-
-AZ-

DASHBOARD DESIGN

1281 of 2477

Localizing a Text Format

To apply localization within a text format, use a string identifier in curly
braces within the text format. The identifier in curly braces is used as a Text
ID to locate the corresponding replacement text (usually a translation into
another language) within the SreeBundle localization file. For example, the
string “{replacementText}” within a text format will use
“replacementText” as the Text ID.

For information on how to map Text IDs to replacement text in the
SreeBundle localization file, see Localizing Reports, Viewsheets, Data
Models/Queries in Administration Reference.

Percent Format

The ‘Percent’ format displays a number as a percent. For example, percent
format displays the number 0.15 displays as “15%.”

3.3.2 Alignment Tab
You can also set align-
ments by using the
Viewsheet toolbar.

The Alignment tab settings determine the horizontal and vertical
alignment of text in Viewsheet components, including labels and titles on
Charts. The ‘Wrap Text’ option wraps text to multiple lines instead of
truncating the text.

The text affected by the alignment setting varies for each component, as
shown below:

COMPONENT ALIGNMENT TARGET

Table Alignment can be set independently for title text, column
header text, and data row text. Select the title bar, column
header, or data cell, and then select ‘Format’ from the
context menu to set the corresponding alignment.

Embedded Table Same as Table.
Crosstab Same as Table.

DASHBOARD DESIGN

1282 of 2477

3.3.3 Font Tab

The Font tab allows you to specify the font face (Arial, Serif etc.), the style
(bold, italic), and the size of the font used for component text.

Chart Alignment can be set independently for axis titles, Y-axis
labels, legend titles, and legend labels.

Selection List Alignment can be set independently for title text and choice
labels. Select either the title bar or a choice cell, and then
select ‘Format’ from the context menu to set the
corresponding alignment.

Selection Tree Same as Selection List. Alignment can be set independently
for each level of the hierarchy.

Selection
Container

Alignment can be set on the component, and then
overridden on each member selection.

Range Slider Alignment setting affects all text displayed on the slider
(range display and endpoints).

Calendar Alignment setting affects the title text.
Text Alignment setting affects the text
Slider Alignment setting affects the labels.
Spinner Alignment setting affects the spinner text.
Checkbox Alignment can be set independently for title text and choice

labels. Select either the title bar or a choice cell, and then
select ‘Format’ from the context menu to set the
corresponding alignment.

Radio Button Same as Checkbox.
Combo Box Alignment setting affects the choice text.

COMPONENT ALIGNMENT TARGET

DASHBOARD DESIGN

1283 of 2477

The text affected by the font setting varies by component, as shown below:

See Also
Adding Highlights to a Table, for information on conditional font
assignments.

3.3.4 Border Tab

The Border tab allows you to set border thickness and color for
components.

COMPONENT ALIGNMENT TARGET

Table Font can be set independently for title text, column header
text, and data row text. Select the title bar, column header, or
data cell, and then select ‘Format’ from the context menu to
set the corresponding font.

Embedded Table Same as Table.
Chart Font setting affects all the text, including axis labels, titles,

legends, and text binding.
Crosstab Same as Table.
Selection List Font can be set independently for title text and choice text.

Select either the title bar or a choice cell, then select
‘Format’ from the context menu to set the corresponding
font.

Selection Tree Same as Selection List. Font can be set independently for
each level of the hierarchy.

Selection
Container

Same as Selection List and Range Slider.

Range Slider Font setting affects all text displayed on the slider (range
display and endpoints).

Calendar Font setting affects the title text.
Text Font setting affects the text
Gauge Font setting affects labels and value (if present).
Thermometer Font setting affects the labels.
Sliding Scale Font setting affects the labels.
Cylinder Font setting affects the labels.
Slider Font setting affects the labels.
Spinner Font setting affects the spinner text.
Checkbox Font setting affects the choice labels. Select a choice cell,

and then select ‘Format’ from the context menu to set the
corresponding font.

Radio Button Same as Checkbox.
Combo Box Font setting affects the choice text.

DASHBOARD DESIGN

1284 of 2477

Borders for Tables can
also be set using Table
Styles.

For most components, the border setting determines the appearance of the
component’s boundary. For Tables, a border can be set for the table as a
whole, or independently for the title bar, columns headers, and column
cells.

Setting Borders

To set borders for a component, follow these steps:

1. Right-click the component, and select ‘Format’ form the context
menu. This opens the ‘Format’ dialog box.

For a Table, right-click on the region to which you want to add the
border:

a. Right-click a data cell to apply the border to all data cells in the
column.

b. Right-click on the column header cell to apply the border to
only the column header.

c. Right-click the title bar to apply the border to only the title bar.

Hint: To select the
Table without select-
ing any cells, drag
across the Table or
click on the Table
handle.

d. Right-click the Table handle (with no cell selected) to apply the
border to the Table’s outer boundary. The selected border color
is also applied to the cell boundaries.

2. Click the Border tab in the ‘Format’ dialog box.

3. In the ‘Line’ panel, select a line style from the ‘Style’ box, and
select a line color from the ‘Color’ menu.

4. In the ‘Border’ panel, click the desired boundary to which you
want to apply the current line style.

DASHBOARD DESIGN

1285 of 2477

Note: To change the border color first set the color and then
select the border type.

To set all borders to the current line style, click the ‘All Border’ button. To
remove all borders or return to the default style, click the ‘No Border’ or
‘Default’ button, respectively.

See Also
Table Properties, for information on setting borders using Table styles.

3.3.5 Color Tab

The Color tab allows you to set text color, background color, and
transparency for components.

Colors for Tables can
also be set using Table
Styles and highlight-
ing.

For Tables, a text and background color can be set for the table as a whole,
or independently for the title bar, columns headers, and column cells.

Setting Colors

To set a static foreground color, background color, and transparency (alpha)
for a component, follow the steps below:

1. Right-click the element, and select ‘Format’ form the context
menu. This opens the ‘Format’ dialog box.

For a Table component, right-click on the region of the table to
which you want to apply the property:

a. Right-click a data cell to apply the property to all data cells in
the column.

b. Right-click on the column header cell to apply the property to
only the column header.

c. Right-click the title bar to apply the property to only the title bar.

DASHBOARD DESIGN

1286 of 2477

Hint: To select the
Table without select-
ing any cells, drag
across the Table or
click on the Table
handle.

d. Right-click the Table handle (with no cell selected) to apply the
property to the whole Table. This global table color or
transparency is overridden by the property specified for the
individual cell.

2. Select the Color tab in the ‘Format’ dialog box.

3. In the ‘Text’ panel, select ‘Value’ from the right-side pop-up menu.

4. Click on the color chip to select the desired foreground (text) color.

5. Repeat the above steps in the ‘Fill’ panel to set the background
(fill) color.

6. Set the fill transparency by selecting a value from the ‘Alpha’
menu. A value of 0% indicates complete fill transparency (i.e., fill
color not visible), and a value of 100% indicates complete fill
opacity.

DASHBOARD DESIGN

1287 of 2477

You can also color dynamically by specifying an input control (variable) or
an expression. See Dynamic Properties for details.

See Also
Adding Highlights to a Table, for information on conditional color
assignments.
Table Properties, for information on setting borders using Table styles.
Dynamic Properties, for information on setting color via variable or
expression.

3.3.6 CSS Tab
CSS is not available
for Shape Components
or for Tables that have
a Table Style applied.

The CSS tab allows you to specify a CSS Class or ID to style the visual
properties of a component. You can style individual regions of a
component independently, just as with manual formatting. See Format
Dialog Box for a list of selectable component regions.

There are two steps to using CSS properties to style components:

1. Creating the CSS definition file

2. Applying the CSS styles to Viewsheet components and component
regions

The first step is generally performed by an administrator and requires
access to Enterprise Manager. The following sections explain both steps
and provide an example.

Creating the CSS Definition File

To prepare the CSS definition file, follow the steps below:

1. Create a CSS file (UTF-8 format, without BOM) that contains the
desired Class, ID, or Type definitions. The formatting specified in
the CSS file will be applied to all elements that are assigned the

DASHBOARD DESIGN

1288 of 2477

given Class or ID (see Applying CSS Styles), or that are of the
specified Type.

a. To specify a Class definition, use the following syntax:

.HighlightColumn {
background-color: yellow;
...
...

}

b. To specify an ID definition, use the following syntax:

#SalesTable {
background-color: #FFEEBB;
...
...

}

c. To specify a Type definition, use the following syntax:

Table Detail {
background-color: #FFEEBB;
...
...

}

The Type definition applies styles universally to all element
regions of a particular type (e.g., all table detail cells). You can
find the ‘Type’ of an element region in the CSS tab for the
selected element.

Formatting based on Type for a particular element region is super-
seded by formatting based on Class and ID (if specified) for that
region.

DASHBOARD DESIGN

1289 of 2477

2. Deploy the CSS file as described in the ‘Viewsheet CSS’ section of
Look-and-Feel in Administration Reference. (This may require an
administrator.)

See CSS Properties and Syntax for details on which component properties
can be assigned styles.

See Also
CSS Properties and Syntax, for details on which component properties can
be assigned styles.

Applying CSS Styles

To set a component’s visual properties by using CSS Class and ID, follow
the steps below:

1. In Visual Composer, right-click on the region of the component
you want to style, and select ‘Format’ from the context menu. This
opens the ‘Format’ dialog box.

The CSS tab is not
available for Tables
that have a Table Style
applied.

2. Select the CSS tab. The text next to the ‘Type’ label indicates the
component region to which the CSS styles will be applied.

Note: CSS styles are overridden by manually-set styles. The ‘Reset’
button removes only the manually-set styles. Also, manually-set
transparency will affect the appearance of CSS colors. See Color
Tab for information on changing transparency.

3. On the CSS tab, select the CSS ‘ID’ and/or ‘Class’ to define the
component’s style.

You can select both an ‘ID’ and a ‘Class’ together, or select only
one of these. Multiple components can share the same CSS Class
name, which will then apply the same styles to these components.
However, a CSS ID should be unique to the component.

DASHBOARD DESIGN

1290 of 2477

The ‘Class’ and ‘ID’ menus list Classes and IDs that are defined in the
deployed CSS definition file. (See Creating the CSS Definition File.) You
can also type in a new Class or ID name, but this will not apply any styles
until a corresponding definition is created in the CSS definition file.

Example: Creating and Applying CSS Styles

In this example, you will first create a new CSS file, and then design a
Viewsheet that uses the styles defined in the file. Follow the steps below.

1. Create a plain text file with the following contents.

.Header2 {
font-size: 20pt;
font-family: "Arial Narrow";
font-weight: bold;
background-color: #FFEEBB;
color: rgb(100,50,50);
text-align: center;
vertical-align: middle;
border-color: rgb(150,50,50);
border-style: double dotted;

}

#SalesTable {
background-color: #FFEEBB;

}

.HighlightColumn {
background-color: yellow;

}

.AxisText {
color: rgb(150,50,50);
font-size: 14pt;
font-weight: bold;

}

2. Save the text file in UTF-8 format (without BOM) with the name
‘myStyle.css’.

3. Deploy the CSS file by following the instructions in the ‘Viewsheet
CSS’ section of Look-and-Feel, in Administration Reference. (This
may require an administrator.)

This CSS file is now ready for use. It contains three CSS Classes (Header2,
HighlightColumn, and AxisText) and one CSS ID (SalesTable). In the next
steps, you will create a new Viewsheet with components that draw their
styles from these CSS classes.

4. Create a new Viewsheet based on the ‘Tutorial’ > ‘ProductSales’
Worksheet.

5. Add a Text element to the Viewsheet. Enter the text ‘Total Sales’.

DASHBOARD DESIGN

1291 of 2477

6. Right-click the Text component, and select ‘Format’ from the
context menu. This opens the ‘Format’ dialog box.

7. Click the CSS tab. From the ‘Class’ menu, select ‘Header2’, and
click ‘OK’. This applies the Header2 style to the text element.

8. Resize the text element so that the text is fully visible.

9. Add a new Chart component. From the Data Source panel, drag
the ‘Date’ field to the ‘X’ region, and drag the ‘Total’ field to the
‘Y’ region.

10. Click ‘Select Chart Style’ in the Data panel, and select the bar-
chart option. This changes the display to a bar chart.

11. Right-click the X-axis title on the chart, and select ‘Title Format’
from the context menu. This opens the ‘Title Format’ dialog box.

DASHBOARD DESIGN

1292 of 2477

Note that the ‘Type’
field indicates ‘XTi-
tle’. This means that
the CSS only applies
to the X-axis title.

12. In the ‘CSS’ region, select ‘AxisText’ from the ‘Class’ menu. Click
‘OK’. This applies the AxisText style to the X-axis title.

13. Repeat the above steps to apply the AxisText style to the Y-axis
title as well, and then close the Chart Editor.

14. From the Component tree, drag the entire ‘SalesByDate’ Data
Block to the Viewsheet. This creates a new table called
‘SalesByDate’.

15. Click to select the table. Click a second time on the table’s “move”
handle to ensure that the entire table is selected (rather than just the
title bar). Finally, right-click the table’s “move” handle, and select
‘Format’ from the context menu. This opens the ‘Format’ dialog
box for the table as a whole.

Note that the ‘Type’
field indicates ‘Table’.
This means that the
CSS applies to the
table as a whole

16. Click the CSS tab. From the ‘ID’ menu, select ‘SalesTable’, and
click ‘OK’. This applies the SalesTable style to the table as a
whole.

DASHBOARD DESIGN

1293 of 2477

17. Click to select a cell in the ‘Quantity Purchased’ column of the
table. Right-click the cell, and choose ‘Format’ from the context
menu. This opens the ‘Format’ dialog box for the data cells in the
column.

Note that the ‘Type’
field indicates ‘Table
Summary’. This
means that the CSS
only applies to the
data cells

18. Click the CSS tab. From the ‘Class’ menu, select
‘HighlightColumn’, and click ‘OK’. This applies the
HighlightColumn style to the data cells in the ‘Quantity Purchased’
column.

DASHBOARD DESIGN

1294 of 2477

You can manually make additional modifications to the chart, as desired.
(For example, change the color of the chart bar elements to match the axis
titles.) Format settings that you adjust manually will override format
settings controlled by CSS.

¢

See Also
Alignment Tab, Font Tab, Border Tab, Color Tab, to set styles without
using CSS.
Dynamic Properties, for information on setting color via variable or
expression.

CSS Properties and Syntax

The following attributes can be styled by CSS:

 – Alignment
 – Font
 – Border
 – Color

The table below lists the available properties and values.

PROPERTY AVAILABLE VALUES

text-align ‘left’, ‘right’, ‘center’
vertical-align ‘top’, ‘middle’, ‘bottom’
word-wrap ‘normal’, ‘break-word’
font-style ‘normal’, ‘italic’
font-weight ‘normal’, ‘bold’
font-size ‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’,

‘xx-large’, or size in pixels
font-family Font name
font Shortcut: font-style font-weight font-size font-family
text-decoration ‘none’, ‘underline’, ‘line-through’

DASHBOARD DESIGN

1295 of 2477

3.4 Using HTML in Viewsheet Text
You can display HTML content within any element that displays text (e.g.,
Table cell, Text component, Selection List, etc.). To do this, surround the
HTML markup with <html>...</html> tags. For example, the following
markup placed within a Text element creates a list within the Text element:

<html>My List:</
font>ApplesOrangesMangos</
ul></html>

The HTML tags supported are the same as those supported by the Flex
label.htmlText component: <a>, ,
, , , <i>, , <p>,
, <textformat>, and <u>.

color Color value (hex, rgb, color string)
background-color Color value (hex, rgb, color string) or ‘transparent’
opacity Float in range [0, 1]
border-style Line style: ‘none’, ‘dotted’, ‘dashed’, ‘solid’, ‘double’

Single value applies to all borders
border-top-style
border-right-style
border-bottom-style
border-left-style

Line style: ‘none’, ‘dotted’, ‘dashed’, ‘solid’, ‘double’

border-color Color value (hex, rgb, or color string)
Single value applies to all borders, or
Four-values (top right bottom left), or
Two values (top/bottom right/left)

PROPERTY AVAILABLE VALUES

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/text/TextField.html#htmlText

DASHBOARD DESIGN

1296 of 2477

4 Data View Components

A Viewsheet typically contains at least one data view that presents the
primary analysis result. Data views can be in the form of a simple table, a
crosstab (pivot table), a chart, or a geographical map.

All data view elements are listed under the ‘Toolbox > Data View’ node of
the Component tree.

See Also
Output Components, for information on graphical presentation of data.
Selection Components, for information on filtering the data view display.
Input Components, for information on dynamically modifying Worksheet
results.

4.1 Tables
This section explains how to create Viewsheet tables and set their
properties.

4.1.1 Creating a Table

There are several ways to create a new table.

Creating a Table by Dragging a Data Block

To create a table follow these steps:

Dragging individual
Data Block columns
will create a Selec-
tion List/Tree, not a
Table.

1. Select a complete Data Block in the Component tree.

2. Drag the entire Data Block directly onto the Viewsheet grid.

Creating a Table with the Table Element

To create a table follow these steps:

1. Drag a Table element from the Component tree into the Viewsheet
grid. This creates an empty table element.

2. Expand a Data Block node in the Component tree, and drag and
drop one or more columns onto the Table element.

Note: Cube dimensions and measures cannot be added to a Table.

3. Repeat to add additional columns. A green highlight on the Table
indicates where the dragged columns will be placed.

DASHBOARD DESIGN

1297 of 2477

See Also
Creating an Embedded Table, for information on displaying an Embedded
Table.
Creating a Crosstab, for information on generating pivot tables.

4.1.2 Creating an Embedded Table

An Embedded Table is a table into which you can manually type data.
Embedded tables can be edited both within Visual Composer and within
the Portal, allowing the end-user to enter data in tabular form.

Note: Selection elements do not affect Embedded Tables.

An Embedded Table in a Viewsheet is always connected to an Embedded
Table in the underlying Worksheet. Edits that you make to the Viewsheet’s
Embedded Table are automatically propagated to the associated Worksheet
table.

To add a full Embedded Table Data Block, follow the steps below:

1. Select an Embedded Table Data Block from the data source in the
Component panel.

2. Drag the entire Data Block directly onto the Viewsheet grid. This
adds the entire Data Block to the Viewsheet as an Embedded Table.

DASHBOARD DESIGN

1298 of 2477

Ctrl-click to select
multiple cells.

3. (Optional) To delete an unwanted column or columns, click to
select the unwanted column header cell. Right-click on the selected
cell(s), and choose ‘Delete Column(s)’ from the context menu.

To build an Embedded Table column-by-column, follow the steps below:

1. Drag a Table element from the Component tree into the Viewsheet
grid. This creates an empty Table element.

2. Expand an Embedded Table Data Block in the Component panel.

3. Drag-and-drop an individual column or columns onto the empty
Table element.

4. Repeat to add additional columns. A green highlight on the Table
indicates where the dragged columns will be placed.

See Also
Adding Hyperlinks to an Embedded Table, for information on using
hyperlinks.
Table Properties, for Embedded Table properties (same as regular table).
Input Components, for providing user input via graphical controls.
Format Dialog Box, for the available table formatting options.
Creating an Embedded Table, in Data Mashup.
Accessing Component Data, in Dashboard Scripting, to set properties
using embedded data.

4.1.3 Table Properties

The Table component’s ‘Properties’ dialog box provides General,
Advanced, and Script tabs. The next sections discuss the component-
specific properties available under these tabs.

See Also
Crosstab Properties, for information about Crosstab properties.
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

DASHBOARD DESIGN

1299 of 2477

Table Properties: General Tab

In addition to the common properties, the General tab in the ‘Table
Properties’ dialog box allows you to select a layout theme from the ‘Table
Styles’ panel.

A table style is a set of predefined formats (fonts, alignments, backgrounds
etc.) that is directly applied to any table. The ‘Table Styles’ panel provides
access to a Style Library containing a large number of predefined table
styles. To select a table style, expand the desired category node (e.g. ‘Grid’,
‘Columns’, ‘Rows’, etc.) and click on one of the styles. A preview is of the
style is displayed on the right side.

The General tab of the ‘Properties’ dialog box for an Embedded Table
additionally provides a ‘Submit On Change’ option. When this option is
enabled (default), any changes that you make to entries in the Embedded
Table are immediately submitted to the linked Embedded Table in the
underlying Worksheet, which immediately updates any dependent data
views in the Viewsheet.

When ‘Submit On Change’ is disabled, changes that you make to entries in
the Embedded Table are not submitted until you press the ‘Apply’ button in
the table title bar. Click the ‘Reset’ button to restore the table’s entries to
their most recently submitted state.

DASHBOARD DESIGN

1300 of 2477

See Also
General Tab, for information on properties common to the General tab.
Border Tab, for information on manually setting border styles.
Color Tab, for information on manually setting text and background colors.
Creating a Custom Table Style, in Report Design, to create new table styles.

Table Properties: Advanced Tab

The Advanced tab in the ‘Table Properties’ dialog box provides the
following Table-specific properties:

Note: Editable tables cannot be filtered by Selection Components.

Shrink to
Fit

When enabled, this reduces the height of the table to match the
number of records displayed. For example, if the original table height
(as designed) was 10 rows, and the user then makes selections which
restrict the result set to five rows, the table’s bottom border will
retract or “shrink” to eliminate any empty rows at the bottom of the
table.

Embedded
Table

When enabled, specifies that the table is an Embedded Table. This
makes the table cells editable by the user and removes any
hyperlinks. (This option is only available if the table was originally
created as an Embedded Table. See Creating an Embedded Table for
more information.)

Enable
Table
Editing

This option allows users to modify various aspects of a table by
inserting, removing, or changing data records. To perform validation
checks on data entered by users, see Setting Column Editing Options.
Modified table data can be written back to the database by an
appropriate Viewsheet script. See Accessing User-Modified Data in a
Table in Dashboard Scripting for information. The ‘Add Rows’,
‘Delete Rows’, and ‘Edit Rows’ settings are discussed below. Note:
Editable tables cannot be filtered by Selection Components.

Add Rows Allows a user to add new rows to the table. To add a new row, the
user should right-click a row in the table and select ‘Insert Row’ or
‘Append Row’ from the context menu to respectively add a row
before or after the clicked row. Added rows are not retained across
sessions unless they are committed to the database by a Viewsheet
script (see above). See Setting Column Editing Options for
information about validation.

Delete
Rows

Allows a user to delete rows from the table. To do this, the user
should right-click a row in the table and select ‘Delete Row’ from the
context menu. Deletions are not retained across sessions unless they
are committed to the database by a Viewsheet script (see above).

DASHBOARD DESIGN

1301 of 2477

Note: End-user table editing options are available only if product
is licensed for Viewsheet Forms.

See Also
Accessing User-Modified Data in a Table, in Dashboard Scripting, for
information on reading and committing modified data.

Edit Rows Allows a user to edit data in the table. Edited data is not retained
across sessions unless committed to the database by a Viewsheet
script (see above). See Setting Column Editing Options for
information about validation.

Data Tip
View

A Viewsheet component is displayed when mouse hovers over table
area. The component is filtered based on the hover region. See Data
Tip View for more details.

Flyover
Views

Allows you to select a set of Viewsheet components which will be
adaptively filtered as the user hovers the mouse or clicks on the table
area. (Select ‘On Click Only’ if you want the filtered components to
update when the user clicks.) If the table contains aggregated data,
filtering is based on the grouping fields (dimensions) in the row on
which the user hovers or clicks. If the table contains detail data,
filtering is based on the non-numeric columns in the row on which
the user hovers or clicks. See Flyover View for more details.

Shrink to
Fit

When enabled, this reduces the height of the table to match the
number of records displayed. For example, if the original table height
(as designed) was 10 rows, and the user then makes selections which
restrict the result set to five rows, the table’s bottom border will
retract or “shrink” to eliminate any empty rows at the bottom of the
table.

DASHBOARD DESIGN

1302 of 2477

4.1.4 Setting Column Editing Options
Note: Column editing options are available only if product is
licensed for Viewsheet Forms.

When you configure a table as “editable” (see Table Properties: Advanced
Tab), you can place restrictions on which columns may be edited by users,
and what types of values can be entered.

To set the editing options for a particular column, follow the steps below:

1. Right-click the column header, and select ‘Column Option’ from
the context menu. This opens the ‘Column Option’ dialog box.

2. In the ‘Column Option’ dialog box, select ‘Enable Column
Editing’ to make the column editable by users.

Note: The Viewsheet’s onLoad Handler script is re-executed each
time the user makes an edit to an editable table. See Accessing
User-Modified Data in a Table, in Dashboard Scripting, for more
details.

3. In the ‘Column Editor’ menu, select the type of editing control you
wish to provide to users. The available options are ‘Text Editor’,
‘ComboBox Editor’, ‘Date Editor’, ‘Number Editor’, ‘Float
Editor’, and ‘Boolean Editor’.

DASHBOARD DESIGN

1303 of 2477

Each type of column editor provides settings which allow you to restrict the
values that a user may enter into the column. This allows you to perform
validation checking on user input. See Validating User Input for the
available settings.

See Also
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

4.1.5 Validating User Input

You can configure TextInput components and editable table columns with
different types of input controls and validation features. The following
sections describe the available editors for TextInput components and
editable table columns.

See Also
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

Text Editor

The ‘Text Editor’ provides the user with standard text field input. This
allows a user to simply type values into an editable table cell or TextInput
component.

DASHBOARD DESIGN

1304 of 2477

The following options are available in the dialog box:

You can find many regex tutorials and examples on the Internet (e.g., as
http://www.regular-expressions.info). Some sample expressions and error
message combinations are show below:

The following is a summarization of the regular expression syntax.

Alternatives separated by |
Quantified atoms
 {n,m} Match at least n but not more than m times.
 {n,} Match at least n times.
 {n} Match exactly n times.
 * Match 0 or more times.
 + Match 1 or more times.
 ? Match 0 or 1 times.
a . matches everything except \n
a ^ is a null token matching the beginning of a string or
line (i.e., the position right after a newline or right
before the beginning of a string)
a $ is a null token matching the end of a string or line
(i.e., the position right before a newline or right after
the end of a string)
Character classes (e.g., [abcd]) and ranges (e.g., [a-z])
Special backslashed characters work within a character class
(except for backreferences and boundaries).
\b is backspace inside a character class
Special backslashed characters
\b null token matching a word boundary (\w on one side and
\W on the other)
\B null token matching a boundary that isn't a word boundary

\A Match only at beginning of string
\Z Match only at end of string (or before newline at the
end)
\n newline
\r carriage return
\t tab
\f formfeed
\d digit [0-9]
\D non-digit [^0-9]
\w word character [0-9a-z_A-Z]
\W a non-word character [^0-9a-z_A-Z]

Pattern
Check

Specifies a regular expression (regex) which the input must match.
Failure to match the regular expression will cause the error message
to be displayed.

Error
Message

A text message to display when the pattern check fails. The
placeholder “{0}” can be used to insert the user-entered value at a
desired location in the error message. Example error message: “The
value you entered, {0}, is not acceptable.”

PATTERN CHECK ERROR MESSAGE (SUGGESTED)

^[a-zA-Z0-9_]*$ Input can contain only numbers, letters, and underscore
(_).

\d{3}-\d{3}-\d{4} Input must be a phone number with form ###-###-####.
^[a-zA-Z0-9_]{0,15}$ Input length must be 15 characters or fewer.

http://www.regular-expressions.info/

DASHBOARD DESIGN

1305 of 2477

\s a whitespace character [\t\n\r\f]
\S a non-whitespace character [^ \t\n\r\f]
\xnn hexadecimal representation of character
\cD matches the corresponding control character
\nn or \nnn octal representation of character unless a
backreference.
a \1, \2, \3, etc. match whatever the first, second, third,
etc. parenthesized group matched. This is called a
backreference. If there is no corresponding group, the
number is interpreted as an octal representation of a
character.
\0 matches null character
Any other backslashed character matches itself
Expressions within parentheses are matched as subpattern
groups and saved for use by certain methods.

See Also
Setting Column Editing Options, for information on setting column
options.
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

ComboBox Editor

The ‘ComboBox Editor’ provides the user with standard menu input. This
allows a user to simply select a value from a predefined list.

To populate the menu items from a manually created list, follow the steps
below:

DASHBOARD DESIGN

1306 of 2477

1. In the ‘Column Option’ dialog box, select the ‘Embedded’ option
and click on the ‘Edit’ button. This opens the ‘Embedded List
Values’ dialog box.

2. Click the ‘Add’ button. This will populate the list with blank
‘Label’ and ‘Value’ fields.

3. Double-click on the list elements, and enter a desired ‘Label’ and
‘Value’.

4. Repeat the above steps to insert more elements.

5. Click ‘OK’ to close the dialog box.

To populate the menu items from the Viewsheet’s data source, follow the
steps below:

1. In the ‘Column Option’ dialog box, select the ‘Query’ option, and
click on the ‘Edit’ button. This opens the ‘List Values Selection’
dialog box.

2. Select a Data Block from the list on the left side. Select the
appropriate fields from the ‘Label’ and ‘Value’ menus.

3. Click ‘OK’ to close the dialog box.

DASHBOARD DESIGN

1307 of 2477

Enable both the ‘Embedded’ and ‘Query’ options to merge together the
values retrieved from both sources into a single list.

See Also
Setting Column Editing Options, for information on setting column
options.
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

Date Editor

The ‘Date Editor’ provides the user with a pop-up calendar on which to
select a date. This allows a user to enter date values into an editable table
cell or TextInput component.

DASHBOARD DESIGN

1308 of 2477

The following options are available in the dialog box:

See Also
Setting Column Editing Options, for information on setting column
options.
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

Number Editor

Alphabetical charac-
ters and decimal
points are not permit-
ted. To enter decimals,
use the Float Editor.

The ‘Number Editor’ provides the user with standard integer field input.
This allows a user to type integer values into an editable table cell or
TextInput component.

Minimum Specifies the start date for the permitted time interval. If the user
enters a date earlier than the minimum, the error message will be
displayed.

Maximum Specifies the end date for the permitted time interval. If the user
enters a date later than the maximum, the error message will be
displayed.

Error
Message

A text message to display when the user enters a date outside the
specified interval. The placeholder “{0}” can be used to insert the
user-entered value at a desired location in the error message.
Example error message: “The value you entered, {0}, is
not acceptable.”

DASHBOARD DESIGN

1309 of 2477

The following options are available in the dialog box:

See Also
Setting Column Editing Options, for information on setting column
options.
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

Float Editor

Alphabetical charac-
ters are not permitted.

The ‘Float Editor’ provides the user with a standard floating point field
input. This allows a user to type decimal values into an editable table cell or
TextInput component.

Minimum Specifies the lowest allowed integer value. If the user enters a value
lower than the minimum, the error message will be displayed.

Maximum Specifies the highest allowed integer value. If the user enters a value
higher than the maximum, the error message will be displayed.

Error
Message

A text message to display when the user enters a value outside the
specified interval. The placeholder “{0}” can be used to insert the
user-entered value at a desired location in the error message.
Example error message: “The value you entered, {0}, is
not acceptable.”

DASHBOARD DESIGN

1310 of 2477

The following options are available in the dialog box:

See Also
Setting Column Editing Options, for information on setting column
options.
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

Boolean Editor

The ‘Boolean Editor’ provides the user with a simple checkbox input. This
allows the user to enter “true” (checked) or “false” (unchecked) into an
editable table cell or TextInput component.

See Also
Setting Column Editing Options, for information on setting column
options.
Table Properties: Advanced Tab, for information on enabling end-user
table editing.

4.1.6 Resizing a Table Column

To resize a table column, click and drag on the column border to obtain the
desired width.

Minimum Specifies the lowest allowed floating point value. If the user enters a
value lower than the minimum, the error message will be displayed.

Maximum Specifies the highest allowed floating point value. If the user enters a
value higher than the maximum, the error message will be displayed.

Error
Message

A text message to display when the user enters a value outside the
specified interval. The placeholder “{0}” can be used to insert the
user-entered value at a desired location in the error message.
Example error message: “The value you entered, {0}, is
not acceptable.”

DASHBOARD DESIGN

1311 of 2477

See Also
Resizing the Viewsheet Grid, for information on changing the global grid
spacing.

4.1.7 Resizing a Table Row

To resize a table header row, click and drag on the Viewsheet row border
corresponding to the desired header row. Header rows can be resized
independently of body rows. For a Freehand Table, the number of header
rows is defined in the Freehand Table Properties: Advanced Tab.

To resize the table body rows, click and drag on the Viewsheet row border
corresponding to the first body row. All other body rows adopt the same
size as the first body row.

See Also
Resizing the Viewsheet Grid, for information on changing the global grid
spacing.

4.1.8 Adding Hyperlinks to a Table

In tables, you can attach hyperlinks to a specific columns.

DASHBOARD DESIGN

1312 of 2477

Adding Hyperlinks to a Regular Table

To add hyperlinks to regular table data, right-click the table column to
which you wish to add the links, and select ‘Hyperlink’ from the context
menu.

This opens the ‘Hyperlink’ dialog box. See the Hyperlinks section for
complete instructions on how to use the ‘Hyperlink’ dialog box.

Adding Hyperlinks to an Embedded Table

It is not possible to attach hyperlinks to the cells of an Embedded Table.
However, you can convert the Embedded Table into a regular table, and
then add the hyperlinks to the regular table.

To add hyperlinks to an Embedded Table using this method, follow the
steps below:

1. Right-click on the Embedded Table, and select ‘Properties’ from
the context menu. This opens the ‘Table Properties’ dialog box.

2. Disable the ‘Embedded Table’ option, and press ‘OK’.

DASHBOARD DESIGN

1313 of 2477

3. Add hyperlinks to the desired column(s) as described in
Hyperlinks.

To restore the editability of the table, re-enable the ‘Embedded Table’
option in the ‘Table Properties’ dialog box. Note: This will remove any
hyperlinks from the table.

See Also
Creating an Embedded Table, for information on how to create an
embedded table.

4.1.9 Adding Highlights to a Table

To add highlights to table data, right-click the table column to which you
wish to add the highlight, and select ‘Highlight’ from the context menu.

This opens the ‘Highlight’ dialog box. See the Highlights section for
complete instructions on how to use the ‘Highlight’ dialog box.

DASHBOARD DESIGN

1314 of 2477

4.1.10 Changing Table Column Headers
You can also double-
click the column
header to modify the
text.

To change or format table column headers, right-click the desired column
header and select ‘Format’ from the context menu. See Format Dialog Box
for more details.

When a Crosstab is used to represent hierarchical cube dimensions, the
column headers may display all of the hierarchical components within
brackets. To override this behavior, manually format the column headers as
described. Alternatively, ask an administrator to set the property
olap.table.originalContent=false in the sree.properties file.

4.1.11 Sorting Table Columns

To sort a table column, hover the mouse over the right side of the column
header. This enables the ‘Sort Column’ button. Click the button once to sort
the column’s data in ascending (alphabetical) order, click a second time to
sort in descending (reverse alphabetical) order, and click a third time to
restore the original order.

To sort multiple columns simultaneously (nested sorting), hold down the
Ctrl-key as you click the ‘Sort Column’ button for the additional columns
to be sorted. The order in which you click the ‘Sort Column’ button for the
columns determines the nesting of the sorting.

For example, click ‘Sort Column’ for a table’s ‘Company’ column and then
Ctrl-click ‘Sort Column’ for the ‘Order Number’ column to sort the ‘Order
Number’ data on a company-by-company basis. The column header
displays a small number to indicate the sorting precedence.

4.1.12 Filtering Table Columns

In addition to applying filtering conditions to a table using the Filter
Conditions feature, you can also apply quick filters to individual tables
columns.

The ‘Filter’ option is only available if the dashboard contains a
Selection Container component.

DASHBOARD DESIGN

1315 of 2477

To apply a quick filter to a table, follow the steps below:

1. If the Viewsheet does not contain a Selection Container, add a
Selection Container to the Viewsheet. See Selection Container for
more information.

2. Right-click on the column that you wish to filter and select ‘Filter’
from the context menu.

This opens the filtering control for the column, a Selection List for
a string-type column, and a Range Slider for a numerical-type or
date-type column.

3. Make the desired selection using the selection control, and click
away from the column to submit. (See Selection List and Range
Slider for more information about these controls.)

The selections that you make are shown in the Selection Container.

To remove the filter from a particular column, follow the steps above, and
press the ‘Clear Selection’ button on the selection control.

DASHBOARD DESIGN

1316 of 2477

To remove all filters on the table, press the ‘Clear Selections’ button in the
Selection Container.

See Also
Filter Conditions, for a more general method of filtering data view
components (including charts).
Selection Container, for more information about the Selection Container
component.

4.1.13 Exporting Table Data for Viewing

To export the data contained in a Table or Crosstab to an Excel file, follow
the steps below:

1. Click the ‘Export’ button in the Table title bar. This opens the
‘Export’ dialog box.

2. In the ‘Export’ dialog box, enter a name for the exported Excel file,
and press ‘OK’.

This will save the table data as an Excel file in the browser’s default
download location.

4.1.14 Exporting Table Data for Editing

Viewsheets provide several features to assist in offline data editing. A user
can export data from a Viewsheet to an Excel file, edit the data values

DASHBOARD DESIGN

1317 of 2477

within the Excel file, and re-import the revised data into the Viewsheet at a
later time. This gives a user the ability to edit a Viewsheet “offline,” while
not actively logged into the server.

Note: Offline editing features are available only if product is
licensed for Viewsheet Forms.

To configure a Viewsheet so that users can export data to an Excel file for
editing (and subsequent importing), follow the steps below:

1. For each table that you wish to make editable in Excel, right-click
the table, and select ‘Properties’ from the context menu. This opens
the ‘Table Properties’ dialog box.

2. Select the General tab, and enter a unique name for the table in the
‘Name’ field. (This name will be used to label the table in the Excel
export, and to match the Excel table to the Viewsheet table during
subsequent importing.)

3. Select the Advanced tab, and check the ‘Enable Table Editing’
option. Select the desired editing features, ‘Add Rows’, ‘Delete
Rows’, and/or ‘Edit Rows’. See Table Properties: Advanced Tab
for more information about these options.

4. Press ‘OK’ to close the ‘Table Properties’ dialog box.

See Also
Table Properties: Advanced Tab, for information on how to make a table
editable.
Importing Excel Data into a Dashboard, in End User, for information on
how to import the generated Excel file.
Exporting a Dashboard for Editing in Excel, in End User, for information
on how to export the Viewsheet.

4.2 Freehand Tables
The basic methods for presenting tabular data in a Viewsheet are Tables
and Crosstabs. However, in some cases Tables and Crosstabs may not be
flexible enough to create the specific tabular layout that you require.

For such cases, you can gain greater flexibility by using a Freehand Table.
A Freehand Table allows you to specify complex cell expansions and
associations, and integrate data from multiple Data Blocks into a single
table.

DASHBOARD DESIGN

1318 of 2477

4.2.1 Creating a Freehand Table

There are two ways to create Freehand Tables, either as a new component
or by converting an exiting Table or Crosstab. The following sections
explain the two methods:

Creating a Freehand Table as a New Component

To create a new Freehand Table as a new component, follow the steps
below:

1. Drag a Freehand Table from the Component panel into the
Viewsheet. This adds a blank Freehand Table to the Viewsheet.

2. Press the ‘Edit’ button in the top-right corner of the Freehand
Table.

This opens the binding dialog box for the Freehand Table. The dia-
log box displays an interactive table diagram in the top panel, as
well as a Data panel and Options panel below.

3. Drag the desired fields from the available Data Blocks into the
table diagram in the binding dialog box.

DASHBOARD DESIGN

1319 of 2477

4. Adjust the expansion directions and other properties for the
individual cells as desired.

5. To add rows and columns, right-click on a cell in the table diagram
and select the desired option from the context menu.

DASHBOARD DESIGN

1320 of 2477

For more detailed information on how to configure expansion, grouping,
and other properties, see Walkthrough: Freehand Table.

Creating a Freehand Table from an Existing Table or Crosstab

To create a a Freehand Table from an existing Table or Crosstab, follow the
steps below:

1. Right-click on the existing Table or Crosstab, and select ‘Convert
to Freehand Table’.

2. Click the ‘Edit’ button in the top-right corner of the new Freehand
Table.

This opens the binding dialog box for the Freehand Table. The dia-
log box displays an interactive table diagram in the top panel, as
well as a Data panel and Options panel below.

DASHBOARD DESIGN

1321 of 2477

3. Add rows and columns as desired. To do this, right-click on a cell
in the table diagram and select the desired option from the context
menu.

4. Drag any additional desired fields from the available Data Blocks
into the table diagram in the binding dialog box.

DASHBOARD DESIGN

1322 of 2477

5. Adjust the expansion directions and other properties for the
individual cells as desired.

For more detailed information on how to configure expansion, grouping,
and other properties, see Walkthrough: Freehand Table.

See Also
Creating a Table, for information on creating a regular table.
Creating a Crosstab, for information on creating a regular crosstab.

4.2.2 Walkthrough: Freehand Table

The following walkthrough illustrates how you can create a complex data
layout by using a freehand table.

Walkthrough In this example, you will create a custom crosstab that breaks down sales
totals both according to individual ‘State’ and ‘Category’ combinations,
and simultaneously according to ‘Order Date’ and ‘Category’
combinations.

DASHBOARD DESIGN

1323 of 2477

In a regular Crosstab, the data is represented with a nested header structure,
such as shown below. Note that the aggregated measure (‘Total’) is
represented for every combination of ‘State’, ‘Date’, and ‘Category’.

Instead, in this example you will create a table where the ‘Date’ headers are
not nested within the ‘State’ headers, but are rather displayed separately, as
shown below.

To create this table, begin by creating a regular Crosstab that contains just
the ‘State’ and ‘Category’ combinations. You will then convert this table to
a Freehand Table, and use basic Freehand Table techniques to add the
‘Date’ headers.

Follow the steps below:

1. Press the ‘New Viewsheet’ button in the Visual Composer toolbar.
This opens the ‘New Viewsheet’ dialog box.

2. Expand the ‘Data Source’ node, and then expand the ‘Orders’ sub-
node. Select the ‘Order Model’ data model, and press ‘OK’. This
creates a new Viewsheet based on the ‘Order Model’ data model.

3. Drag a ‘Crosstab’ component from the Components panel into the
Viewsheet.

4. Press the ‘Edit’ button at the top-right of the Crosstab to open the
binding dialog box.

5. From the Data Source panel, drag fields from the ‘Order Model’
into the binding dialog box in the following way:

a. Drag the ‘Product.Category’ field to the ‘Row Header’ panel.

b. Drag the ‘Customer.State’ field to the ‘Column Header’ panel.

c. Drag the ‘Product.Total’ field to the ‘Measure’ panel.

DASHBOARD DESIGN

1324 of 2477

d. Click the Customer.State’ field in the ‘Column Header’ panel to
select it. From the ‘Ranking’ menu in the bottom panel, select
‘Top’. Enter ‘10’ as the number of groups. (This will return the
top 10 groups according to the summed total.)

e. Press ‘Apply’ to close the binding dialog box. This creates a
new Crosstab in the Viewsheet.

6. Right-click the Crosstab, and select ‘Convert to Freehand Table’
from the context menu.

7. Click the top-left corner cell of the table to select it. Type the text
“Category” into the cell.

DASHBOARD DESIGN

1325 of 2477

(Optional) Use the Visual Composer toolbar buttons to make the
text large and bold.

8. Shift-click to select all of the ‘State’ cells in the header row. Press
the ‘Fill Color’ toolbar button, and specify a light blue background.

9. You will now use freehand table operations to add the ‘Date’
headers to the table. Follow the steps below:

a. Press the ‘Edit’ button in the top-right corner of the Freehand
Table. This opens the binding dialog box.

b. Right-click the top-right corner cell and select ‘Append
Column’ from the context menu. This adds a new column.

c. From the ‘Order’ node in the Data Source panel, drag the
‘Date’ attribute to the new top-right corner cell of the table
diagram. This adds the ‘Order.Date’ attribute as a column
header.

DASHBOARD DESIGN

1326 of 2477

d. Click to select this new ‘Order.Date’ cell. Next to the ‘Expand
Cell’ option in the bottom panel, select ‘Horizontal’. This sets
the year groups in the ‘Order.Date’ field to display horizontally,
as multiple columns headers.

e. Select the ‘Group’ option and press the adjacent ‘Edit’ button.
From the ‘Level’ menu, select ‘Year’ and press the green
‘Apply’ button.

f. Press the green ‘Apply’ button at the top of the binding dialog
box to close the dialog box.

g. Expand the table so that you can see all columns. Shift-click to
select all of the ‘Date’ headers. Press the ‘Fill Color’ button in
the Visual Composer toolbar and set a yellow background for
the ‘Date’ headers.

DASHBOARD DESIGN

1327 of 2477

10. You will now use freehand table operations to add an aggregate
‘Total’ measure corresponding to the year groups. Follow the steps
below:

a. Press the ‘Edit’ button in the top-right corner of the Freehand
Table to reopen the binding dialog box.

b. In the Data Source panel, expand the ‘Product’ node, and drag
the ‘Total’ attribute to the bottom-right corner cell of the table
diagram. This adds the ‘Product.Total’ attribute as a measure.

c. Select this new ‘Product.Total’ cell, and enable the ‘Summarize’
option in the panel below. Press the adjacent ‘Edit’ button, select
‘Sum’ from the ‘Aggregate’ menu, and press the green ‘Apply’
button. This will aggregate the totals for each combination of
‘Category’ and ‘Date’.

DASHBOARD DESIGN

1328 of 2477

d. Press the green ‘Apply’ button to close the binding dialog box.

11. Observe that the ‘Category’ row headers are currently sorted
alphabetically (e.g., Business, Educational, Games, etc.). To sort
the categories by the value of the corresponding aggregate total,
follow the steps below:

a. Press the ‘Edit’ button in the top-right corner of the Freehand
Table to reopen the binding dialog box.

b. Click to select the grouped ‘Category’ cell (bottom-left cell in
the table diagram).

c. Press the ‘Edit’ button adjacent to the ‘Group’ option. From the
‘Sort’ menu, select the option ‘By Value (Desc)’, and press the
green ‘Apply’ button.

DASHBOARD DESIGN

1329 of 2477

d. Press the green ‘Apply’ button in the binding dialog box to close
the dialog box. Observe that the categories are now shown in
descending order according to the totals (e.g., Business,
Hardware, Personal, etc.).

12. Add a row of grand totals at the bottom of the Freehand Table.
Follow the steps below:

a. Press the ‘Edit’ button in the top-right corner of the Freehand
Table to reopen the binding dialog box.

b. Right-click on any cell in the bottom row of the table diagram,
and select ‘Insert Rows/Columns’. This opens the ‘Insert Rows/
Columns’ dialog box.

DASHBOARD DESIGN

1330 of 2477

c. Configure the settings to insert one row ‘After the Selection’,
and press ‘OK’. This inserts a new row into the table diagram.

d. Right-click on one of the ‘Product:Total’ cells, and select
‘Copy’ from the context menu.

e. Right-click in the empty cell below one of the ‘Product:Total’
cells, and select ‘Paste’ from the context menu. This places a
copy of the ‘Product:Total’ field into that cell.

DASHBOARD DESIGN

1331 of 2477

f. Repeat the above step for the empty below the other
‘Product:Total’ cell.

g. Click to select the ‘Product.Total’ cell at the center of the table
diagram. In the ‘Row Group’ and ‘Column Group’ menus,
select the ‘default’ options, and press the green ‘Apply’ button.

The ‘Row Group’ and ‘Column Group’ settings for a cell
determine how the cell will respond to the expansion of other
cells. To anchor the selected cell to a expanding grouping cell
(so that the selected cell will observe the same grouping as it
expands), select the name of the desired grouping cell in the
‘Row Group’ or ‘Column Group’ menu.

The ‘default’ option for ‘Row Group’ selects the nearest
candidate grouping cell (if one exists) in the same row and to the
left of the selected cell. In this example, the ‘Product.Category’
cell provides a candidate row grouping cell in the same row as
the selected ‘Product.Total’ field. Therefore, in this case the
‘default’ option in the ‘Row Group’ menu is equivalent to
‘Product.Category’.

The ‘default’ option for ‘Column Group’ selects the nearest
candidate grouping cell (if one exists) in the same column and
above the selected cell. In this example, the ‘Customer.State’
cell provides a candidate column grouping cell in the same
column as the selected ‘Product.Total’ field. Therefore, in this
case the ‘default’ option in the ‘Column Group’ menu is
equivalent to ‘Customer.State’.

h. Specify the same ‘default’ options for the other ‘Product.Total’
cells.

DASHBOARD DESIGN

1332 of 2477

i. Double-click in the bottom-left cell of the table, and enter the
text “Totals”.

13. Expand the table as needed to show all rows and columns.

4.2.3 Freehand Table Properties

The Freehand Table component’s ‘Properties’ dialog box provides
General, Advanced, and Script tabs. The next sections discuss the
component-specific properties available under these tabs.

See Also
Table Properties, for information about regular Table properties.
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Freehand Table Properties: General Tab

The General tab in the ‘Freehand Table Properties’ dialog box is the same
as for regular tables.

See Also
General Tab, for information about common properties in the General tab
Table Properties, for information about general table properties.

DASHBOARD DESIGN

1333 of 2477

Freehand Table Properties: Advanced Tab

The Advanced tab in the ‘Freehand Table Properties’ dialog box provides
the following freehand table-specific properties.

Header Rows The number of initial rows that should be treated as header
rows when a table style is applied.

Header Columns The number of initial columns that should be treated as header
columns when a table style is applied.

Trailer Rows The number of final rows that should be treated as trailer rows
when a table style is applied.

Trailer Columns The number of final columns that should be treated as trailer
columns when a table style is applied.

Shrink to Fit When enabled, this reduces the height of the table to match the
number of records displayed. For example, if the original table
height (as designed) was 10 rows, and the user then makes
selections which restrict the result set to five rows, the bottom
table border retracts or “shrinks” to eliminate any empty rows
at the bottom of the table.

Data Tip View A Viewsheet component is displayed when mouse hovers over
table area. The component is filtered based on the hover
region. See Data Tip View for more details.

Flyover Views Allows you to select a set of Viewsheet components which will
be adaptively filtered as the user hovers the mouse or clicks on
the crosstab area. (Select ‘On Click Only’ if you want the
filtered components to update when the user clicks.) Filtering
is based on the grouping fields (dimensions) in the row and
column on which the user hovers or clicks. See Flyover View
for more details.

DASHBOARD DESIGN

1334 of 2477

4.3 Crosstabs
A crosstab, also known as a pivot table, contains one or more column
headers and one or more row headers, and displays aggregated measure
values at the row-column intersections.

For example, a train schedule displays dates horizontally across (column
header), station names vertically down (row header), and departure times
(measure) at the intersections. Not every row-column combination need
have an associated measure value; for example, there may be combinations
of date and station for which there is no corresponding train departure.

In general, the values at the row-column intersections of a crosstab
represent summary information of a measure, rather than point values. For
example, a crosstab with row headers representing ‘Salesperson’ and
column headers representing ‘Month of Year’ might contain values at the
intersections representing ‘Average Sale Price’ or ‘Maximum Sale Price’.
The measure in both cases is ‘Sale Price’. The summarization method is,
respectively, Average or Maximum. By effectively using summarization,
crosstabs can display large amounts of data in a compact form.

4.3.1 Creating a Crosstab

To add a crosstab to a Viewsheet, follow the steps below:

1. Drag the Crosstab element from the component tree into the
Viewsheet grid.

2. Move the mouse over the top right corner of the crosstab, and click
the ‘Edit’ button.

This opens the crosstab data dialog box.

DASHBOARD DESIGN

1335 of 2477

The panel displays all
OLAP cubes defined
on the data source.

3. In the Data Source panel, expand a Data Block, query, data model,
or OLAP cube (hierarchical model) to display the available
dimensions and measures.

4. Drag the desired columns or cube dimensions into the ‘Column
Headers’ and ‘Row Headers’ regions.

You can change the
order of multiple
headers or measures
by dragging them up
or down.

5. Drag the desired columns or cube measures into the region labeled
‘Measures’.

DASHBOARD DESIGN

1336 of 2477

6. (Optional) Specify group totals and ranking:

a. Click on a row header or column header. This activates the
‘Sort’, ‘Ranking’, and ‘Group Total’ controls.

For end-user sorting
features, see Sorting in
End User.

b. In the ‘Sort’ menu, specify how the values in the field should be
ordered. ‘Ascending’ and ‘Descending’ sort the values in
alphabetical or reverse-alphabetical order. ‘By Value (Asc)’ and
‘By Value (Desc)’ sort the values according to the aggregate
measure selected in the adjacent menu.

To specify an arbitrary sort order, select the ‘Manual’ option in
the ‘Sort’ menu, and press the ‘Edit’ button to open the ‘Manual
Ordering’ dialog box. To reorder an item in the ‘Manual
Ordering’ dialog box, drag the item up or down within the list or
select the item and press the ‘Up’ or ‘Down’ buttons. Press
‘OK’ to close the dialog box.

DASHBOARD DESIGN

1337 of 2477

c. In the ‘Group Total’ menu, specify whether group totals should
be shown.

d. In the ‘Ranking’ menu, Select the ‘Top’ or ‘Bottom’ filter, and
specify the (integer) number of top or bottom groups to select.
In the adjacent menu, specify the measure by which groups
should be ranked.

e. Select ‘Group all others together’ to create an “Others” category
which represents (in aggregate) all the groups excluded by the
Top/Bottom-N filter.

These controls are
disabled for OLAP
cubes. Cube aggrega-
tions are defined in
the model itself. (See
OLAP Overlay – Multi-
dimensional Analysis
in the Data Modeling.)

7. Click on a measure, and select the summarization method from the
‘Aggregate’ menu.

a. To display a univariate measure (‘Sum’, ‘Count’, etc.) as a
percentage, select the basis for percentage in the ‘Percentage of’
menu.

b. If you choose a percentage representation, click the ‘Options’
button (at the top of the dialog box) to select the dimension
along which the percentage is computed (‘Rows’ or
‘Columns’). Percentage by rows uses the row totals, and by
columns uses the column totals.

DASHBOARD DESIGN

1338 of 2477

c. To display a bivariate aggregation measure (e.g., ‘Correlation’,
‘Weighted Average’, etc.), select the second operand (column)
from the ‘with’ menu.

8. Click on the ‘Apply’ button (the arrow on the top right) to close the
binding dialog box.

9. If desired, expand the crosstab horizontally so that all of the column
headers are visible.

See Also
Percentage Representation for Aggregation, to display data as a
percentage.
Crosstab Aggregation Methods for information on summarization options.
OLAP Overlay – Multidimensional Analysis, in Data Modeling, for general
information on hierarchical overlays.

4.3.2 Crosstab Properties

The Crosstab component’s ‘Properties’ dialog box provides General,
Advanced, Hierarchy, and Script tabs. The next sections discuss the
component-specific properties available under these tabs.

See Also
Table Properties, for information about regular Table properties.
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Crosstab Properties: General Tab

The General tab in the ‘Crosstab Properties’ dialog box is the same as for
regular tables.

DASHBOARD DESIGN

1339 of 2477

See Also
General Tab, for information about common properties in the General tab
Table Properties, for information about general table properties.

Crosstab Properties: Advanced Tab

The Advanced tab in the ‘Crosstab Properties’ dialog box provides the
following crosstab-specific properties.

Fill Blank Cell
With Zero

Places a zero value in measure cells corresponding to row and
column heading combinations for which no records exist.
Otherwise, these cells are simply left blank.

Summary Cells
Side By Side

Places multiple aggregated measures side-by-side, rather than
stacking them vertically.

Enable Drilling Allows the user to drill up and down in date or dimension
fields. See Drilling Down into a Crosstab for more
information.

Enable Ad Hoc
Editing

Allow end users to access the Crosstab Editor and edit the
table.

Shrink to Fit When enabled, this reduces the height of the table to match the
number of records displayed. For example, if the original table
height (as designed) was 10 rows, and the user then makes
selections which restrict the result set to five rows, the bottom
table border retracts or “shrinks” to eliminate any empty rows
at the bottom of the table.

Data Tip View A Viewsheet component is displayed when mouse hovers over
crosstab area. The component is filtered based on the hover
region. See Data Tip View for more details.

Flyover Views Allows you to select a set of Viewsheet components which will
be adaptively filtered as the user hovers the mouse or clicks on
the crosstab area. (Select ‘On Click Only’ if you want the
filtered components to update when the user clicks.) Filtering
is based on the grouping fields (dimensions) in the row and
column on which the user hovers or clicks. See Flyover View
for more details.

DASHBOARD DESIGN

1340 of 2477

Crosstab Properties: Hierarchy Tab

The Hierarchy tab in the ‘Crosstab Properties’ dialog box allows you to
specify the hierarchy for a custom drill-down. The procedure for this is
the same as that for a Chart. See Chart Properties: Hierarchy Tab for
details.

For information on how to navigate a crosstab with drill-downs, see
Drilling Down into a Crosstab.

4.3.3 Crosstab Aggregation Methods

In general, there are many data records that correspond to a given row and
column heading in the crosstab. The values of the measures for these
records must therefore be aggregated to yield the single scalar value that
appears at a given row-column intersection. The aggregation method
specified by the ‘Aggregate’ menu determines the way in which this
summarization is done.

Aggregation Example

As an example of crosstab aggregation, consider the crosstab configuration
below.

DASHBOARD DESIGN

1341 of 2477

In this configuration:

• Row dimension is a ‘Region’/’State’ hierarchy

• Column dimension is a ‘Category’/’Product’ hierarchy

• Measure is ‘Quantity Purchased’

The ‘Aggregate’ menu specifies ‘Sum’, which indicates that each value in
the crosstab will represent the sum of ‘Quantity Purchased’ taken over all
records matching the given row and column headings. Thus, for the row
region heading ‘USA East’ and the column category heading ‘Business’,
the summary value of the measure shown in the crosstab represents the
summed quantity of all ‘Business’ category products purchased by ‘USA
East’ region customers.

In the same way, if you set the ‘Aggregate’ menu to ‘Max’, the summary
value shown in the crosstab for the above row and column combination
would represents the maximum quantity of ‘Business’ category products
purchased by any ‘USA East’ region customer.

See Also
Crosstab Properties: Hierarchy Tab, for information on how to specify a
custom drill-down hierarchy.

DASHBOARD DESIGN

1342 of 2477

Aggregation Options

The table below lists the available crosstab aggregation measures. You can
choose to display univariate aggregations (e.g., ‘Sum’, ‘Count’) as a
percentage value by selecting the percentage basis (e.g., ‘Group’,
‘GrandTotal’) from the accompanying ‘Percentage of’ menu.

For the bivariate aggregation methods (e.g., ‘Correlation’, ‘Weighted
Average’), you will need to select a variable (column) to use as the second
operand in the computation. Make this selection in the menu labeled ‘with’.

Table 1. Aggregation Measures.

AGGREGATE
MEASURE

DESCRIPTION

Sum Displays the sum of the measure values for the
given row and column headings

Average Displays the average of the measure values for the
given row and column headings

Max Displays the maximum of the measure values for
the given row and column headings

Min Displays the minimum of the measure values for the
given row and column headings

Count Displays the total count of measure values for the
given row and column headings. This represents the
total number of records corresponding to the given
row and column headings, and is the same value for
any selected measure.

Distinct Count Displays the count of unique measure values for the
given row and column headings.

Correlation Displays the Pearson correlation coefficient for the
correlation between the measure values (for the
given row and column headings) and the
corresponding values in a second column, specified
by the menu labeled ‘with’.

Covariance Displays the covariance between the measure values
(for the given row and column headings) and the
corresponding values in a second column, specified
by the menu labeled ‘with’.

Variance Displays the (sample) variance of the measure
values for the given row and column headings.

Std Deviation Displays the (sample) standard deviation of the
measure values for the given row and column
headings.

Variance (Pop) Displays the (population) variance of the measure
values for the given row and column headings.

Std Deviation (Pop) Displays the (population) standard deviation of the
measure values for the given row and column
headings.

DASHBOARD DESIGN

1343 of 2477

See Also
Percentage Representation for Aggregation, to display crosstab data as a
percentage.

4.3.4 Percentage Representation for Aggregation

You can display univariate aggregations (e.g., ‘Sum’, ‘Count’) as
percentage values. To do this, select a basis for the percentage
representation from the ‘Percentage of’ menu. Click the ‘Options’ button to
select the dimension along which the percentage is computed (row or
column).

The ‘Percentage of’ menu options are described in the table below

See Also
Crosstab Properties, for information on creating crosstabs.

4.3.5 Grouping Crosstab Headers into Named Groups

You can agglomerate data from different crosstab header values into larger
categories called named groups. For example, you can combine column
header labels designating individual states MA, CT, NY, NJ, etc., into
larger groups such as ‘New England’ and ‘Mid-Atlantic’.

Named groups cannot be defined for date fields.

To create named groups for crosstab header labels, follow the steps below:

Weighted Average Displays the weighted average of the measure
values for the given row and column headings. The
weights are given by the corresponding values in a
second column, which is specified by the menu
labeled ‘with’.

PERCENTAGE OPTION DESCRIPTION

None Displays the original aggregate measure values,
with no percentages taken.

Group Displays each aggregate measure value as a
percentage of the aggregate value computed on the
superordinate group (defined by the header one
level above the finest-granularity header). This
option is only available when two or more row
headers or two or more column headers have been
specified.

GrandTotal Displays each aggregate measure value as a
percentage of the aggregate value computed on the
full row or column.

AGGREGATE
MEASURE

DESCRIPTION

DASHBOARD DESIGN

1344 of 2477

1. Ctrl-click to select the individual crosstab header labels (from the
same heading level) that you want to combine into a single group.

You can group exist-
ing groups to make
larger groups.

2. Right-click on one of the selected labels, and select ‘Group’ from
the context menu. This opens the ‘Group Name’ dialog box.

3. Enter a name for the new group in the ‘Group Name’ dialog box,
and click ‘OK’.

This replaces the selected labels with the label for the named
grouping, and agglomerates the data corresponding to the original
labels under the new label.

4. Repeat the above steps to add additional named groups.

To decompose an existing name group, right-click on the header label and
select ‘Ungroup’ from the context menu.

DASHBOARD DESIGN

1345 of 2477

See Also
Grouping Chart Labels into Named Groups, to create groupings in a chart.

4.3.6 Drilling Down into a Crosstab

When a crosstab header displays a date field or a cube dimension, the
crosstab automatically provides the user with the ability to drill down to
finer levels of resolution of the date or dimension.

To drill down into a date or cube dimension on a crosstab header, follow
these steps:

The ‘+’ symbol is
only visible when you
hover over the
crosstab.

1. Hover the mouse over the crosstab. For headers that represent date
or cube dimension data, this will display a ‘+’ symbol at the left
side of the header.

2. Click the ‘+’ symbol to drill down to the next level of the date or
dimension.

3. Repeat the above steps to drill down to deeper levels of the
hierarchy.

DASHBOARD DESIGN

1346 of 2477

4. To drill up to a higher level of the date or dimension hierarchy,
hover the mouse over the crosstab. This displays a ‘–’ symbol at the
left side of expanded headers.

5. Click the ‘–’ symbol to drill up to the higher level of the date or
dimension hierarchy.

To disable the drilling feature for a particular crosstab, deselect the ‘Enable
Drilling’ option in the Advanced tab of the ‘Crosstab Properties’ dialog
box.

See Also
Crosstab Properties: Hierarchy Tab, for information on how to create a
custom drill-down.
Drilling Down into a Chart, to perform the drill operation on a chart
dimension.

4.3.7 Exporting Crosstab Data

To export the aggregated data displayed in a Crosstab to an Excel file, see
Exporting Table Data for Viewing.

To view or export the detail data on which the aggregations are based,
follow the steps below:

1. Select the desired aggregates by clicking the appropriate cells,
rows, or columns in the Crosstab.

2. Click the ‘Show Details’ button at the top-right of the Crosstab.
This opens a panel containing the detail data.

DASHBOARD DESIGN

1347 of 2477

To close the data panel, click the red ‘X’ in the top-right corner.

Exporting Detail Data

To export the detail data, press the ‘Export’ button in the data panel.

Formatting Detail Data

To format values in the data panel, right-click on the column you wish to
format, and select ‘Format’ from the context menu.

DASHBOARD DESIGN

1348 of 2477

This opens the ‘Format’ dialog box, which allows you to set the format for
the column. See Format Tab for information about the available options.

Formatting that you specify is saved with the Viewsheet, and is
automatically applied to the column whenever the ‘Show Details’ option is
used, both in Visual Composer and the User Portal.

4.4 Charts
A chart displays a graphical view of summarized data (the graphical
equivalent of a crosstab). Viewsheet charts are interactive. You can zoom in
and out, view chart details, and “brush” the chart to track data in multiple
views.

4.4.1 Creating a Chart

This section explains the basic procedure for creating and editing a chart,
including binding the chart to data, setting ranking order, aggregation
method, and chart style.

Creating a New Chart

To add a chart to a Viewsheet, drag and drop the Chart element from the
component tree into the grid. Use the mouse to move and resize the chart as
desired.

To bind the Chart to data, follow the steps below:

1. Click on the center of the chart, or click the ‘Edit’ button in the top-
right corner. This opens the Chart Editor on the left side of the
Visual Composer.

DASHBOARD DESIGN

1349 of 2477

Tip: You can drag
fields from the Data
Source panel directly
onto the Viewsheet
grid to create a Selec-
tion component that
filters the chart data.

2. From the Data Source panel in the Chart Editor, drag a dimension
onto the ‘X’ field in the Data panel.

Note: When binding hierarchical cube dimensions, chart labels will
include all hierarchical components. To avoid this, ask an
administrator to set the property olap.table.originalContent=false
in sree.properties.

This dimension provides the chart’s X-axis data, and the dimension
name is automatically used as the axis label.

To rank a dimension
based on a measure
that is not displayed in
the chart, see Adding a
Non-Displaying Mea-
sure to a Chart.

3. Click the ‘Edit Dimension’ button, and select the desired ordering
and ranking for the X-axis data.

DASHBOARD DESIGN

1350 of 2477

Tip: You can drag a
measure field from
the Data Source panel
directly onto the
Viewsheet grid to cre-
ate a Range Slider
component that filters
the chart data.

4. From the Data Source panel, drag a measure onto the ‘Y’ field in
the Data panel.

This measure provides the Chart’s Y-axis data, and the measure
name is automatically used as the axis label.

5. Click the ‘Edit Measure’ button, and select the desired aggregation
method for the Y-axis data.

6. For a line-type chart or map-type chart (see Setting the Chart Style),
optionally drag a field to the ‘P’ region. The values in this path
field are used to assign the sort order for the plotted data.
Connecting lines are drawn between points which are adjacent in
the path sort order, rather than between points which are adjacent
on the axis.

See the following sections for information about changing other aspects of
the chart, including visual properties, labeling, and sub-series.

See Also
Creating a Map Chart, for information on how to create a map chart.
Editing a Dimension, for more information on ranking and ordering.
Editing Chart Formats, for information on changing chart labels.
Adding a Sub-Series, for information on using the Visual panel.
Creating Selection List from Chart Data Source, for information on adding
a Selection List.
Creating a Selection Tree from Chart Data Source, for information on
adding a Selection Tree.
Positioning a Component, for information on moving and resizing a chart.

DASHBOARD DESIGN

1351 of 2477

Editing an Existing Chart

To edit an existing chart, click the ‘Edit’ button in the top-right corner of
the Chart. This opens the chart editor on the left side of the Visual
Composer.

Note: If Ad Hoc editing is enabled, end-users can also access the
Chart Editor to modify the chart.

A green outline designates the chart that is currently active in the editor.

Exiting the Chart Editor

To exit the Chart Editor, do one of the following:

• Click the Chart’s ‘Edit’ button a second time.

• Right-click the Chart and select ‘Exit Editing’ from the context menu.

• Click the ‘Exit Editing’ button at the top of the Chart Editor.

See Also
Chart Properties: Advanced Tab, for information on enabling Ad Hoc
editing.

Setting the Chart Style

To set the style of the chart (for all datasets on the chart), follow the steps
below:

Note: The ‘Auto’
chart type automati-
cally selects an appro-
priate chart type for
the provided data.

1. In the Data panel of the Chart Editor, click the ‘Select Chart Type’
button.

DASHBOARD DESIGN

1352 of 2477

2. Click a chart type to select it, and then click the ‘Apply’ button.
(You can also double-click the desired chart type.)

To apply distinct styles to the different datasets on the chart, see Setting a
Chart Style for an Individual Dataset.

Chart Examples

The following sections provide examples of how to create charts in
different styles.

Creating a Pie Chart

This example illustrates how to create a pie chart. Follow the steps below to
create a pie chart that displays Total Sales according to Year.

1. Create a new Viewsheet based on the ‘Tutorial’ > ‘ProductSales’
Worksheet.

2. Drag a Chart component from the Component Tree to the
Viewsheet, and click the center of the Chart to open the Chart
Editor.

3. In the Chart Editor, drag the ‘Total’ field from the Data Source
panel to the ‘Y’ region of the Data panel.

4. In the Chart Editor, drag the ‘Date’ field from the Data Source
panel to the ‘Color’ region of the Visual panel.

5. Click the ‘Select Chart Type’ button in the Data panel, and choose
‘Pie’. This converts the chart into a pie-chart representation.

DASHBOARD DESIGN

1353 of 2477

6. Add the respective year values to the pie slices: Drag the ‘Date’
field from the Data Source panel to the ‘Text’ region of the Visual
panel.

7. Remove the legend (if desired). Right-click on the legend, and
select ‘Hide Legend’ from the context menu.

The pie chart is now complete. To place a small gap between the slices, set
the ‘Explode Pie’ plot property. See Editing Plot Properties for more
information.

¢

Creating a Candle Chart

A candle chart displays four different measures, “low,” “high,” “opening,”
and “closing,” and is most often used to plot trading information. A candle
chart is functionally similar to a stock chart.

DASHBOARD DESIGN

1354 of 2477

To create a candle chart that displays the averaged high, low, opening, and
closing prices by quarter, follow the steps below:

1. Create a new Viewsheet based on the ‘Stock History’ > ‘Stock
Prices’ query.

2. Add a new Chart component to the Viewsheet, and open the Chart
Editor.

3. Drag the ‘Date’ field from the ‘Stock Prices’ data block to the ‘X’
region of the Data panel.

4. Press the ‘Edit Dimension’ button next to the ‘Date’ field, and
choose ‘Quarter’ from the ‘Level’ menu. Then press the green
‘Apply’ button.

5. Drag the ‘High’ field of the ‘Stock Prices’ query to the ‘Y’ region
of the Data panel.

6. Press the ‘Select Chart Style’ button in the Data panel, and select
the ‘Candle’ style. Press the green ‘Apply’ button.

Note that the Data panel now provides binding regions for ‘High’,
‘Close’, ‘Open’, and ‘Low’.

DASHBOARD DESIGN

1355 of 2477

7. Drag the ‘Close/Last’, ‘Open’, and ‘Low’ measures from the
‘Stock Prices’ data block to the appropriate regions of the Data
panel, as shown below.

8. Press the ‘Edit Measure’ button next to the ‘High’ field, and choose
‘Average’ from the ‘Aggregate’ menu. Then press the green
‘Apply’ button.

9. Repeat the above step to set the aggregate to ‘Average’ for the other
measures: ‘Close/Last’, ‘Open’, and ‘Low’.

10. Preview the chart.

DASHBOARD DESIGN

1356 of 2477

11. To observe the structure of the chart more closely, use the Zoom
tool to view a more limited date range.

Note that for each quarter, the values of each of the measures (High, Low,
Close/Last, Open) have been independently averaged. The “high” and
“low” measures are represented by the extremes of the candle “wick,” and
the “open” and “close” measures are represented by the extremes of the
candle “body.” Candles for which the “open” measure exceeds the value of
the “close” measure are shown filled. Candles for which the “close”
measure exceeds the value of the “open” measure are shown unfilled.

¢

See Also
Setting a Chart Style for an Individual Dataset, to set dataset-specific
styles.

DASHBOARD DESIGN

1357 of 2477

Creating a Table-Chart Hybrid

This example illustrates how to create a chart that has features of a table, in
particular, a columnar display of data. Follow the steps below:

1. Create a new Viewsheet based on the ‘Sales’ > ‘Sales Explore’
Worksheet.

2. Drag a Chart from the Component panel into the Viewsheet grid,
and resize the Chart to be wider and taller.

3. Click the ‘Edit’ button on the Chart to open the Chart Editor.

4. In the Chart Editor, drag the ‘Total’ field from the ‘Measures’
folder in the Data Source panel to the ‘X’ region of the Data
panel.

5. Drag the ‘Category’ field from the ‘Dimensions’ folder of the Data
Source panel to the ‘Y’ region of the Data panel.

6. Drag the ‘Quantity Purchase’ field from the ‘Measurers’ folder in
the Data Source panel to the ‘Y’ region of the Data panel (under
‘Category’).

7. Press the ‘Edit Measure’ button next to ‘Quantity Purchased’. Set
the ‘Aggregate’ property to ‘Sum’ and enable the ‘Discrete’ option.
This allows the measure to behave as a dimension.

8. Press the green ‘Apply’ button.

DASHBOARD DESIGN

1358 of 2477

Observe that the chart now displays a column of values giving the
aggregated ‘Quantity Purchased’ value for each ‘Category’ group.

9. Drag the ‘Discount’ field from the ‘Measures’ folder in the Data
Source panel to the ‘Y’ region of the Data panel (under ‘Quantity
Purchased’).

10. Press the ‘Edit Measure’ button next to ‘Discount’. Set the
‘Aggregate’ property to ‘Average’ and enable the ‘Discrete’ option.
This again allows the measure to behave as a dimension

11. Press the green ‘Apply’ button.

Observe that the chart now displays a column of values giving the
aggregated ‘Discount’ value for each ‘Category’ group.

12. Right-click in the plot area and select ‘Plot Properties’ from the
context menu. This opens the ‘Plot Properties’ dialog box.

13. Enable the ‘Show Table Grid’ option, and press ‘OK’. This
displays grid lines around the plot area, and around each text
column.

DASHBOARD DESIGN

1359 of 2477

14. Adjust the spacing between the columns by dragging on the
boundaries between columns.

15. Click on each column of text in turn and set the desired formatting.
(You can do this by using the toolbar buttons or by using the
‘Format’ dialog box. See Format Dialog Box for more
information.)

For example, set a number format for the ‘Quantity Purchased’ col-
umn and set a percent format for the ‘Discount’ column. Center-
align both of these columns, and left-align the ‘Category’ column.

16. Right-click the X-axis title, and select ‘Hide Title’ from the context
menu. Do the same for the Y-axis title.

DASHBOARD DESIGN

1360 of 2477

17. Resize the chart as desired. Add text elements above the chart to
provide any desired column headers.

Creating a Dot Plot

A dot plot represents a measure by its individual data points (without
aggregation). This type of chart can be useful when the dataset is very
small, with fewer than approximately 20 data points for each dimension
value.

Note: If the dataset contains too many records, the chart will not
be able to display all of the data points.

In this example, you will create a dot plot that displays the companies in
each state. Follow the steps below:

1. Create a new Viewsheet based on the ‘customers’ query (under
‘Data Source’ > ‘Orders’).

2. Drag a Chart from the Component panel into the Viewsheet grid.
Press the ‘Edit’ button on the Chart to open the Chart Editor.

3. In the Chart Editor, drag the ‘state’ field from the ‘Dimensions’
folder in the Data Source panel to the ‘X’ region of the Data
panel.

4. Drag the ‘customer_id’ field from the ‘Measures’ folder of the
Data Source panel to the ‘Break By’ region of the Data panel.

DASHBOARD DESIGN

1361 of 2477

Alternatively, you can drag the ‘customer_id’ field to the ‘Color’,
‘Shape’, or ‘Size’ regions of the Visual panel if you wish to distin-
guish the data points using a visual format.

5. Press the ‘Select Chart Style’ button in the Data panel. Select the
‘Point’ type chart, and enable the ‘Stack’ option. Press the green
‘Apply’ button.

6. Press the ‘Edit Measure’ button next to ‘customer_id’. Set the
‘Aggregate’ property to ‘None’, and press the green ‘Apply’
button.

You have now created a basic dot plot.

DASHBOARD DESIGN

1362 of 2477

7. (Optional) Right-click on the Y-axis title and select ‘Hide Title’
from the context menu.

8. (Optional) Drag the ‘company_name’ field from the ‘Dimensions’
folder of the Data Source panel to the ‘Break By’ region of the
Data panel. Place it under the existing ‘customer_id’ field.

This allows the chart tooltip to display both the ‘customer_id’ and
‘company_name’ values.

To further customize the tooltip, see Custom Tooltip.

4.4.2 Editing a Dimension

The Chart Editor automatically categorizes non-numerical fields of a Data
Block as “dimensions,” unless otherwise specified. Typically, dimensions
are represented on the X-axis or expressed as a subseries (i.e., ‘Visual’
binding). Dimensions can also be used in the ‘Break By (Dimension) /
Tooltip (Measure)’ field of the Data panel.

To edit the representation of a dimension, click the ‘Edit Dimension’ button
in the Data panel. This opens the options panel.

DASHBOARD DESIGN

1363 of 2477

Note: A measure must
be defined in order to
rank or sort by value.

The following settings are available. Note that a field of type Date has
additional grouping level options.

The image below illustrates the effect of enabling the ‘As time series’
option.

See Also
Sorting a Chart Dimension by Value, for a quick way to sort chart groups
by value.

Sort Change the ordering of the X-axis labels:
None: Use the label order as defined within the data block or cube.
Ascending: Place the labels in alphabetically ascending order.
Descending: Place the labels alphabetically descending order.
By Value(Asc): Place the labels in ascending order based on the
selected measure.
By Value(Desc): Place the labels in descending order based on the
selected measure.
Manual: Click the ‘Edit’ button to open the ‘Manual Ordering’
dialog box, and manually reorder the X-axis labels.

Ranking Filter the axis labels by aggregate measure value.
None: No ranking of X-axis labels.
Top: Select the top N X-axis labels based on the selected measure.
Bottom: Select the bottom N X-axis labels based on the selected
measure.

Group all
others
together

For Top/Bottom-N ranking, creates an “Others” category which
represents (in aggregate) all the groups excluded by the Top/
Bottom-N filter.

Level Set the grouping level for dates. Note the distinction between
options such as ‘Month’ and ‘Month of Year’: The ‘Month’ option
groups each date according to composite month and year, e.g.,
Jan’07, Feb’07, ..., Dec’07, Jan’08, Feb’08, ..., Dec’08. The ‘Month
of Year’ option groups each date strictly on the month component,
e.g., Jan, Feb, ..., Dec, so that each group may include data from
multiple years. Likewise, for the other ‘of Year/of Month/of Week/
of Day’ options.

As time
series

Specifies that gaps in Date data should be retained. For example, if
the data in the chart is grouped by month, and there is no data for the
month of June, the ‘As time series’ property ensures that the month
of June is still retained in the chart. To change the way that the gap
is displayed, see Editing Plot Properties.

DASHBOARD DESIGN

1364 of 2477

4.4.3 Editing a Measure

The Chart Editor automatically categorizes numerical fields of a Data
Block as “measures.” Typically, measures are represented on the Y-axis or
expressed using one of the ‘Visual’ bindings. Measures can also be used in
the ‘Break By (Dimension) / Tooltip (Measure)’ field of the Data panel.

To edit the representation of a measure, click the ‘Edit Measure’ button in
the Data panel. This allows you to change the method of aggregation and
calculation.

The following settings are available:

Calculating a Measure Representation

There are many different ways to represent an aggregated measure on a
chart. For example, you can represent the aggregated measure (for an X-
axis group or subseries group) in terms of its percentage of a total, or by its
difference from a preceding group, or by a moving average based on
adjacent groups, etc.

To use one of these representations, set the appropriate calculation method.
Follow the steps below:

1. Click the ‘Edit Measure’ button next to a measure (either in the
Data panel or Visual panel). This opens a pop-up panel.

Aggregate The method by which measure data should be aggregated. See
Aggregation Options for a description of the methods.

With For bivariate aggregations (such as ‘Covariance’ and ‘Correlation’),
this specifies the second operand.

Calculate The computation that determines how values are represented on the
chart (i.e., moving average, percentage, difference, etc.). See
Calculating a Measure Representation.

DASHBOARD DESIGN

1365 of 2477

Select ‘None’
(default) to use the
raw aggregate. Select
‘Custom’ to create a
new calculation
method.

2. Select one of the calculation methods from the ‘Calculate’ menu in
the pop-up panel.

3. Click the ‘Edit’ button. This opens the ‘Calculation’ dialog box,
which allows you to modify the properties of the calculation
method. To do this, follow the steps below:

a. From the ‘Calculate’ menu, select a type of calculation:
‘Percent’, ‘Change’, ‘Running’, or ‘Sliding’.

b. Select any additional options to fully specify the calculation
method. (The options vary for the different methods. See
Calculation Methods for more detail.)

c. Click ‘OK’ to close the dialog box. This adds the new method to
the ‘Calculate’ menu.

4. Click the green ‘Apply’ button.

The aggregated measure will now be displayed on the chart using the
particular representation that you have specified.

DASHBOARD DESIGN

1366 of 2477

See Also
Calculation Methods, for details on configuring the various methods.
Charts, for step-by-step instructions on creating a chart.

Calculation Methods

There are three basic types of calculations: ‘Percent’, ‘Change’, ‘Running’,
and ‘Sliding’. These methods are described in greater detail below.

Percent Calculation

The ‘Percent’ calculation allows you to express the measure based on
‘Grand Total’, ‘Subtotal’, or a particular dimensional group.

• Dimension: Expresses the value of the aggregated measure for each
group as a percentage of the measure aggregated across the selected
dimension.

• Grand Total: Expresses the value of the aggregated measure for each
group as a percentage of the measure aggregated across all groups.

• Subtotal: For a facet-type chart (i.e., a chart with both a measure and
dimension on the same axis or with multiple dimensions on the same axis), this
expresses the value of the aggregated measure for each group as a
percentage of the measure aggregated across all groups on the same sub-
chart.

Example:
Percent
Calculation

In this example, you will create a chart that displays the quantity of
products sold for different categories, regions, and states. You will display

DASHBOARD DESIGN

1367 of 2477

the aggregated measure for each subgroup as a percentage of the total
aggregate for the category. Follow the steps below:

1. Create a new Viewsheet based on the sample ‘Sales Explore’
Worksheet in the ‘Sales’ folder.

2. Drag a Chart component onto the Viewsheet grid.

3. Click the center of the Chart (or click the ‘Edit’ button at the top-
right). This opens the Chart Editor.

4. In the Chart Editor, make the following selections:

a. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Category’ dimension to the ‘X’ field in the Data panel.

b. From the ‘Measures’ node in the Data Source panel, drag the
‘Quantity Purchased’ measure to the ‘Y’ field in the Data panel.

c. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Region’ dimension to the ‘Y’ field in the Data panel, and drop
it above the ‘Quantity Purchased’ measure. (This creates a facet
chart containing multiple sub-graphs.)

d. From the ‘Dimensions’ node in the Data Source panel, drag the
‘State’ dimension to the ‘Color’ field in the Visual panel. This
creates a subseries based on the ‘State’ field.

5. Drag the Chart handles to enlarge the Chart as desired.

6. From the ‘Dimensions’ node in the ‘Data Source’ tree, drag the
‘State’ dimension onto the Viewsheet grid. This creates a ‘State’
Selection List.

7. Select the following states in the ‘State’ selection list: ‘AZ’, ‘CA’,
‘NJ’, ‘NY’.

DASHBOARD DESIGN

1368 of 2477

8. Right-click the plot area of the chart, and select ‘Plot Properties’
from the context menu. This opens the ‘Plot Properties’ dialog box.

9. Enable the ‘Show Values’ option, and click ‘OK’.

This displays the aggregated measure value for each group on the
chart.

10. In the Data panel of the Chart Editor, click the ‘Edit Measure’
button next to the ‘Quantity Purchased’ measure. This opens a pop-
up panel.

11. In the ‘Calculate’ menu of the pop-up panel, select the ‘Custom’
option.

DASHBOARD DESIGN

1369 of 2477

12. Click the ‘Edit’ button to open the ‘Chart Calculation’ dialog box.

13. In the ‘Chart Calculation’ dialog box, select ‘Percent’ from the
‘Calculate’ menu.

14. Select ‘Category’ from the ‘Of’ menu, and click ‘OK’ to close the
dialog box.

15. Click the green ‘Apply’ button in the pop-up panel to apply the
change.

The aggregated measure for each group is now represented as its
percentage of the total aggregate for the corresponding category.

DASHBOARD DESIGN

1370 of 2477

Experiment with the other available representations for the group
aggregates:

• Grand Total: The aggregated measure for each group is represented as
its percentage with respect to the entirety of chart data.

• Subtotal: The aggregated measure for each group is represented as its
percentage with respect to the entirety of data on the same sub-graph
(i.e., the region, ‘USA East’ or ‘USA West’).

• Region: The aggregated measure for each group is represented as its
percentage with respect to its entire region (same as ‘Subtotal’ for this
example).

• State: The aggregated measure for each group is represented as its
percentage with respect to its entire state.

¢

Change Calculation

The ‘Change’ calculation allows you to express the group aggregate in
terms of its deviation (or percent deviation, if ‘As percent’ is selected) from
the preceding, succeeding, first, or last group in the series. The ‘From’
menu specifies the baseline value.

• First: Expresses the value of the aggregated measure for each group as a
difference from the corresponding first value for the parent group
selected in the ‘Value of’ menu.

• Previous: Expresses the value of the aggregated measure for each group
as a difference from the corresponding previous value for the parent
group selected in the ‘Value of’ menu.

• Next: Expresses the value of the aggregated measure for each group as a
difference from the corresponding next value for the parent group
selected in the ‘Value of’ menu.

• Last: Expresses the value of the aggregated measure for each group as a
difference from the corresponding last value for the parent group
selected in the ‘Value of’ menu.

DASHBOARD DESIGN

1371 of 2477

Running Calculation

The ‘Running’ calculation allows you to express each group aggregate as
an accumulation of previous aggregate values in the series. The method of
accumulation is specified by the ‘Aggregate’ menu in the ‘Calculation’
dialog box. (See Aggregation Options for more about the different
methods.)

The ‘Reset at’ option, available for date fields, allows you to specify the
date interval (e.g., year, quarter, week, etc.) at which the accumulation
should be cleared.

Example:
Running Average

In this example, you will create a chart that computes total quantities sold
by month, and displays these values as a running average. The running
average will be reset on a yearly basis. Follow the steps below:

1. Create a new Viewsheet based on the sample ‘Sales Explore’
Worksheet in the ‘Sales’ folder.

2. Drag a Chart component onto the Viewsheet grid, and enlarge the
Chart as desired by dragging the handles.

3. Click the center of the Chart (or click the ‘Edit’ button at the top-
right). This opens the Chart Editor.

4. In the Chart Editor, from the ‘Dimensions’ node in the Data
Source panel, drag the ‘Date’ dimension to the ‘X’ field in the
Data panel.

5. From the ‘Measures’ node in the Data Source panel, drag the
‘Quantity Purchased’ measure to the ‘Y’ field in the Data panel.

6. In the Data panel of the Chart Editor, click the ‘Edit Dimension’
button next to the ‘Date’ measure. This opens a pop-up panel.

7. From the ‘Level’ menu select ‘Month’, and click the green ‘Apply’
button. This groups the date data (i.e., X-axis labels) by month.

DASHBOARD DESIGN

1372 of 2477

8. In the Data panel of the Chart Editor, click the ‘Edit Measure’
button next to the ‘Quantity Purchased’ measure. This opens a pop-
up panel.

Note: Leave the
‘Aggregate’ option in
the pop-up panel set
to the default ‘Sum’.

9. In the ‘Calculate’ menu of the pop-up panel, select the ‘Custom’
option.

10. Click the ‘Edit’ button to open the ‘Chart Calculation’ dialog box.
Make the following settings:

a. From the ‘Calculate’ menu, select ‘Running’.

b. From the ‘Aggregate’ menu, select ‘Average’.

c. From the ‘Reset at’ menu, select ‘Year’.

d. Click ‘OK’ to close the dialog box.

11. Click the green ‘Apply’ button in the pop-up panel to apply the
change.

DASHBOARD DESIGN

1373 of 2477

The time series now shows a running average for the summed
quantity purchase, re-initialized at each new year.

¢

See Also
Sliding Calculation, to accumulate values over a limited sliding range.

Sliding Calculation

The ‘Sliding’ calculation allows you to express each group’s value as an
accumulation of neighboring aggregate values in the series, specified by a
rectangular sliding window. This generally has the effect of smoothing
(low-pass filtering) the displayed data.

The method of accumulation is specified by the ‘Aggregate’ menu in the
‘Calculation’ dialog box. (See Aggregation Options for more information
about the different methods.) The ‘Previous’ and ‘Next’ values specify the
span of the sliding window as the number of preceding and succeeding
groups, respectively, to include in the calculation. All included groups have
equal weight in the calculation.

The ‘Include current value’ options incorporates each group’s aggregate
value into its own calculation. When this option is not enabled, the
calculation for a group uses only its neighboring groups’ values. For
example, assume the chart displays sales totals for March, April, May,
June, and July, and the sliding window is 3 units wide (‘Previous’=1 and

DASHBOARD DESIGN

1374 of 2477

‘Next’ =1). If ‘Include current value’ is enabled, the displayed value for
May is aggregated from three months’ data, April, May, and June.
However, if ‘Include current value’ is not enabled, the displayed value for
May is aggregated from two months’ data, April and June.

The ‘Null if not enough values’ option suppresses chart points for which
the sliding window does not obtain the required span. For example, assume
the chart displays sales totals for March, April, May, June, July, August,
and September, and that the sliding window is 5 units wide (‘Previous’=2
and ‘Next’ =2). If ‘Null if not enough values’ is enabled, then no points are
displayed on the chart for the months of March and April because the
calculation cannot be performed for these groups as specified (there is no
data available preceding March.) However, if ‘Include current value’ is not
enabled, the aggregates for March and April will be computed and
displayed using the data available within the sliding window.

See Also
Running Calculation, to accumulate values from the start of the series.

Setting a Geographical Field

To set a field as a geographical field (for use with Map Charts), follow the
steps below:

1. Right-click the field in the tree, and select ‘Set Geographic’ from
the context menu. This places a “star” icon next to the field name,
and opens the geographical level editor.

The map that you
select for a geo-
graphic field applies
to all other geographi-
cal fields.

2. In the level editor, select the desired region from the ‘Map’ menu:
Asia, Canada, Europe, Mexico, U.S., or World.

3. From the ‘Layer’ menu, select the geographical layer that
corresponds to the data in the selected field.

This specifies the layer of the geographical database against which
field values should be matched (e.g., city names should be matched
against the city layer, etc.). The options available in the ‘Layer’
menu depend on the previously selected ‘Map’ option.

DASHBOARD DESIGN

1375 of 2477

4. From the ‘Mapping’ menu, select the desired map database.

The Chart Editor attempts to resolve values in the selected geo-
graphic field against the corresponding layer in the map database.
If all data values are successfully matched, a green check mark is
displayed. If some data values cannot be matched, a red question
mark is displayed.

5. To resolve any unmatched names, click the red question mark. This
opens the ‘Geographical Mapping’ dialog box. See Resolving
Geographical Data for further instructions.

6. Click the ‘Apply’ button.

To modify the settings for an existing geographical field, right click the
field, and select ‘Edit Geographic’ from the context menu. This opens the
geographical level editor described above.

To remove the geographical status of a field, right click the field, and select
‘Clear Geographic’ from the context menu.

See Also
Resolving Geographical Data, for information on specifying a new
mapping.
Map Charts, for information about representing geographical data on a
map.

Converting between Measure and Dimension

By default, dimensions are displayed as discrete values, whereas measures
are aggregated and displayed as a continuous range.

To convert a dimension to a measure, right-click the dimension in the tree,
and select ‘Convert to Measure’ from the context menu. The new measure
is automatically moved to the correct branch of the tree.

DASHBOARD DESIGN

1376 of 2477

To convert a measure to a dimension, right-click the measure in the tree,
and select ‘Convert to Dimension’ from the context menu.The new
dimension is automatically moved to the correct branch of the tree.

To specify that a particular measure be displayed using discrete values
(rather than a continuous spectrum), see Displaying a Measure as Discrete
Values.

Displaying a Measure as Discrete Values

By default, dimensions are displayed as discrete values, and measures are
displayed as a continuous range.

To force a measure to display as discrete values, follow the steps below:

1. Press the ‘Edit Measure’ button next to the measure name. This
opens the ‘Edit Measure’ panel.

2. Enable the ‘Discrete’ option, and press the green ‘Apply’ button.

The measure will now display as discrete values rather than as a continuous
spectrum.

DASHBOARD DESIGN

1377 of 2477

To convert a measure to a dimension, see Converting between Measure and
Dimension.

4.4.4 Editing Chart Formats

You can alter almost every aspect of a chart’s display. The following
sections explain how to modify titles, axes, legends, and the plot area.

See Also
Chart Properties, for information about global chart properties.

Editing an Axis Title

Viewsheet Charts do
not posses a “chart
title.” To add a chart
title, use a text com-
ponent.

To edit the text and rotation of an axis title, follow the steps below:

1. Right-click the title text on the Chart, and select ‘Title Properties’
from the context menu. This opens the ‘Title Properties’ dialog
box.

2. In the ‘Title’ field, enter the title for the axis. (The title text you
enter will persist even if you later change the axis data.)

To add the default axis name into your custom title, insert a place-
holder such as {0} in the title. For example, if the chart displays
two measures on the y-axis, ‘Total’ and ‘Quantity’, you can enter a
custom title such as “{0} and {1} for all Employees” to display the
following y-axis title: “Sum(Total) and Sum(Quantity) for all
Employees”.

3. Press ‘OK’ to close the dialog box and apply the changes.

To change the formatting of an axis title, follow the steps below:

1. Right-click the title text on the Chart, and select ‘Format’ from the
context menu. This opens the ‘Title Properties’ dialog box.

DASHBOARD DESIGN

1378 of 2477

2. Select a font, color, alignment, etc., for the axis title. See Format
Dialog Box for more information about the options.

3. Click ‘OK’ to close the dialog box and apply the changes.

Editing a Chart Axis

To edit the labels and line format of an axis, right-click the axis or axis
label, and select ‘Axis Property’ from the context menu. This opens the
‘Axis Properties’ dialog box.

Note: To hide axis line and labels, right-click the axis and choose
‘Hide Axis’ from the context menu. To reveal a hidden axis, right-
click the chart and select ‘Show All Axes’ from the context menu.

The Label tab of the ‘Axis Properties’ dialog box offers the following
options:

Show Axis Labels Display text labels on the axis.
Rotation The angle of the label text.

DASHBOARD DESIGN

1379 of 2477

The Line tab of the ‘Axis Properties’ dialog box offers the following
options:.

Logarithmic
Scale

Set logarithmic scaling for the axis. (The logarithm base
is selected automatically.)

Reverse Orient the axis with maximum at bottom, minimum at
top.

Shared Range For a facet-type chart (i.e., a chart with both a measure
and dimension on the same axis or with multiple
dimensions on the same axis), this specifies that sub-
charts in the same column share the same X-axis scaling,
and sub-charts in the same row share the same Y-axis
scaling. Otherwise, sub-charts are individually scaled.

Ignore Null For Date/Time and Categorical axes, ‘Ignore Null’
suppresses the display of null dimension values. When
‘Ignore Null’ is disabled, null values are represented
without labels.

Truncate Long
Labels

When enabled, truncates labels that exceed 1/3 of the
total chart width or height (using ellipses to indicate
omitted text). When disabled, truncates labels only if
they exceed 2/3 of the total chart width or height.

Show Axis Line Display the axis line, in the specified color.
Show Ticks Display tick marks on the axis line.
Axis Line & Tick
Color

Color of the axis line and tick markers.

Minimum Lowest value shown on axis
Maximum Highest value shown on axis
Minor Increment The interval between axis tick marks
Major Increment The interval between axis labels. For a date/time field

which is represented as a time-series (e.g., when ‘As
time series’ is selected in the ‘Edit Dimension’ panel),
the increment is specified in terms of the prevailing time
unit (weeks, months, etc.)

DASHBOARD DESIGN

1380 of 2477

The Alias tab is avail-
able for dimension
(categorical) axes.

The Alias tab of the ‘Axis Properties’ dialog box allows you to change the
labels displayed on the axis. To modify the labels of a categorical axis,
follow the steps below.

1. Right-click the axis, and select ‘Axis Properties’. This opens the
‘Axis Properties’ dialog box.

2. Click the Alias tab. This displays a table containing the mapping
between original axis labels and new axis labels.

3. Double-click the cells in the ‘Alias’ column that correspond to the
axis labels that you wish to rename, and enter the desired
replacement text.

4. Click ‘OK’ to close the dialog box. This updates the axis labels
with the specified replacement text.

See Also
Editing a Chart Legend, for information about modifying legend labels.

Editing a Chart Legend

To edit a legend, right-click the legend, and select ‘Legend Properties’ from
the context menu. This opens the ‘Legend Properties’ dialog box.

DASHBOARD DESIGN

1381 of 2477

Note: To hide a legend, right-click the legend and choose ‘Hide
Legend’ from the context menu. To show all legends, right-click the
chart and select ‘Show Legend’ from the context menu.

The General tab of the ‘Legend Properties’ dialog box offers the following
options:

The Content tab of the ‘Legend Properties’ dialog box offers the following
options:

The Scale tab is avail-
able for measure
(numerical) legends.

The Scale tab of the ‘Legend Properties’ dialog box offers the following
two options:

The Alias tab is avail-
able for dimension
(categorical) legends.

The Alias tab of the ‘Legend Properties’ dialog box allows you to change
the labels displayed in the legend. To modify the labels of a legend, follow
the steps below.

1. Right-click the legend, and select ‘Legend Properties’. This opens
the ‘Legend Properties’ dialog box.

Title The text to display in the legend title bar.
Legend Border The line style and color of the legend boundary.
Legend Position Sets the position of the legend on the plot. Legend position

can also be changed by dragging with the mouse.

Font The font and color of the legend content text.
Format The format of the legend contents. For information about the

available format specifications, see the Format Tab section.

Logarithmic Scale Set logarithmic scaling for the legend scale. (The logarithm
base is selected automatically.)

Reverse Orient the scale with maximum at left, minimum at right.

DASHBOARD DESIGN

1382 of 2477

2. Click the Alias tab. This displays a table containing the mapping
between original legend labels and new legend labels.

3. Double-click the cells in the ‘Alias’ column that correspond to the
legend labels that you wish to rename, and enter the desired
replacement text.

4. Click ‘OK’ to close the dialog box. This updates the legend labels
with the specified replacement text.

See Also
Adding a Sub-Series, for information about adding a sub-series and legend.

Positioning a Chart Legend

To change the position of a chart legend, click the legend title and drag it to
the desired location. You can place the legend at the left, right, top, or
bottom.

DASHBOARD DESIGN

1383 of 2477

You can also change the legend position from the General tab of the
‘Legend Properties’ dialog box. See Editing a Chart Legend for more
information.

See Also
Adding a Sub-Series, for information about adding a sub-series and legend.

Editing Plot Properties

To edit plot properties, right-click body of the chart, and select ‘Plot
Property’ from the context menu. This opens the ‘Plot Properties’ dialog
box, which contains two tabs: Line and Options.

The following properties are found under the Line tab of the ‘Plot
Properties’ dialog box. (The properties shown depend on the chart style.)

X Grid The line style and color of the X-axis grid.
Y Grid The line style and color of the Y-axis grid.
Quadrant Grid The style and color for a set of perpendicular line segments which

divide the plot area into quadrants.
Diagonal Line The style and color for a line segment which originates at the

lower-left corner of the plot area and terminates at the upper-right
corner of the plot area.

Show Table
Grid

For a facet-type chart (i.e., a chart with both a measure and
dimension on the same axis or with multiple dimensions on the
same axis), displays a solid line around the entire plot area
and displays a solid axis line to separate the dimension
and measure axis labels. Use the adjacent color chip to
select the color for the line surrounding the plot area. To
set the color of the axis separator line, right click on the
line and select ‘Axis Properties’ from the context menu.
See Editing a Chart Axis for details about setting the axis
color.

DASHBOARD DESIGN

1384 of 2477

The following properties are found under the Options tab of the ‘Plot
Properties’ dialog box. (The properties shown depend on the chart style.)

Trend Line Specifies whether an interpolated trend line is displayed, and the
method by which the trend line should be fit to the data (linear,
quadratic, etc.). The menu and color chip below the ‘Trend Line’
menu specify the trend line style and color. If there is a dimension
associated with the chart’s ‘Color’ binding, select the ‘One Per
Color’ option to create an independent trend line for each color
group. (The trend line colors are matched to the corresponding
data colors unless you explicitly specify a trend line color. In that
case, all trend lines share the same color.)

Show
Reference
Line

Displays horizontal and vertical reference lines when the user
moves the mouse over a data point.

Explode Pie Displays a pie chart with small gaps between the slices.
Alpha Sets transparency for the chart elements. If disabled, the default

transparency for the particular chart type is used.
Show Values Displays the aggregate measure values on the chart. If the chart

also possesses a ‘Text’ binding, then the values displayed by
‘Show Values’ and those displayed by the ‘Text’ binding appear
on different lines. Use a ‘Text’ format to individually format the
values. For example, if the top value represents a date and the
bottom value represents a number, you can apply the following
text format: “Date: {0,date,yyyy}\nAmount: {1,number,$#}”.
(Note: By default, measure values are also displayed as a tooltip
when the user hovers the mouse over the chart. Tooltips are
visible when the Viewsheet is previewed or viewed in the Portal.)

Stack Value Displays a single aggregate value for each primary (X-axis)
grouping, rather than for each individual subseries grouping.

Show Points For a Line-type chart, adds markers at the locations of the
individual data points.

Show Lines Displays line segments connecting the points on the chart. To
display a fitted line, use the ‘Trend Line’ option instead.

DASHBOARD DESIGN

1385 of 2477

See Also
Editing Chart Formats, for information about editing axis data.
Setting the Chart Style, for information on switching chart styles.
Changing the Chart View, for information about editing axis data.
Color Tab, for information on setting component fill and transparency.
Chart Properties, for general properties of the Chart component.

4.4.5 Changing the Chart View

The following sections explain how to zoom in on a particular region of the
chart, and how to explore the data underlying the chart.

Fill Time-
Series Gaps

When the ‘As time series’ option is set for a dimension (see
Editing a Dimension), the ‘Fill Time-Series Gaps’ option
specifies how missing data should be represented on the chart.
When the option is disabled, plotted lines simply ignore the
missing data and connect adjacent points. When the option is
enabled, you can choose to represent gaps with either ‘Null’,
which leaves an empty space at the location, or with ‘Zero’,
which inserts a numerical value of 0 at the location.

Keep Element
in Plot

Automatically extend the chart boundaries to display chart
elements (including target lines) that exceed the specified axis
maximum.

Always Show
Color in Map

When a column is bound to the ‘Color’ field of the Visual panel
in the Chart Editor, this setting ensures that the color is always
used to fill the map regions. Otherwise, if another column is
simultaneously bound to the ‘Shape’, ‘Size’, or ‘Text’ fields of
the Visual panel, the color generated for the ‘Color’ binding will
be applied to the plotted points rather than to the map regions.

Banding Adds alternating colored bands to a specified categorical or
timescale axis. Select the desired band color from the color
picker. The band ‘Size’ setting is an integer indicating the
number of category groups (for a categorical axis) or the
number of date groups (for a timescale axis) to be
spanned by each band.

DASHBOARD DESIGN

1386 of 2477

Selecting Chart Data

You can select contiguous or non-contiguous data in a chart. There are
several ways to select data:

• Drag the mouse across the data you wish to select. Ctrl-drag to add
additional regions to the selection.

• Ctrl-click the data you wish to select.

• Ctrl-click the X-axis labels to select the corresponding data.

• Ctrl-click the legend labels to select the corresponding data (subseries).

See Also
Zooming a Chart, for information on zooming in on selected chart data.
Showing Detail Data, for information on viewing records of selected data.
Brushing a Chart, for information about highlighting selected data across
charts.

Zooming a Chart

To zoom in on a particular region of the chart, follow the steps below:

1. Select the group(s) on the chart that you wish to zoom. (See
Selecting Chart Data.)

2. Click the ‘Zoom’ button in the toolbar. This zooms the chart to
display only the data selected.

3. Repeat the above steps to zoom in further.

4. To return to the original chart view, press the ‘Clear Zoom’ button.

DASHBOARD DESIGN

1387 of 2477

Example:
Zooming a Chart

The figures below shows a variety of different selections, and the zoomed
results.

Figure 4. Zooming on Subseries Categories (Legend Labels)

Figure 5. Zooming on X-axis Categories (Labels)

Figure 6. Zooming on Arbitrary Categories

¢

See Also
Excluding Data From a Chart, to create a zoomed view by excluding
groups.
Selecting Chart Data, for information on methods of selecting chart data.
Filter Conditions, for information on filtering chart data
Adding Highlights to a Chart, for information on conditional formatting.
Brushing a Chart, for information on highlighting data across multiple
views.

Excluding Data From a Chart

The Zoom feature (Zooming a Chart) allows you focus in on a selected set
of groups by specifying the groups to include in the zoomed view. In some
cases, however, you might find it easier to create the desired view by
specifying particular groups to exclude from the zoomed view.

To exclude particular groups from a chart display, follow the steps below:

DASHBOARD DESIGN

1388 of 2477

1. Select the group(s) in the chart that you wish to exclude. (See
Selecting Chart Data.)

2. Press the ‘Exclude Data’ button in the toolbar. This removes the
selected data from the chart.

3. Repeat the above steps to exclude further data.

4. To return to the original chart view, press the ‘Clear Zoom’ button.

See Also
Zooming a Chart, to create a zoomed view by including groups.
Selecting Chart Data, for information on methods of selecting chart data.
Filter Conditions, for information on filtering chart data
Adding Highlights to a Chart, for information on conditional formatting.
Brushing a Chart, for information on highlighting data across multiple
views.

Drilling Down into a Chart

When a chart axis displays a date field or a cube dimension, the chart
automatically provides the user with the ability to drill down to finer levels
of resolution of the date or dimension.

To drill down into a date or cube dimension on a chart axis, follow these
steps:

DASHBOARD DESIGN

1389 of 2477

The ‘+’ symbol is
only visible when you
hover over the axis.

1. Hover the mouse over the chart axis that you want to display at
greater resolution. For axes that represent date or cube dimension
data, this will display a ‘+’ symbol at the left side of the axis.

2. Click the ‘+’ symbol to drill down to the next level of the date or
dimension.

3. Repeat the above steps to drill down to deeper levels of the
hierarchy.

4. To drill up to a higher level of the date or dimension hierarchy,
hover the mouse over the chart axis that you want to display at
reduced resolution. This displays a ‘–’ symbol at the left side of the
axis.

5. Click the ‘–’ symbol to drill up to the higher level of the date or
dimension hierarchy.

DASHBOARD DESIGN

1390 of 2477

To disable the drilling feature for a particular chart, deselect the ‘Enable
Drilling’ option in the Advanced tab of the ‘Chart Properties’ dialog box.
To specify a custom drill hierarchy, see Chart Properties: Hierarchy Tab.

See Also
Chart Properties: Hierarchy Tab, for information on custom drill
hierarchies.
Drilling Down into a Crosstab, to perform the drill operation on a crosstab
dimension.
Walkthrough: Interactive Chart Drilldown, in Dashboard Scripting, to
implement a combined drill-and-filter operation.
Filter Conditions, for information on filtering chart data
Adding Highlights to a Chart, for information on conditional formatting.
Brushing a Chart, for information on highlighting data across multiple
views.

Maximizing a Chart

The ‘Max Mode View’ button at the top-right corner of the chart allows
you to detach the chart from the Viewsheet grid. This causes the chart to
“float” above the grid as a separate window that you can freely move and
resize.

To reattach a floating chart to the Viewsheet grid, click the close button in
the top-right corner of the floating window.

The ‘Max Mode View’ feature is available to end-users as well, which
allows you to create smaller charts (“thumbnails”) that the user can enlarge
as needed.

See Also
Positioning a Component, for information on scaling and moving
components.

DASHBOARD DESIGN

1391 of 2477

Showing Chart Data

Tip: To copy the con-
tents of a chart label,
click on the label.

To display a chart’s (summarized) data in tabular form, press the ‘Show
Data’ button at the top-right of the chart. To close the data panel, press the
red ‘X’ in the top-right corner.

Exporting Chart Data

To export the chart data, click the ‘Export’ button.

Formatting Chart Data

To format values in the data panel, right-click on the column you wish to
format, and select ‘Format’ from the context menu.

This opens the ‘Format’ dialog box, which allows you to set the format for
the column. See Format Tab for information about the available options.

DASHBOARD DESIGN

1392 of 2477

Formatting that you specify is saved with the Viewsheet, and is
automatically applied to the column whenever the ‘Show Data’ option is
used, both in Visual Composer and the User Portal.

See Also
Showing Detail Data, for information on viewing underlying detail
records.

Showing Detail Data

To display the detail records corresponding to the chart’s (summarized)
data, follow the steps below:

1. Select the data to display by clicking the appropriate element in the
chart.

2. Click the ‘Show Details’ button at the top-right of the chart.

DASHBOARD DESIGN

1393 of 2477

To close the data panel, click the red ‘X’ in the top-right corner.

Exporting Detail Data

To export the data, click the ‘Export’ button.

Formatting Detail Data

To format values in the data panel, right-click on the column you wish to
format, and select ‘Format’ from the context menu.

This opens the ‘Format’ dialog box, which allows you to set the format for
the column. See Format Tab for information about the available options.

DASHBOARD DESIGN

1394 of 2477

Formatting that you specify is saved with the Viewsheet, and is
automatically applied to the column whenever the ‘Show Details’ option is
used, both in Visual Composer and the User Portal.

See Also
Showing Chart Data, for information on viewing summarized chart data.
Selecting Chart Data, for information on methods of selecting chart data.

Rotating a Chart

To rotate a chart (switch the X- and Y-axes), click the ‘Swap XY’ button in
the Data panel title bar.

This will position the X-axis vertically, and position the Y-axis horizontally.

Sorting a Chart Dimension by Value

To sort chart groups based on a measure, hover the mouse over the desired
measure axis. This displays the ‘Sort’ button next to the axis. Click the
button once to sort the groups in ascending order by measure value, click a

DASHBOARD DESIGN

1395 of 2477

second time to sort in descending order by measure value, and click a third
time to restore the original order.

When multiple dimensions are represented on the chart (as in the image
above), the ‘Sort’ button operates on the innermost dimension.

See Also
Editing a Dimension, to select from additional sorting options.

Clearing Chart Data

To clear all data binding information from a chart, right-click the chart, and
select ‘Clear All Data’ from the context menu. This restores the chart to the
its initial blank state.

See Also
Editing a Chart Axis, for information on hiding axes.

Manually Refreshing a Chart

By default, a chart is refreshed automatically whenever you make a change
to the chart binding. In cases where the automatic refresh creates an
undesirable delay, you can disable the automatic refresh feature.

To disable automatic refresh for a chart (and perform the refresh operation
manually), follow these steps:

1. Press the ‘Edit’ button on the chart to open the Chart Editor.

2. Press the ‘Auto Refresh’ button in the chart toolbar to disable the
auto-refresh feature.

DASHBOARD DESIGN

1396 of 2477

3. To manually refresh the chart, press the ‘Refresh’ button.

To re-enable the auto-refresh feature, press the ‘Manual Refresh’ button on
the chart.

See Also
Editing a Chart Axis, for information on hiding axes.

Changing Chart Element Spacing

To change the vertical or horizontal spacing of elements on a chart, follow
the steps below:

1. Hover the mouse into an empty region between the chart elements.
The “arrow” pointer will change into a “move” pointer.

DASHBOARD DESIGN

1397 of 2477

2. Click and drag to change the element spacing. Drag left or right to
change horizontal spacing. Drag up or down to change vertical
spacing.

The chart will automatically enable scroll bars as required to accommodate
the new spacing.

Changing Chart Axis Spacing

To change the position of a chart axis or control spacing among axes on a
compound chart, follow the steps below:

1. Hover the mouse over the horizontal or vertical axis you want to
move. The “arrow” pointer will change into a “move” pointer.

2. Click and drag to move the axis. Drag left or right to change
horizontal spacing. Drag up or down to change vertical spacing.

DASHBOARD DESIGN

1398 of 2477

The chart will automatically enable scroll bars as required to accommodate
the new spacing.

Grouping Chart Labels into Named Groups

You can agglomerate data from different chart groups (axis groups, legend
groups) into larger categories called named groups. For example, you can
combine X-axis labels designating individual states MA, CT, NY, NJ, etc.,
into larger groups such as ‘New England’ and ‘Mid-Atlantic’.

Named groups cannot be defined for date fields.

To create named groups for chart axis labels or legend labels, follow the
steps below:

1. Ctrl-click to select the individual axis labels or legend labels that
you want to combine into a single group.

You can group exist-
ing named groups to
make larger groups.

2. Right-click on one of the selected labels, and choose ‘Group’ from
the context menu. This opens the ‘Group Name’ dialog box.

3. Enter a name for the new group in the ‘Group Name’ dialog box,
and click ‘OK’.

This agglomerates the data corresponding to the original labels and
replaces the original labels with the named grouping label.

DASHBOARD DESIGN

1399 of 2477

4. Repeat the above steps to add additional named groups.

To rename an existing group, right-click the group label, and select
‘Rename’ from the context menu. Alternatively, select ‘Axis Properties’ or
‘Legend Properties’ from the context menu, and change the label’s alias on
the Alias tab of the ‘Properties’ dialog box. (See Editing a Chart Axis or
Editing a Chart Legend for more details.)

To decompose an existing named group, right-click on the group label and
select ‘Ungroup’ from the context menu.

Example:
Creating Named
Groups

In the following example, you will create a chart that displays total sales by
state. You will then group the states into one of six standard regions: New
England, Mid-Atlantic, Midwest, South, Mountain, and Pacific. Follow the
steps below:

1. Create a new Viewsheet based on the ‘Sales’ > ‘Sales Explore’
Worksheet.

DASHBOARD DESIGN

1400 of 2477

2. Drag a Chart element from the Component panel into the
Viewsheet grid.

3. Click the ‘Edit’ button on the Chart to open the Chart Editor.

4. In the Data Source panel, expand the ‘Sales’ Data Block. From the
‘Dimensions’ node, drag the ‘State’ field to the ‘X’ region of the
Data panel.

5. From the ‘Dimensions’ node, drag the ‘Total’ field to the ‘Y’
region of the Data panel.

6. Click the ‘CT’ label on the Chart’s X-axis to select it. Ctrl-click on
the ‘MA’ label to select it also.

7. Right-click on either of the selected labels, and choose ‘Group’
from the context menu.

DASHBOARD DESIGN

1401 of 2477

This opens the ‘Group Name’ dialog box.

8. In the ‘Group Name’ dialog box, enter the label for the new
composite group: “New England”.

This adds ‘New England’ as a new X-axis label, and agglomerates
the data from ‘MA’ and ‘CT’ into this new composite group.

9. Repeat the above steps to create the following additional named
groups:

a. “Mid-Atlantic,” including states ‘NY’, ‘PA’, ‘NJ’.

b. “South,” including states ‘MD’, ‘TX’, ‘FL’.

c. “Mountain,” including states ‘AZ’, ‘CO’, ‘NV’.

d. “Pacific,” including states ‘CA’, ‘WA’.

All states are now grouped into larger regions, except for ‘IL’,
which belongs to the Midwest region. You cannot create a named
group for ‘Midwest’ on the basis of a single label. Instead, if you

DASHBOARD DESIGN

1402 of 2477

need a group labeled ‘Midwest’, you can simply rename the ‘IL’
label as described in the next step.

10. (Optional) Rename the ‘IL’ label to “Midwest”. Follow the steps
below:

a. Right-click the ‘IL’ label on the X-axis, and select ‘Axis
Properties’ from the context menu. This opens the ‘Axis
Properties’ dialog box.

b. In the ‘Axis Properties’ dialog box, select the Alias tab. Double-
click in the ‘Alias’ column next to the ‘IL’ label, and enter the
text “Midwest”.

c. Click ‘OK’ to close the dialog box. The Chart now displays all
states grouped by region.

¢

See Also
Grouping Crosstab Headers into Named Groups, to create groupings in a
crosstab.

Creating a Chart Legend

To create a chart legend, do one of the following:

DASHBOARD DESIGN

1403 of 2477

• Drag a measure or dimension to one of the regions in the Visual panel of
the Chart Editor (‘Color’, ‘Shape’, or ‘Size’). See Working with Multiple
Measures and Subseries for more information.

• Drag two or more measures to the ‘X’ or ‘Y’ regions in the Data panel
of the Chart Editor.

For information about modifying the legend, see Editing a Chart Legend.

See Also
Editing a Chart Legend, for information about modifying a chart legend.
Positioning a Chart Legend, for information about moving a chart legend.

4.4.6 Brushing a Chart

A Viewsheet often contains multiple charts representing the same data in
different ways. In this case, it is often useful to highlight corresponding
data in different plots. You can do this easily with a technique called
“brushing.”

DASHBOARD DESIGN

1404 of 2477

To brush a single subgroup, double-click the desired entity (axis label,
legend label, or subgroup). To brush a set of subgroups, follow the steps
below:

1. Select the desired subgroups, adjacent or nonadjacent. See
Selecting Chart Data.

2. Click the ‘Brush’ button in the chart toolbar.

The corresponding data in all charts is highlighted in red, allowing you to
immediately identify key data relationships. Data represented in tables and
output elements (e.g., gauges) is also filtered by the brushing operation.

Figure 7. Brushing data: Companies in CT and IL for 2007.

Example:
Brushing

Brushing is a powerful tool that helps you quickly understand your data. In
this example, you will create two charts, and then use brushing on both
charts to answer particular business questions.

1. Create a new Viewsheet based on the sample ‘Analysis’
Worksheet.

2. To create the first chart, follow the steps below:

a. Add a Chart component, and click the ‘Edit’ button. This opens
the Chart Editor.

DASHBOARD DESIGN

1405 of 2477

b. In the Data Source panel, expand the ‘OrdersAndReturns’ data
block.

c. From the ‘Dimensions’ node in the Data Source panel, drag the
‘State’ field to the ‘X’ field of the Data panel.

d. From ‘Dimensions’ node in the Data Source panel, drag the
‘Last Name’ field to the ‘Color’ field of the Visual panel.

e. From the ‘Measures’ node in the Data Source panel, drag the
‘TotalPurchased’ field to the ‘Y’ field of the Data panel.

This automatically creates a stacked bar chart.

f. Enlarge the chart (if desired) by dragging the handles.

3. To create the second chart, follow the steps below:

a. Add a Chart component, and click the ‘Edit’ button. This opens
the Chart Editor.

b. In the Data Source panel, expand the ‘OrdersAndReturns’ data
block.

c. From the ‘Dimensions’ node of the Data Source panel, drag the
‘Date’ field to the ‘X’ field of the Data panel.

d. From the ‘Measures’ node of the Data Source panel, drag the
‘TotalPurchased’ field to the ‘Y’ field of the Data panel.

DASHBOARD DESIGN

1406 of 2477

e. Next to the ‘X’ field, click the ‘Edit Dimension’ button. Select
‘Month’ for ‘Level’.

f. On the new chart, right-click an X-axis label and select ‘Format’
from the context menu. This opens the ‘Format’ dialog box,
where you will set the axis format to match the grouping level.

g. In the ‘Format’ dialog box, click the Format tab, and select the
‘Date’ option. Enter “MMM-yy” as the format, and click ‘OK’.

DASHBOARD DESIGN

1407 of 2477

h. On the chart, right-click an X-axis label and select ‘Axis
Properties’ from the context menu. This opens the ‘Axis
Properties’ dialog box.

i. In the Label tab of the ‘Axis Properties’ dialog box, select a
slanted label orientation and small font size. This will allow the
labels to better display.

4. Use brushing to answer the following question: “In what month did
salesperson Eric Heggenbart have his peak sales?”

a. Double-click the ‘Heggenbart’ label in the legend to brush
Heggenbart’s sales in both charts.

It is now obvious that Heggenbart’s greatest sales month was
December of 2006, when he sold over $400,000.

b. Press the ‘Clear Brushing’ button to return to the normal view.

5. Use brushing to answer the following question: “Which states had
the greatest sales numbers during the best four months?”

a. In the second chart, Ctrl-click to select the four highest peaks on
the plot.

DASHBOARD DESIGN

1408 of 2477

b. Click the ‘Brush’ button on the chart toolbar to highlight all the
data corresponding to these months.

It is clear that the four peak months saw sales chiefly in the
states NJ, TX, and MA.

6. The data indicate a steep overall decline in sales for September
2008. Use brushing to answer the following question: “Which
salesperson’s sales defied this trend, and what state’s sales most
significantly accounted for this?”

a. Successively double-click the names in the legend to display the
sales by data for each salesperson. Note that only the data for
Heggenbart defy the September sales decline.

b. Successively double-click each of Heggenbart’s states, and
observe the September sales movement. Note that only the
Heggenbart sales in MA and NY show significant growth in this
period.

DASHBOARD DESIGN

1409 of 2477

¢

See Also
Zooming a Chart, for information on zooming in on selected data.
Adding Highlights to a Chart, for information on adding conditional
formatting.
Flyover View, to use chart selections to filter the data in other components.
Selecting Chart Data, for information on methods of selecting chart data.

4.4.7 Working with Multiple Measures and Subseries

To plot multiple datasets on the same chart, simply drag multiple measures
into the ‘Y’ field of the Data panel. To break out a dataset into a subseries,
drag the desired subseries dimension into one of the fields in the Visual
panel (‘Color’, ‘Shape’, ‘Size’, ‘Text’).

The following sections explain various aspects of working with multiple
datasets and subseries.

Setting a Chart Style for an Individual Dataset

To set the chart style for an individual dataset on a multi-dataset chart,
follow the steps below:

Note: The ‘Auto’
chart type automati-
cally selects an appro-
priate chart type for
the provided data.

1. In the Data panel of the Chart Editor, press the ‘Select Chart Type’
button. This opens the chart styles panel.

DASHBOARD DESIGN

1410 of 2477

2. In the chart styles panel, enable the ‘Multiple Styles’ option (below
the chart style options).

This automatically closes the panel, and enables you to set styles
individually for each data set.

3. Press the ‘Select Chart Type’ button next to dataset you wish to
change.

This opens the chart styles panel for the specified dataset.

Note: Only certain compatible style combinations can be selected
(e.g., Pie style and Line style are incompatible).

4. Click a chart type to select it, and then click the ‘Apply’ button.
(You can also double-click the desired chart type.)

See Also
Setting the Chart Style, for information on setting a single style for all
datasets.

DASHBOARD DESIGN

1411 of 2477

Single Chart vs. Separate Charts

By default, when you specify two datasets on the Y-axis, the two datasets
are plotted on two adjacent sets of axes. To display a dataset on the right-
side (secondary) Y-axis, follow these steps:

1. Press the ‘Switch to Single Graph’ button.

2. Click the ‘Edit Measure’ next to the measure that you wish to
display against the secondary Y-axis.

3. Enable the ‘Secondary Axis’ option at the bottom of the panel.

4. Click the ‘Apply’ button (green arrow).

To return to the multiple axis style, click the corresponding ‘Switch to
Separate Graph’ button.

Example:
Switching to
Single Graph

This example illustrates how to switch from a multiple axis view to a
single-axis view. Follow the steps below:

DASHBOARD DESIGN

1412 of 2477

1. Create a new Viewsheet based on the sample ‘Analysis’
Worksheet.

2. Add a chart component, and click the ‘Edit’ button. This opens the
Chart Editor.

3. In the Data Source panel, expand the ‘OrdersAndReturns’ data
block.

4. From the ‘Dimensions’ node, drag the ‘State’ field to the ‘X’ field
of the Data panel.

5. In the ‘Measures’ node, Ctrl-click to select both the
‘TotalPurchased’ field and the ‘TotalReturnedNeg’.

6. Drag both fields together to the ‘Y’ field of the Data panel.

This will automatically create two sets of axes, one for each
dataset. Note the scrollbar indicators that appear on the chart.
(Enlarge the chart component if you cannot see both axes.)

7. Click the ‘Switch to Single Graph’ button in the Data panel. This
fits both datasets on the same set of axes.

DASHBOARD DESIGN

1413 of 2477

8. If desired, edit the Y-axis label to fit on the chart.

¢

See Also
Editing an Axis Title, for information on changing the axis title properties.

Controlling Axes in Separate Chart View

In the ‘Separate Graph’ view, you can scroll the chart using vertical and
horizontal scrollbars. To see the scrollbars, hover the mouse over the
bottom or right of the chart.

To control the spacing of the labels on the chart axes, right-click the chart,
and select one of the following options from the context menu:

• Increase Width

• Increase Height

• Decrease Width

• Decrease Height

These options change the axis scale by a small increment. To make a larger
change, select the desired option repeatedly.

Adding a Sub-Series

A sub-series represents an additional level of grouping within an individual
dataset or measure. Beyond the level of grouping implied by the X-axis
labels, the subseries breaks an individual measure down into a secondary
level of categories.

DASHBOARD DESIGN

1414 of 2477

A subseries can be created with or without visual formatting.

Adding a Visually-Formatted Subseries

To add a visual-formatted subseries to an existing chart, follow the steps
below:

1. Select the chart, and click the ‘Edit’ button to open the Chart
Editor.

2. Expand the ‘Dimension’ node in the Data Source panel.

3. Drag the desired subseries dimension to one or more of the fields in
the Visual panel at the bottom of the Chart Editor.

a. Drag the dimension to the ‘Color’ field to discriminate the
subgroups by color.

b. Drag the dimension to the ‘Shape’ field to discriminate the
subgroups by data point shape or fill pattern.

c. Drag the dimension to the ‘Size’ field to discriminate the
subgroups by the thickness of the representation element (bar,
line, etc.).

d. Drag the dimension to the ‘Text’ field to discriminate the
subgroups by placing appropriate text labels.

4. Click the ‘Edit Dimension’ button, and select the desired ordering
and ranking for the coded values.

DASHBOARD DESIGN

1415 of 2477

5. Click the appropriate ‘Edit’ button (‘Edit Color’, ‘Edit Shape’,
‘Edit Size’, ‘Edit Text’), and select the desired representation. For
more information, see Representing Data With Color, Representing
Data With Shape, Representing Data with Size, and Representing
Data With Text.

Creating a sub-series automatically creates a corresponding legend. For
information on controlling the legend display, see Positioning a Chart
Legend. For information on further modifying the visual format of the
subseries, see Representing Data with Visual Formats.

Example: Adding
a Subseries

Assume that you want to plot ‘Total Purchased’ vs. ‘State’ for a dataset.
Additionally, you want break down the sales in each region according to
‘Category’. In this case, ‘State’ is the top level of grouping, represented by
the labels on the X-axis, and ‘Category’ will be the subseries.

Follow the steps below:

1. Create a new Viewsheet based on the sample ‘Analysis’
Worksheet.

2. Add a chart component, and click the ‘Edit’ button on the chart to
open the Chart Editor.

3. In the ‘Data Source’ pane, expand the ‘OrdersAndReturns’ data
block.

4. From the ‘Dimensions’ node in the Data Source panel, drag the
‘State’ dimension onto the ‘X’ field in the ‘Data’ panel.

DASHBOARD DESIGN

1416 of 2477

5. From the ‘Measures’ node in the Data Source panel, drag the
‘TotalPurchased’ measure onto the ‘Y’ field in the Data panel.

This displays ‘Total Purchased’ vs. ‘State’, as desired. You will
now add the subseries.

6. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Category’ dimension onto the ‘Color’ field in the Visual panel.

This creates the ‘Category’ subseries, discriminating the different
categories using color, and automatically creates a corresponding
legend. Resize the chart as desired to show all the data.

Notice that there are seven colors, one for each product category.

¢

See Also
Adding a Non-Formatted Subseries, for information on subseries without
format.
Positioning a Chart Legend, for information on controlling the legend
display.
Editing a Chart Legend, for information on changing the display of a
legend.

DASHBOARD DESIGN

1417 of 2477

Representing Data with Visual Formats, for information about ordering
styles.

Adding a Non-Formatted Subseries

To add a subseries to an existing chart without visual formatting, follow the
steps below:

1. Select the chart, and click the ‘Edit’ button to open the Chart
Editor.

2. Expand the ‘Dimension’ node in the Data Source panel.

3. Drag the desired subseries dimension to the ‘Break By
(Dimension) / Tooltip (Measure)’ field in the Data panel.

This creates a subseries without visual formatting and without a legend.
This is useful when you want to represent an additional dimension on the
chart without complicating the presentation. The example below provides
an illustration.

Example: Adding
a Subseries

Assume that you want to plot ‘Total Purchased’ vs. ‘State’ for a dataset.
Additionally, you want break down the sales in each region according to
‘Date’ (year). In this case, ‘State’ is the top level of grouping, represented
by the labels on the X-axis, and ‘Date’ will be the subseries.

In addition to the ‘Date’ subseries, you would also like to see (for each state
and each year) the names of the individuals who made those sales. You will
present this information as a non-formatted subseries.

Follow the steps below:

1. Create a new Viewsheet based on the sample ‘Analysis’ worksheet.

DASHBOARD DESIGN

1418 of 2477

2. Add a chart component, and click the ‘Edit’ button on the chart to
open the Chart Editor.

3. In the Data Source panel, expand the ‘OrdersAndReturns’ data
block.

4. From the ‘Dimensions’ node in the Data Source panel, drag the
‘State’ dimension onto the ‘X’ field in the Data panel.

5. From the ‘Measures’ node in the Data Source panel, drag the
‘TotalPurchased’ measure onto the ‘Y’ field in the Data panel.

This displays ‘Total Purchased’ vs. ‘State’, as desired. You will
now add the visually-formatted subseries.

6. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Date’ dimension onto the ‘Color’ field in the Visual panel.

This creates the ‘Date’ subseries, formatting the different years
using color, and creating a corresponding legend. (Resize the chart
to show all the data.) In the next step, you will further break down
the data by salesperson name.

7. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Last Name’ dimension onto the ‘Break By (Dimension) / Tooltip
(Measure)’ field in the Data panel.

DASHBOARD DESIGN

1419 of 2477

Note: You can also
create an additional
subseries by binding a
vacant field in the
‘Visual’ panel. This
will add another for-
matted subseries and
legend.

This creates the ‘Last Name’ subseries without any additional for-
matting. Each ‘Year’ subgroup is now further broken down by
salesperson name.

8. Preview the Viewsheet. Hover the mouse over the various chart
elements to view the salesperson for each subgroup.

¢

See Also
Adding a Visually-Formatted Subseries, for information on subseries with
format.

Adding a Non-Displaying Measure to a Chart

In some cases, you may wish to add a non-displaying measure to a chart.
This is useful when you want to utilize the measure for purposes of ranking
or as part of a tooltip, but do not wish the measure to be displayed on the
chart itself.

To add a non-displaying measure to a chart, simply drag the desired
measure field to the ‘Break By (Dimension) / Tooltip (Measure)’ region.
This will add the measure to the chart tooltip, and make the measure
available for ranking.

DASHBOARD DESIGN

1420 of 2477

See Also
Custom Tooltip, for information on customizing the text in a tooltip.
Editing a Dimension, for information on ranking dimension values.

4.4.8 Chart Properties

The Chart component’s ‘Properties’ dialog box provides the following
tabs: General, Advanced, Hierarchy, Script. The next sections discuss
the chart-specific properties available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.

Chart Properties: General Tab

The General tab in the ‘Chart Properties’ dialog box provides the
following chart-specific properties.

See Also
General Tab, for information about common properties in the General tab.
Crosstab Properties, for information about the General tab.

Tip Tooltip: Value is displayed as tooltip when mouse hovers over
corresponding chart area. To display custom HTML in the tooltip,
see Custom Tooltip.
Data Tip View: A Viewsheet component is displayed when mouse
hovers over chart area. The component is filtered based on the hover
region. See Data Tip View for more details.
Flyover Views: Allows you to select a set of Viewsheet
components which will be adaptively filtered as the user hovers the
mouse or clicks on the chart area. (Select ‘On Click Only’ if you
want the filtered components to update when the user clicks.)
Filtering is based on the group in the chart on which the user hovers
or clicks. See Flyover View for more details.

DASHBOARD DESIGN

1421 of 2477

Format Dialog Box, for a listing of format options.

Custom Tooltip

You can create a custom tooltip by using HTML markup to style the tooltip
text. The tooltip can incorporate data values in java.text.MessageFormat
format.

To create a custom tooltip, follow the steps below:

1. Right-click the chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Click the General tab.

3. Select the ‘Tooltip’ option, and click the ‘Customize’ button. This
opens the ‘Customize Tooltip’ dialog box.

4. Select the ‘Custom’ option, and enter the desired tooltip markup
into the edit box.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

DASHBOARD DESIGN

1422 of 2477

The indices for the
available columns are
listed at the bottom of
the dialog box.

You can use HTML tags to style the text (e.g., , <i>, <u>,
) and to create line breaks (
), etc. To insert data into the
tooltip, enter the index of a data column within curly braces, e.g.,
{1}. Use java.text.MessageFormat format to format the inserted
data. For example:

See Format Tab for
information about for-
mat masks.

Date: {0, date, MMM-yy}
Sales: {1, number, $#,###.00}

To create even more complex text-based tooltips, you can use the Data Tip
View, and specify a group of text elements as the data view assembly to
display.

Example:
Custom Tooltip

In this example, you will create a chart that displays quantity purchased by
company. When the user hovers the mouse over a given company (e.g.,
“Rutgers Bank”), the Chart will display a tooltip similar to the following:

Rutgers Bank
27 units purchased

Follow the steps below:

1. Create a new Viewsheet based on the sample ‘US Sales’
Worksheet.

2. Drag a Chart element onto the Viewsheet grid.

3. Click the center of the Chart (or click the ‘Edit’ button at the top-
right). This opens the Chart Editor. Make the following selections:

a. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Company’ dimension to the ‘X’ field in the Data panel.

b. From the ‘Measures’ node in the Data Source panel, drag the
‘Quantity Purchased’ measure to the ‘Y’ field in the Data panel.
This creates a chart that displays quantity purchased for each
company.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

DASHBOARD DESIGN

1423 of 2477

c. Click the ‘Edit Dimension’ button, and select ‘Ranking’ to
display only the top 10 companies. Click the ‘Apply’ button.

d. Right-click on the one of the Chart’s X-axis labels, and select
‘Axis Properties’ from the context menu. Choose a slanted text
rotation and a smaller font size to improve the axis appearance.
Click ‘OK’.

e. Resize the chart as desired.

4. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

a. Under the General tab, select the ‘Tooltip’ option, and click
‘Custom’. This opens the ‘Customize Tooltip’ dialog box.

b. Select the ‘Custom’ option and enter the following in the text
field:

{0}
{1} units purchased

c. Click ‘OK’ to close the ‘Customize Tooltip’ dialog box, and
click ‘OK’ again to close the ‘Chart Properties’ dialog box.

When you hover the mouse over the bars on the chart, you will now see the
custom tooltip you specified.

DASHBOARD DESIGN

1424 of 2477

¢

See Also
Data Tip View, to create complex tooltips using Viewsheet components.
Adding a Non-Displaying Measure to a Chart, to utilize a measure in the
tooltip which is not displayed on the chart.

Data Tip View

For a Table data-tip,
enable ‘Shrink to Fit’
in the Table Properties
to minimize the data-
tip footprint.

A Data Tip displays information about the current chart or table region
using another Viewsheet component, such as another chart, text, Gauge, or
Organization Components. The data tip is displayed as a tooltip (next to the
pointer), and is adaptively filtered to show only data corresponding to the
particular region of the chart or crosstab where the pointer is positioned. If
the data tip utilizes a table or chart, the export features of the table or chart
remain available in data tip view.

Walkthrough In this example, you will create a chart that displays quantity purchased by
company. When the user hovers the mouse over a given company, the
Chart will display a Gauge as a Data Tip. This Gauge will display the
average quantity purchased by the individual company.

1. Create a new Viewsheet based on the sample ‘US Sales’
Worksheet.

2. Drag a Gauge from the Component tree into the Viewsheet.

3. Configure the Gauge to display the average quantity purchased:

a. From the ‘Sales’ Data Block (top of the Component tree), drag
the ‘Quantity Purchased’ field onto the Gauge. This binds the
Gauge to the Data Block.

b. Right-click the Gauge, and select ‘Gauge Properties’ from the
context menu. This opens the ‘Properties’ dialog box for the
Gauge.

DASHBOARD DESIGN

1425 of 2477

c. Under the General tab, change the ‘Name’ property to
“QuantityGauge”.

d. Set the following limits: ‘Maximum’=200, ‘Minor
Increment’=10, ‘Major Increment’=25.

e. Under the Data tab, select ‘Count’ form the ‘Aggregate’ menu.
This will display the number of records (orders) for each
company.

f. Click ‘OK’ to close the ‘Gauge Properties’ dialog box.

g. Resize the Gauge to be about half the default size.

4. Drag a Chart element onto the Viewsheet grid.

5. Click the center of the Chart (or click the ‘Edit’ button at the top-
right). This opens the Chart Editor. Make the following selections:

a. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Company’ dimension to the ‘X’ field in the Data panel.

b. From the ‘Measures’ node in the Data Source panel, drag the
‘Quantity Purchased’ measure to the ‘Y’ field in the Data panel.
This creates a chart that displays quantity purchased for each
company.

c. Click the ‘Edit Dimension’ button, and select ‘Ranking’ to
display only the top 10 companies. Click the ‘Apply’ button.

d. Right-click on the one of the Chart’s X-axis labels, and select
‘Axis Properties’ from the context menu. Choose a slanted text
rotation and a smaller font size to improve the axis appearance.
Click ‘OK’.

e. Resize the chart as desired.

DASHBOARD DESIGN

1426 of 2477

6. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

a. Under the General tab, select ‘Data Tip View’. From the
adjacent menu, select the ‘QuantityGauge’ component.

b. To adjust the transparency of the data tip component (Gauge),
enter a value in the ‘Alpha’ menu (or choose one of the preset
values). A value of 0 indicates complete transparency; a value
of 100% indicates complete opacity.

c. Click ‘OK’ to close the ‘Chart Properties’ dialog box.

Note: Data tips are not
active in the Design
view. Preview the
Viewsheet to see
them.

7. Preview the Viewsheet, and hover the mouse over different
companies in the Chart to view the corresponding Data Tip (i.e.,
number of orders).

DASHBOARD DESIGN

1427 of 2477

Note that the Gauge is not displayed as part of the Viewsheet layout. The
Gauge appears only when you hover the mouse over one of the companies
in the chart, and it then displays only the data for that particular company.

You can use a single component in both a Data Tip view and a Flyover
View. If you designate a Data Tip component for Flyover duty, the
component always remains visible on the Viewsheet.

See Also
Flyover View, to adaptively filter Viewsheet components based on mouse
position.

Flyover View

A flyover filters the information displayed in selected Viewsheet
components when the user moves the mouse over (or clicks on) particular
regions of a chart, table, or crosstab. This effectively allows a Chart, Table,
or Crosstab to behave as a selection element. Flyover is similar to the Data
Tip View, except that the filtered components remain in their original
positions (rather than following the mouse).

Walkthrough In this example, you will create a chart that displays quantity purchased by
company. When the user click a given company, the Chart will display a
Gauge as a Data Tip. This Gauge will display the average quantity
purchased by the individual company.

1. Create a new Viewsheet based on the sample ‘US Sales’
Worksheet.

2. Drag a Gauge from the Component tree into the Viewsheet.

3. Configure the Gauge to display the average quantity purchased.
Follow these steps:

a. From the ‘Sales’ Data Block (top of the Component tree), drag
the ‘Quantity Purchased’ field onto the Gauge. This binds the
Gauge to the Data Block.

DASHBOARD DESIGN

1428 of 2477

b. Right-click the Gauge, and select ‘Properties’ from the context
menu. This opens the ‘Properties’ dialog box for the Gauge.

c. Under the General tab, change the ‘Name’ property to
“QuantityGauge”.

d. Set the following limits: ‘Maximum’=200, ‘Minor
Increment’=10, ‘Major Increment’=25.

e. Under the Data tab, select ‘Count’ form the ‘Aggregate’ menu.
This will display the number of records (orders) for each
company.

f. Click ‘OK’ to close the ‘Gauge Properties’ dialog box.

4. Drag a Table component onto the Viewsheet grid. Follow the steps
below to configure the Table:

a. In the ‘Sales’ Data Block (top of the Component tree), select the
following fields: ‘Category’, ‘Company’, ‘Name’.

b. Drag the selected fields onto the Table component. This adds
the three columns to the Table. Resize the Table as desired.

c. Right-click the Table, and select ‘Properties’ from the context
menu. This opens the ‘Table Properties’ dialog box.

d. Under the General tab, change the ‘Name’ property to
“CompanyTable”.

e. Under the Advanced tab, select ‘Shrink to Fit’. This
automatically sizes the table to the number of records displayed.

f. Press ‘OK’ to close the dialog box.

5. Drag a Chart element onto the Viewsheet grid.

6. Click the center of the Chart (or click the ‘Edit’ button at the top-
right). This opens the Chart Editor. Make the following selections:

DASHBOARD DESIGN

1429 of 2477

a. From the ‘Dimensions’ node in the Data Source panel, drag the
‘Company’ dimension to the ‘X’ field in the Data panel.

b. From the ‘Measures’ node in the Data Source panel, drag the
‘Quantity Purchased’ measure to the ‘Y’ field in the Data panel.
This creates a chart that displays quantity purchased for each
company.

c. Click the ‘Edit Dimension’ button, and select ‘Ranking’ to
display only the top 10 companies. Click the ‘Apply’ button.

d. Right-click on the one of the Chart’s X-axis labels, and select
‘Axis Properties’ from the context menu. Choose a slanted text
rotation and a smaller font size to improve the axis appearance.
Click ‘OK’.

e. Resize the chart as desired.

7. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

a. Select the General tab.

b. In the ‘Flyover’ panel, click to select the two available
components: ‘CompanyTable’ and ‘QuantityGauge’.

DASHBOARD DESIGN

1430 of 2477

c. (Optional) Select ‘On Click Only’ if you want the filtered
components (‘CompanyTable’ and ‘QuantityGauge’) to update
only when the user clicks on the chart. Otherwise, the
components will update whenever the user hovers the mouse
over the chart.

d. Click ‘OK’ to close the ‘Chart Properties’ dialog box.

Note: Data tips are not
active in the Design
view. Preview the
Viewsheet to see
them.

8. Preview the Viewsheet, and hover the mouse (or click) over
different companies in the Chart. Observe that both the Table and
Gauge are filtered to display only the corresponding data.

9. To lock the selection to a particular company (or set of companies),
click on the Chart to select the desired company (or Ctrl-click to

DASHBOARD DESIGN

1431 of 2477

select a set of companies). This will lock the filter in place until the
selection is removed.

You can use a single component in both a Data Tip View and a Flyover
view. If you designate a Data Tip component for Flyover duty, the
component always remains visible on the Viewsheet.

See Also
Brushing a Chart, to use Chart selections to highlight (rather than filter)
other components.

Chart Properties: Advanced Tab

The Advanced tab in the ‘Chart Properties’ dialog box provides the
following chart-specific properties.

See Also
Editing an Axis Title, for information about altering title text.

Apply Effect Applies a 3D effect to the Chart as a whole.
Enable Ad Hoc
Editing

Allow end users to access the Chart Editor and edit the chart.

Sparkline Hides all axes and legends. For a line chart, the ‘Sparkline’ also
adds a point to the end of the line, and for a bar chart, displays
negative values in red.

Enable Drilling Allows the user to drill up and down in date or dimension
fields. See Drilling Down into a Chart for more information.

Target Lines Specify marker lines, bands, or statistical regions to be placed
in the plot area. See Adding a Target Line, Adding a Target
Band, and Adding a Statistical Measure for more information.

DASHBOARD DESIGN

1432 of 2477

Editing a Chart Axis, for information about hiding chart axes.

Adding a Target Line

A target line is a horizontal or vertical line drawn on the chart that
generally denotes either an ideal value (goal or threshold) or representative
value (average, minimum, etc.). Regions above and below the target value
can be assigned independent colors.

To add a target line, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Advanced tab of the ‘Properties’ dialog box. In the
‘Target Lines’ panel, press the ‘Add’ button. This opens the ‘Add
Target’ dialog box.

3. Select the Line tab.

4. In the ‘Field’ menu, select the chart measure to which you want to
add the target line.

5. In the ‘Value’ field, type a numerical value at which to place the
target line for the selected measure, or choose one of the following
options to compute the target value from the data: ‘Average’,
‘Minimum’, ‘Maximum’, ‘Median’, ‘Sum’. (For example, select
‘Average’ to place the target line at the average value of the
selected measure.)

DASHBOARD DESIGN

1433 of 2477

6. (Optional) If you select one of the available target line
computations (‘Average’, ‘Minimum’, etc.), enable the ‘Entire
Chart’ option to compute the target value based on measure data
from the entire chart. Disable the ‘Entire Chart’ option to compute
the target value for each sub-chart based only on measure data from
the same sub-chart.

The following illustration demonstrates the effect of the ‘Entire
Chart’ setting (‘Value’ is set to ‘Maximum’ in both cases).

7. From the ‘Label’ menu, select one of the following label options:

DASHBOARD DESIGN

1434 of 2477

a. Select ‘Enter a Value’ to type a custom label for the target line.

b. Select ‘(Target Value)’ to insert the numerical value of the target
line as the label.

c. Select ‘(Target Formula)’ to insert the name of the computation
method (‘Average’, ‘Minimum’, etc.) as the label, if applicable.

d. Select ‘(Field Name)’ to insert the field name for the selected
measure as the label; for example, “Sum(Total)”.

Note: The custom-
ized label supersedes
any previous selec-
tion from the ‘Label’
menu.

8. (Optional) To further customize the label, press the ‘Edit’ button
next to the ‘Label’ field. This opens a panel in which you can
manually enter the label. Press the green ‘Apply’ button when you
have finished entering the label.

If desired, you can add the target value, target formula, and field
name into the label by inserting the corresponding codes
({0},{1},{2}) shown at the bottom of the panel. You can apply for-

DASHBOARD DESIGN

1435 of 2477

mats to the inserted values by using the same syntax for Custom
Tooltip. Some examples are shown below:

{1} = {0,number,$#,##0} yeilds “Average = $383,485”
{1} of monthly {2} yeilds “Average of monthly
Sum(Total)”

9. Select a ‘Line Style’ and ‘Line Color’ in which to display the target
line.

10. (Optional) Select a ‘Fill Above’ color and ‘Fill Below’ color to fill
the regions of the chart above and below the target line
respectively.

11. Press ‘OK’ to close the dialog box.

By default, the target line appears on the chart even if its value is greater
than the largest data point. This may sometimes cause the data points on the
chart to be compressed into a small region of the plot area, which makes the
chart difficult to read. To correct this, turn off the ‘Keep Element in Plot’
option in the ‘Plot Properties’ dialog box. See Editing Plot Properties for
more information.

See Also
Adding a Target Band, to demarcate a specified data region on the chart.
Adding a Statistical Measure, to display statistical measures on the chart.
Adding Property Script (Expressions), in Dashboard Scripting, to set target
line values and labels through expressions.
Dynamic Properties, set target line values and labels through Input
Components.

Adding a Target Band

A target band is a horizontal or vertical band drawn on the chart that
generally denotes either an ideal range (e.g., goal zone) or representative
range (e.g., span of maximum to minimum). The region within the target

DASHBOARD DESIGN

1436 of 2477

band, as well as the regions above and below, can be assigned independent
colors.

To add a target band, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Advanced tab of the ‘Properties’ dialog box. In the
‘Target Lines’ panel, press the ‘Add’ button. This opens the ‘Add
Target’ dialog box.

3. Select the Band tab.

4. In the ‘Field’ menu, select the chart measure to which you want to
add the target band.

5. In the ‘From Value’ field, enter a numerical value at which to place
the lower band range for the selected measure, or choose one of the
following options to compute the lower band range from the data:
‘Average’, ‘Minimum’, ‘Maximum’, ‘Median’, ‘Sum’. (For
example, select ‘Average’ to place the lower band boundary at the
average value of the selected measure.)

DASHBOARD DESIGN

1437 of 2477

6. In the ‘From Label’ menu, select one of the following label
options:

a. Select ‘Enter a Value’ to type a custom label for the lower band
boundary.

b. Select ‘(Target Value)’ to insert the numerical value of the lower
band boundary as the label.

c. Select ‘(Target Formula)’ to insert the name of the computation
method (‘Average’, ‘Minimum’, etc.) as the lower band
boundary label, if applicable.

d. Select ‘(Field Name)’ to insert the field name of the selected
measure as the lower band boundary label, e.g., “Sum(Total)”.

Note: The custom-
ized label supersedes
any previous selec-
tion from the ‘From
Label’ menu.

7. (Optional) To further customize the label, press the ‘Edit’ button
next to the ‘From Label’ field. This opens a panel in which you can
manually enter the label. Press the green ‘Apply’ button when you
have finished entering the label.

DASHBOARD DESIGN

1438 of 2477

If desired, you can add the target band value, target band formula,
and field name into the label by inserting the corresponding codes
({0},{1},{2}) shown at the bottom of the panel. You can format
the inserted values using the same syntax as Custom Tooltip. Some
examples are shown below:

{1} = {0,number,$#,##0} yeilds “Average = $383,485”
{1} of monthly {2} yeilds “Average of monthly
Sum(Total)”

8. (Optional) If you select one of the available target band
computations (‘Average’, ‘Minimum’, etc.), enable the ‘Entire
Chart’ option to compute the target band value based on measure
data from the entire chart. Disable the ‘Entire Chart’ option to
compute the target band value for each sub-chart based only on
measure data from the same sub-chart.

The following illustration demonstrates the effect of the ‘Entire
Chart’ setting. (In both cases, ‘From Value’ is set to ‘Minimum’
and ‘To Value’ is set to ‘Maximum’).

DASHBOARD DESIGN

1439 of 2477

9. Repeat the previous steps to set the ‘To Value’ and ‘To Label’
properties, which specify the position and label of the upper band
boundary.

10. Select a ‘Line Style’ and ‘Line Color’ in which to display the upper
and lower target band boundaries.

11. (Optional) Press the ‘Fill Band’ button and select a background
color to fill the band between the lower and upper boundaries.
Select a ‘Fill Above’ color and ‘Fill Below’ color to fill the regions
of the chart above and below the band boundaries, respectively.

12. Press ‘OK’ to close the dialog box.

By default, the target band appears on the chart even if its upper or lower
range values are greater than the largest data point. This may sometimes
cause the data points on the chart to be compressed into a small region of
the plot area, which makes the chart difficult to read. To correct this, turn
off the ‘Keep Element in Plot’ option in the ‘Plot Properties’ dialog box.
See Editing Plot Properties for more information.

See Also
Adding a Target Line, to place a target line or representative line on the
chart.
Adding a Statistical Measure, to display statistical measures on the chart.
Adding Property Script (Expressions), in Dashboard Scripting, to set target
line values and labels through expressions.
Dynamic Properties, set target line values and labels through Input
Components.

Adding a Statistical Measure

A statistical measure is represented by one or more lines drawn on the
chart to indicate the values of statistical quantities derived from the data
(confidence intervals, percentages, percentiles, quantiles, or standard
deviation).

DASHBOARD DESIGN

1440 of 2477

To add a statistical measure, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Advanced tab of the ‘Properties’ dialog box.

3. In the ‘Target Lines’ panel, press the ‘Add’ button. This opens the
‘Add Target’ dialog box.

4. Select the Statistics tab.

5. In the ‘Field’ menu, select the chart measure to which you want to
add the statistical measure.

6. In the ‘Computation’ field, select one of the following options to
compute statistics from the data: ‘Confidence Interval’,
‘Percentages’, ‘Percentile’, ‘Quantiles’, ‘Standard Deviation’. (See
explanations below.)

7. To modify the statistical measure, press the ‘Edit’ button. The
following settings are available:

a. Confidence Interval: For the ‘Confidence Interval’ option,
enter a value as a percentage.

DASHBOARD DESIGN

1441 of 2477

The resulting top and bottom confidence bounds indicate the
interval of values in which the “true” value is expected to be
found. For example, the “true” temperature in the chart below
would be expected to fall within the displayed confidence
interval in 99 out of 100 such samples. (In other words, the true
temperature is expected to be outside the confidence bounds
purely by chance in 1 out of 100 samples.)

b. Percentages: For the ‘Percentages’ option, enter a value or
comma-separated list of values as percentages. In the ‘Of’ field,
specify the basis on which the percentage should be computed.
You can type a fixed value or select from the following presets:
‘Average’, ‘Minimum’, ‘Maximum’, ‘Median’, ‘Sum’.

For example, to display percentage lines at 70% and 90% of the
Maximum, enter “70,90” in the ‘Percentages’ field and select
the ‘Maximum’ option from the ‘Of’ field.

DASHBOARD DESIGN

1442 of 2477

c. Percentiles: For the ‘Percentiles’ option, enter a value or
comma-separated list of values as percentages.

The resulting percentile lines indicate the levels below which
the specified percentages of values are found. For example,
percentile lines at 70% and 90% (“70,90” in the ‘Percentages’
field) designate the levels, respectively, below which 70% and
90% of the data are found.

d. Quantiles: For the ‘Quantiles’ option, enter the number of
quantiles to display.

The resulting quantile lines are evenly distributed between 0%
and 100% and indicate the levels below which the specified
percentage of values are found. For example, enter “4” as the
‘Number of Quantiles’ to generate lines designating the levels
below which 25%, 50%, and 75% of the data are found. This

DASHBOARD DESIGN

1443 of 2477

creates four regions in the data: 0-25%, 25%-50%, 50%-75%,
and 75%-100%.

e. Standard Deviation: For the ‘Standard Deviation’ option, enter
a comma-separated list of factors. Each successive pair of
factors represents, respectively, the lower and upper multipliers
for the standard deviation.

For example, enter “-1,1,-2,2” in the ‘Factors’ field to draw
lines, respectively, at 1 standard deviation below the mean, 1
standard deviation above the mean, 2 standard deviations below
the mean, and 2 standard deviations above the mean.

Select the ‘Sample’ option to compute the sample standard
deviation or select the ‘Population’ option to compute the
population standard deviation. (The distinction between sample
and population standard deviation can be found in any statistical
reference.)

8. (Optional) Enable the ‘Entire Chart’ option to compute the
statistical values based on measure data from the entire chart.
Disable the ‘Entire Chart’ option to compute the statistical values

DASHBOARD DESIGN

1444 of 2477

for each sub-chart based only on measure data from the same sub-
chart.

The following illustration demonstrates the effect of the ‘Entire
Chart’ setting (‘Computation’ is set to ‘Standard Deviation’ in both
cases).

9. From the ‘Label’ menu, select one of the following label options:

To enter a literal
comma in the label,
escape the comma
with a backslash (e.g.,
“Q1\,25% below, Q2\,
50% below, Q3\,75%
below”).

a. Select ‘Enter a Value’ to type custom labels for the statistical
measures. Labels for individual lines should be separated by
commas. For example, if you are generating the 4-quantile
(which creates three lines), enter three labels separated by
commas, e.g., “Q1: 25% below, Q2: 50% below, Q3: 75%

below”.

DASHBOARD DESIGN

1445 of 2477

If you enter only a single label, this label will be attached to all
of the lines. This can be useful when you include customization
codes in the label, as described below.

b. Select ‘(Target Value)’ to insert the numerical value of the lines
as the labels.

c. Select ‘(Target Formula)’ to insert the name of the computation
method (e.g., ‘Quantile 1’, ‘Quantile 2’, etc.) as the label, if
applicable.

d. Select ‘(Field Name)’ to insert the field name for the selected
measure as the label, e.g., “Sum(Total)”.

Note: The custom-
ized label supersedes
any previous selec-
tion from the ‘Label’
menu.

10. (Optional) To further customize the labels, press the ‘Edit’ button
next to the ‘Label’ field. This opens a panel in which you can
manually enter the labels. Press the green ‘Apply’ button when you
have finished entering the labels.

To enter a literal
comma in the label,
escape the comma
with a backslash (e.g.,
“Q1\,25% below, Q2\,
50% below, Q3\,75%
below”).

Labels for individual lines should be separated by commas. For
example, if you are generating the 4-quantile (which creates three
lines), enter three labels separated by commas, e.g., “Q1: 25%

below, Q2: 50% below, Q3: 75% below”.

DASHBOARD DESIGN

1446 of 2477

If desired, you can add the target value, target formula, and field
name into a label by inserting the corresponding codes
({0},{1},{2}) shown at the bottom of the panel. You can format
the inserted values using the same syntax as Custom Tooltip. Some
examples are shown below:

{1} = {0,number,$#,##0} yeilds “70% of Max = $383,485”
{1} for monthly {2} yeilds “70% of Max for monthly
Sum(Total)”

11. Select a ‘Line Style’ and ‘Line Color’ in which to display the
statistical lines.

12. (Optional) Press the ‘Fill Band’ button to open a color picker and
select a set of colors for the specified bands (i.e., the regions
between the statistical lines). Select one color for each band. The
colors are applied to the bands from left to right; the left-most color
is applied to the lowest band, and so on. When you have selected
the desired colors, press the green ‘Apply’ button.

For more information about the features of the color-picker, see
Adding Color Coding to Dimensions.

13. (Optional) Select a ‘Fill Above’ color and ‘Fill Below’ color to fill
the regions of the chart above and below the maximum and
minimum statistical lines, respectively.

DASHBOARD DESIGN

1447 of 2477

14. Press ‘OK’ to close the dialog box.

By default, a statistical line appears on the chart even if its value is greater
than the largest data point. This may sometimes cause the data points on the
chart to be compressed into a small region of the plot area, which makes the
chart difficult to read. To correct this, turn off the ‘Keep Element in Plot’
option in the ‘Plot Properties’ dialog box. See Editing Plot Properties for
more information.

See Also
Adding a Target Line, to place a target line or representative line on the
chart.
Adding a Target Band, to demarcate a specified data region on the chart.
Adding Property Script (Expressions), in Dashboard Scripting, to set target
line values and labels through expressions.
Dynamic Properties, set target line values and labels through Input
Components.

Chart Properties: Hierarchy Tab

The Hierarchy tab in the ‘Chart Properties’ dialog box allows you to
specify the hierarchy for a custom drill-down.

To create a custom drill-down hierarchy, follow the steps below:

1. Right-click the Chart, and select ‘Properties’ from the context
menu. This opens the ‘Chart Properties’ dialog box.

2. Select the Hierarchy tab. The ‘Columns’ panel displays the fields
available in the Chart’s binding.

DASHBOARD DESIGN

1448 of 2477

3. Click on a field that you want to include in the hierarchy, and drag
the field to the ‘Hierarchy’ panel.

4. (Optional) If the added field is a date field, select the desired date
representation from options below the ‘Hierarchy’ panel. The
options are ‘Year’, ‘Month of Year’, ‘Day of Week’, ‘Quarter of
Year’, ‘Day of Month’, and ‘Hour of Day’.

DASHBOARD DESIGN

1449 of 2477

Observe that after you add a date field to the ‘Hierarchy’ panel, the
date field still remains available in the ‘Columns’ panel. This
allows you to add the same date field to the hierarchy at multiple
levels, giving each level a different date representation. In this way,
you can control the date-drilling sequence. For example, the fol-
lowing hierarchy produces the drill-down sequence ‘Year’ >
‘Month’ > ‘Day’.

A horizontal green
line indicates the posi-
tion where the field
will be placed within
the hierarchy

5. Click on another field that you want to include in the hierarchy, and
drag it over the existing fields in the ‘Hierarchy’ panel. Drop the
field into the desired position in the hierarchy.

6. Repeat the previous step to add additional fields to the hierarchy, as
desired.

To remove a specific field from the hierarchy, simply drag the field
from the ‘Hierarchy’ panel back to the ‘Columns’ panel. To
remove all fields from the hierarchy, press the ‘Clear’ button.

7. (Optional) To create an additional independent hierarchy, drag a
field from the ‘Columns’ panel to the region labeled ‘Drag here to
add a hierarchy’. Then repeat the previous steps to add additional
fields to this independent hierarchy.

DASHBOARD DESIGN

1450 of 2477

8. Press ‘OK’ to close the dialog box.

Note that there may not be any immediate change to the Chart. However,
by configuring a hierarchy as described above, you achieve the following
effect: Whenever you (or the end user) adds a field listed on the hierarchy
to the ‘X’ or ‘Y’ region of the Chart Editor, the Chart will automatically
implement an appropriate drill-down feature based on the specified
hierarchy.

For example, consider the following hierarchy:

Category
Name
Company

After you have specified this hierarchy in the ‘Hierarchy’ panel, if you then
bind the ‘Category’ field to the ‘X’ or ‘Y’ region in the Chart Editor, the
Chart automatically makes a full drill-down hierarchy (‘Category’ >
‘Name’ > ‘Company’) available to users. Likewise, if you bind the ‘Name’
field to the ‘X’ or ‘Y’ region in the Chart Editor, the Chart automatically
makes the appropriate partial drill-down hierarchy (‘Name’ > ‘Company’)
available to users.

For information on how to navigate a chart with drill-downs, see Drilling
Down into a Chart.

See Also
Drilling Down into a Chart, for information on using default drill-down
features.

4.4.9 Representing Data with Visual Formats

You can represent data values using the following visual formats: Color,
pattern, size, or text. These formats can be applied to an entire dataset or to
a subseries within a dataset.

The following sections explain how to add visual formats to a dataset. For
information on adding formats to subseries, see Adding a Sub-Series.

DASHBOARD DESIGN

1451 of 2477

Adding a Fixed Visual Format

To add a fixed visual format (not keyed to data), follow the steps below:

1. If the chart contains multiple measures with individual styles, click
on one of the arrows in the ‘Visual’ panel title bar to select the
particular measure that you want to format. (Or click the area
between the arrows to select the measure from a menu.)

If desired, select ‘all’ to apply visual formatting (selected in the
next step) to all measures.

2. Press the ‘Edit’ button in one of the format fields in the ‘Visual’
pane: ‘Color’, ‘Shape’, ‘Size’.

Note: The available
shape options vary
depending on the
Chart type.

The following shapes are available for point-type charts:

To hide a measure’s data points in cases where the measure is being used to
anchor text on the chart, press the ‘Clear’ button on the ‘Shape’ panel. (The
‘Clear’ button is only available when the ‘Text’ field is in use.) See
Representing Data With Text for an example.

DASHBOARD DESIGN

1452 of 2477

An administrator can make custom shapes available by placing image files
(png, gif, jpg) in the WEB-INF/classes/portal/shapes directory on the
server. The icons are sorted alphabetically by file name. Custom shape
images should be 18x18 pixels, and will be scaled according to the ‘Size’
setting in the Chart Editor.

See Also
Setting a Chart Style for an Individual Dataset, to assign individual styles
to multiple measures.
Adding Formats to Dimensions, for information on keying formats to
grouping.
Adding Formats to Measures, for information on keying formats to data
values.
Adding a Sub-Series, for information on using format to create groupings.

Adding Formats to Dimensions

To add a visual format to a dimension, follow the steps below:

1. If the chart contains multiple measures with individual styles, click
on one of the arrows in the ‘Visual’ panel title bar to select the
particular measure that you want to format. (Or click the area
between the arrows to select the measure from a menu.)

If desired, select ‘all’ to apply visual formatting (selected in the
next step) to all measures.

2. Drag the desired dimension from the ‘Data Source’ tree to the
desired format field in the ‘Visual’ pane (‘Color’, ‘Shape’, ‘Size’,
or ‘Text’).

If the dimension is not already used on the chart X-axis, this creates a new
subseries using the specified formatting for the selected measure.

DASHBOARD DESIGN

1453 of 2477

See Also
Converting between Measure and Dimension, to convert a dimension to a
measure.
Setting a Chart Style for an Individual Dataset, to assign individual styles
to multiple measures.
Positioning a Chart Legend, for information on controlling the legend
display.
Editing a Chart Legend, for information on changing the display of a
legend.
Adding a Sub-Series, for information on using format to create groupings.

Adding Formats to Measures

To add a visual format to a measure, follow the steps below:

1. If the chart contains multiple measures with individual styles, click
on one of the arrows in the ‘Visual’ panel title bar to select the
particular measure that you want to format. (Or click the area
between the arrows to select the measure from a menu.)

If desired, select ‘all’ to apply visual formatting (selected in the
next step) to all measures.

DASHBOARD DESIGN

1454 of 2477

2. Drag the measure (i.e., the measure that will supply the formatting
values) from the ‘Data Source’ tree to the desired format field in
the ‘Visual’ pane (‘Color’, ‘Shape’, ‘Size’, or ‘Text’).

By default, string-type measures are represented categorically. Other
measures are represented linearly unless you select the ‘Discrete’ option.
See Displaying a Measure as Discrete Values for more information.

See Also
Converting between Measure and Dimension, to convert a measure to a
dimension.
Setting a Chart Style for an Individual Dataset, to assign individual styles
to multiple measures.
Adding Color Coding to Measures, for information on changing the color
representation.
Adding Shape Coding to Measures, for information on changing the shape
representation.

Representing Data With Color

To represent data using color, drag a dimension or measure from the Data
Source panel to the ‘Color’ field in the Visual panel.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

DASHBOARD DESIGN

1455 of 2477

Adding Color Coding to Dimensions

To specify the order in which the colors are applied to the levels of a
dimension, follow the steps below:

1. Press the ‘Edit’ button next to the ‘Color’ field. This opens the
color panel.

2. (Optional) Press the ‘Select Palette’ button to open the ‘Select
Palette’ dialog box.

If the selected palette
does not contain
enough colors to rep-
resent all of the dis-
tinct data groups,
additional groups will
be represented by col-
ors from the default
palette.

3. Select the desired palette from ‘Select Palette’ the menu, and press
‘OK’.

4. Click on the color chips to create the desired color order.

5. Click ‘Apply’ to finalize the setting.

To reset the color order, click the ‘Reset’ button on the color menu. To
synchronize the color mapping to that of other charts (in the Viewsheet)
which display the same dimension, click the ‘Shared’ button in the color
panel.

DASHBOARD DESIGN

1456 of 2477

To specify one or more custom palettes using your own color choices,
create a file called colorpalettes.xml in the portal directory of SREE Home
(WEB-INF\classes\portal, by default). The structure of the file should be as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<palettes>
<palette name="MyPalette_1">
<colors>
<color value="#ff0000"/>
<color value="#00ff00"/>
<color value="#0000ff"/>

...
<color value="#00ffff"/>

</colors>
</palette>
<palette name="MyPalette_2">
<colors>
<color value="#000000"/>
<color value="#222222"/>
<color value="#444444"/>

...
<color value="#eeeeee"/>

</colors>
</palette>

</palettes>

If you designate a custom palette which has the same “palette name” as
one of the built-in palettes, the custom palette will be used in place of the
built-in palette.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Color Coding to Measures

To specify the manner in which colors are used to code the measure values,
follow the steps below:

1. Click the ‘Edit’ button next to the ‘Color’ field. This opens the
color selection menu.

DASHBOARD DESIGN

1457 of 2477

2. Select a gradient style for the color coding. If required, click the
color chip to specify the desired color.

3. Click ‘Apply’ to finalize the setting.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Representing Data With Shape

To represent data using fill pattern or shape, drag a dimension or measure
from the Data Source panel to the ‘Shape’ field in the Visual panel.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Shape Coding to Dimensions

To specify the order in which the patterns/shapes are applied to the levels of
a dimension, follow the steps below:

1. Click the ‘Edit’ button next to the ‘Shape’ field. This opens the
shape selection menu.

DASHBOARD DESIGN

1458 of 2477

Note: The available
shape options vary
depending on the
Chart type.

2. Click on the individual shape menus to create the desired pattern/
shape order. The following shapes are available for point-type
charts:

An administrator can make custom shapes available by placing the
image files (png, gif, jpg) in the WEB-INF/classes/portal/shapes
directory on the server. The icons are sorted alphabetically by file
name. Custom shape images can be any size, and are scaled
according to the ‘Size’ setting in the Chart Editor.

3. Click ‘Apply’ to finalize the setting.

To reset the shape order, click the ‘Reset’ button on the shape menu. To
synchronize the shape mapping to that of other charts (in the Viewsheet)
which display the same dimension, click the ‘Shared’ button in the shape
panel.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Adding Shape Coding to Measures

To specify the manner in which shapes are used to code the measure
values, follow the steps below:

DASHBOARD DESIGN

1459 of 2477

1. Click the ‘Edit’ button next to the ‘Shape’ field. This opens the
shape selection menu.

Note: The available
shape options vary
depending on the
Chart type.

2. Select a pattern style for the value coding.

For the ‘Left Tilt’, ‘Right Tilt’ and ‘Grid’ options, the density of the
pattern represents the measure value. For the ‘Orientation’ option,
the angle of the hashing represents the measure value.

3. Click ‘Apply’ to finalize the setting.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Representing Data with Size

To represent data using size, drag a dimension or measure from the Data
Source panel to the ‘Size’ field in the Visual panel.

To specify the range of sizes that should be used in representing the levels
of a dimension or values of a measure, follow the steps below:

1. Click the ‘Edit’ button next to the ‘Size’ field. This opens a size
range slider.

2. Adjust the slider to select the smallest and largest element size.

3. Click ‘Apply’ to finalize the setting.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

DASHBOARD DESIGN

1460 of 2477

Representing Data With Text

To display a dimension or measure values using text, drag the dimension or
measure from the Data Source panel to the ‘Text’ field in the Visual panel.

Note: By default,
dimension and mea-
sure values are auto-
matically displayed
by tooltip when the
Viewsheet is pre-
viewed or deployed.

To format the text displayed for the dimension or measure, follow the steps
below:

1. Click the ‘Edit’ button next to the ‘Text’ field.

This opens the ‘Text Format’ dialog box.

2. Select the text size, font, and color.

DASHBOARD DESIGN

1461 of 2477

3. Select the format for the displayed text. See Format Tab for an
explanation of the format options.

4. Press ‘OK’ to close the dialog box.

Alternatively, you can click the text on the chart to select it, and then press
the desired toolbar buttons to change the formatting.

See Also
Adding Formats to Dimensions, for information on using format to
categorize.
Adding Formats to Measures, for information on using format to code data.
Adding a Sub-Series, for information on using format to create groupings.

Example:
Superimposing
Measure Values
Over a Bar Chart

When you display a measure on a chart as text, the text is placed next to the
corresponding data points. For example, in the chart below (based on the
‘Order Model’ data model), the bars represent the ‘Total’ values, and the
‘Text’ binding displays the ‘Quantity Purchased’ values as text next to the
bars.

In some cases, it may be desirable to display the ‘Quantity Purchased’
value superimposed on top of the bars:

DASHBOARD DESIGN

1462 of 2477

To do this, you can introduce a dummy measure to act as an anchor for the
text. Follow the steps below to create this example:

1. Create a new Viewsheet base on the ‘Order Model’ data model,
and drag a Chart component from the Components panel into the
Viewsheet grid.

2. From the Data Source panel, drag the ‘State’ field from the
‘Customer’ entity to the ‘Y’ region of the Data panel.

3. From the Data Source panel, drag the ‘Total’ field from the
‘Product’ entity to the ‘X’ region of the Data panel.

4. In the Data Source panel, right-click on the ‘Product’ entity, and
select ‘New Calculated Field’.

5. Name the field ‘TextAnchor’ and select the ‘Detail’ option. Press
‘OK’. This opens the Formula Editor.

6. In the Formula Editor, set the ‘Return Data Type’ to ‘Double’, enter
the formula “1”, and press ‘OK’.

This creates a new measure that has the uniform value “1”. You
will use this measure to anchor the ‘Quantity Purchased’ values to
the left side of the plot region.

7. Drag the new ‘TextAnchor’ measure from the Data Source panel
to the ‘X’ region of the Data panel, under the ‘Total’ field.

DASHBOARD DESIGN

1463 of 2477

8. Press the ‘Select Chart Style’ button, and enable the ‘Multiple
Styles’ option. Press the green ‘Apply’ button to close the panel.

9. Press the ‘Select Chart Style’ button next to the ‘Total’ field, and
switch the chart style to ‘Bar’.

10. Press the ‘Select Chart Style’ button next to the ‘TextAnchor’ field,
and switch the chart style to ‘Point’.

11. Press the ‘Switch to Single Graph’ button to place both data sets on
the same axis.

12. Right-click on the legend, and select ‘Hide Legend’.

13. In the Visual panel, click the title bar between the arrows and select
the ‘Sum(TextAnchor)’ measure.

DASHBOARD DESIGN

1464 of 2477

14. From the Data Source panel, Drag the ‘Quantity Purchased’ field
from the ‘Product’ entity to the ‘Text’ region of the Visual panel.

15. In the Visual panel, press the ‘Edit’ button in the ‘Shape’ region,
and press the ‘Clear’ button. This hides the points for the
‘TextAnchor’ measure.

16. In the Visual panel, press the ‘Edit’ button in the ‘Color’ region,
and set a black color for the text.

17. Right-click on the chart and select ‘Properties’. This opens the
‘Chart Properties’ dialog box.

18. Select the Script tab, and enter the following script, and press
‘OK’.

graph.getElement(1).setLabelPlacement(GraphConstants.RIGHT)

DASHBOARD DESIGN

1465 of 2477

This sets the alignment appropriately, and yields the desired result:

¢

4.4.10 Adding Highlights to a Chart

You can highlight chart elements based on the values that they contain. To
add highlights to a chart, follow these steps:

1. Right-click on a data group in the chart, and select ‘Highlight’ from
the context menu. This opens the ‘Highlight’ dialog box.

DASHBOARD DESIGN

1466 of 2477

2. In the ‘Highlight’ dialog box, define the desired highlight. See the
Highlights section for details on how to do this.

Example: Chart
Highlighting

In this example, you will create a chart to display ‘Quantity Purchased’ vs.
‘State’, and use highlighting to draw attention to values that exceed 5000 or
fall below 1000. Follow the steps below:

1. Create a new Viewsheet based on the sample ‘Analysis’
Worksheet.

2. Add a chart component, and click the ‘Edit’ button. This opens the
Chart Editor.

3. In the Data Source panel, expand the ‘OrdersAndReturns’ data
block.

4. From the ‘Dimensions’ node, drag the ‘State’ field to the ‘X’ field
of the Data panel.

5. From the ‘Measures’ node, drag the ‘Quantity Purchased’ field to
the ‘Y’ field of the Data panel. This creates the desired chart.

DASHBOARD DESIGN

1467 of 2477

6. Right-click in any bar on the chart, and select the ‘Highlight-
Quantity Purchased’ option from the context menu. This opens the
‘Highlight’ dialog box.

7. Click the ‘Add’ button to open the ‘Name’ dialog box.

8. Enter ‘Under1000’ as the name of the first highlight. Click ‘OK’ to
close the dialog box. The new highlight name appears in the
highlight list.

9. Click the highlight name in the list to select it. From the ‘Color’
palette, select the color red (rgb value “FF0000”).

10. In the ‘Condition’ panel, click the ‘Edit’ button to open the
‘Condition’ dialog box. Enter the following condition, and click
‘OK’.

[Sum of Quantity Purchased][is][less than][1000]

11. Repeat Steps 7-10 to add the following conditions and formats:

a. Name = ‘Over5000’, rgb value = ‘AAFFAA’

[Sum of Quantity Purchased][is][greater than][5000]

b. Name = ‘Between1000and5000’, rgb value = ‘B0B0B0’

[Sum of Quantity Purchased][is][between][1000,5000]

12. Click ‘OK’ to exit the ‘Highlight’ dialog box.

DASHBOARD DESIGN

1468 of 2477

The chart table now shows the value-keyed highlighting you speci-
fied. In particular, the very large and very small order quantities
have been highlighted in green and red, respectively.

¢

See Also
Highlights, for information on defining a highlight.
Brushing a Chart, for information on highlighting data across multiple
charts.
Crosstabs, for information on creating crosstabs.

4.4.11 Adding Hyperlinks to a Chart

In charts, hyperlinks can be attached to the chart graphical elements (e.g.,
the bars in a bar chart). To create hyperlinks on a chart, follow the steps
below:

1. Right-click on a chart element to add hyperlinks to the chart
elements (e.g., bars), or right-click on a chart dimension label to
add hyperlinks to the labels.

2. Select ‘Hyperlink’ from the context menu. This opens the
‘Hyperlink’ dialog box.

DASHBOARD DESIGN

1469 of 2477

3. In the ‘Hyperlink’ dialog box, define the desired hyperlink. See the
Hyperlinks section for details on how to do this.

See Also
Hyperlinks, for information on the ‘Hyperlink’ dialog box.

4.5 Map Charts
A map is a type of chart, and displays summarized data grouped by
physical location in the form of a geographical map. It has many of the
same properties of other chart types, but also differs in some ways. The
following sections explain how to create and modify map charts.

See Also
Creating a Custom Map, in Administration Reference, to create a map
based on a custom shapefile.

4.5.1 Creating a Map Chart

To add a map chart to a Viewsheet, drag and drop the Chart component
from the Component tree into the grid. Use the mouse to move and resize
the chart as desired.

To bind the Chart to geographical data, follow the steps below:

1. Click on the center of the chart, or click the ‘Edit’ button in the top-
right corner. This opens the Chart Editor on the left side of the
Visual Composer.

DASHBOARD DESIGN

1470 of 2477

2. In the Chart Editor’s Data panel, click ‘Select Chart Style’, and
choose the ‘Map’ chart type. Click the ‘Apply’ button (or double-
click the ‘Map’ icon).

The the Data panel changes to display a ‘Geographic’ field.

If your columns con-
tain longitude and lat-
itude data (in decimal
format) rather than
location names, use
the ‘Longitude’ and
‘Latitude’ fields of the
‘Data’ panel.

3. From the Data Source panel in the Chart Editor, drag a geographic
dimension onto the ‘Geographic’ field in the Data panel. (See
Setting a Geographical Field to declare a field as geographical.)

The chart updates to display the locations contained in the geo-
graphic field.

4. Repeat the previous step to bind additional ‘Geographic’ levels.
For example, you can bind ‘City’ and ‘State’ fields.

DASHBOARD DESIGN

1471 of 2477

5. From the Data Source panel, drag a measure onto one of the fields
in the Visual panel (‘Color’, ‘Shape’, ‘Size’, or ‘Text’).

This binding will display the measure on the chart using the partic-
ular visual coding you selected, and automatically creates a corre-
sponding legend. See Adding a Sub-Series for more information on
using the Visual panel.

6. Click the ‘Edit Measure’ button, and select the desired aggregation
method for the measure.

7. (Optional) For any geographical fields that you specified, click the
‘Edit Dimension’ button, and select the desired ranking for the

DASHBOARD DESIGN

1472 of 2477

geographical data. For example, you can display just the top three
states according to the measure.

8. (Optional) To create a particular trajectory through the points on
the chart, drag a path field to the ‘P’ region. The values of this field
are used to assign the sort order for the plotted data so that
connecting lines are drawn between points which are adjacent in
the path sort order.

9. (Optional) Set the initial map view by selecting a region, and
clicking the ‘Zoom’ button. See Zooming a Chart for more details.

See Also
Creating a Custom Map, in Administration Reference, to create a map
based on a custom shapefile.
Setting a Geographical Field, for information on declaring a field
geographical.
Editing Chart Formats, for information on changing chart labels.
Adding a Sub-Series, for information on using the Visual panel.
Creating Selection List from Chart Data Source, for information on adding
a Selection List.
Creating a Selection Tree from Chart Data Source, for information on
adding a Selection Tree.
Positioning a Component, for information on moving and resizing a chart.

DASHBOARD DESIGN

1473 of 2477

Resolving Geographical Data

When Visual Composer cannot automatically match your geographical
data to the locations in the geographical database, you can use the
‘Geographic Mapping’ dialog box to manually create the correct mapping.

To set the mapping for geographical data, follow the steps below.

1. In the Chart Editor, right-click the desired geographical field, and
select ‘Edit Geographic’ to open the editing panel. (See Setting a
Geographical Field for more information.)

The Chart Editor attempts to resolve values in the selected geo-
graphic field against the corresponding layer in the map database.
If all data values are successfully matched, a green check mark is
displayed. If some data values cannot be matched, a red question
mark is displayed.

2. To resolve any unmatched names, click the red question mark. This
opens the ‘Geographical Mapping’ dialog box. In the
‘Geographical Mapping’ dialog box, follow the steps below:

a. Select one of the unmatched names in the top left panel. The
right panel will display a list of candidate matches. (If the list is
very long, type a portion of the name in the search box above
the panel to limit the results.)

b. If the list does not contain the intended match, select another
matching method from the ‘Algorithm’ menu.

c. Select the correct match and click the ‘Add’ button.

DASHBOARD DESIGN

1474 of 2477

This creates the desired mapping between the data value and the
geographical information in the map database. (You can match
multiple data values to a single geographical location.)

3. Repeat the above steps until all values have been matched.

To reuse a custom
mapping, create and
save the mapping in
Style Studio. See
Resolving Geographi-
cal Data in Report
Design for more
details.

4. When you have completed making all matches, and the left panel is
empty, click ‘OK’ to close the dialog box.

5. Click the ‘Apply’ button in the geographical editing panel.

Example:
Resolving
Geographical
Data

In this example, you will create a Worksheet Data Block that contains state
names that have an unusual format. Because of the unusual format, you
will need to manually map these state name to the correct geographical
locations.

This example assumes that you are familiar with Data Worksheets,
and requires some scripting. See Creating an Expression/Formula
Column in Data Mashup for complete information.

1. Open the ‘US Sales’ Worksheet from the ‘Tutorial Folder’.

2. Save a copy of the Worksheet as ‘US Sales Copy’.

3. In the ‘US Sales Copy’ Worksheet, create a formula column that
contains variations of the state names in the ‘State’ column. To do
this, follow the steps below:

a. Click the ‘Create Expression’ button in the title bar of the
‘Sales’ table.

DASHBOARD DESIGN

1475 of 2477

b. When Visual Composer prompts you for the expression name,
enter ‘New State’ for ‘Expression Name’. Click ‘OK’ to open
the Formula Editor.

c. Deselect the ‘SQL’ option. The formula will use JavaScript
syntax rather than SQL.

d. In the Formula Editor, enter an expression that will change two
of the names in the ‘State’ column:

if (field['State'] == 'NJ') {
'Jersey';

}
else if (field['State'] == 'CT') {

'Conn';
}
else {

field['State']
}

This simply changes the values ‘NJ’ and ‘CT’ to ‘Jersey’ and
‘Conn’ in the expression column, respectively, leaving all other
state values the same.

Note: Click the ‘Show
Live Data’ button in
the table title bar to
view the actual data.

e. Click ‘OK’ to exit the Formula Editor. This creates the new
column called ‘New State’.

4. Save the Worksheet.

5. Create a new Viewsheet based on this ‘US Sales Copy’ Worksheet.

6. Add a Chart to the new Viewsheet, and click the ‘Edit’ button on
the Chart to open the Chart Editor.

7. In the Data panel of the Chart Editor, click the ‘Select Chart Style’
button, and choose the ‘Map’ type.

8. In the Data Source panel of the Chart Editor, right-click the ‘New
State’ field, and select ‘Set Geographic’. This opens the
geographical editing panel.

DASHBOARD DESIGN

1476 of 2477

9. Click the red question mark to open the ‘Geographical Mapping’
dialog box.

Observe that in the left panel of the ‘Geographical Mapping’ dialog
box, two states are not mapped: ‘Jersey’ and ‘Conn’.

10. Resolve these unmatched states manually. Follow the steps below:

If the suggestions are
unsatisfactory, select a
different matching
method from the
‘Algorithm’ menu.

a. In the left panel, select the state ‘Conn’. In the right panel,
Visual Composer suggests a set of likely matches.

b. Select the correct match (‘Connecticut’), and click the ‘Add’
button.

This creates a new mapping between the value ‘Conn’ and the
location ‘Connecticut’, and removes ‘Conn’ from the left panel.

DASHBOARD DESIGN

1477 of 2477

a. Click ‘Jersey’ in the left panel. In the right panel, Visual
Composer suggests a set of likely matches.

You can start typing
“Jersey” in the search
box to limit the
results.

b. Select the correct match (‘New Jersey’), and click the ‘Add’
button. This creates a new mapping between the value ‘Jersey’
and the location ‘New Jersey’, and removes ‘Jersey’ from the
left panel.

11. Since all unmatched locations have now been resolved, click ‘OK’
to close the ‘Geographic Feature Names’ dialog box.

12. Click ‘Apply’ in the geographical editing panel for the ‘New State’
field.

13. Drag the ‘New State’ field from the Data Source panel to the
‘Geographic’ region of the Chart Editor Data panel.

14. Drag the ‘Quantity Purchased’ measure from the Data Source
panel to one of the Visual panel regions (‘Color’, ‘Shape’, etc.) to
complete the chart.

¢

Using Latitude and Longitude Data

You can use raw latitude and longitude to designate location, rather than
specifying place names (city, state, etc.). The following example provides
an illustration.

Walkthrough In this example, you will label a map with a list of landmarks along
Historic Route 66. The locations of the landmarks are provided by a
Worksheet Data Block containing raw latitude and longitude. Follow the
steps below:

1. Create a new Viewsheet based on the ‘Tutorial’ > ‘Map Points’
Worksheet.

2. Add a Chart component to the Viewsheet, and click the center of
the Chart to open the Chart Editor.

3. In the Data panel, click the ‘Select Chart Style’ button. Select the
‘Map’ type, and click the green ‘Apply’ button.

DASHBOARD DESIGN

1478 of 2477

The ‘Lat’ field con-
tains latitude values.

4. In the Data Source panel, right-click the ‘Lat’ measure, and select
‘Set Geographic’ from the context menu.

5. From the ‘Map’ menu, select ‘U.S.’, and click the green ‘Apply’
button.

The ‘Long’ field con-
tains longitude values.

6. Repeat the above steps to set the ‘Long’ measure as a geographic
field.

7. Drag the ‘Long’ field to the ‘X’ region of the Data panel.

8. Drag the ‘Lat’ field to the ‘Y’ region of the Data panel.

DASHBOARD DESIGN

1479 of 2477

Data points now appear on the map to mark the locations specified
by the latitude and longitude data, and outline the progression of
Historic Route 66.

9. To add the landmark labels to the points on the map, drag the
‘Name’ field from the Data Source panel to the ‘Text’ field in the
Visual panel.

Note: By default, the
landmark names are
displayed as tooltips.

The labels appear fairly crowded because of the long landmark
names. You can zoom the chart to see the labels more clearly. See
Zooming a Chart for instructions.

Transforming Longitude/Latitude for Alaska and Hawaii

For convenience, the default ‘U.S.’ map does not display Alaska and
Hawaii in their geographical locations, but shifts and (in the case of Alaska)
re-scales them to an inset position below California. For this reason, you
should transform your raw latitude and longitude data for Alaska and
Hawaii prior to generating the chart.

To remap your raw longitude and latitude data, [long lat], to the corrected
values, [long' lat'], apply the following matrix transformations:

Figure 8. Transformation for Alaska

long
lat
1

0.204 0 85.0–

0 0.354 5.0

0 0 1

long

lat

1

=

DASHBOARD DESIGN

1480 of 2477

Figure 9. Transformation for Hawaii

4.5.2 Map Chart Properties

The map chart is a type of chart, and provides most of the same properties
as other chart types. See Chart Properties for more information.

See Also
Properties Dialog Box, for information about common component
properties.

long
lat
1

1 0 50.0

0 1 5.0

0 0 1

long

lat

1

=

DASHBOARD DESIGN

1481 of 2477

5 Data View Features

The following sections present features that facilitate display and analysis
of data by Data View components (Charts, Tables, Crosstabs). These
features include highlighting, filtering, hyperlinking, and calculation.

5.1 Highlights
You can apply conditional formatting to table columns, images, text
elements, crosstabs, and charts, so that the element formatting changes
based on the data bound to the element. These conditional formats are
called highlights. They are very useful for calling attention to an element
when its associated data meets (or fails to meet) some specified condition.

5.1.1 Creating a Highlight

To apply a highlight to a table column, image, text element, chart, or
crosstab, follow these steps:

1. Right-click the element you wish to highlight. (For a Table, right-
click a data cell in column to which you want the highlight to be
applied.)

2. Select ‘Highlight’ from the right-click context menu. This opens
the ‘Highlight’ dialog box.

3. Click the ‘Add’ button. This opens the ‘Name’ dialog box.

4. Enter a name for this highlight, and click ‘OK’ to close the dialog
box.

DASHBOARD DESIGN

1482 of 2477

5. Repeat the previous steps to enter any additional highlights, and
then follow the steps below for each individual highlight.

6. Select the highlight in the list that you want to edit.

7. In the ‘Properties’ panel, select the highlight format. The
formatting is applied when the data meets the highlight condition
(specified below):

a. Click the ‘Foreground’ color chip to set the text color.

b. Click the ‘Background’ color chip to set the fill color.

c. Click the ‘Edit’ button next to the ‘Font’ field to open the ‘Font’
dialog box. Make the desired font selections and press ‘OK’.
(Press ‘Reset’ to restore the original settings.)

Cell-based highlights
take precedence over
row-based highlights.

8. For a Table, select ‘Apply to Row’ if you wish to apply the
specified formatting to the entire table row. Otherwise, the
formatting applies only to the selected table column.

9. Click the ‘Edit’ button below the ‘Conditions’ box. This opens the
‘Conditions’ dialog box.

Note: To use aggregate fields in a highlight condition for a
Freehand Table, first assign a ‘Cell Name’ to the aggregate field
in the Freehand Table Editor. See Freehand Tables for more
information.

10. Follow the steps below to specify the condition expression for this
highlight:

a. Select the operand and type of comparison from the menus at
the top of the dialog box, e.g., “[Company][is not][one of]”

DASHBOARD DESIGN

1483 of 2477

For table highlights, the operand is one of the table column
names. For text and image highlights, the operand is called
‘value’, which is the aggregate value associated with the
element, as configured in the Data tab of the element’s
‘Properties’ dialog box.

b. For table highlighting, select ‘Value’, ‘Field’, or ‘Variable’ from
the ‘Change Value Type’ popup menu (triangle).

c. If you select the ‘Field’ option, in the adjoining menu, choose
the table column for comparison. (The two columns will be
compared row by row, and the specified highlight will be
applied to every row where the condition holds true.)

d. If you select the ‘Value’ option, either enter the comparison
value into the provided text field, or select ‘Browse Data’ to
choose the comparison value from a list.

e. If you select the ‘Variable’ option, select one of the Input
Components listed in the menu to provide the value at runtime.
(See Dynamic Properties for further details.)

f. If you select the ‘Expression’ option, press the ‘js’/’sql’ button
to select JavaScript or SQL syntax, and then press the ‘Edit’
button. This opens the Script Editor where you can enter your
expression. (See Adding Property Script (Expressions) in
Dashboard Scripting for details on using expressions.)

g. When you have fully specified the condition, click ‘Append’.

h. To create a compound condition, repeat Steps a-g above, using
the ‘and’ and ‘or’ operators to composite the conditions. See
Modifying a Filter/Highlight Condition for more details.

i. Click ‘OK’ to exit the ‘Conditions’ dialog box and return to the
‘Highlight’ dialog box.

When you add a highlight to a table column or crosstab, the highlight
condition is tested individually for each cell. When the condition is
satisfied, the corresponding highlight format is applied to the cell or row (if
‘Apply to Row’ is selected).

You can use multiple highlights in combination to produce composite
formats. For example, if you specify a red-foreground highlight for the
condition “Discount is greater than 0,” and you also specify a bold font
highlight for the condition “State is equal to NJ,” values which meet both
conditions will appear highlighted in red and bold.

DASHBOARD DESIGN

1484 of 2477

See Also
Adding Highlights to a Table, for information on the table ‘Highlight’
dialog box.
Adding Highlights to Text, for information on the text ‘Highlight’ dialog
box.
Adding Highlights to an Image, for information on the image ‘Highlight’
dialog box.
Adding Highlights to a Chart, for information on highlighting charts.
Filtering Operators, in Data Mashup, for explanation of the operators.
Dashboard Scripting, for more sophisticated conditional formatting.

5.1.2 Modifying a Filter/Highlight Condition

You can make a variety of modifications to conditions in the ‘Conditions’
dialog box. The following sections discuss these options.

See Also
Highlights, for information about highlighting conditions.
Filter Conditions, for information about filtering conditions.

Inserting a Filter/Highlight Condition

To insert a new condition (clause) into an existing condition set, follow
these steps:

1. In the ‘Conditions’ dialog box, select an existing condition. The
new condition will be inserted above the selected condition. (To
reorder the condition after insertion, see Nesting/Ordering a Filter/
Highlight Condition.)

2. Construct the new condition as described in Step 9 of the
Highlights section.

3. Select the desired connector, ‘and’ or ‘or’, by which the new
conditions should be connected with the previous conditions.

4. Click ‘Insert’.

See Also
Highlights, for information about highlighting conditions.
Filter Conditions, for information about filtering conditions.

Modifying a Filter/Highlight Condition or Connector

To modify an existing condition, follow these steps:

1. In the ‘Conditions’ dialog box, select the existing condition
(clause) you wish to modify.

DASHBOARD DESIGN

1485 of 2477

2. Edit the condition as desired using the menus at the top of the
dialog box.

3. Click ‘Modify’

To modify the connector between conditions (clauses), follow these steps:

1. In the ‘Conditions’ dialog box, select the connector (‘and’ or ‘or’)
you wish to change.

2. Select the desired connecting using the ‘and’ and ‘or’ buttons at the
top of the dialog box.

3. Click ‘Modify’.

To delete a condition (clause), select the condition, and click ‘Delete’. To
delete all conditions (clauses), click ‘Clear’.

See Also
Highlights, for information about highlighting conditions.
Filter Conditions, for information about filtering conditions.

Nesting/Ordering a Filter/Highlight Condition

To specify that a particular operation (clause evaluation) should be
performed before others, follow these steps:

1. Select the connector (‘and’ or ‘or’) that you wish to evaluate first.

2. Click ‘Indent’.

The connector and its accompanying clauses are indented to indicate that
they will be evaluated first. Indenting is equivalent to placing parentheses
around the specified clauses.

Reordering a Filter/Highlight Condition

To change the position of a clause in the condition, select the desired
clause, and click ‘Up’ or ‘Down’.

If the condition contains both ‘and’ and ‘or’ connectors, in general, the
reordering of clauses will change the meaning of the condition.

See Also
Highlights, for information about highlighting conditions.
Filter Conditions, for information about filtering conditions.

DASHBOARD DESIGN

1486 of 2477

5.2 Filter Conditions
You can filter the values displayed in a data view component (Chart, Table,
Crosstab) or output component (Gauge, Thermometer, Text, etc.) to match
specified criteria by setting a Condition on the component. For example,
you can filter a chart or a table so that it displays only data for a particular
sales employee or region.

Condition-based filtering applies on the component level, and is different
than filtering provided by Selection Components. Selection components
filter the Viewsheet’s underlying query or Data Block, and therefore affect
all data view elements in the Viewsheet that use the same query or Data
Block. In contrast, a condition that you place on a particular component
affects only that component.

See Also
Filtering Table Columns, for an alternative method of filtering tables.
Filtering, in Data Mashup, for information on setting Data Block
conditions.
Selection Components, for dynamic filtering of data view components.

5.2.1 Creating a Filter Condition

To apply a condition to a data view or output component, follow these
steps:

1. Right-click the element, and select ‘Condition’ from the context
menu. This opens the ‘Condition’ dialog box.

2. Select the operand and type of comparison from the menus at the
top of the dialog box, e.g., “[Company][is not][one of]”

3. From the ‘Change Value Type’ popup menu (triangle), select
‘Value’, ‘Field’, ‘Variable’, or ‘Session Data’.

DASHBOARD DESIGN

1487 of 2477

a. If you select the ‘Field’ option, in the adjoining menu, choose
the column for comparison. (The two columns will be
compared row by row; rows that satisfy the condition will be
preserved.)

b. If you select the ‘Value’ option, either enter the comparison
value into the provided text field, or select ‘Browse Data’ to
choose the comparison value from a list.

c. If you select the ‘Variable’ option, select one of the Input
Components listed in the menu to provide the value at runtime.
(See Dynamic Properties for further details.)

d. If you select the ‘Expression’ option, press the ‘js’/’sql’ button
to select JavaScript or SQL syntax, and then press the ‘Edit’
button. This opens the Script Editor where you can enter your
expression. (See Adding Property Script (Expressions) in
Dashboard Scripting for details on using expressions.)

Note that the adjacent
menu automatically
chooses the ‘equal to’
or ‘one of’ operator to
match your selection.

e. If you select the ‘Session Data’ option, choose one of ‘User’,
‘Roles’, or ‘Groups’. These parameters return information about
the user who is currently viewing the Viewsheet; respectively,
the user name, the array of roles to which the user belongs, and
the array of groups to which the user belongs.

4. When you have fully specified the condition, click ‘Append’.

5. To create a compound condition, repeat Steps 2-4 above, using the
‘and’ and ‘or’ operators to compose the condition clauses. See
Modifying a Filter/Highlight Condition for more details.

6. Click ‘OK’ to exit the ‘Condition’ dialog box.

The component will only display data that is compatible with the selections
and satisfies the condition.

See Also
Filtering Table Columns, for an alternative method of filtering tables.
Filtering Operators, in Data Mashup, for explanation of the operators.

5.3 Hyperlinks
You can add hyperlinks to Data View component and Output components.
(Data View components include Tables, Crosstabs, and Charts. Output
components include Text, Image, Gauge, Thermometer, Sliding Scale, and
Cylinder.)

DASHBOARD DESIGN

1488 of 2477

Hyperlinks can target reports, Viewsheets, or web pages. When parameters
are associated with a hyperlink, the parameter values are automatically
passed to the targeted report, Viewsheet, or web page. Parameters can
represent any of the attributes (columns) bound to the table or chart.

Note: You can also add hyperlinks to Viewsheets from within the
Data Modeler. See Auto-Drilldown, in Data Modeling, for details on
adding model-level and query-level hyperlinks.

The following example illustrates how to add hyperlinks to a table. Adding
hyperlinks to other components is the same.

See Also
Adding Hyperlinks to a Table, to access the ‘Hyperlink’ dialog box for
tables.
Adding Hyperlinks to a Chart, to access the ‘Hyperlink’ dialog box for
charts.
Adding Hyperlinks to Output Components, to access the ‘Hyperlink’ dialog
box for output components.

5.3.1 Creating a Hyperlink to a Report or Viewsheet

In this example, you will create a Viewsheet containing the ‘Customer’
table from ‘Order Model’, and add hyperlinks to the ‘Company’ attribute.
The ‘Company’ attribute contains the names of companies, and the
company names will be hyperlinked to the appropriate company-specific
information in the ‘OrderList’ report (in the classes/inetsoft/demos
directory).

Walkthrough The ‘OrderList’ report is designed to accept five parameters, one of those
being ‘customer,’ which represents the company name of the customer.
You will configure the hyperlinks that you add to the ‘Customer’ >
‘Company’ attribute in the Viewsheet to pass the company name into the
‘OrderList’ report’s ‘customer’ parameter.

1. In the Visual Composer, create a new Worksheet. (See the Data
Mashup for information on creating a Worksheet.)

2. From the ‘Order Model’ data source, drag the ‘Customer’ table
onto the Worksheet.

3. Save the Worksheet as ‘HyperlinkExample’.

4. Create a new Viewsheet in Visual Composer using the saved
‘HyperlinkExample’ Worksheet. (See Quick Start: Creating a
Dashboard for information on creating a Viewsheet.)

DASHBOARD DESIGN

1489 of 2477

5. From the ‘HyperlinkExample’ Worksheet listed in the
‘Component’ pane of ‘Visual Composer’, drag the ‘Customer1’
table onto the Viewsheet.

6. Save the new Viewsheet as ‘HyperlinkExampleView’.

Add hyperlinks to the names in the ‘Company’ column. These hyperlinks
will pass the company name as parameter to the ‘OrderList’ report. Follow
the steps below:

7. Right-click any cell in the ‘Company’ column, and select the
‘Hyperlink’ option.

8. This opens the ‘Hyperlink’ dialog box for the ‘Company’ column.

9. In the ‘Hyperlink’ dialog box, click the ‘Asset Link’ radio button.

10. Select ‘OrderList’ from the ‘Link’ menu.

11. Optional: Enter a tooltip in the ‘Tool Tip’ field. (In the example we
use “View company information” as the tooltip.)

The tooltip is displayed when the end-user hovers the mouse over a
hyperlink. If there are multiple hyperlinks for a given attribute
(which may be due to auto-drills added at the model level or query
level), the tooltip is displayed when the end-user hovers the mouse
over the name of the hyperlink in the menu of hyperlink options.

12. Deselect the ‘Self’ option, and enter the name “ReportFrame” in
the ‘Target Frame’ field.

This will cause the hyperlinked report to open in a window called
“ReportFrame” (i.e., this is the browser DOM ‘name’ attribute). If
you want the report to open in the original Viewsheet frame, replac-
ing the Viewsheet, leave the ‘Self’ checkbox selected.

DASHBOARD DESIGN

1490 of 2477

To delete an existing
parameter, select the
parameter and press
‘Remove’. To edit an
existing parameter,
press ‘Edit’.

13. Press the ‘Add’ button in the bottom panel. This opens the
‘Parameter’ dialog box.

14. Select the ‘customer’ parameter in the ‘Name’ menu. This is the
name of the target parameter in the OrderList report.

15. Select the ‘Company’ field from the ‘Value’ menu. This is the
name of the table column whose value should be passed into the
report parameter when the user clicks the hyperlink.

16. Press ‘OK’.

17. (Optional) Enable ‘Send viewsheet parameters’ to pass all existing
viewsheet parameters to the drill-down report, Viewsheet, or URL.
The viewsheet parameter names must exactly match those defined
in the target report, Viewsheet, or URL. See Defining and Editing
Report Parameters in Report Design, and parameter in Dashboard
Scripting, for more information.

DASHBOARD DESIGN

1491 of 2477

18. (Optional) Select ‘Disable parameter prompt’ to suppress the
parameter dialog box ordinarily produced by the drill-down report
upon launch. (Prompting is automatically suppressed for
parameters passed in the hyperlink itself.)

19. (Optional) Select ‘Send selections as parameters’ to send the values
of any Viewsheet Selection components (Selection Lists, Range
Sliders, etc.) to the target report. These values are passed into
parameters in the target report that have the same name as the
Selection component. For example, a Selection List named
“EmployeeList” will pass its selected values into a parameter called
‘EmployeeList’ if one exists in the drill-down report.

20. Click ‘OK’ to complete the hyperlink configuration.

To display hyperlink
underlining by
default, set hyper-
link.indicator=true in
sree.properties.

21. Add any desired visual formatting to the hyperlinks (e.g.,
underlining).

22. Save the Viewsheet.

When the user views this Viewsheet in the User Portal, they will now see
hyperlinks on all the names in the ‘Company’ column. (The ‘State’ column
also shows hyperlinks because this attribute was pre-configured with an
auto-drill.) Clicking one of the ‘Company’ hyperlinks launches the
‘OrderList’ report in a new browser window, and the ‘OrderList’ report
now displays only the orders for the specific company clicked.

DASHBOARD DESIGN

1492 of 2477

See Also
pviewsheet, in Dashboard Scripting, for information on how to access
properties of a parent Viewsheet from within a hyperlinked report or
Viewsheet.
parameter, in Dashboard Scripting, for information on reading and writing
Viewsheet parameters.
Parameterization, in Report Design, for information on configuring report
parameters.

5.3.2 Creating a Hyperlink to a Web Page
Walkthrough You will continue the above example by changing the hyperlinks to target a

web page rather than a report. The initial steps (up to and including Step 8)
are the same as in the previous example.

Start here from the open ‘Hyperlink’ dialog box:

1. In the ‘Hyperlink’ dialog box, click the ‘Web Link’ radio button.

You can also specify a
table column to pro-
vide the URL links by
selecting the desired
column from the
‘Link’ menu.

2. In the ‘Link’ field, enter the URL of the hyperlink destination with
parameters omitted. For example, if the hyperlink is to pass a value
as parameter to the Google search engine, the ‘Link’ field should
specify “http://www.google.com/search”.

3. Optional: Enter a tooltip in the ‘Tool Tip’ field. (In the example we
use “View company information” as the tooltip.)

4. Optional: If you want the target web page to be displayed in a
particular browser window, enter the name of the desired window
in the ‘Target Frame’ field. (The specified name becomes the DOM
‘name’ attribute.) To open the target web page in the User Portal
frame, select the ‘Self’ checkbox.

5. Select the ‘Company’ field from the ‘Value’ pane of the
‘Hyperlink’ dialog box and click the ‘Add’ button to open the
‘Parameter Name’ dialog box.

6. Enter ‘q’ in the ‘Name’ field of the ‘Parameter Name’ dialog box,
and click ‘OK’. This name will be the parameter name used in the
URL that is automatically constructed. (The parameter name “q” is
the parameter name expected by the Google search engine.)

DASHBOARD DESIGN

1493 of 2477

7. Click ‘OK’ to complete the hyperlink configuration. The final
configuration of the ‘Hyperlink’ dialog box is shown below.

To display hyperlink
underlining by
default, set hyper-
link.indicator=true in
sree.properties.

8. Add any desired visual formatting to the hyperlinks (e.g.,
underlining).

9. Save the Viewsheet.

The hyperlinks constructed by this configuration will be of the form

http://www.google.com/search?q={CompanyName}

where {CompanyName} is the value of the ‘Name’ attribute clicked by the
user.

5.3.3 Passing Multiple Parameters in a Hyperlink

The previous examples described how to pass a single parameter to a
specified report or web page. It is also possible to pass multiple parameters
in a hyperlink.

The procedure for creating multiple-parameter hyperlinks is the same as
described in the previous section. If there are multiple attributes listed in the
‘Value’ panel of the ‘Hyperlink’ dialog box, these can all be selected and
mapped to different parameter names.

DASHBOARD DESIGN

1494 of 2477

If the hyperlinks are targeting a report, the multiple parameter names
specified in the ‘Hyperlink’ window must be identical to the corresponding
parameter names specified in the report. If the hyperlinks are targeting a
web page, the multiple parameter names specified in the ‘Hyperlink’
window will be the parameter names used in the hyperlink URL, with
parameter-value pairs separated by the ampersand (&) symbol, for
example,

http://
remotehost?param1={value1}¶m2={value2}¶m3={value3}

where param1, param2, param3 are the parameter names specified in the
‘Hyperlink’ window, and {value1}, {value2}, {value3} are the values of
the attributes selected in the ‘Value’ panel.

5.4 Calculated Fields
You can perform calculations on existing data fields within a Viewsheet to
create new “calculated” data fields. You can then use these calculated fields
in the bindings of Charts, Crosstabs, and other elements.

This is especially useful for Viewsheets that are not based on Worksheet
data sources (such as Viewsheets based on queries or data models) and do
not have access to the Worksheet’s computational tools. In such cases, the
Viewsheet’s calculated field feature provides an equivalent to the
Worksheet’s expression column feature. The Viewsheet’s calculated field
feature also aids in calculations that require access to post-aggregate
quantities, such as rates and ratios, which can be challenging to configure
within a Worksheet.

Note: For Worksheet-based Viewsheets, you can make detail-level
calculations within the Worksheet itself. (See Creating an
Expression/Formula Column in Data Mashup.) To perform aggregate-
level calculations, use the Viewsheet methods described below.

There are two different kinds of calculated field:

• Calculated field based on detail data: A calculated field based on
detail data can be used as either a dimension or measure (see Converting
between Measure and Dimension) in the same manner as any other data
field. See Creating a Calculated Field from Detail Data for more
information.

• Calculated field based on aggregate data: A calculated field based on
aggregate data can be used only as a measure. This type of calculated
field cannot be bound to Selection Components (Range Slider, etc.). See
Creating a Calculated Field from Aggregate Data for more information.

The following sections explain how to create these two types of fields.

DASHBOARD DESIGN

1495 of 2477

5.4.1 Creating a Calculated Field from Detail Data

To create a new calculated field from detail data, follow the steps below:

1. In the Viewsheet Component panel, right-click on the Data Block,
data model, or query to which you want to add the calculated field.
Select ‘New Calculated Field’ from the context menu.

This opens the ‘Calculated Field’ dialog box.

Note: The selection of 'Detail' or 'Aggregate' is a one-time
choice. You cannot convert between these two types at a later time.

2. In the ‘Name’ field, enter a name for the new calculated field.

3. Select the ‘Detail’ option, and click ‘OK’. This opens the Formula
Editor.

4. In the ‘Return Data Type’ menu, select the data type that the
calculated field will return.

5. Enable the ‘SQL’ option to construct the formula using SQL
syntax. Disable the ‘SQL’ option to construct the formula using
JavaScript syntax.

Click on an available
detail field in the
panel to add it to the
expression.

6. Enter the desired calculation into the formula field at the bottom of
the dialog box. The available detail fields are listed in the top-left
panel.

DASHBOARD DESIGN

1496 of 2477

7. Click ‘OK’ to close the Formula Editor. This adds the new
calculated field to the data source tree in the Component panel.

You can now bind this calculated field to a Viewsheet component (Output
Components, Data View Components, etc.) in the same way that would
bind any other data field.

Example: Detail-
Level Calculation

Consider a Viewsheet that is based on the sample ‘Order Model’ data
model. In this example, you will analyze how the average difference
between the ‘Number in Stock’ and the ‘Reorder Level’ varies according to
product category. Note that this difference (‘Number in Stock’ – ‘Reorder
Level’) is not available as a predefined attribute within the data model.
However, you can create this quantity in the Viewsheet as a calculated
field.

Follow the steps below:

1. Create a new Viewsheet based on the ‘Order Model’ data model.
(See Quick Start: Creating a Dashboard for more information.)

2. Right-click the ‘Order Model’ node in the Component panel, and
select ‘New Calculated Field’ from the context menu.

DASHBOARD DESIGN

1497 of 2477

This opens the ‘Calculated Field’ dialog box.

3. In the ‘Name’ field of the ‘Calculated Field’ dialog box, enter the
text “Reorder Count”.

4. Select the ‘Detail’ option and click ‘OK’. This opens the Formula
Editor.

5. In the Formula Editor, follow the steps below:

a. In the top-left panel, click the ‘Product:Number In Stock’ field
to enter the field into the expression.

b. Type a minus (“–”) symbol, or select this symbol from the top-
right ‘Operators’ panel.

c. In the top-left panel, click the ‘Product:Reorder Level’ field to
enter the field into the expression.

d. In the ‘Return Data Type’ menu, select ‘Integer’.

DASHBOARD DESIGN

1498 of 2477

e. Click ‘OK’ to close the Editor. This adds the new ‘Reorder
Count’ calculated field to the ‘Order Model’.

6. From the Component panel, drag a Chart component into the
Viewsheet.

7. Click the ‘Edit’ button on the new Chart to open the Chart Editor.

8. In the Data Source panel, expand the ‘Dimensions’ folder under
the ‘Product’ entity.

9. Drag the ‘Product:Category’ field from the Data Source panel to
the ‘X’ region in the Data panel.

The 'Reorder Count' calculated field appears by default under the
'Measures' folder because it has a numerical 'Return Data Type'.

10. In the Data Source panel, expand the ‘Measures’ folder.

11. Drag the ‘Reorder Count’ field from the Data Source panel to the
‘Y’ region in the Data panel.

12. Click the ‘Edit Measure’ button next to the ‘Y’ region in the Data
panel, and select ‘Average’ from the ‘Aggregate’ menu.

DASHBOARD DESIGN

1499 of 2477

13. Click the green ‘Apply’ button.

The Chart Y-axis now displays the average of the calculated differ-
ence between ‘Number in Stock’ and ‘Reorder Level’ on a cate-
gory-by-category basis.

14. Resize the Chart so that the Y-axis title is fully displayed.

¢

5.4.2 Creating a Calculated Field from Aggregate Data

To create a new calculated field from aggregate data, follow the steps
below:

1. In the Viewsheet Component panel, right-click on the Data Block,
data model, or query to which you want to add a calculated field.
Select ‘New Calculated Field’ from the context menu.

This opens the ‘Calculated Field’ dialog box.

DASHBOARD DESIGN

1500 of 2477

Note: The selection of 'Detail' or 'Aggregate' is a one-time
choice. You cannot convert between these two types at a later time.

2. In the ‘Name’ field, enter a name for the new calculation field.

3. Select the ‘Aggregate’ option and click ‘OK’. This opens the
Formula Editor.

The ‘SQL’ option is
disabled because
aggregate-based cal-
culations require Java-
Script syntax.

4. In the ‘Return Data Type’ menu, select the data type that the
calculated field will return.

5. In the top-left panel, click the ‘New Aggregate’ button.

This opens the ‘Aggregate’ dialog box.

6. In the ‘Field’ menu of the ‘Aggregate’ dialog box, select the field
that you wish to aggregate for purposes of the calculation.

DASHBOARD DESIGN

1501 of 2477

7. In the ‘Aggregate’ menu, select the desired aggregation method.
(See Aggregation Options for information about the available
methods.)

8. For a bivariate aggregation method, select the second field from the
‘With’ menu.

9. Click ‘OK’ to close the ‘Aggregate’ dialog box. The Formula
Editor now displays the newly defined aggregate quantity in the
top-left panel.

10. (Optional) Click the ‘New Aggregate’ button again, and repeat the
above steps to add as many additional aggregates as desired.

Click an aggregate
field in the top-left
panel to add it to the
expression.

11. Once you have defined the required aggregates in the top-left
panel, enter the desired calculation (using the aggregate fields) in
the formula field at the bottom of the dialog box.

DASHBOARD DESIGN

1502 of 2477

12. Click ‘OK’ to close the Formula Editor. This adds the new
calculated field to the data source tree in the Component panel.

You cannot bind an aggregate-based calculated field to Selection
Components.

You can bind this calculated field to Output Components or Data View
Components in the same way that would bind any other data field.

Example:
Aggregate-Level
Calculation

Consider a Viewsheet that is based on the sample ‘Sales Explore’
Worksheet. In this example, you will analyze how the percentage of paid
orders varies according to different dimensions (company, state, date, etc.).

Observe that “percentage of paid orders” for a given group is an aggregate
quantity. It represents the ratio of paid orders to total orders for the group,
and therefore requires a count (aggregate) of both the paid orders and total
orders for every individual group. These counts are not static, but will vary
dynamically based on the requested dimension (state, company, date, etc.).

In many cases it is difficult to configure an underlying Worksheet to
produce these aggregate results in a manner conducive to dynamic
Viewsheet analysis. Though a Worksheet provides all of the required
aggregation features, multi-dimensional aggregations within a Worksheet
often require the creation of multiple Data Blocks, and this ultimately limits
the interactivity of the Viewsheet. Therefore, it is best to implement
aggregate-based calculations at the Viewsheet level.

Follow the steps below to create a Viewsheet that implements aggregate
calculations to express the percentage of paid orders for various groupings.

1. Create a new Viewsheet based on the ‘Sales’ > ‘Sales Explore’
Data Worksheet. (See Quick Start: Creating a Dashboard for
information.)

2. In the Viewsheet Component panel, right-click the ‘Sales’ data
block and select ‘New Calculated Field’ from the context menu.

DASHBOARD DESIGN

1503 of 2477

This opens the ‘Calculated Field’ dialog box.

3. In the ‘Name’ field of the ‘Calculated Field’ dialog box, enter the
text “Percent Paid”.

4. Select the ‘Aggregate’ option and click ‘OK’. This opens the
Formula Editor.

5. In the Formula Editor, follow the steps below:

a. In the top-left panel, expand the ‘Fields’ node, and click ‘New
Aggregate’.

This opens the ‘Aggregate’ dialog box.

DASHBOARD DESIGN

1504 of 2477

The ‘Paid’ field con-
tains a “1” (order
paid) or a “0” (order
not paid). This sum
therefore provides the
absolute number of
paid orders.

b. In the ‘Field’ menu of the ‘Aggregate’ dialog box, select the
‘Paid’ field. This is the field whose values you will sum to
obtain the number of paid orders.

c. In the ‘Aggregate’ menu, select ‘Sum’.

d. Click ‘OK’ to close the ‘Aggregate’ dialog box. The Formula
Editor displays the newly defined “Sum(Paid)” aggregate field
under the ‘Fields’ node in the top-left panel.

e. Click ‘New Aggregate’ again.

f. In the ‘Field’ menu of the ‘Aggregate’ dialog box, again select
the ‘Paid’ field.

The ‘Count’ provides
the total number of
paid and unpaid
orders.

g. In the ‘Aggregate’ menu, select ‘Count’ and click ‘OK’.

DASHBOARD DESIGN

1505 of 2477

The Formula Editor displays the newly defined ‘Count(Paid)’
aggregate field in the top-left panel together with the existing
‘Sum(Paid)’ field.

h. In the top-left panel, click on the ‘Sum(Paid)’ field to enter the
field into the expression.

i. Type a division (“/”) symbol, or select this symbol from the top-
right ‘Operators’ panel (under the ‘Arithmetic’ group).

j. In the top-left panel, click on the ‘Count(Paid)’ field to enter the
field into the expression.

k. In the ‘Return Data Type’ menu, select ‘Float’.

l. Click ‘OK’ to close the Editor. This adds the new ‘Percent Paid’
calculated field to the ‘Sales’ data block.

6. From the Component panel, drag a Chart component into the
Viewsheet.

DASHBOARD DESIGN

1506 of 2477

7. Click the ‘Edit’ button on the new Chart to open the Chart Editor.

8. In the Data Source panel, expand the ‘Dimensions’ folder under
the ‘Sales’ data block.

9. Drag the ‘Category’ field from the Data Source panel to the ‘X’
region in the Data panel.

Note: An aggregate-based calculated field is always considered a
measure.

10. In the Data Source panel, expand the ‘Measures’ folder.

11. Drag the ‘Percent Paid’ field from the Data Source panel to the
‘Y’ region in the Data panel. The Chart Y-axis now displays the
fraction of orders paid on a category-by-category basis.

12. To change the Y-axis labels to a “percent” representation, right-
click the axis labels, and select ‘Format’ from the context menu.
This opens the ‘Format’ dialog box.

13. In the ‘Format’ dialog box, click the Format tab, and select the
‘Percent’ option. Click ‘OK’ to close the dialog box. This displays
the labels in percent format.

DASHBOARD DESIGN

1507 of 2477

You can use the Chart Editor to bind other dimensions to the X-axis. For
example, drag ‘Name’ from the Data Source panel to the ‘X’ region of the
Data panel to analyze the percent paid according to product name. Drag
both the ‘State’ and ‘City’ fields to the ‘X’ region to analyze percent paid
on a geographical basis.

If you provide the end user with access to the Chart Editor (see Enabling
End-User Chart and Crosstab Editing), they can use exactly the same
method to analyze the data. However to make the analysis even easier for
the user, you can add a menu that allows the user to directly select the
desired dimension for the X-axis. To do this, continue with the steps below:

14. Close the Chart Editor. (Click the red ‘X’ in the top-right corner.)

15. From the Viewsheet Component panel, drag a ComboBox
component into the Viewsheet.

16. Right-click on the new ComboBox, and select ‘Properties’ from
the context menu. This opens the ‘ComboBox Properties’ dialog
box.

17. In the ‘Name’ field, enter ‘Dimension’.

18. In the ‘List Values’ region, select the ‘Embedded’ option, and click
the ‘Edit’ button. This opens the ‘Embedded List Values’ dialog
box.

19. Enter the following labels/values: ‘Category’, ‘Date’, ‘Company’,
‘Name’, ‘City’, and ‘State’.

DASHBOARD DESIGN

1508 of 2477

20. Click ‘OK’ to close the ‘Embedded List Values’ dialog box. Click
‘OK’ to close the ‘ComboBox Properties’ dialog box.

21. Click the ‘Edit’ button on the Chart to reopen the Chart Editor.

22. In the Data panel, click the arrow button next to the ‘X’ region, and
select ‘Variable’ from the menu. This enables the variable menu in
the ‘X’ region.

23. From the variable menu, select the ‘$(Dimension)’ option. This
will use the ComboBox to set the dimension displayed on the X-
axis.

Explore the data by making different selections in the ComboBox.
Investigate how percent paid varies according to dimensions such as state,
city, category, date, etc. When you analyze the data along the ‘Date’
dimension, try drilling down to explore finer levels of resolution (e.g.,
month). See Drilling Down into a Chart for more details.

DASHBOARD DESIGN

1509 of 2477

¢

Example:
Calculation with
String Return
Value

You can create an aggregate calculation to return a string-valued measure.
You can then bind this measure to a ‘Visual’ region (color, shape, size) to
produce a categorical visual grouping.

Follow the steps below to create a Viewsheet that uses a string-valued
measure to categorize groups as having a low average discount rate (less
than 1.5%) or high discount rate (greater than 1.5%).

1. Create a new Viewsheet based on the ‘Sales’ > ‘Sales Explore’
Data Worksheet. (See Quick Start: Creating a Dashboard for
information.)

2. In the Viewsheet Component panel, right-click the ‘Sales’ data
block and select ‘New Calculated Field’ from the context menu.

This opens the ‘Calculated Field’ dialog box.

3. In the ‘Name’ field of the ‘Calculated Field’ dialog box, enter the
text “Discount Class”.

4. Select the ‘Aggregate’ option and click ‘OK’. This opens the
Formula Editor.

DASHBOARD DESIGN

1510 of 2477

5. In the Formula Editor, follow the steps below:

a. In the top-left panel, expand the ‘Fields’ folder and click the
‘New Aggregate’ button.

This opens the ‘Aggregate’ dialog box.

The ‘Paid’ field con-
tains a “1” (order
paid) or a “0” (order
not paid). This sum
therefore provides the
absolute number of
paid orders.

b. In the ‘Field’ menu of the ‘Aggregate’ dialog box, select the
‘Discount’ field. This is the field whose values you will average
to obtain the average discount.

c. In the ‘Aggregate’ menu, select ‘Average’.

d. Click ‘OK’ to close the ‘Aggregate’ dialog box. The Formula
Editor displays the newly defined “Average(Discount)”
aggregate field in the top-left panel.

DASHBOARD DESIGN

1511 of 2477

Hint: Click the ‘Aver-
age(Discount)’ field
in the top-left panel to
enter the field into the
expression.

e. Enter the following script in the Script Editor:

if (field['Average([Discount])']<.015) {
'Low';

}
else {
'High';

}

f. In the ‘Return Data Type’ menu, select ‘String’.

g. Click ‘OK’ to close the Editor. This adds the new ‘Discount
Class’ calculated field to the ‘Sales’ data block.

DASHBOARD DESIGN

1512 of 2477

6. From the Component panel, drag a Chart component into the
Viewsheet.

7. Click the ‘Edit’ button on the new Chart to open the Chart Editor.

8. In the Data Source panel, expand the ‘Dimensions’ folder under
the ‘Sales’ data block.

9. Drag the ‘Category’ field from the Data Source panel to the ‘X’
region in the Data panel.

Note: An aggregate-based calculated field is always considered a
measure.

10. In the Data Source panel, expand the ‘Measures’ folder.

11. Drag the ‘Quantity Purchased’ field from the Data Source panel to
the ‘Y’ region in the Data panel.

12. Drag the ‘Discount Class’ field from the Data Source panel to the
‘Color’ region in the Visual panel. This discriminates groups based
on the string values returned by the ‘Discount Class’ calculated
field.

¢

DASHBOARD DESIGN

1513 of 2477

5.4.3 Editing a Calculated Field

To edit an existing calculated field, follow the steps below:

1. In the Viewsheet Component panel, right-click the calculated field
in the data source tree, and select ‘Edit’ from the context menu.

You cannot convert a
detail-based calcu-
lated field into a
aggregate-based cal-
culated field, or vice
versa.

This opens the Formula Editor to display the existing formula.

2. Edit the formula as desired, and click ‘OK’.

To remove an existing calculated field, right-click on the calculated field in
the data source tree in the Component panel, and select ‘Remove’ from the
context menu.

DASHBOARD DESIGN

1514 of 2477

6 Selection Components

Selection components provide both input and output capability, and are
therefore crucial for analysis.

Selection controls are
optimized for perfor-
mance. They do not
modify the original
dataset, and do not
cause re-execution of
queries.

• Selection components control and filter data for data view and output
components. By adding multiple selection elements, you exponentially
increase possible views.

• Selections interact with one another to provide you with instant
feedback on which choices are consistent and which are incompatible.

This dual nature of selections makes them an indispensable analytic
component for most Viewsheets.

See Also
Filter Conditions, to set fixed conditions on data view and output
components.
Output Components, for information about graphical data representation.
Input Components, for information on manipulating variables.
Data View Components, for information about tables and graphs.

6.1 Selection List
A Selection List displays every unique value from a data field. By selecting
one or more of these values, the end-user can filter the data displayed by
the Viewsheet, both within output elements and other selection elements.

See Also
Selection List, in End User, for a walkthrough on Selection Lists.
Using Selection Lists and Trees, for details on Selection element symbols.
Selection Tree, for information on providing nested selection options.

6.1.1 Creating a Selection List

There are four ways to create a Selection List, discussed in the following
sections.

Creating Selection List from Data Block

To create a Selection List, follow these steps:

1. Expand a Data Block (table) or cube dimension in the Component
tree.

Note: When binding hierarchical cube dimensions, Selection Lists
will include all hierarchical components. To avoid this, ask an
administrator to set the property olap.table.originalContent=false
in sree.properties.

DASHBOARD DESIGN

1515 of 2477

2. Select one column from the Data Block, or one level from the cube
dimension, and drag it onto the Viewsheet grid.

This creates a Selection List based on the data in the selected column or
dimension.

Creating Selection List from Selection List Component

To create a Selection List follow these steps:

1. Drag a Selection List element from the Component tree onto the
Viewsheet grid. This creates an empty Selection List element.

You can also drag and
drop a single column
directly onto the
empty Selection List
element.

2. Right-click on the Selection List, and select ‘Properties’ from the
context menu. This opens the ‘Selection List Properties’ dialog
box.

3. Select the Data tab.

4. In the ‘Table’ list, expand a Data Block or cube, and select the
column or dimension that should be used to populate the Selection
List.

5. Click ‘OK’.

DASHBOARD DESIGN

1516 of 2477

This creates a Selection List based on the data in the selected column or
dimension. Each unique item in the column or dimension is represented as
a distinct selection box in the Selection List.

Creating Selection List from a Table Column

To create a Selection List from a table column, click anywhere in the table
column, and drag the column to an empty region of the grid.

This creates a new Selection List based on the values in the column.

Creating Selection List from Chart Data Source

To create a Selection List from a chart Data Source tree, follow these steps:

1. Expand a ‘Dimension’ node in the Data Source tree. (This can
belong to either a Data Block or cube.)

2. Select one column from the ‘Dimension’ node, and drag it onto the
Viewsheet grid.

This creates a Selection List based on the data in the selected field.

DASHBOARD DESIGN

1517 of 2477

See Also
Creating a Selection Tree from Chart Data Source, for information on the
Selection Tree.
Creating a Chart, for information on using the Chart Editor.

6.1.2 Selection List Properties

The Selection List component’s ‘Properties’ dialog box provides General
and Data tabs. The next sections discuss the component-specific properties
available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Selection List Properties: General Tab

The General tab in the ‘Selection List Properties’ dialog box provides the
following Selection List-specific properties.

Show as The appearance of the Selection List:
List: A scrollable list
Dropdown: An expandible dropdown box. The ‘List Height’ sub-
option sets the number of rows to which the box should expand.

Sort The sort order for the values in the Selection List:
Ascending: Display all values in alphabetical or increasing order,
including incompatible selections.
Descending: Display all values in reverse-alphabetical or decreasing
order, including incompatible selections.
Hide Others: Display values in alphabetical or increasing order, but
hide incompatible selections under the label ‘Others’.

Action Submit on Change: Immediately update data in the Viewsheet when
any selection is made. If ‘Submit on Change’ is disabled, the
Selection List only updates data in the Viewsheet when the user
clicks ‘Apply’.
Single Selection: Allows only one item to be selected at a given time.
(For a Selection Tree, this allows only one item on the lowest level to
be selected.)
Suppress Empty Value: Removes empty values (caused by nulls in
the data set) from the Selection List.

DASHBOARD DESIGN

1518 of 2477

See Also
General Tab, for information about common properties in the General tab.

Selection List Properties: Data Tab

The Data tab in the ‘Selection List Properties’ dialog box provides the
following Selection List-specific properties.

Table The column or dimension that should be used to populate the
Selection List

Measure The field to aggregate and display next to the Selection List values.
Aggregate The method of aggregation to be used for the ‘Measure’ field.
Text Specifies that the aggregated measure is displayed as plain text.
Bar Specifies that the aggregate measure is displayed graphically as a

proportional bar.

DASHBOARD DESIGN

1519 of 2477

6.1.3 Changing the Column Layout in a Selection List

Columns within a Selection List always have equal width. This width is
determined by the overall width of the Selection List component (see
Resizing a Component) and by the number of columns specified.

To specify the number of columns in the Selection List component, follow
the steps below:

1. Click a cell in any column to select the cell. (The right side of the
selected cell displays a handle).

2. Drag the cell handle to the left or right to increase or decrease the
number of columns.

See Also
Resizing the Viewsheet Grid, for information on changing the global grid
spacing.

6.1.4 Displaying Aggregate Data in Selection List

To display summarized data next to the dimension values in a Selection
List or Selection Tree, follow the steps below:

1. Create the Selection List (or Selection Tree) as desired.

2. Right-click the Selection List, and select ‘Properties’ from the
context menu. This opens the ‘Selection List Properties’ dialog
box.

DASHBOARD DESIGN

1520 of 2477

3. From the ‘Measure’ menu, select the field that you wish to
summarize.

4. From the ‘Aggregate’ menu, select the method of summarization.
(See Crosstab Aggregation Methods for more information about
the methods.)

5. (Optional) Enable the ‘Text’ option to display the aggregate values
as plain text next to the corresponding dimension values.

6. (Optional) Enable the ‘Bar’ option to graphically display the
aggregate values as proportional bars next to the corresponding
dimension values.

7. Click ‘OK’ to close the dialog box. The summarized values are
now displayed next to the Selection List dimension values.

You can also adjust
the Viewsheet grid
width to facilitate dis-
play. See Resizing the
Viewsheet Grid.

8. (Optional) Improve the appearance of the Selection List by making
the following adjustments to the layout:

a. Adjust the column layout to provide the needed space by
dragging the handle at the right side of column. See Changing
the Column Layout in a Selection List.

b. Adjust the width of the aggregate text region by dragging the
handle at the left side of the text.

DASHBOARD DESIGN

1521 of 2477

c. Adjust the width of the aggregate bar region by dragging the
handle at the left side of the bar.

You can also use the
format controls on the
Viewsheet toolbar to
adjust the text and bar
formatting.

9. (Optional) To format the aggregate text, right-click on the
aggregate text and select ‘Format’ from the context menu. This
opens the ‘Format’ dialog box. (See Format Dialog Box for more
information about the available options.)

10. (Optional) To format the aggregate bar, right-click on the aggregate
bar and select ‘Format’ from the context menu. This opens the
‘Format’ dialog box. (See Format Dialog Box for more
information about the available options.)

6.2 Selection Tree
A Selection Tree is a hierarchical Selection List, and displays selection
choices in tree form. This allows the user to select values at multiple levels
in the hierarchy. The selections that the user makes in a Selection Tree filter
data displayed by Output Components, Data View Components, and other
Selection Components. The Selection Tree is especially useful for data that
is intrinsically hierarchical, such as cities and states, but it can also be used
for independent data.

You can define a Selection Tree by specifying an arbitrary hierarchy among
individual columns or by referencing predefined parent-child relationships
(recursive hierarchy). See the following sections for details on these two
approaches:

• Creating a Selection Tree from Individual Columns

• Creating a Selection Tree from Recursive Hierarchy

6.2.1 Creating a Selection Tree from Individual Columns

There are several ways to create a Selection Tree from individual columns.
In most cases these columns should possess an implied inclusion
relationship (e.g., cities and states) but they can also be independent.

DASHBOARD DESIGN

1522 of 2477

The following sections discuss various methods for creating a Selection
Tree from individual columns.

Creating a Selection Tree from Data Block Columns

To create a Selection Tree from Data Block columns, follow these steps:

1. Expand a Data Block (table) in the Component tree.

2. Ctrl-click or Shift-click to select multiple columns in the Data
Block.

3. Drag the selected columns onto the Viewsheet grid.

This creates a Selection Tree based on the data in the selected columns,
with the nesting order determined by the order in which you selected the
fields in the Component tree.

See Also
Adding Hierarchy Levels to a Selection Tree, to add levels to an existing
Tree.
Selection Tree, in End User, for a walkthrough on using Selection Trees.
Using Selection Lists and Trees, for details on Selection element symbols.
Selection List, for information on creating non-hierarchical selection
options.

Creating a Selection Tree from Cube Dimensions

To create a Selection Tree from cube dimension levels, follow these steps:

1. Expand a cube dimension in the Component tree.

2. Ctrl-click or Shift-click to select multiple levels in the cube
dimension.

To include all levels
of a dimension, sim-
ply drag the dimen-
sion node onto the
Viewsheet.

3. Drag the selected levels onto the Viewsheet grid.

DASHBOARD DESIGN

1523 of 2477

This creates a Selection Tree based on the data in the selected levels, with
the nesting order determined by the order in which you selected the levels
in the Component tree.

See Also
Adding Hierarchy Levels to a Selection Tree, to add levels to an existing
Tree.
Selection Tree, in End User, for a walkthrough on using Selection Trees.
Using Selection Lists and Trees, for details on Selection element symbols.
Selection List, for information on creating non-hierarchical selection
options.

Creating a Selection Tree from Selection Tree Component

To create a Selection Tree from individual columns, follow the steps
below:

1. Drag a Selection Tree component from the Component tree onto
the Viewsheet grid. This creates an empty Selection Tree element.

You can also drag-
and-drop columns
directly onto a Selec-
tion Tree element.
Each new column you
add is placed at the
innermost level of the
hierarchy.

2. Right-click the Selection Tree, and select ‘Properties’ from the
context menu. This opens the ‘Selection Tree Properties’ dialog
box.

3. Select the Data tab.

4. At the top of the dialog box, select the ‘Columns’ option.

DASHBOARD DESIGN

1524 of 2477

5. In the ‘Table’ menu, expand the desired Data Block to reveal its
columns, or expand a cube dimension to reveal its levels.

6. Select the column or level that you want to be the outer-most level
of the Selection Tree hierarchy.

To add all columns or
levels from a Data
Block or cube dimen-
sion, select the desired
Data Block or dimen-
sion, and click ‘Add’.

7. Click ‘Add’. This adds the column or level to the ‘Level’ list.

8. Repeat to add all desired levels of the hierarchy. To change the
hierarchy ordering, use the ‘Move Down’ and ‘Move Up’ buttons.
The order from top to bottom represents the nesting order of the
Selection Tree, from outer to inner.

Data Block

Columns

DASHBOARD DESIGN

1525 of 2477

9. Click ‘OK’ to close the dialog box.

The Selection Tree is now populated based on the selected columns or
dimension levels. The inner levels of the hierarchy show only the unique
items compatible with corresponding outer level data. For example, the
companies nested within the outer-level ‘CA’ node are only those
companies whose corresponding state is CA.

See Also
Creating a Selection Tree from Recursive Hierarchy, to create a Selection
Tree using parent and child IDs.
Adding Hierarchy Levels to a Selection Tree, to add levels to an existing
Tree.
Selection Tree, in End User, for a walkthrough on Selection Trees.
Using Selection Lists and Trees, for details on Selection element symbols.
Selection List, for information on creating non-hierarchical selection
options.

Creating a Selection Tree from Chart Data Source

To create a Selection Tree from a chart Data Source tree, follow these steps:

1. Expand a ‘Dimension’ node in the Data Source tree. (This can
belong to either a Data Block or cube.)

DASHBOARD DESIGN

1526 of 2477

To include all levels
of a cube dimension,
simply drag the
dimension node onto
the Viewsheet.

2. Select two or more columns from the ‘Dimension’ node, and drag
them together onto the Viewsheet grid.

This creates a Selection Tree based on the data in the selected fields.

See Also
Walkthrough: Interactive Chart Drilldown, in Dashboard Scripting, to
adapt the X-axis binding based on user selection.
Creating Selection List from Chart Data Source, for information on the
Selection List.
Creating a Chart, for information on using the Chart Editor.

6.2.2 Creating a Selection Tree from Recursive Hierarchy

You can create a Selection Tree from recursive hierarchy information. For
example, consider the following data. The “Child ID” is the ID of the node
itself, while the “Parent ID” is the ID of the node’s immediate parent.
Nodes that lack a “Parent ID” comprise the top level of the tree.

PARENT
ID

CHILD ID LABEL

1 Northeast
2 Midwest
3 South
4 West

1 5 New England
1 6 Mid-Atlantic
2 7 East North Central
2 8 West North Central
3 9 South Atlantic
3 10 East South Central
3 11 West South Central
4 12 Mountain
4 13 Pacific

DASHBOARD DESIGN

1527 of 2477

The columns above represents the following tree structure.

The “Parent ID” and “Child ID” columns indicate that nodes 5 and 6 share
node 1 as parent, nodes 7 and 8 share node 2 as parent, nodes 9, 10, and 11
share node 3 as parent, and nodes 12 and 13 share node 4 as parent.

To create a Selection Tree from a recursive hierarchy defined by “Parent
ID” and “Child ID” columns, follow the steps below:

1. Drag a Selection Tree component from the Component tree onto
the Viewsheet grid. This creates an empty Selection Tree element.

2. Right-click the Selection Tree, and select ‘Properties’ from the
context menu. This opens the ‘Selection Tree Properties’ dialog
box.

3. Select the Data tab.

4. At the top of the dialog box, select the ‘Parent/Child IDs’ option.

1

Northeast

2

Midwest

3

South

4

West

5

New
England

7

East
North

Central

13

Pacific

6

Mid-
Atlantic

8

West
North

Central

9

South
Atlantic

10

East
South

Central

11

West
South

Central

12

Mountain

DASHBOARD DESIGN

1528 of 2477

5. In the ‘Table’ menu, expand the desired Data Block to reveal its
columns.

6. In the ‘Parent ID’ field, select the column that contains the parent
node IDs.

7. In the ‘ID’ field, select the column that contains the child node IDs.

8. In the ‘Label’ column select the column that contains the labels
corresponding to the child node IDs.

9. Press ‘OK’ to close the dialog box.

The Selection Tree is now populated based on the selected “Parent ID” and
“Child ID” columns.

See Also
Creating a Selection Tree from Individual Columns, to create a Selection
Tree using nested columns.
Adding Hierarchy Levels to a Selection Tree, to add levels to an existing
Tree.
Selection Tree, in End User, for a walkthrough on Selection Trees.

DASHBOARD DESIGN

1529 of 2477

Using Selection Lists and Trees, for details on Selection element symbols.
Selection List, for information on creating non-hierarchical selection
options.

6.2.3 Selection Tree Properties

The Selection Tree component’s ‘Properties’ dialog box provides General
and Data tabs. The next sections discuss the component-specific properties
available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Selection Tree Properties: General Tab

The properties in the General tab in the ‘Selection Tree Properties’ dialog
box are the same as those of the Selection List component.

See Also
Selection List Properties: General Tab, for information on the General tab.

Selection Tree Properties: Data Tab

The Data tab in the ‘Selection Tree Properties’ dialog box provides the
following Selection Tree-specific properties.

Table The column or dimension that should be used to populate the
Selection Tree

Level The order of dimension nesting in the Selection Tree. Outer hierarchy
levels are listed above inner hierarchy levels. See Adding Hierarchy
Levels to a Selection Tree for instructions on altering the Selection
Tree hierarchy.

Measure The field to aggregate and display next to the Selection Tree values.
Aggregate The method of aggregation to be used for the ‘Measure’ field.
Text Specifies that the aggregated measure is displayed as plain text. See

Displaying Aggregate Data in Selection List for more information.
Bar Specifies that the aggregate measure is displayed graphically as a

proportional bar. See Displaying Aggregate Data in Selection List for
more information.

DASHBOARD DESIGN

1530 of 2477

6.2.4 Adding Hierarchy Levels to a Selection Tree

There are two ways to add additional hierarchy levels to a Selection Tree.
The following sections explain both methods.

Adding Hierarchy Levels from Component Tree

To add levels to an existing Selection Tree hierarchy, follow these steps:

1. Expand a Data Block (table) or cube dimension in the Component
tree.

2. Ctrl-click or Shift-click to select one or more columns in the Data
Block or one or more levels in the cube dimension.

3. Drag the selected columns or levels onto an existing Selection Tree
that is bound to the same Data Block or cube dimension. (Drop the
columns or levels onto the Selection Tree when the green highlight
appears.)

DASHBOARD DESIGN

1531 of 2477

This adds the selected fields to the bottom (inner-most levels) of the
Selection Tree hierarchy. The nesting order for the new levels is determined
by the order in which you selected the fields in the Component tree.

Adding Hierarchy Levels from Properties Dialog Box

To add hierarchy levels to a Selection Tree, follow these steps:

You can also drag and
drop a single column
directly onto the
empty Selection List
element.

1. Right-click on the Selection Tree, and select ‘Properties’ from the
context menu. This opens the ‘Selection Tree Properties’ dialog
box.

2. Select the Data tab.

3. From the ‘Table’ list, select the Data Block column or cube
dimension that you wish to add to the hierarchy.

4. Click ‘Add’.

5. Repeat to add any additional levels to the hierarchy. To change the
hierarchy ordering, use the ‘Move Down’ and ‘Move Up’ buttons.
The order from top to bottom represents the nesting order from
outer to inner.

6. Click ‘OK’ to close the dialog.

6.3 Selection Container
The Selection Container component serves two purposes:

• A Selection Container can display all of the selections (filters) that are
currently operating on the Viewsheet. See Displaying Selections.

DASHBOARD DESIGN

1532 of 2477

• A Selection Container can hold Selection List and Range Slider
components. This allows end-users to add new selection components to
a Viewsheet. See Containing Selection Components.

You can use a single Selection Container for both purposes.

See Also
Selection List, for a description of Selection Lists (discrete selections).
Range Slider, for information on Range Sliders (continuous selections).

6.3.1 Displaying Selections

A Selection Container can display all of the selections (filters) that are
currently specified in the Viewsheet. These include selections in Selection
List, Selection Tree, Range Slider, or Calendar components.

To display all current selections within a Selection Container, follow the
steps below:

1. Drag a Selection Container component from the Component tree
onto the Viewsheet grid. This creates an empty Selection Container
element.

2. Right-click on the Selection Container, and select ‘Properties’ from
the context menu. This opens the ‘Selection Container Properties’
dialog box.

3. In the ‘Options’ panel, enable ‘Show Current Selections’.

4. Click ‘OK’.

The Selection Container will now display the currently selected values for
any Selection List, Selection Tree, Range Slider, or Calendar components
in the Viewsheet.

DASHBOARD DESIGN

1533 of 2477

6.3.2 Containing Selection Components

A Selection Container can hold Selection List and Range Slider
components. To add selection components to a Selection Container, follow
the steps below:

1. Drag a Selection Container component from the Component tree
onto the Viewsheet grid. This creates an empty Selection Container
element.

2. Drag a data field onto the Selection Container. (Use the green
highlight to place the field as desired.) You can obtain this field
from two sources:

a. Drag a field from the Data Block in the Component tree onto the
Selection Container.

b. Drag a field from the Chart Editor onto the Selection Container.

DASHBOARD DESIGN

1534 of 2477

This adds the chosen field to the Selection Container as a Selection
List (categorical field) or a Range Slider (numerical or date field).

3. (Optional) Right-click on the Selection Container, and select
‘Properties’ from the context menu. This opens the ‘Selection
Container Properties’ dialog box.

4. (Optional) To permit the end-user to drag new fields from the Chart
Editor to the Selection Container, enable ‘Allow New Selections in
Viewer’.

6.3.3 Selection Container Properties

The ‘Selection Container Properties’ dialog box provides only the General
tab. It offers the following unique properties for the Selection Container.

Show Current
Selections

Enables the Selection Container to display the current
state of all Viewsheet selection controls.

Allow New
Selections in Viewer

Enables the end-user to drag new fields from the Chart
Editor to the Selection Container.

DASHBOARD DESIGN

1535 of 2477

See Also
Properties Dialog Box, for information about common component
properties.
General Tab, for General tab properties that are common among
components.

6.4 Using Selection Lists and Trees
Selection Lists and Selection Trees are simultaneously both input elements
and output elements. When two or more Selection Lists or trees are linked
to the same Data Block, query, or data model, the inputs to one of the lists
or trees will modify the display in the other trees. See Interacting with a
Selection List for an example.

This section explains how to make and clear selections, and explains the
meaning of the Selection List symbols.

Figure 10. Selection List Toolbar

See Also
Using Selection Components in End User for user-oriented information.

6.4.1 Submitting, Clearing, and Reversing Selections

The following sections explain how to submit, clear, and reverse a
selection.

Submitting a Selection

To submit a selection, follow these steps:

1. Check the desired options in the Selection List or tree.

2. Hover the mouse over the list or tree to make the top-right toolbar
visible.

DASHBOARD DESIGN

1536 of 2477

3. Click the ‘Apply’ button.

When ‘Submit on
Change’ is enabled,
you can Ctrl-click to
make multiple simul-
taneous selections.

If the ‘Submit on Change’ option is set in the ‘Properties’ dialog box
(enabled by default, see Selection List Properties: General Tab), you do not
need to click the ‘Apply’ button. The selection is submitted each time you
select or deselect one of the options.

Filtering Selections

When a Selection List or Selection Tree contains a large number choices,
you may find it helpful to restrict or filter the available choices. This
reduces the amount of list scrolling required, and saves time.

To filter a Selection List or Tree, follow the steps below:

1. Click the ‘Search’ button in the title bar of the Selection List. This
opens a search box.

2. In the search box, type a portion of the choice that you wish to
select.

As you type, the Selection List restricts the choices to that which
match (at any location) the text you have entered.

3. When you have sufficiently restricted the available choices, make
the desired selections by clicking the boxes. Note that the clear and
reverse functions will only apply to the filtered choices, and all
values not displayed in the filtered list will be unaffected.

To exit the search box and restore all Selection List choices, click the ‘X’
button at the right side of the box. When the Selection List is currently
filtered by a search term, the ‘Search’ button displays a unique icon in the
title bar, shown below. Click it to modify or remove the search filter.

DASHBOARD DESIGN

1537 of 2477

Clearing a Selection

To clear a selection, follow these steps:

1. Hover the mouse over the list or tree to make the top-right toolbar
visible.

2. Click the ‘Clear Selection’ button.

This deselects all currently selected options.

Reversing a Selection

The Selection List offers a ‘Reverse Selection’ toolbar option. This inverts
the current selection, selecting unchecked items, and deselecting checked
items.

6.4.2 Selection List Symbols

The table below explains the five icons used in Selection Lists:

Data selected and included.
The user has explicitly selected this item, and the corresponding
records are included in the returned data set.
Data selected but not included.
The user has explicitly selected this item, but more recent
explicit selections in other Selection Lists have now made this
selection incompatible. The corresponding data is therefore not
included in the returned data set.
Data included but not selected.
The user has not explicitly selected this item, but has made other
selections that implicitly select this item as well. The
corresponding records are included in the returned data set (as a
result of those other selections).

DASHBOARD DESIGN

1538 of 2477

6.4.3 Interacting with a Selection List
Walkthrough Selection Lists allow you to gain tremendous insight into a data set. This

example illustrates how you can use Selection Lists simultaneously for
both input and output to offer end-users rapid exploratory capability.

1. Create a new Viewsheet based on the ‘ProductSales’ Worksheet.

2. Expand the ‘SalesByDate’ Data Block.

3. Drag the ‘State’ field from the Data Block onto the Viewsheet grid.
This creates a new Selection List called ‘State’.

4. Drag the ‘Company’ field from the Data Block onto the Viewsheet
grid. This creates a new Selection List called ‘Company’.

Make sure both lists
are initially cleared.

5. Select ‘AZ’ and ‘CA’ from the ‘State’ Selection List.

Note that the ‘Company’ Selection List has now automatically
marked certain companies using green boxes. These are the compa-
nies that are compatible with your state selections (i.e., the compa-
nies residing within AZ and CA). Other companies are grouped
together under the heading ‘Others’.

6. Expand the ‘Others’ node, and select ‘Eastern Data’.

Note that this clears your previous selections in the ‘State’ Selec-
tion List, because ‘Eastern Data’ is not compatible with either ‘AZ’
and ‘CA’. The ‘State’ Selection List now automatically shows
‘NY’ with a green box, indicating that this state is compatible with
the selection of ‘Eastern Data’.

Data compatible but not included.
The user has not explicitly selected this item, and the item
remains compatible with existing user selections. This item can
therefore be selected to add additional records to the returned
data set.
Data incompatible.
The user has not explicitly selected this item, and this item is
incompatible with existing selections. (It appears listed under
‘Others’). Selecting this clears all other selections and starts
fresh.

DASHBOARD DESIGN

1539 of 2477

6.5 Range Slider
The Range Slider element filters data to fall within a specified range. It can
be used on both Date fields and Numeric fields, and provides the ability to
filter data by consecutive dates or numbers.

6.5.1 Creating a Range Slider

To create a Range Slider, follow the steps below:

1. Drag a Range Slider element from the Component tree into the
Viewsheet grid.

2. Drag a Data Block column (from Repository Tree or Viewsheet
Table) the onto the Range Slider element. This binds the Range
Slider to the selected column.

3. Adjust the selection range by dragging the slider end-handles. (You
can also click on an end-handle and press the arrow keys on the
keyboard.)

4. To quickly set the right side of the range to its maximum, double-
click on the right end-handle. To quickly set the left side of the
range to its minimum, double-click on the left end-handle. To
quickly set the entire range to its full extent, double-click on the
slider body.

You can also bind the range slider to a column from the Data tab of the
‘Range Slider Properties’ dialog box.

See Also
Range Slider Properties: Data Tab, for information about the Data tab.

Example:
Range Slider

In this example you will use a Range Slider to filter sales based on both
date and quantity. Follow the steps below:

1. Create a new Viewsheet based on the ‘ProductSales’ Worksheet.

2. Drag a ‘Range Slider’ element from the Component tree into the
Viewsheet grid.

3. Expand the ‘SalesByDate’ Data Block, select the ‘Date’ field, and
drag it onto the Range Slider element.

DASHBOARD DESIGN

1540 of 2477

4. Adjust the size of slider unit by dragging the outer handles.

5. Adjust the selection range by dragging the slider endpoints.

¢

6.5.2 Range Slider Properties

The Range Slider component’s ‘Properties’ dialog box provides General,
Data, and Advanced tabs. The next sections discuss the component-
specific properties available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Range Slider Properties: General Tab

The General tab in the ‘Range Slider Properties’ dialog box provides only
the common properties.

See Also
General Tab, for information about common properties in the General tab.

Range Slider Properties: Data Tab

The Data tab in the ‘Range Slider Properties’ dialog box provides the
following Range Slider-specific properties:

Single
Value

Filter data based on one field from the Data Block (default). Only
numeric and date type fields are supported.

Composite
Values

Filter data based on the composition of two or more fields from the
Data Block. See Composite Value for more information.

DASHBOARD DESIGN

1541 of 2477

Composite Value

The ‘Composite Value’ option allows you to filter data using the composite
of two or more columns of any type. All data types are supported. To set
the composite value option, follow the steps below.

Note: The composite value option is available only for Data Blocks,
not for cubes.

1. Right-click on the Range Slider, and select ‘Properties’ from the
context menu.

2. Under the Data tab, select ‘Composite Value’.

3. Select two or more columns to form the composite values for
filtering. Click OK.

DASHBOARD DESIGN

1542 of 2477

Example: Range
Slider Composite
Value

As an example, consider the following Data Block:

Using the composite value of these two fields, the Range Slider values are
the following tuples:

{(2000,Jan),(2000,Feb),(2004,Mar),(2006,Feb)(2008,Mar)}

Selecting the composite value (2000,Jan), for example, filters the data set
based on the constraint (Year=2000, Month=Jan).

¢

YEAR MONTH

2000 Jan
2000 Feb
2008 Mar
2004 Mar
2006 Feb

DASHBOARD DESIGN

1543 of 2477

Range Slider Properties: Advanced Tab

To create a coarser
range selection (e.g.,
date based on “quarter
of year” or string
based on “first let-
ter”,) create the appro-
priate groupings using
in the Data Work-
sheet.

The Advanced tab in the ‘Range Slider Properties’ dialog box provides the
following Range Slider-specific properties.

The ‘Slider Size’ can also be adjusted graphically in the Viewsheet by
dragging the slider endpoints. See Creating a Range Slider for an example.

Slider Size The range of data that is displayed at a given time. There are three
cases:
String: For string-type fields, the ‘Slider Size’ specifies the
number of “periods,” i.e., the number of consecutive
(alphabetically ordered) values that should be simultaneously
selected.
Numeric: For numeric-type fields, the ‘Slider Size’ specifies the
number of ‘Min Range Size’ periods spanned by the slider. The
total numerical range simultaneously selected is therefore ‘Slider
Size’ * ‘Min Range Size’.
Date: For date-time type fields, ‘Slider Size’ specifies the number
of periods to be simultaneously selected, where the period
duration is given by the adjacent popup menu: ‘Year’, ‘Month’,
‘Day’, ‘Hour’, or ‘Minute’. For date type fields, the options are
‘Year’, ‘Month’, and ‘Day’. For time type fields, the options are
‘Hour’ and ‘Minute’.
Note: For ‘Day’, ‘Hour’, and ‘Minute’ settings, if the number of
ticks exceeds 1500, the range size is automatically adjusted to
yield a smaller number of ticks.

Min Range
Size

For numeric-type fields, this is the smallest amount by which the
range can be adjusted.

Max Range
Size

Specifies the largest range that the user can specify. The units are
the same as the ‘Slider Size’.

Upper
Bound
Inclusive

Specifies that the upper bound of the selected range is included in
the selection. (For example, if the user sets the slider upper limit to
“10”, the result set includes data with values of “10” for this field).

Logarithmic
Scale

Sets logarithmic scaling for the slider, which is useful for
traversing large numerical ranges. The logarithm base is selected
automatically.

Label The labels to display on the Range Slider:
Tick: Show the increments by which the slider can be adjusted.
Current Value: Permanently display the slider value above the
slider.
Minimum: Show the minimum slider value at the left of the
slider.
Maximum: Show the maximum slider value at the right of the
slider.

DASHBOARD DESIGN

1544 of 2477

See Also
Grouping, in Data Mashup, for information in creating groups.

6.6 Calendar
A Calendar allows you to select data by time range, measured in weeks or
months. It also facilitates comparative aggregation, for example, the side-
by-side comparison of total quantity purchased during the months of Dec.
2005 and Dec. 2006.

See Also
Calendar, in End User, for information on how to use a Calendar.

6.6.1 Creating a Calendar

To create a calendar, follow the steps below:

1. Drag a ‘Calendar’ element from the Component tree onto the
Viewsheet grid. This creates a new Calendar element.

2. Drag a date column from a Data Block (on the tree) and drop it
onto the calendar. This links the calendar to the data represented by
the selected date field.

DASHBOARD DESIGN

1545 of 2477

3. Set properties of the Calendar using the ‘Calendar Properties’
dialog box (see Calendar Properties) or by using the mini-toolbar
(see Calendar in End User).

6.6.2 Calendar Properties

The Calendar component’s ‘Properties’ dialog box provides General,
Data, and Advanced tabs. The next sections discuss the component-
specific properties available under these tabs.

See Also
Calendar, in End User, for information on using the Calendar component.
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Calendar Properties: General Tab

The General tab in the ‘Calendar Properties’ dialog box provides only the
common general properties.

See Also
General Tab, for information about common properties in the General tab.

Calendar Properties: Data Tab

The Data tab in the ‘Calendar Properties’ dialog box allows you to choose
the date field on which Calendar selections operate. Only columns with
date formatting are displayed.

DASHBOARD DESIGN

1546 of 2477

Calendar Properties: Advanced Tab

The Advanced tab in the ‘Calendar Properties’ dialog box provides the
following Calendar-specific properties

OPTION DESCRIPTION

‘Show’ Calendar: Displays the calendar as a traditional wall calendar.
Dropdown: Displays the calendar as a drop-down list.

‘View Type’ Simple View: Displays a single calendar unit.
Range/Comparison: Displays two calendars side by side,
facilitating date comparison.

 ‘View
Mode’

Yearly: Displays all twelve months in a single calendar.
Monthly: Displays a single month.
Day Selection: Enables selection of individual days on the
calendar.
Single Selection: Prevents the user from selecting multiple date
units on the Calendar. (This property is not supported for
Viewsheets displayed using HTML, such as those on iPad.)

DASHBOARD DESIGN

1547 of 2477

7 Output Components

Graphical output components display summarized data using a familiar
measurement device (Gauge, Cylinder, Thermometer, Sliding Scale, etc.).
The highly graphical nature of these objects makes them ideal candidates
for presenting key indicators. Like data views, graphical output
components are controlled by selection and input components.

7.1 Thermometer/Cylinder/Sliding Scale/Gauge
Thermometers, Cylinders, Scales, and Gauges are identical in terms of data
binding and functionality. They display a summarized value for a single
column in a Worksheet Data Block, query, or model. These output
components differ only in appearance.

7.1.1 Creating an Output Component

To add an output component to a Viewsheet, follow the steps below:

1. Drag the desired component from the Component tree into the grid.

2. Drag a column from the Data Block (at the top of the Components
tree), and drop it onto the output component.

This binds the output component to the Data Block column, so that
the component displays a summary of the values in that column.

3. To specify the summarization method, follow these steps:

a. Right-click the component, and select ‘Properties’. This opens
the ‘Properties’ dialog box for the component.

b. In the Data tab of the ‘Properties’ dialog box, select a
summarization method from the ‘Aggregate’ menu, and click
‘OK’.

DASHBOARD DESIGN

1548 of 2477

7.1.2 Output Component Properties

The ‘Properties’ dialog box for output components provides the following
tabs: General, Data, and Advanced. The next sections discuss the output-
specific properties available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.

Output Component Properties: General Tab

The General tab in the ‘Properties’ dialog box provides the following
unique properties for output elements.

Note: If you are connecting to the server via “https” in Internet Explorer,
you may need to change the following Internet Explorer setting in order for
the ‘Face’ property to update correctly: In Internet Explorer, open the
‘Internet Options’ dialog box, and click the ‘Browsing History Settings’
button to open the ‘Temporary Internet Files’ dialog box. Select ‘Every
time I visit the web page’ under ‘Check for newer versions of stored
pages’.

Number
Range

Minimum: The starting value on the display.
Maximum: The ending value on the display.
Minor Increment: The minimum resolution on the display.
Major Increment: The points at which the values are displayed.

If you leave the Number Range properties blank, the Gauge will
automatically create a scale appropriate to the data.

Face The visual form of the element. Click on the desired skin to select it.
Shadow Adds a drop shadow to the component.

DASHBOARD DESIGN

1549 of 2477

See Also
General Tab, for General tab properties that are common among
components.

Output Component Properties: Data Tab

The Data tab in the ‘Properties’ dialog box for output components provides
only the common data properties.

See Also
Data Tab, for information about common properties in the Data tab.

Output Component Properties: Advanced Tab

The Advanced tab in the ‘Properties’ dialog box for output components
provides the following properties:

Setting Ranges for Output Components

To set multiple ranges for an output component, follow the steps below:

1. Open the Advanced tab of the Properties dialog box. In the
‘Range’ panel you will see three editable drop-down lists.

2. Enter a value for ‘Range 1 to’ and choose a color from the pop-up
menu. This sets the region from the minimum value on the scale to
the specified value.

Range A set of colored zones to display on the output component. See Setting
Ranges for Output Components.

Show
Value

Provides a digital display of the current value shown on a Gauge.

DASHBOARD DESIGN

1550 of 2477

3. Enter a value into ‘Range 2 to’ and choose a color from the pop-up
menu. This sets the region from the end of ‘Range 1’ to the
specified value.

4. Repeat the above steps to add any additional thresholds.

5. (Optional) Select ‘Gradient’ to smoothly blend the zone colors, if
desired.

6. (Optional) If you have selected ‘Gradient’, choose a color for the
final blend.

The placement of the scale differs for each output component, as shown
below.

7.2 Text
Text elements can be used to display static labels as well as summarized
data for a single column in a Worksheet Data Block, query, or data model.

7.2.1 Creating a Text Element

To add a text into a Viewsheet, drag a Text component from the
Component panel into the Viewsheet grid. Use the mouse to move and
resize the element.

Double-click inside the Text element to edit the text. The text that you enter
will automatically wrap to fit within the component boundaries. If you set
the ‘Auto Size’ property (see Text Properties: General Tab), the Text
component will expand vertically to display the entirety of the text that you
enter.

Final color

DASHBOARD DESIGN

1551 of 2477

To bind a text element to a data column, drag the desired column from the
Data Block (at the top of the Component panel) and drop it onto the
element.

7.2.2 Text Properties

The Text component’s ‘Properties’ dialog box provides the following tabs:
General and Data. The next sections discuss the text-specific properties
available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.

Text Properties: General Tab

The General tab in the ‘Text Properties’ dialog box provides the following
text-specific property.

See Also
General Tab, for information about common properties in the General tab.
Dashboard Scripting, to replace the fixed text with a formula.

Text Properties: Data Tab

The Data tab in the ‘Text Properties’ dialog box provides only the common
data properties.

See Also
Data Tab, for information about common properties in the Data tab.

Text Display a label, or specify a single calculated value.
Shadow Adds a drop shadow to the component. (Drop shadow for a Text

component is not preserved on export.)
Auto
Size

Allows the bottom border of the Text component to expand vertically
so that all of the text in the component is visible.

DASHBOARD DESIGN

1552 of 2477

7.2.3 Adding Highlights to Text

To add a highlight to a text element, right-click the text element, and select
‘Highlight’ from the context menu. This opens the ‘Highlight’ dialog box.

See Also
Highlights, for instructions on how to use the ‘Highlight’ dialog box.

7.3 Image
An Image element displays an image file (gif, jpg, png) on the Viewsheet.

7.3.1 Creating an Image

To add an Image element to a Viewsheet, follow the steps below:

1. Drag an Image element from the Component tree onto the
Viewsheet grid. Use the handles to move and resize the element.

2. Right-click the image element, and select ‘Properties’. This opens
the ‘Image Properties’ dialog box. Select the General tab.

Uploaded image files
are stored in the
asset.dat file together
with the Viewsheet.

3. To upload a local image file, click the ‘Upload’ button at the
bottom of the dialog box, and choose the file. The uploaded file is
now listed under the ‘Uploaded’ folder.

DASHBOARD DESIGN

1553 of 2477

To specify an image that already exists on the server (in a directory
on the classpath), enter the resource path (e.g. ‘/library/image.gif’)
as an expression in the ‘Dynamic Image Selection’ field, under the
Advanced tab.

4. Select the desired image from the ‘Uploaded’ folder, and click
‘OK’.

The image is added to the Viewsheet. By default, the image appears at its
full size. To scale the image to the Image container, select ‘Scale Image’
from the Advanced tab.

See Also
Scaling an Image, for information on scaling an image in the Viewsheet.
Creating a Shape, for information on creating primitive shapes.
Changing Images with Script, in Dashboard Scripting, for information on
changing image content using script.

7.3.2 Image Properties

The Image component’s ‘Properties’ dialog box provides the following
tabs: General, Data, and Advanced. The next sections discuss the image-
specific properties available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.

Image: General Tab

The General tab in the ‘Image Properties’ dialog box provides the
following image-specific property.

Static Image Select an existing server image, or ‘Upload’ an image to the server.
The ‘Skins’ folder provides a few predefined images which are
useful as backgrounds. The ‘Theme Background’ has the special
property of automatically adapting to match the prevailing color
scheme of the User Portal.

Shadow Adds a drop shadow to the component.

DASHBOARD DESIGN

1554 of 2477

See Also
General Tab, for information about common properties in the General tab.
Changing Images with Script, in Dashboard Scripting, for information on
specifying an image file through scripting.
Creating an Image, for instructions on how to upload an image.

Image: Data Tab

The Data tab in the ‘Image Properties’ dialog box provides the common
data properties. The ‘Aggregate’ value that you specify here is used as the
value for the Image highlight condition.

See Also
Adding Highlights to an Image, for information on conditional formatting.
Data Tab, for information on common properties in the Data tab.

Image: Advanced Tab

The Advanced tab in the ‘Image Properties’ dialog box provides the
following image-specific properties.

Dynamic
Image
Selection

Specifies a method for dynamically setting the image. See
Changing Images with Script, in Dashboard Scripting, for more
information.

DASHBOARD DESIGN

1555 of 2477

7.3.3 Scaling an Image

To scale an image, you need to enable image scaling, and then choose the
method by which images should scale. Follow the steps below:

1. Right-click the Image component, and select ‘Properties’ from the
context menu. This opens the ‘Image Properties’ dialog box.

2. Click the Advanced tab, and enable the ‘Scale Image’ option.

3. To keep image proportions constant during scaling, select
‘Maintain Aspect Ratio’. This allows the image to scale without
distortion.

4. To selectively scale only parts of the image (e.g., the middle of the
image), select ‘Scale (9-Cell Grid)’.

Scale Image When selected, specifies that images should be scaled to the
containing component boundary. The following options are
available:
Maintain Aspect Ratio: The image’s width to height ratio is
preserved when the image is resized, preventing the image from
being distorted.
Scale: The image is divided into nine regions, which scale
independently. See Scaling an Image.

Tile Tiles (repeats) the image horizontally and vertically within the
component boundaries.

Preview Displays a thumbnail of the image as it will appear with the
applied scaling.

DASHBOARD DESIGN

1556 of 2477

Tip: For an image
with a border, you
may want to keep the
border width constant
as the image is scaled.
To do this, set the
pixel values slightly
greater than the bor-
der thickness.

This divides the image into a 3x3 grid of cells, shown below. The
‘Top’ and ‘Bottom’ cells are scaled only horizontally. The ‘Left’
and ‘Right’ cells are scaled only vertically. The corner cells are not
scaled, and maintain their original size. The middle (gray) cell is
scaled in both horizontal and vertical directions.

5. If you have selected ‘Scale (9-Cell Grid)’, enter the desired sizes of
the ‘Top’, ‘Bottom’, ‘Left’, and ‘Right’ regions in pixels.

6. Click ‘OK’ to close the dialog box.

The image will now be scaled in the specified manner when you adjust the
Image boundaries.

See Also
Creating a Background, to use an image as Viewsheet or component
background.

7.3.4 Adding Highlights to an Image

To add a highlight to an image element, right-click the image element, and
select ‘Highlight’ from the context menu. This opens the ‘Highlight’ dialog
box.

See Also
Highlights, for instructions on how to use the ‘Highlight’ dialog box.

7.3.5 Tinting an Image

To add colored tint to an image, follow the steps below:

1. Right-click the image, and select ‘Format’ from the context menu.
This opens the ‘Format’ dialog box.

2. Select the Color tab.

3. In the ‘Text’ panel, select a color from the menu.

4. Click ‘OK’ to close the dialog box.

The color you selected is now used to tint the image.

DASHBOARD DESIGN

1557 of 2477

See Also
Color Tab, for more information about the options on the Color tab.

7.4 Adding Hyperlinks to Output Components
In output components, hyperlinks can be attached to the component body
(e.g., the entire Gauge). To create hyperlinks on an output component,
right-click the component and select ‘Hyperlink’ from the context menu.
This opens the ‘Hyperlink’ dialog box.

See Also
Hyperlinks, for information on the ‘Hyperlink’ dialog box.

DASHBOARD DESIGN

1558 of 2477

8 Input Components

Note: The Viewsheet’s onLoad Handler script is re-executed each
time the user makes a selection from an Input Component.

You can enter data into Viewsheets using the input components provided in
the toolbox (Slider, Spinner, Combo Box, etc.) Input elements, unlike
selection elements, do not merely filter a fixed set of data. Instead, they
cause re-execution of queries and modify the original result set.

See Also
Output Components, for information on graphical presentation of data.
Selection Components, for information on filtering the data view display.
Data View Components, for information on tables and charts.

8.1 Using Input Components
Input components enable the user to enter values into a Viewsheet. There
are three ways that you can use the entered input values:

Note: You can also
add a Worksheet
Embedded Table as a
Viewsheet compo-
nent, so that users can
directly enter values.
See Creating an
Embedded Table.

• Pass the input values to an Embedded Table in the linked Worksheet:
Embedded Tables in a Data Worksheet are often linked (via joins, etc.)
to other Data Blocks in such a way that changing values in the
Embedded Table alters the data contained in those other blocks. This
allows the user to perform what-if analysis, manipulating the values in
the Embedded Table to see how a hypothetical scenario would impact
their real data.

Note: An input com-
ponent that is not
linked to a Variable
can still be referenced
in Worksheet script as
a parameter having
the name of the com-
ponent.

• Pass the input values to a Variable in the linked Worksheet: Variables in
a Data Worksheet are used in Data Block conditions, which effectively
filter the data contained in a given Data Block.

• Pass the input values to set component properties or conditions in the
Viewsheet.

Note: The CheckBox
control does not sup-
port the Embedded
Table interface.

The following sections discusses the Embedded Table and Variable
interfaces. Viewsheet input components (Slider, Radio Button, etc.)
provide a way to alter the values set within the Worksheet’s Embedded
Table or Variable without accessing the Worksheet directly. This allows
you to explore the same data by making intuitive control adjustments,
rather than by typing in numbers.

For information on using inputs to dynamically adjust component
properties and conditions, see Dynamic Properties.

See Also
Creating an Embedded Table, in Data Mashup, for basic concepts.
Creating a Variable, in Data Mashup, for information on Variables.

DASHBOARD DESIGN

1559 of 2477

8.1.1 Configuring an Embedded Table

To pass inputs from a Viewsheet to the underlying Worksheet, the
Worksheet must contain an Embedded Table. Follow the steps below to
add and configure the Embedded Table in the Worksheet.

1. In the Worksheet, click the ‘New Object’ button in the toolbar, and
select the ‘Embedded Table’ option. The pointer changes to a
crosshair.

Any cell in the
Embedded Table can
receive its value from
a Viewsheet control.

2. Drag the mouse across the Worksheet grid to create the new
Embedded Table. Create as many rows and columns as needed for
the application.

3. Right-click the Embedded Table, and select ‘Properties’ from the
context menu. This opens the ‘Properties’ dialog box.

4. In the ‘Name’ field, enter a name for the Embedded Table. This is
the name by which you will identify the table in the Viewsheet.

5. Click ‘OK’ to close the ‘Properties’ dialog box.

6. Edit the column names, if desired. (Meaningful column names
make it easier to bind the Viewsheet input control.)

7. Enter default values into the cells of the Embedded Table.

A cell that is linked to a Viewsheet control will be dynamically
updated to the value set in the control. A cell that is not linked to a
Viewsheet control will retain the fixed value you enter.

The Embedded Table
is usually connected
to other Data Blocks
by one or more joins.

8. Connect the Embedded Table to other Data Blocks in the
Worksheet, as desired.

See Also
Linking a Viewsheet to a Data Source, for an application example.
Creating an Embedded Table, in Data Mashup, for basic concepts.
Joining Tables, in Data Mashup, for information on creating joins.
Renaming a Column, in Data Mashup, to set column names.

8.1.2 Passing Inputs to an Embedded Table or Variable

To link a Viewsheet input control (other than a Check Box) to an
Embedded Table or Variable in the Worksheet, follow these steps:

1. Right-click on the input control, and select ‘Properties’.

2. Select the Data tab.

DASHBOARD DESIGN

1560 of 2477

Multiple controls can
be linked to the same
Embedded Table.

3. Click the ‘Target’ menu:

a. To access an Embedded Table, expand the ‘Table’ node, and
select the desired Embedded Table Data Block of the
Worksheet.

b. To access a Variable, expand the ‘Variable’ node, and select the
desired Variable asset in the Worksheet. Skip to the final step
below.

4. For an Embedded Table, click the ‘Browse’ button next to the
‘Table’ field. This displays a representation of the Embedded
Table.

5. In the displayed Embedded Table, click to select the table cell into
which input values should be passed. This automatically populates
the ‘Column’ and ‘Row’ menus with the corresponding cell
indices.

The ‘Row’ menu dis-
plays the format “row:
row value.” For exam-
ple, “1:25” indicates
that input values are
passed to the second
row of the Embedded
Table, which currently
contains the value
“25.”

Alternatively, specify the target cell directly from the provided
menus:

a. From the ‘Column’ menu, select the appropriate field of the
Embedded Table Data Block.

b. From the ‘Row’ menu, select the row of the table to which the
input element should provide data.

6. Click ‘OK’ to exit the ‘Properties’ dialog box.

To set the options dis-
played by the Input
control, see Creating a
Radio Button/Check
Box/Combo Box.

The control is now linked to the Worksheet’s Embedded Table or Variable,
and changes you make using the control will alter the values in the
specified Embedded Table cells or Variable.

See Also
Input Components, for information on controls for Embedded Table input.
Creating an Embedded Table, for directly entering data into an Embedded
Table.

DASHBOARD DESIGN

1561 of 2477

Creating an Embedded Table, in Data Mashup, for basic concepts.
Creating a Variable, in Data Mashup, for basic concepts.
What-If Analysis, in Data Mashup, for an application example.
Dynamic Properties, to control properties from input elements.

8.2 Slider and Spinner
Sliders and Spinners are interactive input elements that can supply
numerical data to Embedded Tables and Variables in the underlying
Worksheet and Viewsheet component properties. Sliders and Spinners
differ from one another only in appearance.

See Also
Passing Inputs to an Embedded Table or Variable, to manipulate the
Worksheet.
Dynamic Properties, to manipulate Viewsheet properties.

8.2.1 Creating a Slider or Spinner

To create a Spinner, follow the steps below. (The Slider is identical.)

1. Drag the ‘Spinner’ element from the component tree into the
Viewsheet grid. This creates an empty Spinner in the Viewsheet
grid.

2. Right-click on the Spinner, and select ‘Properties’ from the context
menu. This opens the ‘Spinner Properties’ dialog box.

3. Under the General tab, specify the ‘Minimum’ and ‘Maximum’
values.

4. If you will use the Spinner to control dynamic properties of another
element, follow these steps:

a. Enter a ‘Name’ for the control. This is the name by which the
control is identified in dynamic property menus. (See Dynamic
Properties.)

b. Click ‘OK’ to finish.

Note: If you plan to use the Slider or Spinner to set dynamic
properties, you do not need to specify an Embedded Table or
Variable in the Data tab.

5. If you will use the Spinner to control values in a Worksheet
Embedded Table or Variable, follow the steps below:

DASHBOARD DESIGN

1562 of 2477

a. Select the Data tab.

b. In the ‘Target’ list, expand the ‘Tables’ or ‘Variables’ node, and
select an Embedded Table or Variable from the linked
Worksheet.

The format shown is
“row: value.” The left
number is the row
index, the right num-
ber is the current
value in that row (i.e.,
the default value).

c. For an Embedded Table, select the desired column from the
‘Column’ list and the desired row from the ‘Row’ list. The row
and column together define the cell to which the Spinner
provides data.

d. Click ‘OK’.

Example:
Spinner Control of
Embedded Table

In this example, you will use a Spinner control to display only values in a
table that exceed the specified Spinner value.

1. Create a new Worksheet.

2. In the following steps, add a new Embedded Table containing a
single numeric data cell:

a. Click the ‘New Object’ button on the toolbar, and select
‘Embedded Table’.

b. Drag across the Worksheet grid to select three vertical cells, and
release.

This creates a new Embedded Table named ‘Query1’, with just
one data cell.

DASHBOARD DESIGN

1563 of 2477

c. Double-click the column header cell (‘col0’), and change the
name to “Quantity”.

d. In the data cell of the Embedded Table, enter the value “4000.”

e. Right-click the column header cell (‘Quantity’), and select
‘Column Type’ from the context menu.

This opens the ‘Column Type’ dialog box.

f. In the ‘Column Type’ dialog box, set ‘Type’ to ‘Integer’. Click
‘OK’.

3. Expand the ‘Orders’ data source on the Asset tree, and drag the
‘Sales by Category’ query onto the Worksheet. This creates a new
table called ‘Sales by Category1’.

Note that a Range
Slider provides a very
simple way to filter
based on value, with-
out requiring Embed-
ded Tables.

4. In the following steps, join the Embedded Table to the ‘Sales by
Category1’ table. The tables will be joined on the ‘Qty Sold’
column using an inequality join condition:

a. Select both of the tables (Shift-click).

b. Click the ‘Join Table’ button on the toolbar, and select ‘Inner
Join’. This opens the ‘Inner Join’ dialog box.

c. On the left side, select ‘Query1.Quantity’ from the top menu.

d. On the right side, select ‘Sales by Category1.Qty Sold’ form the
top menu.

e. From the center menu (comparison operator), select ‘<=’, as
shown below.

DASHBOARD DESIGN

1564 of 2477

f. Press ‘OK’.

The tables are now joined on the ‘Qty Sold’ column, creating a
new table called ‘Query2’. The values shown in the ‘Qty Sold’
column of joined table ‘Query2’ will only be those which equal
or exceed the ‘Quantity’ value in the Embedded Table.

5. Verify that the joined table is filtered correctly:

a. Press the ‘Change View’ button in the toolbar of the ‘Query2’
table and select ‘Live Preview’. Expand the table to show all the
data. (Only values of ‘Qty Sold’ greater than or equal to 4000
are shown.)

b. Enter “6000” as the value in the Embedded Table, and observe
how the data in table ‘Query2’ is filtered accordingly.

6. Prepare the joined table to be displayed in a Viewsheet:

a. Right-click the ‘Query2’ table title bar and select ‘Properties’
from the context menu. Change the name of the joined table to
“Result Table”.

b. Press the ‘Change View’ button in the toolbar, and select
‘Default’ to exit live-data mode.

c. In the left-most table column named ‘Quantity’, click the
‘Visibility’ button to hide the column. (This column shows the

DASHBOARD DESIGN

1565 of 2477

value from the Embedded Table, and does not need to be
displayed in the Viewsheet.)

d. Save the Worksheet as “Large Quantity”.

7. In the following steps, create a new Viewsheet to display the
‘Result Table’ from the Worksheet:

a. Create a new Viewsheet based on the ‘Large Quantity’
Worksheet.

b. From the Component tree, drag the ‘Result Table’ Data Block
onto the Viewsheet grid. This creates a table called ‘Result
Table’.

c. Drag the table handles to make the table taller, so that about 10
rows are shown.

8. Add a Spinner element to control the value in the Embedded Table
(thus filtering the displayed ‘Result Table’):

a. Drag a Spinner from the Component tree onto the Viewsheet
grid.

b. Right-click the Spinner, and select ‘Properties’ from the context
menu. This opens the ‘Spinner Properties’ dialog box.

The ‘Row’ menu
shows a single row
because the Embed-
ded Table has only
one row. The value
shown is the current
value of the Embed-
ded Table cell, which
was specified earlier.

c. Select the Data tab. In the ‘Target’ menu, expand the ‘Table’
node, and select ‘Query1’. (This is the ID of the Embedded
Table in the Worksheet.)

DASHBOARD DESIGN

1566 of 2477

d. Select the General tab. In the ‘Number Range’ panel, set
‘Maximum’ to “10000.”

e. Press ‘OK’.

9. Test the Spinner control by entering different values. Observe how
the values in the table change: The table only displays records for
which ‘Qty Sold’ is greater than the value you choose in the
Spinner.

¢

See Also
Using Input Components, for details on the Embedded Table interface.
Creating a New Data Worksheet, in Data Mashup.
Creating a New Embedded Table, in Data Mashup.
Dynamic Properties, to control properties with input elements.

8.2.2 Slider and Spinner Properties

The ‘Properties’ dialog box for Slider and Spinner components provides
the following tabs: General, Data, and Advanced. The next sections
discuss the input-specific properties available under these tabs.

DASHBOARD DESIGN

1567 of 2477

See Also
Properties Dialog Box, for information about common component
properties.

Slider and Spinner Properties: General Tab

The General tab in the Slider and Spinner ‘Properties’ dialog box provides
the following unique properties.

See Also
General Tab, for General tab properties that are common among
components.

Slider and Spinner Properties: Data Tab

The Data tab in the ‘Properties’ dialog box for input components provides
the following input-specific properties:

See Using Input Components for details on setting and using these
properties.

See Also
Data Tab, for Data tab properties that are common among components.

Number
Range

Minimum: The starting value
Maximum: The ending value
Increment: The points at which the values are displayed

Target An Embedded Table or Variable in the Worksheet. The ‘Browse’
button to the right allows you to interactively select the row and
column of the Embedded Table.

Column The column of the Worksheet Embedded Table into which the input
value should be passed.

Row The row of the Worksheet Embedded Table into which the input
value should be passed. (The ‘Row’ menu displays the format “row:
row value.”)

DASHBOARD DESIGN

1568 of 2477

Slider and Spinner Properties: Advanced Tab

The Advanced tab in the ‘Properties’ dialog box for the Slider component
provides the following specific property:

8.3 Radio Button, Check Box, Combo Box
Radio Buttons, Check Boxes, and Combo Boxes are used to enter numeric
or non-numeric data into an Embedded Table or Variable in the underlying
Worksheet. They can also be used to set dynamic properties of other
Viewsheet components, e.g., visibility, color, etc.

Radio Buttons, Check Boxes, and Combo Boxes offer similar functionality.
Radio Buttons and Combo Boxes allow only a single item to be selected,
while Check Boxes allow multiple items to be selected.

See Also
Using Input Components, for details on Embedded Table and Variable
interfaces.
Dynamic Properties, to control properties using input elements.
Creating a Slider or Spinner, for an Embedded Table usage example.

8.3.1 Creating a Radio Button/Check Box/Combo Box

To create a Radio Button/CheckBox/ComboBox, follow the steps below.

1. Drag a Radio Button/CheckBox/ComboBox control from the
Component tree onto the Viewsheet grid.

2. Right-click the control and select ‘Properties’ from the context
menu. This opens the Radio Button/CheckBox/ComboBox
‘Properties’ dialog box.

3. If you will use the Radio Button/CheckBox/ComboBox to set
dynamic properties for another element, follow these steps:

a. Select the General tab, and enter a ‘Name’ for the control. This
is the name by which the control is identified in dynamic
property menus. (See Dynamic Properties.)

Label The labels to display on the Slider:
Tick: Show tick marks along the slider scale.
Current Value: Display the current value above the slider when
dragging.
Labels: Show value labels along the slider scale. (‘Tick’ must be
enabled.)
Minimum: Show the minimum slider value at the left of the slider.
(Enabled by default when ‘Labels’ is enabled.)
Maximum: Show the maximum slider value at the right of the slider.
(Enabled by default when ‘Labels’ is enabled.)

DASHBOARD DESIGN

1569 of 2477

b. Click ‘OK’ to finish.

Note: If you plan to use the input control to set dynamic
properties, you do not need to specify an Embedded Table under the
Data tab.

4. If you will use the Radio Button/CheckBox/ComboBox to set
values in a Worksheet Embedded Table or Variable, follow the
steps below. (See Passing Inputs to an Embedded Table or Variable
for more details.)

a. Select the Data tab.

b. From the ‘Target’ list, select an Embedded Table Data Block or
Variable in the linked Worksheet.

The format shown is
“row: value.” The left
number is the row
index, the right num-
ber is the current
value in that row (i.e.,
the default value).

c. For an Embedded Table, from the ‘Column’ list, select the
desired field of the Embedded Table. From the ‘Row’ list, select
the row of the table to which the input control should provide
data.

d. Click ‘OK’.

5. Select the General tab, and populate the Radio Button/CheckBox/
ComboBox control with the values it will display. There are three
methods:

a. Manually enter a list of values and labels: See Populating Label/
Value Pairs Manually.

b. Specify a query to generate a list of values and labels: See
Populating Label/Value Pairs from Query.

DASHBOARD DESIGN

1570 of 2477

c. For ComboBox only, you can acquire the input via a calendar
widget. See Acquiring Date Input Using a Calendar Control.

6. Click ‘OK’ to close the dialog box.

See Also
Using Input Components, for details on Embedded Table and Variable
interfaces.
Dynamic Properties, to control properties from input elements.
Populating Label/Value Pairs Manually, to manually enter values/labels.
Populating Label/Value Pairs from Query, to obtain values/labels from
query.

Populating Label/Value Pairs Manually

Applies to Radio But-
tons, Check Boxes, and
Combo Boxes.

To manually enter label/value pairs for a Radio Button, Check Box, or
Combo Box, follow the steps below:

1. Right-click the input control, and select ‘Properties’ from the
context menu. This opens the ‘Properties’ dialog box.

2. Select the General tab.

3. Under the heading ‘List Values’, select the ‘Embedded’ option, and
click on the ‘Edit’ button. This opens the ‘Embedded List Values’
dialog box.

4. Click the ‘Add’ button. This will populate the list with ‘Label’ and
‘Value’.

5. Double click on the list elements, and enter a desired Label and
Value.

6. To insert more elements, repeat the above steps.

7. Click ‘OK’ when you are finished adding items.

DASHBOARD DESIGN

1571 of 2477

8. In the ‘Data Type’ field, specify the data type of the values you
entered in the ‘Value’ column.

9. In the ‘Options’ panel, specify how the labels in the list should be
ordered. ‘Ascending’ and ‘Descending’ sort the labels in
alphabetical/increasing order or reverse-alphabetical/decreasing
order, respectively.

The ‘None’ option retains the original ordering of the embedded
list. If you are populating the list from both a query and an embed-
ded list (see Populating Label/Value Pairs from Both a Query and
Embedded List), select ‘List Embedded Items Last’ to place the
items from the embedded list following the query items. Otherwise,
the embedded items are listed before the query items.

10. Press ‘OK’ to exit the ‘Properties’ dialog box.

To use data field names as the label/value pairs for the input control, simply
drag the field names from the Component panel onto the input component
in the desired sequence.

This approach is preferable to manually typing the field names in the
embedded list, because it protects you from entering misspelled field
names. After adding the fields to the list this way, you can modify the labels
by editing the embedded list as described previously.

DASHBOARD DESIGN

1572 of 2477

Populating Label/Value Pairs from Query

Applies to Radio But-
tons, Check Boxes, and
Combo Boxes.

To populate a Radio Button, Check Box, or Combo Box using label/value
pairs from a query, follow the steps below:

1. Right-click on the input control, and select ‘Properties’ from the
context menu. This opens the ‘Properties’ dialog box.

2. Select the General tab.

3. Under the heading ‘List Values’, select the ‘Query’ option, and
click on the ‘Edit’ button. This opens the ‘List Values Selection’
dialog box.

4. Select a Data Block from the list on the left side. Select the
appropriate fields from the drop-down lists titled ‘Label’ and
‘Value’.

5. Enable the ‘Apply Selection’ option to filter the query values based
on Selection components in the Viewsheet. For example, if an input
control displays query values drawn from the ‘Category’ field, and
the Viewsheet also contains a Selection List based on the
‘Category’ field, selections that the user makes in the ‘Category’
Selection List will filter the categories shown in the input
component.

6. Press ‘OK’ to close the ‘List Values Selection’ dialog box.

7. In the ‘Options’ panel, specify how the labels in the list should be
ordered. ‘Ascending’ and ‘Descending’ sort the labels in
alphabetical/increasing order or reverse-alphabetical/decreasing
order, respectively. The ‘None’ option retains the original ordering
provided by the query.

DASHBOARD DESIGN

1573 of 2477

8. Press ‘OK’ to close the ‘Properties’ dialog box.

Populating Label/Value Pairs from Both a Query and Embedded List

Applies to Radio But-
tons, Check Boxes, and
Combo Boxes.

To populate a Radio Button, Check Box, or Combo Box using label/value
pairs from both a query and an embedded list, enable both the ‘Query’ and
‘Embedded’ options in the ‘Properties’ dialog box. (See Populating Label/
Value Pairs from Query and Populating Label/Value Pairs Manually.)

This will merge together the labels/values retrieved from both sources into
a single list. If the ‘Sort’ property is set to ‘Ascending’ or ‘Descending’, the
query items and embedded items are sorted together as a single list. If the
‘Sort’ property is set to ‘None’, the embedded items can be placed either
before or after the query items. See Populating Label/Value Pairs
Manually for more information.

Acquiring Date Input Using a Calendar Control

Applies to Combo
Boxes only.

To acquire date input from the user using a calendar control, follow the
steps below:

1. Drag a ComboBox from the Components panel to the Viewsheet.

1. Right-click the ComboBox, and select ‘Properties’ from the
context menu. This opens the ‘Properties’ dialog box.

2. Select the General tab.

3. Under the heading ‘List Values’, select the ‘Embedded’ option, and
click on the ‘Edit’ button.

4. In the ‘Data Type’ field, select the ‘Date’ option.

5. Enable the ‘Calendar’ option.

DASHBOARD DESIGN

1574 of 2477

6. Press ‘OK’ to exit the dialog box.

This creates a calendar control in which user the user can select an arbitrary
date.

8.3.2 Radio Button/Check Box/Combo Box Properties

The ‘Properties’ dialog box for Radio Button, Check Box, or Combo Box
provides General and Data tabs. The next sections discuss the input-
specific properties available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.

DASHBOARD DESIGN

1575 of 2477

Radio/Check/Combo Properties: General Tab

The General tab in the ‘Properties’ dialog box provides the following
unique properties for Radio Button, Check Box, and Combo Box.

See Also
Populating Label/Value Pairs Manually, to manually enter label-value
pairs.
Populating Label/Value Pairs from Query, to populate from a query.
General Tab, for information on common properties in the General tab.

Radio/Check/Combo Properties: Data Tab

The Data tab in the ‘Properties’ dialog box for Radio Button, Check Box,
or Combo Box is the same as for Sliders and Spinners.

See Also
Slider and Spinner Properties: Data Tab, for information on the Data tab.

8.4 Submit Button
The Submit button provides a way for the user to trigger a scripted action in
the Viewsheet. This action is performed by a script that you place in the
‘onClick’ handler of the Submit button.

List
Value

Specifies the method for populating control labels and values:
Embedded: Manually enter label-value pairs.
Query: Populate from a query (Data Block).
See Creating a Radio Button/Check Box/Combo Box for information
on how to use these options.

Editable Allows the user to enter an arbitrary string into the Combo Box (in
addition to selecting from the list options).

Number
of Rows

For a ComboBox, this specifies the number of items displayed when
the ComboBox is expanded.

DASHBOARD DESIGN

1576 of 2477

One common use of the Submit button is to write data from an editable
table or TextInput component to a database. The submitted table data may
include records that the user has added, deleted, or edited in a table.

For information on how to create a database update script, see Committing
User-Modified Data to Database (Database Write-Back) in Dashboard
Scripting.

See Also
Committing User-Modified Data to Database (Database Write-Back) in
Dashboard Scripting, to submit information to the database.
TextInput, for a component that allows arbitrary user text entry and
validation.
Table Properties: Advanced Tab, to configure a table to be editable by
users.

8.4.1 Creating a Submit Button

To create a Submit button, follow the steps below.

1. Drag the ‘Submit’ element from the component tree into the
Viewsheet grid. This creates a new Submit button in the Viewsheet
grid.

2. Right-click on the Submit button, and select ‘Properties’ from the
context menu. This opens the ‘Submit Properties’ dialog box.

3. Select the General tab. In the ‘Label’ field, enter the text to appear
on the button face.

4. Select the Script tab. Enter the desired ‘onClick’ script. See
Committing User-Modified Data to Database (Database Write-
Back) in Dashboard Scripting for more information.

5. Press ‘OK’ to close the dialog box.

8.4.2 Submit Button Properties

The ‘Properties’ dialog box for Slider and Spinner components provides
the following tabs: General and Script. The next sections discuss the
input-specific properties available under these tabs.

DASHBOARD DESIGN

1577 of 2477

See Also
Properties Dialog Box, for information about common component
properties.

Submit Button Properties: General Tab

The General tab in the Submit button ‘Properties’ dialog box provides the
following unique property.

See Also
General Tab, for General tab properties that are common among
components.

Submit Button Properties: Script Tab

The Script tab is common to most components. See Dashboard Scripting
for information on writing Viewsheet scripts.

8.5 TextInput
The TextInput component allows a user to enter arbitrary data in the form
of text, date, integer, or floating point values. This component is commonly
used together with the Submit Button to commit user edits to the database.

See Also
Submit Button, for information about submitting user input.

8.5.1 TextInput Properties

The ‘Properties’ dialog box for the TextInput component provides the
following tabs: General, Option, and Script. The next sections discuss the
input-specific properties available under these tabs.

Label The text to be displayed on the button face.
Refresh Viewsheet
after Submit

Refresh the Viewsheet data when the user presses the
‘Submit’ button.

DASHBOARD DESIGN

1578 of 2477

See Also
Properties Dialog Box, for information about common component
properties.

TextInput Properties: General Tab

The General tab in the ‘Properties’ dialog box provides the following
unique properties.

See Also
General Tab, for General tab properties that are common among
components.

TextInput Properties: Option Tab

The Option tab in the ‘Properties’ dialog box allows you to select an
“Input Editor” which specifies the control interface and validation for user
input. See Validating User Input for details on the available editors.

TextInput Properties: Script Tab

The Script tab is common to most components. See Dashboard Scripting
for information on writing Viewsheet scripts.

Default Text Specifies the text to appear within the TextInput field when it is
first displayed. (This is often a hint to the user about what data
should be entered). This default text is automatically removed
when the user begins entering data.

Inset Border
Style

Specifies a dimensional “inset” (rather than flat) appearance for the
component border.

Multiple
Lines

When enabled, allows the user to enter multiple lines of text into
the text area.

DASHBOARD DESIGN

1579 of 2477

9 Shape Components

Note: Shapes cannot be exported to Excel format.

Shape components allow you to add simple geometric shapes to a
Viewsheet. You can use these shapes to provide frames and backgrounds
for other components, and to improve the aesthetic appearance of the
Viewsheet.

9.1 Creating a Shape
You can draw several shapes on the Viewsheet grid, including lines,
rectangles, and ovals. To draw a shape on the Viewsheet grid, follow the
steps below:

1. From the ‘Shape’ node on the Component tree, drag the desired
shape onto the Viewsheet grid.

2. Click the shape to select it.

3. Drag the body of the shape (or the “move” handle) to reposition the
shape as desired.

4. Drag the border handles to resize the shape as desired.

See Also
Creating an Image, for information on adding images to the Viewsheet.
Creating a Background, for information on creating a Viewsheet
background.

DASHBOARD DESIGN

1580 of 2477

9.2 Shape Properties
The ‘Properties’ dialog box for shape components provides General and
Shape tabs. The next sections discuss the shape-specific properties
available under these tabs.

See Also
Properties Dialog Box, for information about common component
properties.

9.2.1 Shape Component Properties: General Tab

The General tab in the ‘Properties’ dialog box for shape components
provides only the common properties.

See Also
General Tab, for General tab properties that are common among
components.

9.2.2 Shape Component Properties: Shape Tab

The Shape tab in the ‘Properties’ dialog box for shape components
provides slightly different properties for each shape type, as explained
below

Line: Style
Line: Color

Sets the line type (thickness, etc.) and color for shape
borders. Available for all shapes.

Fill: Color
Fill: Alpha

Sets the color and transparency of Oval and Rectangle
shape interiors. An ‘Alpha’ value of 100% indicates
complete opacity. An ‘Alpha’ value of less that 100%
allows underlying components to be partially visible
through the shape.

Shape: Round Corners Sets the radius (in pixels) for circularized corners on
Rectangle shapes. Larger pixel values yield more gentle
corners.

DASHBOARD DESIGN

1581 of 2477

9.3 Anchoring a Line to another Component
You can anchor or glue the end of a Line component to a handle of any
other component. This is useful when you are using the line as a connector
between components. When you anchor the end of a line, it remains
attached to the anchoring component even when the anchoring component
is moved.

To anchor the end of a Line component to another component, follow the
steps below:

1. Drag a new Line component from the Components panel into the
Viewsheet.

2. Set the Line properties as desired. (See Shape Component
Properties: Shape Tab.)

3. Click on one of the handles of the Line that you want to anchor.

DASHBOARD DESIGN

1582 of 2477

4. Drag the Line handle over the component to which it should be
anchored. This causes the handles of the anchoring component to
be displayed.

Note: A green high-
light is shown around
the handle when the
end of the Line is in
the correct position.

5. Drop the Line handle onto one of the handles of the anchoring
component.

6. (Optional) Repeat the above steps to anchor the other end of the
Line.

The end of the Line that is anchored will remain attached to the anchoring
component even when the anchoring component is moved.

To free the end of the line from its anchor, follow the steps below:

1. Click the Line to select it.

2. Click the handle at the end of the Line, and drag it away from its
anchor.

DASHBOARD DESIGN

1583 of 2477

10Organization Components

There are several components whose function is to organize other
components, allowing you to structure the components within a Viewsheet.
These organizational components are listed below:

• Container: The Container component is used to group a set of
components, allowing you to positioned them together as a single unit.

• Tabbed Interface: The Tabbed Interface component is used to stack
components onto distinct pages (accessed by tabs), allowing you to
make more efficient use of Viewsheet real estate.

• Nesting Viewsheets: The Nested Viewsheet component is created when
you import an external Viewsheet. This allows you to modularize your
dashboard design.

The following sections present detailed information about these
components’ properties.

See Also
Grouping Components, for information on how to create a group.
Selecting Components, for information on how to select multiple
components.

10.1 Container
The Container component is a container for other elements. It is
automatically created whenever you group a set of components together.
See Grouping Components.

The Container component can hold only individual components, not other
Containers. If you group together multiple Containers, the result is a single
new Container that holds all of the constituent group’s components.

10.1.1 Creating a Container

The Container component is not accessible from the Viewsheet
Component tree. To create a Container component, simply group together a
set of Viewsheet components. See Grouping Components for further
details.

10.1.2 Container Properties

The Container component’s ‘Properties’ dialog box provides General and
Advanced tabs. The next sections discuss the Container-specific properties
available under these tabs.

DASHBOARD DESIGN

1584 of 2477

See Also
Properties Dialog Box, for information about common component
properties.
Format Dialog Box, for information on the ‘Format’ dialog box.

Container Properties: General Tab

The General tab in the ‘Container Properties’ dialog box is the same as
that for the Image component, and allows you also to specify an image to
be used as the group background. See Image: General Tab for details on
how to select the image.

See Also
Format Dialog Box, for information on setting background colors.
General Tab, for information about common properties in the General tab.

Container Properties: Advanced Tab

The Advanced tab in the ‘Container Properties’ dialog box is the same as
that for the Image component, and allows you to set the scaling properties
of the group background image. See Image: Advanced Tab for details on
image scaling.

DASHBOARD DESIGN

1585 of 2477

10.2 Tabbed Interface
A Tabbed Interface allows you to stack individual components or groups
into distinct cards or pages, accessed by tabs. This is an effective way to
conserve screen real estate if components do not need to be accessible at
the same time.

10.2.1 Creating a Tabbed Interface

The Tabbed Interface component is not accessible from the Viewsheet
Component tree. To create a tabbed interface, follow the steps below.

1. Drag and drop one component (or group) onto another component
(or group). This opens the ‘Layout Option’ dialog box.

DASHBOARD DESIGN

1586 of 2477

2. Choose the ‘Place component into tabbed interface’ option. This
places the two components (or groups) into a tabbed interface.

Note that each component is placed at the top-left corner within its
own tab. To display a component at a different location within its
tab, first group the component together with a background (e.g., an
Image component or one of the Shape Components), and then use
the group as the contents of the tab. See Grouping Components for
more information.

Any of the following components can be placed into a tabbed interface:

• Individual components (e.g., Calendar, Table, Chart, Selection
Container)

• Grouped components (i.e., a Container element)

• Nested Viewsheets

To add an additional component to an existing tabbed interface, simply
drag the component (or group) onto the tabbed interface. This will create a
new tab containing the component (or group).

To remove a particular tab from the tabbed interface, follow these steps:

1. Click the tab you wish to remove.

2. Select the component or group within that tab.

You can also delete
the component, if
desired.

3. Drag the selected component out of the tabbed interface (or Cut
and Paste) onto an empty region of the Viewsheet. This will

DASHBOARD DESIGN

1587 of 2477

remove the component from the interface (and delete the
corresponding tab).

To remove the entire tabbed interface, follow the steps below:

1. Click on the row of tabs to select the tabbed interface (as a whole).

2. Right-click, and select ‘Remove’ from the context menu (or click
‘Delete’ on the keyboard).

This deletes the tabbed interface, and returns all of the tabbed components
to normal positions on the Viewsheet.

See Also
Grouping Components, for information on how to create a group.
Selecting Components, for more information on how to select a
component.
Deleting a Component, for information on how to remove a component.
Moving a Component, for information on moving an element.

10.2.2 Tabbed Interface Properties
Note: To open the
Tabbed Interface
‘Properties’ dialog
box, right-click in the
tab region, and select
‘Properties’.

The Tabbed Interface component’s ‘Properties’ dialog box provides only a
General tab. This allows you to assign labels to the different tabs and
modify their order.

To change a tab label, select the desired tab in the ‘Tab’ list, enter the new
label text in the ‘Label’ field, and click ‘OK’. To change the position of the
selected tab, click ‘Move Up’ or ‘Move Down’.

See Also
Properties Dialog Box, for information about common component
properties.

DASHBOARD DESIGN

1588 of 2477

Format Dialog Box, for information on setting background colors.
General Tab, for information about common properties in the General tab.

10.3 Nesting Viewsheets
A nested Viewsheet is an external Viewsheet that is embedded within the
current Viewsheet. This nested Viewsheet can be positioned within the
current Viewsheet as though it were a single component, and it has its own
‘Properties’ dialog box.

See Nesting a Viewsheet for information on creating a Nested Viewsheet
component.

See Also
Nesting a Viewsheet, for information on embedding Viewsheets.
Opening a Nested Viewsheet, for information on editing a nested
Viewsheet.

10.3.1 Nested Viewsheet Properties

The nested Viewsheet’s ‘Properties’ dialog box provides only a General
tab. See General Tab for information on these common properties.

See Also
Properties Dialog Box, for information about common component
properties.
General Tab, for information about common properties in the General tab.

DASHBOARD DESIGN

1589 of 2477

11Dynamic Properties

Every component in a Viewsheet has certain properties that can be made
“dynamic,” or dependent on other components. These properties can be set
either by an input component or by a logical expression. For example, you
can use a radio button to specify the Y-axis field in a chart, or use an
expression to add highlights to cells of a table.

The following sections explain how you can use input controls to
parameterize component formatting and data presentation, as well as data
filtering. By associating an input control such as a RadioButton or
ComboBox with the property setting for a component, you allow the user
to adjust that setting by manipulating the corresponding control.

For information on using expressions, see Adding Property Script
(Expressions) in Dashboard Scripting.

See Also
Adding Property Script (Expressions), in Dashboard Scripting, to control
property values with expressions.

11.1 Parameterizing a Property using an Input
Control
To parameterize a component property using an input control, follow these
steps:

1. Create and configure the input control. Follow the steps below:

a. Add the desired input control (RadioButton, CheckBox, etc.) to
the Viewsheet.

b. Right-click the input component, and select ‘Properties’ from
the context menu. This opens the ‘Properties’ dialog box for the
input component.

c. Under the General tab, use the ‘Name’ field to assign the input
component a meaningful name. This is the name used to refer to
the component.

d. Specify the ‘List Values’ for the input component by manually
entering ‘Embedded’ values or by specifying a ‘Query’ to
provide the values. (See Input Components for further details.)

e. Click ‘OK’ to close the input component ‘Properties’ dialog
box.

DASHBOARD DESIGN

1590 of 2477

2. Link the input control to the component property you want to
manipulate. Follow the steps below:

a. Right-click the component you wish to control, and select
‘Properties’ from the context menu. This opens the ‘Properties’
dialog box for the controlled component.

You can specify an
input control for any
property that offers
the ‘Variable’ option.

b. Locate the property that you wish to control, and select
‘Variable’ from the adjacent pop-up menu.

c. From the corresponding pop-up menu, select the input
component that should control the property.

d. Click ‘OK’ to close the ‘Properties’ dialog box for the
controlled component.

The specified input control will now provide the value of the selected
property.

Example:
Property as a
Parameter

In this example, you will add a RadioButton input that allows the user to set
the Y-axis field of a chart to either ‘Quantity Purchased’ or ‘Total
Revenue’.

1. Create a Viewsheet based on the ‘ProductSales’ Data Worksheet in
the ‘Tutorial’ folder.

2. Add a radio button to the Viewsheet, with two embedded values
(‘Quantity Purchased’ and ‘Total’).

3. Add a chart to the Viewsheet and bind it to the ‘SalesByDate’ Data
Block. Add the ‘State’ field as the X-axis and the ‘Quantity
Purchased’ field as the Y-axis.

DASHBOARD DESIGN

1591 of 2477

4. Click the ‘Quantity Purchased’ menu to select it.

5. Click the ‘down arrow’ next to the menu, and choose the ‘Variable’
option. This populates the menu with all of the available variable
names.

6. From the list of variables, choose ‘$(RadioButton)’.

7. Now click the radio buttons. Note that the chart displays the Y-axis
field that you choose using the radio button control.

¢

See Also
Matching Dynamic Values to Property Values, for input value constraints.

11.2 Parameterizing a Condition using an Input
Control
Input components allow a user to manipulate a filter or highlight condition
applied to a data view component (Chart, Table, Crosstab). To control such
a condition using an input component, follow these steps:

1. Create and configure the input control, following the steps below:

DASHBOARD DESIGN

1592 of 2477

a. Add the desired input control (RadioButton, CheckBox, etc.) to
the Viewsheet.

b. Right-click the input component, and select ‘Properties’ from
the context menu. This opens the ‘Properties’ dialog box for the
input component.

c. Under the General tab, use the ‘Name’ field to assign the input
component a meaningful name. This will be the name used to
refer to the component.

d. Specify the ‘List Values’ for the input component by manually
entering ‘Embedded’ values or by specifying a ‘Query’ to
provide the values. (See Input Components for further details.)

e. Click ‘OK’ to close the input component ‘Properties’ dialog
box.

2. Link the input control to the filter condition or highlight condition
of the data view component that you want the user to manipulate.
Follow the steps below:

a. Right-click the data view component you wish to highlight or
filter, and select ‘Highlight’ or ‘Condition’ (as desired) from the
context menu. This opens the ‘Highlight’ or ‘Condition’ dialog
box for the component.

b. Create the left side of the condition as described under
Highlights and Filter Conditions, e.g., “[State][is][one of]”.

c. From the ‘Change Value Type’ popup menu (triangle), select
‘Variable’. This enables an adjacent pop-up menu.

DASHBOARD DESIGN

1593 of 2477

d. From the adjacent pop-up menu, select the input component that
you want to control the value.

e. Click ‘Append’ to add the condition, and click ‘OK’ to close the
‘Condition’ dialog box.

The specified input control will now provide the value for the right side of
the condition.

Example:
Condition as a
Parameter

In this example, you will add a CheckBox input that allows the user to
highlight specified states within a table.

1. Create a new Viewsheet based on the ‘Sales Explore’ Worksheet
(in the ‘Sales’ folder).

2. Drag a CheckBox component from the Component panel to the
Viewsheet. Right-click the component, and select ‘Properties’ from
the context menu. This opens the ‘CheckBox Properties’ dialog
box.

3. In the ‘CheckBox Properties’ dialog box, make the following
changes:

a. Change the ‘Name’ to “StateSelector”.

b. In the ‘List Values’ panel, select the ‘Query’ option. Click the
‘Edit’ button to open the ‘List Values Selection’ dialog box.

DASHBOARD DESIGN

1594 of 2477

c. In the ‘List Values Selection’ dialog box, select the ‘Sales’ Data
Block in the left panel, and then select ‘State’ in both the ‘Label’
and ‘Value’ menus.

d. Click ‘OK’ to close both dialog boxes. This binds the
CheckBox component to the ‘State’ field of the Data Block.

4. On the Viewsheet grid, select the CheckBox component. Drag the
handles to expand the component so that all state options are
visible.

DASHBOARD DESIGN

1595 of 2477

5. Drag a Table component from the Component panel to the
Viewsheet grid.

6. Expand the ‘Sales’ Data Block at the top of the Component panel,
and drag the following fields into the Table: ‘Category’,
‘Company’, ‘City’, ‘State’, ‘Total’.

7. Enlarge the table so that at least 10 rows are visible.

8. Right-click a cell in the ‘City’ field of the Table, and select
‘Highlight’ from the context menu. This opens the ‘Highlight’
dialog box for the ‘City’ field.

9. In the ‘Highlight’ dialog box, click the ‘Add’ button, and enter the
name “CityHighlight”.

10. For the ‘Background’ property, select yellow.

11. In the ‘Conditions’ panel, click the ‘Edit’ button to open the
‘Conditions’ dialog box.

DASHBOARD DESIGN

1596 of 2477

12. In the ‘Conditions’ dialog box, create the left side of the condition
by making the following menu selections: “[State][is][one of]”.

13. From the ‘Change Value Type’ popup menu (triangle), select
‘Variable’. This enables an adjacent pop-up menu.

14. From the adjacent pop-up menu, select the “StateSelector” input
component.

15. Click ‘Append’ to add the condition, and click ‘OK’ to close the
‘Conditions’ dialog box.

16. Click ‘OK’ to close the ‘Highlight’ dialog box.

On the Viewsheet, make selections in the CheckBox input component, and
observe how this highlights the cities in the Table that correspond to the
selected states.

DASHBOARD DESIGN

1597 of 2477

¢

See Also
Matching Dynamic Values to Property Values, for input value constraints.

11.3 Matching Dynamic Values to Property Values
When you link an input control with a component property, you should
ensure that the input control evaluates to a permissible value for the
particular property. There are three main cases.

• Property Requires a Numerical Value: If a property requires a
numerical value, the input control should provide an appropriate
numerical value. For example, the ‘Ranking’ property in the Chart data
binding requires an integer value. An appropriate control for this
property would therefore be a Spinner with ‘Increment’ property set to
an integer value.

• Property Requires a Boolean Value: If a property has a ‘True’ or
‘False’ setting, the input control should provide a Boolean value. For
example, the ‘Enabled’ property expects a Boolean value ‘true’ or
‘false’. An appropriate control for this property would therefore be a
RadioButton with embedded list values {true, false}, and with ‘Data
Type’ set to ‘Boolean’.

• Property Requires a String Value: If a property requires one of a fixed
set of strings, the input control should provide a string from the set. For
example, the ‘Visible’ property requires one of the strings ‘Show’,
‘Hide’, or ‘Hide on Print and Export’. The input control must therefore
return one of these strings. An appropriate control for this property
would therefore be a RadioButton with embedded list values {‘Show’,
‘Hide’, ‘Hide on Print and Export’}, and with ‘Data Type’ set to
‘String’.

DASHBOARD DESIGN

1598 of 2477

Requires String
Requires Boolean

Requires Integer

DASHBOARD SCRIPTING

1599 of 2477

Dashboard Scripting

Certain dashboard applications require you to implement a degree of
intelligence and adaptability that would be difficult or impossible to design
using only basic Viewsheet components. For example, you may wish to
hide or show certain dashboard components under particular conditions,
such as when a user’s selection return no data. Likewise, you might wish to
present an alert message if a certain key indicator does not meet its target.

For these purposes, Style Intelligence provides an embedded scripting
environment for Viewsheets. The scripting environment allows you to
implement event-driven logic that adaptively modifies dashboard
appearance and behavior based on retrieved data, inputs from users, or
other factors such as day, time, locale, etc. The scripting language is
intended to be simple but powerful, requiring only minimal programming
knowledge.

The scripting language is based on the ECMA-262 (JavaScript) standard.
Since there are many outstanding books on JavaScript and the full
specification of the language is available online, this Guide does not
attempt to be a JavaScript reference. Instead, it provides a short
introduction to JavaScript, but concentrates on the host Viewsheet
environment and examples of common Viewsheet scripting.

http://www.ecma-international.org/publications/standards/Ecma-262.htm

DASHBOARD SCRIPTING

1600 of 2477

1 Contents

This Guide provides comprehensive coverage of the scripting features
available in Viewsheets, and covers the following topics.

• Introduction to JavaScript Programming

Describes some basic elements of JavaScript programming, and
provides pointers to other JavaScript resources.

• Adding Script to a Viewsheet

Explains how to add script to Viewsheet components using the
Formula Editor.

• Accessing User Input in Script

Explains how to access the state of Viewsheet input components
using script

• Accessing Component Data

Explains how to access tabular data in a Viewsheet script using
relative, absolute, and mixed cell references.

• Accessing Worksheet Data

Explains how to access worksheet data in a Viewsheet script.

• Changing Images with Script

Explains how to dynamically change the file referenced by an
image component.

DASHBOARD SCRIPTING

1601 of 2477

2 Introduction to JavaScript Programming

Netscape originally introduced JavaScript as the scripting language for its
Navigator web browser. The scripting language allows code to be
embedded in HTML pages and executed inside a browser, which acts as
the host environment for the scripts. The browser exposes HTML page
elements and browser controls to the scripts as host objects and functions.
By manipulating these host objects, JavaScript is able to control the
behavior of the browser and add interactivity to the web pages.

Since the release of Netscape Navigator 2.0 and Microsoft Internet
Explorer 3.0, JavaScript has established itself as the standard browser
scripting language. Subsequent standardization efforts have produced the
specification known as ECMA-262, which is the standard implemented in
Style Intelligence.

As a standardized scripting language, JavaScript provides an excellent
foundation for report scripting needs. Its origin as a web scripting language
makes it ideal for the reporting environment. The integration of JavaScript
with Style Intelligence therefore combines two powerful paradigms for
report generation and gives developers maximum flexibility in controlling
reports and user interactions.

The purpose of this section is to provide a broad overview of JavaScript
programming, and how JavaScript can be embedded in Viewsheets. A
simple JavaScript reference is provided in Appendix JS: General
JavaScript Functions. To find more complete coverage, please refer to a
JavaScript book or tutorial website (e.g., http://www.w3schools.com/js).

If you are already familiar with the JavaScript language, you can skip
ahead to Adding Script to a Viewsheet, which explains the different areas of
a Viewsheet to which you can add script.

2.1 Server-Side vs. Client-Side Scripting
In Web development, JavaScript is used to add client-side scripting to
HTML pages. Scripts are embedded into the contents of a Web page and
executed inside the client browser. Traditionally, these client-side scripts
deal exclusively with user-browser interactions, and have limited server-
side actions (e.g., HTTP requests).

In contrast, Viewsheet scripting is server-side scripting. The scripts
contained in a report are executed as part of the report generation process
on the server. Style Intelligence scripts can also control certain client-side
interactions through event handlers and hyperlinks.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3schools.com/js/

DASHBOARD SCRIPTING

1602 of 2477

2.2 Object-Oriented Concepts
JavaScript is an object-oriented programming (OOP) language, and
provides various objects and methods, as well as the ability to create user-
defined methods. To use JavaScript effectively, it is important to
understand the following concepts:

• Properties: Properties are predefined attributes associated with an
object. You can ‘get’ or ‘set’ these properties to observe or alter the
corresponding aspects of the object.

• Methods: Methods are predefined functions associated with an object. In
general, these functions operate on the object itself.

• Events: Events are predefined actions that are recognized by an object,
such as a mouse movement or clicking.

2.3 JavaScript Language Basics
JavaScript syntax is very similar to that of C++ and Java. It uses the same
construct for all loops and has similar syntax for operators. The following is
a typical script:

var total = 0;

for(var i = 1; i < Table1.table.length; i++) {
total += parseInt(Table1.table[i][1]);

}

text = (total / Table1.table.length).toFixed(2);

This section covers the basics of programming with JavaScript.

Comments and Names

JavaScript uses double slashes ‘//’ to start a single line comment and ‘/* */’
to enclose a multi-line comment.

// single line comment
/* multi-line

comment */

The semicolon is used as a statement separator:

var n = 0;
k = parseInt(123);

Variable names can only contain alphanumeric characters plus the
underscore character (_). They cannot start with a digit and cannot use
reserved JavaScript words.

All symbols in JavaScript are case-sensitive.

DASHBOARD SCRIPTING

1603 of 2477

Declaration and Assignment

JavaScript is a weakly-typed language. This means variables are not
assigned a type. A variable can be assigned any value. “The type of the
variable is determined by the value currently assigned to it. Consequently, a
local variable does not need to be declared before it is used.

var variable_name= "Hello"; // -- recommended
message1= "Hello"; // -- will also work
var count = 100;

If a variable is used as a report level variable, it must be declared using the
‘var’ keyword.

// put this in onLoad handler
var pageTotal = 0;

After the variable is declared, it can be used everywhere as a shared report
instance variable.

Object Types and Scopes

JavaScript is object-based. This means that every value in JavaScript is an
object. As with any Object Oriented language, the properties and methods
are associated with each object and need to be invoked by qualifying the
names with the object name.

// the following statements are equivalent
var name = first_name.concat(last_name);
name = first_name + last_name;

As is the case in C++ and Java, if a script is running inside an object scope,
it can reference its properties and methods without qualifying the name.
There is a global scope in JavaScript, which provides the common
methods. Since every script is running inside a global scope, those methods
do not need to be qualified.

// parseInt() is a global method
var num = parseInt(parameter['count']);
// toFixed() is a number method, so it needs to be
qualified
var int_num = num.toFixed(0);

Number Type

JavaScript does not have an integer type and a float type. All numbers are
treated as float by default.

var total = 2 + 3;
text = total; // this will convert the number to 5.0

To force a number to be treated as an integer, use the toFixed() method of
number object and give a decimal point of zero:

DASHBOARD SCRIPTING

1604 of 2477

text = total.toFixed(0); // this generates a string 5

Number constants can be in decimal format, hexadecimal format if it starts
with ‘0x’, and octal format if it starts with ‘0’.

decimal_number = 255 // -- Decimal is the default
hex_number = 0xff
fp_number = 2.456 // -- Floating point number

Numbers can be used in computation using the usual operators, +, *, /, -.
The increment and decrement operators (++, --) are also available in Java.

Boolean Type

A Boolean has a value of true or false.

while(true) {
}

All undefined values are treated as false Boolean values when used in the
context of a condition. You can check if a value is defined by using the
value in the if() condition as in

if(parameter['start_time']) {
// do something

}

String Type

Enclose String constants with a single or double quote:

var mystring = "InetSoft Technology Corp."
mystring = 'InetSoft Technology Corp.'

Strings can be concatenated using the plus operator:

var str = 'Total: ' + total;

If a value concatenated to a string is of a different type, it is converted to a
string automatically. Strings have many methods, with the most frequently
used including: substring(), toLowerCase(), toUpperCase() and indexOf().

var str = 'abcd';
str = str.toUpperCase(); // converts to ABCD
var bIdx = str.indexOf('B'); //return 1
str = str.substring(1, 2); // return 'B'

Strings have built-in support for regular expressions. You can find a regular
expression in a string using the match() or search() method:

str = 'this is a test of regular expression';
re = /test/; // create a regular expression
var idx = str.search(re); // return the position of the
regular expression

DASHBOARD SCRIPTING

1605 of 2477

Date Type

Date is represented as milliseconds since EPOC (Equipment Point of
Connection). Creating a date object with no parameter gives the current
time:

var now = new Date();

A date can be converted to a string using a global function, formatDate().

str = formatDate(now, 'yyyy-MM-dd'); // 2002-02-21

The date format uses the same syntax as in java.text.SimpleDateFormat.

Arrays

An array literally is a list contained in a single variable. Each item in the list
is known as an array element and is enclosed in square brackets ([]). When
you create an array, it is initialized with the specified values as its elements.
Its length is set to the number of elements specified. The following
example creates the coffeelist array with three elements and a length of
three:

coffeelist = ["French Roast", "Columbian", "Kona"];

Multidimensional Arrays are represented by an array of arrays. A
multidimensional array (rows and columns) may be created as follows:

monthly_rain = [['Jan', 'Feb', 'Mar'],
[100,10,30],
[30,10,300],
[10,10,10]];

Conditionals

The if/else statement requires a boolean expression to decide between two
alternative actions.

if (x > 0) {
reg = event.region;

}
else {
reg = event.firstRegion;

}

For Loop

A for loop instructs the computer to repeat an action a specific number of
times.

//for (initial, condition-check, increment)
for (var j = 1; j < 10; j++) {
total = parseFloat(report['Table'].table[reg.y + j][3]);

}

DASHBOARD SCRIPTING

1606 of 2477

The first expression in the loop initializes the loop variable. The second
expression is a condition used to check when to terminate the loop (when it
is false). The third expression is the increment that is evaluated at the end of
every iteration.

While Loop

The while loop iterates until the condition becomes false.

var n = 5;
Text1.text = "The factorial of " + n;
var fact = 1;

// -- Compute n!, where n is a non-negative integer
while (n > 1) {
fact = fact * n;
n = n -1;

}

Text1.text += " is " + fact;

The break command can be used inside any loop to terminate the loop and
‘continue’ can be used to skip to the next iteration.

Switch Statement

A switch statement chooses a branch to be executed based on a value. One
or more values can be listed on each case. A ‘break’ must be included at the
end of each case to terminate the switch statement.

switch(action) {
case 'A':
text = 'Add';
break;

case 'D':
text = 'Default';
break;

default:
text = "N/A";
break;

}

The default label at the end serves as a catch-all phrase. If the switch value
does not match any of the listed values, the default section is processed.

Functions

JavaScript, like most programming languages, has facilities for creating
subprograms to modularize or divide programs into distinct functions.
When required, a function can be called to carry out a particular task.

JavaScript functions behave a little differently than you might expect:

• There is no value reference distinction

• There is no data type distinction

DASHBOARD SCRIPTING

1607 of 2477

• Return values do not have data types and are optional

function max(a,b) // -- Multiple Returns
{
if (a > b)
return(a); // -- Return a because it is larger

else
return(b); // -- Return b because it is larger

}

To create and save a custom JavaScript function, see Using the Script
Library in Report Scripting.

2.4 Useful Text/String Functions
Two common string operations are changing case and searching for
substrings.

2.4.1 Changing a String to Upper/Lower Case

To change a string to upper/lower case, use the ‘toUpperCase()’ and
‘toLowerCase()’ functions respectively. For example:

var s = 'John Lennon';
Text1.text = s.toLowerCase();

To change the header cells of a table to upper case, add the following lines
to the table-level script:

for(var col = 0; col <Table1.table.size; col++) {
Table1.table[0][col] =

Table1.table[0][col].toUpperCase();
}

2.4.2 Searching Within a String

To find one string within another string, use the ‘indexOf()’ function. The
‘indexOf’ function returns the starting index of the substring within the
parent string. If the substring is not found, it returns a value of -1. For
example:

var state = 'New Jersey';

if(state.indexOf('New') > -1) {
Text1.text = 'With New';

}
else {
Text1.text = 'Without New';

}

2.5 Useful Date Functions
This section discusses several basic date functions.

DASHBOARD SCRIPTING

1608 of 2477

2.5.1 Finding Difference Between Dates

The ‘dateDiff()’ function is used to find the difference between two dates in
days/months/years.

dateDiff('d', fromDate, toDate); // days
dateDiff('m', fromDate, toDate); // months
dateDiff('yyyy', fromDate, toDate); // years

For example, if you have a table bound to a query which contains the date
field ‘Birth Date’, you can create a formula field (in the data binding
dialog) that calculates the age of this Birth Date in years by subtracting the
birthday from the current date. The script of this formula field is shown
below.

dateDiff('yyyy', field['Birth Date'], CALC.today())

2.5.2 Calculating a Past or Future Date

The ‘dateAdd()’ function is used to find a date which is n number of days/
months/years before/after another date.

// 1 day before today
dateAdd('d', -1, CALC.today());

// 5 months after today
dateAdd('m', 5, CALC.today());

// 3 years before Order Date
dateAdd('yyyy', -3, field['Order Date']);

For example, wish to run a query in script; this query takes in two date
parameters namely ‘StartDate’ and ‘EndDate’. You want the query to
always fetch data which is 15 days before the today and 15 days after today.

var sd = dateAdd('d', -15, CALC.today());
var ed = dateAdd('d', 15, CALC.today());
var q = runQuery('Order Bookings', [['StartDate',
sd],['EndDate', ed]]);

2.5.3 Extracting a Date Component

When extracting calendar elements within a date (year, month, quarter,
etc.) use the date functions within the CALC function library. For example:

//extracting the current date and time
var todDate = CALC.today(); //e.g., Feb-21-2007

//extracting the year
var y = CALC.year(todDate); // 2007

//extracting the quarter
var q = CALC.quarter(todDate); // 1

//extracting the day of the week
var dow = CALC.weekdayname(todDate); // Wednesday

DASHBOARD SCRIPTING

1609 of 2477

//extracting the date
var d = CALC.day(todDate); // 21

//extracting the month
var m = CALC.month(todDate); // 2

2.5.4 Formatting a Date

Date fields can be formatted in script using the ‘formatDate()’ function. For
example:

var d = CALC.today(); // e.g., Feb-21-2007
Text1.text = 'Today Is: ' + formatDate(d, 'MM-dd-yy');
// Today Is: 02/21/07

2.6 Protecting a Viewsheet from Script Errors
Because scripts are executed when the Viewsheet is generated on the
server, a script error can cause Viewsheet generation to fail. To prevent this
from happening, you should wrap error-prone code inside a “try-catch”
block, which allows you to trap errors before they affect Viewsheet
execution. See Appendix JS.10.4, The ‘try-catch’ Statement, for more
information.

See Also
Debugging a Viewsheet Script, for information on locating errors.

2.7 Debugging a Viewsheet Script
When you attempt to debug a Viewsheet script, it is often helpful to view
the current values of variables and objects. To do this, use the alert()
function, which opens a dialog box to display a specified string.

alert('string to display')

Note: The alert() function does not pause script execution.

For example:

var arr = ['Sue','Robert','Eric'];
alert(arr.join(","))

You can also use the alert() dialog box to display critical information to a
user (e.g., that the user’s selections have resulted in an empty dataset being
returned).

DASHBOARD SCRIPTING

1610 of 2477

See Also
Protecting a Viewsheet from Script Errors, to improve Viewsheet
robustness.

DASHBOARD SCRIPTING

1611 of 2477

3 Adding Script to a Viewsheet

There are three levels at which you can attach script in a Viewsheet:

1. Property level: Attach script as a property expression to
dynamically modify property values (e.g., visibility, color, etc.) of
the host component. See Adding Property Script (Expressions).

2. Component level: Attach script to an individual component
(Chart, Gauge, etc.) to modify component properties, including
properties that cannot be set by an expression, or to implement
other logic. See Adding Component Script.

3. Viewsheet level: Attach script in one of two global domains, the
onInit Handler or the onLoad Handler. See Adding Viewsheet
Script for more information.

3.1 Script Evaluation Order
Unlike conventional JavaScript on web pages, JavaScript that you embed
in a Viewsheet is executed as part of the Viewsheet generation process on
the server, not the client browser. However, scripts can control client-side
interactions through event handlers and hyperlinks.

The overall sequence of Viewsheet script evaluation is as follows.

1. Execute the onInit Handler.

2. Execute the onLoad Handler.

3. Execute all component-level scripts. (See Adding Component
Script.)

The onInit Handler executes only once, when the Viewsheet is first loaded.
It can be used to initialize variables and define parameters. The onLoad
Handler re-executes each time the Viewsheet is refreshed by a user
operation.

Component scripts and property expressions are re-executed whenever the
particular component is refreshed due to a user operation (on the
component itself, or on a related component). Because the order in which
individual component scripts are initially executed is not determined, you
should avoid setting properties of one element from within a script attached
to a different element.

DASHBOARD SCRIPTING

1612 of 2477

3.2 Accessing Java in Script
You can call both JavaScript and Java functions from within Viewsheet
scripts. However, scripts are executed in a restricted environment that
provides access only to the following Java packages: java.awt, java.text,
java.util, java.sql, inetsoft.graph.*, inetsoft.report,
inetsoft.report.lens, inetsoft.report.filter, inetsoft.uql, and
inetsoft.report.painter.

To permit scripts to access Java packages other than those listed, an
administrator can set the javascript.java.packages property in the
sree.properties file to specify additional packages. To add package contents
to the current namespace, use importPackage('packageName'). For
example, importPackage('java.lang') or importPackage(java.lang)

allows scripts to refer to object names without full qualification (i.e.,
'String' rather than 'java.lang.String').

3.3 Adding Property Script (Expressions)
You can enter a script in any property field that provides an ‘Expression’
option.

For example, to add a script to a component expression field, follow the
steps below:

1. Right-click the component, and select ‘Properties’ from the context
menu. This opens the ‘Properties’ dialog box.

DASHBOARD SCRIPTING

1613 of 2477

2. In the ‘Properties’ dialog box, find the property you wish to
dynamically change. (In the example, we use the ‘Visible’ property
under the General tab.)

3. Click the arrow button next to the property you want to modify, and
select ‘Expression’ from the menu. This enables a small ‘Edit’
button.

4. Click the ‘Edit’ button. This opens the Formula Editor.

Note: The script must
return one of the
existing options in the
property menu. For
the the ‘Visible’ prop-
erty, return values
must be “Show,”
“Hide,” or “Hide on
Print and Export.”

5. In the Formula Editor, enter the desired script. For example, the
following script hides the component if the user has selected ‘Hide’
from a RadioButton control, and the current month is March (i.e.,
the third month).

if ((RadioButton1['selectedObject']=='Hide') &
(CALC.today().getMonth() == 3)) {
"Hide"

}
else {

"Show"
}

To automatically insert a function (such as CALC.today()), click the
corresponding option in the ‘Functions’ list above the edit area. To
automatically insert a reference to another component’s property,
click the corresponding option in the ‘Component’ list above the
edit area

DASHBOARD SCRIPTING

1614 of 2477

6. Click ‘OK’ to close the Formula Editor, and click ‘OK’ to close the
‘Properties’ dialog box.

Note: An expression script can reference properties of its hosting
component without full qualification. E.g., for a script on
component “SelectionList1”, 'SelectionList1.selectedObject' and
'selectedObject' refer to the same property.

Expressions must always return permissible values for the corresponding
property. For example, if a property requires an integer, an expression that
sets that property must evaluate to an integer. If a property requires one of a
fixed set of options, e.g., {‘Rows’, ‘Columns’}, then the expression that
sets that property must evaluate identically to one of those strings (‘Rows’
or ‘Columns’).

See Also
Dynamic Properties, in Dashboard Design, to set properties with Input
components.
Matching Dynamic Values to Property Values, in Dashboard Design, for
required return values.
Introduction to JavaScript Programming, for information on JavaScript
programming.

3.4 Adding Component Script
Note: Text element script does not re-execute when the user makes
Viewsheet selections. To re-execute script that modifies a Text
element, place the script in the onLoad Handler.

A script attached to a Viewsheet component is evaluated whenever the
component is refreshed, which includes initial Viewsheet loading, and user
interactions with the component. The script can change the properties of
the element, including visibility.

Properties set in script override properties set in the component
‘Properties’ dialog box.

DASHBOARD SCRIPTING

1615 of 2477

In fact, a component script can access any component in the Viewsheet.
However, it is not good practice to modify the properties of one element
from within the script of another element. See Debugging a Viewsheet
Script for alternative approaches.

To attach a script to a Viewsheet component, follow the steps below:

1. Right-click the desired component, and select ‘Properties’ from the
context menu. This opens the ‘Properties’ dialog box.

2. Click the Script tab to open the Script Editor.

3. For a Text component, select the Script or onClick radio button at
the bottom of the dialog box.

Note: A script can reference properties of its hosting component
without full qualification. E.g., for a script on component
“SelectionList1”, 'SelectionList1.selectedObject' and
'selectedObject' refer to the same property.

4. Type the desired script in the text field, and press ‘OK’.

To temporarily disable a script (without deleting it entirely), uncheck the
‘Enable Script’ option at the bottom right corner of the Script Editor.

See Also
Script Evaluation Order, for the order of script evaluation.

3.4.1 Common Component Properties

All elements share a basic set of properties, including foreground,
background, font, alignment, visibility, etc. The following sections explain
how to use these properties.

DASHBOARD SCRIPTING

1616 of 2477

Color Property

Color properties (foreground/text and background/fill) are frequently used
to highlight a text or textbox element. The simplest way to specify a color
property is to assign a string containing one of the constants from the
java.awt.Color class: black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white, and yellow.

foreground = 'red';

Since color is a Java type, the class name must be fully qualified.

You can also specify a color as java.awt.Color object, an integer (e.g.,
hexadecimal) representing the RGB value of a color, an array of RGB
values, or a JSON object.

foreground = java.awt.Color.red;
background = 0xFF0000; // RRGGBB
foreground = [255, 0, 0];
foreground = {r:255,g:0,b:0};

Alternatively, you can create a color object by calling the constructor with
the ‘new’ operator.

foreground = new java.awt.Color(0.5, 1, 0);

Note that the parameters to the color constructor have type float. Because
JavaScript treats all numbers as float by default, you have to explicitly
convert them to integer if you want to specify the RGB values in the range
of 0-255. The default float parameters pass the RGB value in the range of
0-1, where 1 is equivalent to 255 in the integer version.

Font Property

You can specify the font property with a string containing the font name,
style, and size, separated by dashes, or by creating a java.awt.Font object.

font = 'Verdana-BOLD-12';
font = new java.awt.Font('Verdana', java.awt.Font.BOLD, 12);

The name of the font can be a TrueType font name, or a logical font name.
Logical font names are not recommended, however, because the logical
font may be replaced by a different font in the runtime environment.

There are three font styles, Font.PLAIN, Font.BOLD and Font.ITALIC. The
styles can be combined with a bitwise OR.

font = new java.awt.Font('Verdana', java.awt.Font.BOLD |
java.awt.Font.ITALIC, 12);

The final parameter specifies the size of the font. Style Intelligence
provides an extended font that supports additional styles:

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://json.org/
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

DASHBOARD SCRIPTING

1617 of 2477

Table 1. Font Styles

To create an extended font, you must use the fully qualified name of
inetsoft.report.StyleFont class.

font = new inetsoft.report.StyleFont('Verdana',
java.awt.Font.BOLD |
inetsoft.report.StyleFont.UNDERLINE, 12,
StyleConstant.THIN_LINE);

The final parameter specifies the line style used to draw the underline.

See Also
Appendix JS.13, StyleConstant Object, for commonly-used constant
values.

Visibility Property

You can dynamically hide or show an element using script. Typically, you
would test a condition or user input at runtime, and then hide one or more
elements to present an appropriate view.

if(field['discount'] == 0) {
Text8.visible = false;

}

As for all element properties, you should change the visibility of an
element only from within a script attached to the same element, or from
within the onLoad Handler. Otherwise, the location of the element in the
report may influence the outcome.

See Also
Debugging a Viewsheet Script, for information on making scripts self-
contained.
Script Evaluation Order, for information about order of evaluation and its
effects.

FONT STYLE DESCRIPTION

Underline Draw an underline below the text. The line style can be
any one of the Style Intelligence Line Styles.

Strikethrough Draw a line through the text in the middle.
Superscript Draw the text at the upper corner of the previous text.
Subscript Draw the text at the lower corner of the previous text.
Smallcaps Draw all letters in capital letter, but draw the lowercase

letters in a smaller size.
Allcaps Convert all letters to uppercase.
Shadow Draw the text with a shadow effect.

DASHBOARD SCRIPTING

1618 of 2477

Alignment Property

To align text within
Text elements, use the
Report Designer
alignment controls.

The Alignment property controls both the horizontal and vertical alignment
of report elements in the page layout. The horizontal alignment is specified
by the alignment constants H_LEFT, H_CENTER, and H_RIGHT. (See
Alignments.)

alignment = StyleConstant.H_CENTER;

The vertical alignment property can be combined with the horizontal
alignment property by using the bitwise OR.

alignment = StyleConstant.H_CENTER |
StyleConstant.V_CENTER;

The four vertical alignment options are V_TOP, V_CENTER, V_BOTTOM, and
V_BASELINE.

See Also
Appendix JS.13, StyleConstant Object, for commonly-used constant
values.
Text, for more information about Text properties.

3.5 Adding Viewsheet Script
To create a global Viewsheet script, follow the steps below:

1. Click ‘Options’ button in the toolbar to open the ‘Viewsheet
Options’ dialog box.

2. Click the Script tab. This opens the Script Editor.

3. Using the radio buttons at the bottom, select either onInit or
onLoad.

DASHBOARD SCRIPTING

1619 of 2477

4. Enter the desired script, and press ‘OK’.

To temporarily disable a script (without deleting it entirely), uncheck the
‘Enable Script’ option at the bottom right corner of the Script Editor.

The following sections provide additional information about the onInit
Handler and onLoad Handler.

See Also
Adding Script to a Viewsheet, for information about scripting elements.

3.5.1 onInit Handler

A Viewsheet’s onInit script is executed only once, when the Viewsheet it
first loaded. It is ideal for one-time initialization tasks, such as defining
Viewsheet parameters and variables.

A variable declared in onInit script will have global scope, and be
accessible to individual component scripts. To declare a local variable with
the same name elsewhere, use the ‘var’ keyword in the declaration to
remove ambiguity.

See Also
onLoad Handler, to declare report-level variables, or validate user
parameters.

3.5.2 onLoad Handler
The onLoad script
does not execute
when you refresh a
Preview by clicking
the Preview tab. To
run the onLoad script,
create a new Preview.
(See Previewing a
Viewsheet in Dash-
board Design.)

The onLoad handler is similar to the onInit handler, and is executed
following onInit upon Viewsheet loading. However, unlike onInit, an
onLoad script is executed every time the Viewsheet is refreshed. Because
the Viewsheet is refreshed in response to most user interactions, including
selections, the onLoad handler gives you the ability to dynamically modify
multiple elements from a central location.

A variable declared in onLoad script will have global scope, and be
accessible to individual component scripts. To declare a local variable with
the same name elsewhere, use the ‘var’ keyword in the declaration to
remove ambiguity.

See Also
The Chart bindingInfo Property, for information on data binding for
Charts.
onInit Handler, to declare session-level variables or report parameters.

DASHBOARD SCRIPTING

1620 of 2477

4 Accessing User Input in Script

Tabs have a property
‘selectedIndex’ which
returns the numeric
representation of the
active tab.

You can access the state of different components within the Viewsheet
using the selectedObject, selectedObjects, and drillMember keywords.
See Walkthrough: Accessing User Selections for an example using
selectedObject. See Walkthrough: Interactive Chart Drilldown for an
example using drillMember.

• selectedObject, selectedLabel: The selected value or label of the
component: Applies to single value input elements (Sliders, Radio
Buttons, etc.) and the tabs of co-located components. For example, to
return the value or label selected in a radio button control:

radioButton.selectedObject
radioButton.selectedLabel

• selectedObjects, selectedLabels: An array of values or labels selected in
a component: Applies to multi-value input elements (e.g., Check Boxes)
and selection elements (Selection Lists and Trees). For example, to
return the first selected item or label in a Selection List:

SelectionList.selectedObjects[0];
SelectionList.selectedLabels[0];

• drillMember: For Selection Trees, the name of the field that resides one
level in the hierarchy below the user’s lowest selected level:

SelectionTree.drillMember;

You can manually type these references into your script, or enter them
automatically by clicking the appropriate node on the ‘Component’ tree of
the Script Editor.

See Also
Accessing User-Modified Data in a Table, for information on accessing
user table edits.
Accessing the Most Recent User Modification, for information on
accessing the last user edit.

DASHBOARD SCRIPTING

1621 of 2477

4.1 Walkthrough: Accessing User Selections
Walkthrough This example uses a RadioButton to give the user a choice of two input

options, a Selection List, and a Range Slider. Follow the steps below:

1. Create a new Viewsheet based on the ‘ProductSales’ Worksheet in
the Tutorial folder.

2. Add a table, Selection List, and Range Slider. To do this, follow the
steps below:

a. Drag the ‘SalesByDate’ Data Block into the Viewsheet. This
creates a new table called ‘SalesByDate’. Resize the table as
desired.

b. From the ‘SalesByDate’ Data Block in the Component tree,
drag the ‘State’ column to an empty region on the Viewsheet.
This creates a new Selection List named ‘State’.

c. From the Component tree, drag a Range Slider control into the
Viewsheet. This creates a new Range Slider.

d. From the ‘SalesByDate’ Data Block in the Component tree,
drag the ‘Date’ column onto the Range Slider. This binds the
Range Slider to the Date field.

3. Create a control to allow the user to select the input method. Follow
the steps below:

a. From the Component tree, drag a Radio Button control into the
Viewsheet. This creates a new Radio Button.

b. Right-click the RadioButton, and select ‘Properties’ from the
context menu. This opens the ‘Properties’ dialog box.

c. In the RadioButton ‘Properties’ dialog box, enter the text
“DateOrState” in the ‘Name’ field. Enter the text ‘Selection’ in
the ‘Title’ field.

d. In the ‘List Values’ panel of the ‘Properties’ dialog box, select
‘Embedded’ and click the ‘Edit’ button. This opens the
‘Embedded List Values’ dialog box.

e. Click ‘Add’. For the first ‘Label’ enter the text “Select Date
Range.” For the corresponding ‘Value’, enter the text “Date”.

f. Click ‘Add’ again. For the second ‘Label’ enter the text “Select
States.” For the corresponding ‘Value’, enter the text “State”.

DASHBOARD SCRIPTING

1622 of 2477

g. Click ‘OK’ in both dialog boxes. This creates a Radio Button
with two choices from which the user can select the input
method.

4. Add expression scripts to the Selection List and the Range Slider so
that the appropriate control is enabled for the given user selection.
Follow the steps below:

a. Right-click the Selection List, and select ‘Properties’ from the
context menu to open the ‘Properties’ dialog box.

b. For the ‘Enabled’ option, click the right-side pop-up menu, and
select ‘Expression’. Then click the ‘Edit’ icon to open the
Formula Editor.

DASHBOARD SCRIPTING

1623 of 2477

c. In the Formula Editor for the Selection List, enter the following
script:

= if (DateOrState.selectedObject=='Date') {
false

}
else {

true
}

This indicates that the Selection List control should be disabled
whenever ‘Date’ is selected in the “DateOrState” RadioButton,
and enabled otherwise.

d. Click ‘OK’ twice to exit the Formula Editor and the ‘Properties’
dialog box.

e. Repeat the above steps for the Range Slider, and set the
‘Enabled’ script as follows:

= if (DateOrState.selectedObject=='Date') {
true

}
else {

false
}

f. Click ‘OK’ twice to exit the Formula Editor and the ‘Properties’
dialog box.

5. Preview the Viewsheet, and experiment with the controls.

DASHBOARD SCRIPTING

1624 of 2477

You can hide the con-
trol completely by
adding similar scripts
(returning values
‘Show’ and ‘Hide’) to
the ‘Visibility’ prop-
erty.

Note that when you choose ‘Select Date Range’, only the Range Slider is
enabled, and when you choose ‘Select States’, only the Selection List is
enabled.

4.2 Walkthrough: Interactive Chart Drilldown
Walkthrough In this example, you will create a Selection Tree that filters the

geographical regions displayed on a Chart. You will use the drillMember
property of the Selection List to dynamically adapt the Chart X-axis to
display the appropriate geographical level (Region, State, or City), based
on user selections.

Follow the steps below:

1. Create a new Viewsheet based on the ‘Sales’ > ‘Sales Explore’
Worksheet.

2. From the Component panel, drag a Chart component into the
Viewsheet grid. Resize the Chart as desired.

3. From the Component panel, drag a Selection Tree component into
the Viewsheet grid.

4. Add a three-level geographical hierarchy to the Selection List.
Follow the steps below:

a. Expand the ‘Sales’ Data Block in the Component panel.

b. Drag the ‘Region’ field from the Data Block onto the Selection
Tree. This adds the ‘Region’ data to the tree.

c. Drag the ‘State’ field from the Data Block onto the Selection
Tree. This adds the ‘State’ data to the tree.

d. Drag the ‘City’ field from the Data Block onto the Selection
Tree. This adds the ‘City’ data to the tree.

e. Resize the Selection Tree so that it can display a reasonable
number of options.

DASHBOARD SCRIPTING

1625 of 2477

5. Click the ‘Edit’ button on the Chart to open the Chart Editor.

6. From the Data Source panel of the Chart Editor, drag the ‘Total’
field (Under ‘Measures’) to the ‘Y’ region in the Data panel.

7. From the Data Source panel of the Chart Editor, drag the ‘Region’
field (Under ‘Dimensions’) to the ‘X’ region in the Data panel.

8. Configure the Chart to adapt the X-axis binding based on the user’s
selection in the Selection Tree. To do this, follow the steps below:

a. Click the “arrow” button next to the ‘Region’ dimension in the
Data panel. In the pop-up menu, select the ‘Expression’ option.

b. Click the ‘Edit’ button to open the Script Editor.

c. In the top-left panel of the Script Editor, expand the
‘SelectionTree1’ node, and click ‘drillMember’. This adds the
SelectionTree1.drillMember property in the editing area.

DASHBOARD SCRIPTING

1626 of 2477

The drillMember property returns the name of the field that
resides one level (in the Selection Tree hierarchy) below the
lowest level that the user has selected. Thus, if the user has
selected one or more states in the Selection Tree,
SelectionTree1.drillMember returns the string ‘City’.

d. Click ‘OK’ in the Chart Editor. The output of
SelectionTree1.drillMember is now assigned to the Chart X-
axis binding.

9. Verify that the X-axis binding adapts to the user’s selections:

a. Click the ‘Clear Selection’ button in the Selection Tree to
remove any existing selections. Observe that the Chart X-axis
now represents the ‘Region’ dimension, the top level of the
Selection Tree hierarchy.

b. Select the ‘USA East’ option in the Selection Tree. Observe that
the Selection Tree now filters the Chart to display only data
from the ‘USA East’ region. In addition, the Selection Tree
drillMember property changes the X-axis binding to represent
the ‘State’ dimension, which is one level below ‘Region’ in the
Selection Tree hierarchy.

c. Select the ‘CT’ and ‘MA’ options in the Selection Tree. Observe
that the Selection Tree now filters the Chart to display only data
from the states of ‘CT’ and ‘MA’. In addition, the Selection Tree

DASHBOARD SCRIPTING

1627 of 2477

drillMember property changes the X-axis binding to represent
the ‘City’ dimension, which is one level below ‘State’ in the
Selection Tree hierarchy.

See Also
Drilling Down into a Chart, for information on the built-in drill-down
feature.

DASHBOARD SCRIPTING

1628 of 2477

5 Accessing Component Data

For Table, Crosstab, and Selection List components, expression scripts can
acquire actual data values from the component using relative or absolute
references.

5.1 Accessing Table Data
There are two key properties for accessing the values in a table, table and
data.

• table – A two-dimensional array containing the table data as displayed.
The array includes header rows as well as data rows.

• data – A two dimensional array containing the raw table data (prior to
grouping and summarization). It does not include header rows.

Two sub-properties that are especially useful when looping through the
rows or columns of tables are ‘length’ and ‘size’.

Note: A table that returns no data still displays the column header
row. Therefore, table.length is 1 in the no-data case.

• table.length/table.size – The number of rows and columns
(respectively) in the table, as displayed, including column header row.

• data.length/data.size – The number of rows and columns
(respectively) in the original table (prior to grouping and
summarization), including column header row.

As an example, consider the following table script, which iterates through
all data rows (beginning with row index 1, the first data row) and columns
of a table, and cumulatively sums these values.

var tot = 0;
for(var row = 1; row < table.length; row++) {

for(var col = 0; col < table.size; col++) {
tot = tot + table[row][col];

}
}

See Also
Accessing User-Modified Data in a Table, for information on how to access
an editable table.

DASHBOARD SCRIPTING

1629 of 2477

5.2 Accessing Data With Relative References
The keywords below allow you to access cells within a table or Selection
List by using relative indexing (i.e., reference in relation to current cell).

You can type these keywords manually into your script, or you can click
the appropriate node on the ‘Component’ tree in the Script Editor.

The following sections illustrate how to access data using these keywords.

See Also
Accessing Data With Absolute/Mixed References, for information on
absolute references.

5.2.1 Accessing Data in the Current Cell (‘value’)

The value keyword refers to the value in the current cell. The value
keyword is the equivalent of the index expression table[row][col].

Walkthrough This example sets the text colors and fill colors of table cells based on data
values within the table. If a price is greater than $1000, the price displays in
red text, otherwise, in blue text.

1. Create a Viewsheet based on the ‘Tutorial’ > ‘ProductSales’ Data
Worksheet.

SYNTAX DESCRIPTION
field['col_name'] Value in the current row of column named

“col_name.”
row Row index of the current cell.
col Column index of the current cell.
data[rowIx][colIx] Value of the data at index [rowIx,colIx] in the raw data

(before grouping or summarization). Indices may use
keywords ‘row’ and ‘col’ to create relative references.

table[rowIx][colIx] Value of the data at [rowIx,colIx] in the table (as
displayed). Indices may use keywords ‘row’ and ‘col’
to create relative references.

value Value of the current cell.

DASHBOARD SCRIPTING

1630 of 2477

2. Drag and drop the ‘ProductInfo’ Data Block from the Component
pane into the Viewsheet. Expand the table so that you can see more
rows.

3. Select any data cell under the ‘Price’ column. Right-click and
choose the ‘Format’ option. This opens the ‘Format’ dialog box.

4. Select the Color tab.

5. From the ‘Text Color’ menu select the ‘Expression’ option, and
click the ‘Edit’ button. This opens the Formula Editor.

6. Enter the following script in the Formula Editor:

if (value > 1000) {
[255,0,0]; // red

} else {
0x0000FF; // blue

}

Note: A color can be specified as an ordered triple, or as a
hexadecimal number.

7. Click ‘OK’ to exit the Formula Editor, and then click ‘OK’ to exit
the ‘Format’ dialog box.

DASHBOARD SCRIPTING

1631 of 2477

Note: You can apply
conditional format-
ting without using
script. See Highlights
in the Dashboard
Design.

Notice that the cells in the ‘Price’ column are colored red if the value is
greater than 1000 and blue otherwise. The script affects the entire ‘Price’
column, and can be edited from the ‘Format’ dialog box of any cell in the
column. This example continues in Accessing Data in the Same Row
(‘field’).

See Also
value, for reference information.

5.2.2 Accessing Data in the Same Row (‘field’)

You can access the value in the current row of another column by using the
field keyword. For example, field['col_name'] refers to the value in the
current row of a column named “col_name.”

Walkthrough This example continues from Accessing Data in the Current Cell (‘value’).
It will set the color of the ‘Name’ column based on the value of the ‘Price’
column:

1. Select a cell in the ‘Name’ column. Right-click and choose ‘For-
mat’.

2. Select the Color tab. From the ‘Text Color’ menu select the
‘Expression’ option, and click the ‘Edit’ button. This opens the
Formula Editor.

3. In the Formula Editor, enter the following expression:

if (field['Price'] > 1000) {
[255,0,0];

} else {
[0,0,255];

}

4. Click ‘OK’ to exit the Formula Editor, and then click ‘OK’ to exit
the ‘Format’ dialog box.

DASHBOARD SCRIPTING

1632 of 2477

The values in the ‘Name’ column are now highlighted based on the
corresponding values in the ‘Price’ column. This example continues in
Accessing Data in Different Row or Column (‘row’/‘col’).

See Also
field, for reference information.

5.2.3 Accessing Data in Different Row or Column (‘row’/
‘col’)

To access any cell in a table by relative reference, use the indexing
expression table[rowIx][colIx] or data[rowIx][colIx].

Predefined variables row and col allow you to refer to the row and column
of the current cell, that is, the cell whose format is being modified. You can
use these variables to construct the desired offsets from the current cell.

For example:

• table[row][col]: Value in current cell (same as value keyword).

• table[row][col-1]: Value in current row, one column to left.

• table[row-1][col]: Value in current column, one row above.

• table[row+1][col]: Value in current column, one row below.

The data and table constructs yield the same results for tables, but may
produce different results when used in charts/crosstab tables. The data
syntax references the data prior to any summarization, while the table
syntax references the tabular data as displayed.

Walkthrough This examples continues from Accessing Data in the Same Row (‘field’). It
highlights every price that is less than the price immediately above it in the
table, and uses the row and col variables to create relative references:

1. Select any data cell under the ‘Price’ column. Right-click and
choose the ‘Format’ option.

DASHBOARD SCRIPTING

1633 of 2477

2. Select the Color tab. From the ‘Fill Color’ menu select the
‘Expression’ option, and click the ‘Edit’ button. This opens the
Formula Editor.

3. In the Formula Editor, enter the following script:

if (row > 1) {
if (value < table[row-1][col]){
[255,255,0];

}
}

4. Click ‘OK’ to exit the Formula Editor, and then click ‘OK’ to exit
the ‘Format’ dialog box.

The cells in which the value is less than the previous row’s price are now
highlighted in yellow.

See Also
row, col, for reference information.

5.3 Accessing Data With Absolute/Mixed
References
The following expressions allow you to access any cell in a table by
absolute reference.

table[rowIx][colIx]
data[rowIx][colIx]

Simply set the rowIx and colIx indexes to specify the position of the
desired cell. For example:

• table[0][0]: Value in first row, first column.

• table[2][4]: Value in third row, fifth column.

The “table.length” property yields the total number of rows in the table.
The data and table constructs yield the same results for tables, but may
produce different results when used in crosstab tables. The data syntax
references the data prior to any summarization, while the table syntax
references the tabular data as displayed.

DASHBOARD SCRIPTING

1634 of 2477

You can type these keywords manually into your script, or you can click
the appropriate node on the ‘Component’ tree in the Script Editor.

You can use absolute and relative references in the same statement, as the
following example illustrates.

Example: Using
Absolute and
Relative
References

This example continues from Accessing Data in Different Row or Column
(‘row’/‘col’). It will set the header cell of the ‘Price’ column to show a red
background if there exists a price exceeding $2000, and will otherwise
show a green background. This requires a loop structure, as well as mixed
absolute and relative references:

1. Select the header cell in the ‘Price’ column. Right-click and choose
‘Format’.

2. Select the Color tab. From the ‘Fill Color’ menu select the
‘Expression’ option, and click the ‘Edit’ button. This opens the
Formula Editor.

3. Add the following script in the Formula Editor.

for (i=1; i<table.length; i++) {
if (table[i][col] > 2000) {

[255,0,0];
break;

}
else {

[0,255,0];
}

}

4. Click ‘OK’ to exit the Formula Editor, and then click ‘OK’ to exit
the ‘Format’ dialog box.

DASHBOARD SCRIPTING

1635 of 2477

The header cell is red because a price exists that exceeds $2000. To test the
header cell script, add a Range Slider to filter the values in the table. Follow
these steps:

5. Drag a Range Slider from the Component tree into the Viewsheet.
This creates a new Range Slider.

6. From the ‘ProductInfo’ Data Block in the Component tree, drag the
‘Price’ field onto the Range Slider. This binds the Range Slider to
the ‘Price’ field.

7. Drag the right side of the Range Slider to vary the prices included
in the dataset. Observe the color of the header cell as the dataset
changes.

¢

See Also
Accessing Data With Relative References, for information on relative
references.

5.4 Accessing User-Modified Data in a Table
When you configure a Viewsheet table to be “editable” (see Table
Properties: Advanced Tab), this allows users to insert, delete, or modify

DASHBOARD SCRIPTING

1636 of 2477

data in the table. Changes that the user makes to the table, however, do not
persist after the Viewsheet is closed.

To allow user modifications to persist beyond the current session, you must
commit the modified records to the database. (The following section,
Committing User-Modified Data to Database (Database Write-Back),
provides a full example.) The getFormRows table function provides you
with records that have been modified.

• Table1.getFormRows(ADDED): Provides a two-dimensional array
containing the new rows that have been inserted by the user. The length
of the array is equal to the number of inserted rows, and the width of the
array is equal to the number of columns in the table.

• Table1.getFormRows(CHANGED): Provides a two-dimensional array
containing the rows that have been modified by the user. The length of
the array is equal to the number of modified rows, and the width of the
array is equal to the number of columns in the table.

• Table1.getFormRows(DELETED): Provides a two-dimensional array
containing the rows that have been deleted by the user. The length of the
array is equal to the number of deleted rows, and the width of the array
is equal to the number of columns in the table.

• Table1.getFormRow(idx): Provides the row designated by index idx.

These functions are typically called within the onClick handler of a Submit
Button, as shown in the following section.

When a user adds or changes a row in an editable table, the new or
modified row is highlighted in color. To clear the highlight on these rows
and remove them from the corresponding array returned by getFormRows,
use the table’s commit(type) function.

• Table1.commit(ADDED): Clears highlights on added rows, and removes
them from array returned by getFormRows(ADDED).

• Table1.commit(CHANGED): Clears highlight on changed rows, and
removes them from array returned by getFormRows(CHANGED).

• Table1.commit(DELETED): Removes deleted rows from array returned by
getFormRows(DELETED).

• Table1.commit(idx): Removes the row returned by getFormRows(idx)
from the array of modified rows.

See Also
Accessing Table Data, for information on how to access data in a regular
table.
Accessing the Most Recent User Modification, to retrieve a value that the
user has just entered.

DASHBOARD SCRIPTING

1637 of 2477

getFormRow(row), for function reference information.
getFormRows([type]), for function reference information.
Table Properties: Advanced Tab, in Dashboard Design, for information on
setting a table as editable.
Validating User Input, in Dashboard Design, for information on restricting
the values that a user can enter.
Committing User-Modified Data to Database (Database Write-Back), for
information on updating the database with modified information.

5.5 Accessing User-Modified Data from TextInput
To acquire the data that a user has entered in a TextInput component, simply
reference the component’s value property:

TextInput1.value

To commit this acquired data to the database, see Committing User-
Modified Data to Database (Database Write-Back).

See Also
Accessing the Most Recent User Modification, to retrieve a value that the
user has just entered.
Validating User Input, in Dashboard Design, for information on restricting
values a user can enter.
Committing User-Modified Data to Database (Database Write-Back), for
information on updating the database with modified information.

5.6 Accessing the Most Recent User Modification
When a user makes a modification to an editable table or Input component,
the change triggers the Viewsheet’s onLoad Handler script to re-execute.
The onLoad handler offers an ‘event’ object which you can use to detect
the user’s action and make an appropriate response. The event object
provides access to the following Viewsheet events:

• Name and region of the Editable Table in which the user has just made a
modification.

• Name and type of an Input Component in which the user has just made a
selection.

For an editable table, the ‘event’ object provides the following properties:

name The name of the table component.
type The type of the component, always ‘table’.
row The index of the modified row in the table.
column The index of the modified column in the table.
source A reference to the table object which can be used to access table

properties.

DASHBOARD SCRIPTING

1638 of 2477

Example:
Recalculating
Table Data

The following example illustrates how you can use the ‘event’ object to
dynamically update table data in response to user modifications. You will
create a table that contains the fields ‘Name’, ‘Price’, ‘Quantity’, and
‘Total’. You will enable the user to modify the ‘Price’ and ‘Quantity’ fields,
and use script to automatically update the ‘Total’ field with the
corresponding data (i.e., the product of ‘Price’ and ‘Quantity’).

To create this example, follow the steps below:

1. Create a new Viewsheet based on the ‘Order Model’ data model.
To do this, follow the steps below:

a. Press the ‘New Viewsheet’ button in the toolbar. This opens the
‘New Viewsheet’ dialog box.

b. Expand the ‘Data Source’ node, and then expand the ‘Orders’
node.

c. Select the ‘Order Model’ entry, and press ‘OK’. This creates a
new Viewsheet based on the ‘Order Model’ data model.

2. From the Viewsheet Component panel, drag a Table component to
the Viewsheet grid.

3. Expand the ‘Order Model’ node at the top of the Component
panel, and drag the following fields into the Table component:

Product.Name
Product.Price
Product.Quantity Purchased
Product.Total

4. Resize the table as desired.

5. Right-click the table and select ‘Properties’. This opens the ‘Table
Properties’ dialog box.

6. Under the Advanced tab, select ‘Enable Table Editing’ and press
‘OK’.

DASHBOARD SCRIPTING

1639 of 2477

7. In the table, right-click the ‘Product:Name’ header and select
‘Column Option’ from the context menu.

8. Deselect the ‘Enable Column Editing’ option, and press ‘OK’. This
prevents the user from editing the product name.

9. In the table, right-click the ‘Product:Total’ header and select
‘Column Option’ from the context menu.

10. Deselect the ‘Enable Column Editing’ option, and press ‘OK’. This
prevents the user from manually editing the total. (The total will be
calculated by script.)

11. Press the ‘Options’ button in the Viewsheet toolbar. This opens the
‘Viewsheet Options’ dialog box.

12. Select the Script tab. Press the ‘onLoad’ radio button to select the
onLoad handler.

13. Enter the following script into the Editor:

if(event != null) {
var tableObject = event.source;
var row = event.row;
var column = event.column;

if(column == 1 || column == 2) {
var editedRow = tableObject.getFormRow(row);
var price = editedRow[1]; // second column = Price
var quant = editedRow[2]; // third column = Quantity

if(price != null && quant != null) {
tableObject.setObject(row, 3, price*quant); // fourth

column = Total
}
else {
tableObject.setObject(row, 3,'');

}
}

}

Observe that event.row and event.column are used together with
getFormRow to acquire the particular value that the user has entered,
and setObject is used to write the calculated data into the table.

14. Press ‘OK’ to close the Script Editor.

15. Preview the Viewsheet.

Edit various values in the ‘Price’ and ‘Quantity Purchased’ columns, and
observe how the ‘Total’ column is automatically updated. Note, however,
that changes a user makes to the table (including calculated values) do not
persist across sessions unless they are committed to the database. See

DASHBOARD SCRIPTING

1640 of 2477

Committing User-Modified Data to Database (Database Write-Back) for
more details.

¢

See Also
Table Properties: Advanced Tab, in Dashboard Design, for information on
how to make a table editable.

5.7 Committing User-Modified Data to Database
(Database Write-Back)
The previous section, Accessing User-Modified Data in a Table, described
how you can acquire the records in a table which have been modified
(inserted, deleted, or changed) by the user. If you want the user’s changes to
persist across sessions, you must commit these changes to the database.
This is known as database write-back.

In most cases, you should commit records to the database by placing a
script within the onClick handler of a Submit Button. The script should
perform the following operations:

1. Create a connection to the database:

var conn =
createConnection('datasource','username','password');

If the specified data source does not require credentials, replace the
username and password with empty strings ('').

2. Prepare the desired SQL statement, using placeholders for values to
be inserted.

var pstmt = conn.prepareStatement("insert into table1 values
(?,?,?)");

The quoted string should be a valid SQL statement which will per-
form the desired database operation when values are inserted each
placeholder (“?”) in the next step.

See Accessing User-
Modified Data in a
Table for more infor-
mation about the get-
FormRows() function.

3. Insert values for SQL placeholders. In most cases, these values will
be taken from the arrays returned by the table functions
getFormRows(ADDED), getFormRows(CHANGED), and
getFormRows(DELETED). For example:

pstmt.setInt(1,rowsAdded[i][0]); // first substitution
pstmt.setString(2,rowsAdded[i][1]); // second
substitution
pstmt.setString(3,rowsAdded[i][2]); // third substitution

DASHBOARD SCRIPTING

1641 of 2477

The integer parameter in each of the above functions is a reference
to the corresponding placeholder (“?”) in the SQL statement; for
example, the parameter value “1” indicates a substitution for the
first “?”, “2” indicates a substitution for the second “?”, and “3”
indicates a substitution for the third “?”. The row of the array is
indexed by variable “i” above because the array is generally
accessed iteratively within a loop structure.

4. Update the database tables by executing the SQL statement:

pstmt.executeUpdate();

Note that this does not yet commit any changes to the database.
Changes are not committed until the ‘commit’ function is called
(next step).

5. Commit the changes:

conn.commit();

6. If necessary (in case of an error), roll back the changes:

conn.rollback();

7. Close the connection to the data source:

conn.close();

The Submit Button onClick script below provides a complete example,
which updates a database table with rows which have been added, deleted,
and changed.

Example:
Committing User
Edits to Database

The following sample Viewsheet, based on the sales_employees table in
the ‘Orders’ database, contains an editable table with five columns. The
Viewsheet table, also named sales_employees, contains all of the columns
from sales_employees table in the Orders data source.

User editing is enabled only for the first_name, last_name, and quota
columns. (See Table Properties: Advanced Tab and Validating User Input
in Dashboard Design for details on configuring table and column editing
features.)

DASHBOARD SCRIPTING

1642 of 2477

Note: The ‘Orders’ data source used in this example is a Microsoft
Access database, different than the ‘Orders’ data source installed
by default. The default Derby database is not writable, so it
cannot be used for this example.

The following script acquires the rows that were added, deleted, or
changed, and then commits the modifications back to the database. The
script is placed in the onClick handler of the Submit button.

try{
// Create the connection to data source (no credentials)
var conn=createConnection('Orders','','');

// Find new rows added by user
var rowsAdded = sales_employees.getFormRows(ADDED);

// Find existing rows changed by user
var rowsChanged = sales_employees.getFormRows(CHANGED);

// Find existing rows deleted by user
var rowsDeleted = sales_employees.getFormRows(DELETED);

//---------- ADDING ROWS ----------//
if(rowsAdded!=null){
// Iterate through array of added rows
for(var i = 0; i<rowsAdded.length; i++){

// Prepare SQL statement with placeholders
var pstmt=conn.prepareStatement("insert into

sales_employees values (?,?,?,?,?)");

// Insert placeholder values from ith row of array
pstmt.setInt(1,rowsAdded[i][0]); // row i, column 1
pstmt.setString(2,rowsAdded[i][1]); // row i, column

2
pstmt.setString(3,rowsAdded[i][2]); // row i, column

3
pstmt.setInt(4,rowsAdded[i][3]); // row i, column 4
pstmt.setInt(5,rowsAdded[i][4]); // row i, column 5

// Execute the SQL statement
pstmt.executeUpdate();

// Commit the changes
conn.commit();

}
}

//---------- DELETING ROWS ----------//
if(rowsDeleted!=null){
// Iterate through array of deleted rows
for(var i = 0; i<rowsDeleted.length; i++){

// Prepare SQL statement with placeholders
var pstmt = conn.prepareStatement("delete from

sales_employees where employee_id=?");

// Insert placeholder value from ith row of array
pstmt.setInt(1,rowsDeleted[i][0]); // row i, column 1

// Execute the SQL statement
pstmt.executeUpdate();

DASHBOARD SCRIPTING

1643 of 2477

// Commit the changes
conn.commit();

}
}

//---------- CHANGING ROWS ----------//
if(rowsChanged!=null){
// Iterate through array of changed rows
for(var i = 0; i<rowsChanged.length; i++){

// Prepare SQL statement with placeholders
var pstmt = conn.prepareStatement("update

sales_employees set first_name=?, last_name=?, quota=?
where employee_id=?");

// Insert placeholder values from ith row of array
pstmt.setString(1,rowsChanged[i][1]); // row i,

column 2
pstmt.setString(2,rowsChanged[i][2]); // row i,

column 3
pstmt.setInt(3,rowsChanged[i][3]); // row i, column 4
pstmt.setInt(4,rowsChanged[i][0]); // row i, column 1

// Execute the SQL statement
pstmt.executeUpdate();

// Commit the changes
conn.commit();

}
}

}

// In case of error, roll-back changes.
catch(e) {
conn.rollback();

}

// Close the data source connection
finally{
conn.close();

}
¢

DASHBOARD SCRIPTING

1644 of 2477

6 Accessing Worksheet Data

In both chart and property scripting, you have explicit access to the data
contained in the Worksheet Data Block. The following sections explain the
syntax for accessing the Worksheet data.

See Also
Running a Query from Script, for information on how to access data from
an arbitrary query or Worksheet.
Adding Property Script (Expressions), for information on setting
component properties.
Adding Component Script, for information on manipulating charts with
script.

6.1 Referencing Data in the Worksheet Data Block
Within a Viewsheet script, you can use the standard Worksheet syntax to
access data from any Worksheet Data Block within the linked Worksheet.
For example, to access a value in a Worksheet Table or Embedded Table
called “TopSales”, use one of the following syntaxes.

Note: In general, Data Block operations should be performed in the
Worksheet rather than the Viewsheet.

• TopSales[2][4]:
Third row, fifth column of the Data Block “TopSales.”

• TopSales[2]['Price']:
Third row of the "Price" field in the Data Block “TopSales.”

• viewsheet["Top Sales"][2][4]:
Third row, fifth column of the Data Block “TopSales” (with space in
name).

You can type these keywords manually into your script, or you can insert
them by clicking the appropriate node on the ‘Data’ tree in the Script
Editor.

DASHBOARD SCRIPTING

1645 of 2477

See Also
Grouping, in Data Mashup, for information on aggregating data.
Accessing Table Cells in Script, in Data Mashup, for information on
referencing Data Blocks.

6.2 Aggregating Data in the Worksheet Data Block
To aggregate data from the Worksheet’s Data Block within Viewsheet
script, use the following syntax:

aggregateMethod(DataBlockName['ColumnName'])

Note: In general, Data Block operations should be performed in the
Worksheet rather than the Viewsheet.

For example, to obtain the sum or average of the Data Block column
‘Price’, use the following expressions:

var sumPrice = Sum(TopSales['Price'])
var avePrice = Average(TopSales['Price'])

To reference a Data Block that has a space in the name (e.g., “Top Sales”),
use the viewsheet keyword as follows:

var avePrice = Average(viewsheet["Top Sales"]['Price'])

See Also
Grouping, in Data Mashup, for information on aggregating data.
Accessing Table Cells in Script, in Data Mashup, for information on
referencing Data Blocks.

DASHBOARD SCRIPTING

1646 of 2477

7 Changing Images with Script

You can dynamically set the image file (GIF, JPG, etc.) of an image
component using a variable or an expression. Follow the steps below:

1. Add an image element into the Viewsheet. Right-click and select
the ‘Properties’ option. This opens the ‘Image Properties’ dialog
box.

2. Select the Advanced tab and select ‘Dynamic Image Selection’.

3. From the drop-down menu, select ‘Expression’ or ‘Variable’,
depending on the mechanism you wish to use to set the image
property.

.

4. If you choose ‘Expression’, click the ‘Formula Editor’ button, and
add a script in the text area. A typical script might take the
following form:

if(condition) {
'image1.gif';

} else {
'image2.gif';

}

You can specify an image by the uploaded image name (e.g.,
'image1.gif'), a resource path on the server (e.g., '/library/
image1.gif'), or a URL (e.g., “http://www.google.com/images/
logos/ps_logo2.png”).

DASHBOARD SCRIPTING

1647 of 2477

5. Click ‘OK’ to close the Formula Editor, and then click the ‘OK’ to
close the ‘Image Properties’ dialog box.

The Image component now displays the specified image file.

See Also
Image, for scripting functions related to Images.
Creating an Image, in Dashboard Design, for information on uploading
and referencing images.

DASHBOARD SCRIPTING

1648 of 2477

8 Running a Query from Script

Note: runQuery does
not retrieve data from
Data Models.

To run a query defined in the query registry (query.xml) or any available
Data Worksheet, use the runQuery command.

// Run a query:
var q = runQuery('total sales');

// Run the query for primary Data Block in a Worksheet:
var q = runQuery('ws:global:worksheetName');

// Run the query for non-primary Data Block in a Worksheet:
var q = runQuery('ws:global:worksheetName:tableName');

For Data Worksheets, qualify the name as ‘ws:global:path’ or
‘ws:user_name:path’ for global or user scope, respectively.

In either case, the runQuery results are returned as a two-dimensional array,
whose first row contains the column headers. You can access the query
values using standard array indexing.

// Assign data in first column, first row to Text
component:
Text1.value = q[1][0];

Query parameters (if any) can be passed as part of the runQuery call. For
example, to pass the Viewsheet ‘start_time’ parameter to the query as
‘start_time’ and pass the current date/time as ‘end_time’:

var q = runQuery('total sales', [['start_time',
parameter.start_time],['end_time', new Date()]]);

See Also
Binding Data to a Chart in Script, for various approaches to binding data to
a chart.
runQuery, for additional information on runQuery.
Accessing Worksheet Data, to access data in the underlying Worksheet.
Data Mashup, for information on creating Worksheet assets.

DASHBOARD SCRIPTING

1649 of 2477

Appendix VS: Viewsheet Object Reference

This appendix describes all objects in the Viewsheet environment.

See Also
Common Function Reference, for general JavaScript and charting
functions.
Report Scripting, for functions specific to the reporting environment.

VS.1 Global Functions and Properties

The Viewsheet environment provides a few global functions and properties
in addition to those defined by the standard JavaScript runtime (see
Appendix JS: General JavaScript Functions). This section presents the
additional functions.

VS.1.1 thisViewsheet

This section presents global Viewsheet functions that address Viewsheet
appearance and scheduling.

thisViewsheet.SCHEDULEACTION(BOOLEAN[,EMAILS])

Specifies whether the Viewsheet should be executed as part of a scheduled
task. Set to true to allow the Viewsheet to run as scheduled. Set to false to
override the scheduled task setting and suppress Viewsheet execution.

Parameters
Boolean true (default): execute task

false: do not execute task
emails Array of emails

You can use the scheduleAction function to conditionalize the execution of
a scheduled Viewsheet task based on actual Viewsheet data. For example,
the following script uses the value of a Gauge component to determine
whether the Viewsheet task should execute as scheduled.

Example
if (Gauge1.value > 10000) {
thisViewsheet.scheduleAction(true)

}
else {
thisViewsheet.scheduleAction(false)

}

If the scheduled action is a user notification (for example), then the user
will receive the alert only when the value of the Gauge component exceeds
the threshold.

Use the optional second parameter, emails, to dynamically set the list of
emails for the ‘Deliver To Emails’ scheduled action. The list that you

DASHBOARD SCRIPTING

1650 of 2477

provide in the emails array supersedes any emails specified on the
Scheduler Action tab (both for user-scheduled tasks and administrator-
scheduled tasks), and automatically enables the ‘Deliver To Emails’ task
action.

Example
if (Gauge1.value > 10000) {
emails = [joe@inetsoft.com, sue@inetsoft.com,

mark@inetsoft.com];
}
else {
emails = [joe@inetsoft.com];

}
thisViewsheet.scheduleAction(true, emails);

See Also
Scheduling Reports and Dashboards, in End User, for information on
Scheduling Viewsheets.

thisViewsheet.ISACTIONVISIBLE(NAME)

Returns the visibility setting for the specified toolbar button.

Parameters
name name of toolbar button (String):

'Home'
'Previous'
'Next'
'Refresh'
'Add Bookmark'
'Browse Bookmarks'
'Email'
'Print'
'Export'
'Edit'
'Toolbar'

Example
if (!thisViewsheet.isActionVisible("Export")) {
alert('Some features are disabled.');

}

DASHBOARD SCRIPTING

1651 of 2477

thisViewsheet.SETACTIONVISIBLE(NAME,BOOLEAN)

Sets the visibility of Viewsheet toolbar buttons. To hide a button, set the
value to false.

Note: The setAction-
Visible property for
individual compo-
nents is documented
with the other compo-
nent properties.

Parameters
name name of toolbar button (String):

'Home'
'Previous'
'Next'
'Refresh'
'Add Bookmark'
'Browse Bookmarks'
'Email'
'Print'
'Export'
'Edit'
'Toolbar'

boolean false: hide the specified button
true: show the specified button

Example
thisViewsheet.setActionVisible("Export", false);

thisViewsheet.UPDATETIME

Returns the date/time at which data was most recently obtained by the
Viewsheet.

• If a materialized view is in effect for the Viewsheet (see Materialized
Views in Administration Reference), thisViewsheet.updateTime returns
the date/time at which the most recent materialized view was generated
for the Viewsheet.

• If a materialized view is not in effect, thisViewsheet.updateTime
returns the date/time of the most recent query execution for the
Viewsheet.

Type
Date Date/time at which data was obtained

Example
Text1.text = 'Last Updated at ' +
formatDate(thisViewsheet.updateTime,'MMM dd, h:mm a');

See Also
Materialized Views, in Administration Reference, for information about
scheduling materialized views.

VS.1.2 parameter

The parameter property allows you to read and write Variables that have
been defined in a Worksheet (Creating a Variable in Data Mashup) or
Input controls that have been defined in a Viewsheet. The syntax is

DASHBOARD SCRIPTING

1652 of 2477

parameter.variableName

where variableName is the name of the Variable asset defined in the
Worksheet or the Input component defined in the Viewsheet.

Example: parameter.stateSelector
Example: parameter.RadioButton1

You can also define new parameters within the Viewsheet itself.

Example: parameter.myParamName = 'Hello';

See Also
Input Components, in Dashboard Design, for more information on Input
controls.
Creating a Variable, in Data Mashup, for more on using Variable assets.

parameter._GROUPS_

Returns an array of groups to which the current user belongs.

Type
Array of Strings Groups to which currennt user belongs

Example
alert('User belongs to: ' + parameter._GROUPS_.join(', '))

parameter._ROLES_

Returns an array of roles possessed by the current user.

Type
Array of Strings Roles possesed by current user

Example
alert('User roles: ' + parameter._ROLES_.join(', '))

parameter._USER_

Returns the user name of the current user.

Type
String User name of current user

Example
alert('Logged in as ' + parameter._USER_)

parameter.__PRINCIPLE__

Returns the SRPrincipal object, which contains session information.

DASHBOARD SCRIPTING

1653 of 2477

Type
Object SRPrincipal object

Example
var p = parameter.__principal__;
p.setParameter('State', ['NJ', 'NY', 'CT']);

See Also
Accessing the User Session with SRPrincipal, in Integration, for details on
writing user data to SRPrincipal.

parameter.LENGTH

Returns the number of currently defined parameters.

Type
Integer Number of currently defined parameters

Example
alert(parameter.length)

parameter.PARAMETERNAMES

An array containing the current parameter names.

Type
String Parameter Name

Example
alert(parameter.parameterNames[0])

VS.1.3 pviewsheet

For a Viewsheet that is accessed via drilldown (hyperlink or auto-drill)
from another Viewsheet, the pviewsheet property provides access to the
current settings of components within the parent Viewsheet.

For example, if the parent Viewsheet contains a Selection List named
‘Company’, you can obtain the array of currently selected companies in the
‘Company’ Selection List within the drilldown Viewsheet script by using
the following syntax.

pviewsheet.Company.selectedObjects

See Also
Viewsheet Object Reference, for a list of accessible Viewsheet component
properties.
Hyperlinks, in Dashboard Design, for information on Viewsheet
drilldowns.
Auto-Drilldown, in Data Modeling, for information on configuring data-
level hyperlinks.

DASHBOARD SCRIPTING

1654 of 2477

pviewsheet in Report Scripting, to access component settings from within a
drilldown report.

VS.1.4 event
User interactions with
editable tables, Input
components, and
Selection compo-
nents automatically
re-execute the Views-
heet onLoad handler.

The event object can be used within an onLoad Handler script to provide
information about the user’s most recent action in editable Tables, Input
Components, and Selection Components (Selection List, Selection Tree,
Range Slider, Calendar). The event object is instantiated at runtime when a
user makes an interaction of the appropriate type, so you should test for its
existence before attempting to access its properties. For example:

if(event!=null) {
// access 'event' properties, such as...
// event.name, event.type, event.source, etc.

}

For an editable Table, the event object provides the following properties:

For an Input component or Selection component, the event object provides
the following properties:

See Also
Accessing the Most Recent User Modification, for additional discussion of
‘event’ object.

VS.1.5 runQuery

The runQuery() function returns a query result set as a two-dimensional
array.

RUNQUERY(QUERY_NAME [,PARAMETERS])

Returns a result set as a two-dimensional array that can be used within
Viewsheet script.

event.name The name of the table component.
event.type The type of the component, always ‘table’.
event.row The index of the row in the table which the user modified.
event.column The index of the column in the table which the user modified.
event.source A reference to the table object which can be used to access table

properties.

event.name The name of the component, e.g., “SelectionList1”
event.type The type of the component: ‘radiobutton’, ‘checkbox’,

‘combobox’, ‘textinput’, ‘selectionlist’, ‘selectiontree’,
‘rangeslider’, ‘calendar’

event.source A reference to the component which can be used to access
component properties, e.g., event.source.title='New
Title'.

DASHBOARD SCRIPTING

1655 of 2477

Parameters
query_name a string containing the query name
parameters (optional) a two dimensional string array,

each row containing a name-value pair
that corresponds to a query parameter

Example
var rs =
runQuery('orders',[['category','Business'],['price',100]]);

See Also
Running a Query from Script, for examples of executing Worksheet
queries.

VS.2 Common Properties

This section describes basic properties that are shared by most of the
Viewsheet components. Exceptions are noted where appropriate.

ALIGNMENT

Specifies the horizontal and vertical alignment of an element. Its value is a
bitwise OR of a horizontal alignment option and a vertical alignment
option.

Type
integer

Example
alignment = StyleConstant.H_CENTER | StyleConstant.V_CENTER;

See Also
Alignment Tab, for more information about alignments.

ALPHA

Specifies the transparency/opacity of the component’s fill color as a value
between 0 (completely transparent) and 100 (completely opaque).

Type
Number

Example
alpha = 35.5;

HORIZONTAL ALIGNMENT VERTICAL ALIGNMENT

StyleConstant.H_LEFT StyleConstant.V_TOP
StyleConstant.H_CENTER StyleConstant.V_CENTER
StyleConstant.H_RIGHT StyleConstant.V_BOTTOM
StyleConstant.H_CURRENCY StyleConstant.V_BASELINE

DASHBOARD SCRIPTING

1656 of 2477

See Also
Color Tab, for more information about setting color.

BACKGROUND

Specifies the background color that fills the area of the element.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
background = java.awt.Color.lightGray;

See Also
Color Tab, for more information about setting color.

BORDERCOLORS

Specifies the element border colors as an array of four values in the
following order: [top,bottom,left,right]. Each color can be of one of the
types given below.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
borderColors = [[255,0,0], 0x444444, 'blue', 'black'];

See Also
Color Tab, for more information about setting color.

BORDERS

Specifies the individual line styles for each border of the element, as an
array of form [top,left,bottom,right].

Type
Array of Line Styles

Example
borders =
[StyleConstant.DOUBLE_LINE,StyleConstant.NO_BORDER,
StyleConstant.THIN_LINE, StyleConstant.NO_BORDER];

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

DASHBOARD SCRIPTING

1657 of 2477

See Also
Border Tab, for additional information on borders.

DATACONDITIONS

Returns the Flyover View conditions that are currently in effect on a filtered
component. The dataConditions property provides an array of attributes,
attr[], and an array of values, value[], that contain the conditions for all
flyover filters currently being applied to a specified component.

Type
dataConditions.attr[] Array of filtered dimension
labels
dataConditions.value[] Array of filtered dimension
values

Example
Consider a Chart that uses a flyover view to filter a Table named “Query1”.
If the ‘On Click Only’ option is set for the Chart flyover (and therefore
multiple Chart groups can be selected in the flyover), the Table’s
dataConditions.attr[] and dataConditions.value[] arrays will each
contain one item for every group the user selects on the Chart. You can
iterate through these arrays to obtain the currently selected dimensions and
values.

This script could also
be written as an
expression for the
‘Title’ property in the
General tab.

The script below is placed in the Script tab of the Table component
(“Query1”) that is being filtered, and modifies the ‘title’ property of the
Table.

var conds = Query1.dataConditions;
var txt = 'Filter: None'

DASHBOARD SCRIPTING

1658 of 2477

if(!isNull(conds)) {
txt = 'Filter: ' + conds[0].attr + ' = ';
for(var i=0;i<conds.length;i++) {
txt += conds[i].value;
if(i != conds.length-1) {
txt += ', '

}
}

}

Query1.title = txt;

When the user selects groups on the Chart, the Table’s title bar indicates the
current flyover filter applied to the Table.

See Also
Flyover View, for additional information on flyover views.

ENABLED

Specifies whether the user can interact with the component. A disabled
component appears dimmed when the user opens the Viewsheet.

Type
Boolean true = enable, false = disable

Example
enabled = false;

See Also
General Tab, for additional information on disabling a component.

FONT

Specifies the font for this element.

DASHBOARD SCRIPTING

1659 of 2477

Type
java.awt.Font

Example
font = java.awt.Font('Verdana',java.awt.Font.BOLD, 35)

See Also
Font Tab, for more information about setting font.

FOREGROUND

Specifies the foreground (text) color of the component.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
foreground = 'red';

See Also
Color Tab, for more information about setting color.

FORMAT

Sets the format. The available formats are shown below:

 – StyleConstant.DATE_FORMAT for date display
 – StyleConstant.DECIMAL_FORMAT for number display
 – StyleConstant.MESSAGE_FORMAT for text display
 – StyleConstant.PERCENT_FORMAT for fraction display
 – StyleConstant.CURRENCY_FORMAT for locale-adapting currency display

To format cells or col-
umns of a Table, use
the tablelens property.

For the Date, Decimal, and Message formats, use the formatSpec property
to assign a format specification using the appropriate masks.

Example (Number Format)
format = StyleConstant.DECIMAL_FORMAT;
formatSpec = "#,###.00";

Example (Text Format)
format = StyleConstant.MESSAGE_FORMAT;
formatSpec = "{0} Inc."

FORMATSPEC

Specifies a formatting instruction to be used for representing data on the
screen. The formatting instruction is specific to the format type, Date,
Number, or Text.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

DASHBOARD SCRIPTING

1660 of 2477

To format cells or col-
umns of a Table, use
the tablelens property.

Example (Date Format)
format = StyleConstant.DATE_FORMAT;
formatSpec = "MM/dd/yyyy";

Example (Number Format)
format = StyleConstant.DECIMAL_FORMAT;
formatSpec = "#,###.00";

Example (Text Format)
format = StyleConstant.MESSAGE_FORMAT;
formatSpec = "{0} Inc."

Date masks follow the
java.text.SimpleDate-
Format format.

Date Format: For date formatting, use the following date masks:

M = Month
d = date
y = year
E = day of the week

Example:
For the date Nov 8, 2006:

M = 11; MM = 11; MMM = Nov; MMMM = November
d = 8; dd = 08;
yy = 06; yyyy = 2006
EEE = Wed
EEEE = Wednesday

Therefore, mask 'MMM-dd-yyyy' yields “Nov-08-2006.”

Numeric masks fol-
low the java.text.Deci-
malFormat format.

Number Format: For number formatting, use the following numeric
masks:

= number
0 = Number with zero padding

Example:
For the number 124521.63:

#,###.## yields 124,521.63
#,###.000 yields 124,521.630

Text Format: For text formatting, use {0} as a placeholder for the string
data.

Example:
For the string 'Susan':

Salesperson: {0} yields Salesperson: Susan
--{0}-- yields --Susan--

See Also
formatDate, for details on date formatting syntax.
formatNumber, for details on decimal formatting syntax.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html

DASHBOARD SCRIPTING

1661 of 2477

Format Tab, in Dashboard Design, for more information about format
specifications.

POSITION

Specifies the position of the top-left corner of a component in terms of
Viewsheet grid cells, where the top-left corner of the grid is (0,0).
Fractional values for vertical and horizontal position are rounded down to
the next lowest integer. This property does not take effect in the design
view of Visual Composer and does not apply to components within a
Selection Container.

Type
value a java.awt.Point object:

java.awt.Point(horizontal,vertical)

Example
// Table with top-left corner at column 4, row 9
TableView1.position = java.awt.Point(4,9)

// Chart with top-left corner at column 2, row 25
Chart1.position = java.awt.Point(2,25)

SELECTEDLABEL

Specifies the selected label of the component (not the value). Applies to
single value input elements (Slider, Spinner, Radio Button, Combo Box)
and the tabs of co-located components (Tabbed Interface). This property is
readable and writable.

Type
String label of the selected option

Example
RadioButton1.selectedLabel = 'New Jersey';

See Also
lables, to access the labels displayed in the component.
selectedObject, to access the value corresponding to the label.
selectedLabels, to access the currently selected labels in multi-valued
components.
Accessing User Input in Script, for more information about selectedLabel.

SELECTEDLABELS

Returns the selected labels (not the values) of the component as an array.
Applies to multi-value input elements (Check Boxes) and selection
elements (Selection Lists, Selection Trees, Range Slider, Calendars). This
is a read-only property.

http://docs.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html

DASHBOARD SCRIPTING

1662 of 2477

Type
Array array of selected option labels

Example
var num = SelectionList1.selectedLabels.length;
var msg = 'You selected ' + num + ' objects: ';
msg += SelectionList1.selectedLabels.join(', ');
alert(msg)

See Also
lables, to access the labels displayed in the component.
selectedObjects, to access the values corresponding to the labels.
selectedLabel, to access the currently selected label in single-valued
components.
Accessing User Input in Script, for more information about
selectedLabels.

SELECTEDOBJECT

Specifies the selected value of the component (not the label). Applies to
single value input elements (Slider, Spinner, Radio Button, Combo Box)
and the tabs of co-located components (Tabbed Interface). This property is
readable and writable.

Type
String value of the selected option

Example
RadioButton1.selectedObject = 'NJ';

See Also
values, to access the values presented in the component list.
Accessing the Most Recent User Modification, to retrieve the most recent
modified object.
selectedLabel, to access the label corresponding to the value.
selectedObjects, to access the current selection in multi-valued
components.
Accessing User Input in Script, for more information about
selectedObject.

SELECTEDOBJECTS

Specifies the selected values (not the labels) of the component as an array.
Applies to multi-value input elements (Check Boxes) and selection
elements (Selection Lists, Selection Trees, Range Slider, Calendars).

This property is readable and writable for Selection Lists and Selection
Trees, and is read-only for other components. Script that reads the value of
the selectedObjects property can be placed either at the element level or in

DASHBOARD SCRIPTING

1663 of 2477

the onLoad Handler, while script that writes the selectedObjects property
must be placed in the onLoad Handler.

Type
Array array of selected option values

Example
var num = SelectionList1.selectedObjects.length;
var msg = 'You selected ' + num + ' objects: ';
msg += SelectionList1.selectedObjects.join(', ');
alert(msg)

See Also
values, to access the values presented in the component list.
Accessing the Most Recent User Modification, to retrieve the most recent
modified object.
selectedLabels, to access the labels corresponding to the values.
selectedObject, to access the current selection in single-valued
components.
Accessing User Input in Script, for more information about
selectedObjects.

SIZE

Specifies the width and height of a component in terms of Viewsheet grid
cells. Fractional values for width and height are rounded down to the next
lowest integer. This property does not take effect in the design view of
Visual Composer and does not apply to components within a Selection
Container.

Type
value a java.awt.Dimension object:

java.awt.Dimension(columns,rows)

Example
// Table spanning 7 grid columns, 4 grid rows
TableView1.size = java.awt.Dimension(7,4)

// Chart spanning 6 grid columns, 20 grid rows
Chart1.size = java.awt.Dimension(6,20)

TITLE

Specifies the text that appears in the title bar of the component. This
property is only available for components that possess a title bar.

Type
String text to appear in title bar

Example
SelectionList1.title = "Company Selector"

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Dimension.html

DASHBOARD SCRIPTING

1664 of 2477

See Also
General Tab, in Dashboard Design, for more information on the title.

VISIBLE

Specifies the visibility of the component. This property can be used to
dynamically hide elements in a Viewsheet.

Type
Boolean true: display the component

false: hide the component

Example
if (Gauge1.value > 200) {
Text1.text = 'Too high!';
Text1.visible = true;

}
else if (Gauge1.value < 50) {
Text1.text = 'Too low!';
Text1.visible = true;

}
else {
Text1.visible = false;

}

See Also
General Tab, in Dashboard Design, for more information on visibility.

WRAPPING

Specifies whether text that exceeds its boundaries is wrapped or truncated.
This property is available for the following components: Table, Embedded
Table, Crosstab Table, Selection List, Selection Tree, and Text.

Type
Boolean true: wrap text

false: truncate text

Example
Table1.wrapping = true;

See Also
General Tab, in Dashboard Design, for more information on visibility.

VS.3 Table

This section presents functions for Table operations.

See Also
Crosstab Table, for properties specific to pivot tables.

DASHBOARD SCRIPTING

1665 of 2477

COMMIT(TYPE)

When a user adds or changes a row in an editable table, the new or
modified row is highlighted in color. To clear the highlight on these rows
and remove them from the corresponding array returned by getFormRows,
use the table’s ‘commit’ function.

Parameters
type the type of rows to commit: ADDED, CHANGED,

DELETED, or the index of a particular row

Example
// Clear highlights on added rows, and remove them from
// array returned by getFormRows(ADDED).
Table1.commit(ADDED);
// Clear highlights on changed rows, and remove them from
// array returned by getFormRows(CHANGED).
Table1.commit(CHANGED);

// Removes deleted rows from array returned by
// getFormRows(DELETED).
Table1.commit(DELETED);

// Removes the row returned by getFormRows(idx) from the
// array of modified rows.
Table1.commit(idx);

See Also
Accessing User-Modified Data in a Table, for information on accessing
user edits.
Table Properties: Advanced Tab, for information on making a table
editable.

DATA

Two dimensional array containing the original table data (prior to grouping
and aggregation) If no grouping or summarization is defined for the table,
the ‘data’ property is the same as the ‘table’ property. Otherwise, ‘data’
holds the raw data and ‘table’ holds the summarized data. The data can be
referenced using the row number as the first array index and the column
number or label as the second array index. This property is read-only.

Type
Two-dimensional array

Example 1
for (var i=1; i<data.length; i++) {
if (Query1.data[i]['Name'] == 'Web Bridge') {
alert('Note: "Web Bridge" will be discontinued.');

}
}

Example 2
Text1.text = 'Grand total is ' + sum(Query1.data['Total']);

DASHBOARD SCRIPTING

1666 of 2477

See Also
Accessing Table Data, for information about working with table data.

DATA.LENGTH

Returns the number of rows in a table, prior to aggregation and
summarization.

Type
integer

Example
// Testing for empty result set:
if (Query1.table.length == 1) {
Text1.text = 'No data returned';

}

See Also
table.length, for the length of post-aggregate (as-displayed) results table.
Accessing Table Data, for information about working with table data.

DATA.SIZE

Returns the number of columns in a table, prior to grouping and
aggregation.

Type
integer

See Also
table.size, for the width of post-aggregate (as-displayed) results table.
Accessing Table Data, for information about working with table data.

GETFORMROW(ROW)

For an editable table, retrieves the edited row specified by the index. Often
the index is provided by the event object for the editable table.

Parameters
row row index

Example
var changedRow = Table1.getFormRow(row);

See Also
Accessing the Most Recent User Modification, for an example of using
getFormRow().
Accessing User-Modified Data in a Table, for general discussion.
Table Properties: Advanced Tab, for information on making a table
editable.

DASHBOARD SCRIPTING

1667 of 2477

GETFORMROWS([TYPE])

For an editable table, retrieves the rows that have been modified by the
user. The type parameter specifies the set of rows to return, and can be
provided in string form (e.g., 'added') or constant form (e.g., ADDED). Omit
the parameter to return all rows in table.

Parameters
type ADDED: return new rows inserted by user

CHANGED: return old rows modified by user
DELETED: return old rows deleted by user
OLD: return all old rows

Example
var allRows = Table1.getFormRows();
var addedRows = Table1.getFormRows(ADDED);
var changedRows = Table1.getFormRows(CHANGED);
var deletedRows = Table1.getFormRows(DELETED);
var oldRows = Table1.getFormRows(OLD);

See Also
Accessing User-Modified Data in a Table, for general discussion.
Table Properties: Advanced Tab, for information on making a table
editable.

APPENDROW(ROW)

For an editable table, inserts a new blank row following the row specified
by integer parameter row, and adds this new row to the array returned by
getFormRows(ADDED).

Parameters
row integer row index

Example
// Add new row below row 4:
TableView1.appendRow(4);

// Set initial values in new row (row 5):
TableView1.setObject(5,0,'Enter Name')
TableView1.setObject(5,1,'Enter Price')
TableView1.setObject(5,2,'Enter Quantity')
TableView1.setObject(5,3,'Enter Total')

See Also
setObject(row,col,value), to write data into an editable table cell.
Accessing User-Modified Data in a Table, for general discussion.
Table Properties: Advanced Tab, for information on making a table
editable.

DASHBOARD SCRIPTING

1668 of 2477

DELETEROW(ROW)

For an editable table, deletes the row specified by integer parameter row,
and adds this deleted row to the array returned by getFormRows(DELETED).

Parameters
row integer row index

Example
// Delete row 4:
TableView1.deleteRow(4);

See Also
Accessing User-Modified Data in a Table, for general discussion.
Table Properties: Advanced Tab, for information on making a table
editable.

INSERTROW(ROW)

For an editable table, inserts a new blank row prior to the row specified by
integer parameter row, and adds this new row to the array returned by
getFormRows(ADDED).

Parameters
row integer row index

Example
// Add new row above row 4:
TableView1.insertRow(4);

// Set initial values in new row 4:
TableView1.setObject(4,0,'Enter Name')
TableView1.setObject(4,1,'Enter Price')
TableView1.setObject(4,2,'Enter Quantity')
TableView1.setObject(4,3,'Enter Total')

See Also
setObject(row,col,value), to write data into an editable table cell.
Accessing User-Modified Data in a Table, for general discussion.
Table Properties: Advanced Tab, for information on making a table
editable.

SETACTIONVISIBLE(NAME, BOOLEAN)

Sets the visibility/accessibility of end-user Table features. To disable a
feature, set the value to false.

Parameters
name name of table function (String):

'Export'
'Show Details'
'Sort Column' (column header 'Sort' button)

boolean false: hide the specified function

DASHBOARD SCRIPTING

1669 of 2477

true: show the specified function

For a Crosstab, the 'Sort Column' setting overrides the
sort.crosstab.aggregate and sort.crosstab.dimension property settings.

Example
Table1.setActionVisible("Show Details", false);

See Also
thisViewsheet.setActionVisible(name,Boolean), to show or hide Viewsheet
toolbar buttons.

ISACTIONVISIBLE(NAME)

Returns the visibility/accessibility of the specified end-user Table feature.

Parameters
name name of table function (String):

'Export', 'Show Details'

Example
if (TableView1.isActionVisible('Export')==true) {
Text1.text = 'Press toolbar button to export.';

}

See Also
thisViewsheet.isActionVisible(name), to return Viewsheet toolbar button
visibility.

SETHYPERLINK(ROW, COL, HYPERLINK)

Creates a hyperlink for an individual table cell.

Parameter
row row index
col column index
hyperlink string or

inetsoft.report.Hyperlink.Ref object

Example
setHyperlink(1, 1, "Tutorial/Ad Hoc");
setHyperlink(1, 1, null); // remove hyperlink

See Also
Hyperlinks, in Dashboard Design, for basic information on hyperlinks.

SETOBJECT(ROW,COL,VALUE)

Sets the contents of an editable table cell to the specified value.

Parameter
row row index of cell to modify
col column index of cell to modify

DASHBOARD SCRIPTING

1670 of 2477

value value to be placed into cell

Example
// Insert text “Robert” into third row, fourth column:
TableView1.setObject(2,3,'Robert');

See Also
Table Properties: Advanced Tab, in Dashboard Design, for information on
how to make a table editable.
Accessing the Most Recent User Modification, to retrieve the most recent
modified object.
Accessing User Input in Script, for information about selectedObject.

SETPRESENTER(ROW,COL,PRESENTER)

Sets the contents of an table cell to the specified presenter. Built-in
presenters include the following:

 – inetsoft.report.painter.BarPresenter
 – inetsoft.report.painter.IconCounterPresenter
 – inetsoft.report.painter.BooleanPresenter
 – inetsoft.report.painter.Bar2Presenter
 – inetsoft.report.painter.ButtonPresenter
 – inetsoft.report.painter.ShadowPresenter

Parameter
row row index of cell to modify
col column index of cell to modify
presenter name of Presenter

Example
// Rotate the text in the top-left cell by 45 degrees:
Table1.setPresenter(0,0,"HeaderPresenter");

TABLE

Two dimensional array holding the table cell data as displayed (after any
grouping and aggregation). If no grouping or summarization is defined on
the table, the ‘table’ property is the same as the ‘data’ property. The data
can be referenced using the row number as the first array index and the
column number or name as the second array index.

This property is read-only. To write data to an editable table, use
setObject(row,col,value).

Type
Two-dimensional array

Example 1
for (var i=1; i<table.length; i++) {
if (Query1.table[i]['Name'] == 'Web Bridge') {
alert('Note: "Web Bridge" will be discontinued.');

DASHBOARD SCRIPTING

1671 of 2477

}
}

Example 2
Text1.text = 'Grand total is ' + sum(Query1.table['Total']);

See Also
setObject(row,col,value), for information on modifying data in an editable
table.
Accessing Table Data, for information about working with table data.

TABLE.LENGTH

Returns the number of rows in a table, as displayed. It counts the header
rows as well as the data rows.

Type
integer

Example
// Testing for empty result set:
if (Query1.table.length == 1) {
Text1.text = 'No data returned';

}

See Also
Accessing Table Data, for information about working with table data.
data.length, for number of rows prior to grouping and summarization.

TABLE.SIZE

Returns the number of columns in a table, as displayed.

Type
integer

See Also
Accessing Table Data, for information about working with table data.
data.size, for number of columns prior to grouping and summarization.

TABLESTYLE

Specifies a predefined style to be applied to the Table.

Type
String

Example
Query1.tableStyle = 'Shaded'

See Also
Table Properties, for more information about Table propeties.

DASHBOARD SCRIPTING

1672 of 2477

TABLELENS

Specifies the Table’s TableLens object, which allows you to access and
modify table attributes using API methods.

Type
inetsoft.report.lens.AttributeTableLens

Example
TableView1.tablelens.setForeground(0, 2,
java.awt.Color.red);

SHRINK

Reduces the height of the table to match the number of records displayed.
For example, if the original table height (as designed) was 10 rows, and the
user then makes selections which restrict the result set to five rows, the
table’s bottom border will retract upward or “shrink” to eliminate any
empty rows at the bottom of the table.

Type
Boolean true: shrink table to fit contents

false: do not shrink table

Example
TableView1.shrink=true;

See Also
Table Properties: Advanced Tab, in Dashboard Design, for information on
setting the property without script.

VALUE

Returns the value in the cell currently referenced by a ‘Format’ expression
script. For example, if you specify a ‘Text Color’ expression in the
‘Format’ dialog box for a table header cell, you can use the value property
within the script to obtain the value in the targeted header cell. Likewise, if
you specify a ‘Text Color’ expression in the ‘Format’ dialog box for a
detail cell in a table column (which means that the expression will be
evaluated in turn for each detail cell in the column), you can use the value
property within the script to obtain the value of the currently referenced
detail cell.

Example
The script below can be used in a ‘Text Color’ or ‘Fill Color’ expression to
set color formatting on a table detail cell.

if (value > 1000) {
[255,0,0]

}
else {

DASHBOARD SCRIPTING

1673 of 2477

[0,255,0]
}

See Also
Accessing Data in the Current Cell (‘value’), for further information.
Table Properties, for general information about the Table component.

FIELD

Returns the value of the cell in the specified field (column) and same row
as the cell currently referenced by a ‘Format’ expression script. For
example, if you specify a ‘Text Color’ expression in the ‘Format’ dialog
box for a detail cell in a table column, you can use the field property
within the script to obtain the value of the detail cell in the corresponding
row of another column.

Example
The script below can be used in a ‘Text Color’ or ‘Fill Color’ expression to
set color formatting on a table detail cell.

if (field['Total'] > 400) {
[255,0,0];

} else {
[0,0,255];

}

See Also
Accessing Data in the Same Row (‘field’), for further information.
Table Properties, for general information about the Table component.

COL

Returns the column index of the cell currently referenced by a ‘Format’
expression script. For example, if you specify a ‘Text Color’ expression in
the ‘Format’ dialog box for a detail cell in a table, you can use the col
property within the script to obtain the index of the column. This, together
with table array and the row property allow you to construct relative
references to other cells in the table.

Example
The script below can be used in a ‘Text Color’ or ‘Fill Color’ expression to
set color formatting on a table detail cell. It assigns a red color if the value
in the cell is less than the value of the same cell in the row above, and
assigns a green color otherwise.

if (row > 1) {
if (value < table[row-1][col]) {
[255,0,0]

}
else {
[0,255,0]

}

DASHBOARD SCRIPTING

1674 of 2477

}

See Also
table, for more information about the ‘table’ array.
Accessing Data in Different Row or Column (‘row’/‘col’), for further
information.
Table Properties, for general information about the Table component.

ROW

Returns the row index of the cell currently referenced by a ‘Format’
expression script. For example, if you specify a ‘Text Color’ expression in
the ‘Format’ dialog box for a detail cell in a table, you can use the row
property within the script to obtain the index of the row. (The index will
change as the expression is evaluated in turn for each detail cell in the
column.) This, together with table array and the col property allow you to
construct relative references to other cells in the table.

Example
The script below can be used in a ‘Text Color’ or ‘Fill Color’ expression to
set color formatting on a table detail cell. It assigns a red color if the value
in the cell is less than the value of the same cell in the row above, and
assigns a green color otherwise.

if (row > 1) {
if (value < table[row-1][col]) {
[255,0,0]

}
else {
[0,255,0]

}
}

See Also
table, for more information about the ‘table’ array.
Accessing Data in Different Row or Column (‘row’/‘col’), for further
information.
Table Properties, for general information about the Table component.

CELLFORMAT

Specifies the Table cell data format as a two dimensional array. The
attribute can be referenced using the row number as the first index and the
column header or number as the second index, [row][col].

Type
two dimensional array of formats

Example
Column and row indi-
ces start at 0.

cellFormat[5][3] = [Chart.DATE_FORMAT, "yy-MMMM-dd"];

DASHBOARD SCRIPTING

1675 of 2477

cellFormat[2]['Total'] = [Chart.DECIMAL_FORMAT,
"#,###.00"];

See Also
Table Properties, for general information about the Table component.

COLFORMAT

Specifies the Table column data format as an array. The attribute can be
referenced using the column header or number.

Type
array of formats

Example
Column indices start
at 0.

colFormat[5] = [Chart.DATE_FORMAT, "yy-MMMM-dd"];
colFormat['Total'] = [Chart.DECIMAL_FORMAT, "#,###.00"];

See Also
Table Properties, for general information about the Table component.

TIPVIEW

Sets the data tip for the Table. The data tip is a graphical form of tooltip
which uses an arbitrary Viewsheet component to adaptively display
summarized data when the user hovers the mouse over cells in the Table.
See Data Tip View in Dashboard Design for more details.

Type
String name of a Viewsheet component

Example
TableView1.tipView='Gauge1';

See Also
Data Tip View, in Dashboard Design, to set the property without using
script.

FLYOVERVIEWS(ARR)

Specifies an array of component names, representing the components to be
filtered by table flyover.

Parameters
arr array of component names (String)

Example
TableView1.flyoverViews = ['Crosstab1','Gauge1'];

See Also
Flyover View, in Dashboard Design, to set the property without using
script.

DASHBOARD SCRIPTING

1676 of 2477

FLYONCLICK

Specifies that components filtered by a table flyover will be updated only
when the user clicks on the table.

Type
Boolean true: update on mouse click

false: update on mouse hover (default)

Example
TableView1.flyOnClick = true;

See Also
Flyover View, in Dashboard Design, to set the property without using
script.

VS.4 Crosstab Table

This section presents functions specifically for Crosstab Table operations.
The Crosstab Table component also supports all of the properties of the
Table component.

See Also
Crosstabs, for general information about crosstab or pivot tables.

DRILLENABLED

Specifies whether the automatic drill-down feature is enabled for the
crosstab. If disabled, the ‘+’ and ‘–’ drill operators do not appear on the
Crosstab headers.

Type
Boolean true = enabled, false = disabled

Example
Crosstab1.drillEnabled = false;

See Also
Drilling Down into a Crosstab, in Dashboard Design, for information on
using the drill-down feature.

FILLBLANKWITHZERO

Populate empty cells of the crosstab table with zeros. (Empty data cells
occur when no results exist corresponding to the row and column
headings.)

Type
Boolean true: use zeros in empty cells

false: leave empty cells blank

DASHBOARD SCRIPTING

1677 of 2477

Example
fillBlankWithZero = true

SUMMARYSIDEBYSIDE

Display multiple measures side-by-side rather than stacked vertically (the
default).

Type
Boolean true: place measures side-by-side

false: stack measures vertically (default)

Example
summarySideBySide = true

VS.5 Chart

This section presents Viewsheet-specific properties for Chart components.
See Chart Script Reference for details about properties available in both
Viewsheet and report Chart scripts.

See Also
Chart Script Tutorial, for examples of complex chart scripting.

DRILLENABLED

Specifies whether the automatic drill-down feature is enabled for the chart.
If disabled, the ‘+’ and ‘–’ drill operators do not appear on the chart axes.

Type
Boolean true = enabled, false = disabled

Example
Chart1.drillEnabled = false;

See Also
Drilling Down into a Chart, in Dashboard Design, for information on
using the drill-down feature.

FLYOVERVIEWS(ARR)

Specifies an array of component names, representing the components to be
filtered by chart flyover.

Parameters
arr array of component names (String)

Example
Chart1.flyoverViews = ['TableView1','Gauge1'];

DASHBOARD SCRIPTING

1678 of 2477

See Also
Flyover View, in Dashboard Design, to set flyover in the ‘Chart Properties’
dialog box.

FLYONCLICK

Specifies that components filtered by a chart flyover will be updated only
when the user clicks on the chart.

Type
Boolean true: update on mouse click

false: update on mouse hover (default)

Example
Chart1.flyOnClick = true;

See Also
Flyover View, in Dashboard Design, to set flyover in the ‘Chart Properties’
dialog box.

TIPVIEW

Sets the data tip for the Chart. The data tip is a graphical form of tooltip
which uses an arbitrary Viewsheet component to adaptively display
summarized data when the user hovers the mouse over cells in the Chart.
See Data Tip View in Dashboard Design for more details.

Type
String name of a Viewsheet component

Example
Chart1.tipView='Gauge1';

See Also
Data Tip View, in Dashboard Design, to set the property without using
script.

SETACTIONVISIBLE(NAME,BOOLEAN)

Sets the visibility/accessibility of end-user Chart features. To disable a
feature, set the value to false.

Parameters
name name of chart function (String):

'Brush', 'Edit', 'Maximize', 'Show Data',
'Show Details', 'Zoom'

boolean false: hide the specified function
true: show the specified function

Example
Chart1.setActionVisible("Show Details", false);

DASHBOARD SCRIPTING

1679 of 2477

See Also
thisViewsheet.setActionVisible(name,Boolean), to show or hide Viewsheet
toolbar buttons.

ISACTIONVISIBLE(NAME)

Returns the visibility/accessibility of the specified end-user Chart feature.

Parameters
name name of chart function (String):

'Brush', 'Edit', 'Maximize', 'Show Data',
'Show Details', 'Zoom'

Example
if (Chart1.isActionVisible('Edit')==true) {
Text1.text = 'Click the Edit button to open Chart

Editor';
}

See Also
thisViewsheet.isActionVisible(name), to return Viewsheet toolbar button
visibility.

TOOLTIP

Specifies a tooltip to be displayed on chart elements. You can use
placeholders {0}, {1}, {2}, etc. to insert data values from the corresponding
fields into the tooltip text, and format the inserted data using
java.text.MessageFormat format. You may additionally use HTML markup
such as “<i>”, “,” and “
” to format the tooltip contents.

Type
String The tooltip to display

Example
Chart1.toolTip = "Company: {0}
Total Sales</
b>: {1,number,$##,###.00}";

DATA

Two dimensional array containing the chart data. This array is readable and
writable.

Type
Two-dimensional array

Example
for (var i=1; i<data.length; i++) {
if (Chart1.data[i]['Name'] == 'Web Bridge') {
Chart1.data[i]['Sum(Quantity Purchased)'] = 0;
alert('Note: "Web Bridge" has been discontinued.');

}
}

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

DASHBOARD SCRIPTING

1680 of 2477

To bind an unbound chart to a Data Block or cube in the Worksheet, use the
following syntax:

// Bind a Data Block:
Chart1.data="table_name";

// Bind a cube:
Chart1.data="cube::table_name";

See Also
Data, in Chart Script Reference, for information about working with chart
data.

VS.6 Selection List and Tree

This section presents properties for Selection List and Selection Tree
components. The Selection Tree shares all of the properties of the Selection
List with the exception of singleSelection.

See Also
Selection List and Selection Tree, for more information about selection
elements.

DRILLMEMBER

Does not apply to
Selection Lists.

Returns the name of the field one level below the deepest level in the
hierarchy at which the user has made a selection. For example, consider a
three-level Selection Tree hierarchy: ‘Region’ > ‘State’ > ‘City’.

If the user’s most specific selection is at the level of region, then
drillMember returns 'State'. If the user’s most specific selection is at the
level of state, then drillMember returns 'City'. If the user’s most specific
selection is at the level of city, then because there is no lower level
drillMember again returns 'City'. If the user has not selected any values in
the Selection Tree, then drillMember returns the highest level, here
'Region'.

Type
String field name for child of deepest selected level

Example
var drillField = SelectionTree1.drillMember;

DASHBOARD SCRIPTING

1681 of 2477

This property is very useful for creating interactive chart drilldowns.

See Also
Walkthrough: Interactive Chart Drilldown, for an example usage.
Selection List Properties and Selection Tree Properties, for more
information.

DROPDOWN

Sets the Selection List to dropdown style, in which the Selection List is
compactly represented by just its title bar. When the user moves the mouse
over the List, The List automatically expands to display the available
options.

Type
Boolean true: show compact title-bar only display

false: show normal List display (default)

Example
SelectionList1.dropdown = true;

See Also
Selection List Properties and Selection Tree Properties, for more
information.

SETACTIONVISIBLE(NAME,BOOLEAN)

Sets the visibility/accessibility of end-user Selection features. To disable a
feature, set the value to false.

Parameters
name name of toolbar button (String):

'Apply', 'Clear Selection',
'Reverse Selection', 'Sort Selection',

boolean false: hide the specified function
true: show the specified function

Example
Selection1.setActionVisible("Reverse Selection", false);

See Also
thisViewsheet.setActionVisible(name,Boolean), to show or hide Viewsheet
toolbar buttons.

SINGLESELECTION

Does not apply to
Selection Trees.

Specifies that only a single choice can be selected in the list.

Type
Boolean true: select only one item

false: select one or more items (default)

DASHBOARD SCRIPTING

1682 of 2477

Example
SelectionList1.singleSelection = true

See Also
Selection List Properties and Selection Tree Properties, for more
information.

SORTTYPE

Specifies the sort order for the Selection List or Tree. You can list choices
in ascending (alphabetical) order, in descending (reverse alphabetical)
order, or display only compatible choices. This last option (the default)
hides incompatible choices, but allows a user to display them if desired.

Type
Integer order of items in Selection List:

StyleConstant.SORT_ASC: Ascending order
StyleConstant.SORT_DESC: Descending order
StyleConstant.SORT_HIDE_OTHERS:
Hide incompatible choices

Example
SelectionList1.sortType = StyleConstant.SORT_ASC;

See Also
Selection List Properties and Selection Tree Properties, for more
information.

SUBMITONCHANGE

Specifies that user selections should be submitted immediately to the server
and the Viewsheet refreshed with updated data (default). When this feature
is disabled, user selections are not submitted until the user explicitly click
the green ‘Apply’ button.

Type
Boolean true: submit user selections immediately

false: submit user selection on 'Apply'

Example
SelectionList1.submitOnChange = false;

See Also
Selection List Properties and Selection Tree Properties, for more
information.

VS.7 Selection Container

This section discusses the properties that are unique to the Selection
Container.

DASHBOARD SCRIPTING

1683 of 2477

See Also
Common Properties, for properties shared with other components.
Selection Container, for more information about Selection Containers.

ADHOCENABLED

Determines whether end users can add new selection fields (from the Chart
Editor) to the Selection Container.

Type
Boolean true: allow users to add new selections

false: prevent users from adding selections

Example
CurrentSelection1.adhocEnabled = false;

See Also
Selection Container Properties, for more information on user selection
editing.

SHOWCURRENTSELECTION

Specifies whether the Selection Container displays the current state of all
Viewsheet selection components.

Type
Boolean true: display all current selections

false: do not display current selections

Example
CurrentSelection1.showCurrentSelection = false;

See Also
Selection Container Properties, for more information on user selection
editing.

VS.8 Range Slider

This section discusses the properties that are unique to the Range Slider.

See Also
Common Properties, for properties shared with other components.
Range Slider, for more information about Range Sliders.

CURRENTVISIBLE

Specifies that the value currently selected on the Range Slider is
numerically displayed at all times. Otherwise, the current value is only
numerically displayed while the user is actively dragging the slider.

Type
Boolean true: display currently selected value

DASHBOARD SCRIPTING

1684 of 2477

false: hide currently selected value

Example
RangeSlider1.currentVisible = false;

See Also
Range Slider Properties, for more information on user selection editing.

LENGTH

Specifies the initial slider range. For a numerical field, this gives the range
as a multiple of the minimum length rangeSize. For example, if length is 3
and rangeSize is 100, the initial slider range is 300. For a date field, the
units are specified by the rangeType setting (year, month, or day). In either
case, the user can subsequently readjust the range as desired.

Type
Number Slider size, as multiple of minimum length

Example
RangeSlider1.length = 3;

See Also
Range Slider Properties, for more information on user selection editing.

RANGESIZE

Specifies the minimum slider range for a numerical field, the smallest
interval that the user is able to select when interactively adjusting the range.

Type
Number Minimum slider range

Example
RangeSlider1.rangeSize = 1000;

See Also
Range Slider Properties, for more information on user selection editing.

MAXRANGESIZE

Specifies the maximum slider range, the largest interval that the user is able
to select when interactively adjusting the range. The units are the same as
those of the length property.

Type
Number Maximum slider range

Example
RangeSlider1.maxRangeSize = 10;

DASHBOARD SCRIPTING

1685 of 2477

See Also
Range Slider Properties, for more information on user selection editing.

MAX

Specifies the maximum slider value. If ‘Single Value’ is selected under the
Data tab of the ‘Range Slider Properties’ dialog box, the max value is a
single number or date (as appropriate for the data represented on the
Slider). If ‘Composite Value’ is selected under the Data tab, the max value
is an array.

Type
Number, Date, or Array

Examples
RangeSlider1.max = 10; // number
RangeSlider1.max = new Date("December 31, 2009"); // date
RangeSlider1.max = ["NJ", "Piscataway"]; // composite array

See Also
Range Slider Properties, for more information on user selection editing.

MIN

Specifies the minimum slider value. If ‘Single Value’ is selected under the
Data tab of the ‘Range Slider Properties’ dialog box, the min value is a
single number or date (as appropriate for the data represented on the
Slider). If ‘Composite Value’ is selected under the Data tab, the min value
is an array.

Type
Number, Date, or Array

Examples
RangeSlider1.min = 10; // number
RangeSlider1.min = new Date("December 31, 2009"); // date
RangeSlider1.min = ["NJ", "Piscataway"]; // composite array

See Also
Range Slider Properties, for more information on user selection editing.

LOGSCALE

Specifies that the slider for a numerical field should use a logarithmic scale.
The base of the log is determined automatically.

Type
Boolean true: Use log scale

false: Use linear scale (default)

Example
RangeSlider1.logScale = true;

DASHBOARD SCRIPTING

1686 of 2477

See Also
Range Slider Properties, for more information on user selection editing.

MAXVISIBLE

Specifies whether the slider’s maximum value is displayed.

Type
Boolean true: Display maximum (default)

false: Hide maximum

Example
RangeSlider1.maxVisible = false;

See Also
Range Slider Properties, for more information on user selection editing.

MINVISIBLE

Specifies whether the slider’s minimum value is displayed.

Type
Boolean true: Display minimum (default)

false: Hide minimum

Example
RangeSlider1.minVisible = false;

See Also
Range Slider Properties, for more information on user selection editing.

RANGETYPE

Specifies the units (‘Year’, ‘Month’, ‘Day’) corresponding to the initial
length of a Date Range Slider.

Type
Integer StyleConstant.YEAR: Units of year

StyleConstant.MONTH: Units of month and year
StyleConstant.DAY: Units of day, month, year
StyleConstant.NUMBER: Numeric field

Example
RangeSlider1.minVisible = false;

See Also
Range Slider Properties, for more information on user selection editing.

TICKVISIBLE

Specifies whether tick marks are displayed on the slider scale.

DASHBOARD SCRIPTING

1687 of 2477

Type
Boolean true: Display tick marks (default)

false: Hide tick marks

Example
RangeSlider1.tickVisible = false;

See Also
Range Slider Properties, for more information on user selection editing.

UPPERINCLUSIVE

Specifies whether the upper limit of the selection is included in the result
set. For example, if the upper limit of the Range Slider selection is 15, a
setting of upperInclusive=true (default) includes the value 15 in the result
set.

A setting of upperInclusive=false in this case excludes the value 15 from
the result set.

Note that the range display on the slider reflects the status of the
upperInclusive property.

Type
Boolean true: Include upper limit in selection
(default)

false: Exclude upper limit from selection

Example
RangeSlider1.upperInclusive=false;

See Also
Range Slider Properties, for more information on user selection editing.

VS.9 Calendar

This section discusses the properties that are unique to the Calendar
component.

See Also
Common Properties, for properties shared with other components.
Calendar, for more information about Calendars.

DASHBOARD SCRIPTING

1688 of 2477

DAYSELECTION

Specifies that the user can select individual days of the week (when the
Calendar is in ‘Monthly’ view mode). Otherwise, the user must select the
week in its entirety.

Type
Boolean true: enable individual day selection

false: disable day selection (default)

Example
RangeSlider1.daySelection = true;

See Also
Calendar Properties, for more information on user selection editing.

DOUBLECALENDAR

Specifies the calendar view type. The single-panel view shows one month
or one year (depending on yearView setting), while the double-panel view
shows two months or two years (depending on yearView setting).

Type
Boolean true: double-panel calendar

false: one-panel calendar

Example
Calendar1.doubleCalendar = true;

See Also
Calendar Properties, for more information on user selection editing.

DROPDOWN

Specifies a collapsible style for the calendar.

Type
Boolean true: collapse calendar when not in use

false: do not collapse calendar (default)

Example
Calendar1.dropdown=true;

See Also
Calendar Properties, for more information on user selection editing.

PERIOD

Specifies whether the two panels of a Calendar in doubleCalendar mode
represent a period comparison or a simple date range.

DASHBOARD SCRIPTING

1689 of 2477

Type
Boolean true: display date comparison

false: disable date range (default)

Example
Calendar1.period = true;

See Also
Calendar Properties, for more information on user selection editing.

YEARVIEW

Specifies whether the Calendar should be displayed in “year view” or
“month view”. Year view displays one or two years (depending on
doubleCalendar setting) and allows selections at the month level. Month
view displays one or two months (depending on doubleCalendar setting)
and allows selections at the week or day level (depending on daySelection
setting).

Type
Boolean true: display year view

false: disable month view (default)

Example
Calendar1.yearView=true;

See Also
Calendar Properties, for more information on user selection editing.

SINGLESELECTION

Prevents the user from selecting multiple date units on the Calendar. (This property is
not supported for Viewsheets displayed using HTML, such as those on iPad.).

Type
Boolean true: enable single selection

false: disable single selection (default)

Example
Calendar1.singleSelection=true;

See Also
Calendar Properties, for more information on user selection editing.

VS.10 Text
Note: Script placed on a Text element does not re-execute when the
user makes Viewsheet selections. To re-execute the script, place
the script in the onLoad Handler.

This section discusses the properties that are unique to the Text component.

DASHBOARD SCRIPTING

1690 of 2477

See Also
Common Properties, for properties shared with other components.
Text, for more information about the Text component.

HYPERLINK

Specifies a hyperlink to a report, Viewsheet, or URL.

Type
String, or inetsoft.report.Hyperlink

Example
Text1.hyperlink = "Tutorial/Interactive";

See Also
Text Properties, for general information about the Text component.
Hyperlinks, in Dashboard Design, for basic information on hyperlinks.

SHADOW

Adds a drop shadow to the component. (Drop shadow for a Text component is not
preserved on export.).

Type
Boolean true: add drop shadow

false: no drop shadow

Example
Text1.shadow = true;

See Also
Text Properties, for general information about the Text component.

TEXT

Specifies the text contents of the Text component.

Type
String

Example
Text1.text = "Hello World";

See Also
Text Properties, for general information about the Text component.

VALUE

Specifies the contents displayed by the Text component in cases when the
component is bound to a data field (i.e., displaying an aggregate). If the

DASHBOARD SCRIPTING

1691 of 2477

Text component is not bound to a data field, the value property is
undefined.

Type
Number

Example
if (Text1.value > 10000) {
Text1.value = 'Maximum exceeded';

}

See Also
Text Properties, for general information about the Text component.

VS.11 Image

This section discusses the properties that are unique to the Image
component.

See Also
Common Properties, for properties shared with other components.
Image, for more information about the Image component.

HYPERLINK

Specifies a hyperlink to a report, Viewsheet, or URL.

Type
String, or inetsoft.report.Hyperlink

Example
Image1.hyperlink = "Tutorial/Interactive";

See Also
Image Properties, for general information about the Image component.
Hyperlinks, in Dashboard Design, for basic information on hyperlinks.

IMAGE

Specifies an image file either by an uploaded image name (e.g.,
'image1.gif') or a resource path on the server (e.g., '/library/

image1.gif'), or a URL (e.g., “http://www.google.com/images/logos/
ps_logo2.png”). See Image Properties for information on uploading
images.

Type
String name of image (e.g., '/myImage.jpg')

Example
Image1.image = '/library/image1.gif';

DASHBOARD SCRIPTING

1692 of 2477

See Also
Image Properties, for more information on images.

MAINTAINASPECTRATIO

When scaleImage is enabled, maintainAspectRatio specifies that the
overall proportions of the image are maintained during scaling. When
disabled, the image will scale to the dimensions of the component
boundary using the 9-cell method (see scale9).

Type
Boolean true: keep proportions constant

false: allow image fill component boundary

Example
Image1.maintainAspectRatio = false;

See Also
Scaling an Image, for more information on aspect ratio.
Image Properties, for more information on images.

SCALE9

When scaleImage is enabled and maintainAspectRatio is disabled, scale9
specifies the number of pixels on each image boundary that should be left
unscaled, in the order [top left bottom right]. This permits you to scale
only the interior of an image, leaving edge treatments unmodified.

Type
Array Pixels: [top left bottom right]

Example
Image1.scaleImage = true;
Image1.maintainAspectRatio = false;
Image1.scale9 = [3,2,4,4];

See Also
Image Properties, for more information on images.
Scaling an Image, for more information on 9-cell scaling.

SCALEIMAGE

Specifies that the image should be scaled to the Image component
dimensions. Scaling can be set to either preserve the image proportions
(maintainAspectRatio, default) or to resize just a selected portion of the
image (scale9).

Type
Boolean true: scale image to container

false: keep original image size

DASHBOARD SCRIPTING

1693 of 2477

Example
Image1.scaleImage = true;

Note that the scaleImage and tile properties are mutually exclusive.

See Also
Image Properties, for more information on images.

SHADOW

Adds a drop shadow to the component.

Type
Boolean true: add drop shadow

false: no drop shadow

Example
Image1.shadow = true;

See Also
Image Properties, for more information on images.

TILE

Specifies that the image should be repeated (tiled) vertically and
horizontally to fill the component boundaries.

Type
Boolean true: tile the image

false: do not tile

Example
Image1.tile = true;

Note that the tile and scaleImage properties are mutually exclusive.

See Also
Image Properties, for more information on images.

VS.12 Gauge, Thermometer, Sliding Scale, Cylinder

This section discusses the properties that are unique to the following output
components: Gauge, Thermometer, Sliding Scale, Cylinder.

See Also
Common Properties, for properties shared with other components.
Thermometer/Cylinder/Sliding Scale/Gauge, for more information about
Output components.

HYPERLINK

Specifies a hyperlink to a report, Viewsheet, or URL.

DASHBOARD SCRIPTING

1694 of 2477

Type
String, or inetsoft.report.Hyperlink

Example
Gauge1.hyperlink = "Tutorial/Interactive";

See Also
Output Component Properties, for general information about output
components.
Hyperlinks, in Dashboard Design, for basic information on hyperlinks.

LABELVISIBLE

Specifies whether the Gauge displays a digital representation of the current
reading. (This applies only to Gauge faces that support a digital display.)

Type
Boolean true: display digital measure (default)

false: hide digital display

Example
Gauge1.labelVisible = false;

See Also
Output Component Properties, for more information on Gauges.

MAJORINC

Note: Increments that are too large or too small may result in
undesirable Gauge appearance.

Specifies the interval between display of labels on the Gauge. For example,
a value of 15 indicates that the gauge labels should be placed at positions of
0, 15, 30, 45, etc. The majorInc value should be larger than the minorInc
value

Type
Number Spacing between Gauge labels

Example
Gauge1.majorInc = 1000;

See Also
Output Component Properties, for more information on Gauges.

MAX

The value of the largest label displayed on the Gauge face.

Type
Number Value of highest gauge label

DASHBOARD SCRIPTING

1695 of 2477

Example
Gauge1.max = 16000;

See Also
Output Component Properties, for more information on Gauges.

MIN

The value of the smallest label displayed on the Gauge face.

Type
Number Value of lowest gauge label

Example
Gauge1.min = -15;

See Also
Output Component Properties, for more information on Gauges.

MINORINC

Note: Increments that are too large or too small may result in
undesirable Gauge appearance.

Specifies the interval between minor ticks on the Gauge. For example, a
value of 15 indicates that tick marks should be placed at positions of 0, 15,
30, 45, etc. The minorInc value should be smaller than the majorInc value.

Type
Number Spacing between minor tick marks

Example
Gauge1.minorInc = 100;

See Also
Output Component Properties, for more information on Gauges.

RANGECOLORS

Specifies an array of one to three colors to be used for the Gauge ranges
(color zones). The positions of the colors on the Gauge are determined by
the ranges array. Colors can be specified by any of the methods shown for
the background property.

Type
Array of colors See background for color syntax

Example
Gauge1.rangeColors = ['green','yellow','red'];
Gauge1.ranges = [5,10,15];

DASHBOARD SCRIPTING

1696 of 2477

See Also
Output Component Properties, for more information on Gauges.

RANGEGRADIENT

Specifies smooth blending for range color boundaries. If disabled, the color
boundaries are sharp and well-defined.

Type
Boolean true: blend colors at boundaries (default)

false: do not blend colors

Example
Gauge1.rangeColors = ['green','yellow','red'];
Gauge1.ranges = [5,10,15]
Gauge1.rangeGradient = false;

See Also
Output Component Properties, for more information on Gauges.

RANGES

Specifies an array of one to three values defining the upper boundaries of
the Gauge ranges (color zones). The colors corresponding to these
boundaries are determined by the rangeColors array. To use the max Gauge
value as the boundary for a range, simply omit the boundary value for the
desired range.

Type
Array Upper range boundaries

Example
// Omit 'red' boundary value to automatically use Gauge max
Gauge1.rangeColors = ['green','yellow','red'];
Gauge1.ranges = [5,10];

See Also
Output Component Properties, for more information on Gauges.

SHADOW

Adds a drop shadow to the component.

Type
Boolean true: add drop shadow

false: no drop shadow

Example
Gauge1.shadow = true;

See Also
Output Component Properties, for more information on Gauges.

DASHBOARD SCRIPTING

1697 of 2477

VALUE

If the output component is bound to a data field (i.e., displaying an
aggregate), value returns the value displayed by the component. If the
output component is not bound to a data field, the value property specifies
the value to display.

Type
Number

Example
if(Gauge1.value > 100) {
alert('Excessive value detected.')

}

See Also
Text Properties, for general information about the Text component.

VS.13 Slider

This section discusses the properties that are unique to the Slider
component.

See Also
Common Properties, for properties shared with other components.
Slider and Spinner, for more information about Sliders.

CURRENTVISIBLE

Specifies that the value currently selected on the Slider is numerically
displayed at all times. Otherwise, the current value is numerically displayed
only while the user is actively dragging the Slider.

Type
Boolean true: display currently selected value

false: hide currently selected value

Example
Slider1.currentVisible = false;

See Also
Slider and Spinner Properties, for more information on Slider settings.

INCREMENT

Specifies the interval between displayed labels on the Slider. For example,
a value of 15 indicates that the Slider labels should be placed at positions of
0, 15, 30, 45, etc.

Type
Number Spacing between Slider labels

DASHBOARD SCRIPTING

1698 of 2477

Example
Slider1.increment = 15;

See Also
Slider and Spinner Properties, for more information on Slider settings.

LABELVISIBLE

Specifies whether the labels on the Slider scale are displayed.

Type
Boolean true: display scale labels

false: hide scale labels

Example
Slider1.labelVisible = false;

See Also
Slider and Spinner Properties, for more information on Slider settings.

MAX

The value of the largest label displayed on the Slider scale.

Type
Number Value of highest scale label

Example
Slider1.max = 250;

See Also
Slider and Spinner Properties, for more information on Slider settings.

MAXVISIBLE

Specifies whether the Slider’s maximum value is displayed.

Type
Boolean true: Display maximum (default)

false: Hide maximum

Example
Slider1.maxVisible = false;

See Also
Slider and Spinner Properties, for more information on Slider settings.

MIN

The value of the smallest label displayed on the Slider scale.

DASHBOARD SCRIPTING

1699 of 2477

Type
Number Value of lowest scale label

Example
Slider1.min = -50;

See Also
Slider and Spinner Properties, for more information on Slider settings.

MINVISIBLE

Specifies whether the Slider’s minimum value is displayed.

Type
Boolean true: Display minimum (default)

false: Hide minimum

Example
Slider1.minVisible = false;

See Also
Slider and Spinner Properties, for more information on Slider settings.

TICKVISIBLE

Specifies whether tick marks are displayed on the Slider scale.

Type
Boolean true: Display tick marks (default)

false: Hide tick marks

Example
Slider1.tickVisible = false;

See Also
Slider and Spinner Properties, for more information on Slider settings.

VS.14 Spinner

This section discusses the properties that are unique to the Spinner
component.

See Also
Common Properties, for properties shared with other components.
Slider and Spinner, for more information about Sliders.

INCREMENT

Specifies the interval between the values when a user increments or
decrements the Spinner. For example, a value of 15 indicates the Spinner
should traverse values of 0, 15, 30, 45, etc. (assuming that min=0).

DASHBOARD SCRIPTING

1700 of 2477

Type
Number Spinner increment

Example
Spinner1.increment = 20;

See Also
Slider and Spinner Properties, for more information on Slider settings.

MAX

The largest value that the Spinner can represent. The user will not be able to
use the Spinner to enter a larger value.

Type
Number Value of highest Spinner input

Example
Spinner1.max = 250;

See Also
Slider and Spinner Properties, for more information on Slider settings.

MIN

The smallest value that the Spinner can represent. The user will not be able
to use the Spinner to enter a smaller value.

Type
Number Value of lowest Spinner input

Example
Spinner1.min = -50;

See Also
Slider and Spinner Properties, for more information on Slider settings.

VS.15 Check Box, Radio Button, Combo Box

This section discusses the properties that are unique to the Check Box,
Radio Button, and ComboBox components.

See Also
Common Properties, for properties shared with other components.
Radio Button, Check Box, Combo Box, in Dashboard Design, for more
information about the ComboBox component.

LABLES

Specifies the labels (as an array) displayed in a Check Box, Radio Button,
or ComboBox component. This property can be used only within

DASHBOARD SCRIPTING

1701 of 2477

component-level script (see Adding Component Script), and the values
property must specify an array of the same length.

Type
Array

Example
ComboBox1.labels = ['Region','State','City'];
ComboBox1.values = [1,2,3];

See Also
Common Properties, for properties shared with other components.
selectedObject and selectedLabel, to access the current user selection.
Radio Button, Check Box, Combo Box, in Dashboard Design, for more
information about Input components.

ROWCOUNT

Specifies the number of items displayed when a ComboBox is expanded.

Type
Number

Example
ComboBox1.rowCount = 10

See Also
Common Properties, for properties shared with other components.
Radio Button, Check Box, Combo Box, in Dashboard Design, for more
information about Input components.

VALUES

Specifies the values (as an array) for a Check Box, Radio Button, or
ComboBox component. This property can be used only within component-
level script (see Adding Component Script), and the lables property must
specify an array of the same length.

Type
Array

Example
ComboBox1.labels = ['Region','State','City'];
ComboBox1.values = [1,2,3];

See Also
Common Properties, for properties shared with other components.
selectedObject and selectedLabel, to access the current user selection.
Radio Button, Check Box, Combo Box, in Dashboard Design, for more
information about Input components.

DASHBOARD SCRIPTING

1702 of 2477

VS.16 TextInput

This section discusses the properties that are unique to the TextInput
component.

See Also
Common Properties, for properties shared with other components.
TextInput Properties, in Dashboard Design, for more information about the
TextInput component.

VALUE

Specifies the contents displayed by the TextInput component.

Type
String or Number

Example
if (TextInput1.value > 10000) {
TextInput1.value = 'Maximum exceeded';

}

See Also
Common Properties, for properties shared with other components.
TextInput Properties, for general information about the TextInput
component.

VS.17 Submit Button

The Submit Button has only the Common Properties.

See Also
Common Properties, for properties shared with other components.
Submit Button Properties, in Dashboard Design, for more information
about the Submit Button component.

VS.18 Line

This section discusses the properties that are unique to the Line component.

See Also
Common Properties, for properties shared with other components.
Creating a Shape, for more information about Line.

BEGINARROWSTYLE

Specifies the style of arrow to place at the beginning of the line.

Type
Integer 0: No arrow

StyleConstant.ARROW_LINE_1: Solid arrow
StyleConstant.ARROW_LINE_2: Stick arrow
StyleConstant.ARROW_LINE_3: Outline arrow

DASHBOARD SCRIPTING

1703 of 2477

Example
Line1.beginArrowStyle = StyleConstant.ARROW_LINE_3;

See Also
Shape Component Properties: Shape Tab, for more information on Line
settings.

ENDARROWSTYLE

Specifies the style of arrow to place at the end of the line.

Type
Integer 0: No arrow

StyleConstant.ARROW_LINE_1: Solid arrow
StyleConstant.ARROW_LINE_2: Stick arrow
StyleConstant.ARROW_LINE_3: Outline arrow

Example
Line1.endArrowStyle = StyleConstant.ARROW_LINE_3;

See Also
Shape Component Properties: Shape Tab, for more information on Line
settings.

LINESTYLE

Specifies the style of the line.

Type
Integer one of the available Line Styles

Example
Line1.lineStyle = StyleConstant.THIN_LINE;

See Also
Shape Component Properties: Shape Tab, for more information on Line
settings.

SHADOW

Adds a drop shadow to the component.

Type
Boolean true: add drop shadow

false: no drop shadow

Example
Line1.shadow = true;

See Also
Shape Component Properties: Shape Tab, for more information on Line
settings.

DASHBOARD SCRIPTING

1704 of 2477

VS.19 Rectangle

This section discusses the properties that are unique to the Rectangle
component.

See Also
Common Properties, for properties shared with other components.
Creating a Shape, for more information about Line.

LINESTYLE

Specifies the style of the line.

Type
Integer one of the available Line Styles

Example
Rectangle1.lineStyle = StyleConstant.THIN_LINE;

See Also
Shape Component Properties: Shape Tab, for more information on
Rectangle settings.

ROUNDCORNER

Specifies the radius of corner curvature in pixels.

Type
Integer corner curvature (pixels)

Example
Rectangle1.roundCorner = 30;

See Also
Shape Component Properties: Shape Tab, for more information on
Rectangle settings.

SHADOW

Adds a drop shadow to the component.

Type
Boolean true: add drop shadow

false: no drop shadow

Example
Rectangle1.shadow = true;

See Also
Shape Component Properties: Shape Tab, for more information on
Rectangle settings.

DASHBOARD SCRIPTING

1705 of 2477

VS.20 Oval

This section discusses the properties that are unique to the Oval
component.

See Also
Common Properties, for properties shared with other components.
Creating a Shape, for more information about Line.

LINESTYLE

Specifies the style of the line.

Type
Integer one of the available Line Styles

Example
Oval1.lineStyle = StyleConstant.THIN_LINE;

See Also
Shape Component Properties: Shape Tab, for more information on Oval
settings.

SHADOW

Adds a drop shadow to the component.

Type
Boolean true: add drop shadow

false: no drop shadow

Example
Oval1.shadow = true;

See Also
Shape Component Properties: Shape Tab, for more information on Oval
settings.

VS.21 Tabbed Interface

This section discusses the properties that are unique to the Tabbed
Interface.

See Also
Common Properties, for properties shared with other components.
Creating a Tabbed Interface, for more information about Tabs.

LABELS

Specifies the text in the tab labels (as an array of Strings).

DASHBOARD SCRIPTING

1706 of 2477

Type
Array of String tab label text

Example
Tab1.labels = ['Summary', 'Details'];
if (RadioButton1.selectedObject == 'City') {
Tab1.labels[1] = 'City Details';

}
else {
Tab1.labels[1] = 'State Details';

};

See Also
Tabbed Interface Properties, for more information on Tabbed Interface.

SELECTEDINDEX

Returns the index of the currently-selected tab. This property is read-only.

Type
Integer index of active tab

Example
if (Tab1.selectedIndex == 0) {
Gauge1.visible = true;

} else {
Gauge1.visible = false;

}

See Also
Tabbed Interface Properties, for more information on Tabbed Interface.

VS.21.1 Viewsheet

This section presents properties for an embedded Viewsheet. These
properties are set in the host Viewsheet.

See Also
Nesting Viewsheets in Dashboard Design for information on embedding
one Viewsheet within another.

ISACTIONVISIBLE(NAME)

Returns the value of the specified property for an embedded Viewsheet.

Parameters
name name of property (String):

'Open': user access to embedded Viewsheet

Example
if (!Viewsheet1.isActionVisible("Open")) {
alert('Embedded Viewsheet cannot be opened.');

}

DASHBOARD SCRIPTING

1707 of 2477

SETACTIONVISIBLE(NAME,BOOLEAN)

Sets the value of the specified property for an embedded Viewsheet. The
‘Open’ property determines whether the embedded Viewsheet provides an
‘Open’ button to the end-user. (By default, this ‘Open’ button is visible
whenever the embedded Viewsheet contains hidden components.)

Parameters
name name of property (String):

'Open'
boolean false: hide the 'Open' button

true: show the 'Open' button

Example
Viewsheet1.setActionVisible("Open",false);

See Also
Nesting Viewsheets in Dashboard Design for information on embedding
one Viewsheet within another.

ADMINISTRATION REFERENCE

1708 of 2477

Administration
Reference

Enterprise Manager is a tool for conveniently administering the server
environment. Enterprise Manager allows you to perform the following
tasks, among many others.

• Adjust look-and-feel, tune performance settings, server clustering, etc.

• Manage the repository files and data space.

• Start and stop the Scheduler and administer scheduled tasks.

• Administer archiving, exporting, and printing capabilities.

• Package and deploy the application or groups of assets.

• Monitor the current status of user sessions, reports, and queries.

• Administer security, security integration, users and roles, permissions,
etc.

This Guide describes the Style Intelligence server environment and the
features of the Enterprise Manager.

ADMINISTRATION REFERENCE

1709 of 2477

1 Contents

This Guide contains the following main sections.

• Getting Started with Enterprise Manager

This chapter explains basic configuration settings.

• User Interface Introduction

This chapter provides an overview of the features offered by the
Enterprise Manager user interface.

• Server Environment

This chapter describes the Repository, which has several
implementations: Servlet for web-based object access, as well as
RMI and CORBA for Java-based object access. Coverage includes
the design, structure, and configuration of the server environment.

• Repository

This chapter describes how to use the Enterprise Manager to
administer the report repository, assets, and archive. Coverage also
includes information on the report cache and auditing.

• Security

This chapter covers the security features of the Enterprise Manager,
including configuration of entity permissions.

• Scheduler

This chapter provides information on configuring the Scheduler,
and describes how to create and monitor scheduled tasks.

• Presentation

This chapter provides information on customizing the User Portal.

• Special Deployment Issues

This chapter explains how to use Enterprise Manager to deploy
reports for development and production.

• Troubleshooting

This chapter describes common problems and their solutions.

ADMINISTRATION REFERENCE

1710 of 2477

2 Getting Started with Enterprise Manager

Note: Enterprise Man-
ager does not permit
path names and file
names to contain Chi-
nese or other Unicode
characters.

This chapter explains how to coordinate team development with server
deployment, and how to configure the server environment using the
Enterprise Manager.

2.1 Launching Enterprise Manager
Enterprise Manager is a web-based tool that allows you to administer the
report server. To launch the Enterprise Manager in a Microsoft Windows
environment, follow these steps:

1. In the Windows Start menu, select Style Intelligence > Style Intelli-
gence Server.

This launches the provided Jetty web server on the local machine,
and points the web browser to the Style Intelligence webapp
homepage, default URL http://localhost:8080/sree/.

2. Click the ‘Enterprise Manager’ link. This opens the Enterprise
Manager login screen.

3. Enter your login credentials, and click ‘Login’.

The default login/password is admin/admin. For security reasons,
login information expires after five minutes. If you receive a
‘Login Expired’ warning, simply re-enter your credentials to log in.

ADMINISTRATION REFERENCE

1711 of 2477

If the server is already running, you can access the Enterprise Manager by
entering the following URL in a web browser:

http://{servername}:{port}/sree/EnterpriseManager

In the address, {servername} should be the name or IP address of the
machine running the administration servlet, and {port} should be the
application’s assigned port number (default: 8080). For example:

http://localhost:8080/sree/EnterpriseManager

2.2 Navigating the Enterprise Manager
After you have logged in to Enterprise Manager, use the tabs at the top of
the page to access the various administrative operations.

Figure 1. Enterprise Manager

Under each tab, use the nodes on the left-side navigation tree to set
component properties. Some components have their properties split into
multiple pages, e.g., ‘Options’ and ‘Security’. You can access these pages
by using the tabs at the top of the page.

Before you begin managing resources and configuring components in
Enterprise Manager, verify that you have completed the following steps:

• Set up the repository directory. See the Repository Directory section.

• Set up the servlet repository URL. See the Editing the Servlet and
Server URL and Monitoring Servlet Status sections.

• Specify valid license keys. See the Administering License Keys section.

• Ensure that JDK 1.6 or higher is being used, and that the web browser is
JavaScript-enabled. See the Java and Browser Requirements sections.

ADMINISTRATION REFERENCE

1712 of 2477

2.3 Repository Directory
The repository directory contains all of the configuration files. The two
most important configuration files for operation of the server are the
following:

• sree.properties: Contains configuration information for a particular
repository. File paths specified in sree.properties can be absolute, or
relative to the repository directory. Relative paths can use the SREE
Home environment variable, e.g., $(sree.home)/repository.xml.

• repository.xml: Contains the XML specification for the logical
structure (listing of reports and folders) in the repository.

Other configuration files include the following:

• schedule.xml:Contains the XML specification for configuration of the
Scheduler.

• datasource.xml: Contains the XML specification for configuration of
database connections, data models, and Virtual Private Models (VPMs).

• query.xml: Contains the XML specification for SQL queries associated
with particular data sources.

• sree.log: Contains log events (plain text) for the SREE server.

• schedule.log: Contains log events (plain text) for the Scheduler
application.

When you use Enterprise Manager to change settings, the new settings are
saved to the configuration files in the current repository directory (SREE
Home).

See Also
Scheduler, for information about using the Scheduler application.

2.3.1 Specifying the Repository Directory

The default location for the repository directory is the root of the classpath
(i.e., the WEB-INF/classes directory). To use this location, no further
settings are required.

To specify a different location for the repository directory, set the context
parameter sree.home in the web.xml file of the Style Intelligence webapp.
For example, to use a directory called C:/SRConfigFiles as the repository,
add the following context parameter:

<context-param>
<param-name>sree.home</param-name>
<param-value>C:/SRConfigFiles</param-value>

</context-param>

ADMINISTRATION REFERENCE

1713 of 2477

To use a database to store the repository files, see Data Space

2.3.2 Creating a Clean Repository Directory

When you first install Style Intelligence, the default repository directory is
populated with a number of example data sources, queries, reports, and
other assets which are provided for learning purposes. In most cases, when
you begin to develop your own reports and assets, you will find it helpful to
use a repository that is not cluttered with these sample materials.

It is recommended
that you back up files
before deleting. See
Backing up the Data
Space files.

To create a clean repository directory in the existing SREE Home location
(WEB-INF/classes), remove all of the files currently in the SREE Home
directory, except for the following two essential files:

• dbProp.properties (audit database settings)

• sree.properties (servlet configuration settings)

You may also wish to retain the following files in this directory:

• dashboard-layouts.xml (required for end-users to construct
dashboards)

• adhocWizard.xml (required for end-users to access Ad Hoc Wizards)

To create a clean repository in a different location, see Specifying the
Repository Directory to change the repository location, and add the files
listed above.

2.4 Editing the Servlet and Server URL
There are two types of URLs required by the ‘Server Status’ page in
Enterprise Manager:

• Repository Servlet URL:
For ‘Servlet with embedded report engine’ and ‘Servlet with server
clustering’ options on the ‘Server Configuration’ page.

• Server URL:
For ‘RMI server’ and ‘CORBA server’ options on the ‘Server
Configuration’ page.

ADMINISTRATION REFERENCE

1714 of 2477

Repository Servlet URL sets the base URL for resource lookup in the
repository (User Portal). This URL is used to form requests that are sent to
the server as a result of Portal actions.

The form of the ‘Repository Servlet URL’ is

http://{machine}:{port}/{webapp}/{URLpattern}

For example:

http://localhost:8080/sree/Reports

The cluster.default-
Proxy property speci-
fies a default for use
when the ‘Repository
Servlet URL’ is omit-
ted.

For most application servers, the URL can be relative (e.g., “/sree/
Reports”) or blank, so the servlet builds its own URL. However, some
application servers may not return the correct URL to the servlet. In this
case, the ‘Repository Servlet URL’ property must be used to supply the
correct URL.

Generally, the {URLpattern} should match the pattern specified for the
Repository Servlet in the web.xml file. See Setting the Servlet URL Pattern
for more details.

Server URL refers to the binding name that is used to bind the report
repository object to the RMI registry or the CORBA name service
(depending on whether you are using RMI or CORBA). There are several
formats for the URL, which allows a great deal of flexibility regarding the
naming and binding of the report repository. The format is as follows:

//[server-name]:[port-number]/[binding name]

The server name is required. The port number is optional. If the port
number is not specified, the default is 1099 for RMI, and 1050 for
CORBA. The binding name is optional. If not specified, the default for
both RMI and CORBA is RepletRepository.

See Also
Configuring Server Clustering, for information on using a clustered
environment.
Viewing Server Status, for general information about the ‘Status’ page.

2.5 Setting the Servlet URL Pattern
The Repository Servlet processes browser requests that use the URL
pattern specified for the “replets” servlet in the web.xml file for the sree
webapp. The configuration for the default pattern (“/Reports”) is shown
below.

<servlet>
<servlet-name>replets</servlet-name>

ADMINISTRATION REFERENCE

1715 of 2477

<servletclass>inetsoft.sree.web.ServletRepository</
servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports</url-pattern>

</servlet-mapping>

The Administration Servlet processes requests that use the URL pattern
specified for the “manager” servlet in the web.xml file for the sree webapp.
The configuration for the default pattern (“/EnterpriseManager”) is shown
below.

<servlet>
<servlet-name>manager</servlet-name>
<servlet-class>inetsoft.sree.adm.AdmServlet</servlet-

class>
</servlet>

<servlet-mapping>
<servlet-name>manager</servlet-name>
<url-pattern>/EnterpriseManager</url-pattern>

</servlet-mapping>

2.6 Monitoring Servlet Status
The repository servlet status is displayed on the ‘Server’ > ‘Status’ page
(under the Server tab). The status can be ‘Running’ or ‘Stopped’. See
Viewing Server Status for more details.

See Also
Monitoring Server Activity, for information on viewing user reporting
activity.

2.7 Servlet Environment and Prerequisites
This section discusses some requirements for server operation.

Administering License Keys

To add or modify a License Key in Enterprise Manager, open the ‘Server’
> ‘Status’ page (under the Server tab).

To add a new license key, follow these steps:

1. Click the ‘Add’ button. This enables the ‘Add Licence Key’ text
box.

2. Enter the new license key in the text box.

3. Click the ‘Apply’ button.

ADMINISTRATION REFERENCE

1716 of 2477

To delete a license key, select the license key in the list, and click ‘Delete’.

Java

Information regarding the application server’s JVM and CLASSPATH can
be found under the ‘Server’ > ‘JVM’ node on the tree (under the Server
tab).

Browser Requirements

The only requirement for the Enterprise Manager and User Portal is a web
browser that supports AJAX/JavaScript/Flash. This includes all modern
browsers.

ADMINISTRATION REFERENCE

1717 of 2477

3 User Interface Introduction

This chapter provides a quick guide to the Enterprise Manager user
interface, and explains where you can find more information about
particular features.

3.1 Server Tab
This section discusses the options and features that you can access and
configure under the Server tab. The following sub-sections correspond to
the nodes on navigation tree under the Server tab.

3.1.1 Server Node

The ‘Server’ node under the Server tab also allows you to configure the
following options:

Status

Edit the Repository Servlet URL and license keys, and refresh the server
configuration settings.

Cluster

Configure server clustering. See Configuring Server Clustering.

Scheduler

Configure the Scheduler application. See the Scheduler chapter.

Security

Configure the security provider. See the Security chapter.

Deployment

Enable live report deployment and WAR file creation. See Special
Deployment Issues.

JVM

Information regarding the application server’s JVM and CLASSPATH.

3.1.2 Configuration Node

The ‘Configuration’ node under Server tab provides access to the
following features:

Server

Configure the Style Intelligence server type.

ADMINISTRATION REFERENCE

1718 of 2477

Datasource/Lib

Specify the location of the data source files and select the connection pool
type to use. See Specifying Data Source Information.

Database

Specify the connection parameters for the database used to store audit
records and cached asset data. See Configuring Database for Audit/Data
Space.

Mail

Control how a report is emailed to users. See Configuring Server Email.

Printer

Specify server printers. See Configuring Server Printing.

Localization

Specify the localization mappings. See Localization/Internationalization.

Performance

Specify performance tuning options. See Tailoring Server Performance.

3.1.3 Repository Node

The ‘Repository’ node under Server tab provides access to the following
features:

Data Space

Configure storage for the data space (the contents of the repository
directory, SREE Home), including assets. See the Data Space section.

Archive

Configure archive options. See the Archive section.

Audit

Configure audit options. See the Audit section.

Cache

Specify the location of cached files, whether cached files are cleaned up at
server startup, and the maximum cache life. See the Cache section.

Disk Quota

Specify a disk quota for users. See the Disk Quota section.

ADMINISTRATION REFERENCE

1719 of 2477

Export Asset

Export selected assets to an archive file (JAR) on disk. See the Exporting
Assets section.

Import Asset

Import selected assets from an archive file (JAR) on disk. See the
Importing Assets section.

Asset Dependency

Schedule the asset dependency audit task. See Auditing Asset
Dependencies.

Materialized View

Optimize data retrieval performance for Viewsheets. See Creating a
Materialized View and Managing Materialized Views.

3.1.4 Presentation Node

Presentation options control how reports are generated and presented to
users.

General

Configure the sort order of the Repository tree, as well as formats for dates,
times, and images.

Portal

Configure the overall appearance of the User Portal. See the Portal section.
The following pages are available:

• Look and Feel: Configure Portal color scheme, logos, and fonts.

• Integration: Configure tools and navigation tabs shown in the Portal.

• Welcome Page: Specify an alternative Welcome page for the Portal.

Report

Configure specific Portal customization options. The following pages are
available:

• Viewer Options: Specify options such as custom error page, report
session timeout, and toolbar location. See the Viewer Options section.

• Toolbar Options: Configure visibility and ordering of toolbar buttons
on generated reports. See the Report Toolbar Options section.

• Custom Icons: Specify custom icons for toolbar buttons and repository
tree. See the Custom Icons section.

ADMINISTRATION REFERENCE

1720 of 2477

• Export Menu Options: Control availability of export formats. See the
Report Export Menu Options section.

• Windows and Frames: Configure Repository tree behavior for
embedded applications. See the Windows and Frames section.

Viewsheet

Configure Viewsheet options. The following page is available:

• Toolbar Options: Configure visibility and ordering of toolbar buttons
on Viewsheets. See the Viewsheet Toolbar Options section.

• Export Menu Options: Control availability of export formats. See the
Report Export Menu Options section.

Dashboard

Configure the display of dashboards in the User Portal. See Dashboards for
more details. The following pages are available:

• Dashboard Settings: Enable dashboards and set tab position. See
Enabling Dashboards for more information.

• Dashboard Configuration: Create and edit global dashboards and
layouts. See Creating a Dashboard for more information.

• Dashboard Manager: Assign global dashboards to various roles and
groups. See Managing Dashboards for more information.

PDF

Configure settings related to generation of archived and exported reports in
PDF format. The following pages are available:

• PDF Generation: Configure PDF document generation options. See
the PDF Generation section.

• Font Mapping: Configure mappings for CJK characters. See the CJK
Fonts section.

Ad Hoc

Configure settings related to the Ad Hoc Wizard and Ad Hoc editing. The
following pages are available:

• Ad Hoc Wizard: Edit and create Ad Hoc wizards from prototype
reports. See the Ad Hoc Wizard section.

• Ad Hoc Settings: Configure Ad Hoc properties such as auto-size and
image directory. See the Ad Hoc Settings section.

ADMINISTRATION REFERENCE

1721 of 2477

3.1.5 Log Node

Configure server and Scheduler message logging. See Configuring
Logging. The following pages are available:

Log Configuration

Configure server and Scheduler message logging, including level of detail
and maximum log size.

Server

Track and troubleshoot requests from Style Intelligence server execution.

Scheduler

Track and troubleshoot tasks from Style Intelligence Scheduler execution.

3.1.6 Monitoring Node

The ‘Monitoring’ node under the Server tab allows you to configure the
following options. See Monitoring Server Activity for complete
information.

The ‘Monitoring Level’ menu on the ‘Settings’ page determines which of
the other pages are available. A setting of at least ‘Low’ is required.

Settings

Configure the granularity at which server activity is monitored. See
Configuring Monitoring Resolution.

Reports

View and manage executing, queued, and completed reports. See the
Reports section.

Viewsheets

View and manage executing and open Viewsheets. See the Viewsheets
section.

Queries

View and manage executing queries. See the Queries section.

Cache

View report and data cache usage. See the Cache section.

Requests

Requires ‘Monitoring
Level’ set to ‘High’
on the ‘Settings’ page.

View server requests by component: Report, Viewsheet, Visual Composer,
Ad Hoc. See the Requests section.

ADMINISTRATION REFERENCE

1722 of 2477

Users

Requires ‘Monitoring
Level’ set to ‘High’
on the ‘Settings’ page.

View and manage current user logins. See the Users section.

Exceptions

Requires ‘Monitoring
Level’ set to ‘High’
on the ‘Settings’ page.

View user and system errors. See the Exceptions section.

Summary

View a variety of summary statistics related to memory, disk, CPU usage,
top reports, and top users. See the Summary section.

3.2 Report Tab
The Report tab allows you to manage the Repository by adding, editing or
deleting folders, reports, prototypes, and Viewsheets. You can also set the
Repository permission levels by using the Security tab.

This section describes the nodes under the Report tab’s navigation tree.

Repository

Add and manage reports, Viewsheets, and Worksheets in the Repository.
See Configuring Reports.

Prototype

Add and manage prototype reports in the Repository. See the Prototype
Reports section.

Trashcan

Contains folders and reports deleted from the archive. See Administering
Archived Reports.

User

Manage user reports in the repository. See Managing User Reports.

3.3 Users Tab
The Users tab allows you to manage user, role, and group functions.
(Security must be enabled.) This section describes the nodes under the
Users tab’s navigation tree.

Users

Manage the users and groups in the system. See Users, Roles, and Groups.

Roles

Manage the system roles. See Users, Roles, and Groups.

ADMINISTRATION REFERENCE

1723 of 2477

See Also
Specifying a Security Provider, for information about setting a security
provider.

3.4 Objects Tab
Note: Report permis-
sions are managed
under the Report Tab.

The Objects tab allows you to manage permissions for Style Intelligence
server components and resources. (Security must be enabled.) This section
describes the nodes under the Objects tab navigation tree. See Component/
Object Permissions for instructions on how to set permissions.

Data Source

Manage data source, data source folder, data model, query, and connection
permissions.

Global Worksheet

Manage Data Worksheet permissions.

Library

Manage permission for reusable components stored in the library
(stylereport.srl): Beans, Meta-Templates, Parameter Sheets, Scripts, and
Table Styles.

Action

Manage permissions for the following features:

• Ad Hoc Wizard: Permission to access the available Ad Hoc wizards.
See Ad Hoc Wizard for more information about Ad Hoc wizards.

• Bookmark: Permission to create new bookmarks in a Viewsheet.

ADMINISTRATION REFERENCE

1724 of 2477

• Edit Dashboard: Permission to edit and view dashboards displayed
under the Dashboard tab.

• Enterprise Manager: Permissions for accessing Enterprise Manager.
(This is generally intended for use in a multi-tenant environment; see
Design for Multi-Tenant Environment in Integration for more details.)
The following permissions can be set:

 – Audit: Provides access to the Audit tab in Enterprise Manager. (See Audit Tab
for more information.) The user can access only audit records for the same
user group.

 – Dataspace: Provides access to the DataSpace tab in Enterprise Manager. (See
Data Space Tab for more information.)

 – Objects: Provides access to the Objects tab in Enterprise Manager. (See
Objects Tab for more information.) The user can access only data sources,
queries, and Worksheets for which they have permission.

 – Report: Provides access to the Report tab in Enterprise Manager. (See Report
Tab for more information.) The user can access only reports and Viewsheets
for which they have permission.

 – Schedule: Provides access to the Schedule tab in Enterprise Manager. (See
Schedule Tab for more information.) The user can access only scheduled tasks
for the same user group.

 – Server: Provides access to the Server tab in Enterprise Manager. (See Server
Tab for more information.)

 – Users: Provides access to the Users tab in Enterprise Manager. (See Users Tab
for more information.) The user can access only other users in the same user
group.

• Export Options: Permission to access report export options

• My Reports: Permission to access ‘My Reports’ repository folder

• Physical Table: Permission to access physical database tables within
Data Worksheets and Viewsheets

• Portal Tabs: Permission to access the Portal tabs: Dashboard, Report,
Design, Schedule, and any custom tabs. See Integration for information
on adding custom tabs.

• Report Design: Permissions pertaining to report design:

 – Ad Hoc: Permission to access Ad Hoc report design tools in the Portal
 – Import and Export: Permission to import and export assets from Style Studio

when using the ‘Server’ repository option. See Configuring a Repository,
Deploying a Report or Asset to a Remote Repository, and Importing Assets from a
JAR File, in Getting Started, for more information.

 – Style Studio – Local: Permission to use ‘Local’ execution in Style Studio when
using the ‘Server’ repository option. See Configuring a Repository for more
information.

 – Style Studio – Remote: Permission to use ‘Remote’ execution in Style Studio
when using the ‘Server’ repository option. See Configuring a Repository for
more information.

• Report Toolbar: Permission for report toolbar buttons

• Schedule Options: Permission for scheduled task actions

• Viewsheet Toolbar: Permission for Viewsheet toolbar buttons

ADMINISTRATION REFERENCE

1725 of 2477

• Visual Composer – Viewsheet: Permission for Viewsheet design

• Visual Composer – Worksheet: Permission for Data Worksheet design

See Also
Component/Object Permissions, for additional information.
Specifying a Security Provider, for information about setting a security
provider.

3.5 Schedule Tab
The Schedule tab allows you to monitor and manage Scheduler tasks. See
the Scheduler section for more information. This section describes the
nodes under the Schedule tab’s navigation tree.

Scheduled Tasks

Monitor and manage scheduled tasks. See Monitoring and Managing
Scheduler Tasks.

Cycles

Manage Scheduler cycles. See the Scheduler Cycle section.

3.6 Data Space Tab
The Data Space tab allows you to manage all files and folders in the data
space (i.e., the contents of the repository directory, SREE Home). See the
Data Space section for more information. The navigation tree under the
Data Space tab displays the folders and file in the data space.

Folder

Select a folder to manage the folder properties. See Managing Folders.

File

Select a file to manage the file properties. See Managing Files.

3.7 Audit Tab
If auditing is enabled, all object and data source access is logged into the
audit database. The Audit tab allows you to view the audit records. Refer
to the Audit section for more information. The tree under the Audit tab
contains links to a series of audit reports:

 – Dependent Assets: Report of assets that depend on a selected asset
 – Identity Information: Report of modifications to user identity information
 – Inactive Resource: Report of resources not used over a selected period
 – Inactive Users: Report of users who have not logged in over a selected period
 – Logon Errors: Report of login errors over a selected period
 – Logon History: Report of session logins and logouts over a selected period
 – Modification History: Report of assets modified over a selected period
 – Query Execution: Report of queries executed over a selected period
 – Report Execution: Report of reports executed over a selected period

ADMINISTRATION REFERENCE

1726 of 2477

 – Required Assets: Report of assets that are required by a selected asset
 – Response Time: Report of report generation times
 – User Profile: Report of users defined in system. (User creation dates are not

available for users added prior to enabling auditing.)
 – User Session: Report of user session times

The reports return usage and modification information for both Enterprise
Manager and the User Portal.

See Also
Configuring Database for Audit/Data Space, to set up a database for
auditing.

ADMINISTRATION REFERENCE

1727 of 2477

4 Server Environment

The server environment can be configured using the options available on
the tree under the Server tab. These options configure server type and data
sources, localization, and performance tuning.

4.1 Viewing Server Status
Use the ‘Server’ > ‘Status’ page under the Server tab to start or stop an
RMI or CORBA server, or to “restart” the server (i.e., reload the server
properties file).

Figure 2. Enterprise Manager Server Status Page

Note: The 'Restart' button does not restart the server. It merely
refreshes the server properties by reloading the sree.properties
file. In most cases these properties are refreshed automatically
when sree.properties is modified, so there is no need to use the
'Restart' button.

The ‘Repository Servlet URL’ property specifies the URL used to access
the repository servlet. See Editing the Servlet and Server URL for more
information.

The broadcast feature
requires a security
provider be specified.

To send an alert to all currently logged-in users, click the ‘Broadcast’
button. This opens the ‘Broadcast’ dialog box, where you can enter a
message to be relayed to users.

ADMINISTRATION REFERENCE

1728 of 2477

When you have entered the desired message, click ‘OK’. The message will
be displayed to active users within about one minute after sending. This can
be used to warn of system-wide scheduled maintenance.

4.2 Changing the Server Type
The replet repository is the main server component, responsible for
handling all report requests from a client. Select the ‘Configuration’ >
‘Server’ node under the Server tab to choose one of the repository server
options:

• Servlet with Embedded Report Engine: Servlet implementation of the
repository for web-based reporting.

• Servlet with server clustering: Servlet implementation of the repository
for a load-balanced clustering. See Configuring Server Clustering.

• RMI Server: RMI server object implementation of the repository.

• CORBA Server: CORBA server object implementation of the
repository.

Figure 3. Choose Server Type

4.2.1 Servlet with Embedded Report Engine

The ‘Servlet with embedded report engine’ option is the most commonly
used configuration of the reporting engine. In this configuration, clients
access the report repository via a servlet which has the reporting engine
embedded within it. With this configuration, users can view all the reports
and Viewsheets within a web browser (User Portal).

4.2.2 RMI Server

To run a custom client viewer on a different machine than the server, you
need to set up a server object to handle the viewer requests. The default
server object implementation of the repository is based on the standard
Java RMI distributed object protocol.

To start an RMI repository on the server, follow these steps:

ADMINISTRATION REFERENCE

1729 of 2477

1. Start the Java Remote Object Registry process (rmiregistry). On a
Windows platform, start the registry in a separate window as fol-
lows:

start rmiregistry

On a Unix platform, start the Registry as a background process:

nohup rmiregistry &

If the default port of 1099 is in use, you can pass a different port as
a parameter.

2. Once a registry process is running, bind the RMI repository object
to the registry: On the ‘Server Configuration’ page, change the
server type to ‘RMI Server’, and click ‘Apply’.

3. On the ‘Server Status’ page, click the ‘Start’ button to start the RMI
server.

You can also start the RMI server manually. With the rmiregistry
running, type the following at the command line:

java –Dsree.home=/usr/mysreehomedir inetsoft.sree.rmi.
RemoteRepository –url //your-host-name/RepletRepository

You can stop and restart the RMI server using the ‘Stop’ and ‘Restart’
buttons on the ‘Server Status’ page.

4.2.3 CORBA Server

The method for starting the CORBA repository component is dependent on
the CORBA environment. For details on how to set up a CORBA server
object and configure the activation of the object, please refer to the
documentation of your CORBA platform. Typical steps for starting the
CORBA environments are as follows.

Note: For CORBA operation, remove the replet.repository.url
property from the sree.properties file.

1. Start the ORB process.

2. Start the naming services.

3. Start the Style Intelligence server.

You can stop and restart the CORBA server using the ‘Stop’ and ‘Restart’
buttons on the ‘Server Status’ page.

ADMINISTRATION REFERENCE

1730 of 2477

Example: Java
IDL

This example uses the default Java implementation of CORBA (Java IDL)
as the sample CORBA environment. Most CORBA implementations are
similar.

Note: For CORBA operation, remove the replet.repository.url
property from the sree.properties file.

To start the CORBA repository, follow these steps:

1. Start the CORBA naming service:

start tnameserv –ORBInitialPort 1050

2. On the ‘Server Configuration’ page, change the server type to
‘CORBA Server’, and click ‘Apply’.

3. On the ‘Server Status’ page, click the ‘Start’ button to start the
CORBA server.

You can also manually start a CORBA server by typing the
following at the command line:

start –Dsree.home=. java –Dsree.home=. inetsoft.sree.corba.
RepositoryServer –ORBInitialPort 1050

The naming service port number can be any available port on the
server. This creates a persistent CORBA object, one that is not
activated or deactivated during the life-cycle of the CORBA
environment. Because of the overhead required to start and
initialize a server, we strongly recommend running the CORBA
object persistently to avoid performance problems. (The repository
object does not have to be persistent.)

4. Connect a viewer to the CORBA server by specifying the name
service host and port:

java –Dsree.home=. inetsoft.sree.viewer.Viewer –corba –
ORBInitialHost host-name –ORBInitialPort 1050

¢

4.3 Configuring Server Clustering
Server clustering is the standard method for improving the scalability of a
server system. Clustering uses multiple server instances to process client
report requests, thus enhancing performance over the single-server
configuration.

Server clustering is transparent to the end-user. The end-user interacts with
a single server (the same as in a non-clustered environment), and a load

ADMINISTRATION REFERENCE

1731 of 2477

balancing application automatically redirects the server requests to
available cluster nodes to achieve maximum throughput.

4.3.1 Server Clustering Procedure

Clustering support in Enterprise Manager is based on server-side load
distribution. A Proxy/Load-Balancer application serves as the sole
interface to all clients, and manages the communication to individual server
instances (cluster nodes).

The recommended cluster configuration is shown below. Note that the
Load Balancer can be installed on the same physical machine as Node 1 if
desired.

Figure 4. A Load Balanced Cluster

To set up a clustered environment, follow the steps below:

1. Install Node 1, containing the Repository servlet and Administra-
tion servlet. See Installing Node 1 for Repository and Admin Serv-
lets.

2. Install Node 2 to Node N. See Installing Additional Nodes for
Repository Servlets.

3. Install the Load Balancer. See Installing the Load Balancer Proxy.

4. Define the cluster nodes in Enterprise Manager. See Defining the
Cluster Nodes.

All cluster nodes share a common repository directory (SREE Home)
which is specified as a context parameter in the deployment descriptor file

SREE Home

Node 1
Repository Servlet

Administration Servlet

Load Balancer
Cluster Servlet

Node 2
Repository Servlet

Node N
Repository Servlet

Node 3
Repository Servlet

. . .

webapp container webapp container webapp container

webapp container webapp container

physical machine

ADMINISTRATION REFERENCE

1732 of 2477

(web.xml). To specify server properties for specific machines in the cluster,
see Assigning Machine-Specific Properties.

See Also
Distributed Materialization in a Clustered Environment, for details on
Viewsheet materialization.

4.3.2 Installing Node 1 for Repository and Admin Servlets

Node 1 will run both a Repository servlet and an Administration servlet.
Follow the steps below to configure this node:

1. Install the Style Intelligence server onto Node 1.

Use the appropriate installation procedure for your platform. For
example, on a Windows computer, run the installer executable, and
select the ‘Standard Server’ option on the ‘Installation Type’
screen.

This will install the entire server framework, including the
Repository and Administration servlets.

2. Launch the Style Intelligence Server on Node 1, and log into
Enterprise Manager.

3. Under the Server tab, open the ‘Server’ > ‘Security’ page.
Configure your security provider as desired. (See Specifying a
Security Provider for full details.)

4. Open the ‘Server’ > ‘Status’ page. If required, change the
‘Repository Servlet URL’ to “/sree/Reports” and click ‘Apply’.

ADMINISTRATION REFERENCE

1733 of 2477

(Ignore any warning messages. See Viewing Server Status for full
details.)

See Configuring the
Scheduler for full
details about the
Scheduler applica-
tion. Only one Sched-
uler application may
run within a cluster.

5. Open the ‘Server’ > ‘Scheduler’ > ‘General’ page. Deselect the
‘Auto Start’ and ‘Auto Stop’ options. (See Using a Clustered
Environment to manually run the Scheduler on a cluster node.)

6. Open the ‘Configuration’ > ‘Server’ page. Select ‘Servlet with
server clustering’.

The ‘Server’ > ‘Clus-
ter’ page is only dis-
played if the selected
server type supports
clustering. See Chang-
ing the Server Type.

7. Open the ‘Server’ > ‘Cluster’ page. Make the following settings:

a. Set the ‘Node Servlet URI’ to “/sree/Reports”.

b. Set the ‘Enterprise Manager URL’ to the URL of Enterprise
Manager on Node 1 (i.e., the URL you are currently using to
access Enterprise Manager.) For example:

http://node1:8080/sree/EnterpriseManager

c. Select the ‘Cluster Load Balance Algorithm’. Round Robin
assigns requests to the registered nodes in sequence, while
Load-based assigns requests based on node’s load.

d. Under the ‘Cluster Servers’ panel, click the ‘Add’ button.

ADMINISTRATION REFERENCE

1734 of 2477

You will add the other
cluster nodes here at a
later stage.

e. Add Node 1 as a cluster node: Enter the host name and port (e.g,
“node1:8080”), and a valid license key.

f. Select ‘Use this server for scheduled reports’ if you want
scheduled reports to be processed this machine (in addition to
on-demand reports).

8. Click the ‘Apply’ button.

9. Log out of Enterprise Manager.

10. Stop the Node 1 application server. Open the sree.properties file
(located in the WEB-INF/classes directory), and make the
following changes:

a. For the properties scheduler.classpath and log.output.file,
replace any occurrence of the variable $(sree.home) with a
hard-coded absolute path to the WEB-INF/classes directory
(SREE Home). For example:

C\:/Program Files/Style Intelligence/server/webapps/
sree/WEB-INF/classes/

b. Add the following new property:

replet.cache.directory={Path to SREE Home}/temp

For example:

replet.cache.directory=C\:/Program Files/Style
Intelligence/server/webapps/sree/WEB-INF/classes/temp

c. Save your changes to the sree.properties file.

ADMINISTRATION REFERENCE

1735 of 2477

You may use the
existing location on
Node 1 if this will be
accessible to all nodes
(via sharing).

11. Copy the entire WEB-INF/classes directory to a shared location
that will be accessible to all cluster nodes.

Alternatively, you can also store configuration files and report
templates in a database that can be accessed by cluster nodes. See
Configuring the Data Space.

12. Add the following entry to the web.xml file of the SREE webapp (in
sree/WEB-INF) on Node 1.

<context-param>
<param-name>sree.home</param-name>
<param-value>{Path to shared location}</param-value>

</context-param>

For {Path to shared location} above, substitute the full path of
the WEB-INF/classes directory that you copied in the previous
step.

Any changes that you make in the Enterprise Manager (e.g., enabling/
disabling security) after the cluster is set up and started will only be
reflected when the nodes are restarted.

4.3.3 Installing Additional Nodes for Repository Servlets

Node 2 through Node N should each run only the Repository servlet
(inetsoft.sree.web.ServletRepository). For each Cluster Node machine,
configure the node by following the steps below:

1. Run the Style Intelligence installer on the machine that you want to
host the Cluster Node.

Each cluster node must have an unique license key.

2. On the ‘License Key’ page, enter the appropriate key.

3. On the ‘Installation Type’ page, select the ‘Cluster Node Server’
option.

ADMINISTRATION REFERENCE

1736 of 2477

4. On the ‘Select Destination Directory’ screen of the installer, set the
‘Destination directory’ to the identical installation path used on
Node 1 (e.g., “C:/Program Files/Style Intelligence...”).

Use this same installation location for every node. This allows the
hard-coded paths in the sree.properties file to be resolved to the
local machine, thus preventing an inefficient transfer of log and
cache files across the network.

5. On the ‘Server Configuration’ page, set the ‘Shared registry
directory’ to the SREE Home directory that you shared during the
installation of Node 1. (See Installing Node 1 for Repository and
Admin Servlets.) Set the ‘Address’ and ‘Port number’ as
appropriate for the machine onto which you are installing the
Cluster Node.

ADMINISTRATION REFERENCE

1737 of 2477

6. Follow the rest of the on-screen installation instructions to
complete the installation of the Cluster Node.

4.3.4 Installing the Load Balancer Proxy
This proxy can also be
used for single sign-
on purposes. See Con-
figuring Single Sign-
On (SSO) in Integra-
tion for more details.

The Proxy or Load-Balancer is a lightweight application (servlet) that
forwards requests from clients to server nodes. The proxy obtains its
settings from a copy of the sree.properties file. This copy can be shared
with the cluster nodes (as described below) or stored independently (for
example, in case the cluster is running outside the company firewall and
cannot access a shared drive).

The Load Balancer node uses a different servlet than the other nodes. The
Cluster servlet (inetsoft.sree.web.ClusterServlet) runs within the
SREE webapp. It is recommended that the Cluster servlet be the only
servlet deployed on its web server so that the process is lightweight and not
prone to failures from other applications in the same web server.

Follow the steps below to configure the Load Balancer:

1. Run the Style Intelligence installer on the machine that you want to
host the Load Balancer.

2. On the ‘License Key’ page, enter the appropriate key.

3. On the ‘Installation Type’ page, select the ‘Cluster Proxy Server’
option.

4. On the ‘Server Configuration’ page, make the following settings:

ADMINISTRATION REFERENCE

1738 of 2477

a. Set the ‘Shared registry directory’ to the SREE Home directory
that you shared during the installation of Node 1. (See Installing
Node 1 for Repository and Admin Servlets.)

b. Set the ‘Address’ and ‘Port number’ as appropriate for the
machine onto which you are installing the Cluster Proxy.

c. Select the cluster load balance ‘Algorithm’. Round Robin
assigns requests to the registered nodes in sequence, while
Load-based assigns requests based on node’s load. You can
change this later from the ‘Server’ > ‘Cluster’ page of
Enterprise Manager.

5. Follow the rest of the on-screen installation instructions to
complete the installation of the Cluster Proxy.

4.3.5 Defining the Cluster Nodes

Once you have completed the operations in Installing Node 1 for
Repository and Admin Servlets, Installing Additional Nodes for Repository
Servlets, and Installing the Load Balancer Proxy, you must start up the
cluster and define each cluster node on the ‘Clustering’ page of Enterprise
Manager. Follow the steps below.

1. Start the server on Node 1.

2. Start the servers on Node 2 through Node N.

3. Start the Load Balancer (Proxy) node.

4. Launch Enterprise Manager on Node 1.

Each cluster node must have an unique license key.

ADMINISTRATION REFERENCE

1739 of 2477

5. Open Enterprise Manager on Node 1. On the ‘Server’ > ‘Cluster’
page, add Node 2 through Node N to the ‘Cluster Servers’ panel if
not already listed.

6. If you want a node to be used by the Scheduler to process
scheduled reports, select ‘Use this server for scheduled reports’.
See Using a Clustered Environment for instructions on running the
Scheduler.

To manage a node, select it from the list of existing cluster nodes. You can
prevent new sessions from being sent to the node by pausing it (click the
‘Pause’/‘Resume’ button). Then you can wait until the existing users
logoff. This is useful if a node requires maintenance, and you do not wish
existing users to be negatively impacted. You can remove the node by
clicking the ‘Delete’ button. To reload the sree.properties file for all
nodes, click the ‘Restart All’ button.

4.3.6 Assigning Machine-Specific Properties

The nodes in a cluster all share a common server repository (see Server
Clustering Procedure), and hence all share a common properties file,
sree.properties, located in the common repository.

To individually assign server properties to specific machines in a cluster,
follow the steps below:

1. Add the property sree.local.properties to the common
sree.properties file. This property should specify the location of a
local properties file on each machine. For example:

sree.local.properties = C:\myLocal.properties

2. Create a corresponding properties file with the specified name and
location on each machine, e.g., C:\myLocal.properties.

When each server in the cluster loads its properties, it will first load
properties from the common sree.properties file, and then load any
additional properties from its own local properties file, e.g.,
C:\myLocal.properties.

4.3.7 Using a Clustered Environment

To access the User Portal when using a clustered environment, point the
browser to the Load Balancer URL or to any cluster node URL (e.g.,
http://node1:8080/sree/Reports). The Portal’s appearance and function
is the same as in a single-server environment, but all user requests are
transparently redirected to the Load Balancer.

ADMINISTRATION REFERENCE

1740 of 2477

Load Balancer

The Load Balancer distributes the requests to the different cluster nodes
based on the balancing algorithm. It also continuously monitors the status
of the cluster nodes at a regular interval. If a node becomes unresponsive,
the Load Balancer detects the failure, removes the node from the node list,
and stops forwarding requests to it. On recovery, the node is detected once
again, and assigned new requests. The Load Balancer keeps track of
sessions so that once a request is forwarded to a node, all subsequent
requests from the same client will be forwarded to the same node. To view
the activity of various nodes in the cluster, see Monitoring Server Activity.

Running the Scheduler on a Cluster Node

The Scheduler application can run on only one node within the cluster at a
given time. To run the Scheduler on a cluster node, follow the steps below:

1. Open Enterprise Manager on Node 1, and open the ‘Server’ >
‘Cluster’ page.

2. In the ‘Cluster Servers’ table, select the node on which you want
the Scheduler application to run.

3. Press the ‘Start Scheduler’ button to start the Scheduler on the
selected node.

To stop the Scheduler on a given node, select the node in the table and press
the ‘Stop Scheduler’ button.

4.4 Specifying Data Source Information
The ‘Configuration’ > ‘Datasource/Lib’ page allows you to set the location
of the following repository files:

ADMINISTRATION REFERENCE

1741 of 2477

• datasource.xml: Database connection information, data model
definitions, and VPM configuration.

• query.xml: Query definitions.

• stylereport.srl: Reusable report components, such as parameter
sheets, table styles, script functions, beans, etc.

The ‘Query variable names are unique’ option allows you to specify
whether a variable name that is used in multiple queries or binding
conditions should be treated as unique or non-unique. If unique, the report
or Viewsheet accepts a single value to be re-used across all variable
occurrences (and the user is prompted only once for this value). Otherwise,
the report or Viewsheet accepts a distinct value for each occurrence (and
the user is prompted once for each occurrence).

If you make a change to your database schema, select the corresponding
data source in the ‘Metadata’ menu, and click ‘Refresh Metadata’. (Select
‘All’ to refresh metadata for all listed data sources.) This will allow schema
changes to be reflected in the listing under the ‘TABLE’ node of the Visual
Composer Asset panel.

Connection Pool

The query engine uses connection pooling for enhanced database
performance. The ‘Connection Pool’ option allows you to specify the type
of connection pool to use for managing connections to JDBC data
sources. Use the ‘Application Server’ connection pool if your webapp
server is running other applications (in addition to the sree webapp) that
also require database connections. Otherwise, use the ‘Report Server’
connection pool to allow Style Intelligence to manage the connections.

Supported applica-
tion servers are Tom-
cat, WebSphere, and
WebLogic.

If you select the ‘Application Server’ connection pool, each data source
name that you define in Style Studio must match a corresponding JNDI
lookup name in your application server.

Note also that the ‘Application Server’ connection pool option will not
apply to the Scheduler, as the Scheduler runs in an independent JVM and

ADMINISTRATION REFERENCE

1742 of 2477

cannot access the application server connection pool. (See the Scheduler
section for more details.)

The default size of the pool is five connections. For enterprise level
deployment, the number of connections can be increased to a more
appropriate size by setting the property jdbc.connection.pool.size in
sree.properties.

jdbc.connection.pool.size=50

If you select a ‘User Defined’ connection pool, you must enter the fully
qualified class name of the inetsoft.uql.jdbc.ConnectionPool

implementation in the provided text field, and the class must be accessible
from the web application’s classpath. See Pooling Database Connections
Programmatically in Integration for more information.

See Also
Pooling Database Connections Programmatically, in Integration, for finer
grained control over pooling.
Creating a New JDBC Data Source, in Data Modeling, to configure and
name a data source.

4.5 Configuring Database for Audit/Data Space
Note: You must con-
figure a database
before enabling audit-
ing.

You can use a database for persistent storage of the following items:

• Data space (report templates, datasource.xml, query.xml, etc.)

• Asset repository (asset.dat)

• Audit Records

To configure storage for these elements, use the ‘Repository’ > ‘Data
Space’ and ‘Repository’ > ‘Audit’ pages. (See the Data Space and Audit
sections for more information.)

To configure a database for persistent storage, open the ‘Configuration’ >
‘Database’ page (under the Server tab), and specify the database type,
connection information, and the transaction isolation level.

ADMINISTRATION REFERENCE

1743 of 2477

Figure 5. Database Setup Page

Note: Cache and temporary files cannot be stored in a database.

The ‘Default DB’ field indicates the name of the database schema to be
used. If left unspecified, the default database schema for the particular user
profile will be used. When you have entered the required information, test
the connection by clicking on the ‘Test Connection’ button.

The following databases are supported for data space and auditing
purposes: Oracle, DB2, SQL Server, PostgreSQL, MySQL, and Derby. For
your convenience, a sample Derby database is included with the default
installation. To run this database, select ‘Audit Database’ from the Style
Intelligence program group in the Windows ‘Start’ menu.

4.6 Configuring Server Email
The ‘Mail Configuration’ page specifies how the report server mails
reports to users, and how end users can contact an administrator in case an
error is generated during report generation.

The ‘Mail Host’ option is required, and must specify one or more valid
SMTP servers, separated by commas. If the servers require secure protocol,
enable the “Secure SMTP” option. The ‘From Email Address’ specifies the
fixed email address from which all emails are sent.

Additional properties are described below.

ADMINISTRATION REFERENCE

1744 of 2477

Figure 6. Mail Configuration Page

Mail Session JNDI URL

If the optional ‘Mail Session JNDI URL’ property is set, the report engine
will first try to obtain a session from the JNDI directory when sending
emails. If this fails, it will create a new session based on the setting
provided for the ‘Mail Host’ property.

Note that the Scheduler cannot access this ‘Mail Session JNDI URL’
property, since the Scheduler runs as a separate application independent of
the application server.

System Admin Email Address

The ‘System Admin Email Address’ specifies an email address to be
displayed on report error pages. A user can click the displayed email
address to send a message to the administrator, alerting them to the
problem.

Emails Subject Format

The ‘Delivery Emails Subject Format’ and ‘Notification Emails Subject
Format’ use java.text.MessageFormat syntax with two parameters, the
first (index 0) being the report alias, and the second (index 1) being the date
and time of report generation. For example, a report with alias ‘testReport’
and the following Subject Format specification,

Report named {0}, generated at {1,time} on {1,date}

would produce an email subject line such as the following:

Report named testReport, generated at 10:34:54 AM on Nov 5,
2007

where the time and date shown would be the actual time and date of report
generation. See Filename Parameters for some examples of date

http://download.oracle.com/javase/7/docs/api/index.html?java/text/MessageFormat.html

ADMINISTRATION REFERENCE

1745 of 2477

formatting using java.text.SimpleDateFormat. If no alias is specified for
the report in the ‘Alias’ field of the Report tab, then parameter “{0}”
defaults to the report name.

The global ‘Delivery Emails Subject Format’ setting is overridden by the
‘Subject’ specified (if any) under the Schedule > Action tab of the
Enterprise Manager and the User Portal.

Maximum Attachment Size

The ‘Maximum Attachment Size [kB]’ sets an upper limit for the size of an
exported report file sent as a single attachment. If exceeded, the file is split
into multiple files (binary split) and delivered via multiple emails. It is the
responsibility of the recipient to concatenate all the fragments into one file.
This concatenation can be done via command-line tools such as “type”
(Windows) or “cat” (Linux). For example:

type file1.pdf file2.pdf > file3.pdf

4.7 Configuring Server Printing
The ‘Server Printers’ page allows you to configure server-side printers for
use by the Scheduler and User Portal. Printers must be accessible to the
server, and the printer name should be entered in exactly the same way as it
appears in the system (case-sensitive). All detected printers are
automatically listed in the ‘Add Printer’ menu.

Figure 7. Server Printers Page

See Also
Scheduler Actions, for information on scheduled printing.
Server Printing, in End User, for information on using server printing.

4.8 Localization/Internationalization
Localization is a feature that allows Style Intelligence to adapt to different
language environments, and is implemented for three contexts:

• User Portal interface

• Reports

• Viewsheets

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

ADMINISTRATION REFERENCE

1746 of 2477

When users log into the User Portal or administrators log into Enterprise
Manager they can specify a locale (language-country combination), based
on which Style Intelligence dynamically modifies the interface (Portal tabs,
Enterprise Manager tabs, repository tree, Ad Hoc design interface) as well
as report and Viewsheet elements (text elements, chart axis titles, table
header columns, etc.) and data model/query names displayed in the Ad Hoc
report tool.

Two independent mapping files are required for localization:

• The “srinter” mapping file controls localization for interface text in the
User Portal and Enterprise Manager (tabs, tree nodes, Ad Hoc controls,
etc.).

• The “SreeBundle” mapping file controls localization for report and
Viewsheet text (text in tables, charts, etc.) and data model/query names.

The following sections discuss the contents of these two files, and explain
how to register a new locale.

4.8.1 Registering Locales

To implement localization at the Portal-level, report-level, or Viewsheet
level, first register the desired locales in the ‘Localization’ page of the
Enterprise Manager:

1. Under the Server tab, select ‘Configuration’ > ‘Localization’.

2. Click ‘Add’ to open the ‘Add Locale’ panel.

3. Enter the ISO-standard two-letter codes for the desired language
and country.

These codes should match the codes used in the “srinter” and
“SreeBundle” mapping file names. For example, for a French
Canadian locale, enter “fr” for ‘Language’ and “CA” for ‘Country’.
(See Localizing the User Portal Interface and Localizing Reports,
Viewsheets, Data Models/Queries for more details.)

4. Click ‘Apply’ to register the locale.

The locale entries you add in the table of the ‘Localization’ page will be
displayed in the ‘Locale’ menu of the User Portal and Enterprise Manager
login screens. Create a separate pair of mapping files for each locale you
wish to register. See Localizing the User Portal Interface and Localizing
Reports, Viewsheets, Data Models/Queries for information about how to
create the mapping files.

ADMINISTRATION REFERENCE

1747 of 2477

Figure 8. Localization Page

After you create the mapping files, you can press the ‘Reload’ button
below the table to reload the mappings. However, to ensure that the
localizations apply correctly to all assets (including assets that were
assigned Text IDs prior to creation of the mapping files), it is recommended
to restart the server.

4.8.2 Localizing the User Portal Interface

Localizable aspects of the User Portal and Enterprise Manager interfaces
include the text in tab elements and nodes of the repository tree, dialog box
labels, as well as text elements in the Ad Hoc tool. The mapping
(translation) file that specifies the text substitutions for these interface
elements should be given the following name,

srinter_{language}_{country}.properties

where {language} and {country} are the ISO-standard two-letter codes for
language and country. For example, the localization mapping file for
Canadian French speakers should be called ‘srinter_fr_CA.properties’.
All interface localization (“srinter”) files should be placed in the
following directory:

sree\WEB-INF\classes\inetsoft\util

If the appropriate mapping file for the user’s locale selection cannot be
found at runtime, the default ‘srinter.properties’ file is used and no
localization is performed.

Each line of text in the “srinter” mapping file should have the following
simple format:

{interface_element}={translated_interface_element}

The {interface_element} text in most cases is just the text of the actual
interface element, for example, ‘Design’ to represent the text displayed in
the Design tab. Spaces in the {interface_element} text must be escaped
by a backslash, for example, ‘My\ Reports’.

ADMINISTRATION REFERENCE

1748 of 2477

The {translated_interface_element} represents the localized text that
you want to appear in the interface element. Spaces in the
{translated_interface_element} do not need to be escaped.

Example:
Interface
Localization

For example, the French Canadian localization file mentioned above might
contain the following lines of text, where, for purposes of illustration,
“Report_fr” is used as the French translation of “Report,” and so on.

Report = Report_fr
Dashboard = Dashboard_fr
Design = Design_fr
Schedule = Schedule_fr

My\ Reports = My Reports_fr
Tutorial = Tutorial_fr

Apply = Apply_fr
OK = OK_fr
Close = Close_fr

Figure 9. Localized User Portal Interface

Note: The report
shown in the example
is developed in Local-
izing Reports, Views-
heets, Data Models/
Queries.

The above mapping renames the main tabs, the Repository tree folders, and
the Ad Hoc buttons with the specified (mock) French text. Consult the
default ‘srinter.properties’ file (available upon request) for a complete
listing of modifiable interface elements.

¢

4.8.3 Localizing Reports, Viewsheets, Data Models/Queries

You can use a simple text mapping to localize most text in a report or
Viewsheet, as well as data source names, data model names (entity/
attribute), and query (column) names.

ADMINISTRATION REFERENCE

1749 of 2477

The first step in setting up localization for a particular report or Viewsheet
is to assign Text IDs to each text element to be mapped. You can do this in
the ‘Localization’ dialog box of Style Studio (for reports) and the ‘Options’
dialog box of Visual Composer (for Viewsheets). See Localization/
Internationalization in Report Design and Localization/
Internationalization in Dashboard Design for more information.

After you have assigned Text IDs to report and Viewsheet elements, you
can create the mapping file (“resource bundle”) that specifies the text
substitutions for these elements. The mapping file should be given the
following name,

SreeBundle_{language}_{country}.properties

where {language} and {country} are the ISO-standard two-letter codes for
language and country. For example, the localization mapping file for
Canadian French speakers should be called
‘SreeBundle_fr_CA.properties’. All report/Viewsheet localization
(“SreeBundle”) files must be available on the classpath, preferably in the
sree/WEB-INF/classes directory. If the appropriate mapping file for the
user’s locale selection cannot be found at runtime, no localization is
performed.

Similar to the “srinter” files for Portal interface localization (see
Localizing the User Portal Interface), each line of text in the report/
Viewsheet localization file has the following format:

{element_id}={translated_element_id}

The {element_id} is the Text ID assigned to the report or Viewsheet
element in Style Studio or Visual Composer. Spaces in the {element_id}
must be escaped by a backslash, for example, ‘Head\ 1’.

The {translated_element_id} is the translated text that you want to appear
in the corresponding report or Viewsheet element. Spaces in the
{translated_element_id} do not need to be escaped.

For example, the French Canadian localization file mentioned above,
‘SreeBundle_fr_CA.properties’, might contain the following lines of text,
where, for purposes of illustration, “State_fr” is used as the French
translation of “State,” and so on:

title=Localized Title_fr
state\ header=State_fr
sales\ header=Sales_fr

ADMINISTRATION REFERENCE

1750 of 2477

The above mapping translates the text corresponding to three Text IDs,
(which might be assigned in a report or Viewsheet) into the specified mock
French text:

The following example illustrates the use of a similar mapping that also
translates data source names.

Example: Report
Element
Localization

In this example, you will configure a report for French Canadian
localization.You will also localize a data source name and a query name.

1. Open Style Studio, and create a blank tabular report.

2. Add a text element with the text ‘Report Title’. Format the text as
desired.

3. Add a table, and bind it to the ‘Orders’ > ‘sales by state’ query.

4. Add a bar chart, and bind it also to the ‘Orders’ > ‘sales by state’
query. In the Chart tab of the ‘Data Binding’ dialog box, add
‘State’ on the X-axis and ‘Sales’ on the Y-axis.

You now have a report with three elements, and will assign Text IDs to
several of the text components provided by those elements.

5. Open the ‘Localization’ dialog box from the Style Studio ‘Report’
menu.

6. Expand the component tree to view the text components which can
be assigned Text IDs.

TEXT ID TRANSLATED TEXT

title Localized Title_fr

state header State_fr

sales header Sales_fr

ADMINISTRATION REFERENCE

1751 of 2477

7. Enter the following IDs in the ‘Text ID’ field for the corresponding
components.

text1: report title
State: state header
Sales: sales header
X Axis Title: X
Y Axis Title: Y

Leave the Text ID box empty for the remaining elements. (See the
Localization/Internationalization section of the Report Design for
more information about adding Text IDs.)

8. Save the report, and deploy it to the Repository under the name
‘Localization_Exp’.

You now have a deployed report with elements configured for localization.
To enable localization to take place when the report is viewed, you must
create the resource bundle that translates the assigned Text IDs into the
desired text for the French Canadian locale.

9. Create a text file called ‘SreeBundle_fr_CA.properties’, and insert
the following text:

report\ title=Localized Report_fr
state\ header=State_fr
sales\ header=Sales_fr
X=Sales By State_fr
Y=Revenue_fr

Orders=Orders_fr
All\ Sales=All Sales_fr

Note that the final two lines of the mapping file specify a
translation for the ‘Orders’ data source and the ‘All Sales’ query.

10. Save the file in the sree/WEB-INF/classes directory.

ADMINISTRATION REFERENCE

1752 of 2477

With the report elements assigned text IDs, and the resource bundle file
appropriately named and placed on the classpath, you now need to register
the locale in the Enterprise Manager.

See Localization/Inter-
nationalization for
details on registering
locales.

11. In the ‘Localization’ page of the Enterprise Manager, add a new
locale.

a. Specify ‘fr’ and ‘CA’ for the language and country codes,
respectively.

b. Set the ‘Locale Label’ to “French (Canada)”.

When the user logs in and specified ‘French (Canada)’ in the ‘Locale’ login
menu, they will view the ‘Localization_Exp’ report with the desired
localization applied. The report title, table column headings, and chart
labels have all been translated as specified.

Figure 10. Report with localization applied.

Because the mapping file also specifies translations for a data source and
query, if the user opens the ‘Data Source’ dialog box from within the Ad
Hoc tool, they will see the specified translations for the ‘Orders’ datasource
and the ‘All Sales’ query.

ADMINISTRATION REFERENCE

1753 of 2477

¢

4.8.4 Defining Custom Number Format Multipliers

When applying a number format, users can add a suffix “K”, “M”, or “B”
to the pattern string to automatically divide the numerical value by 103, 106,
and 109, respectively.

You can define custom symbols and multipliers by adding the desired
entries to the userformat.xml file in the server repository (WEB-INF/classes
by default). For example, the following userformat.xml file defines three
new multipliers, “halfK”, “halfM”, and “halfB”, that divide the numerical
values by 5x102, 5x105, and 5x108, respectively.

<?xml version="1.0" encoding="utf-8"?>
<userFormat>
<NumberFormat suffix="halfK" multiplier="500"/>
<NumberFormat suffix="halfM" multiplier="500000"/>
<NumberFormat suffix="halfB" multiplier="500000000"/>

</userFormat>

When you restart the server with this userformat.xml file in place, the new
suffixes will be available for use with number format patterns, and will be
displayed among the format presets for reports and Viewsheets:

ADMINISTRATION REFERENCE

1754 of 2477

The default suffixes
can be redefined but
not removed.

To redefine the existing “K”, “M”, or “B” suffixes, simply assign these
suffixes new values in the userformat.xml file.

<NumberFormat suffix="K" multiplier="..."/>
<NumberFormat suffix="M" multiplier="..."/>
<NumberFormat suffix="B" multiplier="..."/>

See Also
Number Format, in Dashboard Design, for information about formatting a
Viewsheet.
Number Formats, in Report Design, for information about formatting a
report.

4.9 Tailoring Server Performance
Server performance options are available on the ‘Configuration’ >
‘Performance’ page under the Server tab. These options primarily control
how data is cached. (See the Cache section for information on setting cache
location and automatic clean-up.)

ADMINISTRATION REFERENCE

1755 of 2477

Figure 11. Performance Options Page

4.9.1 Performance Options and Safeguards

The options on the ‘Performance’ page should be set according to the
server’s memory size and the performance characteristics of the
application.

• Maximum Concurrency: The ‘Maximum Concurrency’ property
specifies the maximum number of sessions allowed at any given time.
Concurrency is the number of simultaneous user sessions that the report
engine will support. A user session is initiated when the user logs in, and
terminates when the user logs out or when all the reports associated with
the user’s session time out.

• Ad Hoc Timeout: The ‘Ad Hoc Timeout’ setting specifies the
maximum amount of time allowed for Ad Hoc report requests. The
timeout setting may not be honored by all databases. The corresponding
sree.properties entry is query.adhoc.timeout. See Ad Hoc Reporting
for more information.

• Ad Hoc Maximum Row Count: The ‘Ad Hoc Maximum Row Count’
setting specifies the maximum number of rows retrieved for Ad Hoc
report requests (preview or final report). The maximum row count
setting may not be honored by all databases. The corresponding
sree.properties entry is query.adhoc.maxrow. See Ad Hoc Reporting
for more information.

ADMINISTRATION REFERENCE

1756 of 2477

• Query Timeout: The ‘Query Timeout’ setting specifies the global
timeout (seconds) for all queries during report/Viewsheet runtime
execution. The timeout setting may not be honored by all databases. The
corresponding sree.properties entry is query.runtime.timeout.

• Query Maximum Row Count: The ‘Query Maximum Row Count’
setting specifies the global maximum size for all queries during report/
Viewsheet runtime execution. The maximum row count setting may not
be honored by all databases. The corresponding sree.properties entry
is query.runtime.maxrow.

• Table Maximum Row Count: The ‘Table Maximum Row Count’
setting specifies the global maximum size for all tables during report/
Viewsheet runtime execution. The corresponding sree.properties
entry is table.output.maxrow. This property controls the maximum size
of the final displayed table, following any grouping and aggregation.

• Report Maximum Page Count: The ‘Report Maximum Page Count’
setting specifies a global maximum on the number of pages for reports
during runtime execution. The corresponding sree.properties entry is
report.output.maxpages. You can override this global setting for a
particular report by setting a ‘Max Number of Pages’ value in the
‘Report Properties’ dialog box of Style Studio. See Report Properties in
Report Design for more information.

• Composer Live Data Timeout: The ‘Composer Live Data Timeout’
setting specifies the maximum amount of time allowed for ‘Live Data’
requests in Visual Composer. The timeout setting may not be honored
by all databases. The corresponding sree.properties entry is
query.preview.timeout. See Showing Live Data in a Table in Data
Mashup for more information.

• Composer Live Data Maximum Row Count: The ‘Composer Live
Data Maximum Row Count’ setting specifies the maximum number of
rows retrieved for ‘Live Data’ requests in Visual Composer. The
maximum row count setting may not be honored by all databases. The
corresponding sree.properties entry is query.preview.maxrow. See
Showing Live Data in a Table in Data Mashup for more information.

• Create MV on demand: Specifies that a new materialized view should
be automatically created on-the-fly for any Viewsheet that does not have
an existing materialized view (either because a materialized view was
specified but never created or because the Viewsheet underwent
modifications that rendered an existing materialized view unusable).
The materialized view will supply data to the Viewsheet both at design
time and at runtime. See Materialized Views for further details.

• Enable MV by default: Specifies that new Viewsheets should utilize a
materialized view by default. (See Materialized Views for information
about materialize views.) This relieves the administrator from creating a

ADMINISTRATION REFERENCE

1757 of 2477

materialized view for each Viewsheet individually. In general, the
‘Create MV on demand’ option should also be set in this case to ensure
that the materialized view is automatically generated.

• Use meta-data for editing if MV is not available: Specifies that when
a materialized view is not available to supply data for a Viewsheet (for
any reason), the design mode of Visual Composer should display meta-
data rather than querying the database for data. This will improve
design-time performance. See Suppressing Query Execution in Design
View in Dashboard Design for more information about meta-data mode.

• Fail if MV is not available at runtime: When a user loads a Viewsheet
in the User Portal, this option generates an error message if the
requested Viewsheet does not possess a corresponding materialized
view or the materialized view fails to generate (due to user cancellation
or for any other reason). To query the database for data in this case
rather than generate an error, disable this option.

• Cache Interval: The ‘Cache Interval’ specifies the elapsed time (ms)
between cache swaps. At the specified interval, the server checks,
swaps, and prunes cached pages according to their age and access time.

• Workset Size: A “workset” is a group of report pages that can be
swapped as a single unit between RAM and disk. A large workset size
provides for more efficient disk swapping. However, a large workset
size may also delay initial report availability because the report engine
assembles the full workset before it begins streaming pages for display.

• Maximum Reports Per Session: The ‘Maximum Reports Per Session’
option specifies how many reports a session can open and keep active. If
a session contains more active reports than the threshold, the older
reports are destroyed to conserve memory.

• Cache Security Provider Data: The ‘Cache Security Provider Data’
option, when set to ‘true’, enables the caching of user, role, and
permission information. This is recommended.

• Security Cache Interval: The ‘Security Cache Interval’ option
specifies the interval (in milliseconds) after which the cache of user,
role, and permission information is automatically cleared.

• Dataset Caching: The ‘Dataset Caching’ option specifies whether
query results are cached and shared across reports and/or Viewsheets. If
the option is disabled, then the query results are only shared within the
same report and/or Viewsheet if multiple elements are bound to the
same query.

• Data Cache Size: The ‘Data Cache Size’ option specifies the number of
datasets that can be cached and reused.

• Data Cache Timeout: The ‘Data cache timeout’ controls the
persistence (ms) of a dataset in the data cache. If the dataset is not used

ADMINISTRATION REFERENCE

1758 of 2477

for the specified time period, it is removed from the cache. The default
timeout is 30 seconds.

• Paging Threshold: The ‘Paging Threshold’ setting controls the
initiation of dataset paging. If a dataset exceeds the threshold, it is paged
to disk in order to conserve memory.

• Page/Data Streaming: The ‘Page/Data Streaming’ option allows
reports to be processed in parallel with data loading. If the ‘Page/Data
Streaming’ option is checked, the engine begins processing the report
when data becomes partially available, resulting in quicker report
display. Users may see a partially completed report marked with a “*” in
the page total, indicating that additional pages are still being generated.

• Minimum Pages: The ‘Minimum Pages’ option specifies the number
of pages to generate before initiating page streaming. If this value is less
than the workset size (see above), streaming will begin only after the
first workset has been fully generated. However, you can enter a value
of “1” to force the first page of the report to display immediately,
regardless of workset size. For small reports that have fewer pages than
the minimum, streaming will be disabled so that end users do not see a
partially generated report.

• Clear Security Cache: The ‘Clear Security Cache’ button clears the
cache of user, role, and permission information. This is useful if security
information has changed and you wish to manually refresh the server
cache. (Note: The cache is automatically refreshed at the interval
specified by the ‘Security Cache Interval’.)

• Clear Cube Cache: The ‘Clear Cube Cache’ button deletes the cached
OLAP cube structure. This is useful in the event that the cache becomes
corrupted, which might occur if the application server fails to terminate
properly. (An error such as “Locking failed due to time out” is a possible
symptom of this.)

See Also
Appendix B.4, Web Properties and Safeguards, for property descriptions.

4.9.2 Limiting Query Size and Execution Time

Several properties are available to control the size of queries returned
during preview and runtime operation. These properties provide important
safeguards that prevent end-users from erroneously requesting very large
amounts of data while designing Worksheets or Ad Hoc reports.

The first group of properties below can be configured from the
‘Performance’ page in Enterprise Manager. See Performance Options and
Safeguards above.

query.runtime.timeout
query.runtime.maxrow

ADMINISTRATION REFERENCE

1759 of 2477

table.output.maxrow
report.output.maxpages
query.preview.maxrow
query.preview.timeout
query.adhoc.maxrow
query.adhoc.timeout
asset.sample.maxrows
query.estimate.enabled
assetData.thread.count

See Appendix B.4, Web Properties and Safeguards, for a description of
each property.

See Also
Performance Options and Safeguards, for Enterprise Manager properties.
Precautions and Safeguards, in Report Design, for report-level safeguards.
Limiting the Number of Rows in a Table, in Data Mashup, for Worksheet-
level safeguards.

4.10 Configuring Logging
Enterprise Manager provides the ability to log messages generated during
server and Scheduler execution. Logged messages are appended to a text
file (default: sree.log for the server, and schedule.log for the Scheduler)
and optionally sent to “stderr”.

4.10.1 Basic Log Configuration

To administer the logging feature, select ‘Log’ > ‘Log Configuration’
under the Server tab. To modify the amount of detail that appears in the log
file, change the ‘Log Detail Level’ value. There are five available detail
levels.

Table 3. Log Detail Levels

It is recommended that you set the detail level to ‘Warning’ or higher.

DETAIL LEVEL DESCRIPTION

Finest Very fine-grained performance information.

Fine Debugging messages.

Info Non-critical information messages.

Warning Non-fatal errors and critical messages.

Severe Fatal errors.

ADMINISTRATION REFERENCE

1760 of 2477

Figure 12. Log File Administration

4.10.2 Viewing the Server Log

You can view the contents of the log file by selecting the ‘Log’ > ‘Server’
node (under the Server tab). This opens the ‘Log View’ page. Select the
‘All’ option to display the entire contents of the log file (maximum 3000
lines by default), or enter the number of lines from the end of the file to
display.

Click ‘Send Log’ to email the log contents to the address specified in the
‘Send Log To’ field of the ‘Log Configuration’ page.

Figure 13. Server Log

See Also
Viewing the Scheduler Log, for information on viewing the Scheduler log
file.

4.10.3 Advanced Log Configuration

Logging in Style Intelligence is implemented by the standard Java Logging
API of the java.util.logging package. Log messages can be customized
and formatted without implementing a custom logging mechanism. You
can selectively set different log levels for different packages, and include
useful context based information within logs.

http://download.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html

ADMINISTRATION REFERENCE

1761 of 2477

Note: If the report server cannot locate the ‘logging.properties’
file, basic logging properties will be used (from sree.properties).

To customize your logs, include a ‘logging.properties’ file for the server
log and a ‘schedule.logging.properties’ file for the scheduler log within
your SREE Home directory.

A sample ‘logging.properties’/‘schedule.logging.properties’ file is
show below:

.level=INFO
handlers=java.util.logging.ConsoleHandler,
inetsoft.util.log.FileHandler
inetsoft.util.log.FileHandler.fileName=${sree.home}/
sree.log
inetsoft.util.log.FileHandler.limit=1048576
inetsoft.util.log.FileHandler.count=2
inetsoft.util.log.FileHandler.formatter=inetsoft.util.log.
PatternFormatter
inetsoft.util.log.FileHandler.formatter.pattern=%l %dd-
%db-%dY %dH:%dM:%dS %u %c %M %m
inetsoft.sree.web.level=FINE
inetsoft.uql.jdbc.level=FINE

• The first property sets the default log level (FINEST, FINE, INFO, WARNING,
or SEVERE).

• The second property sets the different log handlers. You can implement
your own custom handler by implementing the
java.util.logging.Logger interface.

• The ‘fileName’, ‘limit’, ‘count’ and properties specify the log file
name, size limit, and the number of files to archive.

• The formatter.pattern specifies the format of the log message using
the following characters:

%l Log level
%dd,%db,%dY Log Date (Day, Month, Year)
%dH:%dM:%dS Log Time (Hour, Minute, Second)
%u User Name
%c Class Name
%M Class Method
%m Log Message

• The ‘level’ property specifies the log detail lever for a specific package.
This lets you assign finer logging for certain modules, without cluttering
the log with messages from other modules.

4.10.4 Writing Log Messages in Custom Code

Use the java.util.logging.Logger class to write log messages in your
custom implementations, e.g., Custom Security Provider.

Use the getLogger(String name) method to get an instance of the logger,
for example,

http://download.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html
http://download.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html

ADMINISTRATION REFERENCE

1762 of 2477

private static final Logger logger =
Logger.getLog(MyClass.class.getName());

To check if a certain level is loggable, use the inetsoft.util.LogUtil
class, for example,

if(LogUtil.isLoggable(logger, Level.TRACE)) {
logger.log(Level.WARNING, "Task failed", excp);

}
else {

logger.log(Level.WARNING,"Task failed");
}

4.10.5 Implementing a Custom Log Handler
Note: As of version 10.2, Style Intelligence uses standard Java
logging. The ReportLog.Delegate interface has been deprecated, and
should no longer be used.

To implement a custom log handler, use a class that implements the
java.util.logging.Logger interface. Register the class by adding it to the
‘logging.properties’ file under the ‘handlers’ entry. See Writing Log
Messages in Custom Code for more details.

4.11 Configuring User and Developer Help
The ‘Help Configuration’ page under the ‘Configuration’ node allows you
to specify the location of the HTML documentation files. Enter an absolute
path or relative path (relative to server root) to the parent directory of the
“_HTMLDoc.htm” help file.

Users can view end-user documentation by clicking the ‘Help’ link in the
User Portal, or by clicking a ‘Help’ (?) button in any dialog box in Visual
Composer. Administrators can view the developer documentation by
clicking the ‘Help’ link in Enterprise Manager.

4.12 Monitoring Server Activity
The ‘Monitoring’ node under the Server tab allows you to monitor and
manage a variety of aspects of server activity. On these pages, you can
view reports, Viewsheets, and queries that are currently executing on the
server, and can terminate undesired activity. You can also view currently
active users, and terminate any undesired sessions.

http://download.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html

ADMINISTRATION REFERENCE

1763 of 2477

Style Intelligence monitoring features utilize managed bean (MBean)
technology, which allows you to access monitoring information from a
remote computer. See Configuring Remote Monitoring for more
information on accessing the MBean information.

4.12.1 Configuring Monitoring Resolution

The ‘Settings’ page under the ‘Monitoring’ node allows you to make
global adjustments to the resolution of monitoring activity. The following
options are available.

A ‘Monitoring Level’
of at least ‘Low’ is
needed for basic
access

Table 4. Report Execution

4.12.2 Reports

The ‘Reports’ page under the ‘Monitoring’ node provides key information
about reports that are currently executing on the server, reports that are
awaiting execution, and reports that have already been executed.

A pending report is a report that the user has requested, but that has not yet
been assigned an execution thread (due to natural or designed processing
limitations). As soon as the required processing resources become
available, the pending report will be generated and immediately displayed
to the user.

A queued report is a report that the user has requested, but for which they
explicitly selected ‘Add to Queue’ from the report loading screen. The
queued report continues to execute, but is not automatically displayed to
the user.

In a clustered environment, select a machine from ‘Cluster Node’ menu to
view the monitoring statistics for that machine.

Monitoring
Level

Determines the resolution with which server events are
monitored, ‘Low’, ‘Medium’, or ‘High’. Data The level
required for monitoring a given property is noted in the
following sections.

Sample
Period

The duration in seconds over which monitoring metrics (e.g.,
throughput) should be aggregated.

Data Set Size The number of data points that should be displayed on the
charts of the ‘Summary’ page.

Refresh
Interval

The time in seconds between monitoring page updates. A
shorter value will keep the displays more current.

http://download.oracle.com/javase/1.5.0/docs/guide/management/overview.html

ADMINISTRATION REFERENCE

1764 of 2477

The page provides the following information:

Table 5. Report Execution

To terminate a report, click the ‘Select’ box next to the report, and then
click the ‘Remove’ button below the table. The ‘Remove’ button has the
following effect for the different report states:

• For an executing report, ‘Remove’ terminates execution, and removes
any generated pages from cache.

• For a pending report, ‘Remove’ deletes the report from the list of
pending reports, which prevents the report from executing.

• For a queued report, ‘Delete’ deletes the report from the list of queued
reports, which prevents the report from executing.

Replet ID A unique identifier for the report.

Thread The thread within which the report is executing. Click the link
to obtain a stack trace.

Name The name of the report.

User The user who executed the report.

Pages The number or report pages that have been processed.
(Requires ‘Monitoring Level’ set to ‘Medium’ on the
‘Settings’ page.)

Age The time elapsed since report generation began.

ADMINISTRATION REFERENCE

1765 of 2477

• For a completed report that remains active in the cache, ‘Remove’
deletes the cached report pages. Subsequent user requests for this report
instance will result in a “Session timeout” message.

See Also
Performance Options and Safeguards, to limit the number of simultaneous
reports.
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

4.12.3 Viewsheets

The ‘Viewsheets’ page under the ‘Monitoring’ node provides key
information about executing Viewsheets that are currently being processed
by the server, as well as open Viewsheets that are active in memory but are
not currently being processed.

In a clustered environment, select a machine from ‘Cluster Node’ menu to
view the monitoring statistics for that machine.

The page provides the following information:

Table 6. Viewsheet Execution

Viewsheet
ID

A unique identifier for the Viewsheet.

Thread The thread within which the Viewsheet is executing. Click the
link to obtain a stack trace.

Name The name of the Viewsheet.

User The user who opened the Viewsheet.

Age The time elapsed since the Viewsheet was opened.

Accessed The time elapsed since the last Viewsheet operation.

ADMINISTRATION REFERENCE

1766 of 2477

To terminate a Viewsheet, click the ‘Select’ box next to the Viewsheet, and
then click the ‘Remove’ button below the table. The ‘Remove’ button has
the following effect for the different Viewsheet states:

• For an executing Viewsheet, ‘Remove’ terminates execution, and
removes any cached data.

• For an open Viewsheet, ‘Remove’ deletes any cached data.

See Also
Setting Permissions, to control access to Viewsheets.
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

4.12.4 Queries

The ‘Queries’ page under the ‘Monitoring’ node provides key information
about queries currently executing on the server. In a clustered environment,
select a machine from ‘Cluster Node’ menu to view the monitoring
statistics for that machine.

The page provides the following information:

Table 7. Query Execution

Query ID A unique identifier.

Data Objects The number of dataset rows cached in memory or disk.

Thread The thread within which the query is executing. Click the link
to obtain a stack trace.

Name The name of the query, or of the worksheet/data model
executing the query.

Asset The name of the report or Viewsheet from which the query
was executed.

User The user who executed the query.

Rows The number or query rows that have been processed.
(Requires ‘Monitoring Level’ set to ‘Medium’ on the
‘Settings’ page.)

Age The length of time that the query has been executing.

ADMINISTRATION REFERENCE

1767 of 2477

To terminate an executing query, click the corresponding ‘Select’ box to
select the query, and then click the ‘Remove’ button.

See Also
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

4.12.5 Cache

The ‘Cache’ page under the ‘Monitoring’ node provides key information
for both the report cache and the data cache. In a clustered environment,
select a machine from ‘Cluster Node’ menu to view the monitoring
statistics for that machine.

The page provides the following information:

Table 8. Dataset and Report Caching

See Also
Configuring Monitoring Resolution, for information on setting the
monitoring level.
Configuring Remote Monitoring, to accessing data from remote machine.
Performance Options and Safeguards, for information on configuring
caching.

Pages The number of report pages cached in memory or disk.

Data Objects The number of dataset rows cached in memory or disk.

Hits The number of cache hits. A hit occurs when a query is
performed against the cache and a match is found. (Requires
‘Monitoring Level’ set to ‘High’ on the ‘Settings’ page.)

Misses The number of cache misses. A miss occurs when a query is
performed against the cache and no match is found. (Requires
‘Monitoring Level’ set to ‘High’ on the ‘Settings’ page.)

Swapped The number of bytes swapped from disk to memory, or from
memory to disk. (Requires ‘Monitoring Level’ set to
‘Medium’ on the ‘Settings’ page.)

ADMINISTRATION REFERENCE

1768 of 2477

4.12.6 Requests
Requires ‘Monitoring
Level’ set to ‘High’
on the ‘Settings’ page.

The ‘Requests’ page under the ‘Monitoring’ node provides key
information about requests of various kinds that are being sent to the
server: Report, Viewsheet, Visual Composer, Ad Hoc. In a clustered
environment, select a machine from ‘Cluster Node’ menu to view the
monitoring statistics for that machine.

The page provides the following information:

Table 9. Request

See Also
Performance Options and Safeguards, to place limits on server activity.
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

Time The time at which the request was received.

Report The identifier for the report being processed.

Viewsheet The identifier for the Viewsheet being processed.

Asset The identifier for the asset being processed in Visual
Composer.

Type The type of request received.

User The user who submitted the request.

Address The IP address from which the request was received.

ADMINISTRATION REFERENCE

1769 of 2477

4.12.7 Users
Requires ‘Monitoring
Level’ set to ‘High’
on the ‘Settings’ page.

The ‘Users’ page under the ‘Monitoring’ node provides key information
about user logins, and allows you to terminate a given user session. In a
clustered environment, select a machine from ‘Cluster Node’ menu to view
the monitoring statistics for that machine.

The page provides the following information:

Table 10. User

To terminate a user session, click the ‘Select’ box next to the desired user,
and then click the ‘Logout’ button.

See Also
Users, Roles, and Groups, for information on defining users and login
credentials.
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

4.12.8 Exceptions
Requires ‘Monitoring
Level’ set to ‘High’
on the ‘Settings’ page.

The ‘Exceptions’ page under the ‘Monitoring’ node provides key
information about asset exceptions and system exceptions. An asset
exception is one that causes a report or Viewsheet to fail. A system
exception is one that causes a critical system failure, such as out-of-
memory.

Session ID The unique session identifier.

User The user who attempted to log in.

Address The IP address from which the login was attempted.

Age The elapsed time since start of session.

Accessed The elapsed time since the most recent user activity.

Time The time at which the user login was attempted.

ADMINISTRATION REFERENCE

1770 of 2477

In a clustered environment, select a machine from ‘Cluster Node’ menu to
view the monitoring statistics for that machine.

The page provides the following information:

Table 11. Exceptions

See Also
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

4.12.9 Summary

The ‘Summary’ page under the ‘Monitoring’ node provides a set of
monitoring charts that help you track server performance. In a clustered
environment, select a machine from ‘Cluster Node’ menu to view the
monitoring statistics for that machine.

Click on a chart to view the detailed information provided by the
corresponding page under the ‘Monitoring’ node.

Asset The report or Viewsheet that generated the exception.

User The user on whose session the exception occurred.

Time The time at which the exception occurred.

Cause A description of the exception. Click the link to view a stack
trace.

ID The system exception ID.

ADMINISTRATION REFERENCE

1771 of 2477

The following information is available. The ‘Level’ column indicates the
monitoring level required for the feature.

Table 12. Monitoring Summary

SUMMARY NOTES LEVEL

Heap memory usage for all cluster nodes None

CPU usage for all cluster nodes None

Server uptime ‘Low’ or higher.

Scheduler uptime ‘Low’ or higher.

Memory cache
usage

for reports, data ‘Medium’ or higher.

Execution for reports, Viewsheets,
queries

‘Low’ or higher

Disk cache usage for reports, data ‘Medium’ or higher

Requests for reports, Viewsheets,
Visual Composer, Ad Hoc

‘High’

Swapping “written” to disk cache,
and “read” into memory
cache

‘Medium’ or higher

ADMINISTRATION REFERENCE

1772 of 2477

See Also
Configuring Remote Monitoring, to accessing data from remote machine.
Configuring Monitoring Resolution, for information on setting the
monitoring level.

4.12.10 Configuring Remote Monitoring

Because Style Intelligence monitoring features are based on Java’s
managed bean (MBean) technology, you can access monitoring
information from a remote computer. To configure remote access, open the
‘MBean’ page under ‘Server’ node.

This page allows you to configure several methods for accessing the
monitoring data. The following sections provide additional information.

See Also
Monitoring Node, to view monitoring dashboards within Enterprise
Manager.

HTML Adaptor

The HTML adaptor enables you to view the MBean monitoring
information using a web browser on a remote machine. To enable remote
HTML monitoring, follow the steps below:

1. Configure the MBean server:

Top 5 reports by number of pages ‘Low’ or higher;
‘Medium’ to view
‘Pages’ column.

Exceptions five most recent failures ‘High’

Top 5 users by count of active reports
and Viewsheets

‘Low’ or higher

http://download.oracle.com/javase/1.5.0/docs/guide/management/overview.html

ADMINISTRATION REFERENCE

1773 of 2477

a. On the ‘MBean Server’ page in Enterprise Manager, select
‘Enable HTML Adaptor’.

Note: User/password is unique to this module and is not
authenticated by the security provider.

b. Enter a username and password for the connection (default:
admin/admin).

c. Enter an arbitrary port number that is not already in use
(default:8082).

2. On the remote machine, open a browser and enter the URL shown
on the ‘MBean Server’ page: http://{hostname}:port.

3. When prompted, enter the previously specified credentials.

This will provide access to the monitoring properties provided by the
MBean.

HTTP Connector Server

The HTTP adaptor enables you to view the MBean monitoring information
from a remote client that supports the HTTP protocol. To enable remote
HTTP monitoring, configure the MBean server as follows:

ADMINISTRATION REFERENCE

1774 of 2477

1. On the ‘MBean Server’ page in Enterprise Manager, select ‘Enable
HTTP Connector Server’.

Note: User/password is unique to this module and is not
authenticated by the security provider.

2. Enter a username and password for the connection (default: admin/
admin).

3. Enter an arbitrary port number that is not already in use
(default:8081).

RMI Connector Server

The RMI connector server enables you to view the MBean monitoring
information using a Java application on a remote machine. As an
illustration, the instructions below explain how to access the MBean using
JConsole on a remote computer.

For example, to access the MBean using JConsole on a remote machine,
follow these steps:

1. Configure the MBean server:

a. On the ‘MBean Server’ page in Enterprise Manager, select
‘Enable RMI Connector Server’.

Note: User/password is unique to this module and is not
authenticated by the security provider.

b. Enter a username and password for the connection (default:
admin/admin).

c. Enter an arbitrary port number that is not already in use
(default:9898).

2. On the remote machine, start JConsole: Navigate to the
%JAVA_HOME%/bin/jconsole directory, and type “jconsole”. This
opens the JConsole connection dialog box.

3. In the JConsole connection dialog box, select the ‘Remote Process’
option.

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

ADMINISTRATION REFERENCE

1775 of 2477

4. In the large text field, enter the following connection string, where
{hostname} is the server name and {port} is the specified RMI port
(default: 9898).

service:jmx:rmi:///jndi/rmi://{hostname}:{port}/monitor

5. Enter the previously specified credentials for ‘Username’ and
‘Password’.

6. Click ‘Connect’. This opens the JConsole application.

7. Select the MBeans tab, and expand the ‘inetsoft’ node. This
provides access to the Style Intelligence monitoring MBean.

SNMP Adaptor Server

The SNMP (Simple Network Management Protocol) adaptor enables you
to view the MBean monitoring information from a remote client that

ADMINISTRATION REFERENCE

1776 of 2477

supports the SNMP protocol. To enable remote SNMP monitoring,
configure the MBean server as follows:

1. On the ‘MBean Server’ page in Enterprise Manager, select ‘Enable
SNMP Adaptor Server’.

Note: User/password is unique to this module and is not
authenticated by the security provider.

2. Enter a username and password for the connection (default: admin/
admin).

3. Enter an arbitrary port number that is not already in use
(default:8085).

ADMINISTRATION REFERENCE

1777 of 2477

5 Repository

The nodes under the ‘Repository’ node facilitate the configuration of the
following properties:

• Storage environment for resources and repository files.

• Properties related to report archiving.

• Audit schedule.

• Persistence of cached files.

• Persistence of queued reports.

• Disk quotas for individual groups and roles.

• Features for sharing assets and monitoring asset dependencies.

• Optimization of Viewsheet data retrieval performance. See Creating a
Materialized View and Managing Materialized Views for more
information.

5.1 Data Space
Data space refers to the full collection of all reporting resources (templates,
repository files, etc.) stored together in the server repository (SREE Home).
This section provides information on how to set up a data space and how to
manage the resources in the data space.

5.1.1 Configuring the Data Space

To configure the data space location (i.e., the server repository or “SREE
Home”) select the ‘Repository’ > ‘Data Space’ node on the navigation tree
under the Server tab. This opens the ‘Data Space Configuration’ page
where the storage type for the data space can be specified. Two storage
types are supported: ‘File System’ and ‘Database’. These are explained in
the following sections.

Figure 14. Data Space Configuration

ADMINISTRATION REFERENCE

1778 of 2477

File System Data Space

When ‘File System’ is selected as the data space storage type, the data
space is the SREE Home directory (e.g., WEB-INF/classes, by default).
See Repository Directory for information on changing this default location.

The ‘Asset File Path’ property specifies the path to the asset.dat file
containing Data Worksheets and Viewsheets. Enable the ‘Asset File
Backup’ option to create an automatic backup of this asset file at the
specified recurring time.

Database Data Space

To use ‘Database’ as the storage type, ensure that the database is correctly
configured in the Enterprise Manager under ‘Configuration’ > ‘Database’.
(See Configuring Database for Audit/Data Space for more information).
The data space can then be configured to use the database as follows:

1. Access the ‘Data Space Configuration’ page (‘Repository’ > ‘Data
Space’ in the navigation tree, under the Server tab).

2. Select ‘Database’ as the storage type.

3. Click on the ‘Create Schema’ button to generate the database
schema to be used for the data space, and click ‘Apply’.

4. (Optional) If the database contains multiple asset packages
(Worksheets/Viewsheets) from a previous import, select the
appropriate package in the ‘Asset File Path’ field.

This is a one-time
import. Edits made to
files in the file system
after this point will
not be reflected in the
database data space.

5. If the data space was previously configured for ‘File System’
storage, you can import the existing data space files into the
database. Click on the ‘Import’ button to import the files from the
file system into the database.

This opens the ‘Import Exceptions’ dialog box. If the database
schema already contains files, the ‘Import Exceptions’ dialog box
lists database files whose contents may currently differ from their
file system counterparts.

ADMINISTRATION REFERENCE

1779 of 2477

6. Click the check boxes next to the assets you wish to be overwritten
by the file system versions. To select all assets, click the ‘Select
All’ button below the table.

7. Click the ‘Import’ button.

8. Click the ‘Apply’ button to save all the changes.

To clear the data space when using the database storage type, click ‘Delete
Schema’. This is useful when you want to re-deploy the application.

When database storage is specified for the data space, newly created
reports will be added to the database at the time that they are deployed
(from within Style Studio or from the Enterprise Manager). Alternatively,
reports can be added to the database by uploading files under the Data
Space tab.

See Also
Configuring a Repository, in Getting Started, to set Style Studio to share a
server repository.

5.1.2 Managing Resources in the Data Space

All files and folders in the ‘Data Space’ can be managed through the Data
Space tab.

Managing Folders

To access a folder’s properties, click the appropriate folder name on the
navigation tree. This opens the ‘Data Space Folder Definition’ page.

• To rename the folder, enter a name in the ‘New Folder Name’ field and
click ‘Apply’.

ADMINISTRATION REFERENCE

1780 of 2477

• To delete a folder, click the ‘Delete’ link below the navigation tree.

• To add a new file or folder to the selected folder, click the ‘New File’ or
‘New Folder’ link below the navigation tree, respectively.

Figure 15. Data Space Folder Definition

Managing Files

To access a file’s properties, click the appropriate file name in the
navigation tree. This opens the ‘Data Space File Definition’ page.

• To rename the file, enter a name in the ‘New File Name’ field and click
‘Apply’.

• To update the contents of the file, click the ‘Browse’ button next to the
‘Upload File’ field. Select a (different) file that contains the updated
contents you wish to use, and click ‘Apply’. This overwrites the current
contents of the file in the data space with the contents of the selected file.

• To download the file from the data space to the local file system, click
the ‘Download’ button.

• To delete the file from the data space, click the ‘Delete’ link below the
navigation tree.

Figure 16. Data Space File Definition page

5.1.3 Backing up the Data Space files

You can back-up the resources in the ‘Data Space’ as a zip archive. Follow
the steps below:

1. Under the Server tab, select ‘Data Space’ from the ‘Repository’
tree node. This opens the ‘Data Space Configuration’ page.

2. Click on the ‘Backup’ button. This opens the ‘Backup’ dialog box.

ADMINISTRATION REFERENCE

1781 of 2477

3. In the ‘Data Space’ field, specify the backup file name, e.g.,
data.zip.

4. In the ‘Asset’ field, specify a name for the asset file. (The asset file
contains Worksheets and Viewsheets.)

Note: The zip file also contains an asset file (asset.dat, by
default). However, this asset file is superseded by the asset file
saved under the name you enter in the ‘Asset’ field. The asset file
in the ‘Asset’ field contains your most recent work.

5. Click on the ‘Save’ button. This saves the new zip archive in the
SREE Home directory.

Figure 17. Data Space Backup

Note: Dependent assets can be selectively exported by using the
‘Repository’ > ‘Export Asset’ node in the Server tab. See the Incremental
Deployment of Assets section for more information.

5.2 Reports, Viewsheets, Worksheets
The report repository is the collection of deployed reports (replets) and
Viewsheets. You can manage the repository through the Report tab in the
Enterprise Manager. Reports and Viewsheets can be grouped into folders
for organization, and folders can be hierarchically nested. When a folder is
deleted, all of the subfolders and related reports will be deleted as well. If a
security provider is selected, users (and roles) can be given read and write
permission for either folders or individual reports and Viewsheets. Both
replet classes and report templates can be registered as replets. The
repository can be viewed by users through the User Portal or alternative
viewer.

5.2.1 The Repository Page

From the ‘Repository’ node, under the Report tab, you can do the
following tasks:

ADMINISTRATION REFERENCE

1782 of 2477

• View a list of folders, reports, snapshots, archived reports, Viewsheets
(dashboards), and Data Worksheets

• Add new folders and reports

• Click-and-drag on items in the Repository tree to move them between
folders.

• Specify properties for reports, folders, Viewsheets, and Worksheets

• Register new prototype reports

• Delete objects from the Repository tree

Figure 18. Repository Page

5.2.2 Configuring Reports

The definitions of all the registered reports are stored in the repository file
named repository.xml. Definitions from multiple repository.xml files can be
edited in the Enterprise Manager if you manually change the
replet.repository.file property in the sree.properties file. Each
repository must be separated in the list by a semicolon. All replets
registered in these multiple repositories will be available under the
‘Repository’ node.

To deploy a new report click the ‘New Report’ link, which appears below
the navigation tree. This opens the ‘Report Definition’ page, which consists
of four tabs, Report, Options, Parameter, and Security.

Reports in the ‘Repository’ tree (both in Enterprise Manager and User
Portal) are listed in alphabetical order according to the report name
specified in the ‘Name’ field. To reverse the listing, use the ‘Sort
Repository Tree’ option under Look-and-Feel. To display reports in an

ADMINISTRATION REFERENCE

1783 of 2477

arbitrary order, use the report ‘Name’ to control the ordering, and use the
report ‘Alias’ to specify the displayed names. For example:

This forces the reports to appear in the desired logical order (First Report,
Middle Report, Last Report), which is different than the alphabetical order.

Report Tab

Click the Report tab to access the report definition page.

Figure 19. Report Definition Page

The following options are available:

Table 4. Report Definition – Report Options

Options Tab

Click the Options tab to access the following options:

REPORT NAME REPORT ALIAS

report1 First Report

report2 Middle Report

report3 Last Report

FIELD DESCRIPTION

Folder The folder that contains the report. To change a report’s folder,
drag the report to a new folder in the Repository tree.

Name A logical name for the report. Certain characters (e.g., “/”) are
not permitted in report names.

Alias The report name displayed to the user in the Portal.

Type A report can be either a java program that conforms to the
report specification or an xml (.srt) template created in the
report designer. The Upload option lets you upload a file from
your machine/network.

Path The fully qualified class name of the report, or the template
expressed as a java resource.

ADMINISTRATION REFERENCE

1784 of 2477

Table 5. Report Definition – Options

Parameter Tab

Click the Parameter tab to manage report initialization and creation
parameters.

Note: Values that you assign to parameters here will also be used
for report preview in Style Studio (for reports saved as
“repository reports”.

To automatically pass parameters to the report when it is generated, follow
the steps below:

1. Press the ‘Add’ button below the table on the Parameter tab.

This opens the ‘Add Parameter’ panel.

Priority Affects thread priority at report generation time. A long-
running report can be placed in a lower priority so that it
would not block other reports.

Layout
Method

Determines how tables are converted to DHTML. The HTML
Layout method can be ‘Default’, ‘Auto’, ‘CSS-P’ or ‘Table’.
‘Default’ will use the global layout method; otherwise, the
layout method is explicitly set for the report being registered
on this page. ‘Auto’ will cause the layout method to be
selected automatically. ‘CSS-P’ refers to implementing tables
as a Cascading Style Sheet, as opposed to the ‘Table’ layout
method which uses the normal HTML tables.

Visible Specifies whether the report is visible to users.

Bursting Determines the report’s bursting behavior. See Report Bursting
for additional information.

Pre-
generated

Determines whether the report will be pregenerated. If
selected, the pregeneration cycle needs to be selected,
specifying when the pregeneration should be done. See Report
Pregeneration for additional information.

Pregeneratio
n cycle

Specifies a pregeneration cycle for reports. Pregeneration
cycles can be created/edited under the Schedule tab.

Export
Formats

Specifies the formats that will be available to the end-user in
the Portal for exporting the report. This report-specific setting
overrides the setting on the ‘Export Menu Options’ (see
Report Export Menu Options.) page of the ‘Presentation’ >
‘Report’ node.

ADMINISTRATION REFERENCE

1785 of 2477

2. Select ‘Initialization Parameter’ or ‘Creation Parameter’.

Creation parameters are parameters for template-based (.srt)
reports. Use these to set default parameter values and bypass the
default parameter prompting mechanism (not custom Parameter
Sheets). Initialization parameters are used to set global properties
at initialization for a manually coded Replet class. Some of these
are generic and can be used for all report types. (Report creation
parameters can also be set from the Scheduler tab; see Creation
Parameters.)

3. In the ‘Name’ field, select an existing report parameter or manually
enter the name of a report parameter.

4. In the ‘Data Type’ field, select the data type of the parameter. Select
‘Array’ if the parameter requires an array of values.

5. In the ‘Value’ field, enter the value to be passed into the parameter.
Enter a comma-separated list for an array parameter.

6. Press ‘Apply’. The parameter that you added is now listed in the
table.

7. (Optional) To modify the parameter settings, click on the parameter
in the table and make the desired edits below the table. To remove
the parameter, press the ‘Delete’ button below the table.

To add additional parameters, press the ‘Add’ button below the table and
repeat the above steps.

Users can also sort
columns with the
Report Explorer. (See
Interactive Reports in
End User for more
information.)

One popular initialization parameter is the Boolean ‘sortOnHeader’. Set
this to ‘true’ to enable users to click on a table column header and sort the
rows by that column. (Note: ‘sortOnHeader’ cannot be enabled for

ADMINISTRATION REFERENCE

1786 of 2477

Freehand tables, or when data has not been bound to the table using Style
Studio.)

Security Tab

Click the Security tab to manage report permissions.

By default, a report is set to inherit security permissions from its parent,
which is the folder it resides in. This default behavior can be modified and
a report may have its own security information setup, independent of its
parent. Once set up, the security permissions for the report override those
of the report’s parent. Setting up security for a report is very similar to
setting up security for any other component. See the Setting Permissions
section of the Security chapter.

Please note that if a template which uses JavaScript is registered as a report,
the package names may also need to be registered in order to be accessible
from the scripting environment. Any inetsoft.* packages are automatically
registered. Other packages can be specified, separated by commas, in the
javascript.java.packages property.

Note that reports can also be deployed from within Style Studio. See
Special Deployment Issues for more information.

5.2.3 Configuring Viewsheets

Viewsheets appear in the Repository under the ‘Dashboards’ node.

The definitions of all Viewsheets are stored in the repository file named
asset.dat. To add a Viewsheet to the Repository, use the Visual Composer
to save the Viewsheet into a global scope. See Dashboard Design for more
details.

To modify settings for a particular Viewsheet, click the desired Viewsheet
in the Repository tree. This opens the ‘Viewsheet Definition’ page, which
consists of three tabs: Viewsheet, Materialized View, and Security. The
next sections provide additional details about the available settings.

Viewsheet Tab

Click the Viewsheet tab to access the Viewsheet definition page.

ADMINISTRATION REFERENCE

1787 of 2477

Figure 20. Viewsheet Definition Page

The following options are available

Table 6. Viewsheet Definition – Viewsheet Options

Materialized View Tab

Click the Materialized View tab to access options related to
materialization for the Viewsheet. See Materialized Views for full
information.

Security Tab

Click the Security tab to manage Viewsheet permissions. By default, a
Viewsheet is set to inherit security permissions from its parent, which is the
folder it resides in. This default behavior can be modified and a Viewsheet
may have its own security information setup, independent of its parent.
Once set up, the security permissions for the Viewsheet override those of
the Viewsheet’s parent. Setting up security for a Viewsheet is very similar
to setting up security for any other component. See the Setting Permissions
section of the Security chapter.

5.2.4 Configuring Data Worksheets

Data Worksheets appear in the Repository under the ‘Worksheet’ node.

FIELD DESCRIPTION

Name The name under which the Viewsheet should be listed in the
Repository. Certain characters (e.g., “/”) are not permitted in
names.

Alias The Viewsheet name displayed to the user in the Portal.

Description A brief description to be displayed as a tooltip when the user
hovers the mouse over the Viewsheet in the Portal or Visual
Composer Repository trees.

ADMINISTRATION REFERENCE

1788 of 2477

The definitions of all Data Worksheets (other than local Worksheets
embedded within individual reports) are stored in the repository file named
asset.dat. To add a Worksheet to the Repository, use the Visual Composer
to save the Worksheet into a global scope or use Style Studio to deploy the
Worksheet to the repository. See Data Mashup for more details.

To modify settings for a particular Worksheet, click the desired Worksheet
in the Repository tree. This opens the ‘Worksheet Definition’ page.

Figure 21. Worksheet Definition Page

The following options are available

Table 7. Worksheet Definition – Worksheet Options

5.2.5 Report Pregeneration

A pregenerated report is similar to a cached report, and helps improve
performance and scalability. From the user’s perspective, a pregenerated
report behaves like any live report and supports all user interactions. To the
reporting engine, a pregenerated report appears as an archived report whose
data is generated on a pre-defined cycle and maintained in persistent
storage. When the user accesses a pregenerated report, the report loads the
pregenerated data instead of executing the query and page generation
process.

To configure a report template as a pregenerated report, enable ‘Pre-
generated’ on the Options tab of the report definition page (see Options
Tab), and specify the cycle that determines when the report is pregenerated.

FIELD DESCRIPTION

Name The name under which the Worksheet should be listed in the
Repository. Certain characters (e.g., “/”) are not permitted in
names.

Alias The Worksheet name displayed to the user in the Portal.

Description A brief description to be displayed as a tooltip when the user
hovers the mouse over the Worksheet in the Portal or Visual
Composer Repository trees.

ADMINISTRATION REFERENCE

1789 of 2477

5.2.6 Prototype Reports

A prototype is a skeleton report that can be used as the basis for creating
new reports using an Ad Hoc Wizard or using the Ad Hoc editing tools.
Once a report is registered as a prototype, it will be available when a user
creates a new report using the ‘Report’ button under the Design tab in the
Portal.

When you design a prototype report in Style Studio, you should set
a 'Max Number of Pages' limit to prevent a user from accidentally
designing an excessively large report. See Limiting the Maximum
Number of Pages in Report Design for more details.

You should design a prototype template in such a way that it is suitable for
modification by an end user. Typically, this means you design the report’s
basic layout, and include a single component (crosstab, table, chart, or
section) which the user can later modify using the Ad Hoc Wizard. You
should assign a meaningful ID to this editable component so that the user
can easily select it from the Wizard. (See Element ID and Alias in Report
Design.)

Prototype reports are not visible on the Repository tree under the Report
tab in the Portal. Prototype reports are only visible when the user clicks the
‘Report’ button under the Design tab. If a Wizard has already been defined
for a prototype report, then the Wizard is listed, rather than the underlying
prototype. Prototypes cannot be overwritten from the Ad Hoc tool.

To create a new prototype report, follow these steps:

1. Select the Report tab in Enterprise Manager.

2. Select the ‘Prototype’ node on the Repository tree.

3. Click on the ‘New Prototype’ link below the Repository tree.

ADMINISTRATION REFERENCE

1790 of 2477

This opens the ‘Prototype Definition’ page.

4. On the ‘Prototype Definition’ page, register the report by providing
a name and template path. See Configuring Reports for details.

Note: If a Wizard is
defined on the proto-
type, the screenshot
for the Wizard is used
in place of the proto-
type screenshot.

5. (Optional) Specify the ‘Screenshot’ to be used for the prototype
report. This image is displayed when the user clicks the ‘Report’
button under the Design tab in the Portal.

6. Click ‘Apply’ to register the report.

Prototype reports have the same options as regular reports under the
Options and Parameter tabs.

ADMINISTRATION REFERENCE

1791 of 2477

See Also
Configuring Reports, for information on deploying reports to the
Repository.
New Report Wizards, in Ad Hoc Reporting, to use Ad Hoc Wizards.
Ad Hoc Wizard, for information on creating a Wizard from a prototype
report.

5.2.7 Creating Folders

To create a new folder, follow the steps below:

1. In the navigation tree, select a parent folder for the new folder. The
parent folder can be the root ‘Repository’ node or any other folder.
(You can change the parent folder later, if needed.)

2. Click the ‘New Folder’ link below the navigation tree. This opens
the folder definition page, which has two tabs: Property and
Security.

3. Under the Property tab, specify the new ‘Folder Name’ and
‘Description’.

4. (Optional) Set the folder ‘Alias’. The alias is displayed to the user
in the Portal in place of the folder’s actual name. If no alias is
specified, the folder’s name is used.

5. Set the folder’s permissions using the Security tab. See Setting
Permissions for more information.

ADMINISTRATION REFERENCE

1792 of 2477

The contents of the folder are displayed in the ‘Reports/Sub-folders’ table.
Use the ‘Select All’, ‘Deselect All’, and ‘Delete’ buttons as needed to
remove folder contents. To add a new report to the folder, drag the report
into the folder in the Repository tree. (See Configuring Reports for more
information.)

5.2.8 Report Bursting

This section covers the second step in implementing report bursting. The
first step is documented in the Report Design. To follow along with the
following example, refer to the Report Bursting chapter in the Report
Design and create the sample report ‘Bursting Example’. Report Bursting
relies on the Scheduler system. Reports are set to generate when certain
conditions are met and then saved with the complete data set. More
information on the Scheduler may be found in the Scheduler chapter.

Walkthrough A report is bursted out to end users when they request the report after
logging into the system or when reports are emailed to them. Here you will
concentrate on the execution of a report with bursting options.

1. Open the Enterprise Manager and enable the ‘Default Security Pro-
vider’. Complete instructions for this step and the next step may be
found within the Configuring the Default Security Provider sec-
tion.

2. Create a user Sue and a user Robert, each with ‘abcd1234’ as their
password. Also, specify both of their email addresses.

3. Under the Report tab, click the ‘Repository’ node and select the
Security tab.

4. Deselect the ‘Use Parent Permissions’ checkbox.

5. Assign ‘read’ permissions to both users.

ADMINISTRATION REFERENCE

1793 of 2477

6. Open the report repository listing, select the ‘Bursting Example’
report you created in the Report Bursting chapter of the Report
Design example, and then select the Options tab.

7. Select the ‘Bursting’ option to turn on bursting. The pregenerated
cycle can be selected from the menu below. For this example,
select ‘Default’. This refers to the cycle that will be used to
generate the report data in the Scheduler. Press the ‘Apply’ button.

8. Access the ‘Server’ > ‘Scheduler’ page from under the Server tab
and ensure that the Scheduler is running. If not, click the ‘Start’
button.

9. Go to the Schedule tab and access the list of scheduled tasks.

ADMINISTRATION REFERENCE

1794 of 2477

10. Click on the ‘New Task’ link, located below the navigation tree.

11. Rename the task to “BurstingTask” and press the ‘Apply’ button,
located next to the text box.

12. For the condition, specify a ‘Daily’ condition. Set a time of 12:00
am for this example and press the ‘Apply’ button. This condition
must be met for the full report to be generated. In this example, you
will run the report immediately by using the ‘Run Now’ feature in
the Scheduler.

13. Select the Action tab and choose ‘Burst’ as the Action Type.

14. In the ‘Report’ drop down list, select ‘Bursting Example.’

Note: The ‘Select
Emails’ dialog box is
available only when
the ‘Execute As’
property (Options tab)
specifies an adminis-
trator.

15. Select the ‘Deliver to Emails’ option, and click on the ‘...’ button
next to the ‘To’ textbox to. This opens the ‘Select Emails’ dialog
box.

16. Add Robert and Sue as the users to whom the email should be sent.
Click on the ‘OK’ button.

17. Click on the ‘Apply’ button to save the action definition.

ADMINISTRATION REFERENCE

1795 of 2477

18. From the ‘Server Tasks’ root node, select the task ‘BurstingTask’
and use the ‘Run Now’ button to immediately execute the task.

Two emails should arrive shortly providing each user with their unique
view of the bursted report.

5.3 User Reports
The User Portal provides many ways for users to create new reports or
customize existing reports to suit their needs. Once created or modified, the
report can be saved in the user’s personal folder, named ‘My Reports’.
Users also have the ability to save archived reports under the ‘My Reports’
folder.

Managing User Reports

Individual user’s reports can be managed under the Report (tab) > User
folder. This folder contains a sub-folder for each individual user in the
system. The appropriate folder node can be expanded to view/manage the
list of a particular user’s reports. A generic description for all user folders
(My Reports) can be entered under the Property tab of the ‘User’ folder.

5.4 Archive
Reports are inherently dynamic. Whenever a user sends a request to
generate a report, the engine executes the report and retrieves fresh data
from the database, regardless of whether the same report has been
generated before. For small to medium sized reports, the impact of
generating the report each time is minimal and generally does not cause
any performance problem.

ADMINISTRATION REFERENCE

1796 of 2477

However, if an application has many very large reports, dynamically
generating the reports on demand may not be a feasible solution. To avoid
repeatedly generating the reports, a report archive for the application can be
set up to save and reuse generated reports.

5.4.1 The Archive Page

You can configure report archiving from the ‘Archive’ page, under the
‘Repository’ node of the Server tab. Report archives support the following
features:

• Saving and retrieving reports

• Report versioning

• Report access permissions

• Archive rules for cleaning up saved reports

• Different report formats: Generated Report, PDF, XML, Excel,
PowerPoint, RTF, HTML, CSV, and SVG

• Searching the archived reports for a particular string

• Backing up an archive

• Compressing archived files

Figure 22. The Archive Page

5.4.2 Archive Types

This software supports three types of report archives: File system-based
archive, CVS-based archive, and user-defined archive.

• File System: The ‘File System’ option saves and manages archived
reports on the server file system. This type of archive only allows one
version per report. The report files are managed internally by the report

ADMINISTRATION REFERENCE

1797 of 2477

archive. Therefore, the archive does not depend on any external
software. See File System Archive for more information.

• Version (CVS): The ‘Version (CVS)’ option selects a versioned archive
based on CVS. All reports are saved and managed through a CVS
system. Each report can be saved in multiple versions. In order for the
archive to work, the ‘CVS Bin’ field must specify an absolute path to
the CVS executable file (cvs.exe). See CVS Archive for more
information.

• User Defined: The ‘User Defined’ option may be used as an alternative
to the default archives. A common user-defined archive would, for
instance, save the archived report into a user database. The user-defined
archive class needs to implement the ReportArchive or
VersionedArchive interface. See User-Defined Archive for more
information.

See Also
Archived Reports, for information on accessing archived reports.
Administering Archived Reports, for information on managing archived
reports.

5.4.3 File System Archive

The file system archive uses a working directory to hold the saved reports
and administrative files. The directory does not need to be empty.
However, it is strongly recommended that a specifically dedicated
directory be used as the working directory, so the files are not accidentally
removed or modified.

Setting up a file system archive requires the specification of the working
directory location on the server:

1. Start the Enterprise Manager.

2. Select the Server tab.

3. Expand the ‘Repository’ node and select ‘Archive’ on the
Navigation tree.

4. Select ‘File System’ as the type of Archive Storage.

5. Specify the working directory, which should reside within the
repository directory.

ADMINISTRATION REFERENCE

1798 of 2477

6. Click on the ‘Apply’ button to configure the archive.

7. Specify desired configuration parameters, listed under ‘Archive
Configuration’.

The cleanup interval controls how often the archive is cleaned up. The
cleanup process is controlled by the archive rules specified in the Schedule
tab for the archived folders and reports. See the Administering Archived
Reportssection for information about tagging reports for deletion. Daily
cleanup is performed at 1am every morning. Weekly cleanup is performed
at 1am every Sunday. Monthly cleanup is performed at 1am on the first day
of the month.

5.4.4 CVS Archive
Note: Reports
archived using ver-
sions of Style Report
prior to 5.1 may only
work with PDF
export.

‘CVS’ archiving uses the UNIX standard Concurrent Versioning System
(CVS) to store the saved reports. ‘CVS’ is not included with this product. It
is normally distributed on UNIX systems, but can also be downloaded
from the Internet.

To use the ‘CVS’ archive, the CVS executable (cvs.exe) must be accessible
on the report server.

1. Start Enterprise Manager. Select the Server tab.

2. Expand the ‘Repository’ node and select ‘Archive’ on the
Navigation tree.

3. Select ‘CVS’ as the type of Archive Storage.

4. Specify ‘CVS Root’ directory. The CVS root can be a remote
directory previously configured using CVS commands (e.g.,
pserver:user@machine:/{path}), or it can be a new archive
directory. If the specified root directory does not already exist, it is
automatically created.

ADMINISTRATION REFERENCE

1799 of 2477

5. Specify the ‘Working Directory’ that holds the temporary files.
This should be a directory that is dedicated to the archive, and it
should be located within SREE Home.

6. Specify ‘CVS Bin’, the full path (using forward slashes) to the
CVS executable file. If not specified, the system’s default path will
be searched.

After changing any
CVS setting, always
click ‘Apply’ fol-
lowed by ‘Reset Ver-
sion Config’, and then
restart the server.

7. Click ‘Apply’, and then click ‘Reset Version Config’ to configure
the archive.

8. Restart the server.

5.4.5 User-Defined Archive

You can customize archiving in three ways:

• Use standard data archiving mechanisms provided by Style Intelligence,
but customize the storage of the archive files. Choose ‘User Defined’
under the ‘Archive Storage’ heading and then choose ‘Storage Class’
from the radio button below. Enter the fully qualified name of your
custom storage class. The custom storage class must implement one of
the following interfaces:

inetsoft.sree.store.DataStorage
inetsoft.sree.store.VersionedStorage

• Customize the data archiving mechanism but use the standard storage
mechanisms provided by InetSoft. Choose ‘User Defined’ under the
‘Archive Storage’ heading and then choose ‘Archive Class’ from the
radio button below. Enter the fully qualified name of your custom
archive class. The custom storage class must extend one of the
following classes, classes depending on the type of standard storage you
would like to use:

inetsoft.sree.store.impl.DefaultReportArchive
inetsoft.sree.store.DefaultVersionedArchive

ADMINISTRATION REFERENCE

1800 of 2477

• Customize both the data archiving mechanism and the storage of
archived files. Choose ‘User Defined’ under the ‘Archive Storage’
heading and then choose ‘Archive Class’ from the radio button below.
Enter the fully qualified name of your custom archive class. The custom
storage class must extend the
inetsoft.sree.store.impl.DefaultReportArchive class. Override the
getStorageClass() method to return the fully qualified class name of
your custom storage class. The custom storage class must implement
one of the following interfaces:

inetsoft.sree.store.DataStorage
inetsoft.sree.store.VersionedStorage

Refer to the product API documentation for more details on the custom
Archive Classes and Interfaces.

5.4.6 Archived Reports

This section explains how to use archived reports.

Archiving a Report

A report can be saved into the archive through a scheduled task or by a user
through their Portal page, using the ‘Save as archive’ option in the ‘Save
As’ dialog box. If a file system archive is being used, archiving a report
with the same name as an existing archived report will cause the original
archived report to be overwritten by the new archived report. If a ‘CVS’
archive is being used, saving a report to an existing report adds a new
version to the archive, rather than replacing the previous version. The
versions are stored until removed explicitly by the user, or according to the
version archive rule.

Opening an Archived Report

If a user has at least read permission in an archived report, the archived
report shows up on the repository tree on the user’s Portal page. A user can
then click on the archived report name to view the report.

5.4.7 Administering Archived Reports

Administrators can manage the reports and the trashcan through the
Enterprise Manager.

Removing and Restoring Archived Reports

The administrator can select any report from the tree and delete it, and is
not restricted by the access permission of the report. Once a folder or report
is deleted, it is moved to the trashcan.

End users can delete a report from the repository tree if they have delete
permission on the report. When a report is deleted, it is placed in a trashcan,
and can be recovered by an administrator.

ADMINISTRATION REFERENCE

1801 of 2477

The trashcan can be accessed by clicking on the ‘Trashcan’ node on the
navigation tree under the Report tab. To restore a folder or report, select
the folder or report and click ‘Undelete’. The folder or report is recovered
from the trashcan and placed back in the archive. A folder or report can be
permanently removed from the archive by deleting it from the ‘Trashcan’.
After the folder or report is deleted from the ‘Trashcan’, it cannot be
restored to the archive.

Similarly, archived reports can be removed from the repository without the
file being deleted. This is called ‘Unmount’, and can be done on the detail
page of the archived report, or that of its parent folder. At the folder level
there is also an option to ‘Scan’ which will look at the physical folder
contents and recreate the repository entries. This could also be used to add
arbitrary documents to the repository.

Archive Report Options

The following options are available for archived report on the ‘Archive’
page.

• Delete Removed Report Permanently: The archive has the option
‘Delete Removed Report Permanently’. If this option is chosen, then
when a report is deleted, it is not placed in the trashcan but is
permanently deleted from the system.

• Archive Indexing: The ‘Archive Indexing’ option is by default set to
‘true’. When this option has been enabled, a report saved in the archive
will be indexed for search capabilities. When this flag is set to ‘false’ the
archive search will be disabled.

Note: An individual archived report is created to correspond to
each traversed hyperlink, so processing time for deeper traversals
may be substantial.

• Traversal Depth: The ‘Traversal Depth’ option allows you to set the
number of levels of reports that can be followed starting from the
hyperlinks within the archived report. This option only applies to the
‘Generated Report’ output format. A ‘Traversal Depth’ of 0 indicates
that the reports targeted by hyperlinks in the archived report will not
themselves be archived, and the hyperlinks will therefore not be active.
A ‘Traversal Depth’ of 1 indicates that one level of hyperlinked reports
will also be archived, which then allows the user to follow hyperlinks in
the original archived report down to a second level of archived reports.
However, the hyperlinks (if any) in that second level of archived reports
will not themselves be active, unless an even higher traversal depth is
specified.

• Backup Archive: Backup the archive to a zip file. See Backing-up the
Archive for instructions.

ADMINISTRATION REFERENCE

1802 of 2477

• Compress Archived Files: The files saved in the archive can be
compressed using this option. Only the files that are not already
compressed are compressed if this option is turned on. Compressed files
can be accessed normally from the viewer with the file name of the
uncompressed file. However, compressed files are saved in the
underlying storage as filename.zip, for example report.csv.zip. The zip
file contains a single entry – the archived file, e.g., report.csv in the
previous example.

• Show File Suffix in Viewer: Setting this property to true results in the
file extensions being included when the archived reports are listed on
the repository tree on the Portal page.

Backing-up the Archive

To backup an archive into a zip file, follow the steps below:

1. Select ‘Repository’ > ‘Archive’ on the Navigation tree under the
Server tab.

2. Click on the ‘Backup’ button. This opens the ‘Archive File’ dialog.

3. Specify the backup file name and click on the ‘Save’ button.

Note that if the backup file name is specified without a directory, the file is
created in the sree.home directory.

5.4.8 Viewsheet Management

Viewsheets can be accessed and managed under the Report tab. See
Configuring Viewsheets for more information.

5.5 Audit
The audit tool tracks report and data access, as well as asset dependencies.
When the audit function is enabled, all report and database access is logged
in the audit database. Please note that for auditing to be turned on, a
database has to be configured in the Enterprise Manager, and a security
provider must be specified. Refer to the Configuring Database for Audit/
Data Space section for information on how to configure a database, and
refer to Specifying a Security Provider for information on the available
security options.

ADMINISTRATION REFERENCE

1803 of 2477

5.5.1 Enabling Auditing

Auditing can be turned on and off using the ‘Enable Audit’ checkbox on
the ‘Repository’ > ‘Audit’ page under the Server tab. To turn on auditing:

1. Go to the ‘Repository’ > ‘Audit’ page under the Server tab.

2. Select ‘Enable Audit’.

3. Entering a value in the ‘Store audit records for’ field to specify the
number of days that audit records should be stored in the database.
By default, the duration is 365 days.

4. Enter a value in the ‘Check audit records at’ field to specify the
time of day at which obsolete audit records should be deleted.

5. Click on the ‘Create Schema’ button.

6. Click on the ‘Apply’ button.

All audit logs can be cleared from the database at any time by clicking on
the ‘Delete Schema’ button.

Figure 23. Audit Configuration

5.5.2 Viewing Audit Logs

The audit logs can be viewed from the Audit tab. The type of logged
information under each Audit node is shown in the table below.

Figure 24. Audit Page

ADMINISTRATION REFERENCE

1804 of 2477

Table 8. Type of information under each Audit Log node

5.6 Cache
The report engine possesses an internal page cache. When the user opens a
report or Viewsheet, the report engine generates page objects for the report
or Viewsheet, and stores these objects in the internal cache.

You can configure this cache from the ‘Repository’ > ‘Cache’ page under
the Server tab. The ‘Directory’ field specifies the location of the cache
directory (replet.cache.directory), which by default is the ‘temp’
directory in SREE Home.

Figure 25. Report Cache

By default, all temporary files are removed when the server starts up. In
cases where multiple applications are using the same cache directory and

NODE NAME TYPE OF INFORMATION

Dependent Assets The assets which depend on the specified asset.

Identity Information Information about users in the system.

Inactive Resource Reports and assets that have not been accessed in an
extended period of time.

Inactive Users Users who have not logged in for an extended
period of time.

Logon Errors Login errors by date.

Logon History User logins by date, user, group, or role.

Modification History Modification of reports and assets by user, type,
date.

Query Execution Query, data model, and worksheet execution history
by type, date.

Report Execution Report execution history by user, folder, date.

Required Assets The assets which are required by the specified asset.

Response Time Report generation response time by report, average.

User Profile List of users in the system. (User creation dates are
not available for users added prior to enabling
auditing.)

User Session User session duration and average.

ADMINISTRATION REFERENCE

1805 of 2477

automatic removal is not desired, you can disable this behavior by
deselecting ‘Clean up on startup’.

To set the size of the cache, as well as a variety of other performance
settings related to caching, see Tailoring Server Performance.

5.7 Disk Quota
Disk quotas can be specified for individual groups and roles in order to
control space on the file system or in the database. The space occupied by
the following components counts toward a user’s disk quota:

• Archived reports

• Generated reports in the ‘My Reports’ folder.

A particular user’s disk quota is either:

• The maximum of all the maximum disk quotas set for the groups and
roles to which that user belongs, or

• The value specified for the ‘Default Max Space’, if disk quotas are not
individually specified for any of the groups or roles to which that user
belongs.

Setting the Disk Quota

Disk quotas can be set from the ‘Repository’ > ‘Disk Quota’ page under
the Server tab. By default, the disk quota is disabled. To set a disk quota,
select ‘Quota Enabled’. The default disk quota for all the users in the
system can be specified using the ‘Default Max Space’ property. A value of
-1 indicates no limit.

It is possible to set a quota for individual groups and roles. This can be done
in the following steps:

1. Click on the ‘Add’ button.

2. Select the desired role or group from the appropriate drop down
list.

3. Specify the ‘Default Max Space’ in megabytes.

4. Click on the ‘Apply’ button.

5.8 Incremental Deployment of Assets
An asset is any reporting unit, which could be a bean, meta-template,
dashboard, report, etc., as well as assets within worksheets or Viewsheets.
The options described below allow for assets to be selectively exported
from the data space and imported into a new environment, thus facilitating

ADMINISTRATION REFERENCE

1806 of 2477

incremental deployment. An asset dependency audit can also be
performed.

5.8.1 Exporting Assets

The ‘Repository’ > ‘Export Asset’ node under the Server tab opens the
‘Export Assets’ page, which allows the developer to combine an arbitrary
set of assets into an archive (JAR file). The assets in this archive can then
be imported into a different environment (e.g., different server).

Assets in the following categories can be archived:

• Data: Data Models, Queries, Worksheets, etc.

• Global Dashboard: Administrator-defined dashboards.

• User Dashboard: User-defined dashboards.

• Global Repository: Administrator-deployed reports and Viewsheets
(which include user-placed bookmarks)

• User Repository: User-deployed reports (‘My Reports’ folders).

• Library: Reusable components; beans, scripts, table styles, etc.

To save a set of assets in an archive file, follow the steps below:

1. Select an asset from the ‘Available Assets’ panel.

2. Click the arrow button to move the asset to the ‘Selected Assets’
panel. The dependency table at the bottom of the ‘Export Assets’
page updates to list the assets which are used by the entries in the
‘Selected Assets’ panel.

3. Select any subset of the assets in the table for inclusion in the
archive file.

4. Select ‘Overwrite existing files’ if the assets in the archive should
by default overwrite existing assets of the same name when
imported into the new environment. This default overwriting
behavior can be overridden on the import side through the import
‘Overwrite existing files’ option. See the Importing Assets section
below.

5. Click OK to save the archive. Depending on your browser’s
configuration, you will either be prompted to save the archive file
in the browser’s designated download directory, or you will be
prompted to choose a location in which to save the export file.

ADMINISTRATION REFERENCE

1807 of 2477

Figure 26. The Export Assets page.

See Also
Ant Task for Import/Export of Assets, to programmatically control
deployment.

5.8.2 Importing Assets

Assets can be selectively imported into the data space by using the
‘Repository’ > ‘Import Asset’ node under the Server tab, which opens the
‘Import Asset’ page. This allows an administrator to incrementally deploy
assets to an existing environment without overwriting all the assets in that
environment. The assets to import must reside in an archive file generated
by the ‘Export Asset’ feature described in Exporting Assets.

You cannot import a
user-scope asset into
an environment which
has security disabled,
or which has no defi-
nition for the particu-
lar user.

To import a set of assets from an archive file:

1. On the ‘Import Asset’ page, enter the file name of the archive con-
taining the assets to import, and click OK.

2. The ‘JAR Information’ page opens and displays the asset contents
of the specified JAR file.

The items listed in the ‘Selected Entities’ panel will all be
imported. The items listed in the ‘Included Dependent Assets’ table
are required by items in the ‘Selected Entities’ panel, and will be
imported by default. However, if one or more of these items
already exist in the current server environment, you can choose not
to import those items.

ADMINISTRATION REFERENCE

1808 of 2477

3. Click the ‘Include’ box next to assets in the ‘Included Dependent
Assets’ table that you wish to import.

4. Select ‘Overwrite existing files’ if the assets in the archive should
overwrite existing assets of the same name upon import. The
default setting of the ‘Overwrite existing files’ checkbox is
specified by the export settings under which the archive was saved.
See the Exporting Assets section above.

5. Click OK to import these assets into the current environment.

Figure 27. The Import Asset node.

Figure 28. The Import Asset page.

See Also
Ant Task for Import/Export of Assets, to programmatically control
deployment.

5.8.3 Ant Task for Import/Export of Assets

You can perform incremental import and export of assets programmatically
via a custom ANT task. This requires ANT 1.6 or later, and JDK 1.6 or
later.

ADMINISTRATION REFERENCE

1809 of 2477

The task can run in two modes:

• Remote import/export to and from a live server deployment via RMI.
(See RMI Connector Server to set up the RMI service.)

• Local import/export to and from a local file system (Sree Home).

The following sections provide additional information.

Ant Task Parameters

The task uses two classes, ImportAssetTask and ExportAssetTask, and
requires the following parameters:

• classname – API class name, based on the desired operation:

inetsoft.sree.adm.ant.ExportAssetsTask
inetsoft.sree.adm.ant.ImportAssetsTask

• file – the absolute file path to which assets should be exported, or from
which assets should be imported.

• replace – Import flag to overwrite existing assets with the same name.

Remote Import/Export Only

The following parameters pertain to RMI-based asset deployment.

• host – the machine or IP address of the RMI server.

• port – the RMI port of the RMI Connector Server.

• username/password – User/Password of the RMI Connector Server.

Local Import/Export Only

The following parameters pertain to local asset deployment.

• sreehome – the absolute path to the sree home folder.

Including and Excluding Assets

The assets to be included or excluded in the import/export are specified
using specific patterns within the <include> and <exclude> tags.

Pattern – /scope/asset type/folder/subfolder/asset name

For example,

Global Scope – /global/worksheet/Sales/YTD Sales
User Scope – /user/{user name}/viewsheet/Lead Analysis
Asset Wild Card – /global/viewsheet/Mgmt Dashboard/Sales/*
Folder Wild Card – /global/report/Mgmt Dashboard/**/*

ADMINISTRATION REFERENCE

1810 of 2477

For example, if you want to include all viewsheets from the ‘Sales’ folder
except the ‘YTD Sales’ viewsheet.

<include name="/global/viewsheet/Sales/*"/>
<exclude name="/global/viewsheet/Sales/YTD Sales"/>

Sample build.xml file for Remote Import/Export:

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="AdminTask" basedir="." default="all">
<property name="testDir" location="${basedir}"/>

<target name="ExportAssetRemote" description="Export From">
<taskdef name="exportassets"
classname="inetsoft.sree.adm.ant.ExportAssetsTask"/>
<exportassets host="192.168.5.89" port="1098"
username="{RMI Server user}" password="{password}"
file="${testDir}\exports\xyz1.jar">
<include name="/global/viewsheet/Dashboards/*"/>
<exclude name="/global/viewsheet/Dashboards/Projection"/>
</exportassets>
</target>

<target name="ImportAssetRemote" description="Import To">
<taskdef name="importassets"
classname="inetsoft.sree.adm.ant.ImportAssetsTask"/>
<importassets host="192.168.5.89" port="1098"
username="{RMI Server user}" password="{password}"
file="${testDir}\imports\xyz2.jar" replace="false">
</importassets>
</target>
</project>

Sample build.xml for file for local Import/Export:

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="AdminTask" basedir="." default="all">
<property name="testDir" location="${basedir}"/>
<property name="sreeHome"
location="C:\StyleIntelligence\server\webapps\sree\WEB-
INF\classes"/>

<target name="ExportAssetLocal" description="Export From">
<taskdef name="exportassets"
classname="inetsoft.sree.adm.ant.ExportAssetsTask"/>
<exportassets username="{EM User}" password="{password}"
sreehome="${sreeHome}" file="${testDir}\exports\abc1.jar">
<include name="/global/viewsheet/**/*"/>
</exportassets>
</target>

<target name="ImportAssetLocal" description="Import To">
<taskdef name="importassets"
classname="inetsoft.sree.adm.ant.ImportAssetsTask"/>
<importassets username="{EM User}" password="{password}"
sreehome="${sreeHome}" file="${testDir}\imports\abc2.jar"
replace="false">
</importassets>
</target>
</project>

ADMINISTRATION REFERENCE

1811 of 2477

Running the Ant Task

To execute the Ant task, follow the steps below:

1. Make sure the product JAR files are on the classpath.

2. Change to the directory containing the build.xml file.

3. Enter the following command:

ant {target name}
e.g., ant ExportAssetLocal

5.8.4 Auditing Asset Dependencies

You can produce an audit report for asset dependencies. Asset dependency
information describes, for each asset, the other assets which it itself
requires, and the assets which require it. The audited assets include every
reporting unit, not only worksheets and Viewsheets.

The schedule on which the dependency report is generated can be
configured from the ‘Repository’ > ‘Asset Dependency’ node under the
Server tab, which opens the ‘Asset Dependency Configuration’ page. A
database must first be specified in the ‘Configuration’ > ‘Database’ age
under the Server tab.

To configure a regular asset dependency audit, follow these steps:

1. Check the ‘Enable Check Asset Dependency’ box.

1. Select ‘Daily’ or ‘Weekly’ in the ‘Check asset dependencies at’
field. For the ‘Daily’ option, specify an execution time. For the
‘Weekly’ option, specify an execution time and select a set of days
on which the task should execute.

2. Press the ‘Create Schema’ button, and press ‘Apply.’

A schema needs to created in cases where the database has been
changed from the default database (under ‘Configuration’ >
‘Database’ in the Server tab).

3. To delete the schema, click the ‘Delete Schema’ button, and press
‘Apply.’

ADMINISTRATION REFERENCE

1812 of 2477

Figure 29. The Asset Dependency Configuration page.

The asset dependency audit can also be run on demand from the
‘Scheduled Tasks’ node under the Server tab. Select the __check assets
dependency__ task from the task list, and press the ‘Run Now’ button.

The results of the asset dependency audit can be viewed under the Audit
tab. Select either the ‘Dependent Assets’ or ‘Required assets’ reports to
obtain the desired view into the audit database.

5.9 Materialized Views
Materialized views
are available only for
Viewsheets.

A materialized view is a caching strategy that optionally pre-aggregates
and stores the data required by a Viewsheet so that the Viewsheet can
respond more quickly at runtime. When a materialized view exists for a
Viewsheet, the Style Intelligence engine attempts to query the cached
materialized view rather than querying the database. This can significantly
reduce the run time for certain queries.

Viewsheets that possess a materialized view will rely on this materialized
view to supply their data. For Viewsheets which do not possess a
materialized view, behavior is specified by the ‘Performance’ options
described in Performance Options and Safeguards. For Visual Composer’s
design mode, you can specify whether a Viewsheet without materialized
view should execute queries to retrieve data from the database or
alternatively utilize meta-data for faster performance. For runtime
execution of a Viewsheet without materialized view, you can specify
whether the Viewsheet should execute queries to retrieve data from the
database or alternatively generate an error. (See Performance Options and
Safeguards for more information.)

To improve performance, you can also distribute a materialized view across
multiple machines. See Distributing Materialized Views (Data Grid) for
further details.

See Also
Performance Options and Safeguards, for other materialized view settings.

ADMINISTRATION REFERENCE

1813 of 2477

5.9.1 Creating a Materialized View

To create a materialized view for a Viewsheet, you must first log into
Enterprise Manager on the Data Server machine. You cannot create a
materialized view by using Enterprise Manager on the Report Server
machine, unless this machine also hosts the Data Server.

For example, if Machine1 contains the Report Server, Machine2 contains the
Data Server, and Machines3-MachineN contain the Data Nodes, you must
log into Enterprise Manager on Machine2 to create materialized views, e.g.,

http://Machine2:8080/sree/EnterpriseManager

See Distributing Materialized Views (Data Grid) for more information
about the available server architectures.

You can also set mate-
rialized views to gen-
erate automatically
on-demand. See Per-
formance Options and
Safeguards.

To create the materialized view, follow the steps below:

1. Log into Enterprise Manager on the Data Server machine.

2. Expand the ‘Repository’ node under the Report tab.

3. (Optional) To list only Viewsheets in the Repository tree, deselect
the other options from the bottom panel.

4. Select an existing Viewsheet from the Repository tree.

5. Select the Materialized View tab. This displays the ‘Materialized
View’ page.

6. Select the ‘Materialized View’ option. This displays the
‘Materialized Views’ table for the Viewsheet.

ADMINISTRATION REFERENCE

1814 of 2477

7. (Optional) Select ‘Apply VPM’ if you wish to apply existing
VPMs when creating the materialized view. If your VPM filters
data based on particular users, enable ‘Create Materialized View
for all users in group’. This allows a custom materialized view to
be generated for each user, if needed. (See Data Security with
Materialized Views below for more details.) To keep the
materialized view free from the effects of any existing VPMs,
select ‘Bypass VPM’.

8. (Optional) Select ‘Full Data’ to materialize the entire Worksheet
Data Block associated with a materializable Viewsheet component.
Select ‘Minimum Data’ to materialize only those columns of the
Data Block that are directly supplying data to the Viewsheet
component.

The ‘Minimum Data’ option conserves disk space, and is
recommended when you do not expect the Viewsheet to undergo
further editing after deployment. In cases when the Viewsheet will
undergo further development (for example, end-user chart binding
modifications), use the ‘Full Data’ option to ensure that all data is
available for immediate use.

Only Viewsheets con-
taining aggregated
data can be consid-
ered candidates for
materialized views.

9. Press the ‘Analyze’ button to have Enterprise Manager determine
which assemblies in the selected Viewsheet are candidates for a
materialized views.

When the analysis is complete, the ‘Optimize Plan’ dialog box
displays information about the extent of possible materializations.
See Transformations and Faults for more information about the
materialization process.

10. Click ‘OK’ to dismiss the dialog box.

The table now shows the assemblies and their candidacy for
materialized view generation. If the ‘Status’ column indicates

ADMINISTRATION REFERENCE

1815 of 2477

‘Recommended’ for a given assembly, then that assembly is likely
to benefit from materialized view generation. If a materialized view
has already been created for an assembly, the ‘Status’ column will
report ‘Existing.’

11. Press the ‘Select All’ button if you wish to generate all the listed
materialized views. Otherwise select the subset of assemblies for
which you want a materialized view to be generated.

Note: To schedule a materialized view, you must first set the
mv.repository.servlet property in sree.properties to the complete
URL of the Data Server. This allows the Scheduler to communicate
the request to the web application.

12. In the ‘Cycle’ column of the table, select the cycle on which the
materialized view should be generated. (See the Scheduler Cycle
section for more information about defining cycles.)

13. Press the ‘Create’ button. This opens the ‘Create Materialized
Views’ dialog box.

14. In the dialog box, choose one of the following options for initial
materialized view configuration:

The actual material-
ization will take place
on whatever cycle has
been specified.

a. ‘Immediately Without Data’, to configure the materialized view,
but skip the initial materialization process.

b. ‘Immediately With Data’, to configure the materialized view,
and perform the full materialization process. (This may take a
significant amount of time, during which the materialized view
is constructed, and data files are saved into the WEB-INF/
classes/bs directory.)

c. ‘Scheduled’, to specify a particular time at which the initial
materialization should take place. Enter a ‘Notification Email’
to issue an alert on the status of the materialization.

15. Click ‘Create’ to perform the selected operation and close the
dialog box.

ADMINISTRATION REFERENCE

1816 of 2477

The ‘Status’ column in the table on the ‘Materialized View’ page
will now update to display the materialized views that are currently
in existence.

Note: You must ‘Create’ the view before you ‘Apply’ the cycle.

16. Press the ‘Apply’ button at the top of the page. This saves the
specified materialized views and their scheduled cycles.

See Also
Distributing Materialized Views (Data Grid), to improve materialization
performance.
Managing Materialized Views, to manage existing materialized views. see
the
Dashboard Design, for information about creating Viewsheets.

5.9.2 Incrementally Updating a Materialized View

You can schedule a materialized view to be regenerated on a predefined
schedule by assigning a “cycle” to the view. (See Creating a Materialized
View for more information.) This allows the materialized view to be
updated with new data from the database. However, for a large data set,
repeatedly regenerating the materialized view in its entirety may prove
inefficient.

To improve performance, you can update the materialized view
incrementally based on a set of specified conditions. For example, you can
selectively update the materialized view with data which has posted
subsequent to the previous materialization. Likewise, you can delete
selected records from the materialized view if they meet a specified
condition, such as an expiration date.

You can specify an incremental update condition both for mergeable
queries (e.g., JDBC queries) and for non-mergeable queries (e.g., non-
JDBC queries, un-parsable queries, etc.), as described below.

Incrementally Updating a Mergeable Query

To specify the criteria that govern the incremental materialized view update
for a mergeable query (i.e., standard, parsable, JDBC query), add the
desired conditions to the MV Update tab of the Data Block in the Data
Worksheet. The Data Block’s MV Update condition will be tested each
time an existing materialized view is regenerated (based on the cycle
specified for the view), and the view regeneration will be limited to the
additions and deletions specified by the condition. (See Defining a
Materialized View Update Condition in Data Mashup for more information
on how to define the update conditions in the MV Update tab.)

ADMINISTRATION REFERENCE

1817 of 2477

Incrementally Updating a Non-Mergeable Query

To specify the criteria that govern the incremental materialized view update
for a non-mergeable query (e.g., non-JDBC query or un-parsable query),
follow the steps below:

1. Using the Query Wizard in Style Studio, add the desired update
condition to the query definition itself. For example:

SELECT ... FROM T1 WHERE (...) AND DATE_COL =
$(MV.LastUpdateTime)

The update condition can use the special variables
MV.LastUpdateTime, MV.{Column Name}.Min, and MV.{Column

Name}.Max, where “{Column Name}” is the materialized view
column name with non-alphanumeric characters replaced by
underscores. For example, a materialized view column named
‘Year(Order Date)’ should use parameter names
MV.Year_Order_Date_.Min and MV.Year_Order_Date_.Max. (See
Special Parameters for Materialized View Update Conditions in
Data Mashup for more information about these parameters.)

2. Press the ‘Parameter’ button on the Style Studio toolbar to open the
‘Query Variable Definition’ dialog box for the query. Disable
parameter prompting and assign default values to the update
condition parameters so that the result set is not restricted.

This prevents the user from being prompted for these variables, and
ensures that the data is not restricted during the initial materialized
view generation. (See Query Parameters in Data Modeling for
more information about the ‘Query Variable Definition’ dialog
box.)

ADMINISTRATION REFERENCE

1818 of 2477

3. In the MV Update tab of the Worksheet Data Block, enable the
‘Always append updates’ option. (See Defining a Materialized
View Update Condition in Data Mashup for more information
about the MV Update tab.)

This ensures that the results of the non-mergeable query will be
appended to the existing materialized view.

5.9.3 Data Security with Materialized Views

If you are using a VPM to filter data based on particular users, you should
generally enable the ‘Create Materialized View for all users in group’
option. This allows custom materialized views to be generated for each
user (based on their individual VPM permissions). If this option is disabled,
only the group name will be available to the VPM, and the filter will not be
correctly applied for users.

Implementing Security at the Data Block Level

In some cases, the VPM-based approach described above may generate too
many distinct materialized views when security is applied at the user-level.
In this case, you can substitute Data Block filtering in place of VPM-based
filtering. To implement Data Block filtering, follow the steps below:

1. Place a filtering condition directly on the Worksheet Data Block
that supplies data to the Viewsheet. (See Using a Parameter in a
Condition in Data Mashup for directions.) The condition should
include a parameter that filters the Data Block appropriately for a
particular user. For example, the condition

[First Name][is][equal to][$(_USER_)]

filters the Data Block based on the user name by using the
predefined variable _USER_ (which supplies the name of the
currently logged-in user). To filter on a property such as the user’s
corporate customers (i.e., companies), simply define your own
variable to store the information:

[Company][is][one of][$(comp)]

ADMINISTRATION REFERENCE

1819 of 2477

The value of the variable (comp) will be provided by the
SRPrincipal object as explained in the next step.

2. (Optional) Use the setParameter() method of the SRPrincipal
object to assign a value to the Data Block condition variable. You
can do this from within an external module (e.g., an SSO request
filter or Login Listener) or from within an internal Viewsheet
script.

a. From within an external module, assign the desired user data to
an SRPrincipal parameter of the same name as the target
variable. For example, the following Login Listener assigns a
set of companies to the ‘comp’ parameter:

See Accessing the User
Session with SRPrinci-
pal in Integration for
alternate SRPrincipal
access.

import inetsoft.sree.security.*;

public class MyLoginListener implements LoginListener {
public void userLogin(LoginEvent event) {
SRPrincipal prin = event.getPrincipal();
prin.setParameter("comp", new String[] {"Ubermeyer",

"Rutgers Bank", "Bigmart Foodstores"});
}

}

b. From within a Viewsheet script, assign the desired user data to
an SRPrincipal parameter of the same name as the target
variable. For example, the following script assigns a set of
companies to the ‘comp’ parameter:

var p = parameter['__principal__'];
p.setParameter("comp", new String[] {"Ubermeyer",
"Rutgers Bank", "Bigmart Foodstores"});

These procedures pass the desired user data (e.g., companies) directly into
the Data Block condition. If a materialized view has been generated for the
data set, the condition is applied to the post-materialized data set, extracting
the appropriate data for the logged-in user. There is therefore no need to
generate a distinct materialized view for each user.

Multi-tenant Considerations

For multi-tenant implementations utilizing the multi-connection feature,
materialized views are created based on user/group connection
assignments. For this reason, if you set a Viewsheet’s permissions by role
(on the Viewsheet’s Security tab), you should also add individual
permissions for users or groups that have particular connections. This will
enable the materialized views to be generated from the appropriate
connections.

See Also
Configuring Viewsheets, for information about setting Viewsheet security.

ADMINISTRATION REFERENCE

1820 of 2477

Adding Additional Connections, in Data Modeling, for information on
connections.

5.9.4 Materialized View Performance Considerations

When you design Data Worksheets and Viewsheets (dashboards) to be
used with materialized views, keep the following points in mind:

• In the Data Worksheet, try to keep the design as simple as possible.

• In the Data Worksheet, if you are joining or concatenating tables, try to
place any parameterized filtering conditions (i.e., conditions that change
in response to user input or the runtime environment) on the resultant
Data Block rather than on the base tables. Conditions that are placed on
base tables may necessitate the creation of a “sub-materialized view”
corresponding to each base table and require additional post-processing
of these sub-materialized views.

• In the Viewsheet, try to place selection (filtering) components such as
Selection List and Range Slider on the resultant Data Block of the Data
Worksheet (i.e., the final Data Block resulting from join or
concatenation operations) rather than on the base tables.

• In the Viewsheet, try to avoid creating tables that display large numbers
of records (i.e., long, scrolling tables).

• If you wish to add a fixed filter condition (i.e., a condition that does not
change in response to user input or the runtime environment),
implement the fixed condition in the Data Worksheet rather than in the
Viewsheet.

See Transformations and Faults for an approach to addressing other
common impediments to effective materialization.

See Also
Transformations and Faults, for more information about designing
Worksheets to facilitate materialization.

5.9.5 Transformations and Faults

When a particular data view component (Chart, Table, etc.) is materialized,
the materialization process caches the data in the underlying Worksheet
Data Block to which the component is bound. This allows the component
to rapidly query the cached dataset rather than the database.

In order for the underlying Data Block to be materialized, any Viewsheet
selections (e.g., Selection Lists) that filter the Data Block must be applied
directly to the Data Block itself, rather than to any precursor data blocks.
For example, consider the following Worksheet:

ADMINISTRATION REFERENCE

1821 of 2477

This Worksheet is used by a Viewsheet that has the following component
bindings:

• Chart (data view component) bound to the resultant ‘Query1’ Data
Block

• Range Slider bound to the ‘NJ Orders1’ Data Block

• Selection List bound to the ‘NY Orders1’ Data Block

To materialize the ‘Query1’ Data Block for use by the Chart, the
materialization process must first transform the Viewsheet by “moving up”
the selection components to operate on the resultant Data Block, as shown
below:

The automatic trans-
formation is internal,
and does not alter the
actual Viewsheet.

This transformation process is done internally and automatically during the
materialization process. The result of the transformation is a new
representation that preserves the same data as the original Data Block but is
more appropriate for querying. However, when the transformation cannot
be accomplished in a way that preserves the data intact, Enterprise
Manager displays a “fault” in the ‘Optimize Plan’ dialog box. The fault
means that the Data Block in question cannot be materialized.

In many of these instances, you may be able to facilitate materialization by
“moving the selection up.” To do this, evaluate the placement of your

ADMINISTRATION REFERENCE

1822 of 2477

selection components, and try to relocate them (i.e., move them up) to filter
the resultant Data Block rather than the precursor Data Blocks. By doing
this you may enable Enterprise Manager to materialize the problem Data
Block.

5.9.6 Managing Materialized Views
Materialized views
are available only for
Viewsheets.

You can manage existing materialized views from the ‘Materialized View’
page under the ‘Repository’ node of the Server tab.

Figure 30. The Materialized View management page.

Select ‘Backup Materialized View’ to maintain one or more backups of the
existing materialized views. In the event that a materialized view fails to
generate, this allows you to restore a prior functional materialized view
from back-up rather than regenerating the entire materialized view.

The number of successive materialized view versions to maintain as
backups is specified by the mv.backup.dup property in the sree.properties
file. (The default is 1.) When ‘Backup Materialized View’ is enabled,
backups of existing materialized views are automatically created whenever
the materialized views are regenerated, i.e., whenever the associated cycles
are executed. You can also create a backup on-demand (see below).

To restore a materialized view to a backed-up version or to create a backup
on-demand, follow the steps below:

1. Press the ‘Edit Materialized View’ button in the ‘Available’ column
for the materialized view you wish to restore or backup.

ADMINISTRATION REFERENCE

1823 of 2477

This opens the ‘Manage Materialized Views’ dialog box.

2. To restore the selected materialized view to one of the backup
versions, select the desired ‘Backup MV’ materialized view, and
press ‘Restore’.

This restores the selected backup materialized view to be the
current working materialized view.

3. To create a new backup of the selected materialized view, select the
desired ‘Default MV’ materialized view, and press ‘Backup’.

You can make as many backups as allowed by the mv.backup.dup
property in the sree.properties file.

4. Press the ‘Close’ button to exit the ‘Manage Materialized Views’
dialog box.

To delete a materialized view (for example, if changes have been made to
the underlying database schemas), select the materialized view in the table
and press the ‘Delete’ button below the table.

ADMINISTRATION REFERENCE

1824 of 2477

See Also
Creating a Materialized View, for information on materialized view
creation.
Dashboard Design, for more information about creating and editing
Viewsheets.

5.9.7 Distributing Materialized Views (Data Grid)

To improve Viewsheet performance, you can distribute a materialized view
across multiple machines. This distributed configuration is called a data
grid. In a data grid, the materialized dataset is saved on separate physical
machines (nodes) in the grid. This allows the Viewsheet server to pull small
blocks of data from each of the nodes, thereby distributing the processing
load and minimizing hard disk access for any particular machine. This
increases total throughput and improves Viewsheet responsiveness.

A data grid is completely transparent to the end-user. Users can access their
Viewsheets in the same manner regardless of whether a data grid has been
configured or not. However, Viewsheet performance will in general be
better with a data grid in place.

A data grid configuration consists of the following components:

• Report Server: The Report Server is a J2EE web application that
handles all user requests for reports and Viewsheets in the repository.
The Report Server also provides access to the Enterprise Manager for
managing the repository and the Scheduler application. For Viewsheets
that utilize materialized views, the Report Server delegates data retrieval
to the Data Server.

• Data Server: The Data Server is a J2EE web application that handles
materialized view requests from the Report Server and dispatches tasks
to the Data Nodes. The Data Server also provides access to the
Enterprise Manager for monitoring data grid status and managing
materialized views. The Data Server requires an ‘H’ or ‘G’ key.

Note: Each Data Node must be a distinct machine.

• Data Node: A Data Node is a machine running the Data Node service, a
stand-alone Java process that has no user interface and does not require
a web application container. The Data Nodes store data from the
materialized view and respond to requests for data from the Data Server,
(via socket connections). A Data Node requires an ‘H’ or ‘G’ key.

You can configure the Report Server, Data Server, and Data Node in
various ways, as described in the following sections. Note that the Data
Server and a Data Node cannot reside on the same machine, except in the
default installation (Report Server, Data Server, and Data Node on Same
Machine (Default)).

ADMINISTRATION REFERENCE

1825 of 2477

Report Server, Data Server, and Data Node on Same Machine (Default)

The default Style Intelligence installation procedure installs a Report
Server, which includes a Data Server and single Data Node. If you do not
explicitly configure a multiple-machine data grid (as described in later
sections), the Report Server automatically starts the Data Server and Data
Node on the same machine.

Figure 31. Report Server, Data Server, and Data Node on one machine

Viewsheet materialization with this default configuration generally delivers
an improvement in performance over non-materialized Viewsheets. If
performance is satisfactory, you do not need to further modify any settings.
However, you can generally obtain better performance for materialized
Viewsheets by distributing the materialized view across multiple machines,
as described in the following sections.

To create a materialized view using Enterprise Manager, see Creating a
Materialized View.

Report and Data Server on Machine 1, Data Nodes on Machines 2-N

You can install the Report Server and Data Server on a single machine, and
distribute the Data Nodes across a different set of machines.

Repository Servlet
Data Server

webapp container

physical machine

Clients

JVM

Data Node 1

ADMINISTRATION REFERENCE

1826 of 2477

Figure 32. Report and Data Server on Machine 1, Data Nodes on
Machines 2-N

To configure the data grid this way, follow the steps below:

1. Install the Report Server on the desired machine by using the ‘Stan-
dard Server’ option of the Style Intelligence installer.

Note: You must access Enterprise Manager in order for the Data
Nodes to connect successfully.

Repository Servlet
Data Server

. . .

webapp container

physical machine

JVM

physical machine

JVM

physical machine

Data Node 1

JVM

physical machine

Clients

Data Node 2 Data Node N

ADMINISTRATION REFERENCE

1827 of 2477

2. Start the Style Intelligence server. In a browser, log into the
Enterprise Manager.

3. For each Data Node machine, configure the node by following the
steps below:

a. Run the Style Intelligence installer on the machine that will host
the Data Node.

b. On the ‘License Key’ page, enter the appropriate “G” key or
“H” key.

c. On the ‘Installation Type’ page, select the ‘Data Grid Node’
option.

d. On the ‘Server Configuration’ page, set the ‘Node host name’
and ‘Node address’ as appropriate for the machine onto which
you are installing the Data Node. Set the ‘Server host name’ and
‘Server address’ to the name and address of the machine hosting
the Data Server.

ADMINISTRATION REFERENCE

1828 of 2477

e. Follow the rest of the on-screen installation instructions to
complete the installation of the Data Node.

f. Launch the Data Node from the Windows Start menu.
(Alternatively, execute bin/DataGrid.exe.)

This will open a command window. After a few moments, the
command window should indicate a successful connection to
the Report/Data Server machine.

4. On the Report Server machine, return to Enterprise Manager. Open
the ‘Server’ > ‘Data Grid’ page under the Server tab. Verify that
the Data Node machine you have started is shown with “alive”
status.

Figure 33. The Data Grid page.

ADMINISTRATION REFERENCE

1829 of 2477

To create a materialized view in this data grid environment, use Enterprise
Manager on the Report/Data Server machine. See Creating a Materialized
View.

Report Server on Machine 1, Data Server on Machine 2, Data Nodes on
Machines 3-N

You can isolate each component of the data grid so that the Report Server,
Data Server, and each Data Node reside on an independent machine. Note
that the Report Server and Data Server must still access a shared SREE
Home repository location.

Figure 34. Report Server on Machine 1, Data Server on Machine 2,
Data Nodes on Machines 3-N

To configure the data grid this way, follow the steps below:

1. Install the Report Server on the desired machine by using the ‘Stan-
dard Server’ option of the Style Intelligence installer.

SREE
Home

Repository Servlet

webapp container

physical machine

JVM p
hy

si
ca

l
m

a
ch

in
e

Clients

Data Server

webapp container

physical machine

JVM

JVM

p
h

ys
ic

a
l

m
ac

h
in

e
p

hy
si

ca
l

m
a

ch
in

e

Data Node 1

Data Node 2

Data Node N

ADMINISTRATION REFERENCE

1830 of 2477

The Report Server SREE Home directory must be accessible to the
Data Server.

2. Set sharing on the SREE Home directory (default: sree/WEB-INF/
classes) so that it can be accessed from another machine.

3. If the Report Server is running, stop it now.

4. Install the Data Server on the desired machine. Follow the steps
below:

a. Run the Style Intelligence installer on the machine that will host
the Data Server.

b. On the ‘License Key’ page, enter the appropriate “G” key or
“H” key.

c. On the ‘Installation Type’ page, select the ‘Data Grid Server’
option.

ADMINISTRATION REFERENCE

1831 of 2477

d. On the ‘Server Configuration’ page, set the ‘Registry directory’
to the SREE Home directory that you shared in a previous step.
Set the ‘Host name’ and ‘Address’ as appropriate for the
machine onto which you are installing the Data Server.

e. Follow the rest of the on-screen installation instructions to
complete the installation.

In addition to installing the Data Server onto the target machine,
the installer also adds a number of properties to the
sree.properties file in the shared SREE Home directory.
Among the properties that are automatically added are the
following: comm.port, comm.this.host,
comm.{machineName}.ips, fs.server.

5. Make certain that any required database drivers are present in the
sree/WEB-INF/lib directory of the Data Server.

ADMINISTRATION REFERENCE

1832 of 2477

6. Launch the Data Server from the Windows Start menu.
(Alternatively, execute bin/InetsoftServer.exe.) There may be a
slight delay before the Data Server starts.

7. On the Report Server machine, launch the Style Intelligence Server
from the Windows Start menu.

8. Log into Enterprise Manager on the Report Server machine.

9. For each Data Node machine, configure the node by following the
steps below:

a. Run the Style Intelligence installer on the machine that will host
the Data Node.

b. On the ‘License Key’ page, enter the appropriate “G” key or
“H” key.

c. On the ‘Installation Type’ page, select the ‘Data Grid Node’
option.

d. On the ‘Server Configuration’ page, set the ‘Node host name’
and ‘Node address’ as appropriate for the machine onto which
you are installing the Data Node. Set the ‘Server host name’ and
‘Server address’ to the name and address of the machine hosting
the Data Server (not the Report Server machine).

ADMINISTRATION REFERENCE

1833 of 2477

e. Follow the rest of the on-screen installation instructions to
complete the installation of the Data Node.

f. Launch the Data Node from the Windows Start menu.
(Alternatively, execute bin/DataGrid.exe.)

This will open a command window. After a few moments, the
command window should indicate a successful connection to
the Data Server machine.

Enterprise Manager
on the Report Server
machine cannot dis-
play node status.

10. Open Enterprise Manager on the Data Server machine (not the
Report Server machine). Open the ‘Server’ > ‘Data Grid’ page
under the Server tab. Verify that all Data Nodes you have
previously started are shown with “alive” status.

Figure 35. The Data Grid page.

ADMINISTRATION REFERENCE

1834 of 2477

To create a materialized view in this data grid environment, you must log
into Enterprise Manager on the Data Server machine. (You cannot create a
materialized view by using Enterprise Manager on the Report Server
machine.) See Creating a Materialized View for further information.

Default Materialization in a Clustered Environment

The default installation for a clustered reporting environment is the same as
that for a non-clustered environment, described in Report Server, Data
Server, and Data Node on Same Machine (Default). See Configuring
Server Clustering for information about setting up a reporting cluster.

In this default configuration, the Report Server, Data Server, and Data
Node are installed on a single machine. If you do not explicitly configure a
multiple-machine data grid (as described in Distributed Materialization in
a Clustered Environment), the Report Server starts the Data Server and
Data Node on the same machine.

ADMINISTRATION REFERENCE

1835 of 2477

Figure 36. Report Server, Data Server, and Data Node on one machine,
in clustered environment

To obtain better performance, distribute the materialized view across
multiple machines as described in Distributed Materialization in a
Clustered Environment. To create a materialized view using Enterprise
Manager, see Creating a Materialized View.

Distributed Materialization in a Clustered Environment

If you are using a clustered environment for report generation (as explained
in Configuring Server Clustering), and you want to distribute your
materialized views across multiple data nodes, use independent machines
for each cluster node and each data node, as shown below.

physical machine

Clients

JVM

Data Node 1

Cluster Node 1
Repository Servlet

Administration Servlet
Data Server

Load Balancer
Cluster Servlet

Cluster Node 2
Repository Servlet

Cluster Node N
Repository Servlet

Cluster Node 3
Repository Servlet

webapp container

webapp container

webapp container

webapp container

webapp container

. . .

SREE
Home

ADMINISTRATION REFERENCE

1836 of 2477

Figure 37. Data Grid in a Clustered Environment

To configure a data grid in a clustered environment, follow the steps below:

1. Follow the instructions in Configuring Server Clustering to created
a clustered reporting environment.

2. Follow the instructions in Report Server on Machine 1, Data
Server on Machine 2, Data Nodes on Machines 3-N to create a data
grid. However, note the following:

Do not install the Report Server as described in step 1. The
machine which you have already configured in the reporting cluster
as “Cluster Node 1” (containing the Administration Servlet) will
act as the Report Server for the data grid.

Do not install the Data Server or Data Nodes on any machine
which is already being used as a node in the reporting cluster.

Cluster Node 2
Repository Servlet

Cluster Node N
Repository Servlet

Cluster Node 3
Repository Servlet

webapp container

webapp container

webapp container

physical machine

Repository Servlet
Data Server

. . .

webapp container

physical machine

JVM

physical machine

JVM

physical machine

JVM

physical machine

. . .

Clients

SREE
Home

Data Node 1

Data Node 2

Data Node N

JVM

Cluster Node 1
Repository Servlet

Administration Servlet

Load Balancer
Cluster Servlet

webapp container

webapp container

ADMINISTRATION REFERENCE

1837 of 2477

3. Verify that the cluster proxy, cluster nodes, and Data Server are all
utilizing the same SREE Home directory. This allows the cluster
nodes and the Data Server to share the same materialized view and
security settings, so that a materialized query created by a cluster
node can be executed on the Data Server.

To create a materialized view in this data grid environment, you must log
into Enterprise Manager on the Data Server machine. (You cannot create a
materialized view by using Enterprise Manager on any other machine.) See
Creating a Materialized View for further information.

Troubleshooting

If one or more Data Nodes are not accessible to the Data Server (i.e., the
Data Nodes are not listed on the ‘Data Grid’ page in Enterprise Manager on
the Data Server machine), check the following settings.

• The Report Server and Data Server must share the same SREE Home
directory. (See Specifying the Repository Directory to change the SREE
Home location used by a Style Intelligence server.) Make sure that
“sharing” is set appropriately so that this folder is accessible to both
servers.

• In the sree.properties file within the shared SREE Home directory, the
fs.local property should be set to false if you are using a distributed
materialized view. The fs.local property should be set to true only in
the following cases:

 – Report Server, Data Server, and Data Node on Same Machine (Default)
 – Default Materialization in a Clustered Environment

• In the sree.properties file within the shared SREE Home directory, the
fs.server property should specify the host name of the Data Server.

• In the sree.properties file within the shared SREE Home directory, the
fs.nodes property should specify the host name of all the Data Nodes,
separated by spaces.

The settings in the sree.properties file are generally configured
automatically by the installer. However, if you discover that the fs.local,
fs.server, or fs.nodes properties are not assigned the correct values in the
sree.properties file, enter the correct values by manually editing the
sree.properties file.

ADMINISTRATION REFERENCE

1838 of 2477

6 Security

Security is an important part of any enterprise application. InetSoft’s
security model provides security at both a component and functional level,
e.g., a user is able to view a report, but is not be able to perform Ad Hoc
reporting operations on it. InetSoft’s security model also provides security
at a very granular object level, e.g., a user who has Ad Hoc reporting
permissions may not have access to all the data models or queries in the
data source and query registries (datasource.xml and query.xml). The
security model is highly adaptable and configurable, e.g., you can import
your existing users/groups/roles from a database or an LDAP server
without redefining them in InetSoft’s software.

There are two fundamental components to setting up security:

1. Specifying a Security Provider and optionally defining users,
groups and roles.

2. Specifying permissions for reports and other components.

6.1 Specifying a Security Provider
A security provider is a module which handles security operations for the
report server. You can specify independent security providers to provide the
following functions:

You must specify a
security provider in
order to generate
server audit records.

• Authentication: Retrieving users, roles, and groups; authenticating
logins.

• Authorization: Storing and retrieving permissions for different
components and functions.

See Also
Selecting a Security Provider, in Integration, for information on choosing a
security configuration.

6.1.1 The Security Provider Page

To administer security provider options, select the ‘Server’ > ‘Security’
option under the Server tab.

ADMINISTRATION REFERENCE

1839 of 2477

Figure 38. Specifying a Security Provider

Select ‘Enable Security’ to activate security settings.

In the ‘Authentication’ menu, select the desired method for verifying user
login credentials. In the ‘Authorization’ menu, select the desired method
for assigning asset and activity permissions.

Enterprise Manager provides a default security provider to handle
authentication, creation of users/groups/roles, and the storage of
component permissions. For information on using the default security
provider for authentication and/or authorization, see Configuring the
Default Security Provider.

If your users/groups/roles have been pre-defined in an LDAP server (e.g.,
Active Directory), Enterprise Manager can access the existing LDAP data
for authentication and/or authorization. For more information, see
Configuring an LDAP Security Provider.

You can also create a custom security provider as a Java class that
implements the ‘Security Provider’ interface, and which can be used when
retrieving users/groups/roles from a database. See Custom Security
Integration for more details.

See Also
Selecting a Security Provider, in Integration, for information on choosing a
security configuration.

6.1.2 Configuring the Default Security Provider

The default security provider is a built-in implementation of the InetSoft
security model, and does not require any special configuration.

To use the default provider for authentication (i.e., verifying user
credentials), select the ‘Default’ option from the ‘Authentication’ menu on
the ‘Security Provider’ page. (See Specifying a Security Provider.) User/
group authentication information is accessed from the password.xml file.

To use the default provider for authorization (i.e., assigning permissions
and access), select the ‘Default’ option from the ‘Authorization’ menu on

ADMINISTRATION REFERENCE

1840 of 2477

the ‘Security Provider’ page. (See Specifying a Security Provider.)
Authentication information is accessed from the acl.xml file. Roles are
stored in the role.xml file.

Note: When using the ‘Default Security Provider’, the default
login/password to the Enterprise Manager is admin/admin.

When you select the default security provider for authorization, you can
use the Users tab of Enterprise Manager to create users/groups/roles and
associate these with components and objects managed by the server. See
the Users, Roles, and Groups and Setting Permissions sections for details
on how to set up users/groups/roles and assign permissions.

6.1.3 Configuring an LDAP Security Provider

The LDAP security provider is useful when your users, groups, and roles
are already defined in an LDAP environment such as Active Directory, Sun
ONE (iPlanet), or any generic LDAP implementation. You can use the
LDAP server for either authentication or authorization, although LDAP is
not generally recommended for authorization.

LDAP is recommended for authentication but not for authorization
because authorization requires modification of the LDAP schema.

To use the LDAP security provider for authentication (i.e., verifying user
credentials), select the ‘LDAP’ option from the ‘Authentication’ menu on
the ‘Security Provider’ page. (See Specifying a Security Provider.) All user,
group, and role information is retrieved from the LDAP server and cannot
be created or configured in Enterprise Manager. To configure the LDAP
connection, see Defining the LDAP Schema.

To use the LDAP security provider for authorization (i.e., assigning
permissions and access), select the ‘LDAP’ option from the
‘Authorization’ menu on the ‘Security Provider’ page. (See Specifying a
Security Provider.) Authentication information is then stored and accessed
from the LDAP server (with modification of the LDAP schema). See
Writing to the Active Directory Schema for information on making the
Active Directory schema writable.

See Also
Selecting a Security Provider, in Integration, for information on choosing a
security configuration.

Defining the LDAP Schema

The structure of the LDAP schema must be defined in the Enterprise
Manager. To add schema information, follow the steps below:

1. Select the Server tab, and then select the ‘Server’ > ‘Security’
option to open the ‘Security Provider’ page.

ADMINISTRATION REFERENCE

1841 of 2477

LDAP is recommended for authentication but not for authorization
because authorization requires modification of the LDAP schema.

2. Select the ‘LDAP Security Provider’ option for ‘Authentication’ or
‘Authorization’, as desired.

3. If you use a back-up LDAP server to provide security in the event
of a primary server failure, check ‘Enable Backup Server’.

4. Select ‘Main server’ from the ‘Enable Backup Server’ menu.

5. Choose the appropriate LDAP server implementation from the
‘LDAP Server’ menu. Make sure the main LDAP server is
correctly installed and configured, and supply the necessary
connection information. See Sun ONE (iPlanet) Server, Active
Directory Server, and Generic LDAP Server for more details.

6. Select ‘Backup server’ from the ‘Enable Backup Server’ menu.

7. Choose the appropriate LDAP server implementation from the
‘LDAP Server’ menu. Make sure the backup LDAP server is
correctly installed and configured, and supply the necessary
connection information. See Sun ONE (iPlanet) Server, Active
Directory Server, and Generic LDAP Server for more details.

8. Press ‘Apply’ to save the settings.

9. Press the ‘Test Connection’ button to test the connection to the
LDAP database. When the connection has been verified, the ‘Test
Administrator Login’ dialog box is displayed.

10. (Optional) Enter the administrator login credentials for the LDAP
server, and press ‘Test’. When you have confirmed a successful
login, press the close button (X) to dismiss the dialog box.

Once the directory server environment is configured, you can assign
permissions to users/groups/roles for different components and functions.
(See Setting Permissions for more information.)

Notes on LDAP Security Providers

• Since directory servers do not currently support roles fully, groups in the
LDAP schema are mapped to roles in Style Intelligence.

ADMINISTRATION REFERENCE

1842 of 2477

• If the administrator password on the LDAP server is changed, you will
not be able to log into Enterprise Manager in the usual way. Instead, log
into Enterprise Manager by using the administrator’s Distinguished
Name (DN) together with the new LDAP administrator password. This
allows Enterprise Manager to connect to the LDAP server and update
the security configuration. You can then log into Enterprise Manager
using the usual administrator credentials.

• Enterprise Manager authentication is integrated with Report Server
authentication. Therefore, when you enable an LDAP security provider
authentication you can no longer log into the EM using the default
‘admin/admin’ credentials. Instead, you must log in as a user with an
‘Administrator’ role (group). If there is no role (group) named
‘Administrator’ in your system, you can set the role by adding the
‘role.administrator’ property in the sree.properties file, e.g.,
role.administrator=SRAdmin.

• The performance of any AbstractSecurityProvider security
implementation (including LDAP security) can be enhanced by setting
‘security.cache=true’ in the sree.properties file.

• Security data is cached. To refresh the cache when security data
changes, press the ‘Clear Security Cache’ button on the ‘Performance
Options’ page. See Tailoring Server Performance for more information.

The following sections provide a detailed description of how to set up the
different types of LDAP implementation supported by InetSoft products.

Sun ONE (iPlanet) Server

To use the Sun ONE Directory Server, select ‘iPlanet/SunOne’ from the
‘LDAP Server’ menu under the ‘Security Provider’ page. (See Specifying a
Security Provider information about the ‘Security Provider’ page.)

ADMINISTRATION REFERENCE

1843 of 2477

Figure 39. LDAP Environment Setup for Sun ONE (iPlanet)

When using the Sun ONE Directory Server, you must set up a base DN
(Distinguished Name, e.g., dc=inetsoft, dc=com) for the company. In
addition, you should configure the server by setting up access permissions
for this DN. Finally a schema must be created to enable access to deployed
reports via Sun ONE.

When the Sun ONE (iPlanet) Directory Server is correctly installed and
configured, you must next create a report schema. To create the schema,
follow these steps:

1. Start the Sun ONE server console, expand the node under root that
corresponds to the DN, e.g., ‘inetsoft’ (in the left pane), then
expand the node ‘Server Group’.

2. Click on ‘Directory Server’ in the left pane, then click the ‘Open’
button in the right pane.

3. Open the Directory Server console, click the Configuration tab,
and highlight the node ‘schema’ under the root of
‘hostname.inetsoft:389’, where ‘hostname’ is your machine name
and ‘inetsoft’ is your DN.

4. In the right pane, select the Attributes tab.

5. To add a new attribute, click the ‘Create’ button on the bottom of
the page.

6. Fill all mandatory fields in the pop up dialog titled ‘Create
Attribute’ then click ‘OK’.

ADMINISTRATION REFERENCE

1844 of 2477

7. Repeat Steps 4 and 5 to add all attributes listed in the Table 7
below.

8. To add a new objectclass, select the Object classes tab at the top of
the screen, then click the ‘Create’ button at the bottom of the
screen.

9. In the ‘Name’ field, type “inetsoftreplet”, then select ‘cn’ from the
‘Available’ attributes list and move it to the ‘Required’ attributes
list. Continue to move all attributes you created in Step 7 from the
‘Available’ attributes list to the ‘Required’ attributes list, then click
‘OK’

10. Go back to the Object classes tab. Object class ‘inetsoftreplet’
should be in the object classes list

Table 7. Example Schema for Sun ONE Directory Server

• objectclass inetsoftreplet

• dn: ‘cn=charts, dc=inetsoft’

• RDN: ‘cn=charts’

• objectclass inetsoftreplet
oid inetsoftreplet-oid
superior top

• requires
cn,

ATTRIBUTE DESCRIPTION CLASS
DEFINED

DATA TYPE

cn report name top Directory String

readusers Users have ‘read’
permission

inetsoftreplet Directory
String(multi-valued)

writeusers Users have ‘write’
permission

inetsoftreplet Directory
String(multi-valued)

deleteusers Users have ‘delete’
permission

inetsoftreplet Directory
String(multi-valued)

readgroups Groups have ‘read’
permission

inetsoftreplet Directory
String(multi-valued)

writegroups Groups have ‘write’
permission

inetsoftreplet Directory
String(multi-valued)

deletegroups Groups have
‘delete’ permission

inetsoftreplet Directory
String(multi-valued)

default If this report is
default
no / yes

inetsoftreplet Directory
String(multi-valued)

ADMINISTRATION REFERENCE

1845 of 2477

• allows
readusers,
writeusers,
deleteusers,
readgroups,
writegroups,
deletegroups,
default

Active Directory Server

To use an Active Directory server for authentication, select ‘LDAP’ from
the ‘Authentication’ menu on the ‘Security Provider’ page, and select
‘Active Directory’ from the ‘LDAP Server’ menu. (See Specifying a
Security Provider for more information about the ‘Security Provider’
page.)

LDAP is recommended for authentication but not for authorization
because authorization requires modification of the LDAP schema.

When configuring an Active Directory server to perform authentication for
Style Intelligence, take note of the following points:

• An Active Directory schema can contain a large number of objects
(users, security groups, etc). Before setting up the security provider in
Enterprise Manager, use a tool like Apache Directory Studio (http://
directory.apache.org/studio/downloads.html) to browse your schema
and become familiar with its structure.

• It is highly recommended that you add new security groups to the
Active Directory schema to support Style Intelligence users. For
example, add security groups such as ‘InetSoftAdmin’, ‘InetSoftUser’,
‘InetSoftDeveloper’, etc., to the Active Directory schema, and then add
the appropriate users to these groups.

• A security group in Active Directory is equivalent to a role in Style
Intelligence.

• An organizational unit in Active Directory is equivalent to a group in
Style Intelligence.

• A search base is the location within Active Directory from which Style
Intelligence will search for and load users, security groups, etc. It is
typically mapped to an organizational unit, for example,
ou=Departments. A search base can also be a composite of multiple
search bases separated by a semicolons, e.g.,
ou=IT,ou=Departments;ou=Sales,ou=Departments.

• After you configure LDAP security, you can no longer log into
Enterprise Manager using the default admin/admin credentials. You
must log in as a user who has the administrator role security group.

http://directory.apache.org/studio/downloads.html
http://directory.apache.org/studio/downloads.html

ADMINISTRATION REFERENCE

1846 of 2477

• After you configure LDAP security, you can no longer add users/
groups/roles from within the Users tab in Enterprise Manager. You must
do this from within Active Directory. However, the Users tab allows
you to view the users defined in Active Directory.

Figure 40. LDAP Environment Setup for Active Directory

Sample Active Directory Setup

In the following example, consider the following Active Directory schema.
The bullets below indicate how to fill out the ‘Security Provider’ page for
this schema.

ADMINISTRATION REFERENCE

1847 of 2477

• Root DN: The ‘Root DN’ (here, “dc=vm”) is automatically appended to
all units within Style Intelligence and need not be included in any other
entry.

• User Search Base/Group Search Base: To search all units below the
‘Departments’ unit, set ‘User Search Base’ and ‘Group Search Base’ to
“ou=Departments”. (If you want to include only the ‘Accounts’ and
‘Sales’ units, set
“ou=Accounts,ou=Departments;ou=Sales,ou=Departments”.)

• Role Search Base: To search the ‘InetSoftRoles’ unit, set ‘Role Search
Base’ to “ou=InetSoftRoles,ou=Roles”.

ADMINISTRATION REFERENCE

1848 of 2477

• Administrator ID: The ‘Administrator ID’ in this case is “ou=James
Brown,ou=Admin”. Any account with sufficient read permissions can be
used (preferably a service account). It does not need to be an Active
Directory domain administrator, and does not need to be in the user
search base.

The ‘Security Provider’ page for these setting appears as follows:

ADMINISTRATION REFERENCE

1849 of 2477

Writing to the Active Directory Schema

Note: It is recom-
mended that you use
the built-in security
provider for authori-
zation. See Specifying
a Security Provider.

To use an Active Directory server for authorization, you should enable
writing to the schema. To do this, follow the steps below:

1. ‘Start’ >’Run’

2. Type “mmc” and click ‘OK’

3. Select the ‘Console’ > ‘Add/Remove Span-In’ menu and click
‘Add’.

4. Select ‘Active Directory Schema’ and click ‘Add’

5. Select ‘Active Directory Users and Groups’ and click ‘Add’

6. Select ‘Close’ and then ‘OK’

7. Right-click ‘Active Directory Schema’ in the tree on the left

8. Select ‘Change Domain Controller’

9. If the Current DC is not correct, select ‘Specify Name’, enter the
DC, and click ‘OK’

10. Right click ‘Active Directory Schema’ and select ‘Operations
Master’

11. If the Current Operations Master is not the same as the DC you just
entered, click the ‘Change’ button

12. Check the “The Schema may be modified...” box.

ADMINISTRATION REFERENCE

1850 of 2477

13. Click ‘OK’ and exit the MMC

Note that the administrator account needs to be a member of the Schema
Admins group.

Generic LDAP Server

To use any other LDAP server, select ‘Generic’ from the ‘LDAP Server’
menu under the ‘Security Provider’ page. (See Specifying a Security
Provider information about the ‘Security Provider’ page.)

Figure 41. LDAP Environment Setup for Generic LDAP server

Note that a fully qualified name must be entered for the Administrator ID.

ADMINISTRATION REFERENCE

1851 of 2477

Table 8. Environment Setting Properties

PROPERTY
NAME

DESCRIPTION

Host Name The host name of the server that is running the directory
server.
Example: inetsoft.com

Port The port number on which the directory server is
listening.
Example: 389

Root DN The distinguished name [DN] of the root of the
directory server.
Example: dc=inetsoft,dc=com

Administrator
ID

The distinguished name [DN] of the directory server
administrator.
Example: cn=manager,dc=inetsoft,dc=com

Administrator
Password

Directory server administrator's password.
Example: secret

Administrator
Role

The name of the administrator role in the LDAP provider.

User Search
Filter

The search filter used to find system users.
Example: (objectclass=person)

User Search
Base

The base directory from which user searches will be
performed.
Example: ou=People

User
Attribute

The name of the attribute in the user entry that will be used as
the user ID.
Example: uid

Group Search
Filter

The group search filter used to find system groups.
Example: (objectclass=organizationalunit)

Group Search
Base

The base directory from which group searches will be
performed.
Example: ou=People

Group
Attribute

The name of the attribute in the group entry that will be used
as the group ID.
Example: ou

Role Search
Filter

The role search filter used to find system roles.
Example: (objectclass=groupofuniquenames)

Role Search
Base

The base directory from which role searches will be
performed.
Example: ou=Groups

Role
Attribute

The name of the attribute in the role entry that will be used as
the role ID.
Example: cn

User-Role
Search Filter

The user-role search filter used to find the roles assigned to a
specific user. This property is a standard LDAP search filter
in which the string “{0}” will be replaced with the user ID.
Example:

(&(objectclass=groupofuniquenames)
 (uniquemember=uid={0},*))

ADMINISTRATION REFERENCE

1852 of 2477

If using OpenLDAP, there are a few additional steps.

1. Copy {Install Directory}/lib/inetsoft.schema to

/etc/openldap/schema/

2. Edit /etc/openldap/slapd.conf to add the following line:

include /etc/openldap/schema/inetsoft.schema

6.1.4 Custom Security Integration

Use custom security integration when your users/roles/groups are already
defined in existing systems, but the Style Intelligence server has no
mechanism of directly accessing this information; e.g., database, web
service (SOAP).

Composite Security Provider

The recommended approach for implementing custom security is to use the
composite security provider. The composite security provider modularizes
security into authentication and authorization functions. Authentication
deals with retrieving user/role/group information and validating login
requests. Authorization deals with assigning report- and portal-related
permissions.

Required Settings for Composite Security

In order to set up composite security directly add the following properties
in the ‘sree.properties’ file.

security.provider =
inetsoft.sree.security.CompositeSecurityProvider

security.authentication.provider={AuthenticationProvider}
security.authorization.provider={AuthorizationProvider}

{AuthenticationProvider} can be one of:

• inetsoft.sree.security.FileAuthenticationProvider

• inetsoft.sree.security.ldap.ADSecurityProvider

• inetsoft.sree.security.ldap.IPlanetSecurityProvider

• inetsoft.sree.security.ldap.GenericLdapSecurityProvider

• class which extends
inetsoft.sree.security.AbstractAuthenticationProvider e.g.,
com.company.security.MyAuthorizationProvider

{AuthorizationProvider} can be one of:

• inetsoft.sree.security.FileAuthorizationProvider

ADMINISTRATION REFERENCE

1853 of 2477

• inetsoft.sree.security.ldap.ADSecurityProvider

• inetsoft.sree.security.ldap.IPlanetSecurityProvider

• inetsoft.sree.security.ldap.GenericLdapSecurityProvider

• class which extends
inetsoft.sree.security.AbstractAuthorizationProvider, e.g.,
com.company.security.MyAuthorizationProvider

Example: Extending AbstractAuthenticationProvider

The listing below provides an illustration of Extending the
AbstractAuthenticationProvider. Please refer to the API JavaDoc for more
information about these classes.

Listing 1. Extending the AbstractAuthenticationProvider Class

public class MyAuthentication extends
inetsoft.sree.security.AbstractAuthenticationProvider {

public boolean authenticate(String user, Object
credential){

//validate user credentials
//credential is object of type
//inetsoft.sree.security.DefaultTicket

}
public String[] getUsers() {

// return a list of all user logins
}

public String[] getUsers(String group) {
// return a list of usernames in the given group

}

public String[] getIndividualUsers() {
// return a list of usernames not belonging to a

group
}

public User getUser(String name) {
// return a inetsoft.sree.security.User object

}

public String[] getRoles() {
// return a list of all Roles

}

public String[] getRoles(String user) {
// return a list of all Roles for a given user

}

public Role getRole(String name) {
// return a inetsoft.sree.security.Role object

}

public String[] getGroups() {
// return a list of all Groups

}

public Group getGroup(String name) {
// return a inetsoft.sree.security.Group object

ADMINISTRATION REFERENCE

1854 of 2477

}

public void tearDown() {
//teardown the security provider

}

}

Note: Do not override the 'findIdentity()' method of the
'AbstractAuthenticationProvider' as it is already complete.

It is advisable to implement internal caching within your security provider
(especially if it is DB-based), because many methods such as ‘getUsers()’,
‘getUser()’, etc., are invoked repeatedly. Retrieval of this information
from the DB for each invocation could cause performance/resource
deterioration. However, if your security provider extends
AbstractSecurityProvider, simply set ‘security.cache=true’ in the
sree.properties file to enable caching.

Example: Extending AbstractAuthorizationProvider

The listing below provides an illustration of Extending the
AbstractAuthorizationProvider. Please refer to the API JavaDoc for more
information about these classes.

Listing 2. Extending the AbstractAuthorizationProvider Class

public class MyAuthorization extends
inetsoft.sree.security.AbstractAuthorizationProvider {

public void setPermission(String resource,Permission
perm) {

// save the permission for a resource
}

public Permission getPermission(String resource) {
// get the permission for a resource

}

public void removePermission(String resource) {
// remove the permission for a resource

}

public void tearDown() {
//teardown the security provider

}

}

Note: In most cases using inetsoft’s ‘FileAuthorizationProvider’ is
a simpler and cleaner solution. Implement your own Authorization
Provider only if you wish to store your access control information
in a store other than a file, such as a DB, etc.

ADMINISTRATION REFERENCE

1855 of 2477

The resource names (for which you get and set permissions) are passed
using the following syntax:

Note: Enterprise Manager authentication is integrated with Report Server
authentication. When you set up an authentication provider other than the
FileSecurityProvider, you can no longer log into the Enterprise Manager
using the default ‘admin/admin’ credentials. You must log in as a user
which has the ‘Administrator’ role. If there is no role named
‘Administrator’ in your system, you can change it to another role by adding
the ‘role.administrator’ property in the ‘sree.properties’ file. e.g.,
role.administrator=SRAdmin.

Porting Custom Security From v8.0 and Lower

If you already have a custom security implementation in versions 8.0 and
below; the recommended approach is to re-implement your security using
the new Composite security provider as described above. However if you
have an existing implementation which implements the ‘SecurityProvider’
interface you may use it with the addition of some methods.

Listing 3. SecurityProvider Implementation

public class MyProvider implements
inetsoft.sree.security.SecurityProvider {

public boolean checkPermission(Principal user, String
resource, char acc){

//check the type of permission, which a user
//has on a resource
//user is of type SRPrincipal
//acc is one of ‘r’,‘w’,‘d’.

RESOURCE
TYPE

RESOURCE NAME

Replet the name used to register the report in Enterprise
Manager or during the Ad-Hoc report generation process

Replet Folder folder name

Report in Archive “_archive_” + report name

Folder in Archive “_archive_” + folder name

Query “_query_” + query_id

Task “_task_” + task_id

Scheduler “__inetsoft_schedule”

My Reports “__inetsoft_myreports”

Ad Hoc
Reporting

“__inetsoft_composer”

Dashboard
Design

“__inetsoft_dashboard”

Viewsheet Design “__inetsoft_viewsheet”

Worksheet Design “__inetsoft_worksheet”

ADMINISTRATION REFERENCE

1856 of 2477

}

public boolean supportGroupPermission() {
//check if provider has support for setting
//permissions on groups

}

public boolean authenticate(String user, Object
credential){

//validate user credentials
//credential is object of type
//inetsoft.sree.security.DefaultTicket

}
public String[] getUsers() {

// return a list of all user logins
}

public String[] getIndividualUsers() {
//return a list of users not belonging to a group

}
public User getUsers(String name) {

//return inetsoft.sree.security.User object
}

public String[] getRoles() {
// return a list of all Roles

}

public String[] getRoles(String user) {
// return a list of all Roles for a given user

}

public String[] getGroups() {
// return a list of all Groups

}

public Group getGroup(String name) {
// Get a group by name

}

public Identity findIdentity(Indentity identity) {
//find the concrete identity of the security provider

}

public void setPermission(String resource,Permission
perm) {

// save the permission for a resource
}

public Permission getPermission(String resource) {
// get the permission for a resource

}

public void removePermission(String resource) {
// remove the permission for a resource

}

public void tearDown() {
//teardown the security provider

}
}

ADMINISTRATION REFERENCE

1857 of 2477

6.2 Users, Roles, and Groups
Users, roles, and groups can be managed using the functions available
under the Users tab. The navigation tree on the page under this tab includes
two nodes: ‘Users’ and ‘Roles’. The ‘Users’ node lists all of the users and
groups in the system and the ‘Roles’ node lists all of the roles.

Note: Users, groups, and roles can be created and configured in the
Enterprise Manager only when using the ‘Default Security Provider’.
While using the ‘LDAP Security Provider’, users/groups/roles will
be imported from the LDAP schema and when using the ‘User Defined
Security Provider’, they will be retrieved from the custom
implementation.

For efficiency, the number of users listed in the navigation tree
under LDAP security is limited by the em.user.max property (default
1000). Unlisted users can be found by searching. See Searching the
User/Role Tree.

Let us now look at Roles, Groups, and their design philosophy in more
detail. A ‘Group’ usually refers to a collection of people (e.g., a project
team, the sales department, etc). Users belonging to the same group may
have different functions or ‘Roles’ (e.g., Manager, Developer, Analyst,
Tester, etc). Groups are organizational in nature, while roles are more
functional in nature. Although this is the design philosophy and the intent
of having both roles and groups, the way they are actually used depends on
the discretion of the administrator and could vary in different organizations.

6.2.1 Rules Governing Users and Roles

The following are some rules which govern users, roles and groups:

Note: Names of users, groups, and roles may not contain certain
characters (e.g., “&,” “/”).

• Groups and Roles are independent, i.e., you do not have to define both
groups and roles in your system. You can have just one or the other, or
both, defined.

• A user can belong to more than one group.

• A user can have multiple roles

• An entire group can be assigned one or more roles.

• A role can be applied to one or more groups.

• A role can inherit all of the permissions from another role.

• Permissions to reports and other components can be assigned directly to
users, groups, and roles.

6.2.2 Searching the User/Role Tree

To find specific users, roles, or groups, follow the steps below:

ADMINISTRATION REFERENCE

1858 of 2477

1. From the menu below the navigation tree, select the type of object
you want to find, i.e., User, Group, or Role.

2. In the text box, enter the name of the desired user, group, or role.

3. Click the ‘Find’ button.

4. To return to the full list, clear the text box and click the ‘Find’
button.

Figure 42. Searching the User/Role Navigation tree

6.2.3 Creating and Editing Roles

A role (e.g., Manager, Developer, Analyst, etc.) is a function and can be
used to assign functional permissions to a set of users who have to perform
a set of tasks or operations. For example:

• Developer: Ad Hoc reporting; Explore View

• Manager: Ad Hoc reporting, Dashboard, and Scheduler

• Analyst: Explore View

There are two embed-
ded roles, ‘Everyone’
and ‘Administrator’.
Every user is by
default assigned to the
‘Everyone’ role; it is
typically used to
expose a resource to
all users. The ‘Admin-
istrator’ role is a
super-user who has
access to all
resources. Any user
with the ‘Administra-
tor’ role can login to
Enterprise Manager.

You can create and edit roles in Enterprise Manager only when using the
‘Default Security Provider’. (Permission settings are discussed in Setting
Permissions).

To add a new role, follow the steps below:

1. From the main Users tab, click the ‘New Role’ link below the nav-
igation tree. This creates a role with a default name ‘roleN’ (role0,
role1, etc.).

2. Type in the ‘Name’ field to change the name of the role.

3. Drag and drop users and/or groups into the ‘Assigned To’ box. This
assigns all of the individual users and users within the group to this
role.

4. Drag and drop roles into the ‘Inherit From’ box. The new role will
inherit all permissions from the roles specified in this list.

5. Click ‘Apply’ to save your changes.

ADMINISTRATION REFERENCE

1859 of 2477

Figure 43. Creating/Editing a Role

To edit a role, expand the ‘Roles’ node on the tree, and click on the desired
role.

6.2.4 Creating and Editing Groups

A group is a collection of users, such as a project team, a department, or a
geographical location. You can create and edit groups in Enterprise
Manager only when using the ‘Default Security Provider’.

To create a new group, follow the steps below:

1. From the main Users tab, click the ‘New Group’ link below the
navigation tree. This creates a group with the default name
‘groupN’ (group0, group1, etc.).

2. Type in the ‘Name’ field to change the name of the group.

3. Drag and drop users and/or groups into the ‘Members’ box. This
adds the individual users and users within the groups to the new
group. (A user/group can be added to multiple groups.)

4. Drag and drop roles into the ‘Roles’ box. All of the users in this
group will be assigned the specified roles.

5. Click ‘Apply’ to save your changes.

ADMINISTRATION REFERENCE

1860 of 2477

Figure 44. Creating a new group

To edit a group, expand the ‘Users’ node on the tree, and click on the
desired group.

6.2.5 Creating and Editing Users

You can create and edit users in Enterprise Manager only when using the
‘Default Security Provider’.

There are two embed-
ded users, ‘admin’
and ‘guest’; ‘admin’
is a super-user with
the role of ‘Adminis-
trator’ and ‘guest’ is a
user with the role of
‘Everyone’. The
default passwords are
‘admin’ and ‘guest’,
respectively.

To create a new user, follow the steps below:

1. From the main Users tab, click the ‘New User’ link below the nav-
igation tree. This creates a user with the default name ‘userN’
(user0, user1, etc.).

2. Type in the ‘Name’ field to change the name of the user.

3. Select the ‘Change Password’ option to change the user’s
password.

4. Select ‘Active’ or ‘Inactive’ from the right-side menu. A user
marked as ‘Inactive’ is not able to log into the Portal.

5. Drag and drop groups from the left-side tree into the ‘Member Of’
box to assign the user to the designated groups. (Alternatively,
select ‘Groups’ from the menu above the ‘Member Of’ box,
choose the desired group, and click ‘Add’.)

6. Drag and drop roles from the left-side tree into the ‘Roles’ box to
assign roles to the user. (Alternatively, select ‘Roles’ from the
menu above the ‘Member Of’ box, choose the desired role, and
click ‘Add’.)

7. Specify an email address for the user in the ‘Email’ field.

ADMINISTRATION REFERENCE

1861 of 2477

8. Select a locale from the ‘Locale’ menu to associate the user with a
particular locale. See Localization/Internationalization for more
information.

9. Click ‘Apply’ to save your changes.

Figure 45. Creating a new user

To edit a user, expand the ‘Users’ node on the tree. The user may be listed
directly under this node or within a group.

6.2.6 Emulating a User Login

When troubleshooting user problems, it is often useful for the administrator
to log into the Portal as a particular user. This allows the administrator to
experience the application environment as the user experiences it, which
makes it easier to replicate the user’s problem.

This method does not
require knowledge of
the user’s password.

To login as a particular user, follow the steps below:

1. Set the following property in the sree.properties file:

login.loginAs=on

2. In Enterprise Manager, on the ‘Server’ > ‘Status’ page (under the
Server tab), press the ‘Restart’ button. This reloads the
configuration settings from sree.properties.

3. Open the User Portal in a browser.

4. On the login screen, enter your administrator name and password.

ADMINISTRATION REFERENCE

1862 of 2477

When you enter a valid administrator name (and have
login.loginAs=on), the login screen displays a special ‘Login as’
field.

5. In the ‘Login as’ field, enter the name of the user whose
environment you wish to access.

6. Click the ‘Login’ button.

This will effectively log you in as the user without requiring the user’s
password. Operations that you perform while logged in using this method
(i.e., as administrator emulating a user) are listed in audit records as
administrator operations, rather than as user operations.

6.3 Setting Permissions
Permissions can be set not only at a report level but also at a component
level (Ad Hoc tool, Scheduler, dashboard, Report Explorer, etc.) and at an
object level (data models, queries, worksheet assets). Report permissions
are set via the Report tab; all other permissions are set via the Objects tab.

6.3.1 Repository Permissions

To set permissions for reports, dashboards, and repository folders, select
the Report tab and expand the ‘Repository’ node on the tree. The
‘Repository’ is a collection of reports and dashboards structured into one or
more folders. The repository always has a root folder: ‘/’. All reports,
dashboards, and folders are located within this root folder. (Remember:
Folders displayed in the repository are logical groupings, and do not
represent actual directories in the disk file system.)

Setting Permissions for a Report, Dashboard, or Folder

To set the permissions for an individual report, dashboard, or folder, follow
the steps below:

1. Select the report, dashboard, or folder from the tree, and press the
Security tab.

2. Deselect the ‘Use Parent Permissions’ check-box.

ADMINISTRATION REFERENCE

1863 of 2477

3. Select the desired users/roles/groups from the tree in the box titled
‘Available Entities’ and drag and drop them into the list titled
‘Selected Entities’ (or click on the ‘>’ button).

4. Select ‘Access requires both User and Role permission’ to specify
that access to the report, dashboard, or folder is granted only if the
current user has both user and role permissions; i.e., both the user’s
name (or group) and at least one of the user’s roles appear in the
‘Selected Entities’ table.

Select ‘Access requires either User or Role permission’ to specify
that access to the report, dashboard, or folder is granted if the
current user has either user or role permissions; i.e., either the
user’s name (or group) or at least one of the user’s roles appear in
the ‘Selected Entities’ table.

5. Select the appropriate permission detail:

r = read
w = write
d = delete

6. Click ‘Apply’ to save your changes.

Notes on Report Permissions

• The ‘Use Parent Permissions’ option for a report or a folder implies that
it will inherit all of the permissions from its parent folder. If there are no
permissions set for its immediate parent, its permission inheritance will
recurse higher up in the hierarchy of folders, until the root folder is
reached.

ADMINISTRATION REFERENCE

1864 of 2477

• Write permissions on a folder indicate that a user/role/group can save
reports in the folder using the Ad Hoc reporting tool.

• Every user has full r/w/d permissions to his/her ‘My Reports’ folder.

• If a user has ‘write’ permissions on a report he/she can save over the
original report template after making modifications using the Ad Hoc
report tool. (Using the ‘Save’ button).

• If a .srt file is set to be ‘Read Only’ within the file system, a user
cannot Save over this report template using the Ad Hoc tool.

• If a user has ‘read’ permissions (but no ‘write’ permission) on a report,
he/she may save a copy of the report (‘Save As’) into any folder to
which they have write permissions.

• If a user has read permissions on a report, but no read permissions on its
parent folder, the report will not be visible in the repository tree.
However, it can be viewed as a hyperlinked report.

• If explicitly set, the permissions of a report or a folder will override its
parent permissions.

6.3.2 Component/Object Permissions

Permissions for most objects and components are set via the Objects tab.
(See Objects Tab for a list of available permissions).

The procedure for setting permissions is the same for all components. For
example, to set the permission for an ‘Ad Hoc’ report design wizard,
follow the steps below:

1. Select the Objects tab, followed by the ‘Action’ node in the navi-
gation tree.

2. Expand the ‘Ad Hoc Wizard’ node, and select ‘Chart Wizard’.

3. If the ‘Grant access to all users’ check-box is checked, click the box
to uncheck it.

Note: Depending on the particular component, the check-box may
be labeled ‘Grant access to all users’, ‘Deny access to all users’, or
‘Use parent permissions’. In all cases, you must uncheck the box in
order to specify individual permissions. See Parent Permissions for
more information.

4. Select the desired users/roles/groups from the tree in the box titled
‘Available Entities’ and drag and drop them into the list titled
‘Selected Entities’ (or click on the ‘>’ button).

5. Select ‘Access requires both User and Role permission’ to specify
that access to the object or component is granted only if the current

ADMINISTRATION REFERENCE

1865 of 2477

user has both user and role permissions; i.e., both the user’s name
(or group) and at least one of the user’s roles appear in the ‘Selected
Entities’ table.

Select ‘Access requires either User or Role permission’ to specify
that access to the object or component is granted if the current user
has either user or role permissions; i.e., either the user’s name (or
group) or at least one of the user’s roles appear in the ‘Selected
Entities’ table.

6. Select the appropriate permission detail:

r = read
w = write
d = delete

The write and delete options will be disabled for some components.

7. Click the ‘Apply’ button to save your changes.

Figure 46. Setting Component/Object Permissions

Notes:

• The default setting for many components is ‘Use Parent Permissions’.
For components under the ‘Data Source’ node, this setting implies that
no permission is granted.

• Changing permission for a data source folder has the effect of changing
permissions for all data sources contained in that folder.

• Permission for the ‘My Reports’ folder is granted by default for all
users. However, if explicit permission for ‘My Reports’ is assigned to at

ADMINISTRATION REFERENCE

1866 of 2477

least one user, then explicit permission must be assigned for any other
users who require this feature.

• The ‘Use Parent Permissions’ setting is significant only for the asset
components listed under the ‘Worksheet’ node. If you set permissions
for the ‘Global’ node, they can be inherited by all of the assets under this
node.

See Also
Creating a New JDBC Data Source, in Data Modeling.
Independent Query, in Data Modeling.
Semantic Layer – Data Model, in Data Modeling.
Adding Additional Connections, in Data Modeling.
Creating a New Data Worksheet, in Data Mashup.

6.3.3 Parent Permissions

In many cases, the security settings for a given resource allow the resource
to inherit permissions from its “parent”. To enable inheritance when
available, select ‘Use parent permissions’.

The following table lists the “parent” for each type of resource capable of
inheriting parent permissions:

See Also
Repository Permissions, to set permissions for reports, Viewsheets, or
repository folders.

RESOURCE TYPE PARENT

Report The repository folder containing the report on the Report
tab tree.

Viewsheet The repository folder containing the Viewsheet on the
Report tab tree.

Folder The repository folder containing the folder on the Report
tab tree.

Datasource The root ‘Data Source’ node on the Object tab tree.

Connection The same parent as the datasource on which the
connection is defined.

Query The datasource on which the query is defined.

Data model The datasource on which the data model is defined.

Data Worksheet The ‘Global Worksheet’ node on the Object tab tree.

Library asset The ‘Library’ node on the Object tab tree.

ADMINISTRATION REFERENCE

1867 of 2477

Component/Object Permissions, to set permissions for all other resources
(queries, data sources, Data Worksheets, etc.) and Portal actions.

ADMINISTRATION REFERENCE

1868 of 2477

7 Scheduler

The ‘Scheduler’ is an application that facilitates scheduled batch report and
Viewsheet generation. An administrator or an end user (with scheduler
permissions) can access this tool via the Enterprise Manager or the User
Portal respectively. You can create one or more scheduled ‘tasks’ for which
you specify a time condition, reports or Viewsheets to be generated,
delivery mechanism (email, print, save to disk, archive, etc.), and format
(PDF, Excel, etc.) of the generated output.

The ‘Scheduler’ is a stand-alone application. It runs independently of the
report application server (Tomcat, WebLogic, WebSphere, etc.) as a
separate process. Therefore, even if the report server goes down, the
Scheduler continues to run. The Scheduler runs as an RMI server and can
also be accessed programmatically. This is discussed in greater detail in the
RMI Server section.

7.1 Configuring the Scheduler
The ‘Scheduler’ can be configured using the Enterprise Manager. Click the
Server tab and select the ‘Server’ > ‘Scheduler’ > ‘General’ page on the
navigation tree.

Figure 47. Scheduler Configuration Page

The ‘Server’ > ‘Scheduler’ > ‘User Actions’ page allows you to create
your own Scheduler Action, which will be available when the ‘User
Defined’ option is selected from the Scheduler’s Action tab (in Enterprise
Manager or the User Portal). See Scheduler Actions for more information
about implementing an action.

ADMINISTRATION REFERENCE

1869 of 2477

The ‘Server’ > ‘Scheduler’ > ‘User Conditions’ page allows you to create
your own Scheduler Condition, which will be available when the ‘User
Defined’ option is selected from the Scheduler’s Condition tab (in
Enterprise Manager or the User Portal). See Scheduler Conditions for more
information about implementing a condition.

7.2 Scheduler Properties
The table below lists the Scheduler properties.

Table 9. Scheduler Properties

Concurrent Threads Set the maximum number of threads that can be
executed concurrently.

Schedule Task File The task file (schedule.xml) is stored in the sree.home
directory. This file contains the definition information
for tasks, and their conditions and actions.

Schedule Activity
File

The activity file (schedule-activity.xml) is generated
dynamically when tasks are created. It is stored in the
sree.home directory. The activity file is used to
maintain the status of tasks and actions, and is used to
implement rollback/recovery if the Scheduler should
fail.

Scheduler Log File Contains log messages generated by the Scheduler

RMI port The Scheduler server is an RMI application. By
default RMI uses port 1099. If the default RMI port is
not used, it can be changed here.

ADMINISTRATION REFERENCE

1870 of 2477

7.2.1 Notes on Scheduler Configuration

• Use the ‘Restart’ and ‘Stop’ to restart and stop the Scheduler. The RMI
registry will be started automatically. (These options do not apply for the
cluster environment. See Configuring Server Clustering.)

• If you must specify additional parameters to the Java executable, add a
schedule.java.opts line to the sree.properties file.

• To invoke a custom listener class at the start and end of each scheduled
task, specify the fully-qualified name of the class as the value of the
schedule.task.listener property in the sree.properties file.

• Since the Scheduler runs in its own Java Runtime Environment, you
must specify the product’s JAR files in the ‘Scheduler Classpath’.

• For WebSphere 3.5, add the etools.jar and product JAR files (sree.jar,
visual.jar, or bisuite.jar) to the com.ibm.ejs.sm.adminServer.classpath
property in the WS_HOME/appserver/bin/admin.config file.

7.3 Scheduler Tasks
A scheduler task defines the batch operation to be performed. It specifies
the time condition, the reports or Viewsheets to be generated and their
delivery mechanism (email, print, archive, save to disk, etc.). Both the
Enterprise Manager and the User Portal provide interfaces to create, edit,
and monitor scheduled tasks.

See Also
Configuring the Scheduler, for information on setting scheduler properties.

Scheduler Classpath The classpath that will be prepended to the system
classpath when the Scheduler process is started. The
scheduler is a separate process with a separate JVM.

Status Shows whether Scheduler is Running or Stopped

Auto Start Allows the scheduler to be started automatically on
initialization of repository servlet. This option does
not apply for the cluster environment.

Auto Stop Allows the scheduler to be stopped automatically
when the repository servlet terminates. This option
does not apply for the cluster environment.

Scheduler Options Select options available to a user when they schedule
tasks, such as Notification Email, Save In Archive,
etc.

Memory Usage Sets the minimum and maximum memory usage for
the Scheduler.

Notification When
Scheduler is Down

Enter the email address to which a one-time message
should be sent if the Scheduler stops abnormally. The
‘Mail Host’ and ‘From Email Address’ must be
specified on the ‘Mail Configuration’ page.

ADMINISTRATION REFERENCE

1871 of 2477

7.3.1 Creating a Scheduler Task

To create a scheduled task, follow the steps below:

1. Select the Schedule tab and click on the ‘New Task’ link, located
below the navigation tree. This creates a new task, with the default
name ‘Task n’ (e.g., Task1, Task2, Task3, etc.).

2. Select the Condition tab and specify a condition to determine
when the task will execute. See Scheduler Conditions.

3. Select the Action tab and specify the type of action to take when
the scheduled task executes. See Scheduler Actions.

4. Select the Options tab and set options for task execution. See
Scheduler Options.

7.3.2 Scheduler Conditions

A scheduler condition is used to determine when the scheduled task
executes. There are three types of conditions: Time conditions, Chained
(Completion) conditions, and User Defined conditions.

• Daily: This task will execute every n days (1 day, 2 days, 3 days, etc.) at
a specified time. The time is specified in HH:mm [am|pm], e.g., 11.39
pm. You can also select the weekday option which will execute the task
at the specified time on weekdays.

• Weekly: This task will execute every n weeks (1 week, 2 weeks, 3
weeks, etc.) at a specified time on a specified day of the week or,
optionally, every day of the week. The time is specified in HH:mm
[am|pm], e.g., 11.39 pm.

• Monthly: This task will execute every nth day of the specified month/s,
or every month. (e.g., 21st day of February, 25th day of November, etc.)
at a specified time; or every nth day of the week of a month/s, or every
month (e.g., 2nd Sunday of April), at a specified time. The time is
specified in HH:mm [am|pm], e.g., 11.39 pm.

• Run Once: This task will execute once on a certain day at a specified
time, e.g., Nov 25, 2006 at 11.30 am. The time is specified in HH:mm
[am|pm], e.g., 11.39 pm.

• Chained Condition: A chained condition is based on the completion
status of another scheduled task or a scheduled cycle. The condition
evaluates to true only when the specified task or the cycle completes
successfully, and not otherwise. A completion condition can be
specified by selecting the ‘Chained’ option and then specifying the
scheduled task or the scheduled cycle.

ADMINISTRATION REFERENCE

1872 of 2477

• User Defined Condition: In addition to the Time and Chained
conditions, User Defined conditions can also be used for a scheduled
task.

In order to use a User Defined Condition, do the following:

1. Create a class which implements

inetsoft.sree.schedule.UserCondition

or extends

inetsoft.sree.schedule.DefaultUserCondition.

2. Place this class on the CLASSPATH of the Scheduler.

3. Select ‘User Defined’ as the condition type in your task.

4. Specify the condition’s fully qualified class name in the Condition
tab of the task definition.

For ease of use, you can add a line to sree.properties that sets
replet.viewer.conditions to a comma-separated list of classes. This will
populate a drop-down that will set the correct class. When selected, the
parameter table will also be populated with the available parameters and
default values. See Configuring the Scheduler to register a reusable user-
defined condition.

7.3.3 Specifying Multiple Conditions

It is possible to specify multiple conditions. Click on the ‘Multiple
Schedules’ button at the bottom right of the editing panel. This will display
the schedule condition list, to which you can add, delete, or edit conditions
by clicking on the ‘Add’, ‘Delete’, and ‘Edit’ buttons respectively.

Figure 48. New Scheduler Task

ADMINISTRATION REFERENCE

1873 of 2477

7.3.4 Scheduler Actions

The scheduler action specifies the operations to be performed when the
scheduled task runs. There are four types of actions: Report Action,
Viewsheet Action, Burst Action, and User Defined Action.

Report Action

A report action executes one or more reports and delivers them as emails,
saves them in the report archive, prints them via a server printer, and/or
saves them to disk.

Report Delivery Options

The following table explains the available delivery options.

Table 10. Delivery Options

OPTION DESCRIPTION

Save in
Archive

Save the generated report in the report archive. A report
archive must be properly configured, and the scheduler user
must have proper permissions to save the report in the
selected folder. The filename can include parameters for
automatic insertion of report name and time/date of report
generation. See the Filename Parameters section below for
examples.

Print on Server Print to one or more printers. The printer name must be
accessible from the host machine. The printing mechanism is
done through the custom driver (the JDK default printing
does not support selecting a printer by name), and is under
the same constraints as the custom drivers.

Deliver to
Emails

Send a report to other users via email. To embed the report
within the email as HTML, select the ‘HTML Email’ option.
(Note that the appearance of the delivered report may not be
fully preserved if the recipient’s email client is not standards
compliant). To send the report as an attachment, select one of
the other formats (PDF, Excel, etc.). If the file is too large, it
will be split into multiple emails. The maximum size
allowed for each email is defined by the
‘mail.attachment.max’ property, which can be set from the
‘Configuration’ > ‘Mail’ page under the Server tab. The
email subject line can include parameters for automatic
insertion of report alias and time/date of report generation.
The subject line specified here overrides the setting in
‘Configuration’ > ‘Mail’ under the Server tab. See the
Configuring Server Email section for more information. The
‘Bundled as zip’ option allows you to zip the attachment and
optionally specify a password to encode the archive with
WinZip 256-bit AES encryption.

ADMINISTRATION REFERENCE

1874 of 2477

See Also
Filename Parameters, for information on customizing the filename for
saved reports.

Filename Parameters

The filename you specify for the ‘Save to Disk’ option, and the attachment
for the ‘Deliver to Emails’ option can include parameters to automatically
insert the report name and time/date of report generation.

These parameters use the java.text.MessageFormat syntax, where “{0}”
represents the report alias (report name, if no alias is specified), and
“{1,date}” represents the time/date of report generation. You can specify a
format for the date parameter using the java.text.SimpleDateFormat
syntax. Some examples of automatically generated filenames are shown
below.

Because of filename restrictions, you cannot use the “{1,time}” syntax that
is available for email subject lines (see Configuring Server Email).

To include a report’s creation parameter values in the file name, simply
place each parameter name within curly braces. The parameter names you
enter in the filename must exactly match the parameter names in the
‘Creation Parameters’ panel of the Action tab. For example, if a parameter
called “stateParam” is assigned a value of “NJ” in the ‘Creation
Parameters’ panel, then the filename

myRep_{1,date,MMM-dd}_{stateParam}.pdf

Save to Disk Save the report on the local file system in any of the
following formats: PDF, HTML, Excel, PowerPoint, RTF,
SVG, CSV, Text, XML. The ‘Path’ field should specify a
valid absolute path, including filename. (The filename
extension is added automatically.) The filename can include
parameters for automatic insertion of report name and time/
date of report generation. See the Filename Parameters
section below for examples.

Notify when
Completed

Send email notifications to users about task completion
status. Optionally you can check ‘Notify only if failed’.

SPECIFIED FILENAME GENERATED FILENAME

myRep_{1,date}.pdf myRep_Nov 14, 2007.pdf
{0}_{1,date}.pdf Production_Nov 14, 2007.pdf
myRep_{1,date,MMM-dd}.pdf myRep_Nov-14.pdf
myRep_{1,date,EEE-h-mm a}.pdf myRep_Wed-11-49 AM.pdf

myRep_{1,date,yy-MM-dd-HH-
z}.pdf

myRep_07-11-14-11-EST.pdf

OPTION DESCRIPTION

ADMINISTRATION REFERENCE

1875 of 2477

will yield a generated filename of

myRep_Nov-14_NJ{0}.pdf

Viewsheet Action

A Viewsheet action executes one or more Viewsheets, and delivers them as
emails or simply transmits a notification. The following table explains the
available delivery options.

Table 11. Delivery Options

To make a scheduled action conditional based on actual Viewsheet data,
place a call to thisViewsheet.scheduleAction(Boolean[,emails]) within the
Viewsheet script. This allows you to run or suppress the delivery options
based on your own custom Viewsheet logic, changing a scheduled task into
a data-driven alert notification.

Burst Action

Report bursting is a batch reporting feature in which a large report is
generated offline and internally segmented, or “bursted,” according to users
or roles. When each user views this burst report, they will see only the
segment targeted to them. Using a scheduled burst action, it is possible to
deliver each segment of this report to the appropriate user/role. See the
Report Bursting section for more information.

A Burst Action can be associated with a task by choosing ‘Burst’ as the
action type and specifying the appropriate property values.

User-Defined Action

In addition to the ‘Report’ and ‘Burst’ actions, ‘User Defined’ actions can
also be specified for a scheduled task. Using a ‘User Defined’ Action
involves the following steps:

OPTION DESCRIPTION

Deliver to
Emails

Send a Viewsheet to other people as an email attachment.
The report can be sent in PDF format, or in any of the other
export formats. If the file is too large, it will be split into
multiple emails. The maximum size allowed for each email
is defined by the ‘mail.attachment.max’ property, which can
be set from the ‘Configuration’ > ‘Mail’ page under the
Server tab. The email subject line can include parameters for
automatic insertion of Viewsheet alias and time/date of
generation. The subject line specified here overrides the
setting in ‘Configuration’ > ‘Mail’ under the Server tab. See
the Configuring Server Email section for more information.

Notify when
Completed

Send email notifications to users about task completion
status. Optionally you can check ‘Notify only if failed’.

ADMINISTRATION REFERENCE

1876 of 2477

• Create a class which implements
‘inetsoft.sree.schedule.UserAction’, or extends
‘inetsoft.sree.schedule.DefaultUserAction’.

• Add this class to the CLASSPATH of the scheduler.

• Select ‘User Defined’ as the action type in the task.

• Specify the action’s fully qualified class name in the Action tab of the
task definition.

For ease of use, you can add a line to sree.properties that sets
replet.viewer.schedule.actions to a comma-separated list of classes.
This will populate a drop-down menu that will set the correct class. When
selected, the parameter table will also be populated with the available
parameters and default values. See Configuring the Scheduler to register a
reusable user-defined action.

Specifying Multiple Actions

It is possible to specify multiple actions. Click on the ‘Multiple Actions’
button in the bottom right of the editing panel. This will display the
scheduled action list, to which you can add, delete, or edit actions by
clicking on the ‘Add’, ‘Delete’ and ‘Edit’ buttons, respectively.

Creation Parameters

To pass parameters to the scheduled report or Viewsheet, follow the steps
below:

1. Press the ‘Add’ button below the ‘Creation Parameters’ table.

This opens the ‘Add Parameter’ dialog box.

2. In the ‘Name’ field, select an existing parameter or manually enter
the name of a parameter.

ADMINISTRATION REFERENCE

1877 of 2477

3. In the ‘Data Type’ field, select the data type of the parameter. Select
‘Array’ if the parameter requires an array of values.

4. In the ‘Value’ field, enter the value to be passed into the parameter.
Enter a comma-separated list for an array parameter.

5. Press ‘OK’ to close the dialog box. The parameter that you added is
now listed in the table.

6. (Optional) To modify the parameter settings, press the ‘Edit’ button
in the table next to the parameter. To remove the parameter, press
the red ‘X’ in the table next to the parameter.

7. Press the ‘Save’ button at the bottom of the screen to save the
settings.

To add additional parameters, press the ‘Add’ button below the ‘Creation
Parameters’ table and repeat the above steps. To remove all parameters,
press the ‘Clear All’ button under the ‘Creation Parameters’ table.

See Also
Parameter Tab, to assign parameters for non-scheduled report generation.

7.3.5 Scheduler Options

There are several options available when executing a scheduler task.

• Enabled: A task can be temporarily enabled or disabled by selecting or
deselecting this option.

• Delete if not scheduled to run again: If a task is scheduled to run once,
this option will delete it from the system once it runs.

• Start From and Stop On: A task will only execute within the specified
date range.

ADMINISTRATION REFERENCE

1878 of 2477

• Execute As: A task can be executed as a user, in which case user
permissions will influence the execution of the task. For example, if
VPMs are set up (data-level security; see Virtual Private Model –
Security in Data Modeling), different users will see different data. All of
the existing users who have permission to use the scheduler will be
included in the drop down list.

• Locale: A different locale can be specified for each individual task by
using this option.

7.4 Monitoring and Managing Scheduler Tasks
All scheduler tasks (belonging to admin and all other users) and their
status’ can be viewed and monitored from the Enterprise Manager:

• Select the Schedule tab and select the ‘Scheduled Task’ node from the
tree. A list of all of the scheduler tasks is displayed. You can view the
start time, the end time, the status of the last run, and also the start time
for the next scheduled run.

• Temporarily disable or enable a task by using the checkbox under the
‘Enabled’ column.

• Click on a task name to select it. Click the ‘Run Now’ button to execute
the task immediately.

• Click the ‘Stop Now’ button to halt a task in progress.

Figure 49. Scheduled Tasks Page

7.5 Scheduler Cycle
A scheduler cycle is a single time condition. Scheduler (data) cycles are
used to specify generation times to refresh pregenerated reports, e.g., a
report executes every day at 7:00 am.

A new cycle can be created by clicking on the ‘New Cycle’ link, located
below the navigation tree. Refer to the Scheduler Conditions chapter for
details on the different time conditions available.

ADMINISTRATION REFERENCE

1879 of 2477

Figure 50. Creating a new Scheduled Cycle

7.6 Viewing the Scheduler Log
The Scheduler Log allows you to track and troubleshoot tasks. The default
log file name is schedule.log. See Appendix B.6, Scheduling Service
Properties, for details on how to specify the location of this file.

You can view the contents of the log file by selecting the ‘Log’ >
‘Scheduler’ node (under the Server tab). This opens the ‘Log View’ page.
Select the ‘All’ option to display the entire contents of the log file
(maximum 3000 lines by default), or enter the number of lines from the end
of the file to display.

Click ‘Send Log’ to email the log contents to the address specified in the
‘Send Log To’ field of the ‘Log Configuration’ page.

Figure 51. Scheduler Log

See Also
Configuring Logging, for information about configuring logging behavior.

7.7 Programmatic Scheduler Access
The scheduler can be started and stopped from the Enterprise Manager
interface, however, the scheduler can also be used as a standalone

ADMINISTRATION REFERENCE

1880 of 2477

application through the ScheduleServer class. It has a main method so that
it can be run as a process.

java -Dsree.home=. inetsoft.sree.schedule.ScheduleServer

If the classpath is not already set (e.g., by an environment variable), the
classpath should also be specified, as follows:

java -cp {CLASSPATH} -Dsree.home=.
inetsoft.sree.schedule.ScheduleServer

where {CLASSPATH} is typically

{InetSoftInstallation}\server\webapps\sree\WEB-
INF\lib\bisuite.jar;
{InetSoftInstallation}\server\webapps\sree\WEB-
INF\lib\etools.jar

The launching application can then get an instance of the Scheduler object:

Scheduler scheduler = Scheduler.getScheduler();

The Scheduler API can be used to programmatically add tasks and perform
other management functions. However, this is normally not necessary
because the Enterprise Manager allows for easy visual configuration. The
only exception is tasks with user-defined conditions, which have to be
created programmatically and added to a scheduler from the launching
application.

The scheduler can be run as a thread inside another Java process. The
scheduler creates a number of internal threads when the main thread is
started. The main thread can be started using the Scheduler.start() static
method. The scheduler is a singleton object. This means there is always one
scheduler instance in any JVM process. The start() method can be called
multiple times, and the call is ignored if a scheduler has already been
created.

Scheduler.start();

7.8 Automated Alerts
You can implement an automated alert by creating a scheduled task that
executes when specified conditions are met by report or Viewsheet data.
This allows you to automatically inform a user when results within the data
demand their attention (e.g., inventory falls below a certain level, order
volume spikes, etc.).

To create an automated alert, follow the steps below:

1. Design the scheduled task as described in Creating a Scheduler
Task. Take note of the following:

ADMINISTRATION REFERENCE

1881 of 2477

a. In the ‘Report’ or ‘Viewsheet’ menu of the Action tab, choose
the report or Viewsheet which contains the data you wish to
evaluate.

b. Configure the task actions (notification, email, etc.) to
accomplish the desired “alert” behavior. For example, if you
wish to generate an email to users when a Viewsheet data
indicator meets certain criteria, configure the ‘Deliver to
Emails’ message to convey the desired alert.

c. Configure the settings on the Condition tab to execute the task
at the interval at which you wish to evaluate the report or
Viewsheet data.

2. Within the specified report or Viewsheet, implement the logic
which determines whether an alert should be dispatched. In
general, you should place the script containing this logic on the
individual component containing the data to be evaluated.

3. Within the report or Viewsheet script, place a call to
scheduleAction() to specify whether the scheduled task should
execute or not (based on the logic you implemented above).

a. For a report, scheduleAction(Boolean[,emails]) is a property of
individual report elements. If a report element sets
scheduleAction(false), the scheduled task will not execute.

b. For a Viewsheet,
thisViewsheet.scheduleAction(Boolean[,emails]) is a property
of the Viewsheet itself. If a Viewsheet script sets
thisViewsheet.scheduleAction(false), the scheduled task will
not execute.

4. Deploy the report or Viewsheet to the repository as you usually
would.

When the scheduled task executes (as determined by the Scheduler settings
on the Condition tab), the Scheduler will check to see whether
scheduleAction() is set to true or false for the report or Viewsheet. If the
value is false, the Scheduler aborts the task actions, and no alerts are
issued. If the value is true, the Scheduler proceeds to execute the task
actions, and any specified alerts are delivered to users.

See Also
scheduleAction(Boolean[,emails]), for more information about using the
report property.

ADMINISTRATION REFERENCE

1882 of 2477

thisViewsheet.scheduleAction(Boolean[,emails]), for more information
about using the Viewsheet property.

ADMINISTRATION REFERENCE

1883 of 2477

8 Presentation

This section discusses the various features that are available for tailoring
the appearance of the User Portal.

8.1 General Presentation
The ‘Presentation’ > ‘General’ page allows the Repository to be presented
in a sorted format by specifying a sorting order. If ‘Sort Repository Tree’ is
set to none, the user can order its replets and the order will be obeyed by the
Portal.

You can also configure default Date and Time formats. (See Formatting in
the Report Design for more information about formats.)

The ‘Image Format’ option determines the encoding format for graphics,
such as painters (charts) displayed in the browser. PNG images have better
quality and a smaller file size than JPEG images, but PNG images are only
supported by version 4 or higher browsers.

Figure 52. The ‘Presentation’ > ‘General’ Page

Under the ‘Presentation’ node are options to configure the appearance of
Portal items, presentation of web-based reports, and PDF export options,
respectively.

8.2 Portal
To change the appearance of the User Portal, use the settings available on
the pages under the ‘Presentation’ > ‘Portal’ node on the navigation tree.

8.2.1 Look-and-Feel

Set the global look-and-feel for the entire Portal by adjusting the properties
shown below. You can also control the look-and-feel of the Portal page via
a CSS file. See Portal CSS Customization for more details.

ADMINISTRATION REFERENCE

1884 of 2477

• Color Scheme: The five color schemes are Blue, Green, Alloy, Orange,
and Vista. The color scheme controls the default colors used on the
Portal, report buttons, and any popup windows.

• Tab Style: The ‘Tab Style’ property controls the tabs used on the Portal
title bar. The options available are: Simple, Aqua, Windows, and Text.

• Report List: The ‘Report List’ property controls the Portal’s Repository
style. The default is ‘Tree’, which displays Repository folders and
reports in an hierarchical structure. The ‘Expand All Nodes’ option pre-
expands all of the folders in the Repository tree. The ‘List’ option
displays Repository folders and reports as a flat list using the entire
page.

• Logo: The ‘Logo’ on the Portal page (and in Enterprise Manager) can
be modified by selecting the ‘Custom’ option and specifying an image
file. Select ‘Default’ to restore the ‘InetSoft’ logo.

• Font Family: The ‘Font Family’ property specifies the font to be used
for the content of the Portal page as well as any popup windows.

• Viewsheet CSS: The ‘Viewsheet CSS’ property specifies a custom CSS
file to use for Viewsheet component styles. The CSS file can specify
styles for alignment, font, border, and color. See the CSS Tab section of
Dashboard Design for more information.

To upload a custom Viewsheet CSS file, follow the steps below:

1. Select the ‘Custom’ option.

2. Click the ‘Browse...’ button. This opens the standard ‘File Upload’
dialog box.

There can be only a
single CSS file at any
time.

3. In the ‘File Upload’ dialog box, locate your custom CSS file, and
click ‘Open’. The selected file is now displayed in the Viewsheet
CSS text field.

4. Click ‘Apply’. This uploads the specified CSS file to the server.

ADMINISTRATION REFERENCE

1885 of 2477

The CSS file is saved as {SREE Home}/portal/format.css. You may need to
restart the server for the new style settings to take effect.

Portal CSS Customization

Style Intelligence gives you the flexibility to implement your own custom
User Portal. (See Integrating the Web User Interface in Integration.)
However, in most cases it is easier and less time-consuming to customize
the default User Portal. The User Portal supports of a number of pre-
configured themes, each of which is a combination of tab styles and color
schemes (e.g., Windows-Orange).

As described in Look-and-Feel, you can easily set the Portal scheme and
style using the ‘Look-and-Feel’ page in Enterprise Manager.

You can further customize these existing themes by editing the appropriate
CSS files. To customize the Portal CSS, follow the steps below:

1. On the ‘Look-and-Feel’ page of Enterprise Manager, select the
‘Color Scheme’ and ‘Style’ that best match the desired appearance.
(See Look-and-Feel for more details.)

1. Press ‘Apply’ to apply the settings.

2. Clear the browser cache, and log into the User Portal. Note that the
look-and-feel you selected is now applied to the Portal.

3. Inspect the SREE Home directory (sree/WEB-INF/classes, by
default, if you are using a file system data space). You will see a
portal/css directory containing sub-folders corresponding to the
‘Color Scheme’ and ‘Style’ that you selected. For example, if you
selected ‘Granite’ and ‘Modern’, you will see the directory
structure portal/css/modern/granite.

This directory structure contains theme.css and tree-portal.css files
at the following levels:

ADMINISTRATION REFERENCE

1886 of 2477

a. sree/WEB-INF/classes/portal/css: (theme.css and tree-
portal.css)

{Style} is a style name
such as “modern” and
{ColorScheme} is a
color name such as
“granite”.

b. sree/WEB-INF/classes/portal/css/{Style}: (tree-portal.css only)

c. sree/WEB-INF/classes/portal/css/{Style}/{ColorScheme}:
(theme.css and tree-portal.css)

Style definitions contained in files of the same name at different
levels (for example, portal/css/tree-portal.css, portal/css/modern/
tree-portal.css, portal/css/modern/granite/tree-portal.css) are
merged together following CSS cascading rules.

4. Modify any of the theme.css and tree-portal.css files, as desired.
The contents of the files are as follows:

a. theme.css: Style definitions for the User Portal (excluding the
Repository tree)

b. tree-portal.css: Style definitions for all trees in the User Portal
and Enterprise Manager

For example, to display the “active” item in a Repository tree in
bold with a gray background, modify the JSTreeLabel_active class
in portal/css//tree-portal.css as follows:

.JSTreeLabel_active {
font-size: 11px;
font-weight: bold;
background-color: #BBBBBB;
white-space: nowrap;

}

Note: You may need to restart the server after you modify CSS
files. Changes that you make to a CSS file may not be visible to
the user until the user’s browser cache has been cleared.

5. Restart the server and clear the browser cache.

The ‘Color Scheme’ and ‘Style’ that you choose in the Enterprise Manager
‘Look-and-Feel’ page will now load the customized style definitions from
the CSS files that you modified.

8.2.2 Integration

The tabs on the Portal page can be customized under this page.
Administrators have the ability to add new tabs, hide one or more existing
tabs, and specify the order of the tabs that are set to be visible. Additional
tabs can be created by clicking on the ‘Add Tab’ button and specifying the
tab name and the URI for its page.

ADMINISTRATION REFERENCE

1887 of 2477

Figure 53. Portal Integration Page

The ‘Help’, ‘Preferences’, ‘Logout’, and ‘Search’ options determine which
of these features are available in the top-right corner of the User Portal.

The ‘Logout’ option is only in effect when security is enabled. The
‘Search’ option is only in effect when archiving is turned on, and enables
complete searching within archived reports. The ‘Index Reports’ option
enables searching of non-archived reports as well, but searches are limited
to the report name, alias, description, keywords, and comments.

See Also
Archive, for more information about archiving.
Integration, for more advanced approaches to web integration.

8.2.3 Welcome Page

The ‘Welcome Page’ screen allows you to set a home page to appear in the
viewer frame of the Portal.

If you do not specify a welcome page, the viewer frame will remain blank.

ADMINISTRATION REFERENCE

1888 of 2477

You can specify a URL or a specific resource file such as an HTML or JSP
file. HTML content can be localized by using the following tag:

$(text to be localized)#(inter)

The ‘Login Banner’ specifies text or HTML to be displayed below the
password field of the Portal login page.

8.3 Report
The ‘Report’ pages allow you to configure options for report display and
report interaction.

8.3.1 Viewer Options

These options allow you to tailor the appearance of the web-based report
repository. Those options dealing with the report itself, such as the toolbar
options, are applicable to both the Portal interface and the tree interface,
whereas the other options only apply to the tree interface.

ADMINISTRATION REFERENCE

1889 of 2477

Table 3. Browser Options

Parameter Dialog HTML Template

The ‘Parameter Dialog HTML Template’ field specifies an HTML
template file (as a resource) to be used for the default parameter prompting
screen. The template can contain regular HTML as well as three optional
tags, $(report.parameters), $(report.title), and
$(report.description). These tags correspond, respectively, to the report
parameter fields, report title, and report description. When the report
prompts the user for parameters, it will load this HTML template and
substitute the appropriate values for the tags.

OPTION DESCRIPTION

Parameter Dialog
HTML Template

Specify an HTML template that will be used for a
parameter dialog box. See Parameter Dialog HTML
Template below.

Parameter Dialog
CSS File

Specify a CSS file used to generate the Parameter
dialog box. See Parameter Dialog CSS File below.

Custom Replet Error
Page

Specify a custom page that will display for a report
error. See Custom Replet Error Page below.

Tool Dialog CSS File Specify a CSS file used to generate the tool dialog
boxes. See Tool Dialog CSS File below.

Repository Servlet
Title

Specify a Portal page title. Localization is only
applied if the default title is used.

Repository Header The repository will display the header you define.

Repository Footer The repository will display the footer you define.

Page Footer A report will display a footer you define.

Page Background Set the background color.

Report Session
Timeout

Set the report viewing timeout interval for an inactive
user (in seconds). Upon expiration, the user will see a
message stating, “Session timeout. Please re-open the
report.”

Concurrent User
Session Timeout

For a server with session licence, set the timeout
interval for an inactive user (in seconds).

Toolbar Style Choose button toolbar options or text toolbar options.

Show Grouping
Headers in Explorer

If selected, group headers in sections and/or tables
will be included in the Report Explorer.

Enable Add to Queue Presents users with an ‘Add to Queue’ button on the
report loading screen.

Toolbar Visibility Show or hide the report toolbar.

Toolbar Location The toolbar can be positioned if css-p layout method
is used. The possible values are: Top, Bottom, Left,
Right, Top and Bottom.

Toolbar Background Set the toolbar’s background color.

Toolbar Font Color Set the toolbar’s foreground color.

ADMINISTRATION REFERENCE

1890 of 2477

A sample HTML template file is shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//
EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">
<head>
</head>
<body>
<img id='Logo' src='http://chart.inetsoft.com/images/

inetsoft.png'>
<p>Please enter the parameters for $(report.title):</p>
<div class='ParameterBlock'>
$(report.parameters)

</div>
</body>

</html>

If you save this HTML template file with the name ‘ParamTemplate.html’
in the SREE Home directory (WEB-INF/classes), you can enter the
resource path in the ‘Parameter Dialog HTML Template’ field as follows:
“/ParamTemplate.html”.

Style can be added to the parameter screen by specifying an external CSS
file in the ‘Parameter Dialog CSS File’ field. See Parameter Dialog CSS
File for more details.

See Also
Parameter Sheets, in Report Design, for more extensive customization of
parameter prompting.

Parameter Dialog CSS File

The ‘Parameter Dialog CSS File’ field specifies a CSS file (as a resource)
to be used to style the parameter prompting screen. The CSS file can
contain any ID or Class that is present in the parameter prompting screen;
for example, body{} or option{}. This feature is most useful in conjunction
with a Parameter Dialog HTML Template.

A sample CSS file which corresponds to the custom HTML template in the
Parameter Dialog HTML Template section is shown below:

ADMINISTRATION REFERENCE

1891 of 2477

body {
background-color:#DDD;
font-family:Verdana;
font-size:24;
margin-left:3em;
margin-top:3em;

}

img {
float:right;
margin-right:2em;
padding:10px;
border:2px solid;
box-shadow: 5px 5px 5px #888;

}

div.ParameterBlock td {
font-weight:bold;

}
If you save this CSS file with the name ‘ParamStyle.html’ in the SREE
Home directory (WEB-INF/classes), you can enter the resource path in the
‘Parameter Dialog CSS File’ field as follows: “/ParamStyle.html”.

See Also
Parameter Sheets, in Report Design, for more extensive customization of
parameter prompting.

Custom Replet Error Page

A replet error page is like any html page. Additionally, it can include two
special tags, $(replet.name) and $(replet.error), which are replaced
inline with text containing the report name and the type of report error.

For example, the following is a minimal custom report error page:

<html>
<head>
<title>Replet Error Page</title>

</head>
<body>
$(replet.name) has error $(replet.error)

</body>
</html>

ADMINISTRATION REFERENCE

1892 of 2477

Tool Dialog CSS File

A CSS file can be used to style the dialog boxes generated by the Portal
toolbar items. This CSS file is loaded as a resource, and the following
classes and ids are supported:

8.3.2 Report Toolbar Options

Use the ‘Report’ > ‘Toolbar Options’ page to hide or rearrange particular
report toolbar buttons. To hide a toolbar button for reports viewed under the
Reports tab, deselect the corresponding box in the ‘Visible in Report’
column.

To change the order of the toolbar buttons, click the up and down arrow
keys. Click ‘Apply’ to save any changes.

Figure 54. Report Toolbar Options

DIALOG CLASSES OR IDS

all body{}, select{}, option{}, label{}, input.button{},
input.textbox{}

Find #find_scope{}, #find_column{}, #find_operator{},
#find_logicOperator{}, #find_value{}, #find_moreButton{},
#find_fewerButton{}, #find_findButton{}, #find_clearButton{},
#find_cancelButton{}, #find_body{}

Export #export_formatLabel{}, #export_formatList{},
#export_cancelButton{}, #export_exportButton{},
#export_pageLabel{}, #export_pageRadio{},
#export_pageScope{}, #export_body{}

Mail #mail_toLabel{}, #mail_subjectLabel{}, #mail_formatLabel{},
#mail_format{}, #mail_to{}, #mail_subject{}, #mail_msg{},
#mail_okButton{}, #mail_cancelButton{}, #mail_body{}

Print #print_printerLabel{}, #print_printer{},
#print_selectPageLabel{}, #print_selectPageRadio{},
#print_pageScope{}, #print_okButton{}, #print_cancelButton{},
#print_body{}

Archive #archive_title{}, #archive_secondTitle{}, #archive_label{},
#archive_text{}, #archive_button{}, #archive_comments{},
#archive_body{}

ADMINISTRATION REFERENCE

1893 of 2477

Note that ‘Default Print’ button does not work with the built-in Flash plug-
in of the Google Chrome browser. To use this button in Chrome, the user
must disabled their browser’s built-in Flash plug-in.

Security-Based Toolbar Buttons

Certain toolbar buttons are automatically hidden based on user privileges.
Examples of such buttons are ‘Save’, ‘Ad Hoc’, and the ‘Data Worksheet’
(only for Style Intelligence).

The ‘Save As’ button
saves a copy of the
report in a folder with
‘write’ permissions. A
user cannot overwrite
an existing report
without ‘write’ per-
missions on that
report.

• ‘Save’: Permits the user to modify the original template, and displayed
only if the user has ‘write’ permissions on the report template.

• ‘Ad Hoc’: Displayed if the user has ‘adhoc’ permissions.

See Also
Setting Permissions, for information on setting user privileges for various
actions.
Viewsheet Toolbar Options, to modify the buttons on the Viewsheet toolbar.

8.3.3 Custom Icons

To change the icons used for report toolbar buttons and the repository tree,
select ‘Presentation’ > ‘Report’ > ‘Custom Icons’ under the Server tab,
and specify an absolute path to the directory containing the custom
graphics. Instead of using an absolute path, you can also use an
environment variable such as ‘sree.home’. For example, you can specify
$(sree.home)/myIcons/.

To prevent custom buttons from appearing on an individual report, set the
string initialization parameter use.custom.actions to false.

8.3.4 Report Export Menu Options

The export menu on the viewer contains a list of all export file formats,
including Excel, RTF, HTML, and others. For those three formats, there are
two variations of output: one with report pagination, and another with no
pagination.

It is possible to select a subset of the export formats to be included in the
export menu. The export menu option is accessed through the
‘Presentation’ > ‘Report’ > ‘Export Menu Options’ node on the navigation
tree.

ADMINISTRATION REFERENCE

1894 of 2477

Figure 55. Report Export Menu Options

See Also
Viewsheet Export Menu Options, to control export options for a Viewsheet.
Options Tab, to override ‘Export Menu Options’ settings for a specific
report.

8.3.5 Windows and Frames

Options can be set to control how and where to display reports.

Figure 56. Windows and Frames Options

The ‘Page Frame Name’ property allows the user to specify the frame in
which the report pages show up, in cases where frames are being used. This
option is most useful when a user wants to embed the Portal tree in their
own customized interface. A user can follow the procedure listed below to
embed the Portal tree in their own customized html page with frames.

1. Specify the target frame name in which to show the report pages,
for example, ‘MyPage’. This is done by setting the ‘Page Frame
Name’ property to “MyPage”.

2. Create an html page with contents similar to the following
example.

<html>
<head>

<title>Embedding Portal tree in my own html page</title>

ADMINISTRATION REFERENCE

1895 of 2477

</head>
<frameset name='mySet' cols='25%,*' frameborder='no'
border='0' framespacing='2'>

<frame name='repository' scrolling='auto' src='http://
{host}{:port}/{repositoryservlet}?op=embeddedTree'/>
<frame name='MyPage' scrolling='auto' src=''/>

</frameset>
</html>

3. Deploy the customized html page to the web server and use it to
access the repository tree.

8.4 Viewsheet
The ‘Viewsheet’ pages allow you to configure options for Viewsheet
display and interaction.

8.4.1 Viewsheet Toolbar Options

Use the ‘Viewsheet’ > ‘Toolbar Options’ page to hide particular Viewsheet
toolbar buttons. To hide a button, deselect the corresponding box. Click
‘Apply’ to save changes.

Figure 57. Viewsheet Toolbar Options

The ‘Help’ option enables or disables the display of the ‘Help’ button in the
Chart Editor.

See Also
Report Toolbar Options, to modify the buttons on the report toolbar.

8.4.2 Viewsheet Export Menu Options

Use the ‘Viewsheet’ > ‘Export Menu Options’ page to hide particular
Viewsheet export options. To hide an export option, deselect the
corresponding box. Click ‘Apply’ to save changes.

ADMINISTRATION REFERENCE

1896 of 2477

Figure 58. Viewsheet Export Menu Options

See Also
Report Export Menu Options, to control export options for reports.

8.5 Dashboards
Dashboards are used for monitoring key performance indicators, as well as
for exploratory data analysis. Dashboards provide users with a variety of
different views of their data using elements such as charts, tables, and
gauges. They may additionally provide “input” control elements to allow
users to interact directly with the data and tailor data views to their own
needs.

In general, you will use the Enterprise Manager dashboard design tools to
create “default” dashboards for end-users. Users can clone and adapt these
dashboards to suit their own needs, as described in Deploying a Dashboard
in End User. When a user-defined dashboard has the same name as an
administrator-defined dashboard (for example, if the user clones a default
dashboard), only the user-defined dashboard is shown.

See Also
Dashboard Design, for information on designing exploratory dashboards.
Report Design, for information on designing reports.
Deploying a Dashboard, in End User, for user-created dashboards.

8.5.1 Enabling Dashboards

To enable dashboards for users, follow these steps:

1. Open the ‘Dashboard Setting’ page (in the Server tab, under the
‘Presentation’ > ‘Dashboard’).

2. On the ‘Dashboard Setting’ page, select ‘Enable Dashboard’. This
will enable the Dashboard tab in the User Portal.

3. (Optional) Select ‘Dashboard Tabs Top’ to place the individual
dashboard tabs at the top of the Portal rather than at the bottom.

ADMINISTRATION REFERENCE

1897 of 2477

4. Click ‘Apply’ to enter the settings.

8.5.2 Creating a Dashboard

A dashboard consists of one or more Viewsheets. To create a new
dashboard, follow these steps:

1. Open the ‘Dashboard Configuration’ page (under the Server tab in
‘Presentation’ > ‘Dashboard’).

2. Press the ‘New Dashboard’ button under the ‘Dashboards’ table.
This opens the ‘Dashboard Properties’ dialog box.

3. In the ‘Dashboard Name’ field, enter a name for the new
dashboard. This name will be displayed on this dashboard’s tab in
the User Portal.

4. (Optional) Enter a description for the dashboard in the
‘Description’ field. This description is visible when the dashboard
is being edited by administrator or user.

5. Press ‘OK’ to open the ‘Edit Dashboard’ dialog box.

6. In the ‘Edit Dashboard’ dialog box, choose a Viewsheet from the
‘Select Viewsheet’ list. This Viewsheet will be used as the
dashboard.

ADMINISTRATION REFERENCE

1898 of 2477

7. Press ‘OK’. This closes the ‘Edit Dashboard’ dialog box, and
returns you to the ‘Dashboard Configuration’ page.

The new dashboard is now listed in the ‘Dashboards’ table, and will be
visible to the users who have appropriate permissions.

See Also
Editing or Deleting a Dashboard, to edit an existing dashboard.
Building a Composite Dashboard, in Dashboard Design, for building
composite dashboards.
Deploying a Dashboard, in End User, for user-created dashboards.
Managing Dashboards, to assign dashboard permissions to different users.

8.5.3 Enabling Server-Side Update for a Dashboard

To force a Viewsheet to refresh its data at a specified interval, simply select
the ‘Server-Side Update’ option in the ‘Viewsheet Options’ dialog box.
(See Setting Viewsheet Options in Dashboard Design for more details.)

You can further customize the update behavior by configuring the
Viewsheet to refresh in response to a particular external event. For
example, your database can issue a refresh command to a Viewsheet in
response to a database event such as a data update.

To customize server-side update, follow the steps below:

1. Add the following line into the sree.properties file:

assetMonitor.enabled=true

2. Start the Style Intelligence server, and open Enterprise Manager.

ADMINISTRATION REFERENCE

1899 of 2477

3. In Enterprise Manager, open the ‘Server’ page under the ‘Log’
node (on the Server tab). Verify that the following lines (or
equivalent) appear in the log:

Start RMI registry at: 1099
Rebind RMI Call thread.
DataChange server bound in RMI registry.

This indicates that the DataChange server (responsible for server-
side updates) is correctly running.

4. If you do not see the above output in the log, this may indicate a
port conflict. In this case, set the dataChange.rmi.port property in
sree.properties to a different port number.

5. Open the desired Viewsheet in Visual Composer. Open the
‘Viewsheet Options’ dialog box, and select the ‘Server-Side
Update’ option. (See Setting Viewsheet Options in Dashboard
Design.) In the ‘Refresh Interval’ field, enter the period (in
seconds) at which the server should check for the external trigger
event.

6. Create a DataChangeClient class that can be executed by an
external program (for example, by the database) to trigger a
particular Viewsheet to update. An example of such a class is
shown below:

import java.rmi.*;
import inetsoft.report.composition.AssetMonitor;
import inetsoft.uql.asset.AssetRepository;

public class DataChangeClient {
public DataChangeClient(String usr, String pwd, int

scope, String vs, String rmi) {
this.usr = usr;
this.pwd = pwd;
this.scope = scope;
this.vs = vs;
this.rmi = rmi;

}

private boolean dataChange() {
AssetMonitor engine = null;

try {
engine = (AssetMonitor) Naming.lookup(rmi);

}
catch(Exception e) {
System.err.println("Can't find the rmi server at: " +

rmi);
e.printStackTrace();
return false;

}

String ticket = null;

ADMINISTRATION REFERENCE

1900 of 2477

try {
ticket = engine.login(usr, pwd);

}
catch(RemoteException e) {
System.err.println("Login failed with " + usr + "/" +

pwd);
e.printStackTrace();
return false;

}

try {
engine.dataChanged(vs, scope, usr, ticket);

}
catch(RemoteException e) {
System.err.println("fire data change failed");
e.printStackTrace();
return false;

}

try {
engine.logout(ticket);

}
catch(RemoteException e) {
}
return true;

}

public static void main(String[] args) {
if(args.length != 5) {
System.err.println("Usage: java DataChangeClient usr

pwd scope viewsheetPath rmi");
System.err.println("@param user: the usr for login");
System.err.println("@param pwd: the password of the

user");
System.err.println("@param scope: 1 - global scope,

other - user scope");
System.err.println("@param viewsheetPath: the path of

the viewsheet");
System.err.println("@param rmi: the rmi data change

server url");
System.exit(0);

}

int scope = AssetRepository.USER_SCOPE;
if("1".equals(args[2])) {
scope = AssetRepository.GLOBAL_SCOPE;

}

new DataChangeClient(args[0], args[1], scope, args[3],
args[4]).dataChange();
}

private String usr, pwd, vs, rmi;
private int scope;

}

7. Compile the DataChangeClient class. (The classpath should
include the Style Intelligence server files, bisuite.jar and etools.jar.)

8. Execute the DataChangeClient class to update the desired
Viewsheet. For example:

ADMINISTRATION REFERENCE

1901 of 2477

java DataChangeClient admin admin 1 ViewsheetName "rmi://
localhost:1099/DataChangeServer"

This will update the specified Viewsheet after the interval specified
by the ‘Refresh delay’ field in the ‘Viewsheet Options’ dialog box.

Example:
Custom Server-
Side Update

In the following example, you will create a Viewsheet that receives its data
from an embedded Table in a Data Worksheet. You will then configure the
Viewsheet to automatically update when the DataChangeClient is
triggered.

Before beginning the example, compile the DataChangeClient class as
described previously. Then follow the steps below:

1. Add the following line into the sree.properties file:

assetMonitor.enabled=true

2. Create a new Data Worksheet, and add the following Embedded
Table. (See Creating an Embedded Table in Data Mashup for
detailed instructions.)

3. Right-click the ‘col1’ header, and select ‘Column Type’ from the
context menu. This opens the ‘Column Type’ dialog box.

4. Select ‘Double’ from the ‘Type’ menu, and click ‘OK’.

5. Save the Worksheet with the name ‘EmbeddedData’. (See Saving a
Data Worksheet in Data Mashup.)

6. Create a new Viewsheet based on the ‘EmbeddedData’ Worksheet.
(See Quick Start: Creating a Dashboard in Dashboard Design.)

7. Add a Chart to the Viewsheet to display the data from the
Worksheet as follows. (See Creating a Chart in Dashboard
Design.)

ADMINISTRATION REFERENCE

1902 of 2477

8. Click the ‘Options’ button in the Viewsheet toolbar. This opens the
‘Viewsheet Options’ dialog box.

9. In the ‘Deployment’ panel at the bottom, enable the ‘Server-Side
Update’ option, and set the ‘Refresh Interval’ to 10 seconds.

10. Click ‘OK’ to close the dialog box.

11. Save the Viewsheet with the name ‘UserDashboard’. (See Saving a
Viewsheet in Dashboard Design.)

12. Launch the User Portal, and open the ‘UserDashboard’ Viewsheet
in the Portal.

ADMINISTRATION REFERENCE

1903 of 2477

13. Return to the ‘EmbeddedData’ Worksheet in Visual Composer.

14. Make some changes to the data in the Embedded table, and click
the ‘Save’ button.

15. Return to the User Portal. (Do not reload the Viewsheet.) Note that
the Viewsheet remains the same, even though the underlying data
has changed.

16. Trigger an automatic Viewsheet update by running the
DataChangeClient class from the command line:

java DataChangeClient admin admin 1 UserDashboard "rmi://
localhost:1099/DataChangeServer"

17. Return to the User Portal. (Do not reload the Viewsheet.) Observe
that the Viewsheet updates automatically after the specified delay.

ADMINISTRATION REFERENCE

1904 of 2477

8.5.4 Editing or Deleting a Dashboard

To edit an existing dashboard, follow the steps below:

1. Open the ‘Dashboard Configuration’ page (in the Server tab, under
‘Presentation’ > ‘Dashboard’).

2. Locate the dashboard you wish to edit in the ‘Dashboards’ table.
(This table lists all of the dashboards defined by the administrator.
User-defined dashboards are not listed in this table.)

3. Click the ‘Edit’ button, located in the right-most column, for the
dashboard you wish to edit.

This opens the ‘Edit Dashboard’ dialog box. Follow the instructions in
Creating a Dashboard to make the desired edits.

To delete a dashboard entirely, click the ‘Delete’ button in the right-most
column.

ADMINISTRATION REFERENCE

1905 of 2477

8.5.5 Managing Dashboards

Before a user can access the dashboards that you have created in Enterprise
Manager, you need to assign the user appropriate permissions based on the
user’s role or group. In general, you should first configure a security
provider (see Specifying a Security Provider), otherwise, the only role
available will be “anonymous”.

To configure permissions for a dashboard, follow the steps below:

1. Open the ‘Dashboard Manager’ page (in the Server tab, under
‘Presentation’ > ‘Dashboard’).

2. Select ‘Role’ or ‘Group’, depending on the scope of permission
you want to assign. (See Users, Roles, and Groups for more
information.)

3. Click on an identity in the top table. This exposes the ‘Dashboard
for’ table. For example, click the ‘Everyone’ role to expose the
‘Dashboards for Everyone’ table.

4. Check the box in the ‘Enable’ column next to the dashboards you
wish to activate for the selected role.

5. Click the arrows in the ‘Arrange’ columns to position the User
Portal dashboard tabs in the desired display order. (This ordering
only affects newly added dashboards. After a user has already
accessed a dashboard, the ordering for that dashboard is controlled
by the user through the Portal ‘Preferences’ dialog box. See the
User Preferences section of the End User.)

6. Click ‘Apply’ to enter the settings.

The table lists the dashboards that are currently accessible to a given role.

ADMINISTRATION REFERENCE

1906 of 2477

Dashboards that you enable for a user will be visible to the user the next
time they access the Dashboard tab in the Portal. The enabled dashboards
will also be appended to the ‘Dashboard’ table of the user’s Portal
‘Preferences’ dialog box. Dashboards that you disable for a user will no
longer be listed in this table. From the Portal ‘Preferences’ dialog box,
users can choose to disable or reorder dashboards to suit their needs. See
the Deploying a Dashboard section in the End User for more information.

8.6 PDF Generation
PDF is used as the standard format for saving and presenting electronic
report data. It is used to deliver reports via email and to view them with the
browser. InetSoft software uses enhanced PDF generation that allows other
fonts to be embedded in the PDF file.

8.6.1 Setting PDF Properties

You can set PDF properties through the ‘PDF Generation’ page of the
Enterprise Manager. Select ‘Presentation’ > ‘PDF’ on the navigation tree
under the Server tab to access this page.

Figure 59. PDF Generation

Since PDF generation is built into the report engine, there is normally no
need for replets to access the PDF generator API directly. The following
sections describe the properties available through the ‘PDF Generation’
page. See Appendix B.9, PDF and Font Properties, for more information
on PDF properties.

Select the ‘Font Mapping’ node to change the default base-14 font
mapping.

ADMINISTRATION REFERENCE

1907 of 2477

• Embed PDF: If ‘Embed PDF in Browser’ is enabled, when the user
exports a report or Viewsheet to PDF format from within the User
Portal, the PDF file will be immediately displayed by the browser (if
Adobe Reader is installed), and the ‘Open/Save’ download dialog box
will not be displayed.

• Open Bookmark: If ‘Open Bookmark’ is set to true, then all the
generated PDFs will have bookmarks displayed immediately upon
opening them in Adobe Acrobat.

‘Open Bookmark’ and
‘Open Thumbnail’ are
mutually exclusive
properties. When both
are set to true, ‘Open
Bookmark’ takes pri-
ority and only book-
marks are displayed
when opening the
PDF file in Adobe
Acrobat.

• Open Thumbnail: If ‘Open Thumbnail’ is set to true, then all the
generated PDFs will have thumbnails displayed immediately upon
opening them in Adobe Acrobat.

• Keep Hyperlinks in PDF: Setting PDF option ‘Keep Hyperlinks in
PDF’ to ‘false’ will turn off hyperlink generation and speed up the PDF
generation process. Otherwise, the hyperlinks will be created in the
resulting PDF file.

8.6.2 TrueType Fonts

The TrueType font directories need to be specified in the font.truetype.path
property. The property is a directory path and can contain multiple
directories separated by a path separator (semicolon on Windows and colon
on Unix). Only TrueType fonts on this path are used in PDF generation. In
Windows NT, TrueType fonts are stored in the c:\winnt\fonts directory.
Under the UNIX platform, information about the available TrueType fonts
is obtained from the ‘fonts.properties’ file which is used by the JRE. As a
result, if the custom installed TrueType fonts are to be used for PDF
generation, then those fonts only need to be added to the font.properties
file.

8.6.3 Type 1 Fonts

Type 1 fonts can also be embedded in PDF files. Type 1 font information is
retrieved from AFM files. AFM is the standard font format used by Adobe
to store font data. AFM Files can be downloaded from the Adobe Web site.
The PDF generator uses font.afm.path to search for AFM files for a Type 1
font. Applications using Type 1 fonts need to package the AFM files with
the application, and set the font.afm.path to point to the AFM directory.

8.6.4 CJK Fonts

The PDF generator is capable of handling CJK (Chinese, Japanese,
Korean) characters in generated PDF files. Currently supported CJK fonts
include the following:

 – AdobeMingStd-Light
 – AdobeMingStd-Light-Acro
 – AdobeMyungjoStd-Medium
 – AdobeMyungjoStd-Medium-Acro

ADMINISTRATION REFERENCE

1908 of 2477

 – AdobeSongStd-Light
 – AdobeSongStd-Light-Acro
 – HYGoThic-Medium-Acro
 – HYSMyeongJo-Medium-Acro
 – HYSMyeongJoStd-Medium-Acro
 – HeiseiKakuGo-W5-Acro
 – HeiseiMin-W3-Acro
 – KozGoPro-Medium
 – KozGoPro-Medium-Acro
 – KozMinPro-Regular-Acro
 – KozMinProVI-Regular
 – MHei-Medium-Acro
 – MSung-Light-Acro
 – MSungStd-Light-Acro
 – STSong-Light-Acro
 – STSongStd-Light-Acro

Supporting CJK Characters

To support CJK characters:

• The location (folder path) of the CJK font files must be specified under
the heading TrueType/CID Font Path.

• The font mapping from the CJK-TrueType font to a CJK-CID font
needs to be defined in the font mapping table. It is recommended that
you select ‘true’ for embedding the font and the cmap in the PDF file.

Note: CJK fonts often use separate font files for the plain and bold versions
of the font. It is therefore possible to map a CJK font to a different file
depending on its weight. For example, the following setting maps all plain
MS Mincho instances to a normal-weight version of the KozMin font-
family, and maps all bold MS Mincho instances to a bold-weight version of
the same font-family:

pdf.font.mapping=MS Mincho-plain\:KozMinProVI-Regular;
MS Mincho-bold\:KozMinStd-Bold;

If the font weight is omitted, the default is ‘-plain’.

Supporting Unlisted CJK Fonts

To support CJK fonts not listed above, do the following:

• Place the font files in the folder specified under TrueType/CID Font
Path.

• Extract the cjkmap.properties file from your build JAR file (sree.jar or
bisuite.jar).

• Place the cjkmap.properties file within your classpath under /inetsoft/
reports/pdf, e.g., ‘WEB-INF/classes/inetsoft/reports/pdf/
cjkmap.properties’.

ADMINISTRATION REFERENCE

1909 of 2477

• Make an entry for the CJK font as {font name}={encoding}, e.g.,
DFKMincho\ Std\ W5=kor. (Escape the white spaces using a backslash).

Note: In many cases the actual font name may not be the same as the font
file name. To make sure you enter the right name in the properties file. Use
the utility TTFontInfo. The correct name will appear under the
fontnames[3] heading.

java -cp sree.jar inetsoft.report.pdf.TTFontInfo
{FontFileName With Absolute Path}

e.g. java -cp sree.jar inetsoft.report.pdf.TTFontInfo c:/
CID/DFKMinchoStd-W5.otf

Sample Output:
Getting font names:[c:/CID/DFKMinchoStd-W5.otf]
fontnames[0]=DFKMincho Std W5
fontnames[1]=DFKMincho Std W5
fontnames[2]=DFKMinchoStd-W5
fontnames[3]=DFKMincho Std W5

Notice how fontnames[3] yields the right font name to enter into the
cjkmap.properties file.

8.7 Adding PDF Security
To add security encryption to a PDF file exported by Style Intelligence, use
the following script in the onLoad handler of the report.

docInfo.pdf.password.owner = '{owner_password}';
// owner_password provides owner access to document

docInfo.pdf.password.user = '{user_password}';
// user_password provides user access to document

docInfo.pdf.permission.print = true/false;
// provides the ability to print

docInfo.pdf.permission.copy = true/false;
// provides the ability to copy from the document

To use encryption, you must have an implementation of the Java
Cryptography Extension on your classpath. Sun provides a default
implementation with the JRE. To use this, add the {JAVA_HOME}/jre/lib/
security folder to your classpath. See PDF Security Provider Subsets, in
Report Scripting, for more information.

8.8 Ad Hoc
The Ad Hoc pages allow you to configure Ad Hoc Wizards and set
properties for Ad Hoc report editing.

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html

ADMINISTRATION REFERENCE

1910 of 2477

8.8.1 Ad Hoc Wizard

This page allows you to edit new report wizards. A wizard can be defined
based on any prototype report. The user can then follow the instructions of
the wizard to create the specified report.

Figure 60. Ad Hoc Wizard Registration

To create a new Ad Hoc Wizard, follow the steps below:

1. On the ‘Ad Hoc Wizard Registration’ page, click the ‘New’ button.
This opens the ‘New Ad Hoc Wizard’ dialog box.

A prototype report
usually has a pre-
defined layout and a
single main element
(crosstab, table, chart,
section) that the user
edits using the wizard.

2. On the ‘Report Prototype’ page, select the prototype report on
which the wizard will be based. (See Prototype Reports for more
information on creating prototypes.)

3. Click ‘Next’ to access the ‘Wizard Prototype’ page. Enter a title in
the ‘Wizard Title’ field. This is the title that will be displayed to the
user.

4. Choose one of the four predefined wizard types (Crosstab, Table,
Section, Chart).

ADMINISTRATION REFERENCE

1911 of 2477

The wizard type determines the sequence of steps that will be
presented to the user when they invoke the wizard. You should
choose a wizard type appropriate for the element in the prototype
report (crosstab, table, section, or chart) that the user will be
editing.

5. Click ‘Next’ to proceed to the ‘Report Element’ page. From the
‘Report Element’ menu, select the report element (element ID) that
the user will be editing with the wizard.

6. Click ‘OK’ to close the ‘New Ad Hoc Wizard’ dialog box.

7. On the ‘Ad Hoc Wizard Registration’ page, click the ‘Edit’ button
for the new wizard.

This opens the ‘Ad Hoc Wizard Definition’ dialog box.

ADMINISTRATION REFERENCE

1912 of 2477

8. (Optional) In the ‘Image’ field, select a screenshot to be used for
the wizard. This screenshot is displayed when the user clicks the
‘Report’ button under the Design tab in the Portal.

9. From the ‘Ad Hoc Wizard Options’ region, select the steps to
include in the Wizard, and their ordering. The user is prompted to
compete each step in the sequence specified here.

See Also
New Report Wizards, in Ad Hoc Reporting, to use Ad Hoc Wizards.
Prototype Reports, for information on creating report prototypes.

8.8.2 Ad Hoc Settings

This page allows you specify some options for end user report editing.

The following options are available.

Textbox Auto Size Enable textboxes to shrink to fit contents.

Image Directory The folder containing images available to end users
for creating and modifying Ad Hoc reports.

ADMINISTRATION REFERENCE

1913 of 2477

Worksheet When enabled, provides a listing of available Data
Worksheets in the Ad Hoc ‘Data Source’ listings.

Report Data When enabled, provides a listing of available report
(embedded) data in Ad Hoc ‘Data Source’ listings.

ADMINISTRATION REFERENCE

1914 of 2477

9 Special Deployment Issues

In general, you should deploy reports and other assets to a server
environment using the approach described in Incremental Deployment of
Assets. However, in certain cases you may need to deploy the entire web
application to a new server or change datasource definitions during
deployment. The following sections discuss these cases.

9.1 Deploying the Application as a WAR File
A WAR file is a special JAR file containing all configuration information,
classes, and resource files used by the web application. Because a WAR file
is self-contained, installing it in a Servlet 2.2 runtime environment is
standard across all implementations. You can therefore use a WAR file to
easily distribute and deploy the entire Style Intelligence web application to
another application server.

This section explains the procedure for creating a WAR file from within
Enterprise Manager. You can also create a WAR file manually, as explained
in Appendix C: Manually Deploying a WAR File.

If the database being used during development is different than the
database used in production, but has the same schema, then the data source
definition can automatically be changed by the provided Ant task. See
Modifying Data Source Definition During Deployment for details on how
to use this Ant task.

Note

The Servlet 2.2 specification does not mandate permissions for servlets.
Earlier servlet runtime environment implementations provided universal
access to servlet applications. However, some newer implementations
restrict the servlet’s access to system resources, such as files, thread
creation, etc. Because the SREE servlet uses local files for configuration,
you should make sure that file access permission is enabled for the web
application. If you use a local report engine in the servlet, you also need to
grant access to a thread group.

9.1.1 Creating a WAR File Using Enterprise Manager

After you have completed development of your reports and dashboards,
you can use Enterprise Manager’s Deployment Wizard to deploy the
Administration Servlet, Repository Servlet, and Soap Package, along with
all of the assets in a particular report repository.

See Also
Appendix C: Manually Deploying a WAR File, for details on WAR file
deployment.

ADMINISTRATION REFERENCE

1915 of 2477

Creating the WAR File

To create the WAR file, follow the steps below:

1. In Enterprise Manager, navigate to the ‘Server’ > ‘Deployment’
node on the navigation tree under the Server tab.

You can create a WAR file for one of the three natively supported
Application Servers (Tomcat, WebLogic, WebSphere), or for any
generic J2EE-compliant Application Server.

2. Click the link corresponding to the desired application server:

– ‘Create Archive for Tomcat’
– ‘Create Archive for WebLogic’
– ‘Create Archive for WebSphere’
– ‘Create Archive for All’

This opens the ‘Create Archive’ dialog box.

Note: For Version 7.x of WebLogic, specify an “ear” extension
rather than the “war” extension, i.e., “sree.ear”.

3. In the ‘Create Archive’ dialog box, enter the required fields. In
general, the ‘Archive File Name’ field should contain the filename
for the WAR file, e.g., “sree.war”.

Reports that have already been deployed to the repository (i.e.,
replets) are automatically archived in the WAR file. You can
optionally add other replets to the archive by specifying their paths
in the ‘Replet Jar Files’ field.

4. To specify additional resource files to be added to the web
application, enter the names in the ‘Extra Files’ field.

5. To add the ‘Soap Bundle’ to your web application, select the
checkbox next to this item.

6. Click the ‘Create War File’ button.

ADMINISTRATION REFERENCE

1916 of 2477

Notes

• If ‘Soap Bundle’ is selected, WAR files created using either the Tomcat
Deployment Wizard or Standard War File Deployment Wizard will use
Apache Axis as the Soap Engine. War files created using the WebLogic
or WebSphere Deployment Wizard will use the native Soap Engine of
these respective Application Servers. The exceptions are WebLogic 6.x
and WebSphere 4.x which do not support Soap.

• The online documentation is not included in the WAR package. To
deploy the documentation, copy the devhelp and userhelp directories to
the desired location, and adjust the URLs on the ‘Configuration’ >
‘Help’ page (under the Server tab) accordingly. See Configuring User
and Developer Help for more details.

See Also
Appendix C.2, WebSphere 5.0 and higher, for WebSphere deployment.
Appendix C.3, WebLogic 7.0 and higher, for WebLogic deployment.
Appendix C.4, Tomcat 4.1 and higher, for Tomcat deployment.

Updating the Deployed War File

When the war file is deployed to the new server, you will need to update
certain path information. The essential changes are listed below:

1. In the WEB-INF/web.xml file, find the following code:

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports</url-pattern>

</servlet-mapping>

Replace it with the code below:

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports/dashboard/*</url-pattern>

</servlet-mapping>

2. In the WEB-INF/classes/sree.properties file, search for instances
of ‘/sree’ in file paths, and replace them with the correct name for
your deployed webapp. Only the file paths need to be updated. Do
not replace other instances of ‘sree,’ such as $(sree.home) or
‘sree.bundle.’

See Also
Appendix C: Manually Deploying a WAR File, for details on WAR file
deployment.

ADMINISTRATION REFERENCE

1917 of 2477

9.2 Modifying Data Source Definition During
Deployment
This section explains how to use the built-in Ant task to automatically
change the data source definition.

9.2.1 Using the Ant Task to Change Data Source

To use the built-in Ant task to automatically change the data source
definition, follow the steps below:

1. Make sure Ant-related JAR files and sree.jar (or analogs visual.jar,
bisuite.jar) are included on the classpath.

2. Create an Ant task definition in build.xml as follows:

<taskdef name="dsm"
classname="inetsoft.uql.util.dsm.DataSourceModifier"/>

3. Within an Ant target, include the <dsm> tag as follows:

<dsm restore="true" dsfile="datasource.xml">
</dsm>

where:
'restore' is set to true to restore data source file after deployment
'dsfile' specifies the data source file’s absolute path

Thus, use the dsm task to modify the datasource.xml and use the
WAR or JAR task to create a webapp. If restore=true, the
datasource.xml file will be restored back to its original state after
the build is finished.

4. Depending on the type of database, within the <dsm> tag, define one
of the attributes listed under Available DSM Tags.

5. Run the Ant task.

9.2.2 Available DSM Tags

This section lists the available attributes for the <dsm> tag. You do not need
to specify all the attributes listed here, only the ones that you wish to
modify.

<ds_jdbc>

This tag is to be used when the data source is of type ‘JDBC’.

<ds_jdbc name="DB2" url="jdbc_url" driver="jdbc_driver"
 requireLogin="true" user="jdbc_user"
 password="jdbc_password"
 defaultDB="jdbc_defaultDB"/>

ADMINISTRATION REFERENCE

1918 of 2477

 – ‘name’ is the jdbc data source’s name
 – ‘url’ is the jdbc data source’s new url
 – ‘driver’ is the jdbc data source’s new driver
 – ‘requireLogin’ is true if the jdbc data source requires login
 – ‘user’ is the jdbc data source’s new user if requires login
 – ‘password’ is the jdbc data source’s new password if requires login
 – ‘defaultDB’ is the jdbc data source’s new defaultDB

<ds_text>

This tag is to be used when the data source is of type ‘Text’.

<ds_text name="chart" url="text_url" method="get"/>

 – ‘name’ is the text data source’s name
 – ‘url’ is the text data source’s new url
 – ‘method’ is the text data source’s new method: ["get"|"post"|""]

<ds_corba>

This tag is to be used when the data source is of type ‘Corba’.

<ds_corba name="Bank" host="corba_host" port="corba_port"/>

 – ‘name’ is the corba data source’s name
 – ‘host’ is the corba data source’s new host
 – ‘port’ is the corba data source’s new port

<ds_ejb>

This tag is to be used when the data source is of type ‘EJB’.

<ds_ejb name="record_on_weblogic5">
<contextProperty name="cp1" value="cp1_value"/>
 <contextProperty name="cp2" value="cp2_value"/>
</ds_ejb>

 – ‘name’ is the ejb data source's name
 – ‘name’ and ‘value’ within the <contextProperty> tags are the context

property’s name and value, respectively

<ds_xml>

This tag is to be used when the data source is of type ‘XML’.

<ds_xml name="xml1" url="xml_url" method="post"/>

 – ‘name’ is the xml data source's name
 – ‘url’ is the xml data source's new url
 – ‘method’ is the xml data source's new method: ["get"|"post"|""]

<ds_soap>

This tag is to be used when the data source is of type ‘SOAP’.

<ds_soap url="http://localhost:8080/axis/services/
TempConvertWS"
serverclass="localhost.axis.services.TempConvertWS.TempConv

ADMINISTRATION REFERENCE

1919 of 2477

ertWSSoapBindingStub" requireLogin="true" user="Tom"
password="enter">

 – ‘url’ is the soap data source's new url
 – ‘serverclass’ is the soap data source's new server class
 – ‘requireLogin’ is true if the soap data source requires login
 – ‘user’ is the soap data source's new user if requires login
 – ‘password’ is the soap data source's new password if requires login

ADMINISTRATION REFERENCE

1920 of 2477

APPENDIX A: Troubleshooting

None of my settings have taken effect.

If your configuration files are in a folder other than the WEB-INF/classes
folder of the web application, a sree.home initialization parameter must be
set for both the administrator and the repository servlets.

I cannot see my reports after I deploy them.

This could be a problem with the location of the repository directory or the
CLASSPATH in the application server.

This problem could also occur if you have security set up for your
environment. If you have set up security and have created users and roles,
then the Report Server will require a username and password ticket to
generate the replets. The users must have permission to view the replets.

I can see my reports in the repository tree but when I try to view them I
get a “replet not found” error.

All report files (.srt) and class files are loaded from the classpath of the
application server. Make sure that these files are located in a folder which is
in the CLASSPATH (or any of its sub-folders). If the replets are deployed
from a packaged JAR file, make sure that the replet.auto.reload property
is set to false.

I deployed a template but I cannot see it.

Templates are loaded as resources. When a template is registered it must be
prefixed with a '/', for example '/template1.xml'. Also, be sure to select
‘Template’ as the type on the registration page.

I can see the body of my report, but the fields are not populated with
data.

Check the location of the data source and query registry files in the
Enterprise Manager. Make sure that valid datasource.xml and query.xml
registry files are referenced.

My Charts seem to have jagged edges, especially pie charts.

Try changing the image type to PNG rather than JPEG, using the
‘Presentation’ > ‘General’ node in the Enterprise Manager.

The Repository does not bind to the RMIREGISTRY.

Make sure the classpath is set before running the rmiregistry.
Alternatively, make sure that the port is not in use, and it matches the
parameter value.

ADMINISTRATION REFERENCE

1921 of 2477

The RMI node will not start.

Make sure that the rmiregistry and the Activator are running on the node.

The repository does not bind to the name service.

Make sure that the same port is being used.

Is it possible to run a task continuously (i.e. Have a task that executes
every few minutes)?

It is possible to do this by writing a user defined ScheduleAction which
extends DefaultUserAction. A scheduled task consists of one or more
actions and one or more conditions. The conditions are checked to see
when and whether a task will be started. When all conditions are met, the
task actions are executed in order. If a task is a repeated task, it will be
rescheduled to run at the next cycle. Multiple time conditions typically
should not be added for the same scheduled tasks (this can result in retry
time conflicts); instead, another task should be created.

This software will not run in WebSphere.

WebSphere has an XML parser (WebSphere\AppServer\lib\xml4j.jar)
which uses DOM level 1 interfaces. Even if you put the Xerces 1.1.2 (or
later) xerces.jar in your classpath, the wrong interfaces are found by any
Java code running in WebSphere, because WebSphere puts the user’s
classpath at the end. Therefore, you must edit the
WebSphere\AppServer\bin\admin.config file and put xerces.jar at the
beginning of the com.ibm.ejs.sm.adminserver.classpath variable. This
software uses the newer xerces.jar parser – therefore, it is necessary to
edit this property so the servlet can be deployed without error.

CVS Archive will not work with Sun ONE (iPlanet) application server.

The Sun ONE application server is unable to use the cvs executable on a
remote drive. Move the executable file to a local drive.

ADMINISTRATION REFERENCE

1922 of 2477

APPENDIX B: Configuration Properties

This Appendix lists all properties used by this software’s components.
Properties are used in the report engine to control the operation of the
report formatting and printing. You have encountered the use of properties
in previous chapters, such as the StyleReport.useCustomDriver property
for controlling the printer driver selection.

Properties are set using the SreeEnv class, which has static methods for
setting and retrieving the property values. The SreeEnv class uses the
system properties as the base property setting. Any properties set in the
system properties, through command line or Java API, are accessible from
the SreeEnv class.

Most of the properties have a corresponding component in the Enterprise
Manager. For normal use, we recommend using the Enterprise Manager to
change the property values. Misconfiguration of property values could
cause the components to malfunction. The property files can be shipped as
part of an application and customized during the installation. Alternatively,
an installation script can be used to modify the property files to suit the
server environment in batch mode. The advantage of using a script is that
no user intervention is needed during the installation, and the installation of
the application can be completely automated. Because all configuration
files are plain-text based, any scripting language can be used to develop the
installation scripts.

B.1 Server Engine Properties

Server engine properties include specifications relating to configuration file
locations and names. See Specifying Data Source Information for related
properties in Enterprise Manager.

PROPERTY DESCRIPTION

StyleReport.ditherImage True to force all images to be dithered before
printing. Default is false.

StyleReport.dither True to dither image when printing to black/
white printer. Default is false.

StyleReport.useCustomDrive
r

True to use custom driver. Default is false.

StyleReport.locale.resource Locale mapping file resource name.

StyleReport.locale.properties Locale mapping property file name.

StyleReport.locale.encode Load the locale property file used by Catalog,
so other language text can be properly loaded.

stylereport.library.file Location of .srl (Style Report Library) file.

ADMINISTRATION REFERENCE

1923 of 2477

B.2 DHTML Generation Properties

DHTML generation properties include meta information settings for the
HTML pages produced by the report engine.

stylereport.library.path List of .srl files specified using the file’s full
path. Use this when using multiple .srl files.

datasource.registry.file Location of datasource.xml file.

datasource.registry.path List of .xml files that are used to define all of
the available data sources.

datasource.selectedSource Specifies the datasource for which to refresh
metadata. See Specifying Data Source
Information to set this property in Enterprise
Manager.

query.registry.file Location of query.xml file.

query.registry.path List of .xml files that are used to define all of
the available queries.

query.cache.data Set to true (default) to cache query result sets
for reuse across reports, Worksheets, and
Viewsheets.

query.cache.timeout With query.cache.data enabled, specifies
the amount of time (ms) that result sets for
report, Worksheet, and Viewsheet queries
persist in the cache. Default: 30 seconds for
reports and 10 minutes for Worksheets/
Viewsheets.

query.cache.limit With query.cache.data enabled, specifies
the number of query result sets to be retained
in the cache. Default: 100 datasets (for both
reports and Worksheets/Viewsheets).

javascript.java.packages List of JavaScript packages accessible to the
scripting environment.

composer.comm.error Set to true (default) to warn user about server
connection errors when using Viewsheets. Set
to false to suppress these warnings.

PROPERTY DESCRIPTION

ReportSheet.title Sets the title meta information when generating
DHTML.

ReportSheet.subject Sets the subject meta information when generating
DHTML.

ReportSheet.author Sets the author meta information when generating
DHTML.

ReportSheet.keywords Sets the keywords meta information when
generating DHTML.

ReportSheet.comments Sets the comments meta information when
generating DHTML.

ADMINISTRATION REFERENCE

1924 of 2477

B.3 Repository Properties

Repository properties include specifications for processing and display of
reports. See the following sections for related properties in Enterprise
Manager: Changing the Server Type, Tailoring Server Performance,
Configuring Server Printing, General Presentation.

ReportSheet.created Sets the created meta information when generating
DHTML.

ReportSheet.modified Sets the modified meta information when
generating DHTML.

PROPERTY DESCRIPTION

replet.repository.url ServletRepository servlet URL.

replet.repository.protocol Repository server protocol, one of RMI,
CORBA, and LOCAL.

replet.indexing Specifies, when true, that live reports should
be indexed for search. See Integration to set
this property in Enterprise Manager.

font.preload True to pre-load the TrueType and Type 1 font
information. This causes the server startup to
be slower. If set to false, the loading is done
the first time a PDF file is generated.

replet.cache.workset Size (# of pages) of the working set.

replet.cache.directory Report page cache directory. If you would like
a separate cache directory for each node of a
cluster, set this property as an ‘Init Parameter’
on each node’s servlet.

replet.cache.interval Time between repository cache cleanup.

replet.repository.file Repository XML file path.

replet.repository.printers A comma separated list of server printers.

replet.viewer.actions A comma separated list of Java classes that
implement user defined actions. Each action
causes a button to be added to the viewer
toolbar. Order is respected.

server.type Describes the server type: rmi, servlet, etc.

repository.tree.sort Repository tree sorting order: ‘none’,
‘Ascend’, or ‘Descend’.

repository.asset.backup.enab
le

Enables automatic backup of the asset.dat file.
See Configuring the Data Space to set this
property in Enterprise Manager.

repository.asset.backup.time Sets the time for automatic backup of the
asset.dat file. See Configuring the Data Space
to set this property in Enterprise Manager.

reportCache.thread.count Maximum number of report generation threads
(for ‘cpu’ and ‘session’ keys only, hard-limit).
Default is 8 times the CPU count.

ADMINISTRATION REFERENCE

1925 of 2477

replet.cache.concurrency Maximum number of report generation threads
(for ‘cpu’ and ‘session’ keys only, soft-limit).
Default is 4 times the CPU count.

assetData.thread.count Maximum number of query execution threads
in a Viewsheet (for ‘cpu’ and ‘session’ keys
only). Default is 12 times the CPU count.

xmapTask.thread.count Maximum number of materialized view query
execution threads in a Data Node (for ‘cpu’
and ‘session’ keys only). Default is 12 times
the CPU count.

repletEngine.thread.count Maximum number of report creation threads in
Repository (for ‘cpu’ and ‘session’ keys only).
Default is 10 times the CPU count.

scheduleTask.thread.count Maximum number of task execution threads in
the Scheduler (for ‘cpu’ and ‘session’ keys
only). Default is 6 times the CPU count.

repletService.thread.count Maximum number of reports that can
simultaneously execute queries (for ‘cpu’ and
‘session’ keys only). Increase this value if a set
of reports with long-running queries is
blocking the execution of other reports.
Default is 12 times the CPU count.

replet.streaming True (default) to allow the engine to deliver
report pages as the data becomes available

replet.streaming.min The number of report pages the engine should
generate before streaming is initiated

replet.auto.reload True for automatic detection and reloading of
altered replet classes.

replet.auto.reload.interval Time in milliseconds between checking for
changes in replet classes.

replet.class Sets the default class for all Template based
replets, instead of
‘inetsoft.sree.TemplateReplet’

replet.custom.js Specifies an external file containing client-side
Javascript function definitions. See Client-Side
JavaScript in Report Scripting for details.

replet.browseData.nocache Caches the data when browsing column values
when creating filter conditions. Defaults to
false.

dependency.checker.enabled True (default) for automatic detection and re-
synchronization of report dependencies.

dependency.checker.interval Interval between checks for changes in report
dependencies, in milliseconds (default=30000)

ADMINISTRATION REFERENCE

1926 of 2477

B.4 Web Properties and Safeguards

Web properties include specifications relating to information displayed in
the Portal and Portal features. See Portal, Report, and Tailoring Server
Performance for related properties in Enterprise Manager.

PROPERTY DESCRIPTION

graph.script.action.suppor
t

When set to ‘true’, enables interactive Viewsheet
Chart features (brushing, zoom, data tip, flyover,
etc.) for Charts that are modified by script. By
default, these features are disabled for scripted
Charts because scripts may interfere with the
operation of these features.

output.null.to.zero When set to ‘true’ (default), Viewsheet Gauges
display zero (0) when an empty result set is
returned. When set to ‘false’, Gauges retain the
value shown for the previous non-empty result
set.

javascript.java.packages Specifies a comma-separated list of additional
Java packages to be exposed in the restricted
script execution environments of Ad Hoc
reporting and Visual Composer. By default,
scripts created in these environments provide
access only to the following Java packages:
java.awt, java.text, java.util, java.sql,
inetsoft.graph.*, inetsoft.report,
inetsoft.report.lens,
inetsoft.report.filter, inetsoft.uql,
inetsoft.report.painter. Note that exposing
additional Java packages may allow users to
create malicious scripts, so you must thoroughly
consider any such additions from a security
standpoint.

replet.repository.servlet Repository servlet URL or URI (e.g., /sree/
Reports).

cluster.defaultProxy Specifies a default value for an empty
‘Repository Servlet URL’ field on the ‘Server
Status’ page.

html.ratio.x Specifies the horizontal scaling ratio that relates
sizes and positions of elements and fonts in the
Style Studio preview to their HTML
representations within the Portal. (Default=1.3.)
This setting should be changed only to correct
visual abnormalities in the Portal display.

html.ratio.y Specifies the vertical scaling ratio that relates
sizes and positions of elements and fonts in the
Style Studio preview to their HTML
representations within the Portal. (Default=1.2.)
This setting should be changed only to correct
visual abnormalities in the Portal display.

html.repository.header HTML codes to insert at the beginning of the
repository window. If set to ‘none’, no welcome
message will be displayed above the report tree.

ADMINISTRATION REFERENCE

1927 of 2477

html.repository.footer HTML codes to insert at the end of the repository
window.

html.repository.help Set to ‘false’ to suppress display of the ‘Help’
link below the Repository tree.

html.repository.organize Set to ‘false’ to suppress display of the
‘Organize’ link below the Repository tree.

html.page.footer HTML codes to insert at the end of each report
page view.

html.directory Directory used to hold HTML temporary files
(images).

html.background HTML page background color.

html.toolbar.text Set to ‘true’ to use text-based toolbar. Default to
use image buttons.

html.toolbar.location Specifies the location of the toolbar on the
HTML page: Top, Bottom, Left, Right, or
Top_and_Bottom.

html.toolbar.background Specifies the background color of the toolbar.
The value is a Hex triplet, prefixed by a ‘#’.

html.toolbar.font Specifies the foreground color of the toolbar. The
value is a Hex triplet, prefixed by a ‘#’.

html.session.timeout Inactivity timeout period for each report viewing
session (in milliseconds). Default is 1200000 (20
minutes). When an open report is inactive for the
specified timeout period, the report will be closed
and the following message displayed: “Session
timeout. Please re-open the report.”

repository.user.timeout Inactivity timeout period for each user session (in
milliseconds) for a server with session license.
Default is 600000 (10 minutes). The user is
logged out only when the session is inactive for
the specified timeout period AND another
concurrent user requires the session.

html.page.window Determines whether a new window is created
when a replet is launched from the repository
view (true or false).

html.page.frame Frame name for page view (only used if
html.page.window is set to false).

html.viewer.frameset Set to ‘true’ to use frames to display the report
tree and actual reports in the same window.

html.showreplet.window Determines whether a new window is created
when a replet is launched from another report
(true or false).

html.layout This property has a value of “css” or “table”. The
default is css. If generated DHTML contains
overlapping elements due to some server font
issues, switch to ‘table’ layout. This guarantees
no overlapping of contents, but is less accurate in
matching the actual layout of the report.

ADMINISTRATION REFERENCE

1928 of 2477

pdf.output.attachment Default is true. This sends generated PDF as an
attachment. If set to false, the PDF is returned as
is. In IE 4 through 5, a URL referring to
dynamically generated PDF could result in a
blank page. Optionally, it can be set to ‘embed’,
which will cause a PDF request to return a
HTML page with an <embed> tag, which
normally displays correctly in IE without causing
a dialog to prompt users to save the PDF.

html.retry.interval Milliseconds between retry, when waiting for a
report.

html.session.max.report The maximum number of reports that can remain
active in a particular session. Default is 5.

html.browser Client-side HTML browser full path.

html.encoding.utf8 Default is true. If set to false, the HTML output is
not encoded using UTF8. This may cause
international characters to be displayed
improperly.

html.offset.x The distance of the generated HTML contents to
the left edge of the browser.

html.offset.y The distance from the generated HTML contents
to the top of the browser.

html.export.button Set to false to remove the ‘export’ button from
the report toolbar.

html.export.embed Set to true to embed the output of the export
(from the export dialog) into the report frame and
replace the report contents.

html.find.button Set to false to remove the ‘find’ button from the
report toolbar.

html.findNext.button Set to false to remove the ‘find next’ button from
the report toolbar.

html.mail.button Set to false to remove the ‘mail’ button from the
report toolbar.

html.pdf.button Set to false to remove the ‘pdf’ button from the
report toolbar.

html.page.button Set to false to remove ‘Page ____ of ____’.

html.refresh.button Set to false to remove the ‘refresh’ button from
the report toolbar.

html.serverPrint.button Set to false to remove the ‘server print’ button
from the report toolbar.

html.toc.button Set to false to remove the ‘table of contents’
button from the report toolbar.

html.customize.button Set to false to remove the ‘customize’ button
from the report toolbar.

html.archive.button Set to false to remove the ‘save in archive’ button
from the report toolbar.

html.compose.button Set to false to remove the ‘edit and analyze’
button from the report toolbar.

ADMINISTRATION REFERENCE

1929 of 2477

html.defaultPrint.button Set to false to remove the ‘Default Print’ button
from the report toolbar. See Report Toolbar
Options to set this property from Enterprise
Manager.

html.repservlet.title The Portal page title. If unspecified, the default
title of ‘Style Report Viewer’ will be used.

html.tblheading.hide Set to true to include table and section grouping
headers in the TOC.

dhtml.error.page Defines the replet error page.

export.menu.options A comma separated list of option numbers. Only
the options on the list are added to the report
export menu. e.g: PDF, EXCEL,
EXCEL_SHEET, EXCEL_DATA, RTF,
RTF_LAYOUT, HTML,
HTML_NO_PAGINATION, HTML_BUNDLE,
HTML_BUNDLE_NO_PAGINATION, CSV,
SVG, TEXT, REPORT

excel.export.grid.show When true, specifies that gridlines will be shown
in the Excel export, and that default text
backgrounds are transparent. When false,
gridlines are suppressed and default text
backgrounds are white.

rtf.image.scale Boolean that determines whether the image is
exported in its original size in RTF format.

rtf.hyperlink.indicator Set to false to remove hyperlink underlining in
RTF format.

repository.buttonset The resource path to the directory that contains
the icons for toolbar buttons. The following
images should be found in this directory:
 – archive.gif
 – composer.gif
 – customize.gif
 – export.gif
 – find.gif
 – firstpage.gif
 – lastpage.gif
 – mail.gif
 – menuarrow.gif
 – nextpage.gif
 – pdf.gif
 – prevpage.gif
 – refresh.gif
 – sprinter.gif
 – toc.gif

query.preview.maxrow Sets the maximum number of rows for queries in
Worksheet and Viewsheet live data mode.

query.preview.timeout Sets the timeout interval (seconds) for queries in
Worksheet and Viewsheet live data mode.

csv.import.max Sets the maximum size in bytes for CSV files
imported into a Worksheet Embedded Table (see
Importing Data Into an Embedded Table in Data
Mashup).

ADMINISTRATION REFERENCE

1930 of 2477

query.runtime.maxrow Sets the global maximum size for all queries
during report/Viewsheet runtime execution.

table.output.maxrow Sets the global maximum size for all tables
during report/Viewsheet runtime execution.

report.output.maxpages Sets the global maximum on the number of pages
for reports during runtime execution.

query.runtime.timeout Sets the global timeout (seconds) for all queries
during report/Viewsheet runtime execution.

query.adhoc.maxrow Sets the maximum query size for any data
binding modified using Ad Hoc tools.

query.adhoc.timeout Sets the query timeout (seconds) for any data
binding modified using Ad Hoc tools.

adhoc.ds.worksheet When true, provides a listing of available Data
Worksheets in the Ad Hoc ‘Data Source’ listings.

adhoc.ds.report When true, provides a listing of available report
(embedded) data in Ad Hoc ‘Data Source’
listings.

asset.sample.maxrows The default ‘Design mode sample data size’ in
the Worksheet Options dialog box. See Setting
Global Worksheet Options in the Data Mashup.

DistinctTableLens.maxro
w

Sets the maximum number of distinct values to
display in the Browse Data menu.

table.export.format When set to “csv”, table data exported from a
Viewsheet or Data Worksheet will use CSV
format rather than the default Excel format
(“xls”).

query.estimate.enabled When true (default), the product asks the
database engine to estimate the duration of
executing worksheet queries. If the returned
value is over a certain threshold, the query does
not run.

asset.ignore.filtering When true (default), this displays a warning
message to the Viewsheet designer when a
Worksheet Data Block returns no data. The
warning indicates that conditions on all Data
Blocks will be dropped in Viewsheet design view
(only) to help facilitate formatting. When false,
all conditions are kept in place (which may make
Viewsheet formatting more difficult).

wizard.newReport.mode Defines the initial state of a ad hoc report created
from a Wizard. Set to 1 for No Data (default) and
2 for Live Data.

assetData.thread.count The maximum number of Viewsheets that can
simultaneously execute queries. Increase this
value if a set of Viewsheets with long-running
queries is blocking the execution of other
Viewsheets. (Default is six times the number of
CPUs.)

ADMINISTRATION REFERENCE

1931 of 2477

graph.ggraph.maxcount The maximum number of nested graphs for
Viewsheets and reports (Facet Chart). An error is
generated if this value is exceeded.

replet.myreports.disabled Set to true to hide the ‘My Reports’ folder from
the replet tree.

enable.changePassword Set to false to disable users’ ability to change
passwords in the User Portal (using the default
security provider).

em.user.max For LDAP security, the maximum number of
users that will be listed in the user tree (under the
User tab or Security tabs). The default is 1000.
To find unlisted users, see Searching the User/
Role Tree.

mv.repository.servlet The complete URL of the Data Server machine,
which is required for scheduling materialized
views.

mv.detail.data When set to true, populates Viewsheet Chart and
Crosstab ‘Show Details’ data from an existing
materialized view rather than from the database.

mv.cache.data When set to true (default), caches materialized
view result sets so that they can be shared across
Viewsheets.

mv.backup.dup The number of successive materialized view
versions to maintain as backups. The default is 1.
See Managing Materialized Views for more
information.

hyperlink.indicator When set to true, automatically displays
hyperlinks with underlining. When set to false
(default), displays hyperlinks without
underlining. (Users can manually format the
hyperlinks as desired.)

viewsheet.chart.adhoc When set to true (default), configures the ‘Enable
Ad Hoc Editing’ property of Viewsheet charts to
be enabled by default.

viewsheet.default.font Specifies the default font for all Viewsheets.

viewsheet.font.size Specifies the default font size for all Viewsheets.
A plain integer value specifies an absolute size
for all fonts. An integer preceded by a + or -
indicates an increase or decrease in size from the
default font sizes (e.g.,
viewsheet.font.size=+5).

ADMINISTRATION REFERENCE

1932 of 2477

B.5 Security Service Properties

Security properties include specifications relating to security provider. See
Specifying a Security Provider and Tailoring Server Performance for
related properties in Enterprise Manager.

B.6 Scheduling Service Properties

Scheduling properties include specifications relating to the RMI Scheduler
application. See Configuring the Scheduler and Scheduler Properties for
related properties in Enterprise Manager.

PROPERTY DESCRIPTION

security.password.file Password file used by the default security
service.

security.acl.file Access the control file used by the default
security service.

security.use.cookie Set to false to disable the use of cookies in
security service.

security.ldap.userbase The base DN for users. For iPlanet, default is
‘ou=People’, and for ADS, default is ‘cn=Users’.

security.ldap.groupbase The base DN for groups. For iPlanet, default is
‘ou=Groups’, and for ADS, default is
‘cn=Users’.

security.ldap.rolebase The base DN for roles. For iPlanet, default is
‘ou=People’, and for ADS, default is ‘cn=Users’.

security.cache Caches data when using LDAP security for
improved performance.

role.administrator Only users with this role can log into the EM and
administer the report server. For an LDAP/AD
security provider it maps to a Security Group. It
defaults to ‘Administrator.’ e.g.,
role.administrator=SRAdmin

PROPERTY DESCRIPTION

schedule.task.file Schedule a XML file path.

schedule.task.listener Specifies the fully-qualified name of a listener
class to be executed at the start and end of
every scheduled task.

schedule.cycle.interval Interval between batch cycles (in
milliseconds).

schedule.reload.auto Set to true to automatically reload schedule
file when it is modified.

schedule.reload.interval Interval (in milliseconds) for checking
schedule file changes. Default is 2000.

scheduler.classpath The path that will be prepended to the system
classpath when the Scheduler process is
started.

ADMINISTRATION REFERENCE

1933 of 2477

B.7 Mailing Service Properties

Mail properties include specifications relating to email notification and
report distribution. See Configuring Server Email for related properties in
Enterprise Manager.

B.8 Log Service Properties

Please see section ‘Advanced Log Configuration’. For customizing log
detail levels and log message formats.

schedule.log.file Scheduler log file path.

schedule.memory.min Minimum memory usage for the Scheduler.

schedule.memory.max Maximum memory usage for the Scheduler.

schedule.abnormity.notify Specifies a comma-separated list of emails to
receive notification in the event that the
Scheduler application becomes unresponsive.

PROPERTY DESCRIPTION

mail.split.message Message used when a PDF file is split into multiple
parts.

mail.subject.format Format for the mail subject line. It is a message
format (java.text.MessageFormat). There are two
parameters used in generating the subject line. The
first parameter is the alias of the replet, and the second
parameter is the date and time (Date) of the report
generation. For example, a possible format could be
“Report {0} generated at {1,time} on {1,date}.”

mail.smtp.host Mail SMTP host name.

mail.attachment.max Maximum size for a PDF attachment on an email. If
the PDF file is larger than the maximum size, the PDF
is split into multiple parts.

mail.from.address ‘From’ email address used in email message.

system.admin.addres
s

Email address of system administrator for the replet
error page.

PROPERTY DESCRIPTION

log.output.stderr True to send output to the stderr.

log.output.file Log file path.

log.detail.level Number specifying the logging level, as follows: Finest
(fine-grained performance information), Fine
(debugging messages), Info (non-critical information
messages), Warning (non-fatal errors and critical
messages), Severe (fatal errors).

ADMINISTRATION REFERENCE

1934 of 2477

B.9 PDF and Font Properties

PDF properties include specifications relating to reports generated in PDF
format. See PDF Generation for related properties in Enterprise Manager.

log.view.maximum The maximum number of lines to return when the ‘All’
option is selected on the ‘Log View’ page.

log.view.lines The number of lines to display on the log page.

PROPERTY DESCRIPTION

pdf.output.ascii True to generate only ASCII output in the PDF file. No
ASCII data is encoded to seven bit data.

pdf.compress.image True to compress all image data.

pdf.compress.text True to compress all text data.

pdf.map.symbols Map symbol characters to symbol fonts. This is
required if symbol characters are used in reports.

pdf.font.mapping Font mapping from Java font to fonts used in PDF. It is
a semi-colon separated pairs of font names. Each pair
is separated by a colon, e.g., ‘MS Hei:HeiseiKakuGo-
W5-Acro;MS Song:Song-Acro’. See also CJK Fonts.

pdf.print.scaling True to make the PDF reader use the application
default for the ‘Page Scaling’ print option. False to use
‘None’

pdf.embed.font True to embed the font in the generated PDF file.

pdf.embed.cmap True to embed the cmap in the generated PDF file.

pdf.open.bookmark True to have bookmarks immediately displayed when
the generated PDF files are opened in Adobe Acrobat.

pdf.open.thumbnail True to have thumbnails immediately displayed when
the generated PDF files are opened in Adobe Acrobat.

pdf.generate.links True to create hyperlinks in the resulting PDF file.
False to turn off hyperlink generation and speed up the
pdf generation process.

font.truetype.path TrueType font directories.

font.metrics.source TrueType to use TrueType fonts as specified in the
directories in font.truetype.path.

font.afm.path Type 1 AFM file directories.

font.cmap.path Cmap file directories. Only used when processing CJK
characters.

ADMINISTRATION REFERENCE

1935 of 2477

B.10 Image Properties

Image properties include specifications relating to the representation of
images in the Portal. See General Presentation for related properties in
Enterprise Manager.

font.ratio.x A list of ratios used to adjust horizontal character
spacing. This is mostly used when the font width
information is different between Java and PDF. The
ratio can be used to adjust the spacing so that the
generated PDF matches the actual font size used in
PDF viewers. It is a list of semi-colon separated ratios.
Each ratio is specified by a font name and, optionally, a
font style, followed by the ratio, e.g., MS
Hei:1.1;Algerian-bolditalic:1.02.

font.ratio.y Similar to font.ratio.x, but is applied to the font vertical
spacing.

PROPERTY DESCRIPTION

image.type PNG or JPEG. PNG can only be used with version 4.0 or
newer browsers. Generally PNG results in an image with a
smaller file size, and better quality than JPEG.

image.filtered Default is false (recommended). Turns PNG compression
on or off. This property is ignored if JPEG images are
used.

image.antialias PNG images are antialiased by default when using j2d. Set
this property to false to turn off antialias. (Antialias gets
rid of “jaggies”.

html.image.xrati
o

When generating html, images are converted to jpeg using
a resizing ratio of 1.0. This sometimes causes the image to
be distorted. This default can be changed by setting this
property.

html.image.yrati
o

When generating html, images are converted to jpeg using
a resizing ratio of 1.0. This sometimes causes the image to
be distorted. This default can be changed by setting this
property.

html.image.scale Set to ‘true’ to scale images using x/y ratio; otherwise,
natural size is used, regardless of the size setting on the
report.

html.image.coun
t

Specifies the maximum number of images cached on the
report server. Reducing the number of cached images can
help alleviate certain server memory issues.

ADMINISTRATION REFERENCE

1936 of 2477

B.11 Search Properties

Search properties include specifications for searching within reports.

B.12 Archive Properties

Archive properties include specifications relating to archived (static)
reports saved to the repository. See Archive for related properties in
Enterprise Manager.

B.13 Miscellaneous Properties

The following table lists a variety of other properties.

PROPERTY DESCRIPTION

search.pagelocation.
perpage

Specify the number of search results displayed per
page. The default value is 30.

search.pagelocation.
brieflength

Specify the length of the description for each search
result. The default value is 45.

PROPERTY DESCRIPTION

report.archive.CVSPath The path used to look for cvs executables when
using CVS based archiving.

report.archive.storage Report archive’s storage option. Valid options are:
No Archive, CVS, File System, Custom Archive

report.archive.compress Set to ‘true’ to compress the files saved in the
report archive. Only the files that are not already
compressed will be compressed, e.g., .sro files and
html bundles. Compressed files can be accessed as
normal from the viewer with the same file name as
before. However, the compressed files will be
saved in the underlying storage as filename.zip.

PROPERTY DESCRIPTION

mysql.server.timezone Set to a valid Java time zone ID to indicate the
MySQL database server time zone (e.g., “US/
Eastern”).

local.timezone Set to a valid Java time zone ID to indicate the
Style Intelligence server time zone (e.g., “US/
Eastern”). If not defined, the default time zone is
used.

accessibility.enabled Set to ‘true’ to enable features for Rehabilitation
Act Section 508 compliance.

format.time Format used for all time data (Date). See
Formatting in the Report Design for more
information.

format.date Format used for all date data. See Formatting in the
Report Design for more information.

ADMINISTRATION REFERENCE

1937 of 2477

format.number.round If a number format is not specified in the designer,
this property value controls the rounding of the
numbers. The property values are the same as the
valid arguments for the ‘formatNumber()’ method.
See Global Functions for more details.

string.compare.
caseSensitive

Default grouping and ordering is now case-
insensitive, which is consistent with most
databases. Set this property to true to revert to pre-
9.1 behavior.

export.csv.delimiter Delimiter used when exporting a CSV file.

export.csv.quote Quote character used when exporting a CSV file.

export.text.table.
maxRowAlign

Set the number of rows to look at when
determining the column width to use in Text
exports.

export.Excel.isHeader
FooterInPageSetup

If “true,” top and bottom margins, and headers and
footers will be set in Excel’s “Page Setup”

excel.close.factor For Excel export, a factor determining whether
nearby report elements are placed in adjacent cells
or spaced apart. A smaller factor creates more
space between elements in the exported
spreadsheet.

excel.colwidth.max For export to Excel (best data editing), specifies the
maximum permitted Excel column width. If the
report element width exceeds the maximum, it is
represented in Excel by merging multiple columns
with widths given by excel.colwidth.normal.

excel.colwidth.normal For export to Excel (best data editing), specifies the
column width to use for merged columns when a
report element’s width exceeds
excel.colwidth.max. A value of -1 indicates that no
merging should be performed.

excel.rowheight.max For export to Excel (best data editing), specifies the
maximum permitted Excel row height. If the report
element height exceeds the maximum, it is
represented in Excel by merging multiple rows
with heights given by excel.rowheight.normal.

excel.rowheight.normal For export to Excel (best data editing), specifies the
row height to use for merged rows when a report
element’s height exceeds excel.rowheight.max. A
value of -1 indicates that no merging should be
performed.

excel.font.ratio Sets the proportion by which font size is globally
reduced for Excel exports. (Font size reduction can
often improve the appearance of Excel exports.)
For example, setting excel.font.ratio=0.85
uniformly reduces font sizes within the exported
report to 85% of their size in the original report. To
set this proportion on a font-by-font basis, use the
property template excel.font.<fontname>.ratio,
e.g., excel.font.arial.ratio=0.80.

ADMINISTRATION REFERENCE

1938 of 2477

query.variable.unique If query variables are declared as unique, variables
with the same name across different queries are
treated as one variable. Otherwise, each query
contains its own set of variables.

exceed.session.page Contains a path to an html file that contains a
message to display when the maximum number of
concurrent users has been exceeded. If this is not
set, the default message is used.

jdbc.connection.pool Class Name for a user defined connection pooling
class. This class should implement
inetsoft.uql.jdbc.ConnectionPool

jdbc.connection.pool.siz
e

Initial size of the connection pool.

jdbc.connection.pool.
maxsize

Max size to which the connection pool will grow, if
required. Default is 15.

jdbc.max.cursor Maximum number of cursors allowed per database
connection. It may be necessary to set this property
to 1 if an Oracle database is observed to execute
queries sequentially rather than concurrently.
Default for Oracle is 300, and for other databases is
1.

db.caseSensitive Indicates (when set to true) that database column
names have been defined in the database software
as case-sensitive.

sree.bundle The name of the report localization bundle.

index.directory The directory where this software stores indexed
data that is used for searching the archive.

fiscal.start.month The month in which the fiscal year begins.

fiscal.start.day The day in the fiscal.start.month on which the fiscal
year begins.

default.browser This defines the default browser used on Unix
machines. It defaults to Mozilla.

barcode.bar.width The width (in pixels) of the thinnest bar in a
barcode. Other bars will change their size relative
to this.

barcode.resolution The output resolution of the barcode when either
the barcode is being outputted to a device other
than the screen, or the barcode is being generated
on a headless machine and the screen resolution
could not be determined. The default resolution is
72 dpi.

text.encoding.utf8 By default it is set to true. If this property is false,
you will use the encoding specified for the local
operating system instead of the UTF8 encoding.

map.shp.dir Property to specify the absolute path of the folder
which contains the .shp and .jar files used by the
map element.

script.execution.timeout A safety-net for script execution time, especially
for infinite loops. Times-out the script if execution
time exceeds specified value (in seconds).

ADMINISTRATION REFERENCE

1939 of 2477

olap.table.originalConte
nt

Set to ‘true’ (default) to display the value of a
CUBE dimension in a Selection List with all its
hierarchical components, otherwise set to ‘false.
(Applies to Chart labels and Selection Lists.)

olap.drillthrough.maxro
ws

Determines how many rows to display for a Show
Details operation against an OLAP cube. Default is
10.

olap.table.maxrow Determines how many rows to retrieve when
creating unique values for selection lists. Default is
10000.

olap.cancel.enabled Set to ‘true’ (default) to enable query cancellation
for OLAP databases. This feature cancels currently
executing queries when a user makes updates to
their selections. Set to ‘false’ to prevent errors on
databases that do not support query cancellation.

anonymous.userdata.sav
e

Set to ‘false’ to prevent storage of preferences for
the anonymous user.

login.loginAs Set to ‘on’ to permit an administrator to log in as a
particular user. (Adds a ‘Login as’ field to the
Portal login screen.) See Emulating a User Login.

remove.outerJoin.only When ‘false’, the query engine removes joined
tables with no columns in the ‘select’ and ‘where’
clauses, such as when a condition is dropped due to
null parameter.

help.url URL (absolute or relative) of the parent directory
of the ‘_HTMLDoc.htm’ file for end-user
documentation. See Configuring User and
Developer Help.

help.dev.url URL (absolute or relative) of the parent directory
of the ‘_HTMLDoc.htm’ file for developer
documentation. See Configuring User and
Developer Help.

vs.font.asDefault When set to true, uses the Viewsheet default font
for a Table rather than the Table Style font. When
set to false (default), uses the specified Table Style
font.

sort.crosstab.aggregate When set to true, allows a Crosstab in a Viewsheet
to be sorted by aggregate value. Default is false.

sort.crosstab.dimension When set to true (default), allows a Crosstab in a
Viewsheet to be sorted by dimension value.

ADMINISTRATION REFERENCE

1940 of 2477

APPENDIX C: Manually Deploying a WAR File

To deploy the web application as a WAR file using the tools in Enterprise
Manager, see Deploying the Application as a WAR File. You can also
create a WAR file manually, and deploy it to any web server which
supports the servlet 2.2 specification and allows WAR files to be used for
deployment.

This appendix explains the procedures for creating and deploying a WAR
file manually on common servers. If your server is not discussed in the
following sections, please refer to your server documentation for detailed
instructions on deploying WAR files.

C.1 Manual Creation of a WAR file

A WAR file is a regular JAR file with a special directory structure. The root
directory of the archive file serves as the document root for serving files
that are part of the application. A special directory, WEB-INF, contains all
servlet JAR files, class files, and resources.

/index.html
/logo.gif
/WEB-INF/lib/{JAR files used by servlet}
/WEB-INF/classes/{Class files used by servlet}
...

Mixing JAR files and class files may be problematic in some servlet
runtime implementations. Therefore, we recommend packaging all class
files into JAR files, and then placing them in the /WEB-INF/lib directory.

Once a WAR file is created, it can be deployed in a Servlet runtime
environment. The actual procedure for deploying a WAR file is slightly
different across different implementations. Detailed instructions for some
typical environments appear in the next few chapters.

Example: WAR
File Creation

1. Create a root directory to hold the files. In this example, you create
a directory in c:\temp called ‘sree’.

2. Create the following sub-directories in c:\temp\sree:

WEB-INF\lib
WEB-INF\classes

3. Create an HTML entry screen in the root directory. As an example
you can use the default login screen; simply copy the ‘index.html’
and ‘logo.gif’ files from the existing installation’s webapps\sree
and webapps\sree\images directories, respectively, and paste these
files into the new c:\temp\sree directory.

ADMINISTRATION REFERENCE

1941 of 2477

4. Copy the SREE runtime JAR files to the c:\temp\sree\WEB-INF\lib
directory. The required JAR files are:

sree.jar, or analogs:
bisuite.jar
visual.jar
sree.jar

etools.jar

5. Create a JAR file to contain all of the replet class files in your
report application. The JAR file should also contain all resource
files, such as the report template XML files and the data files. For
example, to create a JAR file for all of the replets in a given
directory, navigate to the desired directory, and then run the
following:

jar cf guide.jar replets*.class replets*.srt replets*.txt

6. Copy the replet JAR file guide.jar to c:\temp\sree\WEB-INF\lib.

7. Copy the configuration file, sree.properties, to c:\temp\sree\WEB-
INF\classes.

8. Copy the repository.xml file to c:\temp\sree\WEB-INF\classes. The
file name may be different depending on the property value of
replet.repository.file in sree.properties.

9. If your application uses the default security implementation of
SREE, copy both the acl.xml and passwd.xml files to
c:\temp\sree\WEB-INF\classes. The file names may be different
depending on the property values of security.password.file and
security.acl.file.

10. Create a web.xml file in the WEB-INF directory. The web.xml file
should be in standard web deployment descriptor format. The
following is an example of the descriptor file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN" "http://java.sun.com/dtd/web-
app_2_3.dtd">
<web-app>
<servlet>

<servlet-name>replets</servlet-name>
<servlet-class>inetsoft.sree.web.ServletRepository</
servlet-class>

</servlet>
<servlet>

<servlet-name>manager</servlet-name>
<servlet-class>inetsoft.sree.adm.AdmServlet</servlet-
class>

</servlet>
<servlet>

<servlet-name>DataServlet</servlet-name>

ADMINISTRATION REFERENCE

1942 of 2477

<servlet-class>DataServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>manager</servlet-name>
<url-pattern>/EnterpriseManager</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>DataServlet</servlet-name>
<url-pattern>/DataServlet</url-pattern>

</servlet-mapping>
</web-app>

11. Create the WAR file as follows:

cd c:\temp\sree
jar cf guide.war index.html logo.gif WEB-INF

These steps can be placed in a shell script or a makefile, and can then be
performed as part of the application building process.

¢

C.2 WebSphere 5.0 and higher

Follow the steps below to install the application on a WebSphere server.
You must supply the application WAR file to deploy.

1. Install WebSphere by following the vendor’s instructions.

2. If you have not already done so, create a WAR file containing the
replets you wish to deploy. See Deploying the Application as a
WAR File for instructions on how to do this using the Enterprise
Manager, or to Appendix C.1, Manual Creation of a WAR file, for
information on how to create a WAR file manually.

3. Run the WebSphere Administrative Console (default, http://
localhost:9090/admin) and log into it.

4. On the left side of the screen, expand the ‘Applications’ option, and
click on ‘New Application’.

5. On the ‘New Application’ page, select ‘New Enterprise
Application’.

ADMINISTRATION REFERENCE

1943 of 2477

6. In the ‘Path to New Application’ panel, select the ‘Local File
System’ option, and type the location of the WAR file in the ‘Full
Path’ field (C:\warwork\sree\sree.war in the example below), or
use the ‘Browse’ feature to locate the file. Click ‘Next’.

7. Under ‘How do you want to install the application?’, select ‘Fast
Path’. Click ‘Next’.

8. On the ‘Select installation options’ page, set the ‘Application
name’ to match the WAR file name. (In the example, the
‘Application name’ is ‘sree’ because the WAR file is ‘sree.war’).
Click ‘Next’.

9. On the ‘Map modules to servers’ page, select the ‘sree.war’
module. Click ‘Next’.

ADMINISTRATION REFERENCE

1944 of 2477

10. On the ‘Map virtual hosts for Web modules’ page, select the
‘sree.war’ module. Click ‘Next’.

11. On the ‘Map context roots for Web modules’ page, enter ‘/sree’
for the ‘Context Root’. This should be the same as the WAR file
name. (In the example below, the ‘Context Root’ is ‘/sree’ because
the WAR file is ‘sree.war’.) Click ‘Next’.

12. On the ‘Summary’ page, click ‘Finish’. Wait until the application
installs successfully.

13. Click ‘Save directly to the master configuration’.

14. When the master repository is updated, expand the ‘Application
Types’ node under ‘Applications’ (in the left panel), and click
‘Websphere enterprise applications’ link.

15. On the ‘Enterprise Applications’ page, click the link corresponding
to the application that you just created (sree).

ADMINISTRATION REFERENCE

1945 of 2477

16. In the ‘Configuration’ panel, click the ‘Class loading and update
detection’ link.

Change the following settings:

a. In the ‘Class loader order’ panel, select ‘Classes loaded with
local class loader first (parent last)’.

b. In the ‘WAR class loader policy’ panel, select ‘Single class
loader for application’.

c. Click ‘OK’.

17. When prompted, click ‘Save directly to the master configuration’.

18. In the ‘Enterprise Applications’ list, select the new application
(sree), and click the ‘Start’ button.

ADMINISTRATION REFERENCE

1946 of 2477

Once you have deployed the application, you can launch the User Portal,
Enterprise Manager, and Soap Repository from the following URLs,
respectively:

http://localhost:9080/sree/Reports

http://localhost:9080/sree/EnterpriseManager

http://localhost:9080/sree/SoapRepository?wsdl

See Also
Creating a WAR File Using Enterprise Manager, for details on WAR file
creation.

C.3 WebLogic 7.0 and higher

Create the WAR file you wish to be deployed. Refer to Deploying the
Application as a WAR File for instructions on how to do this using the
Enterprise Manager. Refer to Appendix C.1, Manual Creation of a WAR
file, for information on how to create a WAR file manually. Let us assume
the WAR file you wish to deploy is named c:\temp\sree\sree.war.

1. Start the default server and then the administrative console.

2. Expand the tree in the left pane and expand ‘Deployments’.

3. Click on ‘Web Application Modules’ and in the right pane click on
‘Deploy a new Web Application Module’.

4. Navigate through the directory structure to find and select the WAR
file, and click on ‘Target Module’.

ADMINISTRATION REFERENCE

1947 of 2477

5. Review your choices and deploy the module (clicking on ‘Deploy’
in the lower-right corner).

6. The new application is now deployed within WebLogic.

7. Start up a browser. You should be able to access your servlet at
‘http://localhost:7001/{WAR}/{Serv}’, where {WAR} is the name
of the WAR file you installed and {Serv} is the name of the servlet.

See Also
Creating a WAR File Using Enterprise Manager, for details on WAR file
creation.

ADMINISTRATION REFERENCE

1948 of 2477

C.4 Tomcat 4.1 and higher

Resources for installing and configuring Tomcat can be found at http://
jakarta.apache.org/tomcat/index.html.

There are multiple ways to deploy a web application to Tomcat, but the first
step is the same regardless:

• If you have not already done so, create a WAR file containing the replets
you wish to deploy. Refer to Deploying the Application as a WAR File
for instructions on how to do this using the Enterprise Manager, or go to
Appendix C.1, Manual Creation of a WAR file, for information on how
to create a WAR file manually.

Once this is accomplished, a WAR file can be manually deployed as
follows:

• Copy the generated WAR file to the <CATALINA_HOME>/webapps
directory, where <CATALINA_HOME> is the directory into which
Tomcat 4.1 has been installed. (Exception: <CATALINA_BASE>/
webapps should be used if you have used ‘CATALINA_BASE’ to
configure Tomcat for multiple instances). The Tomcat server will
automatically expand and deploy the WAR file when it starts up.

Alternatively, the WAR file can instead be deployed using the Tomcat Web
Application Manager, as follows:

• Go to ‘http://localhost:8080/manager/html/’ to access the Tomcat Web
Application Manager. (You will need to log in as a Tomcat user that has
a ‘manager’ role.)

• Scroll down to the bottom of the page and use the ‘Upload a WAR file
to Install’ option to install your WAR file.

http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html

ADMINISTRATION REFERENCE

1949 of 2477

Regardless of how it is deployed, the Context is generated from the WAR
file name. Thus, if the WAR file is named “sree.war”, this product should
launch from the following URL:

http://localhost:8080/sree/Reports

Likewise, the Enterprise Manager should launch from the following URL:

http://localhost:8080/sree/EnterpriseManager

See Also
Creating a WAR File Using Enterprise Manager, for details on WAR file
creation.

ADMINISTRATION REFERENCE

1950 of 2477

APPENDIX D: Exploding Configuration Files

By default, reusable report components are stored in a zip file called
stylereport.srl, and Viewsheets and Worksheets are stored in a binary file
called asset.dat. If necessary, you can explode these bundle files into their
individual components. The following sections explain how to do this.

D.1 Exploding asset.dat into Individual Components

By default, Viewsheets and Worksheets are stored in a binary file called
asset.dat. You can explode this bundle file into its individual components
through an Ant task or through the command line.

To explode the asset.dat file into individual components from the
command line, follow the steps below:

1. Make sure that the Style Intelligence JAR files (e.g., bisuite.jar and
etools.jar) are on your classpath. For example:

set
classpath=%CLASSPATH%;path_to\bisuite.jar;path_to\etools.ja
r

2. Make sure that the Ant JAR file is on your classpath. (This is
required even if you are using the command line.)

set classpath=%CLASSPATH%;path_to\ant.jar

3. Enter the following command to extract the files:

java inetsoft.sree.adm.ant.ExtractStorageTask path_to/
asset.dat

This explodes the specified asset.dat file into a directory called asset.dat.d
in the same location. Whenever this asset.dat.d directory is in existence,
Style Studio and the Style Intelligence server read and write assets from the
directory rather than from the binary asset.dat file.

To accomplish the same result using an Ant task, include the following
code in the Ant script:

1. Specify the path to Style Intelligence JAR files:

<typedef resource="inetsoft/sree/adm/ant/antlib.xml">
<classpath>
<include name="path_to/bisuite.jar"/>
<include name="path_to/etools.jar"/>

</classpath>
</typedef>

ADMINISTRATION REFERENCE

1951 of 2477

2. Extract the files:

<extractstorage src="path_to/asset.dat"/>

To recreate the asset.dat file from asset.dat.d directory, substitute the
following command line or Ant code into the corresponding instructions
above.

// Command Line
java inetsoft.sree.adm.ant.PackageStorageTask path_to/
asset.dat.d

// Ant script
<packagestorage src="path_to/asset.dat.d"/>

D.2 Exploding stylereport.srl into Individual Components

By default, reusable report components are stored in a zip file called
stylereport.srl in the SREE Home directory. You can explode this bundle
file into its individual components through an Ant task or through the
command line.

To explode the stylereport.srl file into individual components from the
command line, follow the steps below:

1. Verify that the stylereport.srl file is located in the SREE Home
directory (WEB-INF/classes, by default).

2. Make sure that the Style Intelligence JAR files (e.g., bisuite.jar and
etools.jar) are on your classpath. For example:

set
classpath=%CLASSPATH%;path_to\bisuite.jar;path_to\etools.ja
r

3. Make sure that the Ant JAR file is on your classpath. (This is
required even if you are using the command line.)

set classpath=%CLASSPATH%;path_to\ant.jar

4. Enter the following command to extract the files:

java inetsoft.sree.adm.ant.ExtractLibraryTask path_to/
stylereport.srl

This explodes the specified stylereport.srl file into a directory called
stylereport.srl.d in the same location. Whenever this stylereport.srl.d
directory is in existence, Style Studio and the Style Intelligence server read
and write assets from the directory rather than from the stylereport.srl zip
file.

ADMINISTRATION REFERENCE

1952 of 2477

To accomplish the same result using an Ant task, include the following
code in the Ant script:

1. Verify that the stylereport.srl file is located in the SREE Home
directory (WEB-INF/classes, by default).

2. Specify the path to Style Intelligence JAR files:

<typedef resource="inetsoft/sree/adm/ant/antlib.xml">
<classpath>
<include name="path_to/bisuite.jar"/>
<include name="path_to/etools.jar"/>

</classpath>
</typedef>

3. Extract the files:

<extractlibrary src="path_to/stylereport.srl"/>

To recreate the stylereport.srl file from stylereport.srl.d directory, substitute
the following command line or Ant code into the corresponding
instructions above.

// Command Line
java inetsoft.sree.adm.ant.PackageLibraryTask path_to/
stylereport.srl.d

// Ant script
<packagelibrary src="path_to/stylereport.srl.d"/>

ADMINISTRATION REFERENCE

1953 of 2477

APPENDIX E: Creating a Custom Map

If you have shapefile data that describes particular geographical regions,
you can use this shapefile to create a custom map chart for those regions.

The following sections describe the general procedure for converting a
shapefile into a map that can be used by the Style Intelligence server. This
process uses the open-source application OpenJUMP, available from the
OpenJUMP website. For complete information about the features of
OpenJUMP, including drawing arbitrary shapes, please consult the
OpenJUMP documentation.

E.1 Installing OpenJUMP and the InetSoft Extension

The open-source OpenJUMP GIS application allows you to convert data
from a shapefile into a map resource that can be used by the Style
Intelligence server. To install the OpenJUMP GIS application and the
InetSoft OpenJUMP extension, follow the steps below:

1. Download the free OpenJUMP GIS application from the
OpenJUMP website. This open-source application allows you to
import and edit your shape data.

2. Download the InetSoft OpenJUMP extension (inetsoft.zip) from
http://chart.inetsoft.com/map/inetsoft.zip.

3. Extract the contents of the inetsoft.zip file. The archive contains a
lib/ext directory with the following JAR files (version numbers
may differ).

colt-1.2.0.jar
concurrent-1.3.4.jar
inetsoft.jar

4. Copy these files into the lib/ext directory in the OpenJUMP
installation folder.

The OpenJUMP application and InetSoft extension are now ready to use.

E.2 Exporting a Shape File as a Style Intelligence Map

To prepare and export a shape file for use with the Style Intelligence,
follow the steps below.

1. Copy the shapefile (.shp) and any associated files (.dbf, .shx, etc.) to
a location that is accessible to the OpenJUMP application.

http://www.openjump.org
http://sourceforge.net/apps/mediawiki/jump-pilot/index.php?title=Documentation
http://www.openjump.org
http://chart.inetsoft.com/map/inetsoft.zip

ADMINISTRATION REFERENCE

1954 of 2477

2. Launch the OpenJUMP application.

3. Choose ‘Open File’ from the OpenJUMP ‘File’ menu. Select the
shapefile that you wish to export, and press ‘Finish’. (In this
example, world.shp is a shapefile containing the political
boundaries of all countries in the world.)

Consolidation merges
all shapes for a atomic
entity (e.g., a single
country) into a single
feature.

4. Consolidate the logical map features. To do this, follow the steps
below:

a. Select ‘Consolidate Features’ from the ‘InetSoft’ menu. This
opens the ‘Consolidate Features’ dialog box.

b. In the ‘Layer’ menu, select the desired geographical layer.

c. In ‘ID attribute’ menu, select the attribute that uniquely
identifies the logical map features. (In this example, this is the
country name.)

d. Press ‘OK’. This creates the consolidated map, which is listed
under the ‘Result’ node in the OpenJUMP project tree.

ADMINISTRATION REFERENCE

1955 of 2477

e. (Optional) To conserve memory, delete the original ‘world’
layer from the ‘Working’ node of the OpenJUMP project tree.
To do this, right click on the ‘world’ entry, and choose ‘Remove
Selected Layers’.

6. (Optional) If you are creating a map of the United States, select
‘Create U.S. inset’ from the ‘InetSoft’ menu to inset the regions for
Alaska and Hawaii. (This yields a transformed view of Alaska and
Hawaii commonly used in published U.S. maps.)

7. To reduce the memory required by the map, remove polygons that
have areas smaller than a specified size. To do this, follow the steps
below:

a. Select ‘Area histogram’ from the ‘InetSoft’ menu. This opens
the ‘Area Histogram’ dialog box.

b. Select the desired ‘Layer’, and set the ‘Minimum’, ‘Maximum’,
and ‘Interval’ properties of the histogram.

For example, a minimum of 10%, maximum of 100%, and
interval of 10% generates histogram values for the following
percentages: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

c. Click ‘OK’ to generate the histogram.

d. To view the histogram, press the ‘Output Window’ button in the
OpenJUMP toolbar.

ADMINISTRATION REFERENCE

1956 of 2477

The histogram indicates the percentage of the polygons in the
map which would be removed for a given area threshold. Use
the histogram to identify the proper area threshold for removing
polygons. For example, the histogram below indicates that by
removing all polygons smaller than an area threshold of
0.046081, you could effectively remove 90% of polygons in the
map.

In this example, areas in the range of 0.04 units are probably not
visually significant compared to other areas, the largest of which
is approximately 6000 units. Therefore, by using a polygon
removal threshold of 0.04 you can eliminate the majority of
polygons without detectably altering the displayed map.

e. Select ‘Remove small polygons’ from the ‘InetSoft’ menu. This
opens the ‘Remove Small Polygons’ dialog box.

Note: The most significant (largest) polygon of a map feature
(e.g., country) is always retained regardless of the threshold.

f. Select the desired ‘Layer’, and enter a ‘Threshold’. Polygons
with areas smaller than the threshold will be removed from the
map. In this case, a value of 0.04 will result in the removal of
approximately 90% of the map’s polygons.

g. Press ‘OK’ to initiate the polygon removal. This creates a new
map layer (“world consolidated areas removed” in the
example).

ADMINISTRATION REFERENCE

1957 of 2477

h. (Optional) To remove the original layer (“world consolidated”),
right-click the “world consolidated” node, and choose ‘Remove
Selected Layers’ from the context menu.

You may need to
experiment with dif-
ferent area thresholds
to determine which
yields the best results.

i. To view the report for the polygon removal operation, press the
‘Output Window’ button in the OpenJUMP toolbar.

10. To help reduce the memory required for the map, determine the
maximum precision to be used. Follow the steps below:

a. Select ‘Find Precision’ from the ‘InetSoft’ menu. This opens the
‘Find Precision’ dialog box.

b. Select the desired layer, and press ‘OK’.

c. Press the ‘Output Window’ button in the OpenJUMP toolbar to
view current precision. (The precision is expressed as the
number of decimal places used to represent the map
coordinates.)

ADMINISTRATION REFERENCE

1958 of 2477

If the precision is unnecessarily high, you can reduce it in the
next step. (A precision of six decimal places is more than
adequate for most cases.)

4. Prepare the map for simplification. Follow the steps below:

a. Select ‘Node lines and polygons’ from the ‘InetSoft’ menu. This
opens the ‘Noding’ dialog box.

b. Select the desired layer, and enter a value for ‘Precision’. (A
precision of six decimal places is more than adequate for most
cases.)

c. Press ‘OK’. This snaps all coordinates to the specified precision
and corrects some common topological errors.

d. (Optional) To remove the original layer (“world consolidated
areas removed”), right-click the “world consolidated areas
removed” node, and choose ‘Remove Selected Layers’ from the
context menu.

5. Simplify lines and polygon boundaries by removing insignificant
points. Follow the steps below:

a. Select ‘Point threshold histogram’ from the ‘InetSoft’ menu.
This opens the ‘Point Threshold Histogram’ dialog box.

b. Select the desired ‘Layer’, and set the ‘Minimum’, ‘Maximum’,
and ‘Interval’ properties of the threshold histogram.

ADMINISTRATION REFERENCE

1959 of 2477

For example, a minimum of 99%, maximum of 100%, and
interval of 0.1% generates histogram values for the following
percentages: 99.0, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8,
99.9, 100.

c. Select the desired simplification method in the ‘Algorithm’
menu. In most cases the ‘Visvalingam-Whyatt’ algorithm
produces superior results. However, the ‘Douglass-Peucker’
algorithm may be faster.

d. Press ‘OK’. This generates a histogram of boundary point
significance.

e. To view the histogram, press the ‘Output Window’ button in the
OpenJUMP toolbar.

The values in the his-
togram represent the
point “significance,”
as determined by the
simplification algo-
rithm.

The histogram indicates the percentage of boundary points
which would be removed for a given point “significance”
threshold. Use the histogram to identify the proper point
significance threshold for border simplification. For example,
the histogram above indicates that by removing all points with
significance smaller than 1.094881, you would effectively
remove 99.4% of the boundary points.

In this example, points with significance in the range of 1.0 are
probably not visually important compared to other points, the
most significant of which have a value of approximately 665.

ADMINISTRATION REFERENCE

1960 of 2477

Therefore, by using a point removal threshold of 1.0 you could
eliminate the majority of points without detectably altering the
displayed map.

6. Run the simplification algorithm. Follow the steps below:

a. Select ‘Simplify lines’ from the ‘InetSoft’ menu. This opens the
‘Simplify’ dialog box.

b. Select the desired ‘Layer’, and choose the same ‘Algorithm’
that you used in the previous step.

c. Enter a ‘Threshold’ value. Boundary points with significance
smaller than the threshold will be removed from the map. (In
this case, a value of 1.0 will result in the removal of
approximately 99% of the map’s points.)

d. Press ‘OK’ to start the simplification.

e. (Optional) To remove the original layer (“world consolidated
areas removed noded”), right-click the “world consolidated
areas removed noded” node, and choose ‘Remove Selected
Layers’ from the context menu.

You may need to
experiment with dif-
ferent point thresholds
to determine which
yields the best results.

f. To view the report for the point removal operation, press the
‘Output Window’ button in the OpenJUMP toolbar.

7. Export the map to Style Intelligence. Follow the steps below:

ADMINISTRATION REFERENCE

1961 of 2477

a. Select the desired layer in the OpenJUMP project tree. Then
select ‘Export layer’ from the ‘InetSoft’ menu. This opens the
‘Export Layer’ dialog box.

b. Specify the ‘Map file’ location. The map file must be named
“mapdata.xml” and must be located in the server repository
directory (by default, sree/WEB_INF/classes). If the file does
not exist, browse to the repository directory and enter
“mapdata.xml” in the ‘File Name’ field.

Do not specify a name for the ‘Map type’ that is identical to one
of the built-in map types: ‘U.S.’, ‘Asia’, ‘Canada’, ‘Europe’,
‘Mexico’, or ‘World’. Duplicating a built-in map type name will
cause an error.

c. Specify the ‘Map type’. This is the top-level category for the
map. For example, a map of type “New Jersey” might have
layers (specified below) such as “New Jersey Counties” and
“New Jersey Zip Codes”.

Select an existing
layer to overwrite that
layer.

d. Specify the ‘Layer name’. This is the name for the particular
map you are exporting.

Do not specify a value for the ‘Layer name’ that is identical to
one of the built-in layers: ‘Country’, ‘Province’, ‘State’, ‘City’,
or ‘Zip’. Duplicating a built-in layer name will cause an error.

Note: The defined map type and any defined layers will appear
in the menus of the Chart Editor’s geographical panel when you
edit a geographical field in Style Intelligence. See Binding a
Chart to Geographical Data (Map) in Report Design and

ADMINISTRATION REFERENCE

1962 of 2477

Creating a Map Chart in Dashboard Design for more details on
using the Chart Editor.

e. Select the ‘Feature ID’. This is the attribute that uniquely
identifies the map features. (In some cases this may be the FIPS
or ISO code for a feature.)

f. Select the ‘Display name’. This is the attribute that contains the
default, human-readable, names of the map features. (This may
be the same as the Feature ID.)

g. (Optional) Select any desired ‘Alternate names’. These are
attributes that contain alternate display names for the map
features. (These might be state abbreviations, ISO codes, etc.)

h. Enable the ‘Calculate’ option to automatically calculate the
label coordinates as the centroids of the feature geometry. (If
you do this, skip the following two steps). If you wish instead to
use attribute values to control label positioning, disable this
option.

i. If you have disabled the ‘Calculate’ option, specify for ‘Label x-
coordinate’ the attribute that contains the x-coordinates
(longitude) for feature label placement.

j. If you have disabled the ‘Calculate’ option, specify for ‘Label y-
coordinate’ the attribute that contains the y-coordinates
(latitude) for feature label placement.

k. Enable the ‘Exclude’ option if you do not want secondary label
coordinates to be included in the exported data. (If you do this,
skip the following two steps). If you wish to specify secondary
coordinates, disable this option.

Note: Secondary coordinates are not currently used when rendering a
chart.

l. If you have disabled the ‘Exclude’ option, specify for ‘Label
secondary x-coordinate’ the attribute that contains the
secondary x-coordinates (longitude) for feature label placement.

ADMINISTRATION REFERENCE

1963 of 2477

m. If you have disabled the ‘Exclude’ option, specify for ‘Label
secondary y-coordinate’ the attribute that contains the
secondary y-coordinates (latitude) for feature label placement.

n. Press ‘OK’ to export the map data to the Style Intelligence
repository directory.

15. Restart the Style Intelligence server. Your custom map will now be
available in the ‘Map’ menu of the Chart Editor, along with the
predefined maps.

E.3 Adding a Layer to a Custom Map

There are two ways to add multiple layers to a map. You can create
multiple layers based on independent shape files (for example, one layer
based on a U.S. county shape file, and another layer based on a U.S. state
shape file). You can also use the OpenJUMP software to create arbitrary
larger regions composed from the original regions of a single shape file.
The following sections explain these approaches.

E.3.1 Adding a Layer Based on a New Shape File

To add a layer from a new shapefile to an existing map (for example, to add
a “CensusRegions” layer to a “US2” map that already has a “state” layer),
follow the steps below:

1. Obtain a shapefile that contains the data for the desired new layer.

2. Proceed through the steps described in Exporting a Shape File as a
Style Intelligence Map to process the shapefile appropriately.

3. When you select ‘Export layer’ from the ‘InetSoft’ menu, make the
following settings:

a. For the ‘Map file’, select the same mapdata.xml file that already
contains the other layer(s) of the map.

b. For the ‘Map type’, use the menu to select the map to which you
want to add the layer (e.g., ‘US2’).

c. For the ‘Layer name’, enter the name of the desired new layer
(e.g., ‘CensusRegions’).

ADMINISTRATION REFERENCE

1964 of 2477

d. Complete the additional steps described in Exporting a Shape
File as a Style Intelligence Map, and press ‘OK’.

This exports the new layer into the existing mapdata.xml file, and
associates the layer with the existing map.

E.3.2 Adding a Layer Based on Merged Regions

To add a new layer by merging together regions within an existing
shapefile (for example, by merging together states in a “US2” map to form
“CensusDivisions”), follow the steps below:

1. Open the shapefile containing the regions that you want to merge in
OpenJUMP.

2. Perform any necessary simplification processing as described in
Exporting a Shape File as a Style Intelligence Map.

3. Press the ‘View/Edit Attributes’ button in the OpenJUMP toolbar.

This displays the ‘Attributes’ table for the map.

4. Right-click on the table and select ‘Editable’ from the context
menu.

ADMINISTRATION REFERENCE

1965 of 2477

5. Return to the map view. Shift-click to select the regions that you
want to merge. For example, Shift-click to select all states
belonging to the “Pacific Division” (California, Oregon,
Washington, Alaska, Hawaii).

6. Right-click on one of the selected states, and choose ‘Combine
Selected Features’.

The selected states are now considered a single unit.

7. Repeat the above steps to create any additional desired units. (In
this example, we combined states to create the additional census
divisions: New England, Middle Atlantic, East North Central, West
North Central, South Atlantic, East South Central, West South
Central, and Mountain.)

8. (Optional) If necessary, create a new column to label the combined
features. Follow the steps below:

a. Press the ‘View/Edit Attributes’ button in the OpenJUMP
toolbar to display the ‘Attributes’ table.

b. Right-click on the table, and select ‘View/Edit Schema’.

ADMINISTRATION REFERENCE

1966 of 2477

This opens the ‘Edit Schema’ dialog box.

c. Click in the table, and then press the ‘Insert’ (+) button to create
a new column.

d. Enter the name and type of the new column (e.g.,
“CensusDivisions”).

e. Press ‘Apply changes’ and return to the ‘Attributes’ table. Note
that a new column has been added.

f. Enter the appropriate labels into the blank cells.

ADMINISTRATION REFERENCE

1967 of 2477

Note that when you click on a blank cell, the corresponding map
region is highlighted.

9. With the new column defined, proceed with the instructions in
Exporting a Shape File as a Style Intelligence Map. When you
select ‘Export layer’ from the ‘InetSoft’ menu, make the following
settings:

a. For the ‘Map file’, select the same mapdata.xml file that already
contains the other layer(s) of the map.

b. For the ‘Map type’, use the menu to select the map to which you
want to add the layer (e.g., ‘US2’).

c. For the ‘Layer name’, enter the name of the desired new layer
(e.g., ‘CensusDivisions’).

d. For the ‘Feature ID’ and ‘Display name’, select the new column
that you added to the ‘Attributes’ table.

ADMINISTRATION REFERENCE

1968 of 2477

e. Complete the additional steps described in Exporting a Shape
File as a Style Intelligence Map, and press ‘OK’.

This exports the new layer into the existing mapdata.xml file, and
associates the layer with the existing map.

E.4 Overlaying a Shape on a Custom Map

In some cases you may want to overlay shapes on top of an existing custom
map. For example, you may want to overlay shapes corresponding to the
four Census Regions on top of an existing U.S. map that already displays
data using a ‘State’ layer. In this case, do not add the Census Regions as a
new layer to the existing map as described in Adding a Layer to a Custom
Map, because a given map can only have a single data layer. (You would
then be forced to choose either ‘State’ or ‘CensusRegions’ as the displayed
layer.)

To create a map that displays data on the ‘State’ layer, but that also draws
the Census Regions (without data), follow the steps below:

1. In OpenJUMP, open the shapefile containing the shapes that you
want to overlay.

To manually create shapes by merging existing shapes (e.g., to
create larger regions by merging multiple states) follow the steps
described in Adding a Layer to a Custom Map, but use the ‘Merge
selected features’ option rather than ‘Combine selected features’.
Do not export the resulting map.

2. (Optional) Perform any necessary simplification processing as
described in Exporting a Shape File as a Style Intelligence Map.

3. Select ‘Export layer’ from the ‘InetSoft’ menu, make the following
settings:

a. For the ‘Map file’, press the ‘Browse’ button. Select a different
location than your current SREE Home (WEB-INF/classes) so
that you do not overwrite the existing mapdata.xml file. For
example, create a new “maps” folder into which to save the
export.

b. For the ‘Map type’, enter a map name (e.g., ‘US2’).

c. For the ‘Layer name’, enter a name for the layer you are
exporting (e.g., ‘CensusRegions’).

ADMINISTRATION REFERENCE

1969 of 2477

d. For the ‘Feature ID’ and ‘Display name’, select the appropriate
feature column.

e. Press ‘OK’. This exports the layer to the location that you
specified. The saved files include two CSV files and a
mapdata.xml file.

4. Copy the two CSV files from the export location to your SREE
Home directory (WEB-INF/classes). Do not copy the mapdata.xml
file.

5. Stop the Style Intelligence server (if it is running).

6. Open the original mapdata.xml file in the SREE Home directory
with a text editor. Amend mapdata.xml to allow the custom map to
access the saved CSV files, and provide the appropriate styles for
the labels and outlines. A example follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mapdata>
<style name="label">

<line width="3" dash="1"/>
<fill color="#0000FF" alpha=".1"/>

</style>

ADMINISTRATION REFERENCE

1970 of 2477

<nametable name="US_States_names" file="/
US_States.names.csv" labels="0"/>
<layer name="US_States" id="104"

nametable="US_States_names"/>
<matching layers="104" columns="0"/>

<map type="US2">
<shapedata data="/US_States.csv" layer="US_States">
<shapes style="label" data="/CensusRegions.csv"/>
<labels data="/CensusRegions.names.csv"/>
<sampledata>Rhode Island</sampledata>
<sampledata>South Carolina</sampledata>

</shapedata>
</map>

</mapdata>

7. Save the mapdata.xml file, and restart the Style Intelligence Server.

8. Create a map chart in Style Studio or Visual Composer based on
the custom map. Observe that the specified regions and labels are
overlaid on the map as desired.

E.5 Editing a Custom Map

To edit map data from Style Intelligence in the OpenJUMP application,
follow the steps below:

1. Install the OpenJUMP application and InetSoft extension as
described in Installing OpenJUMP and the InetSoft Extension.

2. Launch OpenJUMP, and select ‘Open’ from the ‘File’ menu.

3. Select ‘InetSoft Map Layer’ in the left panel.

ADMINISTRATION REFERENCE

1971 of 2477

4. Navigate to the server repository directory (by default, sree/WEB-
INF/classes), and select the mapdata.xml file. Press ‘Next’.

5. Select the ‘Map type’ and ‘Layer name’ that you want to edit. (See
Exporting a Shape File as a Style Intelligence Map for information
about the map type and layer name.)

6. Press ‘Finish’. This loads the map data into the OpenJUMP
application.

7. Edit the map as desired, and export the modified map. Follow the
procedure described in Exporting a Shape File as a Style
Intelligence Map.

ADMINISTRATION REFERENCE

1972 of 2477

APPENDIX F: Section 508 Accessibility
Compliance

Note: Enterprise Man-
ager is not Section
508-compliant.

The User Portal is compliant with Section 508 of the federal Rehabilitation
Act of 1973. This means that most features of the User Portal are accessible
via keyboard commands and corresponding voice commands. To enable
full Section 508 compliance in the User Portal, set
accessibility.enabled=true in sree.properties.

Note that the User Portal ‘Repository’ listing is fully accessible only in
‘List’ view, not in ‘Tree’ view. Configure the Repository for ‘List’ view
under the Look-and-Feel page of Enterprise Manager.

See Designing Reports for Section 508 Compliance in Report Design for
accessibility factors that report designers should consider.

See Also
Navigating a Dashboard With the Keyboard, in End User, for information
on dashboard accessibility.

INTEGRATION

1973 of 2477

Integration

One of the greatest advantages of Style Intelligence is its flexibility and
adaptability; it does not limit you to a single deployment or presentation
framework. Instead, you can seamlessly integrate Style Intelligence
components into your unique application at many different levels.

Because Style Intelligence is implemented entirely in Java, it is
immediately compatible with any J2EE compliant environment. You can
make use of web services, customize the built-in portal, and pass
credentials directly from your application to the Style Intelligence
framework for single sign-on.

Our reliance on open standards makes it possible to integrate with non-Java
environments as well. It is possible to retrieve reports from simple URL
requests, and Web Services.

This document discusses these and other ways to integrate Style
Intelligence into an existing environment.

INTEGRATION

1974 of 2477

1 Contents

This Guide contains the following major topics.

• Integrating Style Intelligence into Your Web Application

Guides you through the various approaches to integrating Style
Intelligence with your own web application, including single sign-
on.

• Java API Utility Applications

Examples of some common API uses.

• SOAP Web Services

Accessing reporting server functionality via a web-service. Setting
up the web service framework for different application servers.
Programming SOAP calls, with sample code.

• Design for Multi-Tenant Environment

Explains the general procedure for servicing multiple tenants from
a single installation, including modifications to data source
connections, physical views, data models, and permissions.

• Accessing the User Session with SRPrincipal

Shows how to pass additional information about a user, and use
that information in various areas.

INTEGRATION

1975 of 2477

2 Integrating Style Intelligence into Your
Web Application

There are three primary tasks required to integrate Style Intelligence into a
3rd party-web application:

1. Integrating the Web User Interface

2. Configuring Single Sign-On (SSO)

3. Selecting and Configuring a Security Provider

The following sections guide you through this process.

2.1 Integrating the Web User Interface
The easiest way to embed a Style Intelligence module into your web
application is to use an IFrame. This approach allows you to selectively
embed portions of the Style Intelligence User Portal, as well as individual
Reports and Viewsheets, within the HTML, JSP, or ASP pages of your
application. The following sections explain the available IFrame
embedding options.

An alternative to IFrame embedding is JSP-based integration (see
Appendix D: Configuring Style Intelligence for JSP Tags), but there are
several advantages that make IFrames the preferred approach in most
cases:

• IFrames are easier to use, and Style Intelligence’s report design
architecture is geared toward IFrame integration. JSPs can be time-
consuming to build and require knowledge of the JSP Tag Library.

• Reports that are integrated using JSP technology do not offer the end
user Ad Hoc reporting functionality or portal utilities. These features are
fully retained in IFrame-integrated reports.

• Certain application servers (WebLogic) require specific configurations
and settings when using the JSP Tag Library. This complexity is avoided
in the IFrame approach.

See Also
Appendix C: Servlet Repository Parameters, for useful “op” codes.

2.1.1 Embedding the Entire Style Intelligence Portal

To embed the entirety of the Style Intelligence User Portal within an
IFrame, use the following syntax:

INTEGRATION

1976 of 2477

Replace 'remote-
host:8080' with an
actual machine name
and port.

<iframe src="http://remotehost:8080/sree/Reports">
<p>Text for obsolete browsers.</p>
</iframe>

2.1.2 Embedding a Tab of the Style Intelligence Portal

To embed a single tab of the Style Intelligence User Portal within an
IFrame, use the following syntax,

Replace 'remote-
host:8080' with an
actual machine name
and port.

<iframe src="http://remotehost:8080/sree/
Reports?op=portal_{TabName}">
<p>Text for obsolete browsers.</p>
</iframe>

where TabName is the title of the desired tab. For example, to embed the
contents of the Report tab of the Portal, configure the IFrame as follows:

<iframe src="http://remotehost:8080/sree/
Reports?op=portal_report">
<p>Text for obsolete browsers.</p>
</iframe>

This embeds both the left-side Repository Tree and the right-side report
display area.

See Also
Creating a Custom Report List, for advanced API-based integration.

2.1.3 Embedding a Report or Viewsheet

To embed an individual report into an IFrame, use the following syntax,

Replace 'remote-
host:8080' with an
actual machine name
and port.

<iframe src="http://remotehost:8080/sree/
Reports?op=frameReplet&name=FolderName/
ReportName&outtype=REPORT">
<p>Text for obsolete browsers.</p>
</iframe>

Use “%20” to repre-
sent a space in a
report or Viewsheet
name.

where ReportName is the name of the desired report, and FolderName is the
name of the report’s containing folder in the Repository.

Similarly, to embed an individual Viewsheet into an IFrame, use the
following syntax:

<iframe src="http://remotehost:8080/sree/
Reports?op=vs&path=/FolderName/ViewsheetName">
<p>Text for obsolete browsers.</p>
</iframe>

Note: The path does not include explicit reference to 'My Reports',
and does not begin with a '/'.

For a user-scope Viewsheet (i.e., a Viewsheet in the ‘My Reports’ folder),
the path should begin with the username. For example, for user ‘guest’ and
a Viewsheet called ‘MyViewsheet’ residing in ‘My Folder’ (within ‘My
Reports’) the path should be specified as follows:

INTEGRATION

1977 of 2477

<iframe src="http://remotehost:8080/sree/
Reports?op=vs&path=guest/My%20Folder/MyViewsheet">
<p>Text for obsolete browsers.</p>
</iframe>

To embed the Viewsheet in an IFrame of an HTA (HTML Application)
page, add parameter “isHTA=true”. For example:

<iframe src="http://remotehost:8080/sree/
Reports?op=vs&path=/FolderName/ViewsheetName&isHTA=true">
<p>Text for obsolete browsers.</p>
</iframe>

To load the Viewsheet in Visual Composer, see Embedding the Visual
Composer.

Example:
Embedding a
Report

This section provides a fuller example of IFrame embedding. the HTML
markup below generates a simple web page with two divs, the top div
containing a heading and some text, and the bottom div containing an
IFrame with embedded report. To run this example, replace “remotehost”
with the name of the remote server on which the report engine is running.

<html>
<head>

<title>IFrame Integration Example</title>
<meta http-equiv="content-type" content="text/html;

charset=utf-8" />
<link href="hostStyle.css" rel="stylesheet" type="text/css" />
</head>

<body>
<div id="TitleDiv">
<h1>IFrame Integration Example</h1>
<p>This is an example of IFrame integration.</p>
</div>

<div id="IFrameDiv">
<iframe src="http://remotehost:8080/sree/

Reports?op=frameReplet&name=OrderList" frameborder="1" width="100%"
height="100%">

<p>Text for obsolete browsers.</p>
</iframe>
</div>

</body>
</html>

Note: When the div surrounding an IFrame has its ‘overflow’
property set to ‘auto’, Internet Explorer may not correctly
position the embedded report’s context menus.

To control the style of the above HTML, including the size and placement
of the div containing the IFrame, you can use a CSS file such as the one
below (hostStyle.css).

html, body {
margin:0;
padding:0;
height:100%;
font-family: arial;

}
div {

margin-left: auto;
margin-right: auto;
width: 75%;
padding:0;

INTEGRATION

1978 of 2477

background: white;
}
div#IFrameDiv {

height: 75%;
bottom:0;

}
div#TitleDiv {

height: 20%;
text-align:center;

}

¢

2.1.4 Embedding the Visual Composer

To embed the Visual Composer in an IFrame, use the following syntax:

<iframe src="http://remotehost:8080/sree/
Reports?op=vs&edit=true">
<p>Text for obsolete browsers.</p>
</iframe>

To embed the Visual Composer and open a particular Viewsheet for
editing, use the following syntax:

<iframe src="http://remotehost:8080/sree/
Reports?op=vs&path=/FolderName/ViewsheetName&edit=true">
<p>Text for obsolete browsers.</p>
</iframe>

See Appendix C: Servlet Repository Parameters for other useful “op”
codes.

2.2 Configuring Single Sign-On (SSO)
Single Sign-On (SSO) is the process of transparently passing user
credentials from one application to another so that the user is only required
to present login credentials a single time. For instance, consider the case
where a user logs into their main company portal and clicks on a link called
“reports” to access the User Portal. If single sign-on is in effect, the user
can be automatically admitted to the Style Intelligence Portal without any
additional authentication challenges. This helps to create a seamless user
experience.

You can implement single sign-on capability in two ways:

• Form-Based Single Sign-On

• Session-Based Single Sign-On

The implementation that you choose depends on the nature of your web
application.

INTEGRATION

1979 of 2477

2.2.1 Form-Based Single Sign-On

The form-based SSO method works for both J2EE and .NET applications.
Your primary sign-on web application should generate a form containing
hidden fields “userid” and “password”, similar to the one below:

<form method=post name=reportForm action="/sree/Reports">
View Reports
<input type=hidden name=userid value=xxxx>
<input type=hidden name=password value=yyyy>

</form>

When a user clicks on the link in your web application, the form
transparently submits the parameters “userid” and “password” to the Style
Intelligence server. These parameters are then passed to the Security
Provider for authentication. Once the Security Provider authenticates the
user’s credentials, it assigns the user to the appropriate groups and roles,
and furnishes the user with the authorized permissions. To add information
to the SRPrincipal object, see Accessing SRPrincipal via Login Listener.

Next Steps: Selecting and Configuring a Security Provider.

2.2.2 Session-Based Single Sign-On

You can implement single sign-on by placing a Principal object in the
user’s HTTP session. This allows Style Intelligence to automatically sign in
the user without attempting to authenticate their credentials.

The Style Intelligence SRPrincipal object is used to hold the security
information, and you must add this object to the user’s session as an
attribute. The amount of information that you provide within the
SRPrincipal object determines the extent of SSO, as well as the role and
responsibility of the security provider.

You can implement SRPrincipal-based SSO for both .NET (non-Java) and
J2EE applications:

• For J2EE applications, use the lightweight InetSoft Proxy Servlet within
your own application. The proxy duplicates the SRPrincipal object onto
the Style Intelligence web application. The recommended injection
point for the SRPrincipal object is a request filter mapped to the Proxy
Servlet. See Request Filter mapped to the Style Intelligence Proxy
Servlet.

• For .NET (non-Java) applications, you need to pass the user information
to the Style Intelligence web application via a suitable method such as
cookies, request parameters, etc. The recommended injection point for
the SRPrincipal object is a request filter mapped to the Style Intelligence
Report Servlet. See Request Filter mapped to the Style Intelligence
Report Servlet.

INTEGRATION

1980 of 2477

Request Filter mapped to the Style Intelligence Proxy Servlet

The proxy servlet mapping procedure can only be used for J2EE apps.

This proxy also serves
as load balancer for
clustered reporting
environments. See
Configuring Server
Clustering in Adminis-
tration Reference for
more details.

Style Intelligence provides a lightweight Proxy Servlet that can run within
your own web application context. By adding an SRPrincipal object to the
user session, you can pass user information to the Style Intelligence
application. When a user performs a session-based sign-on to the Proxy,
this will then effectively sign the user into the remote Style Intelligence
server.

Figure 1. Typical architecture for SRPrincipal-based SSO with Proxy

This section explains how to deploy and configure the Proxy Servlet and
the request filter so that session attributes are correctly mapped to the Proxy
Servlet. Follow the steps below:

Note: You can rename
etools.jar to ztools.jar
to take advantage of
the alphabetical load-
ing of JARs in order
to give preference to
your application when
loading common class
libraries.

1. Verify that you have added the Style Intelligence product JARs
bisuite.jar or sree.jar or visual.jar, and etools.jar to your web
application within the following directory: \webapps\{YourWe-
bApp}\WEB-INF\lib.

2. Deploy the Proxy Servlet in the deployment descriptor (web.xml)
file of your web application by adding the following code:

<web-app>

<servlet>
<servlet-name>replets</servlet-name>
<servlet-class>inetsoft.sree.web.ClusterServlet</

servlet-class>
</servlet>

<context-param>
<param-name>sree.home</param-name>

Your web application
(/app/Reports)

webapp container
(Tomcat, Jetty, etc.)

Clients

SSO request
filter

InetSoft
Proxy

Style Intelligence web application
(/sree/Reports)

webapp container
(Tomcat, Jetty, etc.)

Repository Servlet

INTEGRATION

1981 of 2477

<param-value>{Any Local Path on Your App Server}</param-
value>
</context-param>

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports/dashboard/*</url-pattern>

</servlet-mapping>

</web-app>

3. Configure the report server for cluster mode. See Configuring
Server Clustering in Administration Reference.

Next Steps: Create a request filter with mapping to the Proxy Servlet. See
Request Filter Example.

Request Filter mapped to the Style Intelligence Report Servlet

The report servlet mapping can be used for both J2EE and .NET apps.

In cases where you cannot use the Proxy Servlet, such as non-J2EE
applications (e.g., SharePoint portal or any .NET application uses an IIS
server), you can still inject session attributes by using a request filter.
However, this filter must run within the Style Intelligence web application.

Figure 2. Typical architecture for SRPrincipal-based SSO without
Proxy

When a user clicks on a link (in your web application) that accesses the
Style Intelligence Report Server, your application must pass the user
information to the request filter. It can do this by using the HTTP request
header or request parameters, or by using security frameworks such as

Your web application
(/app/Reports)

webapp container
(Tomcat, Jetty, etc.)

Clients

SSO request
filter

Style Intelligence web application
(/sree/Reports)

webapp container
(Tomcat, Jetty, etc.)

Repository
Servlet

Login

INTEGRATION

1982 of 2477

Spring Security or Oracle Identity Manager, etc. The request filter
intercepts the request to the Style Intelligence Report Servlet, extracts the
user information, injects the necessary SRPrincipal object, and performs
the single sign-on.

Next Steps: Create a request filter with mapping to the Proxy Servlet. See
Request Filter Example.

Request Filter Example

A request filter is a server module that intercepts all requests made to a
servlet. Below is a complete example of a request filter that performs a
single sign-on into the Style Intelligence Report Servlet or its Proxy
Servlet. To use the request filter, compile the class below and place it on the
classpath.

Please note that the credential-passing mechanism in this example is
intended for demonstration only, and should not be used in a production
environment. A ticketing mechanism is typically used for this purpose, and
the request filter should include logic to validate the ticket.

package com.inetsoft.demo;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;
import inetsoft.sree.RepletRepository;
import inetsoft.sree.security.SRPrincipal;

public final class InetSoftSSOFilter implements Filter {
private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)
throws ServletException {
this.filterConfig = filterConfig;

}

public void destroy() {
 this.filterConfig = null;
}

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
if(request instanceof HttpServletRequest) {
HttpServletRequest hrequest = (HttpServletRequest)

request;
HttpSession session = hrequest.getSession();
SRPrincipal prin = (SRPrincipal)session.getAttribute

 (RepletRepository.PRINCIPAL_COOKIE);

if (prin == null) {

This simplistic credential-passing mechanism is intended for
demonstration only, and is not recommended for use in a production
environment.

// Extract user info based on your environment.

INTEGRATION

1983 of 2477

// For demo purpose, we assume here that it is
// passed as a URL parameter.

String user = request.getParameter("SSO");

if(user != null) {
prin = new SRPrincipal(user);
session.setAttribute(RepletRepository.PRINCIPAL_

COOKIE, prin);

}
}

}

chain.doFilter(request, response);
}

}

This example assumes that user information is passed via a request
parameter called “SSO”. The code in bold text performs a partial SSO,
logging in the user without group or role assignment. The distinction
between partial SSO and complete SSO is explained below.

Partial SSO: Logging In the User without a Group or Role Assignment

Partial SSO logs a user into the Style Intelligence web application without
any group or role assignment. Style Intelligence will invoke the getUser()
method in the authentication module of the security provider, which is
responsible for looking up the user’s group and role assignment.

To implement partial SSO, use the code snippet in bold text in the example
InetSoftSSOFilter above.

prin = new SRPrincipal(user);
session.setAttribute(RepletRepository.PRINCIPAL_COOKIE,
prin);

Complete SSO - Logging In the User with a Group and Role Assignment

Complete SSO logs a user into the Style Intelligence web application with
a specific group and role assignment. When you provide such group and/or
role information within the SRPrincipal object, Style Intelligence uses the
specified assignments and bypasses the authentication module of the
security provider. In this case, the security provider is responsible only for
providing a list of groups and roles to set security permissions.

To implement complete SSO, use the following code snippet in place of the
bold text in the example InetSoftSSOFilter above.

prin = new SRPrincipal(user, new String[] {"role1",
"role2"}, new String[]{"Group1"}, 1234);
session.setAttribute(RepletRepository.PRINCIPAL_COOKIE,
prin);

Next Steps: Deploying the Request Filter.

INTEGRATION

1984 of 2477

Deploying the Request Filter

If you are using the Proxy Servlet, deploy the request filter (see Request
Filter Example) in the deployment descriptor file (web.xml) of your own
web application. Otherwise deploy it in the deployment descriptor file
(web.xml) of the Style Intelligence web application.

Add the following code to the appropriate web.xml file following the initial
<web-app> tag:

<filter>
<filter-name>SSOFilter</filter-name>
<filter-class>com.inetsoft.demo.InetSoftSSOFilter</

filter-class>
</filter>

<filter-mapping>
<filter-name>SSOFilter</filter-name>
<url-pattern>/Reports</url-pattern>
<url-pattern>/Reports/dashboard/*</url-pattern>

</filter-mapping>

Next Steps: Selecting and Configuring a Security Provider.

2.3 Selecting and Configuring a Security Provider
The security provider is responsible for authentication and authorization.
Choose your security provider based on your SSO implementation and
your security framework.

See Also
Security, in Administration Reference, for information on configuring
security in Enterprise Manager.

2.3.1 Security Provider Functions

The security provider includes the following key functions for
authentication and authorization:

Authentication:

• authenticate(): Validates user login.

• getUser(): Maps user to groups and roles.

• getGroups(), getRoles(): Provide list of users, roles, and groups.

Authorization:

• getPermission(), setPermission(): Gets and sets Style Intelligence-
specific permissions for users, groups, or roles.

INTEGRATION

1985 of 2477

The SSO method that you use will determine which functions of the
security provider are bypassed. The list below lists the conditions under
which certain functions are invoked or bypassed:

Form Based SSO

Authentication:

• authenticate(): Invoked

• getUser(): Invoked

• getGroups(), getRoles(): Invoked

Authorization:

• setPermission(), getPermission(): Invoked

Session Based SSO

Authentication:

• authenticate(): Bypassed

• getUser(): Bypassed, depending on information in SRPrincipal object.

• getGroups(), getRoles(): Invoked, when you set permissions via the
Enterprise Manager.

Authorization:

• getPermission(), setPermission(): Invoked

2.3.2 Selecting a Security Provider

The following sections provide guidance on using the various security
options.

Default File-Based Security Provider

The default security provider is provided as part of the Style Intelligence
installation. It makes use of the following XML files located in the SREE
Home directory (webapps/sree/WEB-INF/classes):

• password.xml: Stores users and groups.

• role.xml: Stores roles.

• acl.xml: Stores security permissions.

Use the default file-based security provider in the following circumstances:

1. You do not have any existing security data store that you want to
reuse for your reporting application.

INTEGRATION

1986 of 2477

2. You have an existing security data store, but it is not feasible to
connect to this store via the InetSoft custom security interface.

In this case, you will need to duplicate all your users, groups, and
roles for use within Style Intelligence, and set corresponding per-
missions. You can do this via Enterprise Manager and/or security
API calls. You will be responsible for keeping your existing data
store and the Style Intelligence security provider in sync.

3. You have implemented complete session-based SSO (see Request
Filter Example), and your security is predominantly defined at the
group/role level.

In this case you do not need to define any users in the security pro-
vider. Simply define your groups/roles and set corresponding per-
missions. You can do this via Enterprise Manager and/or security
API calls.

Next Step: Security API: Configuring the File Security Provider.

LDAP Security

Use the LDAP File Security Provider if you have an LDAP data store (such
as Active Directory), irrespective of the SSO mechanism that you select.

Next Step: Configuring an LDAP Security Provider in Administration
Reference.

Custom DB-based or API-Based Security Provider

Implement a custom security provider if your setup requires the security
provider to perform authentication of user credentials or user role/group
mappings against an external source.

For example, if your security data store is a database or another security
framework and you have form-based or partial session-based SSO, use a
custom security provider. The best approach is the composite security
provider, which splits the responsibility for authentication and
authorization tasks. To do this, implement your own authentication
provider and use the built-in file-based authorization provider.

Next Step: Custom Security Integration in Administration Reference.

See Also
Security, in Administration Reference, for information on configuring
security in Enterprise Manager.

INTEGRATION

1987 of 2477

3 Java API Utility Applications

The following sections provide some helpful code snippets for common
integration tasks using the public Java API.

Note that you can accomplish some of these tasks in an easier manner
using the built-in tools provided by Style Studio and Enterprise Manager.
Please consult the appropriate sections in Report Design and
Administration Reference for information on the preferred approaches (not
requiring programming). In general, use the Java API only when these
built-in tools do not address your particular needs.

3.1 Security API: Configuring the File Security
Provider
If you are using the built-in security provider (see Configuring the Default
Security Provider) and find it cumbersome to manually setup users, groups,
roles, and permissions, you can programmatically configure the security
provider using the security API. For LDAP and custom security
implementations, use the interface provided by the external security data
store to add and remove users, groups, and roles. The security provider
should only pull from, and never push to, that store.

The code snippet below performs the following tasks:

• Create a new group of users called “Accounts”.

• Add a new user called “brian” to the “Accounts” group.

• Give the “Accounts” group read permissions on a folder called “Audit
Reports”.

import inetsoft.sree.security.*;
import inetsoft.sree.*;
...

System.setProperty("sree.home", "{Absolute Path to your sree
home location}");

SecurityEngine sEngine = SecurityEngine.getSecurity();

FileSecurityProvider fsProvider =
(FileSecurityProvider)sEngine.getSecurityProvider();

// Get a handle to the authentication module
FileAuthenticationProvider fap =
(FileAuthenticationProvider)fsProvider.getAuthenticationPro
vider();

// Add the new group called 'Accounts'
fap.addGroup(new FSGroup("Accounts"));

// Add a user called 'brian' and assign him to the
'Accounts' group
FSUser user = new FSUser("brian");

INTEGRATION

1988 of 2477

user.setGroups(new String[] {"Accounts"});
fap.addUser(user);

// Give the Accounts group read permissions on a folder
called 'Audit Reports’

// Get a handle to the authorization module
FileAuthorizationProvider fathp =
(FileAuthorizationProvider)fsProvider.getAuthorizationProvi
der();

// Create a permission object
Permission folderPermission = new Permission();
folderPermission.setReadGroups(new String[] {"Accounts"});

// Set permissions on the folder
fathp.setPermission("Audit Reports", folderPermission);

3.2 Creating a Custom Report List
The section illustrates how to use the Style Intelligence API to compile a
list of reports and Viewsheets for a given user. You can use this module in
your own server pages. However, before you invest resources in creating a
custom report list, consider simply embedding the contents of the default
User Portal’s Report tab within your application. This is the recommended
and simplest implementation. See Integrating Style Intelligence into Your
Web Application for further details.

The code snippet below presents the generated list of reports and
Viewsheets in a Java List object. Each value in the List is an array
containing the display name and encoded request URI of the report or
Viewsheet.

package com.inetsoft.demo;

import java.util.*;
import inetsoft.sree.RepositoryEntry;
import inetsoft.sree.AnalyticRepository;
import inetsoft.sree.security.SRPrincipal;
import inetsoft.sree.internal.SUtil;
import inetsoft.util.Tool;

public class RepositoryList {
public RepositoryList(SRPrincipal principal,

AnalyticRepository repository) {
this.principal = principal;
this.repository = repository;

}

public List getFolderEntryPaths(String folderName) throws
Exception {

List<String[]> entryPaths = new ArrayList<String[]>();
String reportParam = "op=FrameReplet&name=";
String archiveParam = "op=FrameReport&name=";
String vsParam = "op=vs&path=/";

RepositoryEntry[] repEntries =
repository.getRepositoryEntries(folderName, principal, "r",
RepositoryEntry.FOLDER|RepositoryEntry.REPLET|RepositoryEnt
ry.VIEWSHEET|RepositoryEntry.ARCHIVE);

INTEGRATION

1989 of 2477

for(int i=0; i < repEntries.length; i++) {
String entryPath = repEntries[i].getPath();

if(repEntries[i].getType() == RepositoryEntry.REPLET)
{

String encodedPath = reportParam +
Tool.encodeURL(entryPath);
entryPaths.add(new String[]{ entryPath, encodedPath});

}
else if(repEntries[i].getType() ==

RepositoryEntry.VIEWSHEET) {
String encodedPath = vsParam +

Tool.encodeURL(entryPath);
entryPaths.add(new String[]{ entryPath,

encodedPath});
}
else if(repEntries[i].getType() ==

RepositoryEntry.ARCHIVE) {
String encodedPath = archiveParam +
Tool.encodeURL(entryPath);
entryPaths.add(new String[]{ entryPath,

encodedPath});
}
else if(repEntries[i].getType() ==

RepositoryEntry.FOLDER){
entryPaths.addAll(getFolderEntryPaths(entryPath));

}
}
return entryPaths;

}
private SRPrincipal principal;
private AnalyticRepository repository;

}

The following JSP code uses the above RepositoryList class to create a
custom portal interface. The repository tree is then displayed as a drop-
down selection list.

<%@ page language="java" contentType="text/html" %>
<%@ page
import="com.inetsoft.demo.RepositoryList"
import ="java.util.*"
import
="inetsoft.sree.security.SRPrincipal,inetsoft.sree.internal
.SUtil"
import
="inetsoft.sree.RepletRepository,inetsoft.sree.AnalyticRepo
sitory"
%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<title>InetSoft Portal</title>

<script>
function generateReport() {
document.getElementById('rFrame').src = "/sree/

Reports?" + document.form1.userReportList.value;
}

</script>
</head>

INTEGRATION

1990 of 2477

<body>
<p>InetSoft Portal</p>
<form name=form1 method="POST">
<select size="1" name="userReportList" >
<%
// Get a handle to Repository for user (assume a valid

session exists)
SRPrincipal principal =

(SRPrincipal)session.getAttribute(RepletRepository.PRINCIPA
L_COOKIE);
AnalyticRepository repository =

(AnalyticRepository)SUtil.getRepletRepository();
RepositoryList rList = new RepositoryList(principal,

repository);
List<String[]> paths = rList.getFolderEntryPaths("/");

for(int i = 0; i < paths.size(); i++) {
String[] pArray = (String[])paths.get(i);
String displayName = pArray[0];
String valueName = pArray[1];

%>
<option value=<%=valueName%>>
<%=displayName%>
</option>

<%
}

%>
</select>
<input type="button" value="Generate Report" name="B1"
onClick="generateReport();"></p>
</form>
<iframe id=rFrame src="about:blank" width=95% height=90%></
iframe>
</body>
</html>

3.3 Managing the Data Repository
(datasource.xml)
When you implement a service-based solution, it is often necessary to
dynamically manipulate the data repository (data sources, data models,
etc.). You can use the public API to perform such common tasks as
dynamically expanding a developer’s data model (as the developer creates
new database fields) or adding an additional tenant connection.

The following code snippet illustrates how to gain access to the sample
‘Orders’ data source in the repository and add an additional tenant
connection. The example also expands the data model to add a new
attribute to the ‘Product’ entity which maps to a particular database field.

import inetsoft.uql.XFactory;
import inetsoft.uql.XRepository;
import inetsoft.uql.jdbc.JDBCDataSource;
import inetsoft.uql.service.XEngine;
import inetsoft.uql.erm.XDataModel;
import inetsoft.uql.erm.XLogicalModel;
import inetsoft.uql.erm.XEntity;
import inetsoft.uql.erm.XAttribute;
import inetsoft.uql.schema.XSchema;
...

INTEGRATION

1991 of 2477

System.setProperty("sree.home", ""{Absolute Path to your
sree home location}");

// Get a handle to the data repository
XRepository dataRepository = XFactory.getRepository();

// Edit the data model in the Orders data source
XDataModel dataModel =
dataRepository.getDataModel("Orders");

XLogicalModel logicalModel =
dataModel.getLogicalModel("Order Model");
XEntity entity = logicalModel.getEntity("Product");

// Create an attribute to map to a field in the DB
XAttribute attribute = new XAttribute("Category Num",
"SA.PRODUCTS", "CATEGORY_ID", XSchema.INTEGER);

// Add this attribute to the 'Product' entity
entity.addAttribute(attribute);

// Add an additional tenant connection
JDBCDataSource tenantConnection = new JDBCDataSource();
tenantConnection.setName("Orders Client1");
tenantConnection.setURL("jdbc:derby:classpath:orders");
tenantConnection.setDriver("org.apache.derby.jdbc.EmbeddedD
river");
tenantConnection.setUser("SA");
tenantConnection.setPassword("");

// Get a handle to the default 'Orders' data source
JDBCDataSource ordersDataSource =
(JDBCDataSource)dataRepository.getDataSource("Orders");
ordersDataSource.addDatasource(tenantConnection);

// Finalize changes
dataRepository.updateDataModel(dataModel);

See Also
Semantic Layer – Data Model, in Data Modeling, for information on
expanding a data model.
Design for Multi-Tenant Environment, for complete information about
multi-tenancy.

3.4 Accessing the Servlet Context
In rare situations, a report intended to be run only in a web environments
may need to access the servlet context or configuration parameters. To do
this, use the ServletRepository class:

Servlet servlet = ServletRepository.getServlet();
ServletConfig config = servlet.getServletConfig();
ServletContext context = config.getServletContext();

However, there are several disadvantages of accessing the servlet in a replet
class:

INTEGRATION

1992 of 2477

• If a report accesses the servlet instance, it can only be used in a web
environment.

• The repository must be run locally in the servlet. It is impossible to use a
remote repository server using either RMI or CORBA.

HTTP Request and Response

When a report is running inside a servlet, the HTTP request and response
objects are accessible as special parameters in the replet request. You can
retrieve these from the HttpServiceRequest and HttpServiceResponse
objects using the RepletRequest constants SERVICE_REQUEST and
SERVICE_RESPONSE.

// param is the RepletRequest object passed to
// createReport()
HttpServiceRequest srvreq = (HttpServiceRequest)
param.getParameter(RepletRequest.SERVICE_REQUEST);
HttpServletRequest srvreq.getRequest();

HttpServiceResponse srvres = (HttpServiceResponse)
param.getParameter(RepletRequest.SERVICE_RESPONSE);
HttpServletResponse resp = srvres.getResponse();

These parameters are not accessible if the report is not running inside a
servlet. The ability to access the HTTP request object is designed only to
satisfy some special needs in the Web environment, such as access to the
session object. It should not be used to access the report parameters.

3.5 Pooling Database Connections
Programmatically
The built-in connection pooling mechanism is described in Specifying Data
Source Information, in Administration Reference. You can choose instead
to supply your own database connection pooling mechanism by
implementing the ConnectionPool interface.

See Also
Specifying Data Source Information, in Administration Reference, to
configure pooling in Enterprise Manager.

3.5.1 getConnection()

This method is called whenever a new connection is needed by the query
engine. The pool should return the next available connection. If there are no
more connections in the pool, this method should block until a connection
is made available. The method syntax is shown below:

getConnection(XDataSource xds, Principal user);

The parameter ‘xds’ denotes the JDBC data source. Parameter ‘user’ is a
Principal object that identifies the user for whom the connection is being
retrieved.

INTEGRATION

1993 of 2477

3.5.2 releaseConnection()

This method is called by the query engine after a connection is no longer
needed. This method should be coordinated with the getConnection()
method so that if there is a getConnection() pending, this method will
notify the waiting thread.

Example:
Connection Pool

The following is a simple connection pool implementation. It creates ten
connections at startup.

import java.sql.*;
import java.util.*;
import java.security.Principal;
import java.util.concurrent.*;
import inetsoft.uql.*;
import inetsoft.uql.jdbc.*;

public class TestConnectionPool implements ConnectionPool {

public TestConnectionPool() {
try {

Class.forName("org.apache.derby.jdbc.EmbeddedDriver"
);

}
catch(ClassNotFoundException classx) {
}

String url = "jdbc:derby:classpath:orders";

for(int i = 0; i < SIZE; i++) {
try {
Connection connection =

DriverManager.getConnection(url, "sa", "");
connections.push(connection);

}
catch(SQLException sqlx) {
}

}
}

public Connection getConnection(XDataSource xds,
Principal user) {

System.out.println("getConnection("+xds+", "+user+")");
Connection conn = null;
if(xds.getName().equals("Orders")) {
try {
conn = connections.takeFirst();

}
catch (InterruptedException ie) {
}

}
return conn;

}

public void releaseConnection(XDataSource xds, Connection
conn) {

System.out.println("releaseConnection("+xds+",
"+conn+")");

connections.push(conn);
}

INTEGRATION

1994 of 2477

private final BlockingDeque<Connection> connections = new
LinkedBlockingDeque<Connection>(SIZE);

private static final int SIZE = 10;
}

¢

3.5.3 Setting the Connection Pool

There are two methods for setting the connection pool. The first method is
to set the property jdbc.connection.pool in sree.properties.

jdbc.connection.pool=SimpleConnectionPool

The second method is to programmatically call
JDBC.setConnectionPool().

ConnectionPool pool = new SimpleConnectionPool();
inetsoft.uql.jdbc.JDBCHandler.setConnectionPool(pool);

Note that it is important to call the close() function of a JDBCTableNode
after using it, because if the system is busy it may cause a deadlock in the
connection pool.

3.6 Scheduler API
Enterprise Manager allows you to specify built-in schedule conditions and
actions. Built-in conditions include several time-based conditions: daily,
weekly, monthly, a day in a week in a month (e.g. 1st Sunday in March), a
day in a week in a year (e.g. 20th Wednesday of the year) and an exact date
and time. Built-in actions include report generation, export, delivery,
notification, printing, and archiving.

In addition to these default conditions and actions, you can also use the
Java API to implement scheduled reports for custom conditions and
actions.

See Also
Scheduler, in Administration Reference, for full information on Scheduler
operation.

3.6.1 User-Defined Conditions

A user-defined condition must implement the UserCondition interface.
Two key methods in the interface are check() and getRetryTime(). Both
methods take a current time parameter. The current time parameter
specifies the logical current time. Its value may be different from the actual
system time returned by System.currentTimeMillis() and is used for the
‘what if’ analysis by the Scheduler. Both routines should use the passed
value as the current time.

INTEGRATION

1995 of 2477

The getRetryTime() method is called by the Scheduler at start-up to
determine the time this condition needs to be checked. The method is also
called after a check() call returns false. If a task has more than one
condition, the task will be retried at the latest retry time of all the
conditions. If the getRetryTime() method returns a -1, the condition is
abandoned.

The check() method can be called anytime after the retry time. It should
check the condition criteria and return true if all the criteria are satisfied and
false otherwise. It is up to the user-defined class to perform any checking in
the check() method.

Example: User-
Defined Condition

The following example illustrates a user-defined condition that checks the
existence of a file.

import inetsoft.sree.schedule.*;
import inetsoft.sree.*;
import java.io.*;

public class FileCondition implements UserCondition {

public String getLabel() {
return "File Check";

}

public RepletRequest getRepletRequest() {
return this.request;

}

public void setRepletRequest(RepletRequest request) {
this.request = request;

}

public long getRetryTime(long now) {
// if the file name property is not defined by user
if(filename == null) {

return –1;
}

return now + 600000; // retry in 10 minutes
}

// check if the file exists
public boolean check(long now) {

return (new File(filename)).exists();
}

String filename = SreeEnv.getProperty("extra.datafile");
RepletRequest request = null;

}
¢

See Also
Scheduler Conditions, in Administration Reference, to set a built-in or
custom condition in Enterprise Manager.

INTEGRATION

1996 of 2477

3.6.2 User-Defined Actions

In addition to the built-in Schedule actions, you can also define custom
actions. A user-defined action class must implement the UserAction
interface. There are three methods in the interface.

• The run() method is the main routine for performing the action.

• The other two methods, setRepletRequest() and getRepletRequest(),
deal with the parameters for the user action.

You can configure a set of parameter values when you create an action in
Enterprise Manager. The parameters are loaded and passed to the action
through the setRepletRequest() method. This allows a user-defined action
class to be parameterized in the same way as the default actions.

The DefaultUserAction class provides a default implementation of the
UserAction interface. The subclass of DefaultUserAction only needs to
define the run() method. As with conditions, the equals() method should
also be implemented.

To make the user-defined action available for selection on the Enterprise
Manager’s Action tab (for a given scheduled task), add the
replet.viewer.schedule.actions entry into sree.propertes. See User-
Defined Action in Administration Reference for more information, and the
example below.

Example: User
Action

The class below specifies a user-defined action called “MyAction.” The
action executes a deployed report named “SomeReplet,” and exports the
report to Excel format as C:\\SomeReplet.xls.

import inetsoft.sree.schedule.*;
import inetsoft.sree.*;
import inetsoft.sree.security.*;
import inetsoft.report.io.*;

import java.util.*;
import java.security.*;
import java.io.*;

public class MyAction extends DefaultUserAction implements
RepletSupport {

public MyAction() {
super();

}

public MyAction(String replet) {
this.replet = replet;

}

public void run(Principal principal) throws Throwable {
FileOutputStream fos = null;

try {

INTEGRATION

1997 of 2477

final RepletRepository rr =
SreeEnv.getRepletRepository();

final Object repletId = rr.createReplet(replet,
principal, RepletRepository.REPLET);

RepletRequest request = getRepletRequest();
/*
...
Modify parameters here.
...

*/

rr.generateReplet(repletId, request);

final Object exportId = rr.export(repletId,
Builder.EXCEL_DATA);

fos = new FileOutputStream("C:\\"+replet+".xls");

byte[] b = null;
while((b = rr.nextBlock(exportId)) != null) {
fos.write(b);

}

fos.flush();
}
catch(Exception e) {
e.printStackTrace();
throw new RepletException(e);

}
finally {
try {
fos.close();

}
catch(Exception e) {}

}
}

public String getRepletName() {
return replet;

}

public void setRepletName(String replet) {
this.replet = replet;

}

public String getLabel() {
return "MyAction";

}

private String replet = "SomeReplet";
}

To make the “MyAction” user-defined action available for selection in the
Enterprise Manager’s Action tab (for a given scheduled task), add the
following line into the sree.propertes file.

replet.viewer.schedule.actions=MyAction

INTEGRATION

1998 of 2477

See Also
Scheduler Actions, in Administration Reference, to set a built-in or custom
action in Enterprise Manager.

3.7 Presenters
A presenter is an object that draws a graphical representation of a
numerical value. (See Cell Presenter in Report Design.) Typically, you
assign a presenter to a particular column of a table. However, you can also
associate a presenter with an object type, in which case it applies to all
objects of that type in a document.

The presenter is a powerful tool that allows you to broadly extend Style
Intelligence by rendering any user-defined object value. It has a very
simple set of methods, which are defined in the inetsoft.report.Presenter
interface. See the API JavaDocs for full details.

Walkthrough The Style Intelligence package comes with two sample presenters that
display a numeric value as a horizontal bar. In the following example you
will build a slightly different bar presenter. Instead of a bar growing from
left to right, you will create a presenter with bars growing from right to left.

You will first define a few constructors, a default constructor and a
constructor that takes a maximum value and color as parameters. The
maximum value is used to calculate the size of the bar. The size is the
proportion of the actual value to the maximum value.

RBarPresenter.java is found in the {InetSoftInstallation}/
examples/docExamples/core directory.

public class RBarPresenter implements Presenter {

public RBarPresenter() {
}

public RBarPresenter(double max, Color color) {
this.max = max;
this.color = color;

}

Pick a default size for the bar presenter and allow the size to be changed by
users:

public Dimension getPreferredSize(Object v) {
return psize;

}

public void setPreferredSize(Dimension psize) {
psize = new Dimension(psize);

}

You also need to define the isPresenterOf() method to check if a type of
object can be presented by this presenter. This is used when a presenter is

INTEGRATION

1999 of 2477

assigned to a table column to avoid using it on the wrong types of objects,
if there is more than one type in the column.

public boolean isPresenterOf(Class type) {
return Number.class.isAssignableFrom(type);

}

Last, define the paint() method for actually painting the bar. You can
calculate the width of the bar using the value passed into paint() and the
maximum value and presenter area width. Then align the bar to the right of
the area and paint.

public void paint(Graphics g, Object v, int x, int y, int w,
int h) {

if(v != null && v instanceof Number) {
Rectangle clip = g.getClipBounds();
Color oc = g.getColor();
g.setClip(x, y, w, h);
double n = ((Number) v).doubleValue();
g.setColor(color);
int width = (int) (n * w / max);
g.fillRect(x+w-width, y+2, width, h-4);
g.setColor(oc);
g.setClip(clip);

}
}

Figure 3. Report using RbarPresenter (PresenterEx.java)

INTEGRATION

2000 of 2477

3.8 Exporting Reports Programmatically
The following sections explain how to export reports to various formats
using the Java API.

See Also
Exporting a Report, in Report Design, to export a report from Style Studio.
Scheduler Actions, in Administration Reference, to schedule a report
export.
Exporting a Report , in End User, for information on exporting from the
User Portal.

3.8.1 Exporting to PDF Programmatically

Portable Document Format (PDF) is a document format created by Adobe
for distributing documents online. It has the advantages of compact size
and the availability of a free document viewer (Acrobat Reader) on many
platforms.

Style Intelligence provides support for PDF printing either through the use
of the PDF3Generator or through the use of the PDF4Generator.
PDF3Generator.getPDFGenerator() returns an appropriate object for the
user’s environment. Therefore, you should use
PDF3Generator.getPDFGenerator() to get an instance of the above classes,
rather than directly instantiating the constructors.

Printing to a PDF File

The snippet below illustrates how to use the PDF3Generator or
PDF4Generator object to print to a PDF file.

...
try {

ReportSheet report = createReport();

FileOutputStream output =
new FileOutputStream("output.pdf");

PDF3Generator pdf =
PDF3Generator.getPDFGenerator(output);

pdf.generate(report);

PreviewView previewer = Previewer.createPreviewer();
previewer.setExitOnClose(true);

previewer.pack();
previewer.setVisible(true);

previewer.print(report);
String prop = ReportEnv.getProperty("print");
if(prop != null && prop.equals("true")) {

previewer.printAction();
}

} catch(Exception e) {
e.printStackTrace();

}

INTEGRATION

2001 of 2477

public static ReportSheet createReport() {

try {
FileInputStream input =

new FileInputStream("report.srt");
Builder builder =

Builder.getBuilder(Builder.TEMPLATE, input);
return builder.read(".");

} catch(Exception e) {
e.printStackTrace();

}

return null;
}

The PDFPrinter is a simpler version of the PDF3Generator. The
PDFPrinter lacks support for generating tables and TOC (Table of
Contents). To create a PDFPrinter, pass a File object or a FileOutputStream
to the constructor:

PDFPrinter pdf = new PDFPrinter(new File("report.pdf"));

Once you have created the PDFPrinter object, you can retrieve a PrintJob
from it by calling getPrintJob():

report.print(pdf.getPrintJob());

After printing is finished, close the PDF stream:

pdf.close(); // or pdf.getPrintJob().end();

It is important to close the PDF stream after printing, otherwise the PDF
file may not be complete. You can close the PDF output either by calling
the end() method on the PrintJob object returned by the PDFPrinter, or by
calling the close() method on the PDFPrinter directly.

Compression Options

By default, Style Intelligence compresses text and images when exporting
to PDF format. On CJK operating systems, however, compression should
be disabled in order to prevent corruption of the of the binary data. To turn
off compression, use the following commands:

pdf.setCompressText(false);
pdf.setCompressImage(false);

Note however, that the resulting uncompressed PDF file can be quite large,
especially if you use images or painters in the report.

Font Handling in PDF (Base-14 Fonts)

PDF viewer software guarantees that the following fonts (the “base14
fonts”) will be available for display purposes:

 – courier

INTEGRATION

2002 of 2477

 – courier-bold
 – courier-boldoblique
 – courier-oblique
 – helvetica
 – helvetica-bold
 – helvetica-boldoblique
 – helvetica-oblique
 – symbol
 – times-bold
 – times-bolditalic
 – times-italic
 – times-roman
 – zapfdingbats

To ensure maximum portability, Java font objects are mapped into the
base14 fonts when generating PDF files.

Table 1. Default mapping between Java Fonts and Base-14 Fonts

You can change this mapping as follows:

pdf.putFontName("dialog", "Times");

By default the PDFPrinter assumes the output page is letter size (8.5 x 11).
To change this, set the page size property:

// switch width and height to print in landscape
pdf.setPageSize(11, 8.5);
// or print on A4 paper
pdf.setPageSize(StyleConstants.PAPER_A4);

Embedded Fonts

The PDFPrinter is the basic implementation for generating PDF files. It
only supports the base-14 fonts defined by the PDF standard. Because the
base-14 fonts are guaranteed to exist in all PDF viewers, the generated files
are very portable and compact. However, there are situations where you
may need other fonts in order to meet formatting requirements.

For example, if the PDF document is generated using Unicode characters
greater than 256, it is a good idea to embed the fonts.

An enhanced PDF generation class, PDF3Printer, supports embedded fonts
in the PDF file. Since the resulting PDF files use the same fonts as the
reports, they more accurately reflect the report presentation. To support font

JAVA FONT NAME BASE14 FONT NAME

Dialog Helvetica
Dialoginput Courier
Serif Times
SansSerif Helvetica
Monospaced Courier

INTEGRATION

2003 of 2477

embedding, the PDF generator needs to access the TrueType font files on
the local file system. It parses the font file for font information otherwise
not available from the Java API and loads the font data to embed into the
PDF file.

The TrueType font directories need to be specified using the
font.truetype.path property. The property is a directory path, e.g.,
c:\winnt\fonts, and can contain multiple directories separated by a path
separator (semicolon on Windows and colon on Unix). Only TrueType
fonts on this path are used in PDF generation.

ReportEnv.setProperty("font.truetype.path", "c:/winnt/
fonts;c:/otherfonts");

Type 1 font information is retrieved from AFM files. AFM is the standard
font format used by Adobe to store font data. AFM files can be
downloaded from the Adobe Web site. The PDF generator uses
font.afm.path to search AFM files for a Type 1 font. Applications using
Type 1 fonts need to package the AFM files with the application and set the
font.afm.path to point to the AFM directory.

import inetsoft.report.pdf.*;
...
FileOutputStream pdffile = …;
ReportEnv.setProperty("font.truetype.path", "c:/winnt/
fonts");
PDF3Printer pdf = new PDF3Printer(pdffile);
report.print(pdf.getPrintJob());
pdf.close();

The PDF3Printer class is derived from the PDFPrinter class and shares the
same methods for controlling PDF generation, such as image and text
compression. It has additional methods for controlling the font embedding.
By default, only font meta-data is embedded in the PDF files. For
TrueType fonts, the entire font file can be embedded in the PDF file. This
provides maximum portability at the price of larger file size.

pdf.setEmbedFont(true); // embed font file

If a font’s file is not found on the specified font path, it is mapped to a base-
14 Font in the same way as PDFPrinter.

PDF Bookmarks and Hyperlinks

PDF format supports bookmarks. Bookmarks are basically a hyperlinked
Table of Contents displayed in a separate view than the document. Users
can use the bookmark items to navigate the document. To produce a PDF
files with bookmarks, use PDF3Generator.

import inetsoft.report.pdf.*;
...
FileOutputStream pdffile = …;

INTEGRATION

2004 of 2477

PDF3Generator pdf =
PDF3Generator.getPDFGenerator(pdffile);

ReportSheet report = …;
pdf.generate(report);
// no close() necessary

To prevent the genera-
tion of bookmarks
entirely, use the
PDF3Printer instead
of PDF3Generator.

If the report contains heading elements, including heading elements in
subreports, these are converted into PDF bookmarks. To ignore heading
elements in subreports, set the selectiveBookmarks property to true.

PDF3Generator.setSelectiveBookmarks(true);
boolean selective = PDF3Generator.isSelectiveBookmarks();

To initialize PDF bookmarks in their “open” state, set the
pdf.open.bookmark property to true by using the setOpenBookmark()
method of PDFPrinter. To check the current value of the
pdf.open.bookmark property, use the isOpenBookmark() method of
PDFPrinter.

PDFPrinter.setOpenBookmark(true);
boolean openBookmark = PDFPrinter.isOpenBookmark();

Similarly, to initialize PDF thumbnails in their “open” state, set the
pdf.open.thumbnail property to true by using the setOpenThumbnail()
method of PDFPrinter. To check the current value of the
pdf.open.thumbnail, use the isOpenThumbnail() method of PDFPrinter.

PDFPrinter.setOpenThumbnail(true);
boolean openThumbnail = PDFPrinter.isOpenThumbnail();

Note that the pdf.open.bookmark and pdf.open.thumbnail properties are
mutually exclusive. In the case where both are set to true, the
pdf.open.bookmark setting will take priority.

The PDF document can also reproduce hyperlinks contained the report. A
report property, pdf.generate.links, controls whether the hyperlinks will
be generated. This property is set to true by default. If set to false, the
generation time of the file will be decreased.

CJK Characters in PDF

The PDF 1.3 specification (Acrobat 4 and higher) supports CID fonts,
which permit representation of 16-bit Chinese-Japanese-Korean (CJK)
characters.

Style Intelligence provides two classes to support CID fonts: PDF4Printer
and PDF4Generator. These correspond to the PDF3Printer and
PDF3Generator classes for non-CID fonts. Output from PDF4Printer and
PDF4Generator can only be viewed with Acrobat 4 and higher.

INTEGRATION

2005 of 2477

Installing Fonts and Inserting CJK Text

To generate documents with CJK fonts, install the Adobe Acrobat Asian
Language Pack on your machine. You can choose to install one or all of the
three languages supported by the pack: Chinese, Japanese, and Korean.
The language pack installs CID fonts for each of the selected languages.

CID fonts use the same format as TrueType fonts. However, the internal
tables in the fonts are slightly different from regular TrueType fonts.
Therefore, the CID fonts installed by the language pack cannot be used in
Java (or OS) as regular fonts.

In order to create a CJK document, you must also install a regular
TrueType font for the language on the machine. The following example
uses Japanese to illustrate the process. Chinese and Korean fonts are
handled in the same way.

To create a document containing Japanese characters, first select the correct
Japanese TrueType font (OS font) for the report element:

// "MS Mincho" is a TrueType Japanese font
report.setCurrentFont(new Font("MS Mincho", Font.PLAIN, 8));

Use Style Studio to enter the desired Japanese characters into the report file.
(Reports use UTF8 encoding for text values, and can correctly encode all
unicode characters.)

Creating PDF4Printer or PDF4Generator

After the report is created, you can preview it as usual. To generate the PDF
document from the report, create a PDF4Printer (or PDF4Generator, which
handles PDF bookmarks described earlier).

FileOutputStream output = new
FileOutputStream("output.pdf");
ReportEnv.setProperty("font.truetype.path",

"c:/winnt/fonts;d:/usr/acrobat4/resource/cidfont");
PDF4Printer pdf = new PDF4Printer(output);
pdf.putFontName("MS Mincho", "HeiseiMin-W3-Acro");

Specifying the CID Font Directory

Use the font.truetype.path property to specify the directory where the
Asian font pack is installed (which you can select during the installation
process). This is necessary so that the PDF4Printer can find the CID font
files and extract font information.

The PDF4Printer uses CMap files in addition to CID fonts. Since the
CMap files are installed under the CMap directory parallel to the cidfont
directory, the font loading program checks the ‘../CMap’ directory using the

INTEGRATION

2006 of 2477

font.truetype.path directories. If the CID fonts are installed differently
and the CMap files are placed at a different location, the CMap directory
can be specified using the font.cmap.path property.

Creating a Mapping from TrueType to CID

After you create the PDF4Printer, you need to create a mapping from the
TrueType Japanese font to the CID Japanese font. The Adobe Asian
Language Pack comes with two Japanese fonts, HeiseiMin-W3-Acro and
HeiseiKakuGo-W5-Acro. Either can be used in the mapping.

The following is a complete list of CJK fonts that are supported:

 – HeiseiKakuGo-W5-Acro
 – HeiseiMin-W3-Acro
 – HYGoThic-Medium-Acro
 – HYSMyeongJo-Medium-Acro
 – HYSMyeongJoStd-Medium-Acro
 – KozMinPro-Regular-Acro
 – MHei-Medium-Acro
 – MSung-Light-Acro
 – MSungStd-Light-Acro
 – STSong-Light-Acro
 – STSongStd-Light-Acro

When the mapping has been properly configured, you can generate the
PDF document as usual:

report.print(pdf.getPrintJob());
pdf.close();

CID fonts can be embedded in the generated document just like other
TrueType fonts. Each CID font also has an additional CMap file. To embed
the fonts, it is recommended that the CMap files also be embedded.
Otherwise, the Asian language pack has to be installed on the viewer
machine before the PDF document can be viewed.

pdf.setEmbedFont(true);
pdf.setEmbedCMap(true);

Note that for readers who are already CJK-enabled, setEmbedCMap should
be set to false.

pdf.setEmbedCMap(false);

Because each CID font contains thousands of glyphs, embedding the entire
font file will result in very large output files. Therefore, the font embedding
in Style Intelligence extracts only the glyphs used in the current document
and discards all other data to produce optimum size files. This process is
more expensive than regular file embedding; therefore, generating CJK

INTEGRATION

2007 of 2477

PDFs with font embedding will be slower than generating regular PDF
files.

3.8.2 Exporting to Excel Format Programmatically

Style Intelligence allows you to export a report to Excel format. The
generated Excel file matches the report layout and formatting as closely as
possible, and contains the actual data in the report so it can be further
manipulated after export. However, certain formatting characteristics of the
original report will not be retained in the Excel file. For example, page
margin settings created in Style Studio are not available in the exported
Excel file.

For the “Excel (no pagination)” and “Excel (best data editing)” formats,
you can export supported formulas as Excel tables. Style Intelligence
supports GroupFilter and TableSummaryFilter for export in Excel format,
while NthMostFrequent and WeightedAverage formulas are not supported.

ExcelGenerator and ExcelSheetGenerator Classes

To export a report to an Excel file, use the ExcelGenerator and
ExcelSheetGenerator classes.

ExcelGenerator gen =
ExcelGenerator.createExcelGenerator(

new FileOutputStream("report.xls"));
gen.generate(report);

The default page size is the standard letter size (8.5"x11"). To change the
page size, call setPageSize() in ReportSheet before you invoke the
generate() method.

The report length should not exceed the limits of the Excel spreadsheet.
Also,

you may need to increase the heap size of the JVM. Use java -XmxbbbM to
indicate the maximum (where maximum JVM size is Xmx and JVM heap
size is bbbM). For example:

java -Xmx192M TestCase

When you export a CSV file to Excel, special characters are encoded in
UTF8 format, which might provide an inaccurate representation of the
report. In this case, set the text.encoding.utf8 property in sree.properties
to false to ensure that special characters are not encoded into UTF8 during
export. To insert a form feed at every page break, set text.break.pages to
true.

INTEGRATION

2008 of 2477

Different Excel Versions

You can export to formats suitable for particular versions of Excel, such as
Excel 2000, Excel 95, or an Excel Spreadsheet with no page breaks for
easier data manipulation. Instantiate the ExcelGenerator with the version
parameter as follows:

//Excel 2000
ExcelGenerator gen =

ExcelGenerator.createExcelGenerator(
new FileOutputStream("report.xls"),
ExcelGenerator.EXCEL2000);

//Excel 95
ExcelGenerator gen =

ExcelGenerator.createExcelGenerator(
new FileOutputStream("report.xls"),
ExcelGenerator.EXCEL95);

//Excel with no page breaks
ExcelSheetGenerator gen =

ExcelSheetGenerator.createExcelGenerator(
new FileOutputStream("report.xls"),
ExcelGenerator.EXCEL_SHEET);

3.8.3 Exporting to HTML Programmatically

HTMLGenerator is used to export a report in HTML format. Because
HTML does not have many of the formatting capabilities of Style
Intelligence, the generated HTML may omit some formatting information
that is present in the original report.

As part of the HTML generation process, the builder may need to generate
additional files that are used inside the HTML file. This is true for any non-
text elements, such as charts, images, etc.

FileOutputStream os = new FileOutputStream(filename);
Builder builder = Builder.getBuilder(Builder.HTML, os, ".");
builder.write(sheet);
os.close();

While the Builder can be used to get the appropriate Builder for HTML
generation, the HTMLGenerator performs the generation and is found in
the inetsoft.report.io package.

Image Files

The extra parameter in the getBuilder() call specifies the directory in
which to place the additional image files. If it is omitted, it defaults to the
current directory. Image files are produced as PNG or JPEG files.

ReportEnv.setProperty("image.type", "png");
//or
ReportEnv.setProperty("image.type", "jpeg");

INTEGRATION

2009 of 2477

If an image element in the report uses a URL for image location, no image
file will be generated. Instead, the specified URL is placed in the generated
HTML as the image location.

Exporting an HTML Bundle

You can export an HTML Bundle, which is a ZIP file containing the
generated HTML report and all associated image files. To generate an
HTML Bundle, first create an OutputStream to be used by the Builder, and
get the Builder to generate the HTML Bundle.

FileOutputStream os = new FileOutputStream(filename);
Builder builder =
 Builder.getBuilder(Builder.HTML_BUNDLE, os, ".");
builder.write(sheet);

The HTML Bundle is generated by the Builder class using
inetsoft.report.io.HTMLFormatter. The Builder seamlessly handles
writing to the ZipOutputStream.

Setting the property on ReportEnv as described above also controls the
type of image file, JPEG or PNG.

Setting the DHTML Meta-Data Information

You can set the DHTML meta-data before exporting the report to HTML.
The following properties are available:

report.title
report.subject
report.author
report.keywords
report.comments
report.created
report.modified

You can set these in the following way:

ReportSheet report = new TabularSheet();
report.setProperty("report.title", "Hello");

3.8.4 Exporting to RTF Programmatically

The Rich Text Format (RTF) export format has more limited layout options
that Style Intelligence. Therefore, the generated RTF file will not always
capture the complete formatting of a report. However, all report data,
including text, table and image (painters), is saved in the RTF file. Because
RTF exports are most often used for purposes of data manipulation rather
than for presentation, the loss of formatting information is not critical in
most instances. If you require the exported file to preserve formatting with
high fidelity, use the PDF or Postscript export formats.

INTEGRATION

2010 of 2477

To create an RTF file, obtain a Builder object for the RTF export and then
write the report to the output file:

FileOutputStream os = new FileOutputStream(filename);
Builder builder = Builder.getBuilder(Builder.RTF, os);
builder.write(sheet);
os.close();

You can also use Builder.RTF_LAYOUT to get the Builder object. This format
conforms more precisely to the layout of the report. However, since
elements are placed in blocks in the generated file, they may be harder to
edit in some instances.

3.8.5 Exporting to Text File (CSV) Programmatically

The CSV export feature saves the report’s tabular data into a text file,
delimited by commas (default). This allows you to import the exported data
into another program (e.g., spreadsheet) to make further manipulations.
Multiple report tables are exported to the CSV file one-by-one.

The CSV formatter is included in the inetsoft.report.io package.

FileOutputStream os = new FileOutputStream(filename);
Builder builder = Builder.getBuilder(Builder.CSV, os);
builder.write(sheet);
os.close();

Use the DelimitedFormatter class directly to change the delimiter
character. The following code segment changes the delimiter to a tab and
quotes each field with a double quote.

FileOutputStream os = new FileOutputStream(filename);
DelimitedFormatter fmt = new DelimitedFormatter(os);
fmt.setDelimiter("\t");
fmt.setQuote("\"");
Builder builder = new Builder(fmt);
builder.write(sheet);
os.close();

3.9 Portal Customization
The following sections discuss customization of the User Portal and report
viewing.

3.9.1 Custom Buttons

You can add a custom button to the report toolbar by using a ViewerAction.
A ViewerAction object specifies the icon and label for the button and the
action to take when the button is pressed. The ViewerAction interface in
inetsoft.sree package defines the API for the custom button object.

INTEGRATION

2011 of 2477

Table 2. ViewerAction methods

Custom Button Example

Note that the default
toolbar already con-
tains a ‘Refresh’ but-
ton.

This example explains how to create a custom refresh button. To create a
button, first create a class that implements the ViewerAction interface to
define the custom button. Create a graphic icon to represent the button on
the viewer, and place the icon on the classpath so that it can be accessed as
a resource.

public String getIconResource() {
return "/images/dbRefresh.gif";

}

This means the GIF file should be placed in a directory called images on
the classpath, or in a JAR file.

Next, define the label for the button.

public String getLabel() {
return "Refresh DB";

}

Finally, define the actionPerformed() method, which accepts four
parameters:

• replet ID

• replet repository instance

• replet object where the action is invoked

• repletRequest object

The method is free to perform any actions and can return a
RepletCommand to direct the viewer to execute one or more viewer
actions.

public RepletCommand actionPerformed(Object rid,
RepletRepository repo, Replet replet, RepletRequest req)

{
// actions, such as refreshing the database data

return RepletCommand.refresh(); // refresh report
}

getIconResource()
Return the icon resource name. The icon will be loaded as
the specified resource and used to create a button on the
viewer.

getLabel()

Return the label for the button. If the viewer is configured to
use a text-only toolbar on a browser, the label is used to
create a text based tool button. Otherwise, the label is used as
the tool tip for the tool button.

actionPerformed()
Handles button click action. It can perform application
specific actions when the button is pressed.

INTEGRATION

2012 of 2477

Configuring a Custom Button

Once the custom button class is created, you need to be registered it with
the viewer so it will be added to the toolbar. To register the button, add a
replet.viewer.actions property to the sree.properties file. The value for
the property is the fully qualified class name of the custom button class.

replet.viewer.actions=com.mycompany.buttons.DBRefresh

If more than one button needs to be added, use a comma-separated list.

3.9.2 Custom Repository Protocol

The Style Intelligence report server uses one of the following protocols:
RMI, HTTP, CORBA, or SOAP. You can also implement a repository
proxy class to provide support for a different protocol. This third-party
protocol support is intended mainly for communications between a custom
viewer and the report server. For a servlet-based viewer, as the repository
already resides on the server machine, there is no need to use a custom
protocol to communicate between the servlet and repository.

To incorporate a different protocol, follow these steps:

1. Create a Repository Client Proxy.

The proxy should implement the RepletRepository interface. In
each method, it should forward the request (method parameters) to
the server and pass the result back.

public class RepositoryProxy implements RepletRepository {
public RepositoryProxy(...) {
// establish connection to the server
// using the third-party protocol

}

public Object create(String name, Object ticket) throws
RemoteException, RepletException {

// call the server to perform a create()
// return the result from the server

}
}

2. Create a Repository Server.

The server exposes methods to be called by the proxy using the
same protocol. It can use the Replet Engine as the implementation
of the repository.

public RepositoryServer2 {
public RepositoryServer2() {
engine = new RepletEngine();
engine.init();
// register with protocol as needed...

}

INTEGRATION

2013 of 2477

// The signature of this method is protocol-dependent.
// We use the same signature as the RepletRepository for
// convenience. This is the method the client proxy
// calls through the protocol
public Object create(String name, Object ticket) {
return engine.create(name, ticket);

}
}

3. Create a proxy repository in the client and pass it to the viewer:

RepositoryProxy proxy = new RepositoryProxy(...);
Viewer viewer = new Viewer(proxy);

Depending on the protocol selected for the proxy and server, the
implementation needs to convert the Java object parameters and return
values to the data structures supported by the protocol. All objects used in
the RepletRepository methods are serializable. Therefore, the easiest way
to convert the parameters is to serialize the objects into bytes, pass them
across the protocol as raw data and convert them back to Java objects at the
receiving end.

INTEGRATION

2014 of 2477

4 SOAP Web Services

Style Intelligence provides a number of server side reporting functions that
are accessible as web services. These web services enable clients which
may be running on different operating systems and using different
programming languages to access server side enterprise reporting tools
through remote procedure calls. There are two web services provided:

Note: As of version 10.2, the SOAP engine provided with the Style
Intelligence installation has been changed from Axis2 to Metro.
(http://metro.dev.java.net) The fundamental API remains the same,
but a number of small changes to the WSDL to accommodate
compatibility with Java 1.6 and stricter standards prevents
backwards compatibility with SOAP clients written for earlier
versions.

• SoapRepository – This web service facilitates execution, archiving and
scheduling of reports deployed in the report repository.

• SoapDataService – This web service facilitates execution of queries
and worksheet assets defined in Style Studio.

4.1 Web Service Deployment
The SOAP web services provided by Style Intelligence can be deployed
with native support for WebLogic and WebSphere. The same web services
can also be deployed into other J2EE compliant web application servers by
using the Axis2 SOAP implementation. Instructions on deployment for
each SOAP engine are provided below.

4.1.1 Apache (Axis2)

Axis2 is a servlet-based SOAP implementation from the Apache Group.
The SOAP engine is deployed as a regular HTTP servlet. Since Axis2 is a
generic servlet, it can be deployed on any J2EE compliant web server.

Archive the necessary files into a WAR file using the jar command. The
structure for the WAR file should follow the directory structure below:

• WEB-INF/conf: axis2.xml

• WEB-INF/services: Include the directory for each service you wish to
deploy.

• WEB-INF/classes: repository.xml, sree.properties, datasource.xml,
query.xml, and other XML files in the home directory

• WEB-INF/lib: etools.jar, bisuite.jar/sree.jar, and other JARs required
for report execution

Note: The ‘SoapRepository’, ‘SoapDataService’, and ‘PeopleService’
web services are pre-deployed with the default installation.

http://metro.dev.java.net

INTEGRATION

2015 of 2477

You should update the axis2.xml.path and axis2.repository.path

parameters in your web.xml file.

4.1.2 WebLogic

You can deploy Style Intelligence web services with native support for
WebLogic 7. To do this, create a WAR file containing the description of
SOAP services, supporting files, and the Style Intelligence JAR files. You
can do this in two ways:

1. Use Enterprise Manager’s automated deployment wizard. (See
Creating a WAR File Using Enterprise Manager in the Administra-
tion Reference.). This is the preferred method.

2. Alternatively, archive the necessary files into a WAR file using the
jar command. The structure for the WAR file should follow the
directory structure below:

• WEB-INF/: webservices.xml

• WEB-INF/classes: repository.xml, sree.properties, datasource.xml,
query.xml, and other xml files in the home directory

• WEB-INF/lib: etools.jar, sree.jar/bisuite.jar, wsdl4j.jar, and other JARs
required for report execution

4.1.3 WebSphere

WebSphere 5.x uses Axis as its SOAP engine. Therefore you should follow
the directions above for Apache (Axis2).

4.2 Creating the SoapRepository Client
This section explains how to create a Java SOAP client for the
SoapRepository service. The instructions below are appropriate for Metro
2.0, the default SOAP implementation.

Follow the steps below:

1. Make sure the SoapRepository service is deployed and running on
the host server. For Metro, do this by entering the following URL:

http://machine:port/webapp/SoapRepository
(e.g., http://localhost:8080/sree/SoapRepository)

2. Create the client Java Stubs:

a. Download and configure Metro version 1.5 (http://
metro.java.net).

https://metro.dev.java.net
https://metro.dev.java.net

INTEGRATION

2016 of 2477

b. Choose a folder where the Stub files will be created. (Preferably
create a new one). We will refer to this folder as {StubHome}

c. Create two folders in {StubHome}, e.g. ‘classes’ and ‘source’ or
any other suitable names.

d. Use the {MetroHome}/bin/wsimport utility to create the stubs
with the following command:

wsimport.bat -s {folder1} -Xendorsed {URL}?wsdl

For example, change the working directory to {StubHome}/
classes, and then enter the following command:

{MetroHome}/bin/wsimport.sh -s ../source -Xendorsed
http://localhost:8080/sree/SoapRepository?wsdl

This will compile the Java stub files into the current directory
and optionally save the source code in the ‘source’ folder.

Later, when you compile the client, the only resource you need on the
classpath is this stub directory. For example:

set CLASSPATH={StubHome}\classes;.

4.2.1 Example: Executing a Report

A commonly utilized service is report generation. You can save the
generated report locally on the client machine in an exported format (PDF,
EXCEL, RTF etc).

In the following example you will generate a report called ‘Ad Hoc’, and
then save the report as a PDF file (AdHoc.pdf) on the client machine. The
‘Ad Hoc’ report is deployed in the ‘Tutorial’ folder of the repository, and its
accepts a parameter called ‘state’, for which you will be prompted at the
command line. Follow the steps below:

1. Save the client below (Listing 1. MySoapClient.java Source Code)
as ‘MySoapClient.java’.

2. Add the stub classes to your classpath (see Creating the SoapRep-
ository Client) and compile the client. For example:

set CLASSPATH={StubHome}\classes;.
javac MySoapClient.java

3. Run the client:

java MySoapClient

INTEGRATION

2017 of 2477

4. Input a value (e.g., ‘NJ’) for the state parameter when the prompt
appears at the command line.

The client calls the appropriate stub classes to generate and export a PDF
version of the report (AdHoc.pdf) in the specified location.

Listing 1. MySoapClient.java Source Code

Note: Add the same parameter name multiple times to pass an array
of values.

import inetsoft.sree.soap.*;
import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

public class MySoapClient {
public static final String THE_REPORT = "Tutorial/Ad Hoc";
public static final String OUTPUT_FILE = "./AdHoc.pdf";

public static void main(String[] args) {
final SoapRepositoryService service = new

SoapRepositoryService();
final SoapRepository repository =

service.getSoapRepositoryPort();

//Login with user, password and locale
String ticket = null;

try {
ticket = repository.login("admin", "admin", null);

}
catch(Exception e) {
e.printStackTrace();
return;

}

//List replets
List<RepositoryEntryStruct> replets =

repository.getReplets(ticket, null);

for(RepositoryEntryStruct entry : replets) {
System.out.println(entry.getPath());

}

//Get replet Parameters, if any
RepletParametersStruct rps =

repository.getRepletParameters(ticket, THE_REPORT);
RepletRequestStruct rrs =

readParameters(rps.getParameterNames());

//Execute the report
final String repletID = repository.executeReplet(ticket,

THE_REPORT, RepletType.REPLET, rrs);

//Export the report
final String exportID = repository.export(ticket, repletID,

FormatType.PDF);

FileOutputStream output = null;
try {
output = new FileOutputStream(OUTPUT_FILE);
byte[] buf = null;
while((buf = repository.nextBlock(ticket, exportID)) != null)

{
output.write(buf);

}

output.flush();
}
catch(IOException ioe) {
ioe.printStackTrace();

}

INTEGRATION

2018 of 2477

finally {
try {
output.close();

}
catch(Exception e) {}

}

//Destroy the report when finished
repository.destroyReplet(ticket, repletID);
repository.logout(ticket);

}

/**
*
* @param parameterNames List of replet's parameters.
* @return RepletRequestStruct with parameter values input by

user.
*/
public static RepletRequestStruct readParameters(final

List<String> parameterNames) {

//Create a replet request, to hold parameters
final RepletRequestStruct rrs = new RepletRequestStruct();
rrs.setName("create");

List<String> reqParamNameList = rrs.getParamNames();
List<ParameterValue> reqParamValueList = rrs.getParamValues();

for(int i = 0; i < parameterNames.size(); i++) {
System.out.println("Parameter Name: " +

parameterNames.get(i));
BufferedReader buf = null;
try {
//Read in parameter values from command line.
//You can also set them programatically.
System.out.print("Input the value:");
buf = new BufferedReader(new InputStreamReader(System.in));
String value = buf.readLine();

//Add the parameters to the RepletRequestStruct
reqParamNameList.add(parameterNames.get(i));

//Create a ParameterValue object to hold a string parameter
ParameterValue pvalue = new ParameterValue();
pvalue.setType(ParameterValueType.STRING);
pvalue.setValue(value);

reqParamValueList.add(pvalue);
}
catch(Exception e) {
e.printStackTrace();

}
finally {
try {
buf.close();

catch(Exception e) {}
}

}

return rrs;
}

}

4.2.2 Example: Emailing a Report

The client may additionally take advantage of server-side functions such as
emailing a report:

//Email the report
repository.mailTo(ticket, repletID,
"recipient@inetsoft.com", "sender@inetsoft.com", "subject",
"message text", FormatType.PDF);

INTEGRATION

2019 of 2477

4.2.3 Example: Archiving a Report

The following example demonstrates how to save a report to the archive:

//Save in archive

//Define permission structure
PermissionStruct ps = new PermissionStruct();
List readUserList = ps.getReadUsers();
readUserList.add("admin");

//Define archive rule
ArchiveRuleStruct ar = new ArchiveRuleStruct();
ar.setType(ArchiveRuleType.AGE);
ar.setDay(3);

//Save the report in the archive
repository.saveInArchive(ticket, repletID, "archived
customer list", FormatType.PDF, ps, ar, "comments");

4.2.4 Example: Scheduling a Server Task

The following example demonstrates how to schedule a task on the server:

//Create the scheduled task
ScheduleTaskStruct task = new ScheduleTaskStruct();
task.setName("Task Name");
task.setOwner("admin");
task.setEnabled(true);

//Set time condition
TimeConditionStruct condition = new TimeConditionStruct();
condition.setType(TimeConditionType.AT);
XMLGregorianCalendar cal =
DatatypeFactory.newInstance().newXMLGregorianCalendar();
cal.setYear(2009);cal.setMonth(12);cal.setDay(14);
cal.setTime(12,0,0);
condition.setDate(cal);

//Set replet action
RepletActionStruct action = new RepletActionStruct();
//executes the Master Detail report
action.setRepletName("Master Detail");
//schedule the report to be sent to foo@inetsoft.com
action.setEmails("jamshedd@inetsoft.com");
action.setFormat(FormatType.PDF);
action.setMessage("this is the report we talked about.");

List taskRepletActionList = task.getRepletActions();
List taskTimeConditionList = task.getTimeConditions();
taskRepletActionList.add(action);
taskTimeConditionList.add(condition);

//Save the scheduled task
repository.setScheduleTask(ticket, "Task Name", task);

4.3 Creating a DataService Client
This section explains how to create a Java SOAP client for the
SoapDataService service. This is a service which is used to execute queries
and data worksheets. The instructions below are appropriate for Metro 2.0,
the default SOAP implementation.

INTEGRATION

2020 of 2477

Follow the steps below:

1. Make sure the ‘SoapRepository’ service is deployed and running
on the host server. For Metro, do this by entering the following
URL: http://machine:port/webapp/SoapDataService (e.g., http://
localhost:8080/sree/SoapDataService).

2. Create the client Java Stubs:

a. Download Metro (https://metro.dev.java.net).

b. Choose a folder where the stub files will be created. (Preferably
create a new one). We will refer to this folder as {StubHome}.

c. Create two folders in {StubHome}, e.g. ‘classes’ and ‘source’ or
any other suitable names.

d. Use the {MetroHome}/bin/wsimport utility to create the stubs
with the following command:

wsimport.bat -s {folder1} -d {folder2} -keep -Xendorsed
{URL}?wsdl

For example, change the working directory to {StubHome}, and
enter the following command:

set PATH=%METRO_HOME%\bin;%PATH%
wsimport -s source -d classes -keep -Xendorsed http://
localhost:8080/sree/SoapDataService?wsdl

This will create the Java stub files in the classes folder and
source code (optional) in the source folder.

Sample client code for the ‘SoapDataService’ service is shown below.
Make sure the stub classes (described above) are added to your classpath.

import java.io.FileOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.List;
import java.util.Calendar;
import javax.xml.datatype.XMLGregorianCalendar;
import javax.xml.datatype.DatatypeFactory;
import inetsoft.sree.dataserv.*;

public class MyDataClient {
public static String TIME_INSTANT_FORMAT = "MM/dd/yyyy HH:mm:ss";
public static String DATE_FORMAT = "MM/dd/yyyy";
public MyDataClient(){}

public static void main(String[] args) throws Exception {
SoapDataServiceService service = new SoapDataServiceService();
SoapDataService port = service.getSoapDataServicePort();

//Login with user, password and locale
String ticket = port.login("anonymous", "password");

//List available assets
List<String> paths = port.getPaths(ticket);

https://metro.dev.java.net

INTEGRATION

2021 of 2477

System.out.println("PATHS: " + paths);

//Aqcuire meta-data for 'orders by state' query
XTableStruct table = port.getMetaData(ticket, "Orders:orders by

state");

//List column types for 'orders by state' query
List<String> colTypes = table.getColTypes();
System.out.println("TYPES: " + colTypes);

//Obtain query parameters, if any
List<UserVariableStruct> variableNamesList =

port.getParameters(ticket, "Orders:orders by state");

//Create a VariableTableStruct to hold any parameters
VariableTableStruct vts = new VariableTableStruct();
List<String> vtsParamNameList = vts.getVariableNames();
List<ParameterValue> vtsParamValueList =

vts.getVariableValues();

for(int i = 0; i < variableNamesList.size(); i++) {
try {
UserVariableStruct v =

(UserVariableStruct)variableNamesList.get(i);
System.out.println("Parameter Name: " + v.getLabel());
System.out.println("Parameter Type: " + v.getXType());
System.out.println("Input the value

("+TIME_INSTANT_FORMAT+") :");
BufferedReader buf = new BufferedReader(new

InputStreamReader(System.in));
String value = buf.readLine();

//add the parameters to the VariableTableStruct
vtsParamNameList.add(v.getLabel());
ParameterValue pvalue = new ParameterValue();
pvalue.setValue(value);
pvalue.setType(ParameterValueType.TIME_INSTANT);
pvalue.setFormat(TIME_INSTANT_FORMAT);
vtsParamValueList.add(pvalue);

}
catch(Exception e){
System.err.println(e);

}
}

String rid = port.execute(ticket, "Orders:orders by state",
vts);

table = null;

while((table = port.nextBlock(ticket, rid, 50)) != null) {
//Print header rows
for(int row = 0; row < table.getHeaderRowCount(); row++) {
List<String> xrow =

table.getObjectRows().getObjectRow().get(row).getRow();
System.out.println(xrow);

}

//Print body rows
for(int row = table.getHeaderRowCount(); row <

table.getRowCount();row++) {
List<String> xrow =

table.getObjectRows().getObjectRow().get(row).getRow();
Object[] data = new Object[table.getColCount()];

for(int col = 0; col < table.getColCount(); col++) {
String colType = colTypes.get(col);
String colValue = xrow.get(col);

//Test return type
if("java.lang.Boolean".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Boolean.valueOf(colValue);
}
else if("java.lang.Byte".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Byte.valueOf(colValue);
}
else if("java.lang.Character".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Character.valueOf(colValue.charAt(0));
}

INTEGRATION

2022 of 2477

else if("java.lang.Double".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Double.valueOf(colValue);
}
else if("java.lang.Float".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Float.valueOf(colValue);
}
else if("java.lang.Integer".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Integer.valueOf(colValue);
}
else if("java.lang.Long".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Long.valueOf(colValue);
}
else if("java.lang.Short".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : Short.valueOf(colValue);
}
else if("java.util.Date".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : new java.util.Date(Long.parseLong(colValue));
}
else if("java.sql.Date".equals(colType)) {
data[col] = colValue == null || "".equals(colValue) ?

null : new java.sql.Date(Long.parseLong(colValue));
}
else {
data[col] = colValue == null || "".equals(colValue) ?

null : colValue;
}

}

System.out.print("[");
for(int i = 0; i < data.length; i++) {
if(i > 0) {
System.out.print(", ");

}

System.out.print(String.valueOf(data[i]) + ":" + (data[i]
== null ? "null" : data[i].getClass().getName()));

}
System.out.println("]");

}
}

port.logout(ticket);
}

}

Compile the client in the usual manner. For example, if the client class is
saved as MyDataClient.java, compile it as follows:

javac MyDataClient.java

To run the client, enter the following:

java MyDataClient

INTEGRATION

2023 of 2477

5 Design for Multi-Tenant Environment

In certain deployment scenarios, you may need to provide different groups
of users (i.e., “tenants”) with access to different sets of data. This is called a
multi-tenant environment. For example, if you are serving user groups
from different departments or organizations, you may need to give each
tenant access to data stored in a unique database or schema (different login
permissions, etc.).

To facilitate design of a multi-tenant environment, Style Intelligence allows
you to define independent data connections for each tenant. Each tenant
can access only the unique connections for which they have privileges.
Additionally, you can define a common set of data that is accessible to all
tenants.

The steps below guide you through the process of configuring Style
Intelligence for multi-tenancy.

1. Add database connections to your Data Source. Each connection
may access a different database or schema that is specific to a par-
ticular tenant. See Adding Additional Connections in the Data
Modeling for complete information.

2. Extend a common Physical View by incorporating database tables/
columns from a tenant-specific connection. The extended physical
view will provide the common tables/columns as well as tables/col-
umns that are specific to the particular tenant. See Extending a
Physical View in the Data Modeling for complete information.

3. Extend a common Logical Model by defining entities/attributes
based on tables/columns from a tenant-specific connection
(extended physical view). The extended logical model will provide
the common entities/attributes as well as entities/attributes specific
to the particular tenant. See Extending a Logical Model in the Data
Modeling for complete information.

4. Assign the appropriate permissions for connections and actions to
users and groups. See Component/Object Permissions in the
Administration Reference for complete information.

Note: Report Pregeneration and Report Bursting are not available
in a multi-tenant environment.

5. Set appropriate aliases for reports, folders, Worksheets, and Views-
heets. You can use aliases to provide similar names to multiple ten-
ants (e.g., a “Marketing” folder) while maintaining distinct names
for administration (e.g., “Marketing-Company A”, “Marketing-

INTEGRATION

2024 of 2477

Company B”, etc.). See the related links for details on setting
aliases.

See Also
Configuring Reports, in Administration Reference, to set report aliases.
Creating Folders in Administration Reference, to set folder aliases.
Setting Viewsheet Options, in Dashboard Design, to set Viewsheet aliases.
Setting Global Worksheet Options, in Data Mashup, to set Worksheet
aliases.

INTEGRATION

2025 of 2477

6 Accessing the User Session with
SRPrincipal

It is often desirable to set certain custom properties for a user session.
While these properties are external to Style Intelligence, they can still be
accessed from within the Style Intelligence environment through the
SRPrincipal object that is associated with the user session.

The following sections explain how to access and modify the SRPrincipal
object.

6.1 Accessing the SRPrincipal Object
The following sections explain the various methods of accessing the
SRPrincipal object.

6.1.1 Accessing SRPrincipal in Custom JSP/Servlets

The SRPrincipal object can be accessed from the HttpSession object within
a custom JSP or Servlet. You can add or set the properties of the
SRPrincipal object using the setProperty() method.

<%@ page import="inetsoft.sree.security.*,
inetsoft.sree.RepletRepository" %>
<%
SRPrincipal p;
p = (SRPrincipal)
session.getAttribute(RepletRepository.PRINCIPAL_COOKIE);
if(p == null) {

p = new SRPrincipal();
}

// setting a custom property
p.setProperty("property_name", "property_value");

// setting the locale using the locale string
p.setLocale(new Locale("en","US"));

session.setAttribute(RepletRepository.PRINCIPAL_COOKIE, p);
%>

6.1.2 Accessing SRPrincipal via Login Listener

You can modify the SRPrincipal object created after form-based sign-on to
set user-specific properties, which you can later access in VPM script, etc.
See Accessing SRPrincipal in Script and HTTP Request, Session, and
Principal in Report Scripting.

To modify the SRPrincipal object when using form-based SSO, implement
a LoginListener to be called at the time the user is authenticated (whether
during live login or scheduled task). Follow the steps below:

INTEGRATION

2026 of 2477

1. Implement the inetsoft.sree.security.LoginListener interface’s
single method userLogin(LoginEvent). Use LoginEvent.getPrin-
cipal() to obtain the SRPrincipal object, and SRPrincipal.set-
Property() to assign a custom property. For example:

import inetsoft.sree.security.*;

public class MyLoginListener implements LoginListener {
public void userLogin(LoginEvent event) {

SRPrincipal prin = event.getPrincipal();
prin.setProperty("myprop", "myval");

}
}

Note: To customize the “Welcome” text displayed in the default
portal, call SRPrincipal.setAlias("Alternate Name").

2. In the sree.propeties file, set property sree.security.listeners
to a comma-separated list of your fully qualified LoginListener
class names. For example:

sree.security.listeners=MyLoginListener

See Accessing SRPrincipal in Script for information on accessing an
SRPrincipal property (default or custom) in script.

See Also
Form-Based Single Sign-On, for instructions on configuring form-based
SSO.

6.1.3 Accessing SRPrincipal in Script

You can access the SRPrincipal object within VPM trigger scripts and
report scripts (in the onLoad and onInit handlers, or in element-level
script).

var p = parameter['__principal__'];

// getting a custom property:
p.getProperty("property_name");

// Getting a common SRPrincipal property (user locale):
p.getLocale();

See Also
parameter.__principle__, in Dashboard Scripting, for information
Viewsheet access.
Dashboard Scripting, for information on adding Viewsheet scripts.
Report Scripting, for information on adding report scripts.
Accessing SRPrincipal via Login Listener, for information on adding
custom properties.
Trigger Scripts, in Data Modeling, for information on VPM scripts.

INTEGRATION

2027 of 2477

6.2 SRPrincipal Properties
This section described the key properties of the SRPrincipal object.

6.2.1 setProperty()

The setProperty() method inserts a property (string) into the SRPrincipal
object. The sample below uses setProperty() within a Login Listener:

import inetsoft.sree.security.*;

public class MyLoginListener implements LoginListener {
public void userLogin(LoginEvent event) {
SRPrincipal prin = event.getPrincipal();
prin.setProperty("myprop", "myval");

}
}

The corresponding getProperty() method allows you to retrieve a property
value.

prin.getProperty("myprop")

In a non-SSO setting, set the ‘__internal__’ property when you create the
SRPrincipal object, as shown below:

SRPrincipal prin = new SRPrincipal(user,...);
prin.setProperty("__internal__", "true");

6.2.2 setParameter()

The setParameter() method inserts a parameter and its value into the
SRPrincipal object. The sample below uses setParameter() within an SSO
request filter:

HttpServletRequest hrequest = (HttpServletRequest) request;
HttpSession session = hrequest.getSession();
SRPrincipal principal =
(SRPrincipal)session.getAttribute(RepletRepository.PRINCIPA
L_COOKIE);
Principal.setParameter("State", new String[] {"NJ", "NY",
"CT"})

A parameter value specified with setParameter() can be accessed in the
following contexts:

• In reports and Viewsheets via the parameter script keyword. (See
parameter in Report Scripting and parameter in Dashboard Scripting.)

• In a parameterized condition of a report data binding. (See
Parameterizing a Condition in Report Design.)

• In a parameterized condition on a Worksheet Data Block. (See Using a
Parameter in a Condition in Data Mashup.)

INTEGRATION

2028 of 2477

• In a parameterized condition on a Viewsheet component. (See Filter
Conditions in Dashboard Design.)

When accessing the parameter in a condition (Viewsheet, Worksheet, or
report), the name of the condition variable should exactly match the
parameter name specified by setParameter().

6.3 Use Case: Simulating User Sessions
The example presented here will provide administrative users the ability to
simulate different user sessions without explicitly logging in as that user. To
login as a user, see Emulating a User Login in Administration Reference.

The administrator would login to the InetSoft server, and access a custom
JSP page which sets custom properties on the SRPrincipal object. See
Accessing the SRPrincipal Object for more details.

inetsoft.sree.security.SRPrincipal p =
(inetsoft.sree.security.SRPrincipal)session.getAttribute
(inetsoft.sree.RepletRepository.PRINCIPAL_COOKIE);

// setting a custom property
p.setProperty("sim_user", "david");

These custom properties can be accessed within the script of a VPM and
used to set a user/role based filtering parameter defined in the ‘Conditions’
tab of the VPM.

VPM Lookup Trigger:

var p = parameter['__principal__'];

if(!isNull(p)) {
parameter['usr'] = p.getProperty("sim_user");

}

Note that parameter['usr'] would be a parameter defined in a clause of
the VPM filtering conditions (in the Conditions tab), for example:

sales_employees.first_name [is] [equal to] $(usr)

Reserved parameters such as $(_USER_) or $(_ROLES_) cannot be modified
(set) in VPM script and should not be used directly in VPM filtering
conditions.

INTEGRATION

2029 of 2477

APPENDIX A: Changing the Name of the
‘Sree’ Web Application

If you change the Style Intelligence web application name to something
other than “sree”, you must modify the values highlighted in bold in the
following files to reference the correct web application context root and
ServletRepository servlet mapping:

Please stop your web application server before making these
changes.

• File: \webapps\{contextRoot}\WEB-
INF\config\services\ConfigService.properties

servlet.insecure=/Reports/dashboard
servlet.secure=/Reports/dashboard

• File: \webapps\{contextRoot}\WEB-INF\classes\sree.properties
replet.repository.servlet=/sree/Reports
dashboard.uri=/sree/Reports/dashboard
dashboard.context=/sree
repository.replet.servlet=/Reports

• File: \webapps\{contextRoot}\WEB-INF\web.xml

<servlet-mapping>
<servlet-name>replets</servlet-name>
<url-pattern>/Reports/dashboard/*</url-pattern>

</servlet-mapping>

(The url-pattern should match the dashboard.uri property)

INTEGRATION

2030 of 2477

APPENDIX B: Common Portal Frameworks

The following sections discuss issues related top some common server and
portal frameworks.

B.1 IIS Web Server

Microsoft IIS (Internet Information Server) is a commonly used web server
on the windows platform. From a request-serving perspective, IIS natively
supports serving only static files but has the facility to execute add-ons/
plug-ins. This applies to all IIS versions. These add-ons/plug-ins are
configured as ‘Application Mappings’ on IIS and are mapped to certain
resource extensions (e.g., “.jsp”). IIS simply executes the configured add-
on to handle a particular resource extension whenever it is requested. IIS is
not inherently J2EE compliant and therefore cannot directly deploy
servlets/JSPs. Since Style Intelligence is a 100% Java tool, it can only be
deployed on a J2EE compliant application server. There are many available
options for Java add-ons/plug-ins, and a few of those options are discussed
here.

Discrete Web Server and Reporting Server (Recommended Approach)

Since InetSoft Enterprise products are servlet based, all commands to the
reporting engine are sent via a servlet (repository servlet) in the form of
HTTP URL requests with appropriate parameters. It is a common practice
to run your reporting server separately and simply use HTTP URLs to link
to the report server. For example, your portal framework could contain
simple HTML pages which have framesets pointing to the report server
URL as their source. See Integrating the Web User Interface.

IIS Tomcat Redirector

A popular add-on which allows IIS to run JSPs/Servlets on Tomcat is
isapi_redirect. This plug-in allows IIS to redirect requests for JSPs and
servlets to a Tomcat server. It still requires you to run Tomcat’s web server
separately on a certain port so that JSP/Servlets can be configured and
executed. It registers an ISAPI on IIS to steal JSP requests from IIS request
processing, opens a connection to the Tomcat web server, and shuttles these
requests to Tomcat (i.e., it proxies the request). In this case, Style
Intelligence will be deployed on a Tomcat server but will receive requests
from an IIS server.

B.2 SharePoint Portal Framework

SharePoint is a popular portal framework developed by Microsoft (usually
deployed on an IIS server). The ‘Contents’ of a Share Point portal consists
of one or more components referred to as ‘Web Parts’. A Web Part may
retrieve its content from any third party source by simply specifying the
appropriate URL. Therefore, by adding a new ‘Web Part’ and specifying

INTEGRATION

2031 of 2477

the appropriate content URL we can display an InetSoft dashboard or even
a single replet as a ‘Web Part’, e.g., http://localhost:8080/sree/

Reports?op=portal_portalWelcome. See Integrating the Web User
Interface and Appendix C: Servlet Repository Parameters.

Seamless integration is only possible when the Style Intelligence Report
Server is running on the same host machine as the SharePoint Portal. If the
Report Server is running on another host machine, Style Intelligence
replets and dashboards will be accessible, however, browser security
restrictions (due to cross-domain references within the same browser
frame) will disable interactive operations. To enable full functionality, use
the Style Intelligence Proxy Servlet, a lightweight component which runs
on the same machine as your portal, and proxies all requests to the
reporting server. For information on how to set up the Style Intelligence
Proxy Servlet, see the Administration Reference.

INTEGRATION

2032 of 2477

APPENDIX C: Servlet Repository Parameters

The Servlet Repository generates DHTML output according to the
parameters in HTTP requests. The parameters are embedded in the
generated DHTML and are normally not used directly by an application to
access the servlet.

This Appendix contains a partial list of the parameters for the servlet. You
can use these parameters to construct a URL to access the server from
application client-side code. The HTTP request can be submitted with both
the GET and POST methods.

Also see Integrating the Web User Interface for information on integrating
report components using the “op” codes described below.

C.1 Displaying a Viewsheet

Use the following syntax to open a Viewsheet via direct URL:

{servlet URL}?op=vs&path={viewsheet path}&edit=true|false

e.g.,

http://localhost:8080/sree/Reports?op=vs&path=/Explore

C.2 Passing a Parameter to a Viewsheet
Note: to pass a value to a parameterized datasource, prefix the
parameter name with “__HYPERLINK_”.

To directly pass parameters to a Viewsheet via the URL, prefix the
parameter name with “VSPARAM_”. For example, if the parameter name is
param1:

http://localhost:8080/sree/Reports?op=vs&path=/
Explore&VSPARAM_param1=val1

The transmitted parameter will be available in the Viewsheet through the
parameter script object and in parameterized filtering conditions.

See Also
parameter, in Dashboard Scripting, for information about accessing
parameters.
Filter Conditions, in Dashboard Design, for information on parametrizing
filters.

C.3 Displaying a Report

Use the following syntax to open a report via direct URL:

{servlet URL}?op=frameReplet&name={replet name}

INTEGRATION

2033 of 2477

e.g.,

http://localhost:8080/sree/
Reports?op=frameReplet&name=OrderList

C.4 Displaying a Report Chart as an Image

Use the following syntax to display a chart from a specified report via
direct URL. The chart is rendered as a PNG image.

{servlet URL}?op=frameReplet&name={replet
name}&outtype=PNG&element_id={GraphElementID}

e.g.,

http://localhost:8080/sree/
Reports?op=frameReplet&name=MyReport&outtype=PNG&element_id
=Graph1

C.5 Passing a Parameter to a Report

To directly pass parameters to a report via the URL, prefix each parameter
name with “&”. For example, if the parameter name is param1:

{servlet URL}?op=frameReplet&name={replet name}¶m1=val1

e.g.,

http://localhost:8080/sree/
Reports?op=frameReplet&name=OrderList&customer=Rutgers+Bank
&salesperson=Eric

Note: to pass a value to a parameterized datasource, prefix the
parameter name with “__HYPERLINK_”.

The transmitted parameter will be available in the report through the
parameter script object and in parameterized filtering conditions.

See Also
parameter in Report Scripting, for information about accessing parameters.
Parameterizing a Condition in Report Design, for information on
parametrizing filters.

C.6 Exporting a Report

Use the following syntax to export a report to a particular format via direct
URL:

{servletURL}?op=frameReplet&name={replet name}&outtype={exp
ort_type}¶m1=val1...

e.g.,

http://localhost:8080/sree/
Reports?op=frameReplet&name=OrderList&outtype=PDF&customer=
Rutgers+Bank&salesperson=Eric

INTEGRATION

2034 of 2477

The {export_type} can be one of the following:

• PDF: PDF file

• EXCEL: Excel spreadsheet

• EXCEL_SHEET: Excel spreadsheet without pagination

• RTF: RTF document

• RTF_LAYOUT: RTF document with pagination

• HTML: HTML document

• HTML_BUNDLE: HTML document and images in a zip file,

• CSV: Comma separated file.

C.7 Displaying a Page of a Generated Report

Use the following syntax to open a particular report page via direct URL:

Note: Page numbering
starts with 0.

{servlet URL}?op=Page&ID={replet ID}&pn={page num}&mode=0

e.g.,

http://localhost:8080/sree/Reports?op=Page&ID={replet
ID}&pn=0&mode=0

C.8 Displaying the Repository Tree

Use the following syntax to open the repository listing via direct URL:

{servlet URL}?op=EmbeddedTree

e.g.,

http://localhost:8080/sree/Reports?op=EmbeddedTree

C.9 Displaying the Dashboard Page

Use the following syntax to open the dashboard page via direct URL:

{servlet URL}?op=portal_dashboard

e.g.,

http://localhost:8080/sree/Reports?op=portal_dashboard

C.10 Displaying the Dashboard Configuration Page

Use the following syntax to open the dashboard configuration page via
direct URL:

{servlet URL}?op=dashboard_configuration

e.g.,

INTEGRATION

2035 of 2477

http://localhost:8080/sree/
Reports?op=dashboard_configuration

C.11 Displaying an Ad Hoc Wizard

Use the following syntax to open a particular Ad Hoc Wizard via direct
URL:

{servlet URL}?op=adhocwizard&action=frame&wizard={Wizard
Name}

e.g.,

http://localhost:8080/sree/
Reports?op=adhocwizard&action=frame&wizard=Table+Wizard

C.12 Displaying the Scheduler Task Page

Use the following syntax to open the Scheduler Task page via direct URL:

{servlet URL}?op=scheduler_tasks

e.g.,

http://localhost:8080/sree/Reports?op=scheduler_tasks

C.13 Passing Credentials and Locale to Report Server

Use the following syntax to pass login credentials and locale to the report
server via direct URL:

{Server
URL}?userid={username}&password={passwd}&locales_list={loca
le}

e.g.,

http://localhost:8080/sree/
Reports?userid=admin&password=admin&locales_list=fr_CA

See Also
Localization/Internationalization, in Administration Reference, for details
on localizing report and interface elements.
Configuring Single Sign-On (SSO), for best practices in configuring a
single sign-on application architecture.

C.14 Pinging the Report Server

Use the following syntax to test the connection status of the Report Server
via direct URL:

{servlet URL}?op=ping

e.g.,

http://localhost:8080/sree/Reports?op=ping

INTEGRATION

2036 of 2477

A response of ‘OK’ indicates that the Report Server is receiving
connections.

INTEGRATION

2037 of 2477

APPENDIX D: Configuring Style Intelligence
for JSP Tags

The following sections describe an approach to integration that relies on the
JSP tag library for a J2EE environment. In general, this is not as flexible as
the approach based on IFrames described in Integrating the Web User
Interface. Some of the major differences between the approaches are as
follows:

Use the IFrame approach whenever possible.

• The JSP tag approach can only be used to embed reports, not
Viewsheets.

• The JSP tag approach provides no ad hoc editing capabilities.

• The JSP tag approach requires greater technical expertise.

• The JSP tag approach permits greater control over placement of
components on the page.

To start using the Style Intelligence JSP tags, you must place bisuite.jar and
etools.jar in the WEB-INF/lib directory of your web application. Include
the tag library definition in your web application descriptor, web.xml,
which is located in the WEB-INF directory of your web application. Simply
add the following XML content to the file:

<taglib>
<taglib-uri>sree.tld</taglib-uri>
<taglib-location>/WEB-INF/lib/bisuite.jar
</taglib-location>

</taglib>

For Style Report EE,
specify sree.jar in
place of bisuite.jar for
all occurrences.

If your repository directory is a directory other than the WEB-INF/classes
directory, you will need to include an initialization parameter as well:

<context-param>
<param-name>sree.home</param-name>
<param-value>/path/to/your/repository/directory</param-

value>
</context-param>

The value of this parameter is the same as the one you would use to set up
the Servlet Repository.

In certain application servers, it is impossible to serve binary data through a
JSP. The resources will fail to load and an exception will appear. To avoid
this, a servlet, inetsoft.sree.web.jsp.ResourceServlet, is provided to
serve binary resources. If you encounter this problem, register the servlet
and specify the servlet’s URI in the resourceUri attribute of the sree:create
tag.

INTEGRATION

2038 of 2477

No additional configuration is needed in your web application. You are
now ready to start writing JSP pages.

D.1 Tag Library Import

In order to use Style Intelligence tags in a JSP page, you need to import the
tag library. This is done by using a JSP taglib directive:

<%@taglib uri="sree.tld" prefix="sree"%>

This tells the JSP that all tags that start with “<sree:” refer to the tag library
defined in the web.xml file with the URI of sree.tld. The prefix is an XML
namespace prefix. This means that any tag included in the page needs to be
prefixed with “sree:”. This prevents naming collisions if another tag library
has a tag of the same name.

D.2 Cache Tag

The first tag that must be included in the JSP is the “cache” tag. Use the
cache tag when you have multiple reports on the same JSP page, and want
to refresh one report without regenerating the others (i.e., the others should
be displayed from the cache). The cache tag has a single required attribute,
jspId, which needs to be unique for the whole web application. This means
that no JSPs may have a cache tag with the same jspId. There is one cache
tag for the entire JSP page.

<sree:cache jspId="reportJSP"/>

D.3 Create Tag

The next tag needs to be the “create” tag. This tag specifies the report that
will be embedded in the JSP. It also handles the generation of the report and
serves all of the resources required by the report.

There cannot be any HTML content or JSP tags that generate content
before this tag. The create tag handles serving images and static files such
as cascading style sheets and JavaScript files. If there is any content before
this tag, it will be included in the resource file and will corrupt it. If you
require that there be content before the create tag, you must specify the
resourceUri attribute. This attribute should be set to the URL of a Servlet
Repository deployed in the same web application. The Servlet Repository
and the JSP tag library share the same resources and report server, so there
is very little additional overhead.

In WebLogic, there also cannot be any characters (i.e., new lines) outside of
JSP tags before the create tag. WebLogic will print these characters to the
output stream, corrupting the image file. Setting the resourceUri attribute
will solve this problem.

INTEGRATION

2039 of 2477

The create tag has two required attributes, reportId and name. The reportId
attribute is a unique string that identifies all subsequent tags as referring to
this report. This allows you to include more than one report in a single JSP
page. The reportId need only be unique within the JSP, not within the entire
web application. The name attribute is the name of the replet as it is
registered in the Replet Repository. The name should include all folders in
its path, separated by a forward slash (/).

The create tag also has one optional parameter, processPage. This attribute
determines the behavior of the JSP if the report is not yet available. If
processPage is set to false, the remainder of the JSP is not processed and
the text “Loading Report...” is displayed. If processPage is set to true, the
JSP is processed and the content included in the body of the subsequent
report tags is displayed in place of the report element.

<sree:create reportId="myReport" name="My Folder/My Report"
 processPage="true"/>

D.4 Parameter Tag

The create tag can also contain parameter tags. These tags pass report
parameters to the report. The parameter tag has three required attributes:
name, value, and type. The name attribute specifies the name of the
parameter, the value attribute specifies the value of the parameter, and the
type attribute specifies the data type of the parameter value. The allowed
parameter types are listed in Appendix E: JSP Tag Library Reference. If the
type is “date”, you also need to include the format attribute. The format
attribute specifies the format in which the value is being passed and should
use the format specified in java.text.SimpleDateFormat.

<sree:create reportId="report1" name="A Report"
processPage="false">
<sree:parameter name="State" value="NY" type="string"/>
<sree:parameter name="Order Date" value="2003-05-01"

type="date" format="yyyy-MM-dd"/>
</sree:create>

If a report parameter has the same name as a JSP request parameter, it will
be passed to the report without having to include a parameter tag. Using a
parameter tag in this case will override the value of the JSP parameter.

D.5 Header Tag
The Header Tag must
be present to ensure
correct generation of
the report.

In the HTML head tag, you need to include the report header tag. The only
attribute passed to this tag is the reportId. The header tag is responsible for
writing java script functions which are used by the report toolbar buttons
(mail, export etc). It also writes some external CSS data for the presentation
of the report.

<html>
<head>

INTEGRATION

2040 of 2477

<title>My Report Page</title>
<sree:header reportId="myReport"/>

</head>

D.6 Toolbar and Body Tags
The Body Tag must be
present to ensure cor-
rect generation of the
report.

The HTML body tag must have the onLoad attribute defined with the
scriptlet <%=pageContext.getAttribute("sreeOnLoad")%> appended to any
onLoad java script you have defined. This is used for invoking java script
written by the header tag when the page loads.

The toolbar and body can be placed anywhere within the HTML body.
Both tags require the reportId attribute.

<body onLoad="initMyPage();<%=pageContext.getAttribute
("sreeOnLoad")%>">

<p>This report shows sales for the state of New York.</p>

<sree:toolbar reportId="myReport"/>
<sree:body reportId="myReport">
<p>Please wait while the report is being generated.</p>

</sree:body>

The content enclosed in the body tag is written if the report is not yet
available and the processPage attribute of the create tag is set to true. The
toolbar tag can also optionally include content that will be written if the
page is not available.

D.7 Button Tag

The button tag provides you with the means to fully customize any toolbar
button on an individual report basis. It requires the reportId attribute as well
as the type attribute. The type attribute specifies which toolbar button the
tag inserts. The different types of tags are listed in Appendix E: JSP Tag
Library Reference.

Additional attributes of the button tag include image, text, useImage and
actionClass. These attributes allow you to change how each button is
presented. The image attribute specifies the URL of the icon to use if the
button is an image type button. The supported URL protocols and expected
format of this attribute are defined in Appendix E: JSP Tag Library
Reference. The text attribute specifies the text that should be used for the
link if the button is a text type button. The useImage attribute specifies
whether the button will use an image or text. The actionClass attribute
specifies the fully qualified class name of the action class that is called
when the button is clicked. This attribute is required when the button type
is “user”. The values of these attributes will override the settings in the
SREE properties file. If an attribute is omitted, the default setting will be
used.

INTEGRATION

2041 of 2477

The button tag will only write the button if it would normally be displayed
in the toolbar. For example, the previous page button would not be written
on the first page, and if the user does not have analytic capabilities then the
‘Ad Hoc’ button will not be shown.

Like the toolbar and body tags, the button tag can contain content that will
be written if the report is not yet available and can be placed anywhere in
the HTML body.

<sree:button reportId="type="next-page"
image="images/next.gif" useImage="true"/>

Note: It is often desirable to have an enabled and a disabled version for a
button. For example, the ‘next’ button should be disabled on the last page
of the report. This can be achieved by adding another file with the same
name as the image file suffixed with ‘_d’. The two files should be in the
same location, e.g., ‘next.gif’ and ‘next_d.gif’

This is an example of a simple but complete JSP page with an embedded
report.

Note: Functions such as Ad Hoc editing and Report Explorer are
unavailable when the reports are embedded in a JSP.

Listing 2. Embedding Report in a JSP

<%@taglib uri="sree.tld" prefix="sree"%>
<% String orderDate = request.getParameter("order_date"); %>
<sree:cache jspId="reportJsp"/>
<sree:create reportId="myReport" name="My Folder/My Report"
 processPage="true">

<sree:parameter name="State" value="NY" type="string"/>
<sree:parameter name="OrderDate"

value="<%= orderDate %>" type="date"
format="yyyy-MM-dd"/>

</sree:create>

<html>
<head>

<title>NY Sales Report</title>
<sree:header reportId="myReport"/>
<link rel="stylesheet" href="hostStyle.css"

type="text/css"/>
</head>
<body onLoad="

<%= pageContext.getAttribute("sreeOnLoad") %>">
<h1>Sales Summary for NY on <%= orderDate %></h1>
<hr>
<sree:toolbar reportId="myReport"/>
<sree:body reportId="myReport">

<p>Please wait while the report is loading.</p>
</sree:body>

</body>
</html>

Listing 3. Using Individual Buttons in a JSP

<%@taglib uri="sree.tld" prefix="sree"%>

INTEGRATION

2042 of 2477

<sree:cache jspId="reportJsp"/>
<sree:create reportId="myReport" name="My Folder/My Report"
 processPage="false"/>
<html>

<head>
<title>Sales Report</title>
<sree:header reportId="myReport"/>

</head>
<body onLoad="

<%= pageContext.getAttribute("sreeOnLoad") %>">
<sree:button reportId="myReport" type="first-page"/>
<sree:button reportId="myReport" type="previous-page"

image="http://myhost.com/image.gif"/>
<sree:button reportId="myReport" type="page-box"/>
<sree:button reportId="myReport" type="next-page"

image="images/image.gif"/>
<sree:button reportId="myReport" type="last-page"

image="jar:/usr/java/pkg.jar!/images/image.gif"/>
<sree:button reportId="myReport" type="pdf"

image="resource:/images/image.gif"/>
<sree:button reportId="myReport" type="export"

image="file:///usr/share/images/image.gif"/>
<sree:button reportId="myReport" type="reload"

useImage="false" text="Reload Report"/>
<sree:button reportId="myReport" type="user"

actionClass="com.mycompany.report.ReportAction"/>
<sree:body reportId="myReport"/>

</body>
</html>

D.8 Parameters Containing Unicode Characters

If a report is passing a parameter with a unicode value, it must be decoded
to be displayed properly. Use the provided JavaScript function
‘byteDecode’ for this purpose, as shown below:

<script language="JavaScript" src="/inetsoft/sree/internal/
markup/encodeUtil.js"></script>
<script language="JavaScript" >
 var decoded = byteDecode(encoded_parameter);
</script>

INTEGRATION

2043 of 2477

APPENDIX E: JSP Tag Library Reference

The following appendices describe various JSP tags.

E.1 Cache Tag

The cache tag caches the content of the report page. This tag must be the
first report tag in the page.

The cache tag is required.

E.2 Create Tag

The create tag generates the report and serves any resources required to
display the report. This tag must be inserted after the cache tag, but before
any other report tags. If there is any HTML content or JSP tags that write
HTML content before the create tag, the resourceUri attribute must be set
to the URL of the Servlet Repository.

The create tag is required. It can contain parameter tags.

ATTRIBUTE
NAME

DESCRIPTION REQUIRE
D

ALLOWED
VALUES

jspId Unique ID of the cache Yes Any globally
unique string.

ATTRIBUTE
NAME

DESCRIPTION REQUIRED ALLOWED VALUES

reportId Unique ID of the
report

Yes Any string that is
unique within the JSP

name The name of the
report

Yes The name of any
report in the report
repository

processPage Specifies if the JSP
will be processed
when the report is
not available

No true/false

resourceUri The URI of the
servlet or JSP that
should be used to
load report
resources

No Any valid URL

linkUri The URI that should
be used as the base
of all links inside
the report

No Any valid URL

INTEGRATION

2044 of 2477

E.3 Parameter Tag

The parameter tag defines parameters that are passed to the report. This tag
must be enclosed within a create tag.

The parameter tag is optional.

E.4 Header Tag

The header tag includes the CSS style information, JavaScript and any
imports required by the report. This tag must be placed within the HTML
head tag.

The header tag is required.

E.5 Body Tag

The body tag writes the report page in the JSP. This tag may be placed
anywhere in the HTML body.

The body tag is required. It can contain valid HTML or JSP content. This
content will be written if the report is not available and the processPage
attribute of the create tag is true.

ATTRIBUTE
NAME

DESCRIPTION REQUIRED ALLOWED VALUES

name The name of the
parameter

Yes The name of any
parameter defined in
the report

value The value of the
parameter

Yes Any valid value

type The data type of the
parameter

Yes string, number, date,
boolean

format The format of the
value, if it is a date
parameter

Only for
dates

A format string as
specified by java.
text.SimpleDateForm
at

ATTRIBUTE
NAME

DESCRIPTION REQUIRED ALLOWED VALUES

reportId Unique ID of the
report

Yes The report ID
specified in the create
tag

ATTRIBUTE
NAME

DESCRIPTION REQUIRED ALLOWED VALUES

reportId Unique ID of the
report

Yes The report ID
specified in the create
tag

INTEGRATION

2045 of 2477

E.6 Toolbar Tag

The toolbar tag inserts the report toolbar as displayed by the Servlet
Repository. This tag may be placed anywhere in the HTML body.

The toolbar tag is optional. It can contain valid HTML or JSP content. This
content will be written if the report is not available and the processPage
attribute of the create tag is true.

E.7 Button Tag

The button tag inserts an individual toolbar button into the JSP. This tag
may be placed anywhere in the HTML body. Any attributes that are not set
will use the default value and all attributes that are specified will override
the default settings in the SREE properties file.

The button tag is optional. The button tag may contain valid HTML or JSP
content. This content will be written if the report is not available and the
processPage attribute of the create tag is true.

ATTRIBUTE
NAME

DESCRIPTION REQUIRED ALLOWED
VALUES

reportId Unique ID of the report Yes The report ID
specified in the
create tag

ATTRIBUTE
NAME

DESCRIPTION REQUIRED ALLOWED VALUES

reportId Unique ID of
the report

Yes The report ID specified in
the create tag

type Specifies which
button to insert

Yes first-page, previous-page,
page-box, next-page, last-
page, find, find-next,
PDF, refresh, archive,
export, mail, print,
customize, toc, menu,
user

INTEGRATION

2046 of 2477

image The URL of the
image to use as
the button’s icon

No Any valid URL. URLs
beginning with resource:/
/ will be loaded from the
classpath of the web
application. file:// URLs
will be loaded from the
file system of the server.
URLs with the JAR:
protocol will be loaded
from a JAR file in the file
system of the server. Any
other URLs will be
interpreted as HTTP
URLs and will be used
exactly as specified.

text The text to use
for a text-type
button

No Any string

useImage Determines if
the button will
be a text or
image type

No true/false

actionClass The fully
qualified class
name of the
action that will
be invoked
when the button
is clicked

Only for
user-defined
buttons

The name of any Java
class that is on the web
application’s classpath

COMMON FUNCTION REFERENCE

2047 of 2477

Common Function
Reference

The following appendices discuss general JavaScript functions and chart
scripting techniques that are useful across multiple Style Intelligence
products:

• Appendix JS: General JavaScript Functions

Describes functions for processing and comparing text, dates, and
numbers, and discusses iteration and flow control structures
available in the JavaScript language.

• Appendix CT: Chart Script Tutorial

Describes scripting techniques for creating charts, specifying sub-
series, setting axis information, decoration, and annotation.

• Appendix CR: Chart Script Reference

Reference to objects, properties, and methods available for
scripting charts.

See Also
Style Intelligence Object Reference, in Report Scripting for functions
specific to the reporting environment.
Dashboard Scripting, for functions specific to the Viewsheet environment.

GENERAL JAVASCRIPT FUNCTIONS

2048 of 2477

APPENDIX JS:General JavaScript
Functions

This section offers a
brief introduction to
common JavaScript
language constructs
and typical usage. It is
not a reference docu-
ment for JavaScript.
For more detailed
information on JavaS-
cript, please consult
the ECMA-262 speci-
fication or a JavaS-
cript book. You can
also find information
on JavaScript syntax
and constructs on the
Mozilla web site.

JavaScript is an object-oriented programming language for performing
computations and manipulating computational objects within a host
environment. An object is a collection of properties and functions. A
property can be a primitive type, a host object type, or a Java object.

The primitive types are standard in every JavaScript runtime and are
independent of the host environment. These primitive object types include
the following:

• Global Object Functions

• String Object Functions

• Number Object Functions

• Date Object Functions

• Array Object Functions

• Math Object Functions

• Regular Expression Object Functions

In addition to the primitive types, this Appendix describes a number of
other functions and JavaScript constructs. Some of these functions require
knowledge of JavaScript arrays. See Array Object Functions for
information on how to use arrays. Columns within a table or Data
Worksheet can also be treated as arrays.

See Also
Style Intelligence Object Reference, in Report Scripting, for more objects in
a reporting environment.
Accessing Table Cells in Script, in Data Mashup, for information on
scripting for Worksheets.
Dashboard Scripting, for information on scripting for Viewsheets.

JS.1 Global Object Functions

The Global object contains the properties and functions available for the
entire scripting environment. The values and functions can be accessed
anywhere as top-level properties and functions without any qualifier.

// convert a text field to an integer
var val = parseInt(TextField1.text);

// assign the half of the value to another text element
Text2.text = (val * 1 / 2).toString();

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://devedge-temp.mozilla.org/central/javascript/index_en.html

GENERAL JAVASCRIPT FUNCTIONS

2049 of 2477

FORMATDATE(DATE, STRING)

Formats a date according to a simple date format and returns the result as a
string.

Parameters
date a java or javascript date object
format string The format follows the Java

SimpleDateFormat specification

Example
formatDate(new Date(), "hh 'o''clock' a, zzzz");

The date format uses
the same syntax as in
java.text.SimpleDate-
Format.

A format string can be constructed using the characters listed in the table
below.

Pattern letters can be repeated to obtain the desired date format. For the
symbols marked as ‘Text’ for its presentation, if the number of pattern
letters is 4 or more, the fill form is used; otherwise a short or abbreviated
form is used if available. For the symbols marked as ‘Number’ for its
presentation, the number of pattern letters is the minimum number of
digits, and shorter numbers are zero-padded to this amount.

SYMBOL MEANING PRESENTATION EXAMPLE

G era designator Text AD
y year Number 1996
M month in year Text & Number July & 07
d day in month Number 10
h hour in am/pm (1~12) Number 12
H hour in day (0~23) Number 0
m minute in hour Number 30
s second in minute Number 55
S millisecond Number 978
E day in week Text Tuesday
D day in year Number 189
F day of week in month Number 2 (2nd Web in July)
w week in year Number 27
W week in month Number 2
a am/pm marker Text PM
k hour in day (1~24) Number 24
K hour in am/pm (0~11) Number 0
z time zone Text Pacific Standard

Time
‘ escape for text Delimiter
‘‘ single quote Literal ‘

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html

GENERAL JAVASCRIPT FUNCTIONS

2050 of 2477

Some examples are shown below:

FORMATNUMBER(NUMBER, STRING, STRING)

Formats a number according to the format string.

Parameters
number
format string The format follows the Java

DecimalFormat specification
rounding string Specifies how the number is to be
 rounded

Example
formatNumber(3, '#,###.00','ROUND_HALF_UP');

A number format string can be constructed using the characters listed in the
table below.

UNDEFINED

This value is returned if a non-existent object or property is referenced. It is
also the value of a variable before it is initialized.

EVAL(STRING)

Evaluate a string of JavaScript code without reference to a particular object.
This function is useful for executing dynamically created JavaScript
commands and expressions.

DATE AND TIME PATTERN RESULT

“yyyy.MM.dd G ‘at’ HH:mm:ss
z”

2006.08.07 AD at 02:19:35 PDT

“EEE, MMM d, ‘ ‘ yy” Mon, Aug 7, ‘06
“h:mm a” 12:08 PM
“hh ‘o’ ‘clock’ a, zzzz” 12 o’clock PM, Pacific Daylight Time

SYMBOL MEANING

0 Digit
Digit, zero shows as absent
. Decimal point
- Minus sign
, Grouping separator
E Separates mantissa and exponent in scientific notation
; Separates positive and negative sub-patterns
% Multiply by 100 and show as percentage

GENERAL JAVASCRIPT FUNCTIONS

2051 of 2477

PARSEINT(STRING, RADIX)

Parse a string into integer. If the radix is omitted or undefined, it is assumed
to be 10, unless the string begins with ‘0x’ or ‘0X’, in which case 16 is
assumed.

PARSEFLOAT(STRING)

Parse a string into a decimal representation of a number.

PARSEDATE(STRING, FORMAT)

Parse a string into a date.

Parameters
string string representation of the date
format format string, or boolean value set to true

for parsing a timeInstant object

Example
parseDate('2006-08-07', 'yyyy-MM-dd');

ENCODEURI(URI)

Produce a new URI with any special characters replaced by an appropriate
encoding.

DECODEURI(URI)

Produce a new URI with escape sequences or UTF-8 encoding replaced by
the characters they represent.

REGISTERPACKAGE(STRING)

Register the specified package to enable the use of all the classes in the
package. All packages starting with java, inetsoft, com, or org are
registered automatically. Packages may also be registered by setting the
javascript.java.packages property for the application.

Example
registerPackage('inetsoft.report');

IMPORTPACKAGE(PACKAGE)

Enable the use of unqualified names for all the classes of the specified
package by searching for unqualified names as classes qualified by the
given package. The package can be a java package, an inetsoft package, or
any other package beginning with com or org.

Example
importPackage(java.awt);

GENERAL JAVASCRIPT FUNCTIONS

2052 of 2477

font = new Font("Verdana", Font.ITALIC, 24);
foreground = Color.red;

JS.2 String Object Functions

String is a built-in type in JavaScript. It holds a sequence of characters in
the Unicode character set. A string literal is created using a double quote or
a single quote strings.

var txt = 'Hello world'; // or "Hello world"

Two strings can be concatenated by using the ‘+’ operator, as well as by
using the concat function. For example:

var txt = "Hello " + 'world';

field['Salesperson.First Name'].concat("
",field['Salesperson.Last Name'])

LENGTH

The length property of a string returns the number of characters in the
string.

CONCAT(STRING2[,STRING3][,STRING4][,...])

Concatenate a given string with one or more additional strings.

Examples
var txt = 'Hello'.concat(' ','and good morning.')

field['Salesperson.First
Name'].concat(" ",field['Salesperson.Last Name'])

SUBSTRING(INDEXA, INDEXB)

indexA is the starting position of the substring in the original string and
indexB is the position following the last character in the substring. The
index is zero based.

CHARAT(INDEX)

Return the character at the specified position in the string.

CHARCODEAT(INDEX)

Return the character code of the character at the specified position in the
string.

GENERAL JAVASCRIPT FUNCTIONS

2053 of 2477

INDEXOF(SEARCHVALUE[, FROMINDEX])

Search for the search value in the string and return the position of the sub-
string, or –1 if the search value is not found. The optional fromIndex
specifies the starting position of the search.

LASTINDEXOF(SEARCHVALUE[, FROMINDEX])

Search for the last occurrence of the search value and return the position or
–1 if not found. The optional fromIndex specifies the starting position of the
search.

REPLACE(REGEXP, NEWSTR)

Replace a regular expression in a string with the new string.

SEARCH(REGEXP)

Match a regular expression with a string. If successful, it returns the
position of the regular expression in the string, or –1 if no match is found.

TOLOWERCASE()

Convert all characters to lowercase.

TOUPPERCASE()

Convert all characters to uppercase.

There are a number of other functions in the string object. Please consult
the JavaScript specification for details.

Example
"a new string".toUpperCase();

SPLIT(SEPARATOR, LIMIT)

Split up the given string into an array of string values using the specified
delimiter.

Parameter
Separator The characters to be used as delimiters when

splitting the string. By default, space is
used as the delimiter.

Limit The number of substrings to be returned.

Example
"abc,def".split(",",2);

GENERAL JAVASCRIPT FUNCTIONS

2054 of 2477

SLICE(START, END)

Extract a certain portion of the string.

Parameter
Start Index of the first character of the desired

substring.
End Index of the character after the last

character of the desired substring.

Example
"a new string".slice(2, 5) // returns 'new'

JS.3 Number Object Functions

All numeric values are number objects. The values are normally used for
computation using language operators such as multiplication, addition,
subtraction and division. There are a few useful methods for converting a
number to a string.

TOSTRING([RADIX])

Convert a number to a string. The optional radix is a number ranging from
2 to 36.

Example
(5).toString(2); // 101 binary representation

TOFIXED(FRACTIONDIGITS)

Convert a number to a fixed decimal number. The fractionDigits
specifies the number of digits following the decimal point.

Example
(1/3).toFixed(2);

TOEXPONENTIAL(FRACTIONDIGITS)

Converts a number to be in scientific format. The fractionDigits specifies
the number of digits following the decimal point.

Example
(3251.234).toExponential(2); // returns 3.25e+3

TOLOCALESTRING()

Returns the localized value in the string format for the given number

TOPRECISION(PRECISION)

Returns the floor of the given number. The precision specifies the total
number of digits including the ones before and after the decimal points.

GENERAL JAVASCRIPT FUNCTIONS

2055 of 2477

Example
(3.234).toPrecision(3); // returns 3.23

JS.4 Date Object Functions

The JavaScript Date object is very similar to Java Date object. It stores the
time and date and can be used to manipulate dates and perform date
conversions. There are several ways to create a date object. Invoked
without arguments, the new date object contains the time and date of its
creation:

var now = new Date() // Thu Jun 12 15:14:51 EDT 2008

You can also create a Date object by specifying elapsed milliseconds from
January 1, 1970:

var due_date = new Date(800000000000);
// Tue May 09 02:13:20 EDT 1995

Alternatively, create the Date object from individual date components:

var due_date = new Date(1988,0,10);
// Sun Jan 10 00:00:00 EST 1988

There are a number of methods in the Date object for manipulating date
fields. Since the scripts in Style Intelligence are primarily used to work
with Java objects, it is more common for a script to work with the
java.util.Date object. The use of Java objects is covered in Appendix JS.9,
Java Objects (LiveConnect).

GETMILLISECONDS()

Return the milliseconds from epoch.

TOSTRING()

Return a string representation of the date.

TODATESTRING()

Return a string representation of the date portion of the date.

TOTIMESTRING()

Return a string representation of the time portion of the date.

Examples
(new Date()).toTimeString();

GENERAL JAVASCRIPT FUNCTIONS

2056 of 2477

DATEADD(INTERVAL, AMOUNT, DATE)

Returns a new date that is created by adding the specified amount of time to
the specified interval of the given date.

Parameters
interval The date interval to be modified.
amount The amount of time to be added to the interval
date The date to be modified

Example
dateAdd(‘m’, 2, new Date())
// newDate is set to be 2 months from the current date.

All the valid date interval strings are listed in the table below.

DATEDIFF(INTERVAL, DATE1, DATE2)

Return the difference in the interval between the two given dates. For the
valid interval values, please refer to the table under dateAdd() function
discussion.

Parameters
interval The date interval for which the difference is

to be calculated.
date1, date2 The dates to be compared.

Example
dateDiff(‘m’, new Date(), dateAdd(‘m’, 2, new Date()));
// returns 2.

DATEPART(INTERVAL, DATE)

Extracts the specified date interval. For the valid interval values, please
refer to the table under the dateAdd() function discussion.

Parameters
interval The interval value to be extracted.
date The date from which the interval is to be

INTERVAL STRINGS DATE INTERVAL IT REPRESENTS

yyyy Year
q Quarter
m Month
y Day of the year
d Day of the month
w Day of the week
ww Week of the year
h Hour
n Minute
s Second

GENERAL JAVASCRIPT FUNCTIONS

2057 of 2477

extracted.

Example
datePart(‘m’, new Date()); // returns current month

JS.5 Array Object Functions

JavaScript arrays are a non-fixed length arrays. A constant array can be
created using an array literal:

states = ["NJ", "NY", "CA"];

This is equivalent to the array constructor:

states = new Array("NJ", "NY", "CA");

The length of the array is dynamically adjusted when new items are added
to an array. If the newly added item leaves a gap in the existing array, the
items in the gap have an ‘undefined’ value.

states[50] = 'FL';

The length property of an array object returns the current array length.

for(var i = 0; i < states.length; i++) {
if(states[i] == 'NJ') {
...
}

}

Array objects also have functions to merge, slice, reverse, etc.

CONCAT(ARRAY1, ARRAY2, …, ARRAYN)

Concatenate the arrays into one array.

num1 = [1,2,3]
num2 = [4,5,6]
num3 = [7,8,9]
nums = num1.concat(num2,num3)

SLICE(BEGIN[, END])

Return a slice of the array as a new array.

SORT([COMPAREFUNCTION])

Sort the array items according to a compare function. If the function is not
supplied, all items are sorted as strings. A compare function is a function
that accepts two parameters. It returns a positive number if the first
parameter is greater than the second parameter, zero if the two parameters
are the same and a negative number if the first parameter is less than the
second parameter.

GENERAL JAVASCRIPT FUNCTIONS

2058 of 2477

Examples
function compareInt(a, b) {
return a - b;

}
array1.sort(compareInt);

JOIN(SEPARATOR)

Returns a string containing all the elements of the array separated by the
specified separator.

Example
[‘A’, ‘B’, ‘C’].join(‘&’); // returns "A&B&C"

REVERSE()

Reverses the order of the elements in the array.

Example
[‘A’, ‘B’, ‘C’].reverse(); // returns [‘C’, ‘B’, ‘A’]

JS.6 Math Object Functions

The Math object is a top-level object, and has some numerical constants as
properties (e.g. Math.PI returns 3.141592653589793). The complete list of
constants is: E, LN10, LN2, LOG10E, LOG2E, PI, SQRT1_2, SQRT2.

Math also provides many static functions. They can be accessed without an
instance of the object.

ABS(NUMBER)

Return the absolute value.

Example
Math.abs(-234.45); // returns 234.45

ACOS(NUMBER)

Return the inverse cosine (in radians) of a number between 0 and 1.

Example
Math.acos(0); // returns 1.570796 (90 degrees)

ASIN(NUMBER)

Return the inverse sine (in radians) of a number between 0 and 1.

Example
Math.asin(1); // returns 1.570796 (90 degrees)

GENERAL JAVASCRIPT FUNCTIONS

2059 of 2477

ATAN(NUMBER)

Return the inverse tangent (in radians) of a number.

Example
Math.atan(1); // returns 0.785398 (45 degrees)

CEIL(NUMBER)

Return the smallest integer greater than or equal to a number.

Example
Math.ceil(15.2); // returns 16

COS(NUMBER)

Return the cosine (in radians) of a number.

Example
Math.cos(3.14159); // returns -0.9999

EXP(NUMBER)

Return the value of e raised to the power of number.

Example
Math.exp(3); // returns 20.085

FLOOR(NUMBER)

Return the largest integer less than or equal to a number.

Example
Math.floor(15.2); // returns 15

LOG(NUMBER)

Return a natural logarithm (base e) of a number.

Example
Math.log(2.71828); // returns 1

MAX(X, Y)

Return the maximum number, X or Y.

Example
Math.max(2,3); // returns 3

MIN(X, Y)

Return the minimum number, X or Y.

GENERAL JAVASCRIPT FUNCTIONS

2060 of 2477

Example
Math.min(2,3); // returns 2

POW(BASE, EXPONENT)

Raise the base to the exponent power.

Example
Math.pow(2,3); // returns 8 (23)

RANDOM()

Return a random number between 0 and 1.

Example
Math.random(); // returns 0.917008, for example

ROUND(NUMBER)

Return the value of a number rounded to the nearest integer.

Example
Math.round(15.8); // returns 16

SIN(NUMBER)

Return the sine of an angle in radians

Example
Math.sin(pi()/4); // returns 0.7071

SQRT(NUMBER)

Return the square root of a number.

Example
Math.sqrt(36.89); // returns 6.0737

TAN(NUMBER)

Return the tangent of an angle in radians

Example
Math.tan(0.785398); // returns 1 tan(45o)

JS.7 CALC Object Functions

The CALC object contains implementations of Excel-like spreadsheet
functions. All these functions are static and can be used without an instance
of the CALC object.

var avg = CALC.average([1,2,3]);

GENERAL JAVASCRIPT FUNCTIONS

2061 of 2477

Many functions include an optional parameter “Basis”. Basis indicates the
type of day-counting to use. Default 0 = US 30/360; 1 = Actual/actual; 2 =
Actual/360; 3 = Actual/360; 4 = European 30/360.

JS.7.1 Date and Time Functions

The CALC object provides the date and time functions listed below.

CALC.DATEVALUE(DATE)

Return the number of days between the epoch (12/31/1899) and DATE.

Example
CALC.datevalue(new Date(1900,0,1));
// returns 1

CALC.DAY(DATE)

Return the day of the month for the given DATE.

Example
CALC.day(new Date());
// returns 28 (Assuming date was Dec 28, 2005)

CALC.DAYS360(START_DATE, END_DATE, METHOD)

Return the number of days between the start_date and the end_date, using
12 months of 30 days. Method is false (U.S. NASD) or true (European).

Example
CALC.days360(new Date(2005,1,21), new Date(2006,0,18),
false);
// returns 327

CALC.EDATE(DATE, MONTHS)

Return a date that is the indicated number of months before or after the
specified date. A negative value represents a date before the specified date.

Example
// Add one month to Jan 14, 2000:
CALC.edate(new Date(2000,0,14), 1); // returns Feb 14, 2000

CALC.EOMONTH(DATE, MONTHS)

Return a date that is the indicated number of months before or after the
specified date, and is also the last day of that month. A negative value
represents a date before the specified date.

Example
CALC.eomonth(new Date(2000,0,14), 1);
// returns 2/29/2000

GENERAL JAVASCRIPT FUNCTIONS

2062 of 2477

CALC.HOUR(TIMEINSTANT)

Return the hour of the day for the given timeInstant.

Example
CALC.hour(new Date(2000,0,14,7,15,23));
// returns 7

CALC.MINUTE(TIMEINSTANT)

Return the minute of the hour for the given timeInstant.

Example
CALC.minute(new Date(2000,0,14,7,15,23));
// returns 15

CALC.MONTH(DATE)

Return the numeric month for the given date. (1 for January)

Example
CALC.month(new Date(2000,1,21));
// returns 2

CALC.MONTHNAME(DATE)

Return the name of the month for the given date (e.g. “March”).

Example
CALC.monthname(new Date(1978,1,21));
// returns February

CALC.NETWORKDAYS(DATE1, DATE2, [HOLIDAY_ARRAY])

Return the total number of working days between two given dates. If the
start date or end date is itself a working day, that day is also included in the
total. Holiday_array is an optional array of dates which are to be excluded
from the working days.

Example
CALC.networkdays(new Date(1978,1,21), new Date());
// returns 7282 (assuming new Date() is Jan 18, 2006)

CALC.NOW()

Returns the current date and time.

Example
CALC.now();
// returns 2006-01-18 17:21:20 (current date and time)

GENERAL JAVASCRIPT FUNCTIONS

2063 of 2477

CALC.QUARTER(DATE)

Return the quarter for the given DATE (1 for the first quarter).

Example
CALC.quarter(new Date(2005, 11, 28));
// returns 4

CALC.SECOND(DATE)

Return the seconds part of the given DATE.

Example
CALC.second(new Date());
// returns 45

CALC.TIME(HOUR, MINUTE, SECOND)

Returns a decimal from 0 to 1, representing the specified time.

Example
CALC.time(5,30,40);
// returns 0.2296

CALC.TIMEVALUE(DATE)

Return a number ranging from 0 to 1 which represents the time value of the
date object (12:00pm = 0.5).

Example
CALC.timevalue(new Date(2005,1,2,6,0,0));
// returns 0.25

CALC.TODAY()

Returns the current date and time.

Example
CALC.today();
// returns Tue Mar 17 17:43:02 EDT 2009 (for example)

CALC.WEEKDAY(DATE, [NUMBER])

Return an integer representing the day of the week. A second optional
parameter determines the value at which the indexing starts. A value of 1
(default) represents 1 (Sunday) through 7 (Saturday). A value of 2
represents 1 (Monday) through 7 (Sunday) and a value of 3 represents 0
(Monday) through 6 (Sunday).

Example
CALC.weekday(new Date(2006,0,18),2);
// returns 3 (wednesday)

GENERAL JAVASCRIPT FUNCTIONS

2064 of 2477

CALC.WEEKDAYNAME(DATE)

Returns the full day of the week for the given date (e.g., “Monday”).

Example
CALC.weekdayname(new Date(2006,0,18));
// returns Wednesday

CALC.WEEKNUM(DATE)

Return the week within the year for the given date (1 for the first week).

Example
CALC.weeknum(new Date(2006,0,18));
// returns 3

CALC.WORKDAY(DATE, DAYS, [HOLIDAY_ARRAY])

Returns a date which represents the next workday which occurs after the
specified number of working days after the specified date. Holiday_array
is an optional list of dates which are to be excluded as working days.

Example
CALC.workday(new Date(2005,11,1), 6);
// returns 12/9/2005

CALC.YEAR(DATE)

Return the year part of the given date.

Example
CALC.year(new Date(2005,11,1));
// returns 2005

CALC.YEARFRAC(DATE1, DATE2, [BASIS])

Returns a fraction of a year based on the number of days between the two
specified dates. Basis is an optional parameter which specifies the type of
year count basis to use (Default = US 30/360, 1 = Actual/actual, 2 = Actual/
360, 3= Actual/365, 4 = European 30/360).

Example
CALC.yearfrac(new Date(2005,0,1), new Date(2005,5,30));
// returns 0.497221

JS.7.2 Financial Functions

The CALC object provides the financial functions listed below.

GENERAL JAVASCRIPT FUNCTIONS

2065 of 2477

CALC.ACCRINT(ISSUE, INTEREST, SETTLEMENT, RATE, PAR, FREQ,
[BASIS])

Return the accrued interest for a security that pays periodic interest. Issue
is the security’s issue date. Interest is the security’s first interest date.
Settlement is the security’s settlement date. Rate is the security’s annual
coupon rate. Par is the security’s par value. Freq is the number of coupon
payments per year. Basis is an optional parameter which specifies the type
of year count basis to use (Default = US 30/360, 1 = Actual/actual, 2 =
Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.accrint(new Date(2008,2,1), new Date(2008,7,31), new
Date(2008,4,1), 10, 1000, 2);
// returns 16.666
(Which is the interest accrued for a 1000$ par value
security with a 10% annual rate with bi-annual payment, for
the specified issue, interest and settlement dates
respectively)

CALC.ACCRINTM(ISSUE, MATURITY, RATE, PAR, [BASIS])

Return the accrued interest for a security that pays interest at maturity.
Issue is the security’s issue date. Interest is the security’s first interest
date. Settlement is the security’s settlement date. Rate is the security’s
annual coupon rate. Par is the security’s par value. Basis is an optional
parameter which specifies the type of year count basis to use (Default = US
30/360, 1 = Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European
30/360).

Example
CALC.accrintm(new Date(2008,3,1), new Date(2008,5,15), 10,
1000, 3);
// returns 20.5479
(Which is the interest accrued for a 1000$ par value
security with a 10% annual rate with bi-annual payment, for
the specified issue and maturity dates respectively)

CALC.AMORDEGRC(COST, DATE_PURCHASED, FIRST_PERIOD,
SALVAGE, PERIOD, RATE, [BASIS])

Returns the depreciation of an asset for each accounting period. This
function is provided for the French accounting system. This function is
similar to the amorlinc() function except that the depreciation coefficient is
calculated based on life of the asset (3-4 years =1.5, 5-6 years = 2, > 6
years = 2.5). Cost is the cost of the asset. Date_purchased is the date of the
purchase of the asset. First_period is the date of the end of the first period.
Salvage is the salvage value at the end of the life of the asset. Period is the
period. Rate is the security’s annual coupon rate. Basis is an optional
parameter which specifies the type of year count basis to use (Default = US

GENERAL JAVASCRIPT FUNCTIONS

2066 of 2477

30/360, 1 = Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European
30/360).

Example
CALC.amordegrc(2400, new Date(2008,7,19), new
Date(2008,11,31), 300, 1, 15, 2);
// returns 773

CALC.AMORLINC(COST, DATE_PURCHASED, FIRST_PERIOD, SALVAGE,
PERIOD, RATE, [BASIS])

Return the depreciation for each accounting period. This function is
provided for the French accounting system. Cost is the cost of the asset.
Date_purchased is the date of the purchase of the asset. First_period is the
date of the end of the first period. Salvage is the salvage value at the end of
the life of the asset. Period is the period. Rate is the security’s annual
coupon rate. Basis is an optional parameter which specifies the type of year
count basis to use (Default = US 30/360, 1 = Actual/actual, 2 = Actual/360,
3= Actual/365, 4 = European 30/360). See the amordegrc() function for
sample script.

CALC.COUPDAYBS(SETTLEMENT, MATURITY, FREQUENCY, [BASIS])

Return the number of days from the beginning of the coupon period to the
settlement date. Settlement is the security’s settlement date. Maturity is the
security’s maturity date (the date when the security expires). Frequency is
the number of coupon payments per year. Basis is an optional parameter
which specifies the type of year count basis to use (Default = US 30/360, 1
= Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.coupdaybs(new Date(2007,0,25), new Date(2008,10,15),
2, 1);
// returns 71

CALC.COUPDAYS(SETTLEMENT, MATURITY, FREQUENCY, [BASIS])

Returns the number of days in the coupon period that contains the
settlement date. Settlement is the security’s settlement date. Maturity is the
security’s maturity date (the date when the security expires). Frequency is
the number of coupon payments per year. Basis is an optional parameter
which specifies the type of year count basis to use (Default = US 30/360, 1
= Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360). See
coupdaybs() for sample script.

CALC.COUPDAYSNC(SETTLEMENT, MATURITY, FREQUENCY, [BASIS])

Return the number of days from the settlement date to the next coupon
date. Settlement is the security’s settlement date. Maturity is the security’s
maturity date (the date when the security expires). Frequency is the number

GENERAL JAVASCRIPT FUNCTIONS

2067 of 2477

of coupon payments per year. Basis is an optional parameter which
specifies the type of year count basis to use (Default = US 30/360, 1 =
Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360). See
coupdaybs() for sample script.

CALC.COUPNCD(SETTLEMENT, MATURITY, FREQUENCY, [BASIS])

Return the next coupon date after the settlement date. Settlement is the
security’s settlement date. Maturity is the security’s maturity date (the date
when the security expires). Frequency is the number of coupon payments
per year. Basis is an optional parameter which specifies the type of year
count basis to use (Default = US 30/360, 1 = Actual/actual, 2 = Actual/360,
3= Actual/365, 4 = European 30/360).

Example
CALC.coupncd(new Date(2007,0,25), new Date(2008,10,15), 2,
1);
// returns Tue May 15 00:00:00 EDT 2007

CALC.COUPNUM(SETTLEMENT, MATURITY, FREQUENCY, [BASIS])

Return the number of coupons payable between the settlement date and
maturity date, rounded up to the nearest whole coupon. Settlement is the
security’s settlement date. Maturity is the security’s maturity date (the date
when the security expires). Frequency is the number of coupon payments
per year. Basis is an optional parameter which specifies the type of year
count basis to use (Default = US 30/360, 1 = Actual/actual, 2 = Actual/360,
3= Actual/365, 4 = European 30/360).

Example
CALC.coupnum(new Date(2007,0,25), new Date(2008,10,15), 2,
1);
// returns 4

CALC.COUPPCD(SETTLEMENT, MATURITY, FREQUENCY, [BASIS])

Return a number that represents the previous coupon date before the
settlement date. Settlement is the security’s settlement date. Maturity is the
security’s maturity date (the date when the security expires). Frequency is
the number of coupon payments per year. Basis is an optional parameter
which specifies the type of year count basis to use (Default = US 30/360, 1
= Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.couppcd(new Date(2007,0,25), new Date(2008,10,15), 2,
1);
// returns Wed Nov 15 00:00:00 EST 2006

GENERAL JAVASCRIPT FUNCTIONS

2068 of 2477

CALC.CUMIPMT(RATE, NPER, PV, START_PERIOD, END_PERIOD, TYPE)

Return the cumulative interest paid on a loan between Start_period and
End_period. Rate is the annual interest rate. Nper is the total number of
monthly periods. Pv is the present value. Start_period is the first period in
the calculation (number). End_period is the last period in the calculation
(NUMBER). Type is the timing of the payment (0 = payment at the
beginning of the period 1= payment at the end of the period).

Example
CALC.cumipmt(9/12, 30 * 12, 125000, 13, 24, 0);
// returns -11135.23
(the interest paid on a loan taken at an annual rate of 9%,
for a 30 year period, for periods 13 through 24, with each
payment at the beginning of the period)

CALC.CUMPRINC(RATE, NPER, PV, START_PERIOD, END_PERIOD, TYPE)

Returns the cumulative principal paid on a loan between Start_period and
End_period. Rate is the annual interest rate. Nper is the total number of
monthly periods. Pv is the present value. Start_period is the first period in
the calculation (number). End_period is the last period in the calculation
(number). Type is the timing of the payment (0 = payment at the beginning
of the period 1= payment at the end of the period). See cumipmt() for
sample script.

CALC.DB(COST, SALVAGE, LIFE, PERIOD, [MONTH])

Returns the depreciation of an asset for a specified period using the fixed-
declining balance method. Cost is the initial cost of the asset. Salvage is the
value at the end of the depreciation (sometimes called the salvage value of
the asset). Life is the number of periods over which the asset is being
depreciated (sometimes called the useful life of the asset). Period is the
period for which you want to calculate the depreciation. Period must use
the same units as life. Month is the number of months in the first year. If
Month is omitted, it is assumed to be 12.

Example
CALC.db(1000000, 100000, 6, 1, 7);
// returns 186083.33
(Depreciation of an asset valued at $1,000,000 (worth
100,000 after 6 years with) after the first year with only 7
months calculated)

CALC.DDB(COST, SALVAGE, LIFE, PERIOD, [FACTOR])

Returns the depreciation of an asset for a specified period using the double-
declining balance method. Cost is the initial cost of the asset. Salvage is the
value at the end of the depreciation (sometimes called the salvage value of
the asset). Life is the number of periods over which the asset is being

GENERAL JAVASCRIPT FUNCTIONS

2069 of 2477

depreciated (sometimes called the useful life of the asset). Period is the
period for which you want to calculate the depreciation. Period must use
the same units as life. Factor is the rate at which the balance declines. If
Factor is omitted, it is assumed to be 2 (the double-declining balance
method). See db() for sample script.

CALC.DISC(SETTLEMENT, MATURITY, PR, REDEMPTION, [BASIS])

Returns the discount rate for a security. Settlement is the security’s
settlement date. The security settlement date is the date after the issue date
when the security is traded to the buyer. Maturity is the security’s maturity
date. The maturity date is the date when the security expires. Pr is the
security’s price per $100 face value. Redemption is the security’s
redemption value per $100 face value. Basis is an optional parameter
which specifies the type of year count basis to use (Default = US 30/360, 1
= Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.disc(new Date(2007, 0, 25), new Date(2007, 5, 15),
97.975, 100, 1);
// returns 0.05242

CALC.DURATION(SETTLEMENT, MATURITY, COUPON, YLD,
FREQUENCY, [BASIS])

Returns the Macauley duration for security with an assumed par value of
$100. Duration is defined as the weighted average of the present value of
the cash flows and is used as a measure of a bond price’s response to
changes in yield. Settlement is the security’s settlement date. The security
settlement date is the date after the issue date when the security is traded to
the buyer. Maturity is the security’s maturity date. The maturity date is the
date when the security expires. Coupon is the security’s annual coupon rate.
Yld is the security’s annual yield. Frequency is the number of coupon
payments per year. For annual payments, frequency = 1; for semiannual,
frequency = 2; for quarterly, frequency = 4. Basis is an optional parameter
which specifies the type of year count basis to use (Default = US 30/360, 1
= Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.duration(new Date(2008, 0, 1), new Date(2016, 0, 1), 8,
9, 2, 1);
// returns 5.9937
(The Macauley duration for security with a coupon rate of 8%
and an annual yield of 9%, with 2 coupon payments per year)

CALC.EFFECT(NOMINAL_RATE, NPERY)

Returns the effective annual interest rate, given the nominal annual interest
rate and the number of compounding periods per year. Nominal_rate is the

GENERAL JAVASCRIPT FUNCTIONS

2070 of 2477

nominal interest rate. Npery is the number of compounding periods per
year.

Example
CALC.effect(5.25,4);
// returns 0.05354
(for a nominal interest rate of 5.25%, with 4 compounding
periods per year)

CALC.FV(RATE, NPER, PMT, [PV], [TYPE])

Returns the future value of an investment based on periodic, constant
payments and a constant interest rate. Rate is the interest rate per period.
Nper is the total number of payment periods in an annuity. Pmt is the
payment made each period; it cannot change over the life of the annuity.
Typically, Pmt contains principal and interest but no other fees or taxes. If
Pmt is omitted, you must include the Pv argument. Pv is the present value, or
the lump-sum amount that a series of future payments is worth right now. If
Pv is omitted, it is assumed to be 0 (zero) and you must include the Pmt
argument. Type is the number 0 or 1 and indicates when payments are due.
If Type is omitted, it is assumed to be 0.

Example
CALC.fv(6/12, 10, -200, -500, 1);
// returns 2581.40 (for 6% annual interest rate)

CALC.FVSCHEDULE(PRINCIPAL, SCHEDULE)

Returns the future value of an initial principal after applying a series of
compound interest rates. Use this function to calculate the future value of
an investment with a variable or adjustable rate. Principal is the present
value. Schedule is an array of interest rates to apply.

CALC.INTRATE(SETTLEMENT, MATURITY, INVESTMENT, REDEMPTION,
[BASIS])

Returns the interest rate for a fully invested security. Settlement is the
security’s settlement date. The security settlement date is the date after the
issue date when the security is traded to the buyer. Maturity is the
security’s maturity date. The maturity date is the date when the security
expires. Investment is the amount invested in the security. Redemption is
the security’s redemption value per $100 face value. Basis is an optional
parameter which specifies the type of year count basis to use (Default = US
30/360, 1 = Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European
30/360).

CALC.IPMT(RATE, PER, NPER, PV, FV, TYPE)

Returns the interest payment for a given period for an investment based on
periodic, constant payments and a constant interest rate. Rate is the interest

GENERAL JAVASCRIPT FUNCTIONS

2071 of 2477

rate per period. Per is the period for which you want to find the interest and
must be in the range 1 to Nper. Nper is the total number of payment periods
in an annuity. Pv is the present value, or the lump-sum amount that a series
of future payments is worth right now. Fv is the future value, or a cash
balance you want to attain after the last payment is made. Type is the
number 0 or 1 and indicates when payments are due.

Example
CALC.ipmt(10/12, 1*3, 3, 8000, 0, 0);
// returns -22.406
(interest due in the first month of a 3 year loan with a 10%
annual interest rate)

CALC.ISPMT(RATE, PER, NPER, PV)

Calculates the interest paid during a specific period of an investment. This
function is provided for compatibility with Lotus 1-2-3. Rate is the interest
rate for the investment. Per is the period for which you want to find the
interest and must be between 1 and Nper. Nper is the total number of
payment periods for the investment. Pv is the present value of the
investment. For a loan, Pv is the loan amount. See ipmt() for sample script.

CALC.MDURATION(SETTLEMENT, MATURITY, COUPON, YLD,
FREQUENCY, [BASIS])

Returns the modified Macauley duration for a security with an assumed par
value of $100. Settlement is the security’s settlement date. Maturity is the
security’s maturity date. The maturity date is the date when the security
expires. Coupon is the security’s annual coupon rate. Yld is the security’s
annual yield. Frequency is the number of coupon payments per year. For
annual payments, frequency = 1; for semiannual, frequency = 2; for
quarterly, frequency = 4. Basis is an optional parameter which specifies the
type of year count basis to use (Default = US 30/360, 1 = Actual/actual, 2 =
Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.mduration(new Date(2008,0,1), new Date(2016,0,1), 8, 9,
2, 1);
// returns 5.7357
(The Macauley duration for a security with an annual coupon
rate of 8% and a yield of 9% with 2 payments per year)

CALC.MIRR(VALUES, FINANCE_RATE, REINVEST_RATE)

Returns the modified internal rate of return for a series of periodic cash
flows. This function considers both the cost of the investment and the
interest received on reinvestment of cash. Values is an array of numbers.
These numbers represent a series of payments (negative values) and
income (positive values) occurring at regular periods. Finance_rate is the

GENERAL JAVASCRIPT FUNCTIONS

2072 of 2477

interest rate you pay on the money used in the cash flows. Reinvest_rate is
the interest rate you receive on the cash flows as you reinvest them.

Example
CALC.mirr([-120000, 39000, 30000, 21000, 37000, 46000], 10,
12);
// returns 13%

CALC.NOMINAL(EFFECT_RATE, NPERY)

Returns the nominal annual interest rate, given the effective rate and the
number of compounding periods per year. Effect_rate is the effective
interest rate. Npery is the number of compounding periods per year.

Example
CALC.nominal(5.3543, 4);
// returns 0.052

CALC.NPER(RATE, PMT, PV, FV, TYPE)

Returns the number of periods for an investment based on periodic,
constant payments and a constant interest rate. Rate is the interest rate per
period. Pmt is the payment made each period; it cannot change over the life
of the annuity. Typically, Pmt contains principal and interest but no other
fees or taxes. Pv is the present value, or the lump-sum amount that a series
of future payments is worth right now. Fv is the future value, or a cash
balance you want to attain after the last payment is made. Type is the
number 0 (beginning) or 1 (end) and indicates when payments are due.

Example
CALC.nper(12, -100, -1000, 10000, 1);
// returns 15.288

CALC.NPV(RATE, [VALUE1, VALUE2, [....]])

Calculates the net present value of an investment by using a discount rate
and a series of future payments (negative values) and income (positive
values). Rate is the rate of discount over the length of one period. Value1,
Value2, etc., are arguments representing the payments and income.

Example
CALC.npv(10, [-10000, 3000, 4200, 6800]);
// returns 1188.44

CALC.PMT(RATE, NPER, PV, FV, TYPE)

Calculates the payment for a loan based on constant payments and a
constant interest rate. Rate is the interest rate per period. Nper is the total
number of monthly payments for the loan. Typically, Pmt contains
principal and interest but no other fees or taxes. Pv is the present value, or

GENERAL JAVASCRIPT FUNCTIONS

2073 of 2477

the lump-sum amount that a series of future payments is worth right now.
Fv is the future value, or a cash balance you want to attain after the last
payment is made. Type is the number 0 (beginning) or 1 (end) and indicates
when payments are due.

Example
CALC.pmt(8/12, 10, 10000, 0, 1);
// returns -1030.16

(Monthly payments for a loan with an 8% annual interest rate, with 10
monthly payments due at the beginning of the period.)

CALC.PPMT(RATE, PER, NPER, PV, FV, TYPE)

Calculates the payment for a loan based on constant payments and a
constant interest rate. Rate is the interest rate per period. Per specifies the
period and must be in the range of 1 to Nper. Nper is the total number of
monthly payments for the loan. Pv is the present value, or the lump-sum
amount that a series of future payments is worth right now. Fv is the future
value, or a cash balance you want to attain after the last payment is made. If
Fv is omitted, it is assumed to be 0 (the future value of a loan, for example,
is 0). Type is the number 0 (beginning) or 1 (end) and indicates when
payments are due. See pmt() for sample script.

CALC.PRICE(SETTLEMENT, MATURITY, RATE, YLD, REDEMPTION,
FREQUENCY, [BASIS])

Returns the price per $100 face value of a security that pays periodic
interest. Rate is the interest rate per period. The security settlement date is
the date after the issue date when the security is traded to the buyer.
Maturity is the security’s maturity date. The maturity date is the date when
the security expires. Last_interest is the security’s last coupon date. Rate
is the security’s interest rate. Pr is the security’s price. Redemption is the
security’s redemption value per $100 face value. Frequency is the number
of coupon payments per year. For annual payments, frequency = 1; for
semiannual, frequency = 2; for quarterly, frequency = 4. Basis is an
optional parameter which specifies the type of year count basis to use
(Default = US 30/360, 1 = Actual/actual, 2 = Actual/360, 3= Actual/365, 4
= European 30/360).

Example
CALC.price(new Date(2008,1,15), new Date(2017,10,15), 5.75,
6.5, 100, 2, 0);
// returns 94.63436

GENERAL JAVASCRIPT FUNCTIONS

2074 of 2477

CALC.PRICEDISC(SETTLEMENT, MATURITY, DISCOUNT, REDEMPTION,
[BASIS])

Returns the price per $100 face value of a discounted security. Rate is the
interest rate per period. Settlement is the security’s settlement date. The
security settlement date is the date after the issue date when the security is
traded to the buyer. Maturity is the security’s maturity date. The maturity
date is the date when the security expires. Discount is the security’s
discount rate. Redemption is the security’s redemption value per $100 face
value. See price() for sample script. Basis is an optional parameter which
specifies the type of year count basis to use (Default = US 30/360, 1 =
Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360).

CALC.PRICEMAT(SETTLEMENT, MATURITY, ISSUE, RATE, YLD, [BASIS])

Returns the price per $100 face value of a security that pays interest at
maturity. Rate is the interest rate per period. Settlement is the security’s
settlement date. The security settlement date is the date after the issue date
when the security is traded to the buyer. Maturity is the security’s maturity
date. The maturity date is the date when the security expires. Issue is the
security’s issue date, expressed as a serial date number. Rate is the
security’s interest rate at date of issue. Yld is the security’s annual yield.
Basis is an optional parameter which specifies the type of year count basis
to use (Default = US 30/360, 1 = Actual/actual, 2 = Actual/360, 3= Actual/
365, 4 = European 30/360).

Example
CALC.pricemat(new Date(2008,1,15), new Date(2008,3,13), new
Date(2007, 10, 11), 6.1, 6.1, 0);
// returns 99.984

CALC.PV(RATE, NPER, PMT, FV, TYPE)

Returns the present value of an investment. The present value is the total
amount that a series of future payments is worth now. Rate is the interest
rate per period. Nper is the total number of payment periods in an annuity.
Pmt is the payment made each period and cannot change over the life of the
annuity. Typically, Pmt includes principal and interest but no other fees or
taxes. Fv is the future value, or a cash balance you want to attain after the
last payment is made. Type is the number 0 (beginning) or 1 (end) and
indicates when payments are due.

Example
CALC.pv(8/12, 20* 12, 500, 0, 0);
// returns -59,777,15

(This represents the present value of an investment at an interest rate of 8%,
for a payment of 500 at each period, with payments made over 20 years.)

GENERAL JAVASCRIPT FUNCTIONS

2075 of 2477

CALC.RECEIVED(SETTLEMENT, MATURITY, INVESTMENT, DISCOUNT,
[BASIS])

Returns the amount received at maturity for a fully invested security.
Settlement is the security’s settlement date. The security settlement date is
the date after the issue date when the security is traded to the buyer.
Maturity is the security’s maturity date. The maturity date is the date when
the security expires. Investment is the amount invested in the security.
Discount is the security’s discount rate. Basis is an optional parameter
which specifies the type of year count basis to use (Default = US 30/360, 1
= Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European 30/360).

Example
CALC.received(new Date(2008,1,15), new Date(2008,4,15),
1000000, 5.75, 2);
// returns 101,4584.6544

CALC.SLN(COST, SALVAGE, LIFE)

Returns the straight-line depreciation of an asset for one period. Cost is the
initial cost of the asset. Salvage is the value at the end of the depreciation
(sometimes called the salvage value of the asset). Life is the number of
periods over which the asset is depreciated (sometimes called the useful life
of the asset). See syd() for sample script.

CALC.SYD(COST, SALVAGE, LIFE, PER)

Returns the sum-of-years’ digits depreciation of an asset for a specified
period. Salvage is the value at the end of the depreciation (sometimes
called the salvage value of the asset). Life is the number of periods over
which the asset is depreciated (sometimes called the useful life of the
asset). Per is the period and must use the same units as life.

Example
CALC.syd(30000, 7500, 10, 10);
// returns 409.09

CALC.TBILLEQ(SETTLEMENT, MATURITY, DISCOUNT)

Returns the bond-equivalent yield for a Treasury bill. Settlement is the
Treasury bill’s settlement date. The security settlement date is the date after
the issue date when the Treasury bill is traded to the buyer. Maturity is the
Treasury bill’s maturity date. The maturity date is the date when the
Treasury bill expires. Discount is the Treasury bill’s discount rate.

Example
CALC.tbilleq(new Date(2008, 2, 31), new Date(2008, 5,1),
9.14);
// returns 0.094151

GENERAL JAVASCRIPT FUNCTIONS

2076 of 2477

CALC.TBILLPRICE(SETTLEMENT, MATURITY, DISCOUNT)

Returns the price per $100 face value for a Treasury bill. Settlement is the
Treasury bill’s settlement date. The security settlement date is the date after
the issue date when the Treasury bill is traded to the buyer. Maturity is the
Treasury bill’s maturity date. The maturity date is the date when the
Treasury bill expires. Discount is the Treasury bill’s discount rate. See
tbilleq() for sample script.

CALC.TBILLYIELD(SETTLEMENT, MATURITY, PR)

Returns the yield for a Treasury bill. Settlement is the Treasury bill’s
settlement date. The security settlement date is the date after the issue date
when the Treasury bill is traded to the buyer. Maturity is the Treasury bill’s
maturity date. The maturity date is the date when the Treasury bill expires.
Pr is the Treasury bill’s price per $100 face value.

Example
CALC.tbillyield(new Date(2008, 2, 31), new Date(2008, 5,1),
98.45);
// returns 0.0914169

CALC.VDB(COST, SALVAGE, LIFE, START_PERIOD, END_PERIOD,
FACTOR, NO_SWITCH)

Returns the depreciation of an asset for any period you specify, including
partial periods, using the double-declining balance method or some other
method you specify. VDB stands for variable declining balance. Cost is the
initial cost of the asset. Salvage is the value at the end of the depreciation
(sometimes called the salvage value of the asset). This value can be 0. Life
is the number of periods over which the asset is depreciated (sometimes
called the useful life of the asset). Start_period is the starting period for
which you want to calculate the depreciation. Start_period must use the
same units as Life. End_period is the ending period for which you want to
calculate the depreciation. End_period must use the same units as Life.
Factor is the rate at which the balance declines. For a description of the
double-declining balance method, see ddb(). No_switch is a Boolean value
specifying whether to switch to straight-line depreciation when
depreciation is greater than the declining balance calculation.

Example
CALC.vdb(2400, 300, 10, 0, 0.875, 1.5);
// returns 315

CALC.XNPV(RATE, VALUES, DATES)

Returns the net present value for a schedule of cash flows that is not
necessarily periodic. Rate is the discount rate to apply to the cash flows.
Values is a series of cash flows that corresponds to a schedule of payments

GENERAL JAVASCRIPT FUNCTIONS

2077 of 2477

in dates. The first payment is optional and corresponds to a cost or payment
that occurs at the beginning of the investment. If the first value is a cost or
payment, it must be a negative value. All succeeding payments are
discounted based on a 365-day year. The series of values must contain at
least one positive value and one negative value. Dates is a schedule of
payment dates that corresponds to the cash flow payments. The first
payment date indicates the beginning of the schedule of payments. All
other dates must be later than this date, but they may occur in any order.

Example
CALC.xnpv(9, [-10000, 2750, 4250, 3250, 2750],[new
Date(2008, 0, 1),new Date(2008, 2, 1),new Date(2008, 9,
30),new Date(2009, 1, 15), new Date(2009, 3, 1)]);
// returns 2086.65
(The net present value for an investment, with the above
cost and returns, where the cash flows are discounted at a
rate of 9%)

CALC.YIELDDISC(SETTLEMENT, MATURITY, PR, REDEMPTION, [BASIS])

Returns the annual yield for a discounted security. Settlement is the
security’s settlement date. The security settlement date is the date after the
issue date when the security is traded to the buyer. Maturity is the
security’s maturity date. The maturity date is the date when the security
expires. Pr is the security’s price per $100 face value. Redemption is the
security’s redemption value per $100 face value. Basis is an optional
parameter which specifies the type of year count basis to use (Default = US
30/360, 1 = Actual/actual, 2 = Actual/360, 3= Actual/365, 4 = European
30/360).

Example
CALC.yielddisc(new Date(2008, 1, 16), new Date(2008, 2,1),
99.795, 100, 2);
// returns 0.052823

CALC.YIELDMAT(SETTLEMENT, MATURITY, ISSUE, RATE, PR, [BASIS])

Returns the annual yield of a security that pays interest at maturity.
Settlement is the security’s settlement date. Maturity is the security’s
maturity date. The maturity date is the date when the security expires.
Issue is the security’s issue date, expressed as a serial date number. Rate is
the security’s interest rate at date of issue. Pr is the security’s price per $100
face value. Basis is an optional parameter which specifies the type of year
count basis to use (Default = US 30/360, 1 = Actual/actual, 2 = Actual/360,
3= Actual/365, 4 = European 30/360).

Example
CALC.yieldmat(new Date(2008, 2, 15), new Date(2008, 10,3),
new Date(2007, 10,8), 6.25, 100.0123, 0);
// returns 0.060954

GENERAL JAVASCRIPT FUNCTIONS

2078 of 2477

JS.7.3 Logical Functions

The CALC object provides the logical functions listed below.

CALC.AND(BOOLEAN1, BOOLEAN2, …)

Returns true if all its arguments are true and returns false if one or more
argument is false. Boolean1, Boolean2, etc. are 1 to 10 conditions you want
to test that can be either true or false.

CALC.IIF(LOGICAL_TEST, VALUE_IF_TRUE, VALUE_IF_FALSE)

Returns one value if a condition you specify evaluates to TRUE and
another value if it evaluates to FALSE.

Example
CALC.iif(-36 < 0, ‘n should be positive’, Math.sqrt(-36));
// returns ‘n should be positive’

CALC.NOT(BOOLEAN)

Reverses the value of the Boolean argument.

CALC.OR(BOOLEAN1, BOOLEAN2,)

Returns true if at least one of its arguments is true, and returns false if all of
its arguments are false. Boolean1, B.oolean2, etc. are 1 to 10 conditions
you want to test that can be either true or false.

JS.7.4 Math Functions

This section presents the math functions provided by the CALC object.

CALC.ABS(NUMBER)

Return the absolute value of a number.

CALC.ACOS(NUMBER)

Return the inverse cosine of a number (-1 to 1) in radians.

CALC.ACOSH(NUMBER)

Return the inverse hyperbolic cosine of an number (greater than or equal to
1).

CALC.ASIN(NUMBER)

Return the inverse sine of a number (-1 to 1) in radians.

Example
CALC.asin(1);

GENERAL JAVASCRIPT FUNCTIONS

2079 of 2477

// returns 1.57079 (90 degrees)

CALC.ASINH(NUMBER)

Return the inverse hyperbolic sine of an number (greater than or equal to
1).

Example
CALC.asinh(77);
// returns 5.0369

CALC.ATAN(NUMBER)

Return the inverse tangent of a number in radians.

Example
CALC.atan(1.73205);
// returns 1.04719 (60 degrees)

CALC.ATAN2(NUMBERX, NUMBERY)

Return the inverse tangent of the specified point represented by the X and
Y co-ordinates, in radians.

Example
CALC.atan2(1, 1);
// returns 0.78539

CALC.ATANH(NUMBER)

Return the inverse hyperbolic tangent of a number (-1 to 1) in radians.

CALC.CEILING(NUMBER, SIGNIFICANCE)

Returns Number rounded up, away from zero, to the nearest multiple of
Significance.

Example
CALC.ceiling(4.43, 0.05);
// returns 4.45

CALC.COMBIN(TOTALNUMBER, GROUPNUMBER)

Return the total number of combinations for a given number of elements
(totalnumber) and a given combination size

Example
CALC.combin(10, 2);
// returns 45

GENERAL JAVASCRIPT FUNCTIONS

2080 of 2477

CALC.COS(NUMBER)

Return the cosine of a number which represents an angle in radians.

CALC.COSH(NUMBER)

Return the hyperbolic cosine of any real number.

CALC.DEGREES(NUMBER)

Converts radians to degrees.

Example
CALC.degrees(3.14159/2);
// returns 89.999

CALC.EVEN(NUMBER)

Rounds a number up to the nearest even number.

Example
CALC.even(15.1);
// returns 16

CALC.EXP(NUMBER)

Returns e raised to the number. Where e is the base of the natural
logarithm.

CALC.FACT(NUMBER)

Returns the factorial of the number.

CALC.FACTDOUBLE(NUMBER)

Returns the double of a number. For a number n, if the number is even then
n!! =n(n-2)(n-4)(4)(2) else if the number is odd then n!! = n(n-2)(n-4)(3)(1)

Example
CALC.factdouble(6);
// returns 48

CALC.FLOOR(NUMBER, SIGNIFICANCE)

Returns number rounded down, towards zero, to the nearest multiple of
significance. Significance is the multiple to which you want to round.

Example
CALC.floor(4.43, 0.05);
// returns 4.40)

GENERAL JAVASCRIPT FUNCTIONS

2081 of 2477

CALC.GCD(ARRAY)

Returns the greatest common divisor of an array of numbers. If any value is
not an integer, it is truncated.

Example
CALC.gcd([24, 32, 16, 12]);
// returns 4

CALC.INTEGER(NUMBER)

Rounds down the number to the nearest integer.

Example
CALC.integer(15.9);
// returns 15

CALC.LCM(ARRAY)

Returns the least common multiple of an array of numbers. If any value is
not an integer, it is truncated.

CALC.LN(NUMBER)

Returns the natural logarithm of a positive number.

Example
CALC.ln(Math.E);
// returns 1.0

CALC.LOG(NUMBER, BASE)

Returns the logarithm of a positive number to the base you specify.

Example
CALC.log(64, 4);
// returns 3

CALC.LOG10(NUMBER)

Returns the logarithm of a positive number to the base 10.

CALC.MDETERM(ARRAY)

Returns the matrix determinant of the specified matrix (2D array).

Example
CALC.mdeterm([[1,0,0],[0,1,0],[0,0,1]]);
// returns 1

GENERAL JAVASCRIPT FUNCTIONS

2082 of 2477

CALC.MINVERSE(ARRAY)

Returns the inverse matrix (2D array) of the specified 2D array.

Example
CALC.minverse([[1,0,0],[0,1,0],[0,0,1]]);

CALC.MMULT(ARRAY1, ARRAY2)

Return the matrix product of the two arrays.

Example
CALC.mmult([[2,2],[2,2]], [[3,3],[3,3]]);
// returns [[12, 12],[12, 12]]

CALC.MOD(NUMBER, DIVISOR)

Returns the remainder when the number is divided by the divisor.

CALC.MROUND(NUMBER, MULTIPLE)

Rounds a number up away from zero to the desired multiple.

Example
CALC.mround(10, 3);
// returns 9

CALC.MULTINOMIAL(ARRAY)

Returns the ratio of the factorial of a sum of values to the product of
factorials. For three numbers a,b,c the multinomial would be (a+b+c)! /
(a!b!c!).

Example
CALC.multinomial([2,3,4]);
// returns 1260

CALC.ODD(NUMBER)

Rounds a number up to the nearest odd number.

CALC.PI()

Returns the number 3.14159265358979, the mathematical constant pi,
accurate to 15 digits.

CALC.POWER(NUMBER, POWER)

Returns the result of a number raised to a power.

GENERAL JAVASCRIPT FUNCTIONS

2083 of 2477

CALC.PRODUCT(ARRAY)

Returns the product of all the elements in the array.

CALC.QUOTIENT(NUMERATOR, DENOMINATOR)

Returns the integer portion of a division (quotient).

CALC.RADIANS(ANGLE)

Converts degrees to radians.

CALC.ROMAN(NUMBER)

Converts an Arabic numeral to Roman numeral, as text.

Example
CALC.roman(77);
// returns LXXVII

CALC.ROUND(NUMBER, NUM_DIGITS)

Rounds a number to a specified number of digits.

Example
CALC.round(2.15, 1);
// returns 2.2

CALC.ROUNDDOWN(NUMBER, NUM_DIGITS)

Rounds a number down (toward zero) to a specified number of digits.

Example
CALC.rounddown(3.14159, 3);
// returns 3.141

CALC.ROUNDUP(NUMBER, NUM_DIGITS)

Rounds a number up (away from zero) to a specified number of digits.

Example
CALC.roundup(3.14159, 3);
// returns 3.142

CALC.SERIESSUM(X, N, M, COEFFICIENTS)

Returns the sum of a power series based on the formula: a1xn + a2x(n+m) +

a3x(n+3m) + … + aix
(n+(i-1)m). X is the input value to the power series. N is

the initial power to which you want to raise X. M is the step by which to
increase N for each term in the series. Coefficients is a set of coefficients by
which each successive power of X is multiplied.

GENERAL JAVASCRIPT FUNCTIONS

2084 of 2477

Example
CALC.seriessum(2, 0, 1, [1,2,3]);
// returns 17

CALC.SIN(ANGLE)

Returns the sine of the given angle specified in radians.

CALC.SINH(NUMBER)

Returns the hyperbolic sine of any real number.

CALC.SQRT(NUMBER)

Returns the square root of a number.

CALC.SQRTPI(NUMBER)

Returns the square root of a number * PI.

CALC.SUBTOTAL(FUNCTIONNUMBER, ARRAY)

Returns the subtotal of an array based on the specified function number. 1 =
average, 2 = count, 3 = counta, 4 = max, 5 = min, 6 = product, 7 = stdev, 8
= stdevp, 9 = sum, 10 = var, 11 = varp.

Example
CALC.subtotal(1, [1,2,3]);
// returns 2

CALC.SUM(ARRAY)

Returns the sum of the elements in an array.

CALC.SUMIF(ARRAY1, CONDITIONSTRING, ARRAY2)

Returns the sum of the elements in an array based on the values of another
array specified by a condition. Array1 is the array whose values will be
checked based on the condition specified. Conditionstring is the condition
(‘> 30000’, ‘=4000’, ‘<3500’). Array2 is the array whose values
(corresponding to array1) will be summed.

Example
CALC.sumif([10,25,30,15,45], ‘> 20’,[1,2,3,4,5]);
// returns 10

(This only sums those values of array2 where the corresponding values of
array1 are greater than 20.)

GENERAL JAVASCRIPT FUNCTIONS

2085 of 2477

CALC.SUMPRODUCT(2DARRAY)

Multiplies corresponding components in the given arrays and returns the
sum of those products. 2Darray is the array of arrays which are to be
multiplied.

Example
CALC.sumproduct([[1,2,3],[2,1,2],[3,3,1]]);
// returns 18

CALC.SUMSQ(ARRAY)

Returns the sum of the squares of all the elements in the array.

CALC.SUMX2MY2(ARRAY1, ARRAY2)

Returns the sum of the difference of squares of corresponding values in two
arrays.

CALC.SUMX2PY2(ARRAY1, ARRAY2)

Returns the sum of the sum of squares of corresponding values in two
arrays. The sum of the sum of squares is a common term in many statistical
calculations.

Example
CALC.sumx2py2([2,3,9,1,8,7,5],[6,5,11,7,5,4,4]);
// returns 521

CALC.SUMXMY2(ARRAY1, ARRAY2)

Returns the sum of squares of differences of corresponding values in two
arrays.

Example
CALC.sumxmy2([2,3,9,1,8,7,5],[6,5,11,7,5,4,4]);
// returns 79

CALC.TAN(ANGLE)

Returns the tangent of the angle specified in degrees.

CALC.TANH(NUMBER)

Returns the hyperbolic tangent of a real number.

CALC.TRUNC(NUMBER, NUM_DIGITS)

Truncates a number to an integer by removing the fractional part of the
number. Number is the number you want to truncate. Num_digits is a

GENERAL JAVASCRIPT FUNCTIONS

2086 of 2477

number specifying the precision of the truncation. The default value for
Num_digits is 0 (zero).

Example
CALC.trunc(2245.789, 2);
// returns 2245.78

JS.7.5 Statistical Functions

This section presents the statistical functions provided by the CALC object.

CALC.AVEDEV(ARRAY)

Returns the average of the absolute deviations of data points from their
mean. This is a measure of the variability in a data set.

Example
CALC.avedev([4,5,6,7,5,4,3]);
// returns 1.020408

CALC.AVERAGE(ARRAY)

Returns the average (arithmetic mean) of the arguments. Ignores text and
Boolean expressions.

CALC.AVERAGEA(ARRAY)

Returns the average (arithmetic mean) of the arguments. Considers text and
Boolean expressions. Text is evaluated as zero, true = 1 and false = 0.

Example
CALC.averagea([1,2,3,4,’asd’,true,false]);
// returns 1.5714

CALC.BINOMDIST(NUMBER_S, TRIALS, PROBABILITY_S, CUMULATIVE)

Returns the individual term binomial distribution probability. Number_s is
the number of successes in trials. Trials is the number of independent
trials. Probability_s is the probability of success on each trial. Cumulative
is a logical value that determines the form of the function. If Cumulative is
true, the function returns the cumulative distribution function, which is the
probability that there are at most Number_s successes; if false, it returns the
probability mass function, which is the probability that there are Number_s
successes.

Example
CALC.binomdist(6, 10, 0.5);
// returns 0.205

GENERAL JAVASCRIPT FUNCTIONS

2087 of 2477

CALC.CORREL(ARRAY1, ARRAY2)

Returns the correlation coefficient of the two arrays. Use the correlation
coefficient to determine the relationship between two properties.

Example
CALC.correl([3,2,4,5,6],[9,7,12,15,17]);
// returns 0.997054

CALC.COUNT(ARRAY)

Counts the number of elements in the array (numeric and non-numeric).

Example
CALC.count([‘asd’,true,3,2,4,5,6]);
// returns 7

CALC.COUNTA(ARRAY)

Counts the number of non empty elements in the array. Empty texts ‘’ and
null values are ignored.

CALC.COUNTBLANK(ARRAY)

Counts the number of empty elements in the array.

CALC.COUNTDISTINCT(ARRAY)

Counts the number of distinct elements in the array.

Example
CALC.countDistinct([3,3,2,4,4,5,6]);
// returns 5

CALC.COUNTN(ARRAY)

Counts the number of numeric elements in the array.

Example
CALC.countn([‘asd’,true,3,2,4,5,6]);
// returns 5

CALC.COUNTIF(ARRAY, CRITERIA)

Counts the number of elements in the array that meet a certain criteria. The
criteria can be a constant value ‘21’ or an expression ‘>100’.

Example
CALC.countif([3,2,4,5,6], ‘> 4’);
// returns 2

GENERAL JAVASCRIPT FUNCTIONS

2088 of 2477

CALC.COVAR(ARRAY1, ARRAY2)

Returns covariance, the average of the products of deviations for each data
point pair.

Example
CALC.covar([3,2,4,5,6],[9,7,12,15,17]);
// returns 5.2

CALC.DEVSQ(ARRAY)

Returns the sum of squares of deviations of data points from their sample
mean.

CALC.EXPONDIST(X, LAMBDA, CUMULATIVE)

Returns the exponential distribution. Use this function to model the time
between events. X is the value of the function. Lambda is the parameter
value. Cumulative is a logical value that indicates which form of the
exponential function to provide. If Cumulative is true, the function returns
the cumulative distribution function; if false, it returns the probability
density function

Example
CALC.expondist(0.2, 10, true);
// returns 0.864665

CALC.FISHER(X)

Returns the Fisher transformation at numeric value x. This transformation
produces a function that is normally distributed rather than skewed. Use
this function to perform hypothesis testing on the correlation coefficient.

Example
CALC.fisher(0.75);
// returns 0.97295

CALC.FISHERINV(X)

Returns the inverse of the Fisher transformation. X is a numeric value for
which you want the inverse transformation.

CALC.FORECAST(X, KNOWN_Y_VALUES, KNOWN_X_VALUES)

Calculates, or predicts, a future value by using existing values. The
predicted value is a y-value for a given x-value. The known values are
existing x-values and y-values and the new value is predicted by using
linear regression. X is the data point for which you want to predict a value.
Known_y_values is the dependent array or range of data. Known_x_values is
the independent array or range of data.

GENERAL JAVASCRIPT FUNCTIONS

2089 of 2477

Example
CALC.forecast(30, [6,7,9,15,21],[20,28,31,38,40]);
// returns 10.6072

CALC.FREQUENCY(DATA_ARRAY, BINS_ARRAY)

Calculates how often values occur within a range of values and then returns
an array of numbers. Data_array is an array of or reference to a set of
values for which you want to count frequencies. Bins_array is an array of
or reference to intervals into which you want to group the values in
Data_array.

Example
CALC.frequency([79,85,78,85,50,81,95,88,97],[70,79,89]);

// returns an array of length 4. Say the name of the array
is ‘freq’

// freq[0] = 1 (number of elements less than or equal to70)
// freq[1] = 2 (number of elements in range 70 -79)
// freq[2] = 4 (number of elements in range 79 -89)
// freq[3] = 2 (number of elements greater than or equal to
90)

CALC.GEOMEAN(ARRAY)

The geometric mean of an array.

CALC.HARMEAN(ARRAY)

Returns the harmonic mean of a data set. The harmonic mean is the
reciprocal of the arithmetic mean of reciprocals.

CALC.HYPGEOMDIST(SAMPLE_S, NUMBER_SAMPLE, POPULATION_S,
NUMBER_POPULATION)

Returns the hypergeometric distribution, the probability of a given number
of sample successes, given the sample size, population successes and
population size. Sample_s is the number of successes in the sample.
Number_sample is the size of the sample. Population_s is the number of
successes in the population. Number_population is the population size.

Example
CALC.hypgeomdist(1, 4, 8, 20);
// returns 0.36326

CALC.INTERCEPT(ARRAYY, ARRAYX)

Calculates the point at which a line will intersect the y-axis by using
existing x-values and y-values. The intercept point is based on a best-fit
regression line plotted through the known x-values and known y-values.

GENERAL JAVASCRIPT FUNCTIONS

2090 of 2477

Example
CALC.intercept([8,11,14,17],[1,2,3,4]);
// returns 5

CALC.KURT(ARRAY)

Returns the kurtosis of a data set. Kurtosis characterizes the relative
peakedness or flatness of a distribution compared with the normal
distribution.

CALC.LARGE(ARRAY, K)

Returns the kth largest value in a data set.

CALC.MAX(ARRAY)

Returns the largest value in the array.

CALC.MAXA(ARRAY)

Returns the largest value in the array. Booleans are considered to be 1 if
true and zero if false. Text representations of numbers are considered.

CALC.MEDIAN(ARRAY)

Returns the median of the elements in the array. Median is the value in the
middle.

Example
CALC.median([1,2,3,4,5,6,7]);
// returns 4

CALC.MIN(ARRAY)

Returns the smallest value in the array.

CALC.MINA(ARRAY)

Returns the smallest value in the array. Booleans are considered to be 1 if
true and zero if false. Text representations of numbers are considered.

CALC.MODE(ARRAY)

Returns the most frequently occurring, or repetitive, value in an array or
range of data.

Example
CALC.mode([1,1,2,3,1,4,5,6,7]);
// returns 1

GENERAL JAVASCRIPT FUNCTIONS

2091 of 2477

CALC.NEGBINOMDIST(NUMBER_F, NUMBER_S, PROBABILITY_S)

Returns the negative binomial distribution, the probability that there will be
number_f failures before the number_s-th success, when the constant
probability of a success is probability_s.

Example
CALC.negbinomdist(10, 5, 0.25);
// returns 0.05504

CALC.PEARSON(ARRAY1, ARRAY2)

Returns the Pearson product moment correlation coefficient, r, a
dimensionless index that ranges from -1.0 to 1.0 inclusive and reflects the
extent of a linear relationship between two data sets.

Example
CALC.pearson([9,7,5,3,1],[10,6,1,5,3]);
// returns 0.6993

CALC.PERCENTILE(ARRAY, K)

Returns the k-th percentile of values in a range. You can use this function to
establish a threshold of acceptance.

Example
CALC.percentile([9,7,5,3,1], 0.9);
// returns 8.2 (90 percentile)

CALC.PERCENTRANK(ARRAY, X, SIGNIFICANCE)

Array is the array or range of data with numeric values that defines relative
standing. X is the value for which you want to know the rank. Significance
is an optional value that identifies the number of significant digits for the
returned percentage value.

Example
CALC.percentrank([13,12,11,8,4,3,2,1,1,1],2,3);
// returns 0.333

(percent rank of the element 2 in the list above)

CALC.PERMUT(NUMBER, NUMBER_CHOSEN)

Returns the number of permutations for a given number of objects that can
be selected from number objects. A permutation is any set or subset of
objects or events where internal order is significant. Number is an integer
that describes the number of objects. Number_chosen is an integer that
describes the number of objects in each permutation.

GENERAL JAVASCRIPT FUNCTIONS

2092 of 2477

CALC.POISSON(X, MEAN, CUMULATIVE)

Returns the Poisson distribution. A common application of the Poisson
distribution is predicting the number of events over a specific time. X is the
number of events. Mean is the expected numeric value. Cumulative is a
Boolean value that determines the form of the probability distribution
returned. If Cumulative is true, the function returns the cumulative Poisson
probability that the number of random events occurring will be between
zero and x inclusive; if false, it returns the Poisson probability mass
function that the number of events occurring will be exactly x.

Example
CALC.poisson(2, 5, true);
// returns 0.124652

CALC.PROB(ARRAYX, ARRAYPROB, LOWER_LIMIT, UPPER_LIMIT)

Returns the probability that values in a range are between two limits.
Arrayx is the range of numeric values of x with which there are associated
probabilities. Arrayprob is a set of probabilities associated with values in
Arrayx. Lower_limit is the lower bound on the value for which you want a
probability. Upper_limit is the optional upper bound on the value for which
you want a probability if not supplied the function returns the probability
that values in Arrayx are equal to Lower_limit.

Example
CALC.prob([0,1,2,3], [0.2,0.3,0.1,0.4], 1, 3);
// returns 0.8 (probability that x lies within 1 and 3)

CALC.QUARTILE(ARRAY, QUART)

Returns the quartile of a data set. Argument array is the array of numeric
values for which you want the quartile value. Argument quart (0 to 4)
indicates which value to return.

Example
CALC.quartile([1,2,4,7,8,9,10,12], 1);
// returns 3.5 (first quartile (25 percentile))

CALC.RANK(NUMBER, ARRAY, ORDER)

Returns the rank of a number in a list of numbers. The rank of a number is
its size relative to other values in a list. Number is the number whose rank
you want to find. Array is an array numbers. Nonnumeric values in Array
are ignored. Order is a number (0 or 1) specifying how to rank number. (0 =
from top, 1 = from bottom).

Example
CALC.rank(7,[1,2,4,7,8,9,10,12],1);
// returns 4; the value '7' is fourth from bottom

GENERAL JAVASCRIPT FUNCTIONS

2093 of 2477

CALC.rank(7,[1,2,4,7,8,9,10,12],0);
// returns 5; the value '7' is fifth from top

CALC.RSQ(KNOWN_Y_VALUES, KNOWN_X_VALUES)

Returns the square of the Pearson product moment correlation coefficient
through data points in known_y_values and known_x_values.

CALC.SKEW(ARRAY)

Returns the skewness of a distribution. Skewness characterizes the degree
of asymmetry of a distribution around its mean.

Example
CALC.skew([3,4,5,2,3,4,5,6,4,7]);
// returns 0.35954

CALC.SLOPE(ARRAYY, ARRAYX)

Returns the slope of the linear regression line through data points in arrayx
and arrayy. arrayx is an array or cell range of numeric independent data
points. arrayy is an array or cell range of numeric dependent data points.

CALC.SMALL(ARRAY, K)

Returns the k-th smallest value in a data set. Array is an array or range of
numerical data for which you want to determine the k-th smallest value. K is
the position (from the smallest) in the array of data to return.

CALC.STANDARDIZE(X, MEAN, STANDARD_DEV)

Returns a normalized value from a distribution characterized by mean and
standard_dev. X is the value you want to normalize. Mean is the arithmetic
mean of the distribution. Standard_dev is the standard deviation of the
distribution.

Example
CALC.standardize(42, 40, 1.5);
// returns 1.3333 (standardized value for 42)

CALC.STDEV(ARRAY)

Estimates standard deviation based on a range of data. The standard
deviation is a measure of how widely values are dispersed from the average
value. The standard deviation is calculated using the “unbiased” or “n-1”
method. Text and Boolean values are ignored.

Example
CALC.stdev(
[1345,1301,1368,1322,1310,1370,1318,1350,1303,1299]);
// returns 27.46391

GENERAL JAVASCRIPT FUNCTIONS

2094 of 2477

CALC.STDEVA(ARRAY)

Estimates standard deviation based on a range of data. The standard
deviation is calculated using the “unbiased” or “n-1” method. Text values
are ignored. Boolean values are considered to be 1 (true) or 0 (false).

Example
CALC.stdeva(
[true, false,1345,1301,1368,1322,1310,
 1370,1318,1350,1303,1299]);
// returns 517.5588

CALC.STDEVP(ARRAY)

Calculates standard deviation based on the entire population. The standard
deviation is calculated using the “biased” or “n” method.

Example
CALC.stdevp(
[1345,1301,1368,1322,1310,1370,1318,1350,1303,1299]);
// returns 26.05455

CALC.STDEVPA(ARRAY)

Calculates standard deviation based on the entire population. The standard
deviation is calculated using the “biased” or “n” method. Text values are
ignored. Boolean values are considered to be 1 (true) or 0 (false).

CALC.STEYX(ARRAYY, ARRAYX)

Returns the standard error of the predicted y-value for each x in the
regression. Arrayy is an array or range of dependent data points. Arrayx is
an array or range of independent data points.

Example
CALC.steyx([2,3,9,1,8,7,5], [6,5,11,7,5,4,4]);
// returns 3.3057

CALC.TRIMMEAN(ARRAY, PERCENT)

Returns the mean of the interior of a data set by excluding a percentage of
data points from the top and bottom tails of a data set. You can use this
function when you wish to exclude outlying data from your analysis. Array
is the array or range of values to trim and average. Percent is the fractional
number of data points to exclude from the calculation.

Example
CALC.trimmean([4,5,6,7,2,3,4,5,1,2,3], 0.2);
// returns 3.777
(mean of the data set with 20% of the values eliminated, 10%
from front and 10% from the back)

GENERAL JAVASCRIPT FUNCTIONS

2095 of 2477

CALC.VARN(ARRAY)

Estimates variance based on a sample. Sum of the squares of the deviations
from the mean of each sample divided by number of samples -1. Text and
Boolean values are ignored.

CALC.VARA(ARRAY)

Estimates variance based on a sample. Text values are ignored. Boolean
values are considered to be 1 (true) or 0 (false).

Example
CALC.vara(
[1345,1301,1368,1322,1310,1370,1318,1350,1303,1299]);
// returns 754.266

CALC.VARP(ARRAY)

Estimates variance based on the entire population. Sum of the squares of
the deviations from the mean of each sample divided by number of
samples.

Example
CALC.varp(
[1345,1301,1368,1322,1310,1370,1318,1350,1303,1299]);
// returns 678.8399

JS.7.6 Text Functions

This section presents the text functions provided by the CALC object.

CALC.CHARACTER(NUMBER)

Returns the character specified by a number.

Example
CALC.character(77);
// returns M

CALC.CODE(STRING)

Returns a numeric code for the first character in a text string.

Example
CALC.code(‘jsd’);
// returns 106

CALC.CONCATENATE(ARRAY)

Joins several text strings in the array into one single text string.

GENERAL JAVASCRIPT FUNCTIONS

2096 of 2477

Example
CALC.concatenate([‘madam’,’i’,’am’,’adam’]);
// returns madamiamadam

CALC.DOLLAR(NUMBER, DECIMALS)

Converts a number to text format and applies a currency symbol. Decimals
is the number of digits to the right of the decimal point.

CALC.EXACT(STRING1, STRING2)

Compares two text strings and returns TRUE if they are exactly the same,
FALSE otherwise. EXACT is case-sensitive but ignores formatting
differences.

CALC.FIND(STRING1, STRING2, SEARCH_INDEX)

Finds the location of the first occurrence of string1 within string2,
starting the search from position specified by search_index. (The first
character is at index 1).

Example
CALC.find(‘asd’,’asdqwertasd’, 6);
// returns 9

CALC.FIXED(NUMBER, DECIMALS, NO_COMMAS)

Rounds a number to the specified number of decimals, formats the number
in decimal format using a period and commas and returns the result as text.
Number is the number you want to round and convert to text. Decimals is the
number of digits to the right of the decimal point. No_commas is a Boolean
value that, if true, prevents the function from including commas in the
returned text.

Example
CALC.fixed(1234.567, 2, false);
// returns 1,234.57

CALC.LEFT(STRING, NUM_CHARS)

 Returns num_char number of characters from the left of a text string.

Example
CALC.left(‘abcdefghij’, 4);
// returns abcd

CALC.LEN(STRING)

 Returns the number of characters in a text string.

GENERAL JAVASCRIPT FUNCTIONS

2097 of 2477

CALC.LOWER(STRING)

Converts all uppercase characters in a string to lowercase.

CALC.MID(STRING, START_NUM, NUM_CHARS)

Returns a specific number of characters from a text string, starting at the
position you specify, based on the number of characters you specify.

Example
CALC.mid(‘abcdefghij’, 2, 4);
// returns bcde

CALC.PROPER(STRING)

Capitalizes the first letter of all the words in a text string.

Example
CALC.proper(‘my name is alex’);
// returns ‘My Name Is Alex’

CALC.REPLACE(OLD_STRING, START_NUM, NUM_CHARS, NEW_STRING)

Replaces part of a text string, based on the number of characters you
specify, with a different text string. Old_string is text in which you want to
replace some characters. Start_num is the position of the character in
Old_string that you want to replace with New_string. Num_chars is the
number of characters in Old_string that you want to replace with
New_string.

Example
CALC.replace(‘abcdefghijkl’,6,5,’*’);
// returns abcde*kl
(replaces 5 characters of the string with ‘*’ starting from
the 6th character)

CALC.REPT(TEXT, NUMBER_TIMES)

Repeats text a given number of times (concatenates the text to itself).

CALC.RIGHT(STRING, NUM_CHARS)

Returns num_char number of characters from the right of a text string. See
left() for sample script.

CALC.SEARCH(FIND_STRING, WITHIN_STRING, START_NUM)

Locates one text string within a second text string and returns the starting
position of the first text string from the first character of the second text
string.(The first character of a string has index 1.)

GENERAL JAVASCRIPT FUNCTIONS

2098 of 2477

Example
CALC.search(‘e’,’statements’, 6);
// returns 7

CALC.SUBSTITUTE(TEXT, OLD_TEXT, NEW_TEXT, INSTANCE_NUM)

Substitutes New_text for Old_text in a text string. Use this function when
you want to replace specific text in a text string; use replace() when you
want to replace any text that occurs in a specific location in a text string.
Text is the text or the reference to a cell containing text for which you want
to substitute characters. Instance_num specifies which occurrence of
Old_text you want to replace.

Example
CALC.substitute(‘asd/pqr/xyz’,’/’,’-’, 1);
// returns asd-pqr/xyz (substitutes instance 1 of ‘/’ with
‘-’)

CALC.T(VALUE)

Returns the text referred to by Value. Value can be any type of data if it is
text data then the functions returns the parameter passed, if it is numerical
or Boolean data then the function returns an empty string.

Example
CALC.t(‘asd’);
// returns asd

CALC.t(true); or var t = CALC.t(56);
// returns ‘’

CALC.TEXT(VALUE, FORMAT_TEXT)

Converts a numeric value to text based on a certain format.

Example
CALC.text(2800, ‘$0.00’);
// returns ‘$2800.00’

CALC.TRIM(STRING)

Removes all white spaces from a string except single spaces between
words.

CALC.UPPER(STRING)

Converts string to uppercase.

CALC.VALUE(STRING)

Parses a string to a numeric value.

GENERAL JAVASCRIPT FUNCTIONS

2099 of 2477

JS.8 Regular Expression Object Functions

A regular expression object contains the pattern of a regular expression. It
has properties and methods for using the regular expression to find and
replace matches in strings. A regular expression can be created as a literal:

re = /.*JavA.*/i;

Alternatively, it can be used to created using the RegExp constructor:

re = new RegExp('.*JavA.*', 'i');

A regular expression can be used in the String.match() or String.search()
method to find the regular expression in a string, or evaluated against a
string using one of the RegExp methods.

COMPILE(PATTERN[, FLAGS])

Compile a regular expression.

EXEC(STR)

Execute the search for a match in a string and returns a result array

TEST(STR)

Execute the search for a match in a string and returns true if the match is
found and false otherwise.

Examples
var re = new RegExp(".*JavA.*", 'i');
var found = re.test(str);

JS.9 Java Objects (LiveConnect)

The JavaScript engine used in Style Intelligence supports the LiveConnect
feature, which allows a JavaScript script to access Java classes and objects.
This is particularly useful in Style Intelligence because the host
environment is running inside a Java virtual machine and many properties
of the report elements require Java objects.

A Java object can be created using the ‘new’ operator.

Text1.foreground = new java.awt.Color(0xFF0000);

The Java class name must be fully qualified in the ‘new’ expression. Once
a Java object is created, its properties and methods can be accessed from
the script. The properties are discovered by search for the getter and setter
methods etc. A getter method is a non-void method starting with ‘get’ and
has an empty parameter list. A setter method is a void method starting with

GENERAL JAVASCRIPT FUNCTIONS

2100 of 2477

‘set’ and accepts a single parameter. The name following the ‘get’ and ‘set’
is used as the property name with the first letter converted to lowercase.

If property has only a getter method, it is marked as a read-only property.
Assignment to the property is ignored.

var rgb = Text1.foreground.red; // Color.getRed()

Other public methods in the Java object are accessible as JavaScript
methods in a script.

Text1.foreground = Text1.foreground.darker();
// Color.darker()

JS.10 JavaScript Statements

JavaScript statement syntax is very similar to Java statement syntax. Some
important language constructs are introduced in the following sections:

• Variable Definition

• Function Definition

• The ‘if’ Statement

• The ‘try-catch’ Statement

• Iteration Statements

• The ‘switch’ Statement

• The ‘with’ Statement

JS.10.1Variable Definition

A variable statement inside a function declares a local variable. A variable
statement outside of a function body declares a global variable.

var val;
var array1 = [1, 2, 3];

JS.10.2Function Definition

The ‘function’ keyword introduces a new function in the global scope.
Once a function is defined, it can be called in other parts of the script.

function sum(array1) {
var total = 0;

for(var idx = 0; idx < array1.length; idx++) {
total += array1[idx];

}

return total;
}

var total = sum(array2);

GENERAL JAVASCRIPT FUNCTIONS

2101 of 2477

JS.10.3The ‘if’ Statement

The if conditional structure executes the statements within the ‘if’ block
only when the specified condition is true. Alternative conditions can be
tested by using one or more optional ‘else if’ blocks. An optional final
‘else’ block will be executed if all other conditions evaluate false.

if(condition0) {
statements to execute if condition0 is true

}
else if(condition1) {
statements to execute if condition1 is true

}
else if(condition2) {
statements to execute if condition2 is true

}
else if(condition3) {
statements to execute if condition3 is true

}
else {
statements to execute if all above conditions are false

}

See Also
Appendix JS.10.6, The ‘switch’ Statement, to conveniently test a larger set
of conditions.

JS.10.4The ‘try-catch’ Statement

The “try-catch” construction allows you to catch a script error before it
causes report execution to fail. To catch an error, place the desired sequence
of code inside a “try” block. If any line of this “try” code generates an error,
program execution immediately jumps to the code in the “catch” block.

try {
// Code to try

}
catch(err) {
// Alternative code for case of error

}
finally {
// Code to execute in either case

}

The “err” parameter contains the exception message that was generated by
the try block. The “finally” block contains code to be executed whether an
error occurred or not. The “catch” block and “finally” block are optional,
but cannot both be omitted.

JS.10.5 Iteration Statements

A ‘for’ loop consists of three optional expressions, enclosed in parentheses
and separated by semi-colons.

for([init-expression];[condition];[increment-expression]) {
statements;

}

GENERAL JAVASCRIPT FUNCTIONS

2102 of 2477

The initial-expression is evaluated before the loop starts. It is normally used
to declare and initialize a counter variable. The condition statement is
evaluated at the beginning of every loop. If the condition is true, the
statements are executed. Otherwise, the loop terminates. The increment-
expression is executed after the body statements. It is normally used to
increment the counter variable.

for(var idx = 0; idx < array1.length; idx++) {
...

}

A special ‘for’ loop allows iteration through all properties of an object. If
the object is an array, each item in the array is treated as a property.

var props = "";
for(var item in obj) {
props += item + " = " + obj[item];

}

A ‘while’ statement is a loop with a single condition. The condition is
evaluated at the beginning of every loop. If the condition is true, the body
of the loop is executed. Otherwise, the loop is terminated.

while(condition) {
statements;

}

A slight variation of the ‘while’ statement is ‘do...while’. Instead of
evaluating the condition at the beginning of the loop, ‘do...while’ statement
evaluates the condition at the end of a loop. This guarantees the loop is at
least executed once.

do {
statements

} while(condition);

A loop can be terminated in the body by inserting a ‘break’ statement. A
‘break’ statement causes the execution to immediately transfer to the point
following the end of the loop.

Similarly, a ‘continue’ statement interrupts the execution of a loop and
transfer the execution to the end of the loop block.

JS.10.6The ‘switch’ Statement

A ‘switch’ statement evaluates an expression and matches its result with a
list of choices. If a match is found, the statements under the choice are
executed. Otherwise, if a ‘default’ label exists, the statements in the default
block are executed.

switch(expression) {
case label:
statements;

GENERAL JAVASCRIPT FUNCTIONS

2103 of 2477

break;
case label:
statements;
break;
...

default:
statements;

}

See Also
Appendix JS.10.3, The ‘if’ Statement, to conveniently test a small set of
conditions.

JS.10.7The ‘with’ Statement

A ‘with’ statement establishes an object as the default object for a set of
statements.

with(object) {
statements;

}

The properties and methods of the object can be referenced without
qualifying the names with the object name.

with(Text1) {
text = "contents of this text element";

}

JS.11 JavaScript Name/Value Pairs

You can use the following forms to create objects in JavaScript:

• color: {r:255, g:255, b:255}

• insets: {top:0, left:0, bottom:0, right:0}

• dimension: {width:2, height:2}

• point: {x:1, y:1} or {row:3, column:2}

• position: {x:3.3, y:1.2}

• size: {width:2.5, height:3.0}

• hyperlink:

{link:"report2", target:"reportFrame", tooltip:"Hello",
type:"report", sendReportParameters:true, state:"NJ",
date:new Date()}

The type can be a report, web, or archive, and parameters can be added as
name/value pairs, e.g., state, date.

• shape: {type:rectangle, x:0, y:0, width:20, height:30}; Here, type
can be an ellipse.

GENERAL JAVASCRIPT FUNCTIONS

2104 of 2477

JS.12 JavaScript Operators

The operators in JavaScript are almost identical to the operators in Java:

JS.12.1Assignment Operators

An assignment operator assigns a value to its left operand based on the
value of its right operand.

x = y;

Arithmetic operators and bitwise operators can be combined with the
assignment operator as a short hand for performing a computation and
assigning the results to a variable.

x += y;

JS.12.2Comparison Operators

A comparison operator compares two values and returns ‘true’ or ‘false’
depending on the comparison result.

JS.13 StyleConstant Object

The StyleConstant object is a static object that contains all definitions for
constants used in the Style Intelligence host environment. These constants
can be accessed without creating an instance of a StyleConstant object, as
shown below:

line = StyleConstant.DOUBLE_LINE

ALIGNMENTS

Alignment constants are defined for horizontal or vertical directions. By
using a bitwise OR of the values, the alignment options can be combined.

OPERATOR DESCRIPTION

== Equal

!= Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

ALIGNMENT DESCRIPTION

H_LEFT Left alignment
H_CENTER Horizontal centered alignment
H_RIGHT Right alignment
V_TOP Top alignment
V_CENTER Vertical centered alignment

GENERAL JAVASCRIPT FUNCTIONS

2105 of 2477

Type
integer

Example
alignment = StyleConstant.H_RIGHT | StyleConstant.V_CENTER;

See Also
Alignment Property, in Report Scripting, for more information on setting
report alignments.
Alignment Property, in Dashboard Scripting, for more information on
setting Viewsheet alignments.

CHART STYLES

The chart style constants specify how a chart presents its data. It is
recommended to access these constants through the Chart Styles property
of the Chart Constants.

Type
integer

V_BOTTOM Bottom alignment
V_BASELINE Character baseline alignment
FILL Fill in whole space
LEFT Synonym for H_LEFT
CENTER Synonym for H_CENTER
RIGHT Synonym for H_RIGHT

CHART STYLE DESCRIPTION

CHART_AUTO Automatic style selection
CHART_PARETO Pareto chart.
CHART_LINE Line chart
CHART_LINE_STACK Stacked line chart
CHART_POINT Point chart
CHART_BAR 2D bar chart
CHART_BAR_STACK Stacked bar chart
CHART_PIE 2D pie chart
CHART_3D_BAR 3D bar chart
CHART_3D_BAR_STACK 3D stacked bar chart
CHART_3D_PIE 3D pie chart
CHART_STOCK High-low-closing chart
CHART_AREA Area chart
CHART_AREA_STACK Stacked area chart
CHART_RADAR Radar chart
CHART_FILL_RADAR Filled radar chart
CHART_CANDLE Candle chart
CHART_WATERFALL Waterfall chart

GENERAL JAVASCRIPT FUNCTIONS

2106 of 2477

LINE STYLES

The line style constants can be used in all properties requiring line style
constants, such as separator style, tab fill style, and table borders.

Type
integer

Example
style = StyleConstant.DOT_LINE;

PAINTER LAYOUT

Painter element layout controls how a painter element is laid out when it is
bigger than the remaining space of a page.

LINE STYLE DESCRIPTION

 NO_BORDER No line
 ULTRA_THIN_LINE Very thin line at ¼ of a point width
 THIN_THIN_LINE Very thin line at ½ of a point width
 THIN_LINE Thin line at one point width
 MEDIUM_LINE Medium width line
 THICK_LINE Thick width line
 DOUBLE_LINE Double line
 RAISED_3D Raised 3D line
 LOWERED_3D Lowered 3D line
 DOUBLE_3D_RAISED Raised double 3D line
 DOUBLE_3D_LOWERED Lowered double 3D line
 DOT_LINE Dotted line
 DASH_LINE Dash line
 MEDIUM_DASH Medium size dash line
 LARGE_DASH Large size dash line
 BREAK_BORDER A special line style that signals a page break in

a table row. This line style can only be used in
the table border.

LAYOUT DESCRIPTION

 PAINTER_NON_BREAK If a painter is larger than the remaining page,
advance to the next page. If the painter is
larger than the entire page, draw the top
portion in a page and ignore the remaining
part.

 PAINTER_BREAKABLE If a painter is larger than the remaining page,
print the portion that can fit in the available
space and continue to the next page for the
remaining part.

GENERAL JAVASCRIPT FUNCTIONS

2107 of 2477

Type
integer

Example
layout = StyleConstant.PAINTER_BREAKABLE;

POINT SHAPES

The point shape constants can be used to specify the shape used in a point
chart.

CIRCLE
TRIANGLE
SQUARE
CROSS
STAR
DIAMOND
X
FILLED_CIRCLE
FILLED_TRIANGLE
FILLED_SQUARE
FILLED_DIAMOND

Type
integer

Example
chartDescriptor.plotDescriptor.setPointStyle(0,
StyleConstant.FILLED_CIRCLE);

TABLE LAYOUT

Table layout affects the table size calculation and table placement on a
report.

Type
integer

Example
layout = StyleConstant.TABLE_FIT_CONTENT_PAGE;

LAYOUT DESCRIPTION

TABLE_FIT_CONTENT Calculate the column width to fit the
largest cell in each column

TABLE_FIT_PAGE Resize a table to fit the width of a page
TABLE_EQUAL_WIDTH Assign the same width to each column
TABLE_FIT_CONTENT_1PP Same as TABLE_FIT_CONTENT, but

only put one table region on each page
TABLE_FIT_CONTENT_PAGE Same as TABLE_FIT_CONTENT, but

resize the table segments to fit the width
of a page after table has been broken up
into regions.

GENERAL JAVASCRIPT FUNCTIONS

2108 of 2477

TEXTBOX SHAPES

The TextBox shape constants can be used to change the shape of a textbox.

BOX_RECTANGLE
BOX_ROUNDED_RECTANGLE

Type
integer

Example
shape = StyleConstant.BOX_ROUNDED_RECTANGLE;

WRAPPING STYLE

Wrapping style defines how contents flow around a painter object.

Type
integer

Example
wrapping = StyleConstant.WRAP_RIGHT;

WRAPPING STYLE DESCRIPTION

WRAP_NONE No wrapping. The painter element is printed as a
background. The content flows on top of this
painter.

WRAP_LEFT Allow contents to wrap around the painter on the
left.

WRAP_RIGHT Allow contents to wrap around the painter on the
right.

WRAP_BOTH Allow contents to wrap on both sides of the
painter.

WRAP_TOP_BOTTOM No wrapping around either sides of the painter.

CHART SCRIPT TUTORIAL

2109 of 2477

APPENDIX CT:Chart Script Tutorial

This appendix provides a set of chart examples to illustrate some common
chart scripting tasks, such as color-coding data, changing labels and axes,
and positioning chart annotations.

The scripts in this appendix can be used for both report Charts (using Style
Studio) and Viewsheet Charts (using Visual Composer). However, there
are some differences in how charts are configured in these different
environments. See the references for further information.

See Also
Dashboard Scripting, for information on scripting for Viewsheets.
Report Scripting, for information on scripting for Reports.
Creating a Chart Using API Functions, for basic chart setup.
Appendix CR:Chart Script Reference, for complete information on all API
functions.

CT.1 Modifying Chart Properties
To modify the basic properties of a Chart element, simply specify the
desired property value in the onLoad Handler or Element Script. The
following sections provide some basic examples of property modifications.

Whenever possible, use the syntax auto-completion feature to enter
legitimate property names and values. (See Editing Script for reports, or
Adding Script to a Viewsheet for dashboards.)

See Also
onLoad Handler, in Report Scripting, for information on the report handler.
onLoad Handler, in Dashboard Scripting, for information on the
Viewsheet handler.
Element Script, in Report Scripting, for information on scripting report
elements
Adding Component Script, in Dashboard Scripting, for information on
scripting Viewsheet elements

CT.1.1Modifying the Chart Style

To modify the style of a chart in script (e.g., line, bar, pie, etc.), use the
‘singleStyle’ or ‘separatedStyle’ attributes:

You can switch
between ‘Single
Graph’ and ‘Separate
Graph’ in the ‘Data
Binding’ dialog box.

• Use ‘singleStyle’ when the chart is in ‘Single Graph’ mode. In ‘Single
Graph’ mode, you can assign a different style to each individual dataset.

• Use ‘separatedStyle’ when the chart is in ‘Separate Graph’ mode. In
‘Separate Graph’ mode, you can assign a single style to all datasets.

CHART SCRIPT TUTORIAL

2110 of 2477

For example, if you want to parameterize the style of a chart (‘Separate
Graph’), you could prompt the user for a parameter called ‘Chart Style’.
Then access this parameter in the chart script and modify the chart style
accordingly.

if (parameter['Chart Style'] == 'bar') {
Chart1.separatedStyle=Chart.CHART_BAR;

}
else if (parameter['Chart Style'] == 'line') {

Chart1.separatedStyle=Chart.CHART_LINE;
}

CT.1.2Modifying Axis Title Text

To modify axis title text, use xTitle.text (x2Title.text) and yTitle.text,
(y2Title.text).

Use auto-complete for
correct syntax.

Chart1.xTitle.text = 'Text to go below bottom X-axis'
Chart1.x2Title.text = 'Text to go above top X-axis'

CT.1.3Modifying Axis Properties

To modify axis properties, including labels, visibility, tick marks, etc., use
the “axis” properties (axis.font, axis.minimum, axis.labelColor,
axis.format, etc.).

Use auto-complete for
correct syntax. Type
“.” after “axis” to see
prompt.

Chart1.axis.Employee.font = 'Comic Sans MS-BOLD-12'
Chart1.axis.Employee.ticksVisible = false
Chart1.axis.Employee.labelColor = [0,0,255]
Chart1.axis['Sum(Total)'].logarithmic = true
Chart1.axis['Sum(Total)'].minimum = 10000
Chart1.axis['Sum(Total)'].format = [Chart.DECIMAL_FORMAT,
"#,###.00"];

See Also
Appendix CR.1.2 , General Axis Properties, for general axis
characteristics.
Appendix CR.1.3 , Measure Axis Properties, for numeric axis
characteristics.
Appendix CR.1.4 , Title Properties, for axis title characteristics.
Appendix CR.1.5 , Plot Properties, for plot area characteristics.

CT.2 Modifying a Chart Data Binding
The bindingInfo property of a Chart provides access to the data binding
options in the Chart’s ‘Data Binding’ dialog box. This includes the binding
of fields to the X-axis, Y-axis, and VisualFrames (Color, Shape, etc.), as
well as grouping and summarization settings.

Walkthrough In the following example, you will bind a chart to the ‘All Sales’ query, set
the axis bindings, define a subseries, and set grouping and summarization.
Follow the steps below:

CHART SCRIPT TUTORIAL

2111 of 2477

1. Create a new report or Viewsheet. (For a Viewsheet, select the ‘All
Sales’ query as the data source.)

2. Add a new Chart element to the report or Viewsheet.

Note: bindingInfo modifications must be made prior to query
execution. Therefore, attach bindingInfo scripts to the onLoad
Handler.

3. Open the Script Editor for the onLoad Handler:

a. For a report, right-click an empty area of the report and select
‘Script’ from the context menu.

b. For a Viewsheet, press the ‘Options’ button in the toolbar to
open the ‘Viewsheet Options’ dialog box, then click the Script
tab.

4. In the Script Editor, enter the commands below to bind the chart to
the ‘All Sales’ query.

For a report:

Chart1.query = "All Sales";

For a Viewsheet:

Note: The Viewsheet
must be based on the
‘All Sales’ query.

Chart1.data = "All Sales";

5. Specify query fields to bind to the X-axis (‘Company’) and Y-axis
(‘Total’):

Chart1.bindingInfo.xFields = [["Company",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Total",Chart.NUMBER]];

6. Set the aggregation/summarization method:

Chart1.bindingInfo.setFormula("Total",Chart.MAX_FORMULA)

7. Set the desired grouping options (e.g., top-N filtering):

Chart1.bindingInfo.setTopN("Company",5)
Chart1.bindingInfo.setTopNReverse("Company",false)
Chart1.bindingInfo.setTopNSummaryCol("Company",

"Max(Total)");

8. Specify the query fields to bind to a “VisualFrame,” (i.e., for visual
coding as subseries):

Chart1.bindingInfo.setColorField("Employee",Chart.STRING);

9. Close the Editor, an preview the report.

CHART SCRIPT TUTORIAL

2112 of 2477

The complete script is shown below:

Chart1.query = "All Sales"; // report
Chart1.data = "All Sales"; // Viewsheet

Chart1.bindingInfo.xFields = [["Company",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Total",Chart.NUMBER]];
Chart1.bindingInfo.setFormula("Total",Chart.MAX_FORMULA)
Chart1.bindingInfo.setTopN("Company",5)
Chart1.bindingInfo.setTopNReverse("Company",false)
Chart1.bindingInfo.setTopNSummaryCol("Company","Max(Total)"
);
Chart1.bindingInfo.setColorField("Employee",Chart.STRING);

See Also
bindingInfo.xFields, bindingInfo.yFields
bindingInfo.setFormula(col, formula, binding)
bindingInfo.setTopN(col,N), bindingInfo.setTopNReverse(col,boolean)
bindingInfo.setTopNSummaryCol(col,agg)
bindingInfo.setColorField(col, type)
Binding Data to a Chart Element, in Report Design, for information on the
‘Data Binding’ dialog box.
Modifying a Chart Element using API Functions, to modify other aspects
of an existing chart.
Creating a Chart Using API Functions, to script a chart from the ground-
up.
Appendix CR.1.6 , The Chart bindingInfo Property, for all binding
properties.

CT.3 Modifying a Chart Element using API Functions
The Chart API provides access to charting engine commands using Java
object syntax. You can use these commands to directly modify the
graphical elements displayed by a Chart.

Walkthrough In this example, you will first bind a chart to a data source, and then make
further modifications to the chart display by using Chart API commands.
Follow the steps below:

1. Create a new report or Viewsheet. (For a Viewsheet, select the ‘All
Sales’ query as the data source.)

CHART SCRIPT TUTORIAL

2113 of 2477

2. Add a new Chart element to the report or Viewsheet.

3. For a report, click on the Chart to open the Chart Editor. For a
Viewsheet, press the ‘Edit’ button at the top-right of the Chart.

4. For a report, in the Data panel, expand the ‘Orders’ data source and
the ‘All Sales’ query. For a Viewsheet, in the Data Source panel,
expand the ‘All Sales’ data block.

5. Drag the ‘Employee’ field to the ‘X’ region.

6. Follow the steps below to bind the ‘Total’ field so that it provides
three different measures (maximum, minimum, and average) on
the chart:

a. From the ‘All Sales’ source, drag the ‘Total’ field to the ‘Y’
region.

b. Click the ‘Edit Measure’ button next to the ‘Total’ field. Set the
‘Aggregate’ to ‘Max’, and click the green ‘Apply’ button.

c. From the ‘All Sales’ source, drag the ‘Total’ field (a second
time) to the ‘Y’ region.

d. Click the ‘Edit Measure’ button next to the second ‘Total’ field.
Set the ‘Aggregate’ to ‘Min’, and click the green ‘Apply’
button.

e. From the ‘All Sales’ source, drag the ‘Total’ field (a third time)
to the ‘Shape’ region of the ‘Visual’ area.

f. Click the ‘Edit Measure’ button next to the third ‘Total’ field.
Set the ‘Aggregate’ to ‘Average’, and click the green ‘Apply’
button.

CHART SCRIPT TUTORIAL

2114 of 2477

7. Click the ‘Select Chart Style’ button. Double-click to select the
Point Style chart.

The Chart Editor should now appear as shown below:

8. Click the ‘Preview’ button the toolbar to preview the report or
Viewsheet.

The chart shows maximum and minimum totals for each
employee, and the chart shape-coding (interior fill) displays the
average totals.

Note that the interior fill, ‘Average(Total)’, is the same for both datasets, so
it is not needed in both locations. In the next steps, you will change the
‘Min(Total)’ markers to a solid red arrow-shape. You will also increase the

CHART SCRIPT TUTORIAL

2115 of 2477

size of the ‘Max(Total)’ markers so that the fill level is more visible. To
make these changes, you will use Chart API functions.

Note: Chart API script which operates on the Chart’s 'Egraph'
property should be placed in element-level script.

9. Open the Script Editor as follows:

a. In a report, right-click on the chart and select ‘Script’ from the
context menu.

b. In a Viewsheet, right-click the chart and select ‘Properties’ from
the context menu. Then select the Script tab.

10. Use script commands to create the required StaticShapeFrame,
StaticColorFrame, and StaticSizeFrame objects.

// Create arrow-shaped markers:
var shpframe = new StaticShapeFrame(GShape.ARROWBAR);

// Create static red color:
var colframe = new
StaticColorFrame(java.awt.Color(0xFF0000));

// Create static size of 10 pixels:
var sizframe = new StaticSizeFrame(10);

11. Obtain a handle to each of the two datasets (element sets) by using
the EGraph.getElement(index) method.

var elem0 = graph.getElement(0); // Max point element
var elem1 = graph.getElement(1); // Min point element

12. Assign the visual frames to the appropriate data elements using the
element’s GraphElement.setShapeFrame(frame),
GraphElement.setColorFrame(frame), and
GraphElement.setSizeFrame(frame) properties.

elem1.shapeFrame = shpframe; // Min point element
elem1.colorFrame = colframe; // Min point element
elem0.sizeFrame = sizframe; // Max point element

13. Close the Script Editor, and preview the report or Viewsheet.

The complete script is shown below, along with the resulting graph.

var shpframe = new StaticShapeFrame(GShape.ARROWBAR);
var colframe = new
StaticColorFrame(java.awt.Color(0xFF0000));
var sizframe = new StaticSizeFrame(10);
var elem0 = graph.getElement(0); // Max point element
var elem1 = graph.getElement(1); // Min point element
elem1.shapeFrame = shpframe;
elem1.colorFrame = colframe;
elem0.sizeFrame = sizframe;

CHART SCRIPT TUTORIAL

2116 of 2477

See Also
Creating a Chart Using API Functions, to create a chart from the ground-
up using script.
Modifying a Chart Data Binding, to modify data binding information.
Appendix CT:Chart Script Tutorial, for examples of modifying chart
elements.
Appendix CR:Chart Script Reference, for information on objects and
attributes.
API Documentation for the inetsoft.graph.* packages.

CT.4 Creating a Chart Using API Functions
Previous sections explained how to modify the data binding and element
properties of an existing chart. This section explains how to create a new
chart (from the ground-up) using Chart API commands.

Note that charts created by script do not provide end-user interactivity
features. Therefore, for script-based charts you should deselect ‘Enable Ad
Hoc Editing’ in the ‘Chart Properties’ dialog box (Advanced tab).

Walkthrough In this example, you will create a new chart, define the chart data, and
display the data on the chart. Follow the steps below.

1. Add a new chart to the report or Viewsheet.

Note: Chart API script (which operates on the Chart’s 'Egraph'
property) should be placed in element-level script.

2. Open the Script Editor as follows:

a. In a report, right-click on the chart and select ‘Script’ from the
context menu.

b. In a Viewsheet, right-click the chart and select ‘Properties’ from
the context menu. Then select the Script tab.

Tip: To reference
chart data, use the
DataSet object.

3. Define the data: Define the dataset for the chart using the Chart’s
Data property.

data = runQuery("sales by state");

CHART SCRIPT TUTORIAL

2117 of 2477

For reports, you will generally obtain the data from a query, Work-
sheet, or data model by using runQuery(). In Viewsheets, you can
additionally bind data from any available Data Block. You can also
define your own dataset in script by assigning a JavaScript array to
the data or dataset property. See Binding Data to a Chart in Script
for more details.

EGraph is the global
chart object, which
includes all axes, leg-
ends, visual elements,
etc.

4. Create the Chart object. Create a new graph using the EGraph
constructor. Assign it to the Chart’s graph property.

graph = new EGraph();

5. Create the chart data elements. Pass the field names (column
headers) to a GraphElement constructor. This creates the
representational elements for the chart.

var elem = new IntervalElement("State", "Sales");

The IntervalElement is a particular type of GraphElement that cre-
ates “bars” or “intervals” as the representational elements. Other
GraphElements, such as PointElement and LineElement, generate
other kinds of chart types, such as scatter plots and line plots,
respectively.

6. Add the created elements to the Chart object. Pass the
GraphElement object to the Chart’s EGraph.addElement(elem)
method. This adds the “bar” elements to the existing Chart object.

graph.addElement(elem);

7. Close the Script Editor and preview the report or Viewsheet.

These are the basic operations required to create a new chart (from the
ground-up) using the Chart API. The complete script is shown below,
along with the resulting chart.

data = runQuery("sales by state");
graph = new EGraph();
var elem = new IntervalElement("State", "Sales");
graph.addElement(elem);

CHART SCRIPT TUTORIAL

2118 of 2477

See Also
Modifying a Chart Element using API Functions, to modify an existing
chart.
Modifying a Chart Data Binding, to modify data binding information.
Appendix CT:Chart Script Tutorial, for examples of modifying chart
elements.
Appendix CR:Chart Script Reference, for information on objects and
attributes.
API Documentation for the inetsoft.graph.* packages.

CT.5 Binding Data to a Chart in Script
There are several ways to bind data to a chart using script. The following
sections present the various approaches.

CT.5.1Bind Chart Using Chart Editor (Report/Viewsheet)

The easiest way to bind data to a chart is to use the Chart Editor. After you
have bound data to the chart using the Chart Editor, you can proceed to
modify the chart using script operations. You can see an example of this
hybrid approach in Modifying a Chart Element using API Functions.

CT.5.2Bind Chart to Query or Worksheet (Report/
Viewsheet)
Use runQuery() only in element-level script.

To bind data to a chart from an arbitrary query or Data Worksheet in
element-level script, use the runQuery() function and assign the result to
the chart’s data or dataset property.

Chart1.data = runQuery("sales by state");
graph = new EGraph();
var elem = new IntervalElement("State", "Sales");
graph.addElement(elem);

You can see an example of this approach in Creating a Chart Using API
Functions.

See Also
Running a Query from Script in Dashboard Scripting details about the
syntax of runQuery().
Running a Query from Script in Report Scripting for details about the
syntax of runQuery().

CT.5.3Bind Chart to Query or Worksheet (Report Only)
Use the report 'query' property only in onLoad script.

To bind data to a chart from an arbitrary query or Data Worksheet in a
report onLoad script, use the chart’s query property.

CHART SCRIPT TUTORIAL

2119 of 2477

Chart1.query = 'sales by state';
Chart1.bindingInfo.xFields = [["State",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Sales",Chart.NUMBER]];

You can see an example of this approach in Modifying a Chart Data
Binding.

To read Viewsheet
data, use the Views-
heet’s Data property.

CT.5.4Bind Chart to Data Block (Viewsheet Only)

To bind data to one of the Data Blocks available to the Viewsheet, use the
chart’s query property (in element-level or onLoad script).

For example, assume that ‘Orders And Returns’ is the name of a Data
Block.

The following element-level or onLoad script binds this Data Block to the
chart.

Chart1.query = "Orders And Returns";
Chart1.bindingInfo.xFields = [["Company",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Total",Chart.NUMBER]];

You can see an example of this approach in Modifying a Chart Data
Binding.

CT.5.5Bind Chart to JavaScript Array (Report/Viewsheet)
Use array assignment only in element-level script.

You can define a chart dataset entirely in element-level script by setting a
JavaScript array as the data or dataset property.

Chart1.data = [["State","Quantity"],["NJ",200],["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

You can see an example of this approach in Changing Scaling for Chart
Axes.

CT.6 Accessing Chart Data in Script
You can access Chart data in scripts by referencing the Chart’s data or
table property. The table object contains the aggregate values displayed
on the chart (the same values shown by the ‘Show Data’ button in a
Viewsheet Chart). The table object is accessible as a two-dimensional

CHART SCRIPT TUTORIAL

2120 of 2477

array, where each column represents a distinct dataset (measure). The first
column of the array, table[i][0], contains the X-axis labels. The first row
of the array, table[0][i], contains the dataset or measure titles.

For example, consider a chart with two aggregated datasets (measures), as
shown below:

The table object provides access to these aggregate values as the following
array:

table[0][0] = 'DayOfWeek(Day)'
table[0][1] = 'Sum(Measure1)'
table[0][2] = 'Sum(Measure2)'
table[1][0] = 'Sun'
table[1][1] = 1
table[1][2] = 4
table[2][0] = 'Mon'
table[2][1] = 2
table[2][2] = 5
etc.

You can index the datasets (columns) numerically, e.g., table[1][2], or by
using the dataset name, e.g., table[1]['Sum(Measure2)']). You can also
use more complex formula table syntax; see Data in Appendix CR:Chart
Script Reference.

In a Viewsheet chart, the data property and table property are identical. In
a report chart, the data property represents the chart data prior to grouping
and aggregation (i.e., the raw data).

Example:
Accessing Chart
Data

In this example, add a script to display data values on the chart only if the
measure falls below a certain threshold.

1. Create a new report or Viewsheet. (For a Viewsheet, select the
‘Sales Explore’ Worksheet as the data source.)

CHART SCRIPT TUTORIAL

2121 of 2477

2. Add a new Chart element to the report or Viewsheet. (For a
Viewsheet, click the ‘Edit’ button on the Chart to open the Chart
Editor.)

3. Bind the ‘Category’ field of the ‘Sales Explore’ Worksheet to the
chart’s X-axis.

4. Bind both ‘Total’ and ‘Quantity Purchased’ fields of the ‘Sales
Explore’ Worksheet to the chart’s Y-axis. This creates a facet chart
with two sets of axes.

5. Resize the chart to show all data.

6. Open the Chart Script Editor:

a. For a report, right-click on the chart and select ‘Script’ from the
context menu. This opens the Script Editor.

b. For a Viewsheet, right-click on the chart and select ‘Properties’
from the context menu. This opens the ‘Chart Properties’ dialog
box. Select the Script tab

7. Add the following script:

var threshold = 5000;

// Step through the rows of chart data with index i
for (var i = 1; i < table.length; i++) {

// Obtain the ith value of 'Category' and 'Quantity'
var Xvalue = table[i][0];
var Yvalue = table[i]['Sum(Quantity Purchased)'];

// test the value of Quantity against the threshold
if(Yvalue < threshold) {
// Create the label object
var form = new LabelForm();

// Set the label to appear only on Quantity axes
form.setMeasure('Sum(Quantity Purchased)')

// Set the label text
form.setLabel(Yvalue);

// Set the label position and alignment
form.setValues([Xvalue,Yvalue]);
form.setAlignmentX(Chart.CENTER_ALIGNMENT);

// Add the label to the graph
graph.addForm(form)

}
}

8. Press ‘OK’ to close the Script Editor.

CHART SCRIPT TUTORIAL

2122 of 2477

9. Preview the report or Viewsheet.

Observe that values are shown for groups that have totals falling below the
threshold of 5000.

¢

See Also
Data, in Appendix CR:Chart Script Reference, for additional information.

CT.7 Changing Chart Scaling
Some objects, such as
IntervalElement, create
an implicit Scale.

A Scale object determines how abstract data values are mapped to physical
chart representations such as position, color, shape, etc. The EGraph object
and the VisualFrame object both map data values to physical
representations, so both of these objects require a Scale.

CT.7.1Changing Scaling for Chart Axes

To change the scaling of chart axes, simply assign a new Scale to the Chart
object. For example, consider the following chart:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["State","Quantity"], ["CA",200], ["NY",3000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

CHART SCRIPT TUTORIAL

2123 of 2477

Note that in this chart the IntervalElement object implicitly defines a linear
Y-axis scale. However, the data values on the chart are widely different in
magnitude, which suggests that a log scale might be more appropriate.

To change the Y-axis to use a log scale, follow these steps:

1. Define the desired Scale object explicitly. In this case, create a
LogScale based on the ‘Quantity’ field.

var scale = new LogScale("Quantity");

2. Assign the new scale to the Y-axis of the chart object using the
setScale() method.

graph.setScale("Quantity",scale);

The complete script with the new chart scaling looks like this:

dataset = [["State","Quantity"], ["CA",200], ["NY",3000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var scale = new LogScale("Quantity");
graph.addElement(elem);
graph.setScale("Quantity",scale);

Example:
Changing Axis
Range

In this example (for Viewsheets), you will dynamically modify the axis
range to match the data displayed on the chart. In particular, you will adapt
the lower limit on the Y-axis so that it is always 75% of the lowest data
value shown on the chart.

Follow the steps below:

1. Create a new Viewsheet based on the ‘Sales’ > ‘Sales Explore’
Worksheet.

2. Add a Chart component to the Viewsheet, and click the center of
the chart to open the Chart Editor.

3. From the ‘Dimensions’ node of the ‘Data Source’ panel, drag the
‘State’ field to the ‘X’ region of the ‘Data’ panel.

CHART SCRIPT TUTORIAL

2124 of 2477

4. From the ‘Measures’ node of the ‘Data Source’ panel, drag the
‘Total’ field to the ‘Y’ region of the ‘Data’ panel.

5. Click the ‘Edit Dimension’ button next to the ‘State’ field in the
‘Data’ panel.

6. From the ‘Ranking’ option in the ‘Edit Dimension’ panel, specify
‘Top 5 of Sum(Total)’. Click the ‘Apply’ button.

7. Right-click the Chart component on the Viewsheet grid, and select
‘Properties’ from the context menu. This opens the ‘Chart
Properties’ dialog box.

Note: To access the
data prior to chart
aggregation, see
Accessing Worksheet
Data in Dashboard
Scripting.

8. Select the Script tab, and enter the following script:

var dMin = 10000000; // Default minimum

// Get a handle to the chart's Y-axis Scale:
var yScale = graph.getCoordinate().getYScale();

// Find the minimum Y-value in the chart data:
for (var i=0; i<dataset.getRowCount(); i++) {
yVal = dataset.getData('Sum(Total)',i);
if(yVal < dMin) {
dMin = yVal;

}
}

// Set Y-axis lower limit to .75 of minimum value:
yScale.setMin(.75*dMin);

9. Click the ‘OK’ button to close the ‘Chart Properties’ dialog box.
Observe how the chart Y-axis updates so that the lower limit is 75%
of the smallest chart value.

CHART SCRIPT TUTORIAL

2125 of 2477

10. From the ‘Data Source’ panel of the Chart Editor, drag the
‘Category’ field onto the Viewsheet grid. This creates a ‘Category’
selection list.

11. Select different combinations of categories from the ‘Category’
selection list, and observe how the chart axis updates.

¢

See Also
Changing Axis Properties, for examples of other axis modifications.

CT.7.2Changing Scaling for a VisualFrame

A VisualFrame object contains information about how data values are
mapped to physical properties of chart elements. For example, a
BrightnessColorFrame contains information about how data values in a
field map to the brightness of corresponding chart elements. Mappings of
this type require a Scale.

To change the scaling of a VisualFrame object, simply assign a new Scale
to the VisualFrame. For example, consider the following chart:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

var dataset =
[["State","Quantity","Total"],["NJ",200,2500],["NY",300,150
0]];
graph = new EGraph();

CHART SCRIPT TUTORIAL

2126 of 2477

var elem = new IntervalElement("State", "Quantity");
var frame = new BrightnessColorFrame();
frame.setField("Total");
frame.setColor(java.awt.Color(0xff0000));
elem.setColorFrame(frame);
graph.addElement(elem);

Note that in this chart a linear scale is defined implicitly by the
BrightnessColorFrame object. The legend indicates that this default scale
runs from 1400 to 2600. To change the scaling to run from 500 to 3000
instead, you must explicitly define a new Scale object.

Follow these steps:

1. Define the desired Scale object explicitly. In this case, create a
LinearScale based on the ‘Total’ field.

var scale = new LinearScale("Total");
scale.setFields("Total");

2. Set the minimum and maximum values of the new Scale object.

scale.setMax(3000);
scale.setMin(500);

3. Assign the new scale to the existing VisualFrame object.

frame.setScale(scale);

The complete script with the new VisualFrame scaling looks like this:

dataset = [["State","Quantity","Total"],
["NJ",200,2500],["NY",300,1500]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");

CHART SCRIPT TUTORIAL

2127 of 2477

var frame = new BrightnessColorFrame();
frame.setField("Total");
frame.setColor(java.awt.Color(0xff0000));
var scale = new LinearScale("Total");
scale.setFields("Total");
scale.setMax(3000);
scale.setMin(500);
frame.setScale(scale);
elem.setColorFrame(frame);
graph.addElement(elem);

CT.8 Changing the Appearance of Chart Elements
You can change the static appearance of chart elements by using a static
VisualFrame. For example, you can set static colors, sizes, and textures to
enhance the aesthetic appearance of a chart.

Consider the script below:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset =
[["State","Quantity","Total"],["NJ",200,2500],["NY",300,150
0]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
graph.addElement(elem);

This creates a basic point (scatter) chart displaying the dimensions ‘State’
and ‘Quantity’. However, the points are rather small and hard to see. To
increase the size of the points and assign them a bolder color, use a
StaticColorFrame and a StaticSizeFrame.

Follow these steps:

1. Create a new StaticColorFrame object, and specify a static color
(red).

var cframe = new StaticColorFrame();
cframe.setColor(java.awt.Color(0xff0000)); // red

2. Create a new StaticSizeFrame object, and specify a static size.

CHART SCRIPT TUTORIAL

2128 of 2477

var sframe = new StaticSizeFrame();
sframe.setSize(10);

3. Assign the StaticColorFrame and StaticSizeFrame objects to the
GraphElement object.

elem.setColorFrame(cframe);
elem.setSizeFrame(sframe);

The complete script is shown below. The points are now large and red.

dataset =
[["State","Quantity","Total"],["NJ",200,2500],["NY",300,150
0]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var cframe = new StaticColorFrame();
cframe.setColor(java.awt.Color(0xff0000)); // red
var sframe = new StaticSizeFrame();
sframe.setSize(10);
elem.setColorFrame(cframe);
elem.setSizeFrame(sframe);
graph.addElement(elem);

Because these are static VisualFrames, the color and size are not keyed to
the data. To represent data values using color, size, or other visual
attributes, see Representing Data with Shape, Color, Size.

See Also
Representing Data with Shape, Color, Size, to use dynamic VisualFrame
objects.
Adding Decorative Elements, for information on GraphForm objects.

CT.9 Changing Axis Properties
To alter the appearance of chart axes, use the Chart’s setScale() method to
assign a new Scale object. For example, you can replace a linear scale with
a logarithmic scale, show or hide tick marks, display axis labels at top or
right, change the label font and color, etc.

Consider the following example:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT TUTORIAL

2129 of 2477

dataset = [["State","Quantity"], ["NJ",200], ["NY",3000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

This creates a basic bar chart displaying the dimensions ‘State’ and
‘Quantity’. Follow the steps below to experiment with modifying the
chart’s axes:

1. Create a new logarithmic scale using the LogScale object,
specifying ‘Quantity’ as the field on which the scale is based.

var logscale = new LogScale('Quantity');

2. Set the color of the Y-axis lines and gridline to blue, and make the
gridlines dotted. To do this, create a new AxisSpec object, and
assign it to the Scale.

var yspec = new AxisSpec();
yspec.setLineColor(java.awt.Color(0x0000ff));
yspec.setGridColor(java.awt.Color(0x0000ff));
yspec.setGridStyle(Chart.DOT_LINE);
logscale.setAxisSpec(yspec);

3. Create a new CategoricalScale for the X-axis, specifying ‘State’ as
the field on which the scale is based.

var cscale = new CategoricalScale('State');

4. Remove the X-axis lines and tick marks. To do this, create a new
AxisSpec object, and assign it to the Scale.

var xspec = new AxisSpec();
xspec.setLineVisible(false);
xspec.setTickVisible(false);
cscale.setAxisSpec(xspec);

5. Move the X-axis labels above the chart area, and increase their size.
To do this, create a new TextSpec object, and assign it to the
AxisSpec.

var tspec = new TextSpec();
tspec.setFont(java.awt.Font('Dialog',

java.awt.Font.BOLD, 14));
xspec.setTextSpec(tspec);

CHART SCRIPT TUTORIAL

2130 of 2477

xspec.setAxisStyle(AxisSpec.AXIS_SINGLE2);

6. Create a new TextFrame, and specify new axis labels to replace the
default labels (‘NJ’, ‘NY’) with the full state names. Assign the
new TextFrame to the AxisSpec object.

var tframe = new DefaultTextFrame();
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
xspec.setTextFrame(tframe);

7. Assign the two Scale objects to the appropriate axes of the graph
object.

graph.setScale('Quantity',logscale);
graph.setScale('State',cscale);

The complete script is shown below.

dataset = [["State","Quantity"], ["NJ",200], ["NY",3000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var logscale = new LogScale('Quantity');
var yspec = new AxisSpec();
yspec.setLineColor(java.awt.Color(0x0000ff));
yspec.setGridColor(java.awt.Color(0x0000ff));
yspec.setGridStyle(Chart.DOT_LINE);
logscale.setAxisSpec(yspec);
var cscale = new CategoricalScale('State');
var xspec = new AxisSpec();
xspec.setLineVisible(false);
xspec.setTickVisible(false);
cscale.setAxisSpec(xspec);
var tspec = new TextSpec();
tspec.setFont(java.awt.Font('Dialog',java.awt.Font.BOLD,
14));
xspec.setTextSpec(tspec);
xspec.setAxisStyle(AxisSpec.AXIS_SINGLE2);
var tframe = new DefaultTextFrame();
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
xspec.setTextFrame(tframe);
graph.setScale('Quantity',logscale);
graph.setScale('State',cscale);
graph.addElement(elem);

CHART SCRIPT TUTORIAL

2131 of 2477

CT.10Changing Legend Properties
When you assign a VisualFrame to a chart element to visually code data, a
corresponding legend is created automatically. You can change the
appearance of this legend by editing the VisualFrame’s LegendSpec.

Consider the following script:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame("State");
elem.setColorFrame(frame);
graph.addElement(elem);

This creates a basic bar chart displaying the dimensions ‘State’ and
‘Quantity’. In this script, a CategoricalColorFrame distinguishes the
different states by color. Follow the steps below to experiment with
modifying the chart’s legend:

1. Change the legend border to a blue dotted line. To do this, create a
LegendSpec object and assign it to the ColorFrame.

var legend = new LegendSpec();
legend.setBorder(Chart.DOT_LINE);
legend.setBorderColor(java.awt.Color(0x0000ff));
frame.setLegendSpec(legend);

2. Change the legend title to say simply ‘State’, and make the text
bold. To do this, create a TextSpec object and assign it to the
LegendSpec.

var tspec = new TextSpec();
tspec.setFont(java.awt.Font('Dialog',

java.awt.Font.BOLD, 14));
legend.setTitleTextSpec(tspec);
legend.setTitle('State');

3. Change the text inside the legend to display the full state names. To
do this, create a TextFrame object and assign it to the LegendSpec.

CHART SCRIPT TUTORIAL

2132 of 2477

var tframe = new DefaultTextFrame();
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
legend.setTextFrame(tframe);

4. Place the legend above the chart. Use the Graph’s legendLayout
property to do this.

graph.setLegendLayout(Chart.TOP);

The complete script is shown below.

dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame("State");
elem.setColorFrame(frame);

var legend = new LegendSpec();
legend.setBorder(Chart.DOT_LINE);
legend.setBorderColor(java.awt.Color(0x0000ff));
frame.setLegendSpec(legend);

var tspec = new TextSpec();
tspec.setFont(java.awt.Font('Dialog',java.awt.Font.BOLD,
14));
legend.setTitleTextSpec(tspec);
legend.setTitle('State');

var tframe = new DefaultTextFrame();
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
legend.setTextFrame(tframe);
graph.setLegendLayout(Chart.TOP);

graph.addElement(elem);

See Also
Representing Multiple Measures, for information on legends for multiple
elements.
Representing Data with Shape, Color, Size, for more information on
VisualFrames.

CT.11Changing Chart Labels
When you assign a TextFrame to a chart element to represent data textually,
you can modify the labels by using TextFrame.setText(value,text). The
following example illustrates how you can construct custom labels for the
chart using script. The labels display the names of the companies

CHART SCRIPT TUTORIAL

2133 of 2477

represented on the chart together with each company’s percentage of total
sales.

Viewsheet

Follow the steps below if you are creating a Viewsheet. (For a report, skip
to the next set of steps below.)

1. Create a new Viewsheet based on the ‘All Sales’ query. (See
Creating a Dashboard in Getting Started for details.)

2. Drag a Chart component from the Component panel into the
Viewsheet grid. Click the ‘Edit’ button on the chart to open the
Chart Editor.

3. From the Data Source panel of the Chart Editor, drag the
‘Company’ field to the ‘X’ region of the Data panel.

4. From the Data Source panel of the Chart Editor, drag the ‘Total’
field to the ‘Y’ region of the Data panel.

5. Press the ‘Edit Dimension’ button next to the ‘Company’ field.
From the ‘Ranking’ menu, select “Top 5 of Sum(Total)” and press
the ‘Apply’ button.

6. Right-click the chart and select ‘Properties’ from the context menu.
This opens the ‘Chart Properties’ dialog box.

7. Select the Script tab to access the Script Editor.

8. Enter the script shown below.

Report

Follow the steps below if you are creating a a report:

1. Create a new report. (See Creating a Report in Getting Started for
details.)

2. Drag a Chart element from the Toolbox panel into the report. This
adds the chart to the report and opens the Chart Binding panel.

3. In the Data panel, expand the ‘Orders’ node and expand the ‘All
Sales’ node.

4. Drag the ‘Company’ field from the ‘All Sales’ query to the ‘X’
region of the Binding panel.

CHART SCRIPT TUTORIAL

2134 of 2477

5. Drag the ‘Total’ field from the ‘All Sales’ query to the ‘Y’ region
of the Binding panel.

6. Press the ‘Edit Dimension’ button next to the ‘Company’ field.
From the ‘Ranking’ menu, select “Top 5 of Sum(Total)” and press
the ‘Apply’ button.

7. Right-click the chart and select ‘Script’. This opens the Script
Editor.

8. Enter the script shown below.

Viewsheet and Report

Enter the script shown below.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

// Create new TextFrame based on 'Company' field:
var tframe = new DefaultTextFrame('Company');

// Get a handle to the graph element (bars):
var elem = graph.getElement(0);

// Assign the TextFrame to the element. This adds the
// category names above the bars (text-coding).
elem.setTextFrame(tframe)

// Compute the total amount of all companies:
var sumTotal = sum(table['Sum(Total)']);

// Loop through companies on chart:
for(i=1;i<table.length;i++) {

// Get the original label (company):
var oldLabel = table[i][0];

// Compute the fractional value of corresponding 'Total':
var barFraction = table[i][1]/sumTotal;

// Format the fraction as a percent:
var barPercent = formatNumber(barFraction,'##.00%');

// Compose the new label, with form 'Company:Percent':
var newLabel = oldLabel + ':\n' + barPercent;

// Assign the new label in place of the old label:
tframe.setText(oldLabel,newLabel);

}

The above script uses a customized TextFrame to display the company
name together with the percentage of total represented by each company.
The TextFrame.setText(value,text) function is the key to replacing one set
of labels by a different set of labels.

CHART SCRIPT TUTORIAL

2135 of 2477

In this example you created a completely new TextFrame to display the
data, but you can use the same technique to modify an existing TextFrame.
For example, to modify the existing X-axis labels, you would first get a
handle to the existing X-axis TextFrame. For example.

var tframe =
graph.getCoordinate().getXScale().getAxisSpec().getTextFram
e();

Because this TextFrame is already associated with the X-axis labels, there
is no need to assign the TextFrame to the axis. The only thing you need to
do is to swap in the new labels. Here is the revised script in its entirety:

// Get a handle to the existing X-axis TextFrame:
var tframe =
graph.getCoordinate().getXScale().getAxisSpec().getTextFram
e();

// Get a handle to the graph element (bars):
var elem = graph.getElement(0);

// Compute the total amount of all companies:
var sumTotal = sum(table['Sum(Total)']);

// Loop through companies on chart:
for(i=1;i<table.length;i++) {

// Get the original label (company):
var oldLabel = table[i][0];

// Compute the fractional value of corresponding 'Total':
var barFraction = table[i][1]/sumTotal;

// Format the fraction as a percent:
var barPercent = formatNumber(barFraction,'##.00%');

// Compose the new label, with form 'Company:Percent':
var newLabel = oldLabel + ':\n' + barPercent;

// Assign the new label in place of the old label:
tframe.setText(oldLabel,newLabel);

}

CHART SCRIPT TUTORIAL

2136 of 2477

CT.12Changing the Chart Coordinates
There are several different Coordinate objects, each of which creates a
different kind of chart. The following sections discuss the different types of
chart coordinate systems.

CT.12.1Rectangular Coordinates

The default coordinate set is rectangular coordinates, as defined by the
RectCoord object. Rectangular coordinates represent two-dimensional data
on horizontal (X) and vertical (Y) axes.

A RectCoord object is created automatically when you create a new Chart
object. Therefore, if you plan to use rectangular coordinates on the chart,
you do not need to explicitly specify a RectCoord object. You only need to
explicitly create a RectCoord object when you define other types of
coordinate systems. (See the following sections for more details.)

Assigning Rectangular Coordinates Automatically

The following example illustrates automatic creation of rectangular
coordinates:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["Direction", "Score"],[(Math.PI/
2),20],[(Math.PI/4),30],[(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
var yaxis = new AxisSpec();
yaxis.setGridStyle(Chart.DOT_LINE);
yscale.setAxisSpec(yaxis);

xscale.setMin(0);
xscale.setMax(1.95*Math.PI);
xscale.setIncrement(Math.PI/8);
var xaxis = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(new java.text.DecimalFormat("0.0"));
xaxis.setTextSpec(tspec);

CHART SCRIPT TUTORIAL

2137 of 2477

xaxis.setGridStyle(Chart.DOT_LINE);
xscale.setAxisSpec(xaxis);

graph.setScale("Direction",xscale);
graph.setScale("Score",yscale);
graph.addElement(elem);

The script defines a PointElement style (scatter plot), and specifies a
LinearScale for the ‘Direction’ field and ‘Score’ field. Note that the script
does not explicitly create a RectCoord object. A rectangular coordinate
system is created automatically, and this allows you to assign the specified
scales directly to the Graph:

graph.setScale("Direction",xscale);
graph.setScale("Score",yscale);

Assigning Rectangular Coordinates Explicitly

You can explicitly define the RectCoord object, if needed. The script below
is the same as the script in Assigning Rectangular Coordinates
Automatically, but uses two scales to explicitly define a set of rectangular
coordinates. These coordinates are then explicitly assigned to the chart.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["Direction", "Score"],[(Math.PI/
2),20],[(Math.PI/4),30],[(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
var yaxis = new AxisSpec();
yaxis.setGridStyle(Chart.DOT_LINE);
yscale.setAxisSpec(yaxis);

xscale.setMin(0);
xscale.setMax(1.95*Math.PI);
xscale.setIncrement(Math.PI/8);
var xaxis = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(new java.text.DecimalFormat("0.0"));
xaxis.setTextSpec(tspec);
xaxis.setGridStyle(Chart.DOT_LINE);
xscale.setAxisSpec(xaxis);

CHART SCRIPT TUTORIAL

2138 of 2477

graph.setScale("Direction",xscale);
graph.setScale("Score",yscale);
var rect = new RectCoord(xscale,yscale);
graph.setCoordinate(rect);
graph.addElement(elem);

The resulting chart is the same as in the previous case.

CT.12.2Polar Coordinates

Polar coordinates represent data in terms of an angle and magnitude
(radius). They are defined by the PolarCoord object, which accepts a
RectCoord object as input. The following sections explain how to create
and modify polar coordinates. They also demonstrate a common use of
polar coordinates, the pie chart.

Converting Rectangular to Polar Coordinates

To use polar coordinates, you first need to create a set of rectangular
coordinates. Consider the script from the previous section, Rectangular
Coordinates:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["Direction", "Score"],[(Math.PI/
2),20],[(Math.PI/4),30],[(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
var yaxis = new AxisSpec();
yaxis.setGridStyle(Chart.DOT_LINE);
yscale.setAxisSpec(yaxis);

xscale.setMin(0);
xscale.setMax(1.95*Math.PI);
xscale.setIncrement(Math.PI/8);
var xaxis = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(new java.text.DecimalFormat("0.0"));
xaxis.setTextSpec(tspec);
xaxis.setGridStyle(Chart.DOT_LINE);
xscale.setAxisSpec(xaxis);

CHART SCRIPT TUTORIAL

2139 of 2477

graph.setScale("Direction",xscale);
graph.setScale("Score",yscale);
var rect = new RectCoord(xscale,yscale);
graph.setCoordinate(rect);
graph.addElement(elem);

Note that this script explicitly creates a set of rectangular coordinates by
calling the RectCoord constructor. To convert the chart to a polar
coordinate system, use this RectCoord object to create a new PolarCoord
object:

var polar = new PolarCoord(rect);

Assign this new coordinate set to the chart to obtain the desired polar
representation. The modified script is shown below:

dataset = [["Direction", "Score"],[(Math.PI/
2),20],[(Math.PI/4),30],[(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
var yaxis = new AxisSpec();
yaxis.setGridStyle(Chart.DOT_LINE);
yscale.setAxisSpec(yaxis);

xscale.setMin(0);
xscale.setMax(1.95*Math.PI);
xscale.setIncrement(Math.PI/8);
var xaxis = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(new java.text.DecimalFormat("0.0"));
xaxis.setTextSpec(tspec);
xaxis.setGridStyle(Chart.DOT_LINE);
xscale.setAxisSpec(xaxis);

graph.setScale("Direction",xscale);
graph.setScale("Score",yscale);
var rect = new RectCoord(xscale,yscale);
var polar = new PolarCoord(rect);
graph.setCoordinate(polar);
graph.addElement(elem);

By default, the rectangular coordinate’s X-axis is mapped to the polar
coordinate’s angle, and the rectangular coordinate’s Y-axis is mapped to the

CHART SCRIPT TUTORIAL

2140 of 2477

polar coordinate’s magnitude (radius). To reverse a mapping, use the
Coordinate object’s transpose() method.

Tailoring a Coordinate Mapping

When converting rectangular to polar coordinates, you can choose to map
only one of the dimensions. Use the PolarCoord Type property to do this.

Mapping just a single
dimension is useful
for pie charts. See
Example: Pie Chart.

The example below is the same as that in Converting Rectangular to Polar
Coordinates, except that here only the angle dimension is mapped:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["Direction", "Score"],[(Math.PI/
2),20],[(Math.PI/4),30],[(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
var yaxis = new AxisSpec();
yaxis.setGridStyle(Chart.DOT_LINE);
yscale.setAxisSpec(yaxis);

xscale.setMin(0);
xscale.setMax(1.95*Math.PI);
xscale.setIncrement(Math.PI/8);
var xaxis = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(new java.text.DecimalFormat("0.0"));
xaxis.setTextSpec(tspec);
xaxis.setGridStyle(Chart.DOT_LINE);
xscale.setAxisSpec(xaxis);

graph.setScale("Direction",xscale);
graph.setScale("Score",yscale);
var rect = new RectCoord(xscale,yscale);
var polar = new PolarCoord(rect);
polar.setType(PolarCoord.THETA);
graph.setCoordinate(polar);
graph.addElement(elem);

The result is that all points have the same magnitude, with variation only
along the angle dimension. To reverse a mapping, use the Coordinate
object’s transpose() method.

CHART SCRIPT TUTORIAL

2141 of 2477

Example: Pie Chart

You can think of a pie chart as a stacked bar chart with just one bar,
displayed in polar coordinates. To see this, consider the script below, which
creates a simple bar chart.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["State", "Revenue"], ["CA",
200],["NY",300],["PA",150]];
graph = new EGraph();
var elem = new IntervalElement("State","Revenue");
var xscale = new CategoricalScale("State")
var yscale = new LinearScale("Revenue");
var rect = new RectCoord(xscale, yscale);
graph.setCoordinate(rect);
graph.addElement(elem);

To create a pie chart from this data, just convert the chart to a stacked bar,
and then convert to polar coordinates. Follow the steps below:

1. Instead of using different X-axis positions to distinguish the ‘State’
data, distinguish the states using a ColorFrame object.

dataset = [["State", "Revenue"], ["CA",
200],["NY",300],["PA",150]];
graph = new EGraph();
var elem = new IntervalElement(null,"Revenue");
var xscale = new CategoricalScale("State")
var yscale = new LinearScale("Revenue");
var rect = new RectCoord(null, yscale);
var cframe = new CategoricalColorFrame("State");
elem.setColorFrame(cframe);
graph.setCoordinate(rect);
graph.addElement(elem);

CHART SCRIPT TUTORIAL

2142 of 2477

Note that a ‘null’ value is assigned for the (unused) X-dimension
when creating the IntervalElement and RectCoord objects.

2. Convert the chart into a stacked bar chart with just one bar by using
the GraphElement’s collisionModifier property. Create a
StackRange object to make sure there is enough room for the
stacked elements.

elem.setCollisionModifier(GraphElement.STACK_SYMMETRIC);
yscale.setScaleRange(new StackRange());

3. Create polar coordinates from the existing rectangular coordinates.
By default, this maps the non-null coordinate (Y-axis) to the polar
coordinate’s magnitude dimension. Specify that it should be
mapped to the angle dimension instead.

var polar = new PolarCoord(rect);
polar.setType(PolarCoord.THETA);

4. Use the Chart’s setCoordinate() method to apply the new polar
coordinates.

graph.setCoordinate(polar);

5. Remove the axis lines and labels. To do this, create an AxisSpec
object, and assign it to the Scale.

var yspec = new AxisSpec();
yspec.setLabelVisible(false);
yspec.setLineVisible(false);
yspec.setTickVisible(false);
yscale.setAxisSpec(yspec);

CHART SCRIPT TUTORIAL

2143 of 2477

6. Add the state names to the individual slices and hide the legend. To
do this, create a new TextFrame object based on the “State” field,
and assign it to the GraphElement. To hide the legend, create a new
LegendSpec object, and assign it to the ColorFrame.

var tframe = new DefaultTextFrame("State");
elem.setTextFrame(tframe);
var legend = new LegendSpec();
legend.setVisible(false);
cframe.setLegendSpec(legend);

7. Explode the slices for better appearance.

elem.setHint(GraphElement.HINT_EXPLODED,'true');

The final script for the pie chart is shown below.

dataset = [["State", "Revenue"], ["CA",
200],["NY",300],["PA",150]];
graph = new EGraph();
var elem = new IntervalElement(null,"Revenue");
var xscale = new CategoricalScale("State")
var yscale = new LinearScale("Revenue");
var rect = new RectCoord(null, yscale);
var cframe = new CategoricalColorFrame("State");
elem.setColorFrame(cframe);
elem.setCollisionModifier(GraphElement.STACK_SYMMETRIC);
yscale.setScaleRange(new StackRange());
var polar = new PolarCoord(rect);
polar.setType(PolarCoord.THETA);
var yspec = new AxisSpec();
yspec.setLabelVisible(false);
yspec.setLineVisible(false);
yspec.setTickVisible(false);
yscale.setAxisSpec(yspec);
var tframe = new DefaultTextFrame("State");
elem.setTextFrame(tframe);
var legend = new LegendSpec();
legend.setVisible(false);

CHART SCRIPT TUTORIAL

2144 of 2477

cframe.setLegendSpec(legend);
elem.setHint(GraphElement.HINT_EXPLODED,'true');
graph.setCoordinate(polar);
graph.addElement(elem);

CT.12.3Parallel Coordinates

Parallel coordinates display multiple dimensions as parallel axes, rather
than orthogonal axes, as for rectangular coordinates. Parallel coordinates
are defined by the ParallelCoord object, which accepts a set of Scale
objects as input.

To understand parallel coordinates, consider the following data set, which
contains scores for three students over three consecutive tests.

By plotting this data on three parallel coordinates (‘Test 1’, ‘Test 2’, ‘Test
3’), you can visualize trends across the different tests. To create this chart,
follow the steps below:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

1. Define the data set and chart objects.

dataset =
[["Test1","Test2","Test3","Name"],[100,80,20,'Joe'],[75,50,
40,'Jane'],[50,30,80,'Fred']];
graph = new EGraph();

2. Create a new LineElement object to define a line-style chart, and
assign its dimensions.

var elem = new LineElement();
elem.addDim("Test1");
elem.addDim("Test2");
elem.addDim("Test3");

3. Define the scales used for the three axes. (In this case the scales are
the same for all three.)

var scale1 = new LinearScale("Test1");
var scale2 = new LinearScale("Test2");
var scale3 = new LinearScale("Test3");
scale1.setMax(100);
scale2.setMax(100);
scale3.setMax(100);
scale1.setMin(0);
scale2.setMin(0);

Test 1 Test 2 Test 3 Name
200 175 50 Joe
800 1000 300 Jane
10 15 20 Fred

CHART SCRIPT TUTORIAL

2145 of 2477

scale3.setMin(0);

4. Create the new ParallelCoord object using the defined scales.

var coord = new ParallelCoord(scale1,scale2,scale3);

5. Use a CategoricalColorFrame to distinguish the three students.
Assign the frame to the line element.

var frame = new CategoricalColorFrame("Name");
elem.setColorFrame(frame);

6. Assign the parallel coordinate system to the chart.

graph.addElement(elem);
graph.setCoordinate(coord);

The complete script is shown below:

dataset =
[["Test1","Test2","Test3","Name"],[100,80,20,'Joe'],[75,50,
40,'Jane'],[50,30,80,'Fred']];
graph = new EGraph();
var elem = new LineElement();
elem.addDim("Test1");
elem.addDim("Test2");
elem.addDim("Test3");
var scale1 = new LinearScale("Test1");
var scale2 = new LinearScale("Test2");
var scale3 = new LinearScale("Test3");
scale1.setMax(100);
scale2.setMax(100);
scale3.setMax(100);
scale1.setMin(0);
scale2.setMin(0);
scale3.setMin(0);
var coord = new ParallelCoord(scale1,scale2,scale3);
var frame = new CategoricalColorFrame("Name");
elem.setColorFrame(frame);
graph.addElement(elem);
graph.setCoordinate(coord);

CT.12.4Facet Coordinates

The FacetCoord object contains a set of inner and outer coordinates on
which multidimensional data can be represented as nested charts. To create

CHART SCRIPT TUTORIAL

2146 of 2477

a FacetCoord object, pass a pair of RectCoord objects to the FacetCoord
constructor:

var rect = new FacetCoord(outerCoord,innerCoord);

To understand facet coordinates, consider the following data set.

Because there are four different dimensions, there are several ways to look
at the data. For example, you may want to plot ‘Priority’ vs. ‘Name’, and
also break this down by ‘Product’ and ‘State’. To construct a facet chart to
do this, follow the steps below:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

1. Define the data and the Chart objects, and create a new
IntervalElement (bar chart).

dataset = [["State", "Product", "Name", "Priority"],["NJ",
"P1", "Joe", 2],["NJ", "P2", "Sam", 3],["NY", "P1", "Jane",
4],["NJ", "P1", "Sam", 1],["NJ", "P2", "Joe", 10],["NY",
"P1", "Sam", 10]];
graph = new EGraph();
var elem = new IntervalElement("Name", "Priority");

2. Create a Scale for each of the dimensions. All dimensions are
categorical except for ‘Priority’.

var state = new CategoricalScale("State");
var name = new CategoricalScale("Name");
var product = new CategoricalScale("Product");
var priority = new LinearScale("Priority");

3. Define two sets of rectangular coordinates, one for the outer
coordinates (‘Product’ vs. ‘State’) and one for the inner coordinates
(‘Priority’ vs. ‘Name’).

var inner = new RectCoord(name, priority);
var outer = new RectCoord(state, product);

4. Create the facet coordinates based on the outer and inner
rectangular coordinates defined above.

State Product Name Priority
NJ P1 Joe 2
NJ P2 Sam 3
NY P1 Jane 4
NJ P1 Sam 1
NJ P2 Joe 10
NY P1 Sam 10

CHART SCRIPT TUTORIAL

2147 of 2477

var coord = new FacetCoord(outer,inner);

5. Assign the coordinates and the bar elements to the chart.

graph.setCoordinate(coord);
graph.addElement(elem);

The resulting chart displays an outer grid based on the outer coordinates
(‘State’ and ‘Product’). Within each cell of the outer grid, the chart displays
the corresponding inner coordinates (‘Name’ and ‘Priority’).

The complete script is provided below.

dataset = [["State", "Product", "Name", "Priority"],["NJ",
"P1", "Joe", 2],["NJ", "P2", "Sam", 3],["NY", "P1", "Jane",
4],["NJ", "P1", "Sam", 1],["NJ", "P2", "Joe", 10],["NY",
"P1", "Sam", 10]];
graph = new EGraph();
var elem = new IntervalElement("Name", "Priority");
var state = new CategoricalScale("State");
var name = new CategoricalScale("Name");
var product = new CategoricalScale("Product");
var priority = new LinearScale("Priority");
var inner = new RectCoord(name, priority);
var outer = new RectCoord(state, product);
var coord = new FacetCoord(outer,inner);
graph.setCoordinate(coord);
graph.addElement(elem)

CT.12.5Setting a Coordinate Background

You can assign a background color or background image to the coordinate
area (plot area) of a chart by defining a PlotSpec object. The following
example illustrates how to set a blue background for a chart:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
spec.setBackground(java.awt.Color(0xEEEEFF));

CHART SCRIPT TUTORIAL

2148 of 2477

coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

Use the setBackgroundImage() function to display an image as the plot
background. The following example uses a static Google map image as a
background by aligning the map coordinates with the chart coordinates.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

// Define latitude and longitude values for landmarks:
dataset =
[["Latitude","Longitude","PlaceName"],[40.8516051126306,-
73.95223617553711,' GW Bridge '],[40.76292614285948,-
74.00982856750488,' Lincoln Tunnel '],[40.72755146730012,-
74.02107238769531,' Holland Tunnel ']];
graph = new EGraph();

// Define chart elements and basic point appearance:
var elem = new PointElement("Longitude","Latitude");
var tframe = new DefaultTextFrame("PlaceName");
var sframe = new StaticShapeFrame();
var cframe = new StaticColorFrame();
cframe.setColor(java.awt.Color(0x0000000));
sframe.setShape(GShape.FILLED_CIRCLE);

// Define appearance of text labels:
var tspec = new TextSpec();
tspec.setBackground(java.awt.Color(0x0000000))
tspec.setFont(java.awt.Font('Trebuchet',java.awt.Font.BOLD,
11));
tspec.setColor(java.awt.Color(0xffff00));

// Configure a background image using PlotSpec:
var pspec = new PlotSpec();
pspec.setLockAspect(true);
var logo = getImage("http://maps.google.com/maps/api/
staticmap?center=40.7857,-
73.9819&zoom=11&size=400x400&sensor=false");
pspec.setBackgroundImage(logo);
pspec.setYMax(40.8902) // YMax = high latitude
pspec.setYMin(40.6822) // YMin = low latitude
pspec.setXMax(-73.84529) // XMax = high longitude
pspec.setXMin(-74.1206) // XMin = low longitude

// Set chart scales to match image coordinates:
var latscale = new LinearScale("Latitude");
var lonscale = new LinearScale("Longitude");

CHART SCRIPT TUTORIAL

2149 of 2477

var aspec = new AxisSpec();
aspec.setLabelVisible(false);
latscale.setAxisSpec(aspec);
lonscale.setAxisSpec(aspec);
latscale.setScaleOption(0);
lonscale.setScaleOption(0);
latscale.setMax(pspec.getYMax()); // match YMax
latscale.setMin(pspec.getYMin()); // match YMin
lonscale.setMax(pspec.getXMax()); // match XMax
lonscale.setMin(pspec.getXMin()); // match XMin
var coord = new RectCoord(lonscale,latscale);
coord.setPlotSpec(pspec);

// Assign visual frames to chart elements:
elem.setTextFrame(tframe);
elem.setTextSpec(tspec);
elem.setShapeFrame(sframe);
elem.setColorFrame(cframe);
elem.setHint(GraphElement.HINT_ALPHA,1);

// Assign coordinates. Generate chart with appropriate size:
graph.setCoordinate(coord);
graph.addElement(elem);

// For a report, set the chart element size as desired:
//Chart1.size = [5.6,5.6];

Note that the limits of the chart scales (latscale.setMax, latscale.setMin,
lonscale.setMax, lonscale.setMin) have been set to match the
geographical boundaries of the map image. This allows the image to align
correctly with the chart axes.

See Also
Appendix CR.4.9 , PlotSpec, for reference information.
background, in Report Scripting, to set a background for the report
element.
Chart Properties, in Report Design, to set a background for the report
element.
Color Tab, in Dashboard Design, to set a background for the Viewsheet
element.

CHART SCRIPT TUTORIAL

2150 of 2477

CT.13Representing Data with Shape, Color, Size
You can create a basic two-dimensional representation of data with just a
GraphElement object. To represent additional dimensions by using other
visual attributes of elements, create a VisualFrame.

To understand how to use a VisualFrame, consider the script below:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset =
[["State","Quantity","Total"],["NJ",200,2500],["NY",300,150
0]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
graph.addElement(elem);

This creates a basic point (scatter) chart displaying the dimensions ‘State’
and ‘Quantity’. If you want to additionally represent the dimension ‘Total’
with the element size, use a VisualFrame such as the LinearSizeFrame.
Follow these steps:

1. Create a new LinearSizeFrame object, and specify the field
containing the data that will determine the element sizes.

var frame = new LinearSizeFrame();
frame.setField("Total");

A VisualFrame object
such as LinearSize-
Frame contains a
mapping between data
values and physical
attributes. Therefore,
you need a Scale to
specify the mapping’s
scaling.

2. Create a new LinearScale object, and assign the scale properties.
(See Appendix CT.7, Changing Chart Scaling, for more
information.)

var scale = new LinearScale();
scale.setFields("Total");
scale.setMax(3000);
scale.setMin(1000);

3. Assign the new Scale to the VisualFrame object:

frame.setScale(scale);

4. Assign the VisualFrame object to the GraphElement object:

CHART SCRIPT TUTORIAL

2151 of 2477

elem.setSizeFrame(frame);

The point sizes now represent the data values contained in the ‘Total’ field.
The complete script is shown below.

dataset =
[["State","Quantity","Total"],["NJ",200,2500],["NY",300,150
0]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new LinearSizeFrame();
frame.setField("Total");
var scale = new LinearScale();
scale.setFields("Total");
scale.setMax(3000);
scale.setMin(1000);
frame.setScale(scale);
elem.setSizeFrame(frame);
graph.addElement(elem);

See Also
Representing Multiple Measures, for information on adding multiple
elements.
Changing the Appearance of Chart Elements, to use static VisualFrame
objects.

CT.14Representing Multiple Measures
To represent multiple measures on a single chart, simply define a
GraphElement object for each measure, and add the GraphElement to the
Chart.

Consider the following script.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["State", "Quantity 1", "Quantity
2"],["NJ",200,500], ["NY",300,1000],["PA",370,440],
["CT",75,20]];
graph = new EGraph();
var elem1 = new IntervalElement("State", "Quantity 1");
graph.addElement(elem1);

CHART SCRIPT TUTORIAL

2152 of 2477

This creates a basic bar chart displaying the dimensions ‘State’ and
‘Quantity 1’. To add the measure ‘Quantity 2’ to the chart as line element,
follow the steps below:

1. Create a new LineElement to represent the graph of ‘Quantity 2’ vs.
‘State’.

var elem2 = new LineElement("State", "Quantity 2");

2. Assign this new element to the main Chart object.

graph.addElement(elem2);

A legend is created automatically. To modify the legend, make changes to
the VisualFrame’s LegendSpec property. See Changing Legend Properties.

See Also
Changing Legend Properties, for more details about modifying legends.
Representing Data with Shape, Color, Size, to visually break out data as
sub-series.

CT.15Adding Decorative Elements
To draw decorative elements (lines, shapes, text, etc.) on the chart, use a
GraphForm object. Consider the following example:

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

dataset = [["State", "Quantity"],["NJ", 200],["NY", 300],
["PA", 370],["CT", 75]];
graph = new EGraph();

CHART SCRIPT TUTORIAL

2153 of 2477

var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

This generates a basic bar chart with quantities for four different states. To
add a small note indicating that the lowest value was due to an inventory
problem, follow the steps below.

1. Create a new LineForm object, and specify location values to point
at the ‘CT’ bar.

var lineform = new LineForm();
lineform.addValues([['CT', 150],['CT', 100]]);

2. Set the line color to red, and draw an arrow at the end.

lineform.setColor(java.awt.Color(0xff0000));
lineform.setEndArrow(true);

3. Create a new LabelForm object, and specify location values to
position it above the ‘CT’ bar.

var labelform = new LabelForm();
labelform.setValues(['CT', 150]);

4. Set the label contents, set the text color to red, and center-align. To
set the text color, create a new TextSpec object and assign it to the
LabelForm.

var labelSpec = new TextSpec();
labelSpec.setColor(java.awt.Color(0xff0000));
labelform.setTextSpec(labelSpec);
labelform.setLabel("Note: Low\nInventory");
labelform.setAlignmentX(Chart.CENTER_ALIGNMENT);

5. Assign the LineForm and LabelForm objects to the Chart object.

graph.addForm(lineform);
graph.addForm(labelform);

CHART SCRIPT TUTORIAL

2154 of 2477

The final script is shown below.

dataset = [["State", "Quantity"],["NJ", 200],["NY",
300],["PA", 370],["CT", 75]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var lineform = new LineForm();
lineform.addValues([['CT', 150],['CT', 100]]);
lineform.setColor(java.awt.Color(0xff0000));
lineform.setEndArrow(true);
var labelform = new LabelForm();
labelform.setValues(['CT', 150]);

var labelSpec = new TextSpec();
labelSpec.setColor(java.awt.Color(0xff0000));
labelform.setTextSpec(labelSpec);
labelform.setLabel("Note: Low\nInventory");
labelform.setAlignmentX(Chart.CENTER_ALIGNMENT);
graph.addForm(lineform);
graph.addForm(labelform);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2155 of 2477

Appendix CR: Chart Script Reference

This appendix lists all of the JavaScript objects and properties available for
use in Style Chart scripts. Many of these properties are also exposed within
Style Studio’s Report Element panel.

CR.1 Chart Object

The Chart element presents datasets as visual graphs.

See Also
Modifying Chart Properties, for examples of setting chart properties in
script.
Modifying a Chart Data Binding, for examples of modifying field
bindings.
Modifying a Chart Element using API Functions, for examples of
modifying the contents of a chart.

CR.1.1 General Properties

This section presents general Chart properties.

QUERY

Specifies the query bound to the Chart element.

Type
string

Example
query = 'customers';

See Also
Modifying a Chart Data Binding, for an example of data binding.

GRAPH

Specifies the EGraph object to be rendered by the Chart element.

Type
EGraph

Example
graph = new EGraph();

See Also
Creating a Chart Using API Functions, for an example of how to create a
chart.

CHART SCRIPT REFERENCE

2156 of 2477

SETHYPERLINK(COL, HYPERLINK)

Adds hyperlinks to a chart dataset. Use setParameterField to specify
values to pass as parameters in the link and setTargetFrame to specify the
link’s target frame. See the example below.

Parameter
col dataset index, first dataset is “1”
hyperlink string or

inetsoft.report.Hyperlink.Ref object

Example 1
var link = new inetsoft.report.Hyperlink("www.google.com",
inetsoft.report.Hyperlink.WEB_LINK);
link.setParameterField("test", "Sales");
link.setTargetFrame("_blank");
setHyperlink(1, link);

Alternatively, you can pass all of this information within a single array as
the second argument to the function. See the example below. The Boolean
item in the array indicates whether the hyperlink targets a report/Viewsheet
(true) or a web site (false).

Example 2
setHyperlink(1, ["report1", [["param1", "value1"],
["param2", "value2"],...]], true, "_blank")

CR.1.2 General Axis Properties

This section presents the general properties available for both dimensions
and measures. Properties should be prefixed by one of the following:

axis['Dimension Name']
or

axis['Measure Name']

Example
Chart1.axis['Company'].lineColor = [0,255,255];
Chart1.axis['Sum(Total)'].lineColor = [0,255,255];

AXIS.LABELVISIBLE

Sets the visibility of the dimension or measure axis labels.

Type
Boolean

Example
Chart1.axis['Company'].labelVisible = false;

CHART SCRIPT REFERENCE

2157 of 2477

AXIS.LINEVISIBLE

Sets the visibility of the dimension or measure axis line.

Type
Boolean

Example
Chart1.axis['Company'].lineVisible = false;

AXIS.TICKSVISIBLE

Sets the visibility of the axis tick marks for a dimension or measure.

Type
Boolean

Example
Chart1.axis['Sum(Total)'].ticksVisible = false
Chart1.axis['Company'].ticksVisible = true

CHART SCRIPT REFERENCE

2158 of 2477

AXIS.LINECOLOR

Sets the color of the dimension or measure axis line.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.axis['Company'].lineColor = [255,0,0];
Chart1.axis['Company'].lineColor = {r:255,g:0,b:0}

AXIS.LABELCOLOR

Sets the color of the dimension or measure axis labels.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.axis['Company'].labelColor = [255,0,0];
Chart1.axis['Company'].labelColor = {r:255,g:0,b:0}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2159 of 2477

AXIS.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the font of the dimension or measure axis labels.

Type
java.awt.Font, or
font description

Example
Chart1.axis['Company'].font =

new java.awt.Font('Serif', java.awt.Font.BOLD, 12);
Chart1.axis['Company'].font ='Lucida Sans Unicode-BOLD-14'

AXIS.ROTATION

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the rotation of the dimension or measure axis labels.

Type
number (degrees)

Example
Chart1.axis['Company'].rotation = 30;

AXIS.FORMAT

Sets the format for dimension or measure axis labels. The available formats
are shown below:

 – Chart.DATE_FORMAT for date display
 – Chart.DECIMAL_FORMAT for number display
 – Chart.MESSAGE_FORMAT for text display
 – Chart.PERCENT_FORMAT for fraction display
 – Chart.CURRENCY_FORMAT for locale-adapting currency display

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

CHART SCRIPT REFERENCE

2160 of 2477

For the Date, Decimal, and Message formats, optionally specify the format
and mask as items in an array. See Format Types in Report Design and
Format Tab in Dashboard Design for more information about the masks.

Type
Constant (format) or Array ([format, mask])

Example (Number Format)
Chart1.axis['Sum(Total)'].format =
[Chart.DECIMAL_FORMAT,"#,###.00"];

Example (Text Format)
Chart1.axis['Company'].format = [Chart.MESSAGE_FORMAT,"{0}
Inc."];
Chart1.axis['Company'].rotation = 30;

CR.1.3 Measure Axis Properties

This section presents the properties available specifically for a measure
axis. Properties should be prefixed by axis['Measure Name'].

Example
Chart1.axis['Sum(Total)'].increment = 300000

AXIS.MAXIMUM

Sets the maximum value for a measure axis.

Type
number

CHART SCRIPT REFERENCE

2161 of 2477

Example
Chart1.axis['Sum(Total)'].maximum = 1500000;

AXIS.MINIMUM

Sets the minimum value for a measure axis.

Type
number

Example
Chart1.axis['Sum(Total)'].minimum = 500000

AXIS.INCREMENT

Sets the numerical increment for measure axis labels.

Type
number

Example
Chart1.axis['Sum(Total)'].increment = 300000

CHART SCRIPT REFERENCE

2162 of 2477

AXIS.MINORINCREMENT

Sets the numerical increment for measure axis tick marks.

Type
number

Example
Chart1.axis['Sum(Total)'].increment = 500000
Chart1.axis['Sum(Total)'].minorIncrement = 100000

AXIS.LOGARITHMIC

Sets logarithmic scaling for a measure axis.

Type
Boolean

Example
Chart1.axis['Sum(Total)'].logarithmic = true

AXIS.REVERSED

Reverses the direction of the axis scale so that higher numbers appear at the
bottom or left.

Type
Boolean

Example
Chart1.axis['Sum(Total)'].reversed = true;

CHART SCRIPT REFERENCE

2163 of 2477

AXIS.SHAREDRANGE

For a facet chart (a chart with multiple bound X-fields and Y-fields),
specifies whether the same scale range should be used across all sub-graphs
in a facet, or whether a sub-graph’s scaling should be shared only with sub-
graphs in the same row (for Y-axis scaling) or same column (for X-axis
scaling).

Type
Boolean

Example
Chart1.yAxis.sharedRange = false;

XAXIS

Provides a shortcut to set axis properties for the all X-axes.

Example
Chart1.xAxis.labelColor=[255,0,0];
Chart1.xAxis.rotation=30;

The available properties are listed in General Axis Properties and Measure
Axis Properties.

To set properties for a particular X-axis (e.g., ‘Category’), use the axis
property together with the axis name:

Chart1.axis.Category.labelColor=[255,0,0];

CHART SCRIPT REFERENCE

2164 of 2477

Chart1.axis.Category.rotation=30;

See Also
yaxis, to set properties for Y-axes.

YAXIS

Provides a shortcut to set axis properties for all Y-axes.

Example
Chart1.yAxis.minorIncrement = 1000;
Chart1.yAxis.labelColor = [255,0,0]

The available properties are listed in General Axis Properties and Measure
Axis Properties.

To set properties for a particular Y-axis (e.g., ‘Total’), use the axis property
together with the axis name:

Chart1.axis['Sum(Total)'].minorIncrement = 1000;
Chart1.axis['Sum(Total)'].labelColor = [255,0,0];

See Also
xaxis, to set properties for X-axes.
y2axis, to set properties for secondary Y-axes.

Y2AXIS

Provides a shortcut to set axis properties for all secondary Y-axes. This only
applies to a measure axes that have been marked as ‘Secondary Axis’.

Example
Chart1.y2Axis.minorIncrement=1000
Chart1.y2Axis.labelColor=[255,0,0]

The available properties are listed in General Axis Properties and Measure
Axis Properties.

See Also
Single Chart vs. Separate Charts, in Dashboard Design or Report Design
for information about setting a secondary axis.
yaxis, to set properties for primary Y-axes.

CR.1.4 Title Properties

This section presents properties available for Graph titles. Title properties
should be prefixed by either xTitle or yTitle.

Example
Chart1.xTitle.text = "New Jersey Employees"
Chart1.yTitle.text = "New Jersey Sales"

CHART SCRIPT REFERENCE

2165 of 2477

XTITLE.TEXT

Sets the X-axis title text.

Type
string

Example
Chart1.xTitle.text = "New Jersey Employees"

YTITLE.TEXT

Sets the Y-axis title text.

Type
string

Example
Chart1.yTitle.text = "New Jersey Sales"

XTITLE.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the X-axis title font.

Type
java.awt.Font, or
font description

Example
Chart1.xTitle.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.xTitle.font = 'Lucida Sans Unicode-BOLD-14'

YTITLE.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the Y-axis title font.

Type
java.awt.Font, or
font description

Example
Chart1.yTitle.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.yTitle.font ='Lucida Sans Unicode-BOLD-14'

XTITLE.ROTATION

Sets the X-axis title rotation angle.

Type
number (degrees)

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

CHART SCRIPT REFERENCE

2166 of 2477

Example
Chart1.xTitle.rotation = 30;

YTITLE.ROTATION

Sets the Y-axis title rotation angle.

Type
number (degrees)

Example
Chart1.yTitle.rotation = 30;

XTITLE.COLOR

Sets the X-axis title color.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.xTitle.color = [128,0,128];
Chart1.xTitle.color = {r:128,g:0,b:128}

YTITLE.COLOR

Sets the Y-axis title color.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.yTitle.color = [128,0,128];
Chart1.yTitle.color = {r:128,g:0,b:128}

XTITLE.VISIBLE

Sets the visibility of the X-axis title.

Type
Boolean

Example
Chart1.xTitle.visible = false
Chart1.xTitle.visible = true

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2167 of 2477

YTITLE.VISIBLE

Sets the visibility of the Y-axis title.

Type
Boolean

Example
Chart1.yTitle.visible = false
Chart1.yTitle.visible = true

X2TITLE.TEXT

Sets the title text for the secondary (top) X-axis.

Type
string

Example
Chart1.x2Title.text = "New Jersey Employees"

Y2TITLE.TEXT

Sets the title text for the secondary (right) Y-axis.

Type
string

Example
Chart1.y2Title.text = "New Jersey Sales"

X2TITLE.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the title font for the secondary (top) X-axis.

Type
java.awt.Font, or
font description

Example
Chart1.x2Title.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.x2Title.font ='Lucida Sans Unicode-BOLD-14'

Y2TITLE.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the title font for the secondary (right) Y-axis.

Type
java.awt.Font, or
font description

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

CHART SCRIPT REFERENCE

2168 of 2477

Example
Chart1.y2Title.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.y2Title.font ='Lucida Sans Unicode-BOLD-14'

X2TITLE.ROTATION

Sets the title rotation angle for the secondary (top) X-axis.

Type
number (degrees)

Example
Chart1.x2Title.rotation = 30;

Y2TITLE.ROTATION

Sets the title rotation angle for the secondary (right) Y-axis.

Type
number (degrees)

Example
Chart1.y2Title.rotation = 30;

X2TITLE.COLOR

Sets the title color for the secondary (top) X-axis.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.x2Title.color = [128,0,128];
Chart1.x2Title.color = {r:128,g:0,b:128}

Y2TITLE.COLOR

Sets the title color for the secondary (right) Y-axis.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.y2Title.color = [128,0,128];
Chart1.y2Title.color = {r:128,g:0,b:128}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2169 of 2477

X2TITLE.VISIBLE

Sets the visibility of the secondary (top) X-axis. The default is true
(visible) if a value has been provided for the x2Title.text, otherwise false.

Type
Boolean

Example
Chart1.x2Title.visible = false
Chart1.x2Title.visible = true

Y2TITLE.VISIBLE

Sets the visibility of the secondary (right) Y-axis. The default is true
(visible) if a value has been provided for the y2Title.text, otherwise false.

Type
Boolean

Example
Chart1.y2Title.visible = false
Chart1.y2Title.visible = true

CR.1.5 Plot Properties

This section presents properties available for the Graph plot area.

FILLTIMEGAP

When you designate a dimension as a “time series” (see
bindingInfo.setTimeSeries(col,boolean)), the fillTimeGap property
specifies how missing data is represented on the chart. When fillTimeGap
is false, the plotted lines simply ignore the missing data and connect
adjacent points on the chart. When fillTimeGap is true, the behavior for
missing data is determined by the fillZero property.

Type
Boolean

The following examples display a time-series which is missing data for the
month of April 2009. To create this time-series, bind a chart to the ‘Sales’ >
‘Sales Explore’ Worksheet. Place the ‘Date’ field on the X-axis (with
‘Level’ = ‘Month’) and place ‘Total’ on the Y-axis. To simulate missing
data, add a condition to the chart to filter out data from April 2009. Use the
scripts below to modify the way the chart represents the missing data for
April 2009.

Example 1
Chart1.fillTimeGap = false

CHART SCRIPT REFERENCE

2170 of 2477

Example 2
Chart1.fillTimeGap = true
Chart1.fillZero = false

Example 3
Chart1.fillTimeGap = true
Chart1.fillZero = true

FILLZERO

When you set fillTimeGap to true or set the corresponding property in the
dialog box, the fillZero property determines whether gaps are represented
as ‘Null’, which leaves an empty space at the location, or as ‘Zero’, which
inserts a numerical value of 0 at the location.

Type
Boolean

Example 1
Chart1.fillTimeGap = true
Chart1.fillZero = false

CHART SCRIPT REFERENCE

2171 of 2477

Example 2
Chart1.fillTimeGap = true
Chart1.fillZero = true

SINGLESTYLE

For a graph in ‘Single Graph’ mode, sets the style for a dataset. You can
assign a different style to each individual dataset. (You can set ‘Single
Graph’ mode in the data binding.)

Type
Chart Constants constant
(see Chart Styles)

Example
Chart1.singleStyle['Sum(Total)'] = Chart.CHART_LINE

MAPTYPE

Specifies the type of map (region of globe displayed).

Type
Chart Constants constant or
String: 'U.S.', 'Asia', 'Canada', 'Europe', 'Mexico'

'World'

Example
Chart1.mapType = Chart['MAP_TYPE_U.S.'];
Chart1.mapType = 'U.S.'

CHART SCRIPT REFERENCE

2172 of 2477

SEPARATEDSTYLE

Sets the style for a graph in ‘Separate Graph’ mode. Every dataset on the
graph is displayed in the same style. You can set ‘Separate Graph’ mode in
the data binding.

Type
Chart Constants constant
(see Chart Styles)

Example
Chart1.separatedStyle = Chart.CHART_LINE

VALUEFONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the font for data values displayed in the chart plot area.

Type
java.awt.Font, or
font description

Example
Chart1.valueFont = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.valueFont='Lucida Sans Unicode-BOLD-14'

See Also
valueFormats, to set the font of a value on a multi-style chart.

VALUEFORMAT

Sets the format for data values displayed in the chart plot area. The
available formats are shown below:

 – Chart.DATE_FORMAT for date display
 – Chart.DECIMAL_FORMAT for number display
 – Chart.MESSAGE_FORMAT for text display
 – Chart.PERCENT_FORMAT for fraction display
 – Chart.CURRENCY_FORMAT for locale-adapting currency display

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

CHART SCRIPT REFERENCE

2173 of 2477

For the Date, Decimal, and Message formats, optionally specify the format
and mask as items in an array. See Format Types in Report Design and
Format Tab in Dashboard Design for more information about the masks.

Type
Constant (format) or Array ([format, mask])

Example (Number Format)
Chart1.valueFormat = [Chart.DECIMAL_FORMAT,"#,###.00"];

Example (Text Format)
Chart1.valueFormat = [Chart.MESSAGE_FORMAT,"{0} Dollars"];

See Also
valueFormats, to set the format of a value on a multi-style chart.

VALUEROTATION

Sets the rotation angle for data values displayed in the chart plot area.

Type
number (degrees)

Example
Chart1.valueRotation = 30;

CHART SCRIPT REFERENCE

2174 of 2477

See Also
valueFormats, to set the rotation of a value on a multi-style chart.

VALUECOLOR

Sets the color for data values displayed in the chart plot area.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.valueColor = [255,0,255];
Chart1.valueColor = {r:255,g:0,b:255};

See Also
valueFormats, to set the color of a value on a multi-style chart.

VALUEFORMATS

Provides access to value formatting for Charts that have ‘Multiple Styles’
enabled. (See Setting a Chart Style for an Individual Dataset in Dashboard
Design or Setting a Chart Style for an Individual Dataset in Report Design
for information about the ‘Multiple Styles’ property.) To format a measure
in a multiple-style chart, set the valueFormats property for the desired
measure.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2175 of 2477

Example
Chart1.valueFormats['Sum(Quantity Purchased)'].color=
[255,0,0];
Chart1.valueFormats['Sum(Quantity Purchased)'].rotation =
30;
Chart1.valueFormats['Sum(Total)'].color = [0,0,255];
Chart1.valueFormats['Sum(Total)'].format =
[Chart.DECIMAL_FORMAT,"$#,###.00"]
Chart1.valueFormats['Sum(Total)'].font = 'Lucida Sans
Unicode-BOLD-8';

For information about the valueFormats sub-properties (color, font,
format, rotation), see the following: valueColor, valueFont, valueFormat,
valueRotation. To format all measures in a multiple-style chart, use one of
these properties.

See Also
valueColor, to specify value color in a single-style chart.
valueFont, to specify value font in a single-style chart.
valueFormat, to specify value format in a single-style chart.
valueRotation, to specify value rotation in a single-style chart.

VALUEVISIBLE

Sets the visibility for data values displayed in the chart plot area.

Type
Boolean

Example
Chart1.valueVisible = false;

ADDCONFIDENCEINTERVALTARGET(MEASURE, COLORS, VALUES,
OPTIONS)

Draws a set of horizontal or vertical confidence intervals on the chart.

Parameter
measure Name of measure on which to draw confidence
intervals
colors Color (see valueColor) or array of colors to
fill area of confidence intervals

CHART SCRIPT REFERENCE

2176 of 2477

values Confidence level as a percentage (e.g., '99'
for 99% confidence interval)
options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the upper confidence line
fillBelow Color (see valueColor) to fill the
region below the lower confidence line
label String to label the confidence line(s).
The following codes can be inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
confidence lines
lineStyle The line style (a Line Styles constant)
to apply to all confidence lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all line labels
labelColor The color (see valueColor) to apply to
all line labels

Example
var options =
{fillAbove:[225,225,225],fillBelow:[225,225,225],label:['{1
}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addConfidenceIntervalTarget('Sum(Product.Total)',0xDDAAAA,
99,options)

See Also
Adding a Statistical Measure, in Report Design, for more information
about target lines.
Adding a Statistical Measure, in Dashboard Design, for more information
about target lines.

ADDPERCENTAGETARGET(MEASURE, COLORS, VALUES, OPTIONS)

Draws a set of horizontal or vertical lines on the chart to mark the specified
percentage figures.

CHART SCRIPT REFERENCE

2177 of 2477

Parameter
measure Name of measure on which to draw percentage
lines
colors Color (see valueColor) or array of colors to
fill areas between percentage lines
values Percentage, or array of percentages, at which
to draw lines
options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the upper percentage line
fillBelow Color (see valueColor) to fill the
region below the lower percentage line
label String, or array of strings, to label
the percentage line(s). The following codes can be inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
percentage lines
lineStyle The line style (a Line Styles constant)
to apply to all percentage lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all line labels
labelColor The color (see valueColor) to apply to
all line labels
percentageAggregate The basis on which to compute the
percentage: 'Average', 'Minimum', 'Maximim', 'Median', 'Sum'

Example (Single Percentage Line)
var options =
{fillAbove:[225,225,225],fillBelow:[225,225,225],label:['{1
}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black',percentageAggregate:'Average'}
addPercentageTarget('Sum(Product.Total)','null',125,option
s)

Example (Multiple Percentage Lines)
var options =
{fillAbove:[225,225,225],fillBelow:[225,225,225],label:['{1
}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black',percentageAggregate:'Maximum'}

CHART SCRIPT REFERENCE

2178 of 2477

addPercentageTarget('Sum(Product.Total)',[0xDDAAAA,0xDDCCC
C],[30,60,90],options)

See Also
Adding a Statistical Measure, in Report Design, for more information
about target lines.
Adding a Statistical Measure, in Dashboard Design, for more information
about target lines.

ADDPERCENTILETARGET(MEASURE, COLORS, VALUES, OPTIONS)

Draws a set of horizontal or vertical lines on the chart to mark the specified
percentiles.

Parameter
measure Name of measure on which to draw percentile
lines
colors Color (see valueColor) or array of colors to
fill areas between percentile lines
values Percentage, or array of percentages, at which
to draw lines
options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the upper percentile line
fillBelow Color (see valueColor) to fill the
region below the lower percentile line
label String, or array of strings, to label
the percentile line(s). The following codes can be inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
percentile lines
lineStyle The line style (a Line Styles constant)
to apply to all percentile lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all line labels
labelColor The color (see valueColor) to apply to
all line labels

Example (Single Percentile Line)
var options =
{fillAbove:[225,225,255],fillBelow:[225,225,225],label:['{1

CHART SCRIPT REFERENCE

2179 of 2477

}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addPercentileTarget('Sum(Product.Total)','null',95,options
)

Example (Multiple Percentage Lines)
var options =
{fillAbove:[225,225,255],fillBelow:[225,225,225],label:['{1
}: {0,number,$#,##0}','{1}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addPercentileTarget('Sum(Product.Total)',[0xDDAAAA,0xDDCCC
C],[50,75,90],options)

See Also
Adding a Statistical Measure, in Report Design, for more information
about target lines.
Adding a Statistical Measure, in Dashboard Design, for more information
about target lines.

ADDQUANTILETARGET(MEASURE, COLORS, VALUES, OPTIONS)

Draws a set of horizontal or vertical lines on the chart to mark the specified
quantiles.

Parameter
measure Name of measure on which to draw quantile
lines
colors Color (see valueColor) or array of colors to
fill areas between quantile lines
values Number of quantiles at which to draw lines

CHART SCRIPT REFERENCE

2180 of 2477

options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the upper quantile line
fillBelow Color (see valueColor) to fill the
region below the lower quantile line
label String, or array of strings, to label
the quantile line(s). The following codes can be inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
quantile lines
lineStyle The line style (a Line Styles constant)
to apply to all quantile lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all line labels
labelColor The color (see valueColor) to apply to
all line labels

Example
var options =
{fillAbove:[225,225,255],fillBelow:[225,225,225],label:['{1
}: {0,number,$#,##0}','{1}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addQuantileTarget('Sum(Product.Total)',[0xDDAAAA,0xDDCCCC]
,4,options)

See Also
Adding a Statistical Measure, in Report Design, for more information
about target lines.
Adding a Statistical Measure, in Dashboard Design, for more information
about target lines.

ADDSTANDARDDEVIATIONTARGET(MEASURE, COLORS, VALUES,
OPTIONS)

Draws a set of horizontal or vertical lines on the chart to mark the specified
number of standard deviations from the mean.

CHART SCRIPT REFERENCE

2181 of 2477

Parameter
measure Name of measure on which to draw standard
deviation lines
colors Color (see valueColor) or array of colors to
fill areas between standard deviation lines
values Array of multipliers for which to draw
standard deviation lines
options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the upper standard deviation line
fillBelow Color (see valueColor) to fill the
region below the lower standard deviation line
label String, or array of strings, to label
the standard deviation line(s). The following codes can be
inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
standard deviation lines
lineStyle The line style (a Line Styles constant)
to apply to all standard deviation lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all line labels
labelColor The color (see valueColor) to apply to
all line labels

Example
var options =
{fillAbove:[225,225,225],fillBelow:[225,225,225],label:['{1
}: {0,number,$#,##0}','{1}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addStandardDeviationTarget('Sum(Product.Total)',[0xDDCCCC,
0xDDAAAA,0xDDCCCC],[-1,1,-2,2],options)

See Also
Adding a Statistical Measure, in Report Design, for more information
about target lines.
Adding a Statistical Measure, in Dashboard Design, for more information
about target lines.

CHART SCRIPT REFERENCE

2182 of 2477

ADDTARGETBAND(MEASURE, COLORS, VALUES, OPTIONS)

Draws a set of horizontal or vertical target bands in the plot area using the
specified colors and options.

Parameter
measure Name of measure on which to draw target bands
colors Color (see valueColor) or array of colors to
fill area of bands
values Array of values and/or valid aggregation
methods ('max','min','avg','med') at which to draw the band
lines
options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the upper band line
fillBelow Color (see valueColor) to fill the
region below the lower band line
label String to label the target band(s). The
following codes can be inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
target band lines
lineStyle The line style (a Line Styles constant)
to apply to all target band lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all band labels
labelColor The color (see valueColor) to apply to
all band labels

Example (One Target Band)
var options =
{fillAbove:[225,225,225],fillBelow:[225,225,225],label:['{1
}','{1}'],lineColor:'red',lineStyle:Chart.THICK_LINE,labelF
ont:'Lucida Sans Unicode-BOLD-11',labelColor:'black'}
addTargetBand('Sum(Product.Total)',0xDDAAAA,['min','avg'],
options)

Example (Multiple Target Bands)
var options =
{fillAbove:[225,225,225],fillBelow:[225,225,225],label:['{1
}: {0,number,$#,##0}','{1}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'red',lineStyle:Chart.THICK_L

CHART SCRIPT REFERENCE

2183 of 2477

INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addTargetBand('Sum(Product.Total)',[0xDDAAAA,0xAAAADD],['m
in','avg','max'],options)

See Also
Adding a Target Band, in Report Design, for more information about target
lines.
Adding a Target Band, in Dashboard Design, for more information about
target lines.

ADDTARGETLINE(MEASURE, COLORS, VALUES, OPTIONS)

Draws a set of horizontal or vertical target lines in the plot area using the
specified colors and options.

Parameter
measure Name of measure on which to draw target line
colors Color (see valueColor) or array of colors to
fill area between target lines
values Array of values and/or valid aggregation
methods ('max','min','avg','med') at which to draw the lines
options Name-value pairs of options (see below, e.g.,
{fillAbove:0xff0000, fillBelow:0x00ff00})

Options
fillAbove Color (see valueColor) to fill the
region above the target line
fillBelow Color (see valueColor) to fill the
region below the target line
label String to label the target line(s). The
following codes can be inserted:

{0}: Target value
{1}: Target formula
{2}: Field name

lineColor Color (see valueColor) to apply to all
target lines
lineStyle The line style (a Line Styles constant)
to apply to all target lines
labelFont The font description (e.g., 'Lucida
Sans Unicode-BOLD-14') to apply to all target labels
labelColor The color (see valueColor) to apply to
all target labels

CHART SCRIPT REFERENCE

2184 of 2477

Example (One Target Line)
var options =
{fillAbove:[200,200,255],fillBelow:[225,225,225],label:'Val
ue: {0}',lineColor:'blue'}
addTargetLine('Sum(Product.Total)',null,2500000,options)

Example (Multiple Target Lines)
var options =
{fillAbove:[200,200,200],fillBelow:[200,200,200],label:['{1
}: {0,number,$#,##0}','{1}:
{0,number,$#,##0}'],lineColor:'blue',lineStyle:Chart.DASH_L
INE,labelFont:'Lucida Sans Unicode-BOLD-
11',labelColor:'black'}
addTargetLine('Sum(Product.Total)',0xDD99DD,['avg','max'],
options)

See Also
Adding a Target Line, in Report Design, for more information about target
lines.
Adding a Target Line, in Dashboard Design, for more information about
target lines.

APPLYEFFECT

Enables a 3d visual effect for chart elements.

Type
Boolean

Example
Chart1.applyEffect = true
Chart2.applyEffect = false

CHART SCRIPT REFERENCE

2185 of 2477

PLOTALPHA

Sets the transparency of chart elements (bars, lines, points, etc.). A value of
0 indicates complete transparency (i.e., chart elements not visible), and a
value of 1 indicates complete opacity.

Type
Number Number in range [0,1]

Example
Chart1.plotAlpha = .5;

PIEEXPLODED

Separates the slices of a pie chart by a small gap.

Type
Boolean

Example
Chart1.pieExploded = true

CHART SCRIPT REFERENCE

2186 of 2477

XGRIDCOLOR

Sets the X-axis grid color.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.xGridColor = [255,0,0];
Chart1.xGridColor = {r:255,g:0,b:0}

YGRIDCOLOR

Sets the Y-axis grid color.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.yGridColor = [255,0,0];
Chart1.yGridColor = {r:255,g:0,b:0}

XGRIDSTYLE

Sets the X-axis grid style. A grid line is drawn at each axis tick.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2187 of 2477

Type
Chart Constants constant
(see Line Styles)

Example
Chart1.yGridStyle=Chart.DOT_LINE
Chart1.xGridStyle=Chart.THICK_LINE

YGRIDSTYLE

Sets the Y-axis grid style. A grid line is drawn at each axis tick.

Type
Chart Constants constant
(see Line Styles)

Example
Chart1.yGridStyle=Chart.DOT_LINE
Chart1.xGridStyle=Chart.THICK_LINE

XBANDCOLOR

Displays bands of the specified color on a categorical or timescale X-axis.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2188 of 2477

JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.xBandColor = [150,150,200];
Chart1.xBandColor = {r:150,g:150,b:200};

See Also
xBandSize, to set the band thickness.

YBANDCOLOR

Displays bands of the specified color on a categorical or timescale Y-axis.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.yBandColor = [220,220,255];
Chart1.yBandColor = {r:220,g:220,b:255};

See Also
yBandSize, to set the band thickness.

XBANDSIZE

Specifies the width of the bands on a categorical or timescale X-axis. The
band size is an integer indicating the number of category groups (for a

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2189 of 2477

categorical axis) or the number of date groups (for a timescale axis) to be
spanned by each band.

Type
integer number of groups spanned by band

Example
Chart1.xBandSize = 2;

See Also
xBandColor, to set the band color.

YBANDSIZE

Specifies the width of the bands on a categorical or timescale Y-axis. The
band size is an integer indicating the number of category groups (for a
categorical axis) or the number of date groups (for a timescale axis) to be
spanned by each band.

Type
integer number of groups spanned by band

Example
Chart1.yBandSize = 3;

See Also
yBandColor, to set the band color.

CHART SCRIPT REFERENCE

2190 of 2477

QUADRANTCOLOR

Sets the color of the quadrant lines.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.quadrantColor=[255,0,0];
Chart1.quadrantStyle=Chart.DOT_LINE;

QUADRANTSTYLE

Sets the style of the quadrant lines.

Type
Chart Constants constant
(see Line Styles)

Example
Chart1.quadrantColor=[255,0,0];
Chart1.quadrantStyle=Chart.DOT_LINE;

DIAGONALCOLOR

Sets the color of the diagonal line.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2191 of 2477

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.diagonalColor=[255,0,0];
Chart1.diagonalStyle=Chart.DOT_LINE;

DIAGONALSTYLE

Sets the style of the diagonal line.

Type
Chart Constants constant
(see Line Styles)

Example
Chart1.diagonalColor=[255,0,0];
Chart1.diagonalStyle=Chart.DOT_LINE;

LEGENDPOSITION

Sets the legend position relative to the chart. Set the property to Chart.NONE
to hide the legend.

Type
Chart Constants constant
(see Legend Positions)

Example
Chart1.legendPosition = Chart.LEFT;

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2192 of 2477

LEGENDBORDER

Sets the legend border line style. Set the property to Chart.NONE to hide the
legend border.

Type
Chart Constants constant
(see Line Styles)

Example
Chart1.legendBorder = Chart.DASH_LINE;

LEGENDBORDERCOLOR

Sets the color of the legend border.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.legendBorderColor = [255,0,0];
Chart1.legendBorderColor = {r:255,g:0,b:0}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2193 of 2477

LEGENDTITLEFONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the font for the legend title.

Type
java.awt.Font, or
font description

Example
Chart1.legendTitleFont = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.legendTitleFont = 'Comic Sans MS-BOLD-14';

LEGENDTITLECOLOR

Sets the color of the legend title text.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.legendTitleColor = [255,0,0];
Chart1.legendTitleColor = {r:255,g:0,b:0}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2194 of 2477

COLORLEGEND.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the font for labels within a color-key legend.

Type
java.awt.Font, or
font description

Example
Chart1.colorLegend.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.colorLegend.font = 'Comic Sans MS-BOLD-12';

SHAPELEGEND.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the font for labels within a shape-key legend.

Type
java.awt.Font, or
font description

Example
Chart1.shapeLegend.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.shapeLegend.font = 'Comic Sans MS-BOLD-12';

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

CHART SCRIPT REFERENCE

2195 of 2477

SIZELEGEND.FONT

Use ‘Edit Value’ in
the Script Editor’s
auto-complete menu
to specify font
descriptions.

Sets the font for labels within a size-key legend.

Type
java.awt.Font, or
font description

Example
Chart1.sizeLegend.font = new java.awt.Font('Serif',
java.awt.Font.BOLD, 12);
Chart1.sizeLegend.font = 'Comic Sans MS-BOLD-12';

COLORLEGEND.COLOR

Sets the color for labels within a color-key legend.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.colorLegend.color = [255,0,0];
Chart1.colorLegend.color = {r:255,g:0,b:0}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2196 of 2477

SHAPELEGEND.COLOR

Sets the color for labels within a shape-key legend.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.shapeLegend.color = [255,0,0];
Chart1.shapeLegend.color = {r:255,g:0,b:0}

SIZELEGEND.COLOR

Sets the color for labels within a size-key legend.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Example
Chart1.sizeLegend.color = [255,0,0];
Chart1.sizeLegend.color = {r:255,g:0,b:0}

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2197 of 2477

COLORLEGEND.TITLE

Sets the legend title for a color-key legend.

Type
String

Example
Chart1.colorLegend.title = 'Salesperson';

SHAPELEGEND.TITLE

Sets the legend title for a shape-key legend.

Type
String

Example
Chart1.shapeLegend.title = 'Salesperson';

CHART SCRIPT REFERENCE

2198 of 2477

SIZELEGEND.TITLE

Sets the legend title for a size-key legend.

Type
String

Example
Chart1.sizeLegend.title = 'Salesperson';

COLORLEGEND.FORMAT

Sets the format for data values displayed in the color legend. The available
formats are shown below:

 – Chart.DATE_FORMAT for date display
 – Chart.DECIMAL_FORMAT for number display
 – Chart.MESSAGE_FORMAT for text display
 – Chart.PERCENT_FORMAT for fraction display
 – Chart.CURRENCY_FORMAT for locale-adapting currency display

For the Date, Decimal, and Message formats, optionally specify the format
and mask as items in an array. See Format Types in Report Design and
Format Tab in Dashboard Design for more information about the masks.

Type
Constant (format) or Array ([format, mask])

Example (Number Format)
Chart1.colorLegend.format =
[Chart.DECIMAL_FORMAT,"$#,##0.00"]

CHART SCRIPT REFERENCE

2199 of 2477

Example (Text Format)
Chart1.colorLegend.format = [Chart.MESSAGE_FORMAT,"{0}
Inc."];

SHAPELEGEND.FORMAT

Sets the format for data values displayed in the shape legend. The available
formats are shown below:

 – Chart.DATE_FORMAT for date display
 – Chart.DECIMAL_FORMAT for number display
 – Chart.MESSAGE_FORMAT for text display
 – Chart.PERCENT_FORMAT for fraction display
 – Chart.CURRENCY_FORMAT for locale-adapting currency display

For the Date, Decimal, and Message formats, optionally specify the format
and mask as items in an array. See Format Types in Report Design and
Format Tab in Dashboard Design for more information about the masks.

Type
Constant (format) or Array ([format, mask])

Example (Number Format)
Chart1.shapeLegend.format =
[Chart.DECIMAL_FORMAT,"$#,##0.00"];

Example (Text Format)
Chart1.shapeLegend.format = [Chart.MESSAGE_FORMAT,"{0}
Inc."];

CHART SCRIPT REFERENCE

2200 of 2477

SIZELEGEND.FORMAT

Sets the format for data values displayed in the size legend. The available
formats are shown below:

 – Chart.DATE_FORMAT for date display
 – Chart.DECIMAL_FORMAT for number display
 – Chart.MESSAGE_FORMAT for text display
 – Chart.PERCENT_FORMAT for fraction display
 – Chart.CURRENCY_FORMAT for locale-adapting currency display

For the Date, Decimal, and Message formats, optionally specify the format
and mask as items in an array. See Format Types in Report Design and
Format Tab in Dashboard Design for more information about the masks.

Type
Constant (format) or Array ([format, mask])

Example (Number Format)
Chart1.sizeLegend.format =
[Chart.DECIMAL_FORMAT,"$#,##0.00"];

Example (Text Format)
Chart1.sizeLegend.format = [Chart.MESSAGE_FORMAT,"{0}
Inc."];

CHART SCRIPT REFERENCE

2201 of 2477

COLORFIELD

Returns the name of the query field that is currently assigned to the ‘Color’
binding (ColorFrame) at runtime. This property is read-only.

Type
String

Example
if (Chart1.colorField == 'State') {
StateSelectionList1.visible = true;

}
else {
StateSelectionList1.visible = false;

}

See Also
bindingInfo.setColorField(col, type), to set the ‘Color’ binding in script.
bindingInfo.getColorField(), to return the design-time ‘Color’ binding.

SHAPEFIELD

Returns the name of the query field that is currently assigned to the ‘Shape’
binding (ShapeFrame) at runtime. This property is read-only.

Type
String

Example
if (Chart1.shapeField == 'State') {
StateSelectionList1.visible = true;

}
else {
StateSelectionList1.visible = false;

}

See Also
bindingInfo.setShapeField(col, type), to set the ‘Shape’ binding in script.
bindingInfo.getShapeField(), to return the design-time ‘Shape’ binding.

CHART SCRIPT REFERENCE

2202 of 2477

SIZEFIELD

Returns the name of the query field that is currently assigned to the ‘Size’
binding (SizeFrame) at runtime. This property is read-only.

Type
String

Example
if (Chart1.sizeField == 'State') {
StateSelectionList1.visible = true;

}
else {
StateSelectionList1.visible = false;

}

See Also
bindingInfo.setSizeField(col, type), to set the ‘Size’ binding in script.
bindingInfo.getSizeField(), to return the design-time ‘Size’ binding.

TEXTFIELD

Returns the name of the query field that is currently assigned to the ‘Text’
binding (TextFrame) at runtime. This property is read-only.

Type
String

Example
if (Chart1.textField == 'State') {
StateSelectionList1.visible = true;

}
else {
StateSelectionList1.visible = false;

}

See Also
bindingInfo.setTextField(col, type), to set the ‘Text’ binding in script.
bindingInfo.getTextField(), to return the design-time ‘Text’ binding.

GEOFIELDS

Returns the names of the query fields (as an array) that are currently
assigned to the ‘Geographic’ binding at runtime. This property is read-only.

Type
Array of Strings

Example
if (Chart1.geoFields[0] == 'State') {
StateSelectionList1.visible = true;

}
else {
StateSelectionList1.visible = false;

CHART SCRIPT REFERENCE

2203 of 2477

}

See Also
bindingInfo.geoFields, to associate fields with the ‘Geographic’ binding.

XFIELDS

Returns the names of the query fields (as an array) that are currently
assigned to the X-axis binding at runtime. This property is read-only.

Type
Array of Strings

Example
if (Chart1.xFields[0] == 'State') {
StateSelectionList1.visible = true;

}
else {
StateSelectionList1.visible = false;

}

See Also
bindingInfo.xFields, to associate fields with the X-axis binding.

YFIELDS

Returns the names of the query fields (as an array) that are currently
assigned to the Y-axis binding at runtime. This property is read-only.

Type
Array of Strings

Example
if (Chart1.yFields[0] == 'Quantity Purchased') {
Gauge1.visible = true;

}
else {
Gauge1.visible = false;

}

See Also
bindingInfo.yFields, to associate fields with the X-axis binding.

SETLABELALIASOFCOLORLEGEND(VALUE, ALIAS)

Replace the specified label in the color legend with an alias.

Parameters
value Value to be replaced
alias Replacement string

Example
Chart1.setLabelAliasOfColorLegend('NJ','New Jersey');
Chart1.setLabelAliasOfColorLegend('NY','New York');

CHART SCRIPT REFERENCE

2204 of 2477

SETLABELALIASOFSHAPELEGEND(VALUE, ALIAS)

Replace the specified label in the shape legend with an alias.

Parameters
value Value to be replaced
alias Replacement string

Example
Chart1.setLabelAliasOfShapeLegend('NJ','New Jersey');
Chart1.setLabelAliasOfShapeLegend('NY','New York');

SETLABELALIASOFSIZELEGEND(VALUE, ALIAS)

Replace the specified label in the size legend with an alias.

Parameters
value Value to be replaced
alias Replacement string

Example
Chart1.setLabelAliasOfSizeLegend('NJ','New Jersey');
Chart1.setLabelAliasOfSizeLegend('NY','New York');

CHART SCRIPT REFERENCE

2205 of 2477

CR.1.6 The Chart bindingInfo Property

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

This section presents functions related to the bindingInfo property of the
Graph. The bindingInfo property provides access to the binding, grouping,
and aggregation settings available within the Chart Binding panel.

Figure 1. The Binding panel.

The bindingInfo properties also control the ColorFrame, ShapeFrame,
SizeFrame, and TextureFrame objects that determine visual styling for data
represented on the chart (e.g., subseries).

BINDINGINFO.XFIELDS

Specifies the query fields to be displayed on the X-axis.

Type
2D Array [[Xfield1,Type1],[Xfield2,Type2],...]

Xfield: String
Type: Chart Constants constant:
STRING, DATE, or NUMBER

Example
Chart1.query = "All Sales";
Chart1.bindingInfo.xFields = [["Employee",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Total",Chart.NUMBER]];

CHART SCRIPT REFERENCE

2206 of 2477

See Also
xFields, to return the fields currently bound to X-axis at runtime.

BINDINGINFO.YFIELDS

Specifies the query fields to be displayed on the Y-axis.

Type
2D Array [[Xfield1,Type1],[Xfield2,Type2],...]

Xfield: String
Type: Chart Constants constant:
STRING, DATE, or NUMBER

Example
Chart1.query = "All Sales";
Chart1.bindingInfo.xFields = [["Employee",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Total",Chart.NUMBER]];

See Also
yFields, to return the fields currently bound to X-axis at runtime.

BINDINGINFO.BREAKDOWNFIELDS

Specifies the query fields on which to break down the data. These fields
will be bound to the ‘Group By’ region of the Chart Editor.

Type
2D Array [[Field1,Type1],[Field2,Type2],...]

Field: String
Type: Chart Constants constant:
STRING, DATE, or NUMBER

Example
Chart1.query = "All Sales";
Chart1.bindingInfo.xFields = [["Employee",Chart.STRING]];
Chart1.bindingInfo.yFields = [["Total",Chart.NUMBER]];
Chart1.bindingInfo.breakdownFields = [["Order
Date",Chart.DATE]];

CHART SCRIPT REFERENCE

2207 of 2477

BINDINGINFO.GEOFIELDS

Specifies the query fields to be used as geographic fields. These fields will
be bound to the ‘Geographic’ region of the Chart Editor.

Type
2D Array [[Field1,Type1],[Field2,Type2],...]

Field: String
Type: Chart Constants constant:
STRING, DATE, or NUMBER

Example
Chart1.query = "customers";
Chart1.separatedStyle = Chart.CHART_MAP;
Chart1.bindingInfo.setColorField("customer_id",Chart.NUMBER
);
Chart1.bindingInfo.setFormula("customer_id",Chart.DISTINCTC
OUNT_FORMULA,Chart.AESTHETIC_COLOR);
Chart1.bindingInfo.geoFields = [['state',Chart.STRING]];
Chart1.mapType = Chart['MAP_TYPE_U.S.'];
Chart1.bindingInfo.setMapLayer("state",Chart.STATE);
Chart1.bindingInfo.shapes['DistinctCount(customer_id)'] =
new StaticShapeFrame(GShape.NIL);

See Also
geoFields, to return the currently bound ‘Geographic’ field at runtime.

BINDINGINFO.SETMAPLAYER(COL,LAYER)

Specifies the map layer corresponding to a geographic field.

Parameters
col Field for which layer is assigned
layer Chart Constants constant:

Chart.STATE

CHART SCRIPT REFERENCE

2208 of 2477

Chart.CITY
Chart.COUNTRY
Chart.ZIP
Chart.PROVINCE

Example
Chart1.query = "customers";
Chart1.separatedStyle = Chart.CHART_MAP;
Chart1.bindingInfo.setColorField("customer_id",Chart.NUMBER
);
Chart1.bindingInfo.setFormula("customer_id",Chart.DISTINCTC
OUNT_FORMULA,Chart.AESTHETIC_COLOR);
Chart1.bindingInfo.geoFields = [['state',Chart.STRING]];
Chart1.mapType = Chart['MAP_TYPE_U.S.'];
Chart1.bindingInfo.setMapLayer("state",Chart.STATE);
Chart1.bindingInfo.shapes['DistinctCount(customer_id)']=new
StaticShapeFrame(GShape.NIL);

See Also
bindingInfo.getMapLayer(col), to return the layer assigned to a geographic
field.
mapType, to set the outline of the map.

BINDINGINFO.GETMAPLAYER(COL)

Returns the map layer assigned to a geographic field.

Parameters
col Field for which layer is desired

Example
var layer = Chart1.bindingInfo.getMapLayer('state')

See Also
bindingInfo.setMapLayer(col,layer), to set the geographic layer.

BINDINGINFO.GETGROUPORDER(COL,BINDING)

Returns the grouping level for a specified Date dimension.

Parameters
col Name of field for which to obtain grouping
binding The field’s binding (Chart Constants
constant):

Chart.BINDING_FIELD: bound to X or Y axis
Chart.AESTHETIC_COLOR: bound to Color

CHART SCRIPT REFERENCE

2209 of 2477

Chart.AESTHETIC_SHAPE: bound to Shape
Chart.AESTHETIC_SIZE: bound to Size
Chart.AESTHETIC_TEXT: bound to Text

Return
Number: 5 = Chart.YEAR_INTERVAL

4 = Chart.QUARTER_INTERVAL
3 = Chart.MONTH_INTERVAL
2 = Chart.WEEK_INTERVAL
1 = Chart.DAY_INTERVAL
8 = Chart.HOUR_INTERVAL
7 = Chart.MINUTE_INTERVAL
6 = Chart.SECOND_INTERVA
513 = Chart.QUARTER_OF_YEAR_PART
514 = Chart.MONTH_OF_YEAR_PART
515 = Chart.WEEK_OF_YEAR_PART
518 = Chart.DAY_OF_MONTH_PART
519 = Chart.DAY_OF_WEEK_PART
521 = Chart.HOUR_OF_DAY_PART

Example
Chart1.bindingInfo.getGroupOrder("Order Date",

Chart.BINDING_FIELD)

BINDINGINFO.SETGROUPORDER(COL,GROUPING)

Specifies the grouping level for a specified Date dimension.

Parameter
col date field to group
grouping Chart Constants constant:

Chart.YEAR_INTERVAL
Chart.QUARTER_INTERVAL
Chart.MONTH_INTERVAL
Chart.WEEK_INTERVAL
Chart.DAY_INTERVAL
Chart.HOUR_INTERVAL
Chart.MINUTE_INTERVAL
Chart.SECOND_INTERVAL
Chart.QUARTER_OF_YEAR_PART
Chart.MONTH_OF_YEAR_PART
Chart.WEEK_OF_YEAR_PART
Chart.DAY_OF_MONTH_PART
Chart.DAY_OF_WEEK_PART
Chart.HOUR_OF_DAY_PART

The distinction between grouping levels such as Chart.MONTH_INTERVAL
and Chart.MONTH_OF_YEAR_PART is as follows:

• Chart.MONTH_INTERVAL groups the same month of different years
individually (e.g., January 2009, January 2010, February 2009,
February 2010, etc.).

• Chart.MONTH_OF_YEAR_PART groups the same month of different years
together (January, February, etc.).

The same distinction obtains for Chart.DAY_INTERVAL,
Chart.DAY_OF_MONTH_PART, and other similar pairs.

CHART SCRIPT REFERENCE

2210 of 2477

Example
Chart1.bindingInfo.setGroupOrder("Order
Date",Chart.QUARTER_INTERVAL)

BINDINGINFO.ISTIMESERIES(COL)

Returns the state of the specified Date column, designated as time-series or
not.

Parameter
col Name of field to test for time-series

Return
Boolean true: Field is set as time-series

false: Field is not set as time-series

Example
var ts = Chart1.bindingInfo.isTimeSeries("Order Date");

BINDINGINFO.SETTIMESERIES(COL,BOOLEAN)

Specifies that gaps in Date data should be retained. For example, if the data
in the chart is grouped by month, and there is no data for the month of June,
the ‘timeSeries’ property ensures that the month of June is still retained in
the chart.

Parameter
col Name of field to set as time-series
Boolean true: gaps are preserved for date data

false: gaps are removed

Example
Chart1.bindingInfo.setTimeSeries("Order Date", true);

CHART SCRIPT REFERENCE

2211 of 2477

BINDINGINFO.GETCOLUMNORDER(COL)

Returns the sorting order for a specified dimension.

Parameter
col Name of field for which to obtain sorting

Return
Number 1=ascending,

2=descending
0=none

Example
var ord = Chart1.bindingInfo.getColumnOrder("Company")

See Also
bindingInfo.getColumnOrder(colName), for the equivalent Table function.

BINDINGINFO.SETCOLUMNORDER(COL,ORDER)

Specifies the sorting order for a specified dimension.

Parameter
col Name of field for which to obtain sorting
order Chart Constants constant:

Chart.SORT_ASC // ascending
Chart.SORT_DESC // descending
Chart.SORT_NONE

Example
Chart1.bindingInfo.setColumnOrder("Company",

Chart.SORT_DESC)

See Also
bindingInfo.setColumnOrder(colName,order), for the equivalent Table
function.

BINDINGINFO.GETTOPN(COL)

Returns the number (N) of top or bottom groups being filtered for the
specified field.

CHART SCRIPT REFERENCE

2212 of 2477

Parameter
col Name of filtered field

Example
var N = Chart1.bindingInfo.getTopN("Company");

See Also
bindingInfo.getTopN(groupCol), for the equivalent Table function.

BINDINGINFO.SETTOPN(COL,N)

Filters the top or bottom N groups for a specified field based on an
aggregate measure.

Parameter
col Name of field to filter
N The number of top or bottom groups to filter

Example
Chart1.bindingInfo.setTopN("Company",3)

See Also
bindingInfo.setTopN(groupCol, n), for the equivalent Table function.

BINDINGINFO.ISTOPNREVERSE(COL)

Returns the state of the Top-N/Bottom-N filter.

Parameter
col Name of the filtered field

Return
Boolean true: filter is bottom N

false: filter is top N

Example
var rev = Chart1.bindingInfo.isTopNReverse("Company");

See Also
bindingInfo.isTopNReverse(groupCol), for the equivalent Table function.

CHART SCRIPT REFERENCE

2213 of 2477

BINDINGINFO.SETTOPNREVERSE(COL,BOOLEAN)

Specifies whether filter should extract the top-N or the bottom-N groups
based on an aggregate.

Parameter
col Name of field to filter
Boolean true: filter bottom N

false: filter top N

Example
Chart1.bindingInfo.setTopN("Company",3)
Chart1.bindingInfo.setTopNReverse("Company",true);
// Returns bottom-N groups

See Also
bindingInfo.setTopNReverse(groupCol, boolean), for the equivalent Table
function.

BINDINGINFO.GETTOPNSUMMARYCOL(COL)

Returns the aggregate used for Top-N/Bottom-N filtering on a specified
field.

Parameter
col Name of filtered field

Example
var agg = Chart1.bindingInfo.getTopNSummaryCol("Company")

See Also
bindingInfo.getTopNSummaryCol(groupCol), for the equivalent Table
function.

BINDINGINFO.SETTOPNSUMMARYCOL(COL,AGG)

Specifies the aggregate to be used for Top-N/Bottom-N filtering on a given
field.

Parameter
col Name of field to filter
agg The aggregate by which to filter

CHART SCRIPT REFERENCE

2214 of 2477

Example
Chart1.bindingInfo.setTopN("Company",3)
Chart1.bindingInfo.setTopNSummaryCol("Company","Max(Total)"
);

See Also
bindingInfo.setTopNSummaryCol(groupCol, col), for the equivalent Table
function.

BINDINGINFO.GETFORMULA(COL,BINDING)

Returns the aggregation method used for a measure. The measure can be
bound to the X or Y axis, or to one of the VisualFrames (ColorFrame,
ShapeFrame, SizeFrame, and TextureFrame).

Parameter
col Field for which to obtain summary method
binding The field’s binding (Chart Constants
constant):

Chart.BINDING_FIELD: bound to X or Y axis
Chart.AESTHETIC_COLOR: bound to Color
Chart.AESTHETIC_SHAPE: bound to Shape
Chart.AESTHETIC_SIZE: bound to Size
Chart.AESTHETIC_TEXT: bound to Text

Return
The formula name (String)

Example
// For a field "Total" bound to the Y-axis:
var formula =
Chart1.bindingInfo.getFormula("Total",Chart.BINDING_FIELD);

See Also
bindingInfo.getFormula(i), for the equivalent Table function.

BINDINGINFO.SETFORMULA(COL, FORMULA, BINDING)

Sets the aggregation method for a measure (chart series). The measure can
be bound to the X or Y axis, or to one of the VisualFrames (ColorFrame,
ShapeFrame, SizeFrame, and TextureFrame).

CHART SCRIPT REFERENCE

2215 of 2477

Parameter
col The name of the field to be summarized
formula A Chart Constants summarization formula

(See Summarization Formulas.)
binding The field’s binding (Chart Constants
constant):

Chart.BINDING_FIELD: bound to X or Y axis
Chart.AESTHETIC_COLOR: bound to Color
Chart.AESTHETIC_SHAPE: bound to Shape
Chart.AESTHETIC_SIZE: bound to Size
Chart.AESTHETIC_TEXT: bound to Text

Example (axis-bound field)
// For a field "Total" bound to the Y-axis:
Chart1.bindingInfo.setFormula("Total", Chart.MAX_FORMULA,
Chart.BINDING_FIELD);

Example (frame-bound field)
// For a field "Total" bound to the ColorFrame:
Chart1.bindingInfo.setFormula("Total", Chart.MAX_FORMULA,
Chart.AESTHETIC_COLOR);

See Also
bindingInfo.setFormula(col, formula), for the equivalent Table function.

BINDINGINFO.GETPERCENTAGETYPE(COL,BINDING)

Returns the basis for computing percentages.

Parameter
col Field for which to obtain percentage type
binding The field’s binding (Chart Constants
constant):

Chart.BINDING_FIELD: bound to X or Y axis
Chart.AESTHETIC_COLOR: bound to Color
Chart.AESTHETIC_SHAPE: bound to Shape
Chart.AESTHETIC_SIZE: bound to Size

CHART SCRIPT REFERENCE

2216 of 2477

Chart.AESTHETIC_TEXT: bound to Text

Return
Number 2 = PERCENTAGE_OF_GRANDTOTAL

1 = PERCENTAGE_OF_GROUP
0 = Chart.PERCENTAGE_NONE

Example
var type = Chart1.bindingInfo.getPercentageType("Total",
Chart.BINDING_FIELD)

BINDINGINFO.SETPERCENTAGETYPE(COL,TYPE)

Specifies the basis for computing percentages, grand total or group total.

Parameter
col Name of field for which to set percentage
type Chart Constants constant:

Chart.PERCENTAGE_NONE
Chart.PERCENTAGE_OF_GRANDTOTAL
Chart.PERCENTAGE_OF_GROUP

Example
Chart1.bindingInfo.setPercentageType("Total",
Chart.PERCENTAGE_OF_GROUP)

BINDINGINFO.GETSECONDARYFIELD(COL, BINDING)

Get the secondary field used in a bivariate aggregation method (e.g.,
correlation, covariance, etc.).

Parameter
col Field for which to obtain secondary field
binding Field binding (Chart Constants constant):

Chart.BINDING_FIELD: bound to X or Y axis
Chart.AESTHETIC_COLOR: bound to Color
Chart.AESTHETIC_SHAPE: bound to Shape
Chart.AESTHETIC_SIZE: bound to Size
Chart.AESTHETIC_TEXT: bound to Text

Return
The field name (String)

Example
// For primary field "Price" bound to the Y-axis:

CHART SCRIPT REFERENCE

2217 of 2477

var col2 = Chart1.bindingInfo.getSecondaryField("Price",
Chart.BINDING_FIELD);

BINDINGINFO.SETSECONDARYFIELD(COL1, COL2, BINDING)

Set the secondary field to be used in a bivariate aggregation method (e.g.,
correlation, covariance, etc.).

Parameter
col1 Name of existing primary field
col2 Name of secondary field
binding Field binding (Chart Constants constant):

Chart.BINDING_FIELD: bound to X or Y axis
Chart.AESTHETIC_COLOR: bound to Color
Chart.AESTHETIC_SHAPE: bound to Shape
Chart.AESTHETIC_SIZE: bound to Size
Chart.AESTHETIC_TEXT: bound to Text

Example
// For primary field "Price" bound to the ColorFrame:
var formula = Chart1.bindingInfo.setSecondaryField("Price",
"Discount", Chart.AESTHETIC_COLOR);

BINDINGINFO.GETCOLORFIELD()

Returns the field bound to the ColorFrame (color coding).

Returns
String Field name used for color-coding

Example
var cfield = Chart1.bindingInfo.getColorField();

See Also
colorField, to return the runtime ‘Color’ binding.

BINDINGINFO.SETCOLORFIELD(COL, TYPE)

Bind the specified field to a ColorFrame (color coding).

Parameter
col Field to be used for color-coding
type Chart Constants constant: STRING, DATE, or
NUMBER

Example (Dimension field)
// For a dimension (categorical) field:
Chart1.bindingInfo.setColorField("Employee",Chart.STRING);

CHART SCRIPT REFERENCE

2218 of 2477

Example (Measure field)
// For a measure (numerical) field:
Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);

See Also
bindingInfo.colorFrame, for information on the different ColorFrames
available.

BINDINGINFO.GETSHAPEFIELD()

Returns the field bound to the ShapeFrame (shape coding).

Returns
String Field name used for shape-coding

Example
var sfield = Chart1.bindingInfo.getShapeField();

BINDINGINFO.SETSHAPEFIELD(COL, TYPE)

Bind the specified field to a ShapeFrame (shape coding). The aesthetic
treatment applied to the chart elements depends on the type of the chart:

• Bar-type charts apply a TextureFrame, which draws different fill
patterns. (For dimension binding, the default is the
CategoricalTextureFrame. For measure binding, the default is
LeftTiltTextureFrame.)

• Line-type charts apply a LineFrame, which draws different line styles.
(For dimension binding, the default is the CategoricalLineFrame. For
measure binding, the default is LinearLineFrame.)

CHART SCRIPT REFERENCE

2219 of 2477

• Point-type charts apply a ShapeFrame, which draws different shape
types. (For dimension binding, the default is the
CategoricalShapeFrame. For measure binding, the default is
FillShapeFrame.)

Parameter
col Field to be used for shape-coding
type Chart Constants constant: STRING, DATE, or
NUMBER

Example (Dimension field)
// For a dimension (categorical) field:
Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);

Example (Measure field)
// For a measure (numerical) field:
Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);

See Also
bindingInfo.textureFrame, for information on setting the TextureFrame.
bindingInfo.lineFrame, for information on setting the LineFrame.
bindingInfo.shapeFrame, for information on setting the ShapeFrame.

BINDINGINFO.GETSIZEFIELD()

Returns the field bound to the SizeFrame (size coding).

Returns
String Field name used for size-coding

Example
var sfield = Chart1.bindingInfo.getSizeField();

CHART SCRIPT REFERENCE

2220 of 2477

BINDINGINFO.SETSIZEFIELD(COL, TYPE)

Bind the specified field to a SizeFrame (size coding).

Parameter
col Field to be used for size-coding
type Chart Constants constant: STRING, DATE, or
NUMBER

Example (Dimension field)
// For a dimension (categorical) field:
Chart1.bindingInfo.setSizeField("Employee",Chart.STRING);

Example (Measure field)
// For a measure (numerical) field:
Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER);

See Also
bindingInfo.sizeFrame, for information on the different ShapeFrames
available.

BINDINGINFO.GETTEXTFIELD()

Returns the field bound to the TextFrame (text coding).

Returns
String Field name used for text-coding

Example
var tfield = Chart1.bindingInfo.getTextField();

CHART SCRIPT REFERENCE

2221 of 2477

BINDINGINFO.SETTEXTFIELD(COL, TYPE)

Bind the specified field to a TextFrame (text coding).

Parameter
col Field to be used for text-coding
type Chart Constants constant: STRING, DATE, or
NUMBER

Example (Dimension field)
// For a dimension (categorical) field:
Chart1.bindingInfo.setTextField("Employee",Chart.STRING);

Example (Measure field)
// For a measure (numerical) field:
Chart1.bindingInfo.setTextField("Total",Chart.NUMBER);

BINDINGINFO.SETCANDLEBINDINGFIELD(ARR)

Configure the binding for a candlestick-type chart. A candlestick chart
displays four different measures, “low,” “high,” “opening,” and “closing,”
and is most often used to plot trading information. The parameter arr
contains information for plotting one of these four measures.

Parameter
arr Array of properties for a candlestick chart
measure:

[field1,measure,formula,option,field2]

The items in the array are described below:

field1 Field containing data corresponding to
measure.
measure The measure represented by field1:

CHART SCRIPT REFERENCE

2222 of 2477

Chart.HIGH: field1 defines the high values
Chart.LOW: field1 defines the low values
Chart.OPEN: field1 defines the opening values
Chart.CLOSE: field1 defines the closing

values
formula A Chart Constants summarization formula

(See Summarization Formulas.)
option Specifies how percentages should be computed:

Chart.PERCENTAGE_NONE
Chart.PERCENTAGE_OF_GRANDTOTAL
Chart.PERCENTAGE_OF_GROUP

field2 The second operand for a bivariate formula
(e.g., correlation).

The first two items in the array (field1, measure) are required. The others
are optional.

Example
To create a candlestick chart that displays the average high, low, opening,
and closing prices by quarter, follow the steps below:

1. Create a new report or Viewsheet. For a Viewsheet, select the
‘Stock History’ > ‘Stock Prices’ query as the data source.

2. Add a new Chart element to the report or Viewsheet.

3. Enter the following script in the onLoad handler of the report or
Viewsheet. (Note the slightly different syntax in the first two lines
for report and Viewsheet.)

// For a report:
Chart1.query='Stock Prices';

// For a Viewsheet:
Chart1.data='Stock Prices';

Chart1.separatedStyle=Chart.CHART_CANDLE;
var data_high = ["Stock
Prices.High",Chart.HIGH,Chart.AVERAGE_FORMULA];
var data_low = ["Stock
Prices.Low",Chart.LOW,Chart.AVERAGE_FORMULA];
var data_close = ['Stock Prices.Close/
Last',Chart.CLOSE,Chart.AVERAGE_FORMULA];
var data_open = ['Stock
Prices.Open',Chart.OPEN,Chart.AVERAGE_FORMULA];

Chart1.bindingInfo.xFields=[['Date',Chart.DATE]];
Chart1.bindingInfo.setGroupOrder('Date',Chart.QUARTER_INTER
VAL);
Chart1.bindingInfo.setCandleBindingField(data_high);
Chart1.bindingInfo.setCandleBindingField(data_low);
Chart1.bindingInfo.setCandleBindingField(data_close);
Chart1.bindingInfo.setCandleBindingField(data_open);

4. Preview the chart.

CHART SCRIPT REFERENCE

2223 of 2477

In a Viewsheet, you
can also use the
‘Zoom’ tool to limit
the date range.

5. To observe the structure of the chart more closely, set a condition
on the chart to limit the date range (e.g., limit to the year of 2004).

Note that for each quarter, the values of each of the measures (High, Low,
Close/Last, Open) have been independently aggregated as specified by the
corresponding formula parameter (in this case, Chart.AVERAGE_FORMULA for
each).

The “high” and “low” measures are represented by the extremes of the
candle “wick,” and the “open” and “close” measures are represented by the
extremes of the candle “body.” Candles for which the “open” measure
exceeds the value of the “close” measure are shown filled. Candles for
which the “close” measure exceeds the value of the “open” measure are
shown unfilled.

See Also
bindingInfo.getCandleBindingField(measure), to obtain current binding
information.

BINDINGINFO.GETCANDLEBINDINGFIELD(MEASURE)

Return the field used as the specified measure on a candlestick-type chart,
together with associated binding information.

Parameter
measure The measure to return:

CHART SCRIPT REFERENCE

2224 of 2477

Chart.HIGH: measure defining the high values
Chart.LOW: measure defining the low values
Chart.OPEN: measure defining the opening

values
Chart.CLOSE: measure defining the closing

values

Example
Chart1.bindingInfo.getCandleBindingField(Chart.LOW);
// returns (for example): lowPrice[lowPrice, null, Average,
0]

See Also
bindingInfo.setCandleBindingField(arr), to set the binding information.

BINDINGINFO.SETSTOCKBINDINGFIELD(ARR)

Configure the binding for a stock-type chart, also known as an open-hi-
low-close (OHLC) chart. A stock chart displays four different measures,
“low,” “high,” “opening,” and “closing,” and is most often used to plot
trading information. The parameter arr contains information for plotting
one of these four measures.

Parameter
arr Array of properties for a stock chart measure:

[field1,measure,formula,option,field2]

The items in the array are described below:

field1 Field containing data coresponding to
measure.
measure The measure represented by field1:

Chart.HIGH: field1 defines the high values
Chart.LOW: field1 defines the low values
Chart.OPEN: field1 defines the opening values
Chart.CLOSE: field1 defines the closing

values
formula A Chart Constants summarization formula

(See Summarization Formulas.)
option Specifies how percentages should be computed:

Chart.PERCENTAGE_NONE
Chart.PERCENTAGE_OF_GRANDTOTAL
Chart.PERCENTAGE_OF_GROUP

field2 The second operand for a bivariate formula
(e.g., correlation).

The first two items in the array (field1, measure) are required. The others
are optional.

Example
To create a stock chart that displays the average high, low, opening, and
closing prices by quarter, follow the steps below:

1. Create a new report or Viewsheet. For a Viewsheet, select the
‘Stock History’ > ‘Stock Prices’ query as the data source.

CHART SCRIPT REFERENCE

2225 of 2477

2. Add a new Chart element to the report or Viewsheet.

3. Enter the following script in the onLoad handler of the report or
Viewsheet. (Note the slightly different syntax in the first two lines
for report and Viewsheet.)

// For a report:
Chart1.query='Stock Prices';

// For a Viewsheet:
Chart1.data='Stock Prices';

Chart1.separatedStyle=Chart.CHART_STOCK;
var data_high = ["Stock
Prices.High",Chart.HIGH,Chart.AVERAGE_FORMULA];
var data_low = ["Stock
Prices.Low",Chart.LOW,Chart.AVERAGE_FORMULA];
var data_close = ['Stock Prices.Close/
Last',Chart.CLOSE,Chart.AVERAGE_FORMULA];
var data_open = ['Stock
Prices.Open',Chart.OPEN,Chart.AVERAGE_FORMULA];

Chart1.bindingInfo.xFields=[['Date',Chart.DATE]];
Chart1.bindingInfo.setGroupOrder('Date',Chart.QUARTER_INTER
VAL);
Chart1.bindingInfo.setStockBindingField(data_high);
Chart1.bindingInfo.setStockBindingField(data_low);
Chart1.bindingInfo.setStockBindingField(data_close);
Chart1.bindingInfo.setStockBindingField(data_open);

4. Preview the chart.

In a Viewsheet, you
can also use the
‘Zoom’ tool to limit
the date range.

5. To observe the structure of the chart more closely, set a condition
on the chart to limit the date range (e.g., limit to the year of 2004).

CHART SCRIPT REFERENCE

2226 of 2477

Note that for each quarter, the values of each of the measures (High, Low,
Close/Last, Open) have been independently aggregated as specified by the
corresponding formula parameter (in this case, Chart.AVERAGE_FORMULA for
each).

The “high” and “low” measures are represented by the extremes of the
vertical line, and the “open” and “close” measures are represented,
respectively, by the left and right horizontal lines.

See Also
bindingInfo.getStockBindingField(measure), to obtain current binding
information.

BINDINGINFO.GETSTOCKBINDINGFIELD(MEASURE)

Return the field used as the specified measure on a stock-type (OHLC)
chart, together with associated binding information.

Parameter
measure The measure to return:

Chart.HIGH: measure defining the high values
Chart.LOW: measure defining the low values
Chart.OPEN: measure defining the opening

values
Chart.CLOSE: measure defining the closing

values

Example
Chart1.bindingInfo.getStockBindingField(Chart.LOW);
// returns (for example): lowPrice[lowPrice, null, Average,
0]

See Also
bindingInfo.setStockBindingField(arr), to set the binding information.

CHART SCRIPT REFERENCE

2227 of 2477

BINDINGINFO.COLORFRAME

Specifies the aesthetic color treatment for the chart elements. A
ColorFrame can color-code chart elements by value, or simply specify a
static color scheme. The default for dimensions is CategoricalColorFrame,
and the default for measures is GradientColorFrame.

Type
ColorFrame

Example
Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new HeatColorFrame;

See Also
Modifying a Chart Element using API Functions, to apply a ColorFrame
outside of the data binding.
bindingInfo.colors, to set a static color for a particular measure.
bindingInfo.setColorField(col, type), for information on binding a color
field.

BINDINGINFO.SHAPEFRAME

Specifies the aesthetic treatment for shape-coded data on point-type charts.
A ShapeFrame can shape-code chart elements by value, or simply specify
a static shape style.

Type
ShapeFrame (point-type charts)

Example
Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new TriangleShapeFrame;

CHART SCRIPT REFERENCE

2228 of 2477

See Also
Modifying a Chart Element using API Functions, to apply a ShapeFrame
outside of the data binding.
bindingInfo.shapes, to set a static shape for a particular measure.
bindingInfo.setShapeField(col, type), for information on binding a shape
field.

BINDINGINFO.SIZEFRAME

Specifies the size of graphical elements. A SizeFrame can size-code chart
elements by value, or simply specify a static size. The default for
dimensions is CategoricalSizeFrame. The default for measures is
LinearSizeFrame.

Type
SizeFrame

Example
Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER);
Chart1.bindingInfo.sizeFrame = new LinearSizeFrame;
Chart1.bindingInfo.sizeFrame.smallest = 10;
Chart1.bindingInfo.sizeFrame.largest = 50;
Chart1.bindingInfo.sizeFrame.max = 100;

See Also
Modifying a Chart Element using API Functions, to apply a SizeFrame
outside of the data binding.
bindingInfo.size, to set a static size .
bindingInfo.setSizeField(col, type), for information on binding a size field.

CHART SCRIPT REFERENCE

2229 of 2477

BINDINGINFO.TEXTUREFRAME

Specifies the aesthetic treatment (fill pattern) for the shape-coded data on a
bar-type chart. A TextureFrame can texture-code chart elements by value,
or simply specify a static texture style.

Type
TextureFrame (bar-type chart)

Example
Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.textureFrame = new GridTextureFrame;

See Also
Modifying a Chart Element using API Functions, to apply a TextureFrame
outside of the data binding.
bindingInfo.textures, to set a static texture for a particular measure.
bindingInfo.setShapeField(col, type), for information on binding a shape
field.

BINDINGINFO.LINEFRAME

Specifies the aesthetic treatment (line style) for the shape-coded data on a
line-type chart. A LineFrame can texture-code chart elements by value, or
simply specify a static texture style.

Type
LineFrame (line-type chart)

Example
Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.lineFrame = new LinearLineFrame;

CHART SCRIPT REFERENCE

2230 of 2477

See Also
Modifying a Chart Element using API Functions, to apply a LineFrame
outside of the data binding.
bindingInfo.lines, to set a static texture for a particular measure.
bindingInfo.setShapeField(col, type), for information on binding a shape
field.

BINDINGINFO.COLORS

Specifies a StaticColorFrame (fixed color) for a particular measure.

Type
StaticColorFrame

Example
Chart1.bindingInfo.colors['Sum(Total)'] = new
StaticColorFrame(java.awt.Color(0xFF00FF));

See Also
Modifying a Chart Element using API Functions, to apply a ColorFrame
outside of the data binding.
bindingInfo.colorFrame, for information on assigning value-keyed frames.

BINDINGINFO.SHAPES

Specifies a StaticShapeFrame (fixed shape) for a particular measure on
point-type charts.

Type
StaticShapeFrame (point-type charts)

Example
Chart1.bindingInfo.shapes['Sum(Total)'] = new
StaticShapeFrame(GShape.SQUARE);

CHART SCRIPT REFERENCE

2231 of 2477

See Also
Modifying a Chart Element using API Functions, to apply a ShapeFrame
outside of the data binding.
bindingInfo.shapeFrame, for information on assigning value-keyed
frames.

BINDINGINFO.SIZE

Specifies a StaticSizeFrame (fixed size) for all measures.

Type
StaticSizeFrame

Example
Chart1.bindingInfo.size = new StaticSizeFrame(30);

See Also
Modifying a Chart Element using API Functions, to apply a SizeFrame
outside of the data binding.
bindingInfo.sizeFrame, for information on assigning value-keyed frames.

BINDINGINFO.TEXTURES

Specifies a StaticTextureFrame (fixed pattern) for a particular measure on
bar-type charts.

Type
StaticTextureFrame (bar-type charts)

Example
Chart1.bindingInfo.textures['Sum(Total)'] = new
StaticTextureFrame(GTexture.PATTERN_5);

CHART SCRIPT REFERENCE

2232 of 2477

See Also
Modifying a Chart Element using API Functions, to apply a TextureFrame
outside of the data binding.
bindingInfo.textureFrame, for information on assigning value-keyed
frames.

BINDINGINFO.LINES

Specifies a StaticLineFrame (fixed line style) for a particular measure on
line-type charts.

Type
StaticLineFrame (line-type charts)

Example
Chart1.bindingInfo.lines['Sum(Total)'] = new
StaticLineFrame(GLine.LARGE_DASH);

See Also
Modifying a Chart Element using API Functions, to apply a LineFrame
outside of the data binding.
bindingInfo.lineFrame, for information on assigning value-keyed frames.

BINDINGINFO.ADDMAPPING(COL, VALUE, GEOCODE)

Specifies the mapping between a value of field col and a defined
geographical code, geocode. The geographical codes are defined in the
CSV files within inetsoft/graph/geo/data directory of the bisuite.jar file for
the corresponding map.

Parameter
col Field from which value should be mapped

CHART SCRIPT REFERENCE

2233 of 2477

value Value to be mapped to a defined geo location
geocode A geographical location in the geo data file

The latitude and lon-
gitude for code
'USA0113' are defined
in inetsoft/graph/geo/
data/us-cities.csv.

Example
// Map the value 'Queens' (in column 'city') to 'New York
City'.
Chart1.bindingInfo.addMapping('city','Queens','USA0113');

See Also
bindingInfo.getMappings(col), to retrieve the currently specified mappings.
bindingInfo.removeMapping(col,value), to remove a currently specified
mapping.

BINDINGINFO.GETMAPPINGS(COL)

Returns the mappings that exist between the values in field col and defined
geographical codes (as a two dimensional string array).

Parameter
col Field whose mappings should be returned

Example
// Display mappings in column 'city':
var mapArr = Chart1.bindingInfo.getMappings('city');

for(i=0 ; i<mapArr.length ; i++) {
alert('Value "' + mapArr[i][0] + '" is mapped to ' +

mapArr[i][1] + '.');
}

See Also
bindingInfo.addMapping(col, value, geocode), to add a specified
geographical mapping.
bindingInfo.removeMapping(col,value), to remove a currently specified
mapping.

BINDINGINFO.REMOVEMAPPING(COL,VALUE)

Removes the mapping that exists between the specified value of field col
and a defined geographical code.

Parameter
col Field from which value is mapped
value Value whose mapping should be removed

Example
// Remove mapping for value 'Queens' in column 'city':

CHART SCRIPT REFERENCE

2234 of 2477

Chart1.bindingInfo.removeMapping('city','Queens');

See Also
bindingInfo.addMapping(col, value, geocode), to add a specified
geographical mapping.
bindingInfo.getMappings(col), to retrieve the currently specified mappings.

CR.2 Object Hierarchy

The figure below shows the object structure of the Style Chart API. Among
the significant objects, GraphElement contains the elements that
graphically represent data (lines, bars, etc.). VisualFrame contains
information about mapping data dimensions to physical properties (size,
color, etc.), and Scale contains the scaling information for such mappings.
GraphForm contains information for manually-drawn chart objects.

CHART SCRIPT REFERENCE

2235 of 2477

CR.3 Getting and Setting Chart Properties

The Chart API provides “getter” and “setter” methods that allow you to
read and write most chart properties from script. The following sections
provide definitions and examples for the “setter” methods.

In general, you can call the “getter” method corresponding to a particular
“setter” method by simply changing the method name prefix.

For example, the “getter” method corresponding to
LabelForm.setAlignmentY() is LabelForm.getAlignmentY(). The
following script illustrates how you can “get” the alignment of one chart
component, and use it to “set” the alignment of another.

dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LabelForm();
var form2 = new LabelForm();
form1.setLabel("label1");
form1.setPoint(new java.awt.Point(100, 100));
form1.setAlignmentY(Chart.TOP_ALIGNMENT);
form2.setLabel("label2");
form2.setPoint(new java.awt.Point(200, 100));
form2.setAlignmentY(form1.getAlignmentY());
graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

Many attributes can also be accessed as object properties. For example:

form2.alignmentY = form1.alignmentY;

CR.4 General Chart Properties

The following sections present the top-level components required to build a
chart. These include the DataSet object, which encapsulates data from a
JavaScript array, and the EGraph object, which represents the global chart
object. The TextSpec, AxisSpec, LegendSpec, and TitleSpec objects are used
by various other components to set formatting for text, axes, legends, and
titles.

CR.4.1 Data

The Chart data object is a two-dimensional array containing the aggregate
data displayed on the Chart. You can use standard array notation,
data[i][j], to access the data value in row i and column j. Use
data.length and data.size, respectively, to obtain the number of X-axis
labels and number of datasets. For an example, see Accessing Chart Data
in Script in Chart Script Tutorial.

CHART SCRIPT REFERENCE

2236 of 2477

Tip: You can use the
Chart’s “query” prop-
erty to set a query in
the onLoad Handler.
See Modifying a Chart
Data Binding for an
example.

You can assign the results of a runQuery() function to the Data object to set
the chart dataset:

data = runQuery("sales by state");

The Data object also supports formula table syntax such as the following:

// Data in aggregated measure/column 'Sum(Sales)'
data["Sum(Sales)"]

// Data in 'Sum(Sales)' for state of NJ
data["Sum(Sales)@State:NJ"]

// Data in 'Sum(Sales)' where the value exceeds 1000000
data["State?Sum(Sales) > 1000000"]

See Also
Creating a Chart Using API Functions, for an example using runQuery().
DataSet, for information on setting the chart dataset.
Table, for information on accessing the dataset along with column headers.

CR.4.2 Table

The Chart’s Table object is a two-dimensional array containing the
aggregates records (summarized data) bound to a chart. You can use
standard array notation, table[i][j], to access the data value in row i and
column j. Use table.length and table.size, respectively, to obtain the
number of rows and columns in the summarized data.

The values provided by the Table object are the same as those provided by
the DataSet object, except that the first row, table[0][j], contains the
column headers rather than the first row of data.

For example, consider the following chart bound to the ‘All Sales’ query.

Example
// First row of 'table' has headers: Employee, Sum(Total)
var str = "";
for (var j = 0; j < table.size; j++) {
str += table[0][j] + ", ";

}
log(str);

CHART SCRIPT REFERENCE

2237 of 2477

Example
// First row of 'dataset' has data: Annie, 4412983.0
var str = "";
for (var j = 0; j < dataset.getColCount(); j++) {
str += dataset.getData(j,0) + ", ";

}
log(str);

See Also
DataSet, for information on accessing the chart’s aggregated dataset.
Data, for information on accessing Chart data with advanced syntax.

CR.4.3 DataSet

The DataSet object allows you to set the values to be displayed on the
graph. It has the form of a two-dimensional array, where each column
represents a distinct measure. You can specify the DataSet by one of the
following methods:

• In Style Studio or Visual Composer, set the chart binding using the
Chart Editor.

• In report or Viewsheet script, assign a JavaScript array to the dataset
property.

dataset = [["State", "Quantity"],["NJ", 200],["NY",
300],["PA", 370],["CT", 75]];

See Running a Query
from Script in Dash-
board Scripting and
Running a Query from
Script in Report Script-
ing for details about
runQuery().

• In report or Viewsheet script, assign a query result (e.g., ‘sales by state’)
to the dataset property.

dataset = runQuery("sales by state");

The DataSet object is also accessible for reading. See the getData()
method for more information. However, in many cases, the Data property
provides more convenient access to Chart data.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Setting the DataSet)
dataset = [["State","Quantity"], ["CA",200], ["NY",3000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

Full Name
inetsoft.graph.data.DataSet

See Also
Binding Data to a Chart in Script, for various approaches to binding data to
a chart.

CHART SCRIPT REFERENCE

2238 of 2477

Creating a Chart Using API Functions, for report and Viewsheet chart
datasets.

DataSet: getData(), getRowCount(), getColCount()

DataSet.GETDATA(COLUMN,ROW)

Returns the value in the DataSet object specified by the column and row
indices. The first column (index 0) contains the X-axis labels.

Parameters
column Column index of value to return
row Row index of value to return

Note: In many cases,
the Data property is
more convenient to
use than DataSet.

For example, consider a chart with two datasets (measures), as shown
below:

Note the index order: (column, row).

Use dataset.getData(j,i) with row index i and column index j to access
these plotted values. The DataSet.getRowCount() and
DataSet.getColCount() functions provide the number of rows and columns
of summarized data.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example
var str = "";

// Loop through rows
for (var i = 0; i < dataset.getRowCount(); i++) {

str = "";

// Loop through columns
for (var j = 0; j < dataset.getColCount(); j++) {

str += dataset.getData(j, i) + ",";
}

// Output the results
log(str); // Style Studio

CHART SCRIPT REFERENCE

2239 of 2477

alert(str); // Visual Composer

}

The following output is written by the log() function (for Style Studio) to
the Console window:

Sun May 31 00:00:00 EDT 2009, 1.0, 4.0,
Mon Jun 01 00:00:00 EDT 2009, 2.0, 5.0,
Tue Jun 02 00:00:00 EDT 2009, 3.0, 6.0,
Wed Jun 03 00:00:00 EDT 2009, 4.0, 7.0,

The values in the first column (e.g., Sun...2009, Mon...2009, etc.) are the
dates on the X-axis, while the second and third columns represent the two
datasets (Measure 1 and Measure 2).

See Also
Table, for information on accessing the dataset along with column headers.
Data, for information on accessing pre-aggregate data.

DataSet.GETROWCOUNT()

Returns the number of rows in the DataSet (including the header row).

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example
// Create a chart with two datasets:
dataset = [["State", "Total", "Profit"],["NJ", 200,
25],["NY", 300, 150]];
graph = new EGraph();
var elem1 = new IntervalElement("State", "Total");
var elem2 = new IntervalElement("State", "Profit");
var frame = new StaticColorFrame(java.awt.Color.red);
elem2.setColorFrame(frame);
graph.addElement(elem1);
graph.addElement(elem2);

Note: In many cases,
the Data property is
more convenient to
use than DataSet.

// Loop through the rows of the second dataset (Profit),
// and place labels on the bars.
for (var i=0; i<dataset.getRowCount(); i++) {
var form = new LabelForm();
form.setLabel(dataset.getData(2,i));
form.setValues([dataset.getData(0,i),

dataset.getData(2,i)]);
var spec = new TextSpec();
spec.setColor(java.awt.Color.red)
form.setTextSpec(spec)
graph.addForm(form)

}

CHART SCRIPT REFERENCE

2240 of 2477

See Also
DataSet.getData(column,row), to retrieve data from the DataSet object.

DataSet.GETCOLCOUNT()

Returns the number of columns in the DataSet.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
// Create a chart with two datasets:
dataset = [["State", "Total", "Profit"],["NJ", 200, 25],
["NY", 300, 150]];
graph = new EGraph();
var elem1 = new IntervalElement("State", "Total");
var elem2 = new IntervalElement("State", "Profit");
var frame = new StaticColorFrame(java.awt.Color.red);
elem2.setColorFrame(frame);
graph.addElement(elem1);
graph.addElement(elem2);

Note: In many cases,
the Data property is
more convenient to
use than DataSet.

// Loop through the rows and columns,
// and place labels on the bars.
for (var i=0; i<dataset.getRowCount(); i++) {
for (var j=0; j<dataset.getColCount(); j++) {
var form = new LabelForm();
form.setColor(java.awt.Color.black);
form.setLabel(dataset.getData(j,i));
form.setValues([dataset.getData(0,i),

dataset.getData(j,i)-20]);
graph.addForm(form)

}
}

CHART SCRIPT REFERENCE

2241 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.
DataSet.getData(column,row), to retrieve data from the DataSet object.

DataSet.SETORDER(DIM,ARR)

Set a manual label ordering for a given dimension field.

Parameters
dim String giving name of the dimension to sort
arr Array of strings with desired label order:

['label1','label2','label3',...]

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"],["NJ", 200],["NY",
300],["PA", 25]];
dataset.setOrder('State',['PA','NY','NJ']);
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.
DataSet.getData(column,row), to retrieve data from the DataSet object.

CHART SCRIPT REFERENCE

2242 of 2477

CR.4.4 EGraph

The EGraph object represents the graph definition. To create a new
EGraph object, call the EGraph constructor.

graph = new EGraph();

Full Name
inetsoft.graph.EGraph

See Also
Creating a Chart Using API Functions, for the basic steps in building a
chart.

EGraph.ADDELEMENT(ELEM)

Adds the specified GraphElement to the chart. See Chart Elements for
available elements.

Parameter
elem a GraphElement object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new LineElement("State", "Quantity");
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.
Representing Multiple Measures, to add multiple elements.
Chart Elements, for available elements.

EGraph.ADDFORM(FORM)

Adds the specified GraphForm to the chart. See Chart Annotation and
Decoration for available forms.

CHART SCRIPT REFERENCE

2243 of 2477

Parameter
form a GraphForm object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addPoint(new java.awt.Point(0,0));
form.addPoint(new java.awt.Point(100,100));
form.addPoint(new java.awt.Point(200,100));
form.setFill(true);
graph.addForm(form);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

EGraph.GETCOORDINATE()

Returns a handle to the graph’s Coordinate object. This is useful in cases
where the coordinates were not explicitly assigned to a variable at creation
time.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script:

var coord = graph.getCoordinate();
coord.transpose();

Example (Viewsheet)
Create a Viewsheet based on the ‘Sales Explore’ Worksheet. Bind a bar-
type chart with ‘Company’ (top 5) on the X-axis, and Sum(Total) on the Y-
axis. Add the following script:

CHART SCRIPT REFERENCE

2244 of 2477

var coord = graph.getCoordinate();
coord.transpose();

See Also
Appendix SC.12, Changing the Chart Coordinates, for information on
modifying coordinates.
Appendix SC.6, Chart Coordinates & Scaling, for available coordinate
sets.

EGraph.GETELEMENT(INDEX)

Returns a handle to the GraphElement object specified by the index. This is
useful in cases where the element was not explicitly assigned to a variable
at creation time.

Parameter
index Integer index of element

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script:

var elem = graph.getElement(0);
elem.setHint(GraphElement.HINT_SHINE,'false');

Example (Viewsheet)
Create a Viewsheet based on the ‘Sales Explore’ Worksheet. Bind a bar-
type chart with ‘Company’ (top 5) on the X-axis, and Sum(Total) on the Y-
axis. Add the following script:

var elem = graph.getElement(0);
elem.setHint(GraphElement.HINT_SHINE,'false');

See Also
Representing Multiple Measures, to add multiple elements.
Chart Elements, for available elements.

EGraph.GETELEMENTCOUNT()

Returns the number of GraphElement objects currently on the chart.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2245 of 2477

Example (Report or Viewsheet)
dataset = [["State","Total 1","Total 2"], ["NJ",200,500],
["NY",300,400]];
graph = new EGraph();
graph.addElement(new LineElement("State","Total 1"));
graph.addElement(new LineElement("State","Total 2"));
var elemCount = graph.getElementCount();
for (var i=0;i<elemCount;i++) {

graph.getElement(i).endArrow = true;
}

See Also
DataSet, to use a Data Block or query as the dataset source.

EGraph.GETFORM(INDEX)

Returns a handle to the GraphForm object specified by the index. This is
useful in cases where the form was not explicitly assigned to a variable at
creation time.

Parameter
index Integer index of form

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addForm(new LineForm());
var form = graph.getForm(0);
form.addPoint(java.awt.Point(100,100));
form.addPoint(java.awt.Point(200,200));
form.setColor(java.awt.Color(0xff0000));
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.
Adding Decorative Elements, for information on manually adding
elements.
Chart Annotation and Decoration, for available forms.

EGraph.GETFORMCOUNT()

Returns the number of forms currently present on the chart.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2246 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addForm(new LineForm());
graph.addForm(new LineForm());
graph.addForm(new LineForm());
var formCount = graph.getFormCount();
for (var i=0;i<formCount;i++) {
graph.getForm(i).addValues(['NJ',i*100]);
graph.getForm(i).addValues(['NY',300]);
graph.getForm(i).setColor(java.awt.Color(0xff0000));

}
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

EGraph.GETSCALE(FIELD)

Returns a handle to the Scale object specified by the field name parameter.
This is useful in cases where the scale was not explicitly assigned to a
variable at creation time.

Parameters
field String representing field name

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script:

var scale = graph.getScale("Sum(Total)");
scale.setMin(600000);
scale.setMax(1000000);

Example (Viewsheet)
Create a Viewsheet based on the ‘Sales Explore’ Worksheet. Bind a bar-
type chart with ‘Company’ (top 5) on the X-axis, and Sum(Total) on the Y-
axis. Add the following script:

var scale = graph.getScale("Sum(Total)");
scale.setMin(600000);
scale.setMax(1000000);

See Also
Changing Chart Scaling, for information on setting scales.
Chart Coordinates & Scaling, for available scales.

CHART SCRIPT REFERENCE

2247 of 2477

EGraph.SETLEGENDLAYOUT(VALUE)

Specifies the chart legend’s position.

Parameter
value Chart.BOTTOM // below chart data

Chart.TOP // above chart data
Chart.RIGHT // right of chart
Chart.LEFT // left of chart
Chart.IN_PLACE // floated on chart
Chart.NONE // no legend

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
elem.setColorFrame(frame);
graph.setLegendLayout(Chart.BOTTOM);
graph.addElement(elem);

See Also
Legend Positions, for a list of available positions.
DataSet, to use a Data Block or query as the dataset source.

EGraph.SETCOORDINATE(COORD)

Sets the specified Coordinate for the chart. See Chart Coordinates &
Scaling for available coordinate types.

Parameter
coord a Coordinate object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2248 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
coord.transpose();
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.
Changing the Chart Coordinates, for information on modifying
coordinates.
Chart Coordinates & Scaling, for available coordinate sets.

EGraph.SETSCALE(FIELD, SCALE)

Sets the specified Scale for the given axis. See Chart Coordinates &
Scaling for available scales.

Parameters
field name of axis to receive scale (String)
scale scale to apply to axis (Scale)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new LineElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
qscale.setMin(100);
qscale.setMax(500);
graph.addElement(elem);
graph.setScale("Quantity", qscale);

See Also
DataSet, to use a Data Block or query as the dataset source.
Changing Chart Scaling, for information on setting scales.
Chart Coordinates & Scaling, for available scales.

EGraph.SETXTITLESPEC(SPEC)

Specifies the X-axis title information for X-axis below the chart.

Parameter
spec a TitleSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2249 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var spec = new TitleSpec();
spec.setLabel("X Title")
graph.setXTitleSpec(spec);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

EGraph.SETX2TITLESPEC(SPEC)

Specifies the X-axis title information for X-axis above the chart.

Parameter
spec a TitleSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var spec = new TitleSpec();
spec.setLabel("X Title")
graph.setX2TitleSpec(spec);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2250 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

EGraph.SETYTITLESPEC(SPEC)

Specifies the Y-axis title information for Y-axis to left of chart.

Parameter
spec a TitleSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var spec = new TitleSpec();
spec.setLabel("Y Title")
graph.setYTitleSpec(spec);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

EGraph.SETY2TITLESPEC(SPEC)

Specifies the Y-axis title information for Y-axis to right of chart.

Type
spec a TitleSpec object

CHART SCRIPT REFERENCE

2251 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var spec = new TitleSpec();
spec.setLabel("Y Title")
graph.setY2TitleSpec(spec);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.4.5 LegendSpec

The LegendSpec object contains legend formatting information.

Full Name
inetsoft.graph.LegendSpec

LegendSpec: setBackground, setBorder, setBorderColor, setPartial, setPosition,
setPreferredSize, setTextFrame, setTextSpec, setTitle, setTitleTextSpec, setTitleVisible,
setVisible

See Also
VisualFrame, to create groupings that generate a legend on the chart.
EGraph.setLegendLayout(value), to place the legend in a predefined
location.

LegendSpec.SETBACKGROUND(VALUE)

Specifies the legend background color.

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2252 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setBackground(java.awt.Color(0xff00ff));
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETBORDER(VALUE)

Specifies the legend border style.

Parameter
value a GLine object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setBorder(Chart.DASH_LINE);
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2253 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETBORDERCOLOR(VALUE)

Specifies the legend border color.

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setBorderColor(java.awt.Color(0xff00ff));
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2254 of 2477

LegendSpec.SETPARTIAL(BOOLEAN)

Specifies whether legend items can be ignored when there is insufficient
space.

Type
boolean true: ignore items exceeding legend size

false: compress items to fit (default)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["New Jersey",200],

["New York",300], ["Pennsylvania",120],
["Connecticut",450], ["New Mexico",200],
["Colorado",300], ["Oregon",200],
["Kentucky",300], ["California",100],
["Alaska",350], ["Alabama",200], ["Kansas",500],
["Texas",200], ["North Dakota",300],
["Maryland",200], ["Delaware",250],
["Washington",200], ["Vermont",75]];

graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setPartial(true);
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

Drag the Chart handles to a make the chart smaller. Note how the contents
of the legend are abridged.

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETPOSITION(VALUE)

Specifies the position of the legend’s bottom-left corner (in pixels or
proportion) for cases when “in place” layout is used. (Positive values

CHART SCRIPT REFERENCE

2255 of 2477

specify distance from left/bottom. Negative values specify distance from
right/top.)

Type
value a subclass of java.awt.geom.Point2D

e.g.,
java.awt.Point for pixels
java.awt.geom.Point2D.Double for proportion

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setPosition(java.awt.Point(50,245)); // in pixels
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.setLegendLayout(Chart.IN_PLACE);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.
EGraph.setLegendLayout(value), to place the legend in a predefined
location.

LegendSpec.SETPREFERREDSIZE(VALUE)

Specifies the legend size (pixels) for cases when
EGraph.setLegendLayout(value) is set to Chart.IN_PLACE.

Parameter
value a java.awt.Dimension object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Dimension.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.Double.html

CHART SCRIPT REFERENCE

2256 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setPosition(java.awt.Point(50,245)); // in pixels
spec.setPreferredSize(java.awt.Dimension(100,40));
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.setLegendLayout(Chart.IN_PLACE);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETTEXTFRAME(FRAME)

Specifies the TextFrame containing a mapping between legend values and
replacement text.

Parameter
frame a TextFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
var tf = new DefaultTextFrame();
frame.setField("State");
tf.setText('NJ','New Jersey');
tf.setText('NY','New York');
var spec = new LegendSpec();
spec.setTextFrame(tf);
frame.setLegendSpec(spec);
elem.colorFrame = frame;
graph.addElement(elem);

CHART SCRIPT REFERENCE

2257 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETTEXTSPEC(SPEC)

Specifies the legend body text attributes, such as color, font, format, etc.

Parameter
spec a TextSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var lspec = new LegendSpec();
var tspec = new TextSpec();
tspec.setColor(java.awt.Color(0xff0000))
lspec.setTextSpec(tspec);
frame.setLegendSpec(lspec);
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2258 of 2477

LegendSpec.SETTITLE(VALUE)

Specifies the legend title.

Parameter
value a String containing the title text

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setTitle('Legend1');
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETTITLETEXTSPEC(SPEC)

Specifies the legend title text attributes, such as color, font, format, etc.

Parameter
spec a TextSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");

CHART SCRIPT REFERENCE

2259 of 2477

var lspec = new LegendSpec();
var tspec = new TextSpec();
tspec.setColor(java.awt.Color(0xff0000))
lspec.setTitleTextSpec(tspec);
frame.setLegendSpec(lspec);
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETTITLEVISIBLE(BOOLEAN)

Specifies whether the legend title is visible.

Parameter
boolean true: show title

false: hide title

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setTitleVisible(false);
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2260 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

LegendSpec.SETVISIBLE(BOOLEAN)

Specifies whether the legend is visible.

Type
boolean true: show legend

false: hide legend

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
var spec = new LegendSpec();
spec.setVisible(false);
frame.setLegendSpec(spec);
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.4.6 TitleSpec

The TitleSpec object contains title text and formatting information.

Full Name
inetsoft.graph.TitleSpec

TitleSpec: setLabel, setTextSpec

TitleSpec.SETLABEL(VALUE)

Specifies the title text.

Parameter
value a String containing the label

CHART SCRIPT REFERENCE

2261 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var spec = new TitleSpec();
spec.setLabel("X Title")
graph.setXTitleSpec(spec);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

TitleSpec.SETTEXTSPEC(SPEC)

Specifies the title text attributes, such as color, font, format, etc.

Parameter
spec a TextSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var titlespec = new TitleSpec();
var textspec = new TextSpec();
textspec.setColor(java.awt.Color(0xff0000));
titlespec.setLabel("X Title")
titlespec.setTextSpec(textspec);
graph.setXTitleSpec(titlespec);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2262 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.4.7 TextSpec

The TextSpec object contains information about the display of text.

Full Name
inetsoft.graph.TextSpec

TextSpec: setBackground, setColor, setFont, setFormat, setRotation

TextSpec.SETBACKGROUND(VALUE)

Specifies the label background color.

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setValues(['NY', 100]);
var spec = new TextSpec();
spec.setBackground(java.awt.Color(0xcccccc));
form.setTextSpec(spec)
graph.addForm(form);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2263 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

TextSpec.SETCOLOR(VALUE)

Specifies the text color.

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var titlespec = new TitleSpec();
var textspec = new TextSpec();
textspec.setColor(java.awt.Color(0xff0000));
titlespec.setLabel("X Title")
titlespec.setTextSpec(textspec);
graph.setXTitleSpec(titlespec);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

TextSpec.SETFONT(VALUE)

Specifies the text font, as a string with the following form: 'FontFamily-
FontStyle-FontSize'.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2264 of 2477

Parameter
value a java.awt.Font object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var titlespec = new TitleSpec();
var textspec = new TextSpec();
textspec.setFont(java.awt.Font('Verdana',java.awt.Font.BOL
D, 14));
titlespec.setLabel("X Title")
titlespec.setTextSpec(textspec);
graph.setXTitleSpec(titlespec);
graph.addElement(elem);

The following values are available for font family, style, and size:

• FontFamily can be one of the available server fonts, as well as a generic
family such as serif and sans serif.

• FontStyle can be BOLD, ITALIC, PLAIN, and BOLD ITALIC.

• FontSize can be any integer value.

See Also
DataSet, to use a Data Block or query as the dataset source.

TextSpec.SETFORMAT(FORMAT)

Specifies how date or numeric data should be represented in string format
for display.

Parameter
format a java.text.Format object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/Format.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Font.html

CHART SCRIPT REFERENCE

2265 of 2477

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(java.text.DecimalFormat("##,###.00"));
aspec.setTextSpec(tspec);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Date masks follow the
java.text.SimpleDate-
Format format.

Date Format: For date formatting, use the following date masks:

M = Month
d = date
y = year
E = day of the week

Example:
For the date Nov 8, 2006:

M = 11; MM = 11; MMM = Nov; MMMM = November
d = 8; dd = 08;
yy = 06; yyyy = 2006
EEE = Wed
EEEE = Wednesday

Therefore, mask 'MMM-dd-yyyy' yields “Nov-08-2006.”

Numeric masks fol-
low the java.text.Deci-
malFormat format.

Number Format: For number formatting, use the following numeric
masks:

= number
0 = Number with zero padding

Example:
For the number 124521.63:

#,###.## yields 124,521.63
#,###.000 yields 124,521.630

Text Format: For text formatting, use {0} as a placeholder for the string
data.

http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/SimpleDateFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html
http://download.oracle.com/javase/7/docs/api/index.html?java/text/DecimalFormat.html

CHART SCRIPT REFERENCE

2266 of 2477

Example:
For the string 'Susan':

“Salesperson: {0}” yields: “Salesperson: Susan”
“--{0}--” yields: “--Susan--”

See Also
DataSet, to use a Data Block or query as the dataset source.

TextSpec.SETROTATION(VALUE)

Specifies the text rotation in degrees.

Parameter
value a number of degrees

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
var tspec = new TextSpec();
tspec.setRotation(45);
aspec.setTextSpec(tspec);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.4.8 AxisSpec

The AxisSpec object holds axis information for a scale.

Full Name
inetsoft.graph.AxisSpec

CHART SCRIPT REFERENCE

2267 of 2477

AxisSpec: setAbbreviate, setAxisStyle, setGridAsShape, setGridColor, setGridOnTop,
setGridStyle, setInPlot, setLabelVisible, setLineColor, setLineVisible, setTextFrame,
setTextSpec, setTickVisible

AxisSpec.SETABBREVIATE(BOOLEAN)

Specifies that the common prefix of TimeScale labels should be omitted to
conserve space. This property is only observed when a Date format is
specified.

Parameter
boolean true: drop common prefixes

false: do not drop prefixes

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
var date1 = new Date();
var date2 = new Date();
date1.setFullYear(2008,0,1);
date2.setFullYear(2008,10,1);
dataset = [["Date", "Quantity"], [date1,200], [date2,300]];
graph = new EGraph();
var elem = new IntervalElement("Date", "Quantity");
var tscale = new TimeScale("Date");
var aspec = new AxisSpec();
var tspec = new TextSpec();
tspec.setFormat(java.text.SimpleDateFormat('yyyy-MMM'));
aspec.setTextSpec(tspec);
aspec.setAbbreviate(true);
tscale.setAxisSpec(aspec);
graph.setScale("Date", tscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETALLTICKS(BOOLEAN)

Specifies whether tick marks should be shown for unlabeled data points.

CHART SCRIPT REFERENCE

2268 of 2477

Parameter
boolean true: show all ticks

false: show ticks for labeled points

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
For a report, add a blank chart and bind the chart to the sample ‘All Sales’
query. For a Viewsheet, create a new Viewsheet based on the sample ‘All
Sales’ query, and add a blank chart. The follow the steps below:

1. Open the Chart Editor for the chart, and drag ‘Order Date’ to the X-
axis and ‘Total’ to the Y-axis.

2. Press the ‘Edit Dimension’ button next to the ‘Order Date’ field
and select ‘Month’ from the ‘Level’ menu. Press the green ‘Apply’
button.

3. Add the following element-level script to the chart, and preview.

axis['Order Date'].format = [Chart.DATE_FORMAT,"yyyy"];
graph.getScale('Month(Order
Date)').getAxisSpec().setAllTicks(true);

Observe that ticks are displayed for every month, even though the ‘yyyy’
date format displays labels only for the years.

See Also
axis.ticksVisible, to set visibility of axis ticks.
LinearScale.setMinorIncrement(value), to set tick spacing for a linear
scale.

CHART SCRIPT REFERENCE

2269 of 2477

AxisSpec.SETAXISSTYLE(VALUE)

Specifies the axis style.

Parameter
value AxisSpec.AXIS_SINGLE (axes on left/bottom)

AxisSpec.AXIS_SINGLE2 (axis on top/right)
AxisSpec.AXIS_DOUBLE (both axes, left/bot labels)
AxisSpec.AXIS_DOUBLE2 (both axes, top/right labels)
AxisSpec.AXIS_CROSS (axis at zero-position)
AxisSpec.AXIS_NONE (axis not drawn)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
aspec.setAxisStyle(AxisSpec.AXIS_DOUBLE2);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETGRIDASSHAPE(BOOLEAN)

Specifies whether axis grid lines are represented as shapes or positions. If
represents as shapes, the grid lines can be transformed into curves under a
coordinate transformation (for example, transformation of rectangular to
polar coordinates). Otherwise, the grid lines remain straight, and only the
endpoints are transformed.

Parameter
boolean true if represented as shape

false if represented as position

CHART SCRIPT REFERENCE

2270 of 2477

AxisSpec.SETGRIDCOLOR(VALUE)

Specifies the color of the axis grid lines.

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
aspec.setGridColor(java.awt.Color(0xff0000));
aspec.setGridStyle(Chart.DASH_LINE);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETGRIDONTOP(BOOLEAN)

Specifies whether axis grid lines are layered over or under the chart
elements.

Parameter
boolean true: grid overlays elements

false: elements overlay grid

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2271 of 2477

var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
aspec.setGridOnTop(true);
aspec.setGridColor(java.awt.Color(0xff0000));
aspec.setGridStyle(Chart.DASH_LINE);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETGRIDSTYLE(VALUE)

Specifies the style of the axis grid lines.

Parameter
value a GLine value

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
aspec.setGridColor(java.awt.Color(0xff0000));
aspec.setGridStyle(Chart.DASH_LINE);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2272 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETINPLOT(BOOLEAN)

Specifies whether the specified maximum measure value is included within
the plot region. When true, this adds a slight buffer to the edge of the plot
area in order to ensure that the specified maximum value falls within the
displayed plot area.

Parameter
boolean true: display max value within plot region

false: display max value at edge of plot

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
qscale.setMax(40000);
var aspec = new AxisSpec();
aspec.setInPlot(true);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
GraphElement.setInPlot(boolean), to adjust plot boundaries to include
graph elements.
GraphForm.setInPlot(boolean), to adjust plot boundaries to include graph
forms.
LinearScale.setMax(value), for information on how to manually set a
maximum value using the API method.
axis.maximum, for information on how to manually set a maximum value
using the axis property.
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2273 of 2477

AxisSpec.SETLABELVISIBLE(BOOLEAN)

Specifies whether the axis labels are visible or hidden.

Parameter
boolean true if visible

false if not visible

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
aspec.setLabelVisible(false);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETLINECOLOR(VALUE)

Specifies the color of the axis lines.

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2274 of 2477

var cscale = new CategoricalScale("State");
var aspec1 = new AxisSpec();
var aspec2 = new AxisSpec();
aspec1.setLineColor(java.awt.Color(0xff0000));
aspec2.setLineColor(java.awt.Color(0x00ff00));
qscale.setAxisSpec(aspec1);
cscale.setAxisSpec(aspec2);
graph.setScale("Quantity", qscale);
graph.setScale("State", cscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETLINEVISIBLE(BOOLEAN)

Specifies whether the axis lines are visible or hidden.

Parameter
boolean true if visible

false if not visible

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var cscale = new CategoricalScale("State");
var aspec1 = new AxisSpec();
var aspec2 = new AxisSpec();
aspec1.setLineVisible(true);
aspec2.setLineVisible(false);
qscale.setAxisSpec(aspec1);
cscale.setAxisSpec(aspec2);
graph.setScale("Quantity", qscale);
graph.setScale("State", cscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2275 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETTEXTFRAME(FRAME)

Specifies a mapping between axis values and replacement text.

Parameter
frame a TextFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",20000],["NY",30000]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var cscale = new CategoricalScale("State");
var tframe = new DefaultTextFrame();
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
var aspec = new AxisSpec();
aspec.setTextFrame(tframe);
cscale.setAxisSpec(aspec);
graph.setScale("State", cscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2276 of 2477

AxisSpec.SETTEXTSPEC(SPEC)

Specifies the display of axis text.

Parameter
spec a TextSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");
var aspec = new AxisSpec();
var textspec = new TextSpec();
textspec.setColor(java.awt.Color(0xff0000));
aspec.setTextSpec(textspec);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

AxisSpec.SETTICKVISIBLE(BOOLEAN)

Specifies whether the axis tick marks are visible or hidden.

Parameter
boolean true if visible

false if not visible

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var qscale = new LinearScale("Quantity");

CHART SCRIPT REFERENCE

2277 of 2477

var aspec = new AxisSpec();
aspec.setTickVisible(false);
qscale.setAxisSpec(aspec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.4.9 PlotSpec

The PlotSpec object contains visual information for a Coordinate object
(i.e., the Chart’s plot area).

Full Name
inetsoft.graph.PlotSpec

PlotSpec: alpha, setBackground, setBackgroundImage, setLockAspect, setXMax,
setXMin, setYMax, setYMin

PlotSpec.SETALPHA(VALUE)

Specifies the transparency level for the Coordinate object background
color or background image.

Parameter
value a number in range [0,1], where:

0 = completely transparent
1 = completely opaque

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();

CHART SCRIPT REFERENCE

2278 of 2477

var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
spec.setBackgroundImage(logo);
spec.setAlpha(.3);
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETBACKGROUND(VALUE)

Specifies the background color for a Coordinate object (i.e., the plot area).

Parameter
value a java.awt.Color object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
spec.setBackground(java.awt.Color(0xEEEEFF));
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2279 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETBACKGROUNDIMAGE(VALUE)

Specifies the background image for a Coordinate object (i.e., the plot area).

Parameter
Image object, see getImage()

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
spec.setBackgroundImage(logo);
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETLOCKASPECT(BOOLEAN)

Specifies that the original image aspect ratio should be retained, with
coordinate scaling adapted to the image. If set to false (default), the image
is resized to fit the existing coordinate scaling.

Parameter
boolean true: keep original aspect ratio

false: change ratio to fit plot area (default)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2280 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
spec.setLockAspect(true);
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");

Note: The gray back-
ground is set from the
‘Chart Properties’ dia-
log box (Style Studio)
or the ‘Format’ dia-
log box (Viewsheet).

spec.setBackgroundImage(logo);
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETXMAX(VALUE)

Specifies the X-axis value at which to place the right edge of the
background image.

Parameter
value a number

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Q1","Q2"], [300,200], [500,300]];
graph = new EGraph();
var elem = new PointElement("Q1", "Q2");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new LinearScale("Q1");
var qscale = new LinearScale("Q2");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
var logo =
getImage("http://www.inetsoft.com/images/home/logo.gif");
spec.setBackgroundImage(logo);
spec.setYMax(150)
spec.setYMin(100)
spec.setXMax(400)

CHART SCRIPT REFERENCE

2281 of 2477

spec.setXMin(100)
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETXMIN(VALUE)

Specifies the X-axis value at which to place the left edge of the background
image.

Parameter
value a number

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Q1","Q2"], [300,200], [500,300]];
graph = new EGraph();
var elem = new PointElement("Q1", "Q2");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new LinearScale("Q1");
var qscale = new LinearScale("Q2");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
var logo =
getImage("http://www.inetsoft.com/images/home/logo.gif");
spec.setBackgroundImage(logo);
spec.setYMax(150)
spec.setYMin(100)
spec.setXMax(400)
spec.setXMin(100)
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2282 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETYMAX(VALUE)

Specifies the Y-axis value at which to place the top edge of the background
image.

Parameter
value a number

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Q1","Q2"], [300,200], [500,300]];
graph = new EGraph();
var elem = new PointElement("Q1", "Q2");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new LinearScale("Q1");
var qscale = new LinearScale("Q2");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
var logo =
getImage("http://www.inetsoft.com/images/home/logo.gif");
spec.setBackgroundImage(logo);
spec.setYMax(150)
spec.setYMin(100)
spec.setXMax(400)
spec.setXMin(100)
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2283 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

PlotSpec.SETYMIN(VALUE)

Specifies the Y-axis value at which to place the bottom edge of the
background image.

Parameter
value a number

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Q1","Q2"], [300,200], [500,300]];
graph = new EGraph();
var elem = new PointElement("Q1", "Q2");
elem.setHint(GraphElement.HINT_ALPHA,.8)
var sscale = new LinearScale("Q1");
var qscale = new LinearScale("Q2");
var coord = new RectCoord(sscale,qscale);
var spec = new PlotSpec();
var logo =
getImage("http://www.inetsoft.com/images/home/logo.gif");
spec.setBackgroundImage(logo);
spec.setYMax(150)
spec.setYMin(100)
spec.setXMax(400)
spec.setXMin(100)
coord.setPlotSpec(spec);
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.5 Chart Elements

This section discusses the various data-representation elements that can be
added to charts.

CHART SCRIPT REFERENCE

2284 of 2477

CR.5.1 GraphElement

The GraphElement object contains the visual elements that represent data.
For example, PointElement is a GraphElement that represents data tuples
as points.

Full Name
inetsoft.graph.element.GraphElement

GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame, setInPlot,
setLabelPlacement, setLineFrame, setHint(), setShapeFrame, setSizeFrame,
setTextFrame, setTextSpec, setTextureFrame

Created by
AreaElement
PointElement
SchemaElement
LineElement
IntervalElement

GraphElement.ADDDIM(FIELD)

Add a dimension to a GraphElement object. A dimension is plotted on the
X-axis, or on the outer coordinates of nested coordinates.

Parameter
field String containing name of dimension

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2285 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "City", "Quantity"],

["NJ","Edison",2500], ["NJ","Piscataway",3000],
["NY","NY City",5000],["NY","Yonkers",450]];

graph = new EGraph();
var elem = new IntervalElement("State","Quantity");
elem.addDim("City");
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.ADDVAR(FIELD)

Add a variable to a GraphElement object. A variable is plotted on the Y-
axis.

Parameter
field String containing name of variable

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity",
"Total"],["NY",550,2500],["NJ",370,3000]];
graph = new EGraph();
var elem = new LineElement("State","Quantity");
elem.addVar("Total");
graph.addElement(elem);

CHART SCRIPT REFERENCE

2286 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETCOLLISIONMODIFIER(VALUE)

Specifies how collisions (elements occupying the same location) should be
handled.

Parameter
value GraphElement.MOVE_NONE (do not stack/center)

GraphElement.MOVE_CENTER (center, do not stack)
GraphElement.MOVE_DODGE (offset horizontal)
GraphElement.MOVE_STACK (offset vertical (stack))
GraphElement.MOVE_JITTER (random offset (points))
GraphElement.DODGE_SYMMETRIC (offset horiz, center)
GraphElement.STACK_SYMMETRIC (offset vert, center)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NJ", 300],
["NY", 300], ["NY", 100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var scale = new LinearScale("Quantity");
var frame = new HeatColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
elem.setStackGroup(true);
elem.setCollisionModifier(GraphElement.STACK_SYMMETRIC);
graph.addElement(elem);

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",200],["NJ",200],

["NJ",200],["NJ",200],["NJ",200],["NJ",300],
["NY",300],["NY",300],["NY",300],["NY",300],
["NY",300],["NY",450]];

graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new HeatColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
elem.setStackGroup(true);
elem.setCollisionModifier(GraphElement.MOVE_JITTER);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2287 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETCOLORFRAME(FRAME)

Specifies the aesthetic color treatment for the chart elements. A
ColorFrame can color-code chart elements by value, or simply specify a
static color scheme.

Parameter
frame a ColorFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var frame = new HeatColorFrame();
var elem = new IntervalElement("State", "Quantity");
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETINPLOT(BOOLEAN)

Specifies whether the chart should be resized so that graph elements remain
fully visible in the chart area.

CHART SCRIPT REFERENCE

2288 of 2477

Parameter
boolean true: resize chart

false: do not resize chart (crop elements)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var scale = new LinearScale("Quantity");
scale.setMax(100);
graph.setScale("Quantity",scale);
elem.setInPlot(false);
graph.addElement(elem);

See Also
AxisSpec.setInPlot(boolean), to adjust plot boundaries to include graph
labels.
GraphForm.setInPlot(boolean), to adjust plot boundaries to include graph
forms.
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETLABELPLACEMENT(VALUE)

Specifies the location of element labels.

Parameter
value Chart.CENTER (center of element)

Chart.BOTTOM (below element)
Chart.TOP (above element
Chart.RIGHT (right of element)
Chart.LEFT (left of element)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2289 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["CA", 200], ["NY", 300]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new DefaultTextFrame();
frame.setField("Quantity")
elem.setTextFrame(frame);
elem.setLabelPlacement(Chart.BOTTOM);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETLINEFRAME(FRAME)

Specifies the aesthetic line style of graphical elements. A LineFrame can
line-code chart elements by value, or simply specify a static line style.

Parameter
frame a LineFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["CA", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticLineFrame();
frame.setLine(GLine.LARGE_DASH)
elem.setLineFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2290 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETHINT(TYPE,VALUE)

Add an effect to a GraphElement object. The available effects are
HINT_EXPLODED (element separation, or explosion), HINT_SHINE (three-
dimensional shading), and HINT_ALPHA (transparency).

Parameters
type GraphElement.HINT_EXPLODED,

GraphElement.HINT_SHINE, or
GraphElement.HINT_ALPHA

value For HINT_EXPLODED: 'true' or 'false'
For INT_SHINE: 'true' or 'false'
For HINT_ALPHA: float in range [0,1]

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"],["NY",200], ["NJ",300]];
graph = new EGraph();
var elem = new IntervalElement("State","Quantity");
elem.setHint(GraphElement.HINT_SHINE,'true')
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETSHAPEFRAME(FRAME)

Specifies the aesthetic shape treatment for the chart elements. A
ShapeFrame can shape-code chart elements by value, or simply specify a
static shape style.

Parameter
frame a ShapeFrame object

CHART SCRIPT REFERENCE

2291 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","m1","m2",
"m3"],["NJ",200,6,3,4],["NY",300,8,2,5]];
graph = new EGraph();
var frame = new StarShapeFrame();
var elem = new PointElement("State", "Quantity");
frame.setFields(["m1", "m2", "m3"]);
elem.setShapeFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETSIZEFRAME(FRAME)

Specifies the size of graphical elements. A SizeFrame can size-code chart
elements by value, or simply specify a static size.

Parameter
frame a SizeFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Quantity","width"],["NJ",200,5],["NY",300,10],["
PA",75,15]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new LinearSizeFrame();
frame.setField("width");
frame.setSmallest(10);
frame.setLargest(50);
frame.setMax(100);
elem.setSizeFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2292 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETTEXTFRAME(FRAME)

Specifies the data values to be displayed on the chart elements as text, as
well as the mapping between element values and displayed text.

Parameter
frame a TextFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["CA", 200], ["NY", 300]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new DefaultTextFrame();
frame.setField("Quantity");
elem.setTextFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETTEXTSPEC(SPEC)

Specifies the text attributes such as color, font, format, etc.

CHART SCRIPT REFERENCE

2293 of 2477

Parameter
spec a TextSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["CA", 200], ["NY", 300]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new DefaultTextFrame();
frame.setField("Quantity");
var spec = new TextSpec();
spec.setColor(java.awt.Color(0xff0000));
elem.setTextFrame(frame);
elem.setTextSpec(spec);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphElement.SETTEXTUREFRAME(FRAME)

Specifies the aesthetic texture of graphical elements. A TextureFrame can
texture-code chart elements by value, or simply specify a static texture
style.

Parameter
frame a TextureFrame object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 300], ["NY", 200]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticTextureFrame();
frame.setTexture(GTexture.PATTERN_18)
elem.setTextureFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2294 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.5.2 IntervalElement

The IntervalElement object contains the visual elements for bar charts and
range visualization. To create a new IntervalElement object, call the
IntervalElement constructor.

var elem = new IntervalElement("State", "Quantity");

You can pass a set of fields as input to the constructor (e.g., ‘State’,
‘Quantity’), or specify these later using the addDim() and addVar()
methods.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
graph.addElement(elem);

Full Name
inetsoft.graph.element.IntervalElement

IntervalElement: addInterval(), setStackGroup, setStackNegative

CHART SCRIPT REFERENCE

2295 of 2477

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

IntervalElement.ADDINTERVAL(LOWER,UPPER)

Adds a “floating” interval element (bar) with lower and upper values
specified by the inputs.

Parameters
lower Name of field defining lower values (String)
upper Name of field defining upper values (String)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Student","Bottom Score","Top
Score"],["Joe",70,80], ["Eric",50,90],["Jane",90,100],
["Sue",40,45]];
graph = new EGraph();
var elem = new IntervalElement();
elem.addDim("Student");
elem.addInterval("Bottom Score","Top Score")
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

IntervalElement.SETSTACKGROUP(BOOLEAN)

Specifies whether each element group (i.e., bar series) should be stacked
independently, or whether all should form a single stack order.

CHART SCRIPT REFERENCE

2296 of 2477

Parameters
boolean true: independent stack order for each group

false: single stack order for all groups

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",200],
["NJ",300],["NY",300],["NY",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var scale = new LinearScale("Quantity");
var frame = new HeatColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
elem.setStackGroup(true);
elem.setCollisionModifier(GraphElement.STACK_SYMMETRIC);
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

IntervalElement.SETSTACKNEGATIVE(BOOLEAN)

Specifies whether negative and positive values stack independently on
opposite sides of the axis, or whether stacking is cumulative (i.e.,
determined arithmetically).

Parameters
boolean true: independent stack order for each group

false: single stack order for all groups

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2297 of 2477

Example (Report or Viewsheet)
dataset =
[["State","Quantity"],["NJ",200],["NJ",300],["NY",-
300],["NY",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var scale = new LinearScale("Quantity");
var frame = new HeatColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
elem.setStackGroup(true);
elem.setStackNegative(false);
elem.setCollisionModifier(GraphElement.STACK_SYMMETRIC);
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.5.3 LineElement

The LineElement object contains the visual elements for a line chart. To
create a new LineElement object, call the LineElement constructor.

var elem = new LineElement("State", "Quantity");

You can pass one, two, or three field names (e.g., ‘State’, ‘Quantity’) to the
constructor, or specify these later using the addDim() and addVar()
methods.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 100], ["NY", 300]];
graph = new EGraph();
var elem = new LineElement("State", "Quantity")
graph.addElement(elem);

CHART SCRIPT REFERENCE

2298 of 2477

Full Name
inetsoft.graph.element.LineElement

LineElement: setClosed, setEndArrow, setStackGroup, setStackNegative, setStartArrow

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

LineElement.SETCLOSED(BOOLEAN)

Specifies whether the line object should be automatically closed (i.e.,
endpoints connected).

Type
boolean true: close the figure

false: do not close

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Quantity"],["NJ",100],["NY",300],["PA",200]];
graph = new EGraph();
elem = new LineElement("State", "Quantity")
elem.setClosed(true);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2299 of 2477

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

LineElement.SETENDARROW(BOOLEAN)

Specifies whether an arrow should be drawn at the end of the line (last
point).

Parameters
boolean true: draw arrow

false: do not draw arrow

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Quantity"],["NJ",100],["NY",300],["PA",200]];
graph = new EGraph();
elem = new LineElement("State", "Quantity")
elem.setEndArrow(true);
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

LineElement.SETSTACKGROUP(BOOLEAN)

Specifies whether each subgroup receives an independent element
(separate line), or whether a single element is used for all.

Parameters
boolean true: independent lines for each group

false: single line for all groups (default)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2300 of 2477

Example (Report or Viewsheet)
dataset =
[["State","Product","Quantity"],["NJ","P1",200],["NJ","P2",
300], ["NY","P1",300],["NY","P2",100]];
graph = new EGraph();
var elem = new LineElement("State", "Quantity");
elem.setColorFrame(new CategoricalColorFrame("Product"));
elem.setStackGroup(true);
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

LineElement.SETSTACKNEGATIVE(BOOLEAN)

Specifies whether negative and positive values stack independently on
opposite sides of the axis, or whether stacking is cumulative (i.e.,
determined arithmetically).

Parameters
boolean true: independent stack order for each group

false: single stack order for all groups

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Product","Quantity"],["NJ","P1",200],["NJ","P2",
300], ["NY","P1",-300],["NY","P2",100]];
graph = new EGraph();
var elem = new LineElement("State", "Quantity");
var scale = new LinearScale("Quantity");
elem.setColorFrame(new CategoricalColorFrame("Product"));
elem.setStackGroup(true);
elem.setStackNegative(false);
elem.setCollisionModifier(GraphElement.STACK_SYMMETRIC);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2301 of 2477

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

LineElement.SETSTARTARROW(BOOLEAN)

Specifies whether an arrow should be drawn at the start of the line (first
point).

Parameters
boolean true: draw arrow

false: do not draw arrow

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Quantity"],["NJ",100],["NY",300],["PA",200]];
graph = new EGraph();
elem = new LineElement("State", "Quantity")
elem.setStartArrow(true);
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

CHART SCRIPT REFERENCE

2302 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.5.4 SchemaElement

The SchemaElement object contains user-defined visual elements that can
be added to the graph. To create a new SchemaElement object, call the
SchemaElement constructor.

var elem = new SchemaElement("State", "Quantity");

You can pass a set of field names (e.g., ‘State’, ‘Quantity’) to the
constructor, or specify these later using the addDim() and addVar()
methods.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Hi","Upper","Median","Lower","Lo"],["NJ",200,180
,150,120,100],["NJ",220,170,140,110,105],["NY",300,250,230,
150,80]];
graph = new EGraph();
var elem = new SchemaElement();
elem.addDim("State")
elem.addSchema("Hi","Upper","Median","Lower","Lo")
elem.setPainter(new BoxPainter());
graph.addElement(elem);

Full Name
inetsoft.graph.element.SchemaElement

SchemaElement: setPainter

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2303 of 2477

SchemaElement.SETPAINTER(PAINTER)

Specifies the SchemaPainter object to be used in drawing the visual chart
elements.

Parameter
painter BoxPainter: Box and whiskers plot

CandlePainter: Candle plot
StockPainter: Stock chart

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Hi", "Lo", "Open", "Close"],["NJ",
200, 100, 120, 150],["NY", 300, 100, 200, 120]]
graph = new EGraph();
var elem = new SchemaElement();
elem.addDim("State")
elem.addSchema("Hi", "Close", "Lo")
elem.setPainter(new StockPainter());
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

SchemaElement.ADDSCHEMA(COL)

Specifies the SchemaPainter object to be used in drawing the visual chart
elements.

Parameter
col list of columns for schema binding

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2304 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Hi", "Lo", "Open", "Close"],["NJ",
200, 100, 120, 150],["NY", 300, 100, 200, 120]];
graph = new EGraph();
var elem = new SchemaElement();
elem.addDim("State")
elem.addSchema("Hi", "Close", "Lo")
elem.setPainter(new StockPainter());
graph.addElement(elem);

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.5.5 PointElement

The PointElement object contains the visual elements for a point (scatter)
chart. To create a new PointElement object, call the PointElement
constructor.

var elem = new PointElement("State", "Quantity");

You can pass a set of field names (e.g., ‘State’, ‘Quantity’) to the
constructor, or specify these later using the addDim() and addVar()
methods.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity")
graph.addElement(elem);

CHART SCRIPT REFERENCE

2305 of 2477

Full Name
inetsoft.graph.element.PointElement

Inherits from
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.5.6 AreaElement

The AreaElement object contains the visual elements for an area chart. To
create a new AreaElement object, call the AreaElement constructor.

var elem = new AreaElement("State", "Quantity");

You can pass a set of field names (e.g., ‘State’, ‘Quantity’) to the
constructor, or specify these later using the addDim() and addVar()
methods.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
elem = new AreaElement("State", "Quantity");
graph.addElement(elem);

Full Name
inetsoft.graph.element.AreaElement

CHART SCRIPT REFERENCE

2306 of 2477

Inherits from
LineElement: setClosed, setEndArrow, setStackGroup, setStackNegative,
setStartArrow
GraphElement: addDim(), addVar(), setCollisionModifier, setColorFrame,
setInPlot, setLabelPlacement, setLineFrame, setHint(), setShapeFrame,
setSizeFrame, setTextFrame, setTextSpec, setTextureFrame

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6 Chart Coordinates & Scaling

This section discusses objects related to setting chart coordinates and their
scaling properties. See Changing Chart Scaling for a tutorial introduction.

CR.6.1 Coordinate

The Coordinate object contains the coordinates against which data can be
represented.

Full Name
inetsoft.graph.coord.Coordinate

Coordinate: reflect, rotate, setExtent, transpose

Created by
PolarCoord
RectCoord
ParallelCoord
FacetCoord

Coordinate.REFLECT(VERT)

Reflect the coordinates about the vertical or horizontal axis.

Parameter
vert true: reflect about horizontal axis

false: reflect about vertical axis

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
coord.reflect(true);
graph.setCoordinate(coord);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2307 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

Coordinate.ROTATE(VALUE)

Rotate the axes by the specified angle.

Parameter
value an Angle in degrees

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Direction", "Score"],[(Math.PI/
2),20],[(Math.PI/4),30],[(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
xscale.setMin(0);
xscale.setMax(1.95*Math.PI);
xscale.setIncrement(Math.PI/8);
var rect = new RectCoord(xscale,yscale);
var polar = new PolarCoord(rect);
polar.rotate(45)
polar.setType(PolarCoord.THETA);
graph.setCoordinate(polar);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2308 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

Coordinate.SETEXTENT(MINX, MINY, MAXX, MAXY)

Sets the extent of a geographical coordinate system (for a map-type chart)
to the specified latitudes and longitudes.

Parameter
minX the minimum longitude
minY the minimum latitude
maxX the maximum longitude
maxY the maximum latitude

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
Create a map of the United States. (See Creating a Map Chart in
Dashboard Design or Binding a Chart to Geographical Data (Map) in
Report Design for more information.) To restrict the range of the map to the
region between Washington and Boston, first obtain the latitude and
longitude of these cities:

• Washington: 38.895111 latitude, -77.036667 longitude

• Boston: 42.358056 latitude, -71.063611 longitude

Add the following chart script to limit the extent of the map to this range.
Note that the x-axis corresponds to longitude, and the y-axis corresponds to
latitude.

graph.getCoordinate().setExtent(-77.036667, 38.895111,-
71.063611, 42.358056)
graph.getElement(0).setInPlot(false)

The setInPlot(false) function allows the chart to display only the
specified portion of the map. Otherwise, the chart will force the entire map
to display, regardless of the specified extent. See
GraphElement.setInPlot(boolean) for more information.

CHART SCRIPT REFERENCE

2309 of 2477

\Coordinate.TRANSPOSE()

Interchanges the axes. For example, in a rectangular coordinate system, the
X-axis becomes the Y-axis, and the Y-axis becomes the X-axis.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
coord.transpose()
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.2 PolarCoord

The PolarCoord object contains polar coordinates against which data can
be represented. To create a PolarCoord object, call the PolarCoord
constructor:

var polar = new PolarCoord(rect);

You can pass a RectCoord object to the constructor (e.g., ‘rect’), or specify
this later using the PolarCoord.setCoordinate(coord) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["CA",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("Quantity");
var yscale = new LinearScale("Quantity");
var rect = new RectCoord(null, yscale);

CHART SCRIPT REFERENCE

2310 of 2477

var polar = new PolarCoord(rect);
var frame = new CategoricalColorFrame();
var range = new StackRange();
polar.setType(PolarCoord.THETA);
frame.setField("State");
elem.setColorFrame(frame);
elem.setCollisionModifier(GraphElement.MOVE_STACK);
yscale.setScaleRange(range);
var spec = new AxisSpec();
spec.setLabelVisible(false);
spec.setTickVisible(false);
spec.setLineVisible(false);
yscale.setAxisSpec(spec);
graph.setCoordinate(polar);
graph.addElement(elem);

Full Name
inetsoft.graph.coord.PolarCoord

PolarCoord: setCoordinate, setType

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.
Polar Coordinates, for a walkthrough of polar coordinates.

PolarCoord.SETTYPE(VALUE)

Specifies the type of polar transformation.

Parameter
value PolarCoord.THETA (use only angle)

PolarCoord.THETA_RHO (use angle and radius)
PolarCoord.RHO (use only radius)
PolarCoord.PLUS (angle & radius, with hole)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["CA",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("Quantity");

CHART SCRIPT REFERENCE

2311 of 2477

var yscale = new LinearScale("Quantity");
var rect = new RectCoord(null, yscale);
var polar = new PolarCoord(rect);
var frame = new CategoricalColorFrame();
var range = new StackRange();
polar.setType(PolarCoord.THETA);
frame.setField("State");
elem.setColorFrame(frame);
elem.setCollisionModifier(GraphElement.MOVE_STACK);
yscale.setScaleRange(range);
var spec = new AxisSpec();
spec.setLabelVisible(false);
spec.setTickVisible(false);
spec.setLineVisible(false);
yscale.setAxisSpec(spec);
graph.setCoordinate(polar);
graph.addElement(elem);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

PolarCoord.SETCOORDINATE(COORD)

Specifies the rectangular coordinates on which the polar coordinates should
be based.

Parameter
coord a RectCoord object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Direction", "Score"], [(Math.PI/2),20],
[(Math.PI/4),30], [(Math.PI),35]];
graph = new EGraph();
var elem = new PointElement("Direction", "Score");
var xscale = new LinearScale("Direction");
var yscale = new LinearScale("Score");
yscale.setMin(0);
yscale.setMax(40);
xscale.setMin(0);
xscale.setMax(1.95*Math.PI);

CHART SCRIPT REFERENCE

2312 of 2477

xscale.setIncrement(Math.PI/8);
var rect = new RectCoord(xscale,yscale);
var polar = new PolarCoord();
polar.setCoordinate(rect);
graph.setCoordinate(polar);
graph.addElement(elem);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.3 RectCoord

The RectCoord object contains rectangular coordinates against which data
can be represented. To create a RectCoord object, pass a pair of Scale
objects to the RectCoord constructor:

var rect = new RectCoord(xscale,yscale);

You can pass a set of Scale objects (e.g., ‘xscale’, ‘yscale’, etc.) to the
constructor, or specify this later using the RectCoord.setXScale(scale) and
RectCoord.setYScale(scale) properties.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
graph.setCoordinate(coord);
graph.addElement(elem);

Full Name
inetsoft.graph.coord.RectCoord

RectCoord: setXScale, setYScale, setYScale2

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.
Rectangular Coordinates, for a walkthrough of rectangular coordinates.

CHART SCRIPT REFERENCE

2313 of 2477

RectCoord.SETXSCALE(SCALE)

Specifies the scale for the X-axis. This can also be specified as an argument
to the constructor.

Type
scale a Scale object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord();
coord.setXScale(sscale);
coord.setYScale(qscale);
graph.setCoordinate(coord);
graph.addElement(elem);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

RectCoord.SETYSCALE(SCALE)

Specifies the scale for the Y-axis. This can also be specified as an argument
to the constructor.

Type
scale a Scale object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord();
coord.setXScale(sscale);
coord.setYScale(qscale);
graph.setCoordinate(coord);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2314 of 2477

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

RectCoord.SETYSCALE2(SCALE)

Specifies the scale for the secondary (right-side) Y-axis.

Type
scale a Scale object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,10000],
["NY",300,8000]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var elem2 = new PointElement("State", "Total");
//elem2.setColorFrame(new
StaticColorFrame(java.awt.Color.red));
var cframe = new CategoricalColorFrame();
cframe.init("Quantity", "Total");
elem.setColorFrame(cframe);
elem2.setColorFrame(cframe);
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var qscale2 = new LinearScale("Total");
var coord = new RectCoord();
coord.setXScale(sscale);
coord.setYScale(qscale);
coord.setYScale2(qscale2);
graph.setCoordinate(coord);
graph.addElement(elem);
graph.addElement(elem2);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2315 of 2477

CR.6.4 Rect25Coord

The Rect25Coord object is the same as the RectCoord object, but creates a
3D effect for elements. To create a Rect25Coord object, call the object
constructor:

var rect = new Rect25Coord(xscale,yscale);

You can pass a set of Scale objects (e.g., ‘xscale’, ‘yscale’, etc.) to the
constructor, or specify these later using the inherited
RectCoord.setXScale(scale) and RectCoord.setYScale(scale) properties.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new Rect25Coord(sscale,qscale);
graph.setCoordinate(coord);
graph.addElement(elem);

Full Name
inetsoft.graph.coord.Rect25Coord

Inherits from
RectCoord: setXScale, setYScale, setYScale2
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.5 ParallelCoord

The ParallelCoord object contains parallel coordinates against which data
can be represented. To create a ParallelCoord object, pass a set of Scale
objects to the ParallelCoord constructor:

var rect = new ParallelCoord(scale1,scale2,...);

CHART SCRIPT REFERENCE

2316 of 2477

You can pass a set of Scale objects (e.g., ‘scale1’, ‘scale2’, etc.) to the
constructor, or specify this later using the ParallelCoord.setScales(scales)
property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["Quantity","Total","Returns"],[200,800,10],[175,1000,15],
[50,300,20]];
graph = new EGraph();
var elem = new LineElement();
var qscale = new LinearScale("Quantity");
var tscale = new LinearScale("Total");
var rscale = new LinearScale("Returns");
var coord = new ParallelCoord(qscale,tscale,rscale);
elem.addDim("Quantity");
elem.addDim("Total");
elem.addDim("Returns");
graph.addElement(elem);
graph.setCoordinate(coord);

Full Name
inetsoft.graph.coord.ParallelCoord

ParallelCoord: setScales

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.
Appendix SC.12.2, Polar Coordinates, for a walkthrough example of
parallel coordinates.

ParallelCoord.SETSCALES(SCALES)

Specifies the set of parallel scales to use. These can also be specified as
arguments to the constructor.

Parameter
scales Array of Scale objects

CHART SCRIPT REFERENCE

2317 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["Quantity","Total","Returns"],[200,800,10],[175,1000,15],
[50,300,20]];
graph = new EGraph();
var elem = new LineElement();
var qscale = new LinearScale("Quantity");
var tscale = new LinearScale("Total");
var rscale = new LinearScale("Returns");
var coord = new ParallelCoord();
coord.setScales([qscale,tscale,rscale]);
elem.addDim("Quantity");
elem.addDim("Total");
elem.addDim("Returns");
graph.addElement(elem);
graph.setCoordinate(coord);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.6 TriCoord

The TriCoord object contains triangular coordinates against which data can
be represented. Although the triangular coordinate system contains three
axes, it represents only two independent dimensions, and the three
measures must sum to the maximum value of the scale. This makes the
triangular coordinates effective for representing proportions of a fixed total.

Note: The three measures must sum to the maximum value of the
scale.

To create a TriCoord object, call the TriCoord constructor:

var coord = new TriCoord(qscale);

You can pass a Scale object (e.g., ‘qscale’) to the constructor, or specify this
later using the TriCoord.setScale(scale) property.

CHART SCRIPT REFERENCE

2318 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["Quantity","Total","Returns"],[50,50,100],[75,100,25],[10
0,100,0]];
graph = new EGraph();
var elem = new PointElement();
var qscale = new LinearScale("Quantity");
qscale.setMin(0);
qscale.setMax(200);
var spec = new AxisSpec();
spec.setGridStyle(Chart.DOT_LINE);
qscale.setAxisSpec(spec);
var coord = new TriCoord(qscale);
elem.addDim("Quantity");
elem.addDim("Total");
elem.addVar("Returns");
graph.addElement(elem);
graph.setScale("Quantity", qscale);
graph.setScale("Total", qscale);
graph.setScale("Returns", qscale);
graph.setCoordinate(coord);

The first dimension (‘Quantity’) is represented on the bottom axis, the
second dimension (‘Total’) on the right axis, and the third dimension
(‘Returns’) on the left axis. Note that the third dimension must be added
using addVar() rather than addDim().

Full Name
inetsoft.graph.coord.TriCoord

TriCoord: setScale

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

TriCoord.SETSCALE(SCALE)

Specifies the scale to use for all three axes. This can also be specified as an
argument to the constructor.

CHART SCRIPT REFERENCE

2319 of 2477

Parameter
scale a Scale object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["Quantity","Total","Returns"],[50,50,100],[75,100,25],[10
0,100,0]];
graph = new EGraph();
var elem = new PointElement();
var qscale = new LinearScale("Quantity");
qscale.setMin(0);
qscale.setMax(200);
var spec = new AxisSpec();
spec.setGridStyle(Chart.DOT_LINE);
spec.setGridColor(java.awt.Color.red);
qscale.setAxisSpec(spec);
var coord = new TriCoord();
coord.setScale(qscale);
elem.addDim("Quantity");
elem.addDim("Total");
elem.addVar("Returns");
graph.addElement(elem);
graph.setScale("Quantity", qscale);
graph.setScale("Total", qscale);
graph.setScale("Returns", qscale);
graph.setCoordinate(coord);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.7 FacetCoord

The FacetCoord object contains a set of inner and outer coordinates on
which multidimensional data can be represented as nested charts. To create
a FacetCoord object, call the FacetCoord constructor:

var rect = new FacetCoord(outerCoord,innerCoord);

You can pass a pair of RectCoord objects (e.g., ‘outerCoord’, ‘innerCoord’,
etc.) to the constructor, or specify these later using the

CHART SCRIPT REFERENCE

2320 of 2477

FacetCoord.setInnerCoordinates(coord) and
FacetCoord.setOuterCoordinate(coord) properties.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "City", "Product", "Quantity"],["NJ",
"Piscataway", "P1", 200],["NJ", "Edison", "P2", 100],["NY",
"NYC", "P1", 300]];
graph = new EGraph();
var elem = new IntervalElement("City", "Quantity");
var state = new CategoricalScale("State");
var city = new CategoricalScale("City");
var product = new CategoricalScale("Product");
var quantity = new LinearScale("Quantity");
var inner = new RectCoord(city, quantity);
var outer = new RectCoord(state, product);
var coord = new FacetCoord(outer,inner);
graph.setCoordinate(coord);
graph.addElement(elem);

Full Name
inetsoft.graph.coord.FacetCoord

FacetCoord: setInnerCoordinates, setOuterCoordinate

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.
Appendix SC.12.4, Facet Coordinates, for a walkthrough of facet
coordinates.

FacetCoord.SETINNERCOORDINATES(COORD)

Specifies a RectCoord object, or array of RectCoord objects, to use for the
inner coordinates of the facet graph. If an array is specified, each inner
coordinate set is plotted independently. The ‘innerCoordinates’ property
can also be specified as an argument to the constructor.

CHART SCRIPT REFERENCE

2321 of 2477

Parameter
coord Array of RectCoord objects

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "City", "Product", "Quantity"],["NJ",
"Piscataway", "P1", 200],["NJ", "Edison", "P2", 100],["NY",
"NYC", "P1", 300]];
graph = new EGraph();
var elem = new IntervalElement("City", "Quantity");
var state = new CategoricalScale("State");
var city = new CategoricalScale("City");
var product = new CategoricalScale("Product");
var quantity = new LinearScale("Quantity");
var inner = new RectCoord(city, quantity);
var outer = new RectCoord(state, product);
var coord = new FacetCoord();
coord.setInnerCoordinates([inner]);
coord.setOuterCoordinate(outer);
graph.setCoordinate(coord);
graph.addElement(elem);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

FacetCoord.SETOUTERCOORDINATE(COORD)

Specifies the rectangular coordinate set to use for the outer coordinates of
the facet graph. The RectCoord object used for outer coordinates generally
has categorical scales on both axes. The ‘outerCoordinate’ can also be
specified as an argument to the constructor.

Parameter
coord a RectCoord object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2322 of 2477

Example (Report or Viewsheet)
dataset = [["State", "City", "Product", "Quantity"],["NJ",
"Piscataway", "P1", 200],["NJ", "Edison", "P2", 100],["NY",
"NYC", "P1", 300]];
graph = new EGraph();
var elem = new IntervalElement("City", "Quantity");
var state = new CategoricalScale("State");
var city = new CategoricalScale("City");
var product = new CategoricalScale("Product");
var quantity = new LinearScale("Quantity");
var inner = new RectCoord(city, quantity);
var outer = new RectCoord(state, product);
var coord = new FacetCoord();
coord.setInnerCoordinates([inner]);
coord.setOuterCoordinate(outer);
graph.setCoordinate(coord);
graph.addElement(elem);

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

See Also
DataSet, to use a Data Block or query as the dataset source.

FacetCoord.SETVERTICAL(BOOLEAN)

Specifies whether the inner coordinates are arranged vertically or
horizontally.

Parameter
boolean true: stack vertically (default)

false: stack horizontally

Inherits from
Coordinate: reflect, rotate, setExtent, transpose

CR.6.8 Scale

The Scale object contains a scale defining the measurement of a dimension.

CHART SCRIPT REFERENCE

2323 of 2477

Full Name
inetsoft.graph.scale.Scale

Scale: init, setAxisSpec, setFields, setScaleOption

Created by
LinearScale
LogScale
PowerScale
TimeScale
CategoricalScale

Scale.INIT(DATASET)

Forces the immediate computation of the automatic scale attributes. The
init() method is only required if you need to access automatically-
computed scale attributes within your chart script. These attributes are not
available within a script until the scale is initialized via the init() method.

Parameter
dataset The Chart dataset attribute

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.init(dataset)
var defaultMax = qscale.getMax();
qscale.setMax(defaultMax + defaultMax/2);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

Scale.SETAXISSPEC(SPEC)

Specifies the axis properties for the scale.

Parameter
spec AxisSpec

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2324 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
var spec = new AxisSpec();
spec.setLineColor(java.awt.Color(0xff0000));
qscale.setAxisSpec(spec);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

Scale.SETDATAFIELDS(ARR)

Specifies the fields to use for initializing the scale; i.e., determining the
maximum and minimum values. If left unspecified, the values in the
Scale.setFields(field) property are used for this purpose.

Parameter
arr Array of Strings

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",100,0],
["NY",1500,30000]];
graph = new EGraph();
var qscale = new LogScale();
var elem = new IntervalElement("State", "Quantity");
qscale.setDataFields(["Total"]);
graph.addElement(elem)
graph.setScale("Quantity", qscale);

See Also
DataSet, to use a Data Block or query as the dataset source.

Scale.SETFIELDS(FIELD)

Specifies the fields to which the scale should be applied.

CHART SCRIPT REFERENCE

2325 of 2477

Parameter
field a String containing a column name

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",100],["NY",4000]];
graph = new EGraph();
var qscale = new LogScale();
var elem = new IntervalElement("State", "Quantity");
qscale.setFields(["Quantity"]);
var coord = new RectCoord(new CategoricalScale("State"),
qscale)
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

Scale.SETSCALEOPTION(VALUE)

Specifies a scaling option for the default scaling. The Scale.TICKS and
Scale.ZERO options determine the maximum and minimum values that are
used to calculate the scale range.

The Scale.TICKS option uses the maximum and minimum tick values (i.e.,
rounded numbers) rather than the maximum and minimum data values.
The Scale.ZERO option uses zero as the minimum rather than the minimum
data value (if positive). To combine multiple options, use the pipe (“or”)
operator:

qscale.setScaleOption(Scale.ZERO | Scale.TICKS);

Parameter
value Scale.RAW (no modification)

Scale.NO_NULL (remove NULL-data gaps in scale)
Scale.TICKS (use ticks in scale range calculation)
Scale.ZERO (use zero in scale range)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale,qscale);
qscale.setScaleOption(Scale.ZERO);
graph.setCoordinate(coord);

CHART SCRIPT REFERENCE

2326 of 2477

graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

Scale.SETSHAREDRANGE(BOOLEAN)

For a FacetCoord, specifies whether the same scale range should be used
across all sub-graphs in a facet, or whether a sub-graph’s scaling should be
shared only with sub-graphs in the same row (for Y-axis scaling) or same
column (for X-axis scaling).

Parameter
value true share scaling across all sub-graphs

false share scaling by row and column

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "City", "Product", "Quantity"],["NJ",
"Piscataway", "P1", 200],["NJ", "Edison", "P2", 100],["NY",
"NYC", "P1", 300]];
graph = new EGraph();
var elem = new IntervalElement("City", "Quantity");
var state = new CategoricalScale("State");
var city = new CategoricalScale("City");
var product = new CategoricalScale("Product");
var quantity = new LinearScale("Quantity");
quantity.setSharedRange(false)
var inner = new RectCoord(city, quantity);
var outer = new RectCoord(state, product);
var coord = new FacetCoord(outer,inner);
graph.setCoordinate(coord);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.9 LinearScale

The LinearScale object contains a linear scale, i.e., a scale that linearly
maps numerical values to physical attributes. To create a LinearScale
object, call the LinearScale constructor.

var qscale = new LinearScale('Last Year','This Year');

You can pass the names of the fields (e.g., ‘Last Year’, ‘This Year’) for
which the scale should be generated to the constructor, or specify these
later using the inherited Scale.setFields(field) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2327 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale();
qscale.setFields(["Quantity"]);
var elem = new IntervalElement("State", "Quantity")
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Full Name
inetsoft.graph.scale.LinearScale

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LinearScale: setIncrement, setMax, setMin, setMinorIncrement, setReversed,
setScaleRange

LinearScale.SETINCREMENT(VALUE)

Specifies the interval between values on the scale. When the scale is
applied to an axis, this is the interval between values displayed on the axis.

Parameter
value Number specifying interval between values

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setIncrement(15);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2328 of 2477

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LinearScale.SETMAX(VALUE)

Specifies the maximum value of the scale.

Parameter
value Number specifying the maximum scale value

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setMin(150);
qscale.setMax(450);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

If you set the maximum scale value smaller than the largest data value (so
as to crop the data), you should also set elem.setInPlot(false).
Otherwise, the chart will force the data to appear in its entirety, resulting in
a partially unlabeled axis.

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LinearScale.SETMIN(VALUE)

Specifies the minimum value of the scale.

CHART SCRIPT REFERENCE

2329 of 2477

Parameter
value Number specifying the minimum scale value

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setMin(150);
qscale.setMax(450);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LinearScale.SETMINORINCREMENT(VALUE)

Specifies the minor interval between values on the scale. When the scale is
applied to an axis, this is the interval between tick marks displayed on the
axis.

Parameter
value Number specifying interval between ticks

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
qscale.setIncrement(50);
var elem = new IntervalElement("State", "Quantity")
qscale.setMinorIncrement(10);
graph.setScale("Quantity", qscale);

CHART SCRIPT REFERENCE

2330 of 2477

graph.addElement(elem);

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LinearScale.SETREVERSED(BOOLEAN)

Specifies the orientation of the scale, either with value increasing from
bottom to top (default), or from top to bottom.

Parameter
boolean true: value increases from top to bottom

false: value increases from bottom to top

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setMin(150);
qscale.setMax(450);

// Place setReversed() after setMin() and setMax()
qscale.setReversed(true);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2331 of 2477

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LinearScale.SETSCALERANGE(RANGE)

Specifies the calculation strategy for finding scale range.

Parameter
range a ScaleRange object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setScaleRange(new StackRange()); // adds 200+300
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.10 LogScale

The LogScale object contains a logarithmic scale, i.e., a scale that
logarithmically maps numerical data values to physical attributes (axis
position, element size, etc.). To create a LogScale object, call the LogScale
constructor.

var qscale = new LogScale('Last Year', 'This Year');

CHART SCRIPT REFERENCE

2332 of 2477

You can pass the names of the fields (e.g., ‘Last Year’, ‘This Year’) for
which the scale should be generated to the constructor, or specify these
later using the inherited Scale.setFields(field) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",2000]];
graph = new EGraph();
var qscale = new LogScale();
qscale.setFields(["Quantity"]);
var elem = new IntervalElement("State", "Quantity")
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Full Name
inetsoft.graph.scale.LogScale

LogScale: setBase

Inherits from
LinearScale: setIncrement, setMax, setMin, setMinorIncrement,
setReversed, setScaleRange
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

LogScale.SETBASE(VALUE)

Specifies the base of the logarithmic scale. The default is 10.

Parameter
value a number specifying the logarithm base

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2333 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",12], ["NY",450]];
graph = new EGraph();
var qscale = new LogScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setBase(2);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Inherits from
LinearScale: setIncrement, setMax, setMin, setMinorIncrement,
setReversed, setScaleRange
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.11 PowerScale

The PowerScale object contains a scale that maps values to physical
attributes by raising them to a specified exponent. To create a PowerScale
object, call the PowerScale constructor with the fields for which the scale
should be generated.

var qscale = new PowerScale('Last Year', 'This Year');

You can pass the names of the fields (e.g., ‘Last Year’, ‘This Year’) for
which the scale should be generated to the constructor, or specify these
later using the inherited Scale.setFields(field) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new PowerScale();
qscale.setFields(["Quantity"])
var elem = new IntervalElement("State", "Quantity")
qscale.setExponent(0.5);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2334 of 2477

Full Name
inetsoft.graph.scale.PowerScale

PowerScale: setExponent

Inherits from
LinearScale: setIncrement, setMax, setMin, setMinorIncrement,
setReversed, setScaleRange
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

PowerScale.SETEXPONENT(VALUE)

Specifies the exponent of the scaling. The axis position of value x is given
by x^exponent.

Parameter
value a number specifying the scaling exponent

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new PowerScale();
qscale.setFields(["Quantity"])
var elem = new IntervalElement("State", "Quantity")
qscale.setExponent(0.5);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2335 of 2477

Inherits from
LinearScale: setIncrement, setMax, setMin, setMinorIncrement,
setReversed, setScaleRange
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.12 TimeScale

The TimeScale object contains a time scale, i.e., a scale that linearly maps
date and time data values to physical attributes. To create a TimeScale
object, call the TimeScale constructor with the fields for which the scale
should be generated.

var qscale = new TimeScale('Date');

You can pass the names of the fields (e.g., ‘Date’) for which the scale
should be generated to the constructor, or specify these later using the
inherited Scale.setFields(field) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
var date1 = new Date();
var date2 = new Date();
var maxDate = new Date();
date1.setFullYear(2008,0,1);
date2.setFullYear(2009,0,1);
maxDate.setFullYear(2011,0,1);
dataset = [["Date", "Quantity"], [date1,200], [date2,300]];
graph = new EGraph();
var elem = new IntervalElement("Date","Quantity")
var tscale = new TimeScale();
tscale.setFields(["Date"]);
tscale.setMax(maxDate);
graph.setScale("Date", tscale);
graph.addElement(elem);

Full Name
inetsoft.graph.scale.TimeScale

CHART SCRIPT REFERENCE

2336 of 2477

TimeScale: setIncrement, setMax, setMin, setType

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

TimeScale.SETINCREMENT(VALUE)

Specifies an integer increment at which to place labels on the TimeScale
axis. The integer value designates the increment in terms of the prevailing
time unit, e.g., Weeks, Months, Quarters, etc.

Parameter
value an integer

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
graph.getScale("Week(Order Date)").setIncrement(12)

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

TimeScale.SETMAX(VALUE)

Specifies the latest date on the scale.

Parameter
value a Date object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date

CHART SCRIPT REFERENCE

2337 of 2477

Example (Report or Viewsheet)
var date1 = new Date();
var date2 = new Date();
var maxDate = new Date();
date1.setFullYear(2008,0,1);
date2.setFullYear(2009,0,1);
maxDate.setFullYear(2011,0,1);
dataset = [["Date", "Quantity"], [date1,200], [date2,300]];
graph = new EGraph();
var elem = new IntervalElement("Date","Quantity")
var tscale = new TimeScale();
tscale.setFields(["Date"]);
tscale.setMax(maxDate);
graph.setScale("Date", tscale);
graph.addElement(elem);

If you set the maximum scale value smaller than the largest data value (so
as to crop the data), you should also set elem.setInPlot(false).
Otherwise, the chart will force the data to appear in its entirety, resulting in
a partially unlabeled axis.

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

TimeScale.SETMIN(VALUE)

Specifies the earliest date on the scale.

Parameter
value a Date object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
var date1 = new Date();
var date2 = new Date();
var minDate = new Date();
date1.setFullYear(2008,0,1);
date2.setFullYear(2009,0,1);
minDate.setFullYear(2005,0,1);

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date

CHART SCRIPT REFERENCE

2338 of 2477

dataset = [["Date", "Quantity"], [date1,200], [date2,300]];
graph = new EGraph();
var elem = new IntervalElement("Date","Quantity")
var tscale = new TimeScale("Date");
tscale.setMin(minDate);
graph.setScale("Date", tscale);
graph.addElement(elem);

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

TimeScale.SETTYPE(TYPE)

Specifies the placement of tick marks on a TimeScale axis. (This is
analogous to the increment setting for a LinearScale axis.)

Parameter
type an axis increment specifier:

TimeScale.DAY
TimeScale.HOUR
TimeScale.MINUTE
TimeScale.MONTH
TimeScale.QUARTER
TimeScale.SECOND
TimeScale.WEEK
TimeScale.YEAR

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["Date", "Quantity"], [new Date(2008,8,1),200],
[new Date(2008,10,1),400], [new Date(2009,0,1),300], [new
Date(2009,1,1),900]];
graph = new EGraph();
var elem = new IntervalElement("Date","Quantity")
var tscale = new TimeScale("Date");
tscale.setType(TimeScale.YEAR)
graph.setScale("Date", tscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2339 of 2477

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.13 CategoricalScale

The CategoricalScale object contains a nominal scale, i.e., a scale that
logically maps nominal values to physical attributes. To create a
CategoricalScale object, call the CategoricalScale constructor with the
fields for which the scale should be generated.

var qscale = new CategoricalScale('State');

You can pass the names of the fields (e.g., ‘State’) for which the scale
should be generated to the constructor, or specify these later using the
inherited Scale.setFields(field) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale, qscale);
coord.transpose();
graph.setCoordinate(coord);
graph.addElement(elem);

Full Name
inetsoft.graph.scale.CategoricalScale

CategoricalScale: setValues, setFill

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

CHART SCRIPT REFERENCE

2340 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalScale.SETFILL(BOOLEAN)

Specifies that scale boundaries should be set equal to the extreme data
values (leaving no gap at the axis edges).

Parameter
Boolean true, to fill axis to edges

false, to leave gap at edges

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300],
["CT", 50], ["PA", 175]];
graph = new EGraph();
var elem = new AreaElement("State", "Quantity");
var sscale = new CategoricalScale("State");
sscale.setFill(true)
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale, qscale);
graph.setCoordinate(coord);
graph.addElement(elem);

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalScale.SETVALUES(VALUE)

Specifies the categorical values in the scale, and their order.

Parameter
value Array of String

CHART SCRIPT REFERENCE

2341 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var coord = new RectCoord(sscale, qscale);
sscale.setValues(["NY","NJ"]);
coord.transpose();
graph.setCoordinate(coord);
graph.addElement(elem);

Inherits from
Scale: init, setAxisSpec, setFields, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.14 ScaleRange

The ScaleRange object contains the calculation strategy for finding the
scale range.

Full Name
inetsoft.graph.scale.ScaleRange

ScaleRange: setAbsoluteValue

Created by
StackRange
LinearRange

ScaleRange.SETABSOLUTEVALUE(BOOLEAN)

Specifies whether negative quantities should be represented against the
positive axis or against the negative axis (default).

Parameter
boolean true: show neg values on pos axis

false: show neg values on neg axis

CHART SCRIPT REFERENCE

2342 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",-300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity");
var frame = new DefaultTextFrame();
frame.setField("Quantity")
elem.setTextFrame(frame)
var range = new LinearRange();
range.setAbsoluteValue(true);
qscale.setScaleRange(range);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.15 StackRange

The StackRange object computes the range by “stacking” the data values.
To create a StackRange object, call the StackRange constructor.

var range = new StackRange();

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
qscale.setScaleRange(new StackRange()); // adds 200+300
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2343 of 2477

Full Name
inetsoft.graph.scale.StackRange

StackRange: setGroupField, setStackNegative

Inherits from
ScaleRange: setAbsoluteValue

See Also
DataSet, to use a Data Block or query as the dataset source.

StackRange.SETGROUPFIELD(VALUE)

Determines the scale range from the stacked values of largest single group,
based on the specified grouping field.

Parameter
value the field name, a String

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NJ",100],["NY",400],["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new PointElement("State", "Quantity")
range = new StackRange();
range.setGroupField("State"); // max of 200+100, 400+300
qscale.setScaleRange(range);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2344 of 2477

Inherits from
ScaleRange: setAbsoluteValue

See Also
DataSet, to use a Data Block or query as the dataset source.

StackRange.SETSTACKNEGATIVE(BOOLEAN)

Specifies whether the negative scale range is determine by independently
stacking the negative values (default), or whether stacking is not applied to
negative values in computing the range.

Parameter
boolean true: stack negative values to get range

false: do not stack negative values

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NJ",100],["NY",-300],["NY",-400]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
range = new StackRange();
range.setStackNegative(false);
qscale.setScaleRange(range);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Inherits from
ScaleRange: setAbsoluteValue

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.6.16 LinearRange

The LinearRange object computes the range by using the minimum and
maximum data values. To create a LinearRange object, call the
LinearRange constructor.

CHART SCRIPT REFERENCE

2345 of 2477

var range = new LinearRange();

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"],["NJ",-200],["NY",300]];
graph = new EGraph();
var qscale = new LinearScale("Quantity");
var elem = new IntervalElement("State", "Quantity")
range = new LinearRange();
qscale.setScaleRange(range);
graph.setScale("Quantity", qscale);
graph.addElement(elem);

Full Name
inetsoft.graph.scale.LinearRange

Inherits from
ScaleRange: setAbsoluteValue

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7 Chart Aesthetics

This section discusses the VisualFrame objects that can be added to chart
elements to introduce visual style. VisualFrame objects allow you to
represent additional data dimensions by using the physical attributes of
chart elements, or to apply a fixed (static) visual style.

CR.7.1 VisualFrame

The VisualFrame object contains common properties for all aesthetic
frames.

Full Name
inetsoft.graph.aesthetic.VisualFrame

CHART SCRIPT REFERENCE

2346 of 2477

VisualFrame: setField, setLegendSpec, setScale, setScaleOption

Created by
ColorFrame
SizeFrame
ShapeFrame
TextFrame
LineFrame
TextureFrame

VisualFrame.SETFIELD(FIELD)

Specifies the field (column) associated with this frame.

Parameter
field name of the column (String)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new BrightnessColorFrame();
frame.setField("Quantity");
frame.setColor(java.awt.Color(0xff0000));
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2347 of 2477

VisualFrame.SETLEGENDSPEC(SPEC)

Specifies the formatting for the legend generated for the scale.

Parameter
spec a LegendSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new LinearSizeFrame();
var spec = new LegendSpec();
spec.setBorderColor(java.awt.Color(0xff0000));
frame.setField("Quantity");
frame.setLegendSpec(spec);
elem.setSizeFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

VisualFrame.SETSCALE(SCALE)

Specifies the scale associated with this frame.

Parameter
scale a Scale object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new BrightnessColorFrame();
frame.setField("Quantity");
var scale = new LinearScale();

CHART SCRIPT REFERENCE

2348 of 2477

scale.setMax(325);
scale.setMin(175);
frame.setScale(scale);
frame.setColor(java.awt.Color(0xff0000));
elem.setColorFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

VisualFrame.SETSCALEOPTION(VALUE)

Specifies a scaling option for the default scaling. The Scale.TICKS and
Scale.ZERO options determine the maximum and minimum values that are
used to calculate the scale range.

The Scale.TICKS option uses the maximum and minimum tick values (i.e.,
rounded numbers) rather than the maximum and minimum data values.
The Scale.ZERO option uses zero as the minimum rather than the minimum
data value (if positive). To combine multiple options, use the pipe (“or”)
operator:

frame.setScaleOption(Scale.ZERO | Scale.TICKS);

Parameter
value Scale.TICKS

Scale.ZERO

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",290]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new GradientColorFrame();
frame.setField("Quantity");
frame.setScaleOption(Scale.TICKS);
elem.setColorFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2349 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.2 ColorFrame

A ColorFrame object contains the color treatment for visual chart elements.
You can use a ColorFrame object to represent data dimensions with color
(color coding), or to apply a fixed (static) color style.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new BrightnessColorFrame;
Chart1.bindingInfo.colorFrame.color = 0xFF00FF;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Viewsheet or Report)
var frame = new StaticColorFrame;
frame.color = java.awt.Color(0xFF00FF);
var elem = graph.getElement(0); // bar elements
elem.colorFrame = frame;

CHART SCRIPT REFERENCE

2350 of 2477

Full Name
inetsoft.graph.aesthetic.ColorFrame

Created by
BrightnessColorFrame
SaturationColorFrame
BipolarColorFrame
StaticColorFrame
CircularColorFrame
GradientColorFrame
HeatColorFrame
RainbowColorFrame
CategoricalColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.3 BrightnessColorFrame

The BrightnessColorFrame object contains a continuous color frame that
returns varying brightnesses of the specified color. To create a
BrightnessColorFrame object, call the BrightnessColorFrame constructor.

var frame = new BrightnessColorFrame('Quantity');

You can pass a field name to the constructor (e.g., “Quantity”), or specify
this later using the inherited VisualFrame.setField(field) property.

Full Name
inetsoft.graph.aesthetic.BrightnessColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2351 of 2477

BrightnessColorFrame: setColor

BrightnessColorFrame.SETCOLOR(VALUE)

Specifies the color whose brightness is varied. The data values in the
associated column (specified by the inherited VisualFrame.setField(field)
property) are mapped to a spectrum of brightnesses of the specified color.

Value (Property Syntax)
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Value (Function Syntax)
value a java.awt.Color object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new BrightnessColorFrame;
Chart1.bindingInfo.colorFrame.color = 0xFF00FF;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Viewsheet or Report)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new BrightnessColorFrame();
frame.setField("Quantity")
frame.setColor(java.awt.Color(0xff0000));
elem.setColorFrame(frame);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2352 of 2477

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.4 SaturationColorFrame

The SaturationColorFrame object contains a continuous color frame that
returns varying saturations of the specified color. To create a
SaturationColorFrame object, call the SaturationColorFrame constructor.

var frame = new SaturationColorFrame('Quantity');

You can pass a field name to the constructor (e.g., “Quantity”), or specify
this later using the inherited VisualFrame.setField(field) property.

Full Name
inetsoft.graph.aesthetic.SaturationColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

SaturationColorFrame: setColor

SaturationColorFrame.SETCOLOR(VALUE)

Specifies the color whose saturation is varied. The data values in the
associated column (specified by the inherited VisualFrame.setField(field)
property) are mapped to a spectrum of saturations of the specified color.

Type
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Value (Function Syntax)
value a java.awt.Color object

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2353 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad Handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new SaturationColorFrame;
Chart1.bindingInfo.colorFrame.color = 0xFF0000;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Viewsheet or Report)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new SaturationColorFrame();
frame.setField("Quantity");
frame.setColor(java.awt.Color(0xff0000));
elem.setColorFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2354 of 2477

CR.7.5 BipolarColorFrame

The BipolarColorFrame object contains a continuous color frame that
returns gradations between two colors. To create a BipolarColorFrame
object, call the BipolarColorFrame constructor.

var frame = new BipolarColorFrame('Quantity');

You can pass a field name to the constructor (e.g., “Quantity”), or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad Handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new BipolarColorFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new BipolarColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2355 of 2477

Full Name
inetsoft.graph.aesthetic.BipolarColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.6 StaticColorFrame

The StaticColorFrame object contains a color frame defined by explicit
color data in the VisualFrame.setField(field) column, or by the fixed color
in StaticColorFrame.setColor(value). To create a StaticColorFrame object,
call the StaticColorFrame constructor.

var frame = new StaticColorFrame();

You can pass a color value directly to the constructor, e.g.,

var frame = new StaticColorFrame(java.awt.Color(0xFF00FF));

or specify it later using the in StaticColorFrame.setColor(value) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Color"],
["NJ",200,0xff0000], ["NY",300,0xff00ff]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticColorFrame();
frame.setField("Color");
elem.setColorFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.StaticColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

StaticColorFrame: setColor, setNegativeColor

StaticColorFrame.SETCOLOR(VALUE)

Specifies the static color to be used for positive field values. The static
color can also be passed as an input to the constructor. If the data column

CHART SCRIPT REFERENCE

2356 of 2477

specified by the inherited VisualFrame.setField(field) property contains
(positive) numbers or colors, these data values are used instead of
StaticColorFrame.setColor().

Value (Property Syntax)
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Value (Function Syntax)
value a java.awt.Color object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad Handler.

Chart1.bindingInfo.setColorField("Company",Chart.STRING);
Chart1.bindingInfo.colorFrame = new StaticColorFrame;
Chart1.bindingInfo.colorFrame.color = 0xFF00FF;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Viewsheet or Report)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticColorFrame();
frame.setColor(java.awt.Color(0x00ff00));
elem.setColorFrame(frame);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2357 of 2477

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

StaticColorFrame.SETNEGATIVECOLOR(VALUE)

Specifies the static color to be used for negative field values. If a value is
specified for StaticColorFrame.setNegativeColor(), then
StaticColorFrame.setColor() defines the color of positive values, and
StaticColorFrame.setNegativeColor() defines the color of negative values.
In this case, the inherited VisualFrame.setField(field) property is not used.

Value (Property Syntax)
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Value (Function Syntax)
value a java.awt.Color object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
In this example, you will set the color of negative values for a bar chart.
Follow the steps below:

1. Create a new report, and add a Chart component to the report.

2. Click on the chart to open the Chart Editor.

3. In the Data tab of the Chart Editor, expand the ‘All Sales’ query.

4. Drag the ‘Order Date’ field from the Data tab to the ‘X’ region.

5. Press the ‘Edit Dimension’ button next to the ‘X’ region. Select
‘Quarter’ from the ‘Level’ menu, and press ‘Apply’.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2358 of 2477

6. Drag the ‘Total’ field from the Data tab to the ‘Y’ region.

7. Press the ‘Edit Measure’ button next to the ‘Y’ region. Select
‘Change from Previous’ from the ‘Calculate’ menu, and press
‘Apply’.

8. Drag the ‘Total’ field from the Data tab to the ‘Color’ region.

9. Press the ‘Edit Measure’ button next to the ‘Color’ region. Select
‘Change from Previous’ from the ‘Calculate’ menu, and press
‘Apply’.

10. Add the following script in the onLoad handler.

Chart1.bindingInfo.colorFrame = new StaticColorFrame;
Chart1.bindingInfo.colorFrame.color = 0x00FF00;
Chart1.bindingInfo.colorFrame.negativeColor = 0xFF0000;

Note: You can use
highlighting to achieve
the same effect with-
out script.

11. Preview the report, and observe that negative-valued bars are
displayed in the specified static color.

CHART SCRIPT REFERENCE

2359 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Viewsheet or Report)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",-300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticColorFrame();
frame.setField("Quantity");
frame.setColor(java.awt.Color(0x00ff00));
frame.setNegativeColor(java.awt.Color(0xff0000));
elem.setColorFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.7 CircularColorFrame

The CircularColorFrame object contains a continuous color frame that
returns gradations from the full spectrum. To create a CircularColorFrame
object, call the CircularColorFrame constructor.

var frame = new CircularColorFrame('Quantity');

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new CircularColorFrame;

CHART SCRIPT REFERENCE

2360 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Viewsheet or Report)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50],["CT",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CircularColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.CircularColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.8 GradientColorFrame

The GradientColorFrame object contains a continuous color frame that
returns gradations between two colors. To create a GradientColorFrame
object, call the GradientColorFrame constructor.

var frame = new GradientColorFrame();

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

CHART SCRIPT REFERENCE

2361 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new GradientColorFrame;
Chart1.bindingInfo.colorFrame.fromColor = 0x0000FF;
Chart1.bindingInfo.colorFrame.toColor = 0xFF00FF;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50],["CT",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new GradientColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.GradientColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

CHART SCRIPT REFERENCE

2362 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

GradientColorFrame: setFromColor, setToColor

GradientColorFrame.SETFROMCOLOR(VALUE)

Specifies the starting color (for lowest value) of the gradient.

Value (Property Syntax)
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Value (Function Syntax)
value a java.awt.Color object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new GradientColorFrame;
Chart1.bindingInfo.colorFrame.fromColor = 0x0000FF;
Chart1.bindingInfo.colorFrame.toColor = 0xFF00FF;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50],["CT",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new GradientColorFrame();
frame.setFromColor(java.awt.Color(0x000000));
frame.setToColor(java.awt.Color(0xff0000));

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2363 of 2477

frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

GradientColorFrame.SETTOCOLOR(VALUE)

Specifies the ending color (for highest value) of the gradient.

Value (Property Syntax)
java.awt.Color e.g., java.awt.Color.BLUE
number (hex) e.g., 0xFF0000
string (color name) e.g., 'red'
array [r,g,b] e.g., [255,0,0]
JSON {r:#,g:#,b:#} e.g., {r:255,g:0,b:0}

Value (Function Syntax)
value a java.awt.Color object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new GradientColorFrame;
Chart1.bindingInfo.colorFrame.fromColor = 0x0000FF;
Chart1.bindingInfo.colorFrame.toColor = 0xFF00FF;

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2364 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50],["CT",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new GradientColorFrame();
frame.setFromColor(java.awt.Color(0x000000));
frame.setToColor(java.awt.Color(0xff0000));
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.9 HeatColorFrame

The HeatColorFrame object contains a continuous color frame that returns
varying shades of brown. To create a HeatColorFrame object, call the
HeatColorFrame constructor.

var frame = new HeatColorFrame('Quantity');

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

CHART SCRIPT REFERENCE

2365 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new HeatColorFrame();

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50],["CT",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new HeatColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.HeatColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2366 of 2477

CR.7.10 RainbowColorFrame

The RainbowColorFrame object contains a continuous color frame that
returns colors of the rainbow. To create a RainbowColorFrame object, call
the RainbowColorFrame constructor.

var frame = new RainbowColorFrame('Quantity');

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new RainbowColorFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",200],["NY",300],["PA",50],["CT",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new RainbowColorFrame();
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2367 of 2477

Full Name
inetsoft.graph.aesthetic.RainbowColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.11 RGBCubeColorFrame

The RGBCubeColorFrame object contains a continuous color frame that
returns colors drawn from a range of the RGB color cube specified by two
boundary colors, [rgb1,rgb2]. To create a RGBCubeColorFrame object,
call the RGBCubeColorFrame constructor.

var frame = new RGBCubeColorFrame('Quantity',[rgb1,rgb2]);

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Total",Chart.NUMBER);
Chart1.bindingInfo.colorFrame = new
RGBCubeColorFrame([[0,0,0],[.5,1,1]]);

CHART SCRIPT REFERENCE

2368 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Quantity"],["NJ",200],["NY",300],["PA",50],["CT"
,100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new RGBCubeColorFrame([[0,0,0],[.5,1,1]]);
frame.setField("Quantity");
elem.setColorFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.RGBCubeColorFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.12 CategoricalColorFrame

The CategoricalColorFrame object contains a color frame that returns a
distinct color for each unique value in the bound field. To create a
CategoricalColorFrame object, call the CategoricalColorFrame
constructor.

var frame = new CategoricalColorFrame('State');

You can pass the name of a field (e.g., ‘State’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

CHART SCRIPT REFERENCE

2369 of 2477

Chart1.bindingInfo.setColorField("Employee",Chart.STRING);
Chart1.bindingInfo.colorFrame = new CategoricalColorFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",20], ["NY",40]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalColorFrame();
frame.setField("State");
elem.setColorFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.CategoricalColorFrame

CategoricalColorFrame: getColor, init, setColor

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalColorFrame.GETCOLOR(VAL)

Returns the color assigned to the specified value.

Parameter
val a data value

CHART SCRIPT REFERENCE

2370 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Employee",Chart.STRING);
Chart1.bindingInfo.colorFrame = new CategoricalColorFrame;
Chart1.bindingInfo.colorFrame.setColor("Robert",java.awt.Co
lor.lightGray);
var robColor =
Chart1.bindingInfo.colorFrame.getColor("Robert")
Chart1.bindingInfo.colorFrame.setColor("Sue",robColor);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"],["NJ",200],["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
frame = new CategoricalColorFrame();
frame.setField("State");
frame.setColor('NJ',java.awt.Color(0xff0000));
var NJcolor = frame.getColor('NJ');
frame.setColor('NY',NJcolor);
elem.setColorFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

CHART SCRIPT REFERENCE

2371 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalColorFrame.INIT(VAL[,COLOR])

Initialize the ColorFrame with a set of categorical values and (optionally)
colors.

Parameter
val array of categorical initialization values,

or name of field containing categorical values
color array of colors corresponding to value array

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example 1 (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,10000],
["NY",300,8000]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var elem2 = new PointElement("State", "Total");
var cframe = new CategoricalColorFrame();
cframe.init("Quantity", "Total");
elem.setColorFrame(cframe);
elem2.setColorFrame(cframe);
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var qscale2 = new LinearScale("Total");
var coord = new RectCoord();
coord.setXScale(sscale);
coord.setYScale(qscale);
coord.setYScale2(qscale2);
graph.setCoordinate(coord);
graph.addElement(elem);
graph.addElement(elem2);

Example 2 (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,10000],
["NY",300,8000]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var elem2 = new PointElement("State", "Total");
var cframe = new CategoricalColorFrame();
cframe.init(["Quantity","Total"],[java.awt.Color(0xff00ff)
,java.awt.Color(0x00ffff)]);

CHART SCRIPT REFERENCE

2372 of 2477

elem.setColorFrame(cframe);
elem2.setColorFrame(cframe);
var sscale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");
var qscale2 = new LinearScale("Total");
var coord = new RectCoord();
coord.setXScale(sscale);
coord.setYScale(qscale);
coord.setYScale2(qscale2);
graph.setCoordinate(coord);
graph.addElement(elem);
graph.addElement(elem2);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalColorFrame.SETCOLOR(VAL,COLOR)

Assigns a color to the specified value.

Parameter
val data value
color java.awt.Color to represent data value

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a bar-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setColorField("Employee",Chart.STRING);
Chart1.bindingInfo.colorFrame = new CategoricalColorFrame;
Chart1.bindingInfo.colorFrame.setColor("Robert",java.awt.C
olor.lightGray);
Chart1.bindingInfo.colorFrame.setColor("Sue",java.awt.Colo
r(0x222222));

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html

CHART SCRIPT REFERENCE

2373 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
frame = new CategoricalColorFrame();
frame.setField("State");
frame.setColor('NJ',java.awt.Color(0xff0000));
frame.setColor('NY',java.awt.Color(0xff00ff));
elem.setColorFrame(frame)
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.13 SizeFrame

The SizeFrame object contains the size scale for visual chart objects. You
can use a SizeFrame object to represent data dimensions with size (size
coding), or to apply a fixed (static) size.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

CHART SCRIPT REFERENCE

2374 of 2477

Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER);
Chart1.bindingInfo.sizeFrame = new LinearSizeFrame;
Chart1.bindingInfo.sizeFrame.smallest = 10;
Chart1.bindingInfo.sizeFrame.largest = 50;
Chart1.bindingInfo.sizeFrame.max = 100;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis.

var frame = new StaticSizeFrame;
frame.setSize(30);
var elem = Chart1.graph.getElement(0); // point elements
elem.setSizeFrame(frame);

Full Name
inetsoft.graph.aesthetic.SizeFrame

SizeFrame: setLargest, setMax, setSmallest

Created by
StaticSizeFrame
LinearSizeFrame
CategoricalSizeFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2375 of 2477

SizeFrame.SETLARGEST(VALUE)

Specifies the highest value in the range. For point and line graphs, this is
the size (in pixels) at which the largest value in the bound column is
displayed. Smaller values are scaled according to the mapping defined by
the object’s scaling method (e.g., linear for LinearSizeFrame, etc.).

For schema and bar graphs, the value specified for the largest property is
relative to the SizeFrame.setMax(value) value. For example, if largest=50
and max=100, the largest value in the bound column is displayed at one half
of the maximum allowable size. The value of largest should be less than
the value of max.

Parameter
value Number of pixels, or relative size

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER);
Chart1.bindingInfo.sizeFrame = new LinearSizeFrame;
Chart1.bindingInfo.sizeFrame.smallest = 10;
Chart1.bindingInfo.sizeFrame.largest = 50;
Chart1.bindingInfo.sizeFrame.max = 100;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "width"], ["NJ", 200,
5],["NY", 300,10], ["PA",75,15]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
elem.sizeFrame = new LinearSizeFrame();
elem.sizeFrame.setField("width");
elem.sizeFrame.setSmallest(10);
elem.sizeFrame.setLargest(50);

CHART SCRIPT REFERENCE

2376 of 2477

elem.sizeFrame.setMax(100);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

SizeFrame.SETMAX(VALUE)

Specifies an arbitrary value representing the maximum allowable size for a
graphical element. For schema and bar graphs, the values specified for the
SizeFrame.setLargest(value) and SizeFrame.setSmallest(value) properties
are relative to the max value. For example, if smallest=50 and max=100, the
smallest value in the bound column is displayed at one half of the
maximum allowable size. For point and line graphs, the max property is
ignored.

Parameter
value Number of pixels, or relative size

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER);
Chart1.bindingInfo.sizeFrame = new LinearSizeFrame;
Chart1.bindingInfo.sizeFrame.smallest = 10;
Chart1.bindingInfo.sizeFrame.largest = 50;
Chart1.bindingInfo.sizeFrame.max = 100;

CHART SCRIPT REFERENCE

2377 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "width"], ["NJ", 200,
5],["NY", 300,10], ["PA",75,15]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
elem.sizeFrame = new LinearSizeFrame();
elem.sizeFrame.setField("width");
elem.sizeFrame.setSmallest(10);
elem.sizeFrame.setLargest(50);
elem.sizeFrame.setMax(100);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

SizeFrame.SETSMALLEST(VALUE)

Specifies the lowest value in the range. For point and line graphs, this is the
size (in pixels) at which the smallest value in the bound column is
displayed. Larger values are scaled according to the mapping defined by
the object’s scaling method (e.g., linear for LinearSizeFrame, etc.).

For schema and bar graphs, the value specified for the smallest property is
relative to the SizeFrame.setMax(value) value. For example, if
smallest=50 and max=100, the smallest value in the bound column is
displayed at one half of the maximum allowable size.

CHART SCRIPT REFERENCE

2378 of 2477

Parameter
value Number of pixels, or relative size

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER);
Chart1.bindingInfo.sizeFrame = new LinearSizeFrame;
Chart1.bindingInfo.sizeFrame.smallest = 10;
Chart1.bindingInfo.sizeFrame.largest = 50;
Chart1.bindingInfo.sizeFrame.max = 100;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "width"], ["NJ", 200,
5],["NY", 300,10], ["PA",75,15]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
elem.sizeFrame = new LinearSizeFrame();
elem.sizeFrame.setField("width");
elem.sizeFrame.setSmallest(10);
elem.sizeFrame.setLargest(50);
elem.sizeFrame.setMax(100);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

CHART SCRIPT REFERENCE

2379 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.14 StaticSizeFrame

The StaticSizeFrame object contains a size frame defined by explicit size
data in the VisualFrame.setField(field) column, or by the fixed size in
StaticSizeFrame.setSize(value). To create a StaticSizeFrame object, call the
StaticSizeFrame constructor.

var frame = new StaticSizeFrame(10);

You can pass a numerical size (e.g., 10) to the constructor, or specify this
later using the StaticSizeFrame.setSize(value) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Company",Chart.STRING);
Chart1.bindingInfo.sizeFrame = new StaticSizeFrame;
Chart1.bindingInfo.sizeFrame.setSize(30);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Size"],["NJ",200,1],
["NY",300,10]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticSizeFrame();
frame.setField("Size");
elem.setSizeFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2380 of 2477

Full Name
inetsoft.graph.aesthetic.StaticSizeFrame

StaticSizeFrame: setSize

Inherits from
SizeFrame: setLargest, setMax, setSmallest
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

StaticSizeFrame.SETSIZE(VALUE)

Specifies the static size for graphical elements. For point and line graphs,
this is the size (in pixels) of the elements. For schema and bar graphs, the
value specified for the size property is relative to the
SizeFrame.setMax(value) value (default = 30). For example, if size=50 and
max=100, the graphical elements are displayed at one half of the maximum
allowable size.

If the data in the column assigned to the inherited
VisualFrame.setField(field) property are positive values, these data values
are used instead of StaticSizeFrame.size.

Parameter
value Number of pixels, or relative size

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Company",Chart.STRING);
Chart1.bindingInfo.sizeFrame = new StaticSizeFrame;
Chart1.bindingInfo.sizeFrame.size = 30;

CHART SCRIPT REFERENCE

2381 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new StaticSizeFrame();
frame.setMax(100);
frame.setSize(50);
elem.setSizeFrame(frame);
graph.addElement(elem);

Inherits from
SizeFrame: setLargest, setMax, setSmallest
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.15 LinearSizeFrame

The LinearSizeFrame object contains a frame that linearly maps numerical
data values to sizes. To create a LinearSizeFrame object, call the
LinearSizeFrame constructor.

var frame = new LinearSizeFrame('Quantity');

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

CHART SCRIPT REFERENCE

2382 of 2477

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Total",Chart.NUMBER)
Chart1.bindingInfo.sizeFrame = new LinearSizeFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "width"], ["NJ", 200, 5],
["NY", 300,10], ["PA",75,15]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new LinearSizeFrame();
frame.setField("width");
frame.setSmallest(10);
frame.setLargest(50);
frame.setMax(100);
elem.setSizeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.LinearSizeFrame

Inherits from
SizeFrame: setLargest, setMax, setSmallest
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2383 of 2477

CR.7.16 CategoricalSizeFrame

The CategoricalSizeFrame object contains a frame that assigns a unique
size to each distinct value. To create a CategoricalSizeFrame object, call
the CategoricalSizeFrame constructor.

var frame = new CategoricalSizeFrame('State');

You can pass the name of a field (e.g., ‘State’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Employee",Chart.STRING)
Chart1.bindingInfo.sizeFrame = new CategoricalSizeFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300],
["PA", 75]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new CategoricalSizeFrame();
frame.setField("State");
elem.setSizeFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2384 of 2477

Full Name
inetsoft.graph.aesthetic.CategoricalSizeFrame

CategoricalSizeFrame: setSize

Inherits from
SizeFrame: setLargest, setMax, setSmallest
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalSizeFrame.SETSIZE(VAL,SIZE)

Assigns a size to the specified value.

Parameter
val a data value
size size at which to represent data value

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setSizeField("Employee",Chart.STRING)
Chart1.bindingInfo.sizeFrame = new CategoricalSizeFrame;
Chart1.bindingInfo.sizeFrame.setSize('Robert',20);
Chart1.bindingInfo.sizeFrame.setSize('Eric',20)
Chart1.bindingInfo.sizeFrame.setSize('Sue',5);
Chart1.bindingInfo.sizeFrame.setSize('Annie',5);

CHART SCRIPT REFERENCE

2385 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200],["NY", 300],
["PA", 75]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new CategoricalSizeFrame();
frame.setField("State");
frame.setSize('NJ',5);
frame.setSize('NY',10);
frame.setSize('PA',20);
elem.setSizeFrame(frame);
graph.addElement(elem);

Inherits from
SizeFrame: setLargest, setMax, setSmallest
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.17 TextureFrame

The TextureFrame object contains the texture for visual chart objects. You
can use a TextureFrame object to represent data dimensions with texture
(texture coding), or to apply a fixed (static) texture pattern.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.textureFrame = new LeftTiltTextureFrame;

CHART SCRIPT REFERENCE

2386 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis.

var frame = new StaticTextureFrame();
frame.setTexture(GTexture.PATTERN_5);
var elem = graph.getElement(0); // bar elements
elem.setTextureFrame(frame);

Full Name
inetsoft.graph.aesthetic.TextureFrame

Created by
LeftTiltTextureFrame
OrientationTextureFrame
RightTiltTextureFrame
GridTextureFrame
CategoricalTextureFrame
StaticTextureFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2387 of 2477

CR.7.18 StaticTextureFrame

The StaticTextureFrame object contains a texture frame defined by explicit
texture data in the VisualFrame.setField(field) column, or by the fixed
texture in StaticTextureFrame.setTexture(value). To create a
StaticTextureFrame object, call the StaticTextureFrame constructor.

var frame = new StaticTextureFrame();

You can pass a GTexture object directly to the constructor, e.g.,

var frame = new StaticTextureFrame(GTexture.PATTERN_5);

or specify it later using the StaticTextureFrame.setTexture(value) property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis.

var frame = new StaticTextureFrame();
frame.setTexture(GTexture.PATTERN_5);
var elem = graph.getElement(0); // bar elements
elem.setTextureFrame(frame);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Texture"],["NJ",200,1],
["NY",300,10]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new StaticTextureFrame();
frame.setField("Texture");
elem.setTextureFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2388 of 2477

Full Name
inetsoft.graph.aesthetic.StaticTextureFrame

StaticTextureFrame: setTexture

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

StaticTextureFrame.SETTEXTURE(VALUE)

Specifies the static texture for graphical elements. If the data in the column
assigned to the inherited VisualFrame.setField(field) property are GTexture
numbers, these data values are used instead of
StaticTextureFrame.texture.

Parameter
value a GTexture object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Company",Chart.STRING);
Chart1.bindingInfo.textureFrame = new StaticTextureFrame();
Chart1.bindingInfo.textureFrame.texture =
GTexture.PATTERN_5;

CHART SCRIPT REFERENCE

2389 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",300], ["NY",200]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
frame = new StaticTextureFrame();
frame.setTexture(GTexture.PATTERN_18);
elem.setTextureFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.19 LeftTiltTextureFrame

The LeftTiltTextureFrame object contains a texture for visual chart objects
rendered by negatively-sloping lines with variable spacing. To create a
LeftTiltTextureFrame object, call the LeftTiltTextureFrame constructor.

var frame = new LeftTiltTextureFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.textureFrame = new LeftTiltTextureFrame;

CHART SCRIPT REFERENCE

2390 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","Total"],
["NJ",300,10],["NY",200,20],["PA",250,35]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new LeftTiltTextureFrame("Total");
elem.setTextureFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.LeftTiltTextureFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.20 OrientationTextureFrame

The OrientationTextureFrame object contains a texture for visual chart
objects rendered by uniformly-spaced lines with variable slope. To create a
OrientationTextureFrame object, call the OrientationTextureFrame
constructor.

var frame = new OrientationTextureFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

CHART SCRIPT REFERENCE

2391 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.textureFrame = new
OrientationTextureFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","Total"],
["NJ",300,10],["NY",200,20],["PA",250,35]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new OrientationTextureFrame("Total");
elem.setTextureFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.OrientationTextureFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2392 of 2477

CR.7.21 RightTiltTextureFrame

The RightTiltTextureFrame object contains a texture for visual chart
objects rendered by positively-sloping lines with variable spacing. To
create a RightTiltTextureFrame object, call the RightTiltTextureFrame
constructor.

var frame = new RightTiltTextureFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.textureFrame = new
RightTiltTextureFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","Total"],
["NJ",300,10],["NY",200,20],["PA",250,35]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new RightTiltTextureFrame("Total");
elem.setTextureFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2393 of 2477

Full Name
inetsoft.graph.aesthetic.RightTiltTextureFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.22 GridTextureFrame

The GridTextureFrame object contains a texture for visual chart objects
rendered by variably-spaced orthogonal lines. To create a
GridTextureFrame object, call the GridTextureFrame constructor.

var frame = new GridTextureFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Full Name
inetsoft.graph.aesthetic.GridTextureFrame

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
Chart1.bindingInfo.textureFrame = new GridTextureFrame();

CHART SCRIPT REFERENCE

2394 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","Total"],
["NJ",300,10],["NY",200,20],["PA",250,35]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new GridTextureFrame("Total");
elem.setTextureFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.GridTextureFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.23 CategoricalTextureFrame

The CategoricalTextureFrame object contains a texture for visual chart
objects, rendering a unique texture for each discrete value. To create a
CategoricalTextureFrame object, call the CategoricalTextureFrame
constructor.

var frame = new GridTextureFrame('State');

You can pass the name of a field (e.g., ‘State’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);

CHART SCRIPT REFERENCE

2395 of 2477

Chart1.bindingInfo.textureFrame = new
CategoricalTextureFrame;
Chart1.bindingInfo.textureFrame.setTexture('Robert',GTextur
e.PATTERN_1);
Chart1.bindingInfo.textureFrame.setTexture('Eric',GTexture.
PATTERN_1);
Chart1.bindingInfo.textureFrame.setTexture('Sue',GTexture.P
ATTERN_5);
Chart1.bindingInfo.textureFrame.setTexture('Annie',GTexture
.PATTERN_5);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Rep"], ["NJ",200,"John"],
["NY",300,"Sue"], ["PA",75,"Sue"], ["CT", 120,"John"]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new CategoricalTextureFrame();
frame.setField("Rep");
elem.setTextureFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.CategoricalTextureFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalTextureFrame: setTexture

CHART SCRIPT REFERENCE

2396 of 2477

CategoricalTextureFrame.SETTEXTURE(VAL,TEXTURE)

Assigns a texture to the specified value.

Parameter
val a data value
shape a GTexture object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
Chart1.bindingInfo.textureFrame = new
CategoricalTextureFrame;
Chart1.bindingInfo.textureFrame.setTexture('Robert',GTextu
re.PATTERN_1);
Chart1.bindingInfo.textureFrame.setTexture('Eric',GTexture
.PATTERN_1);
Chart1.bindingInfo.textureFrame.setTexture('Sue',GTexture.
PATTERN_5);
Chart1.bindingInfo.textureFrame.setTexture('Annie',GTextur
e.PATTERN_5);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
textureframe = new CategoricalTextureFrame("State");
textureframe.setTexture('NJ',GTexture.PATTERN_18);
textureframe.setTexture('NY',GTexture.PATTERN_14);
elem.setTextureFrame(textureframe);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2397 of 2477

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.24 ShapeFrame

A ShapeFrame object contains the shape style for visual chart objects. You
can use a ShapeFrame object to represent data dimensions with shape
(shape coding), or to apply a fixed (static) shape style.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new FillShapeFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis.

var frame = new StaticShapeFrame();

CHART SCRIPT REFERENCE

2398 of 2477

frame.setShape(GShape.ARROWBAR);
var elem = graph.getElement(0); // point elements
elem.setShapeFrame(frame);

Full Name
inetsoft.graph.aesthetic.ShapeFrame

Created by
OvalShapeFrame
FillShapeFrame
OrientationShapeFrame
PolygonShapeFrame
TriangleShapeFrame
CategoricalShapeFrame
StaticShapeFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.25 OvalShapeFrame

The OvalShapeFrame object contains the shape styles for oval elements of
varying aspect ratio. To create a OvalShapeFrame object, call the
OvalShapeFrame constructor.

var frame = new OvalShapeFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);

CHART SCRIPT REFERENCE

2399 of 2477

Chart1.bindingInfo.shapeFrame = new OvalShapeFrame();

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15],["PA",150,5]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new OvalShapeFrame("Total");
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.OvalShapeFrame

OvalShapeFrame: setFill

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

OvalShapeFrame.SETFILL(VALUE)

Specifies the fill for the oval elements.

Parameter
boolean true: fill oval

false: do not fill oval

CHART SCRIPT REFERENCE

2400 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new OvalShapeFrame;
Chart1.bindingInfo.shapeFrame.fill = true;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15],["PA",150,5]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var frame = new OvalShapeFrame("Total");
frame.setFill(true);
elem.setShapeFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2401 of 2477

CR.7.26 FillShapeFrame

The FillShapeFrame object contains the shape styles for oval elements with
variable degree of fill. To create a FillShapeFrame object, call the
FillShapeFrame constructor.

var frame = new FillShapeFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new FillShapeFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15], ["PA",150,5]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var shapeframe = new FillShapeFrame("Total");
var sizeframe = new StaticSizeFrame();
sizeframe.setSize(10);
elem.setSizeFrame(sizeframe);
elem.setShapeFrame(shapeframe);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2402 of 2477

Full Name
inetsoft.graph.aesthetic.FillShapeFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.27 OrientationShapeFrame

The OrientationShapeFrame object contains the shape styles for line
elements with variable orientation. To create a OrientationShapeFrame
object, call the OrientationShapeFrame constructor.

var frame = new OrientationShapeFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new OrientationShapeFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2403 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15], ["PA",150,5]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var shapeframe = new OrientationShapeFrame("Total");
var sizeframe = new StaticSizeFrame();
sizeframe.setSize(10);
elem.setSizeFrame(sizeframe);
elem.setShapeFrame(shapeframe);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.OrientationShapeFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.28 PolygonShapeFrame

The PolygonShapeFrame object contains the shape styles for elements with
varying number of sides. To create a PolygonShapeFrame object, call the
PolygonShapeFrame constructor.

var frame = new PolygonShapeFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new PolygonShapeFrame;

CHART SCRIPT REFERENCE

2404 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15], ["PA",150,5]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var sizeframe = new StaticSizeFrame();
sizeframe.setSize(10);
var frame = new PolygonShapeFrame("Total");
elem.setShapeFrame(frame);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.PolygonShapeFrame

PolygonShapeFrame: setFill

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

PolygonShapeFrame.SETFILL(BOOLEAN)

Specifies whether the polygonal elements should be filled.

Parameter
boolean true: fill oval

false: do not fill oval

CHART SCRIPT REFERENCE

2405 of 2477

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new PolygonShapeFrame;
Chart1.bindingInfo.shapeFrame.fill = true;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15],["PA",150,5]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var sizeframe = new StaticSizeFrame();
sizeframe.setSize(10);
var frame = new PolygonShapeFrame("Total");
frame.setFill(true);
elem.setShapeFrame(frame);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2406 of 2477

CR.7.29 TriangleShapeFrame

The TriangleShapeFrame object contains the shape styles for isosceles
trapezoid elements with varying width ratios. To create a
TriangleShapeFrame object, call the TriangleShapeFrame constructor.

var frame = new TriangleShapeFrame('Total');

You can pass the name of a field (e.g., ‘Total’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new TriangleShapeFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15], ["PA",150,5]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var sizeframe = new StaticSizeFrame();
sizeframe.setSize(10);
var frame = new TriangleShapeFrame("Total");
elem.setShapeFrame(frame);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2407 of 2477

Full Name
inetsoft.graph.aesthetic.TriangleShapeFrame

TriangleShapeFrame: setFill

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

TriangleShapeFrame.SETFILL(BOOLEAN)

Specifies whether the triangular elements should be filled.

Parameter
boolean true: fill triangle

false: do not fill triangle

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.shapeFrame = new TriangleShapeFrame;
Chart1.bindingInfo.shapeFrame.fill = true;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2408 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Total"], ["NJ",200,30],
["NY",300,15], ["PA",150,5]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var sizeframe = new StaticSizeFrame();
sizeframe.setSize(10);
var frame = new TriangleShapeFrame("Total");
frame.setFill(true);
elem.setShapeFrame(frame);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.30 CategoricalShapeFrame

The CategoricalShapeFrame object contains a shape style for visual chart
objects, rendering a unique shape for each discrete value. To create a
CategoricalShapeFrame object, call the CategoricalShapeFrame
constructor.

var frame = new CategoricalShapeFrame('State');

You can pass the name of a field (e.g., ‘State’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Example
Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
Chart1.bindingInfo.shapeFrame = new CategoricalShapeFrame;

CHART SCRIPT REFERENCE

2409 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Rep"], ["NJ",200,"John"],
["NY",300,"Sue"], ["PA",75,"Sue"], ["CT", 120,"John"]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity")
var frame = new CategoricalShapeFrame("Rep");
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.CategoricalShapeFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalShapeFrame: setShape

CategoricalShapeFrame.SETSHAPE(VAL,SHAPE)

Assigns a shape to the specified value.

Parameter
val data value
shape GShape or GShape.ImageShape object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

CHART SCRIPT REFERENCE

2410 of 2477

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
Chart1.bindingInfo.shapeFrame = new CategoricalShapeFrame;
Chart1.bindingInfo.shapeFrame.setShape('Robert',
GShape.FILLED_CIRCLE);
Chart1.bindingInfo.shapeFrame.setShape('Sue',
GShape.FILLED_DIAMOND);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
sizeframe = new StaticSizeFrame("State");
sizeframe.setSize(10);
shapeframe = new CategoricalShapeFrame("State");
shapeframe.setShape('NJ',GShape.FILLED_CIRCLE);
shapeframe.setShape('NY',GShape.FILLED_DIAMOND);
elem.setShapeFrame(shapeframe);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.31 StaticShapeFrame

The StaticShapeFrame object contains a shape frame defined by explicit
shape data in the VisualFrame.setField(field) column, or by the fixed shape
in StaticShapeFrame.setShape(shape). To create a StaticShapeFrame
object, call the StaticShapeFrame constructor.

var frame = new StaticShapeFrame('GShape.CIRCLE');

You can pass a GShape or SVGShape object (e.g., ‘GShape.CIRCLE’,
‘SVGShape.FACE_BLANK’) or a field name (e.g., ‘Shape’) to the constructor,

CHART SCRIPT REFERENCE

2411 of 2477

or specify this later using the StaticShapeFrame.setShape(shape) or
inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example 1 (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Company",Chart.STRING);
Chart1.bindingInfo.shapeFrame = new StaticShapeFrame;
Chart1.bindingInfo.shapeFrame.setShape(GShape.ARROWBAR);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example 2 (Report or Viewsheet)
dataset = [["State","Quantity","Shape"], ["NJ",200,"STAR"],
["NY",300,"CIRCLE"]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var sizeframe = new StaticSizeFrame(5);
var shapeframe = new StaticShapeFrame();
shapeframe.setField("Shape");
elem.setShapeFrame(shapeframe);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

Example 3 (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new PointElement("State","Quantity");

CHART SCRIPT REFERENCE

2412 of 2477

var shapeFrame = new StaticShapeFrame(SVGShape.FACE_HAPPY);
var sizeFrame = new StaticSizeFrame(10);
elem.setSizeFrame(sizeFrame);
elem.setShapeFrame(shapeFrame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.StaticShapeFrame

StaticShapeFrame: setShape

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

StaticShapeFrame.SETSHAPE(SHAPE)

Specifies the static shape for graphical elements. If the data in the column
assigned to the inherited VisualFrame.setField(field) property are shape
names, these data values are used instead of StaticShapeFrame.shape.

Parameter
shape GShape, GShape.ImageShape, or SVGShape object

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Company",Chart.STRING);
Chart1.bindingInfo.shapeFrame = new StaticShapeFrame;
Chart1.bindingInfo.shapeFrame.setShape(GShape.ARROWBAR);

CHART SCRIPT REFERENCE

2413 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var frame = new StaticShapeFrame();
var elem = new PointElement("State", "Quantity");
frame.setShape(GShape.CROSS);
elem.setShapeFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.32 MultiShapeFrame

The MultiShapeFrame object contains the shape styles for visual chart
objects on multiple dimensions.

Full Name
inetsoft.graph.aesthetic.MultiShapeFrame

MultiShapeFrame: setFields, setScales

Created by
VineShapeFrame
ThermoShapeFrame
StarShapeFrame
SunShapeFrame

CHART SCRIPT REFERENCE

2414 of 2477

BarShapeFrame
ProfileShapeFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

MultiShapeFrame.SETFIELDS(ARR)

Specifies the columns containing the shape specifications for the graphical
elements.

Parameter
arr Array of Strings

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "m1", "m2", "m3"], ["NJ",
200, 6,3,4], ["NY", 300,8,2,5]];
graph = new EGraph();
var frame = new StarShapeFrame();
var elem = new PointElement("State", "Quantity");
frame.setFields(["m1", "m2", "m3"]);
elem.setShapeFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

MultiShapeFrame.SETSCALES(ARR)

Specifies the scales to be used for each shape field.

Parameter
arr Array of Scale

CHART SCRIPT REFERENCE

2415 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "m1", "m2", "m3"], ["NJ",
200, 50,50,5], ["NY", 300,20,30,50]];
graph = new EGraph();
var frame = new StarShapeFrame();
var elem = new PointElement("State", "Quantity");
var yscale = new LinearScale("Quantity");
yscale.setMax(500);
frame.setFields(["m1", "m2", "m3"]);
var scale1 = new LinearScale("m1");
var scale2 = new LinearScale("m2");
var scale3 = new LinearScale("m3");
scale1.setMax(10);
scale2.setMax(10);
scale3.setMax(10);
frame.setScales([scale1, scale2, scale3]);
elem.setShapeFrame(frame);
graph.setScale("Quantity",yscale)
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.33 VineShapeFrame

The VineShapeFrame object contains the shape styles for three-
dimensional “vine” elements. To create a VineShapeFrame object, call the
VineShapeFrame constructor.

var frame = new VineShapeFrame("m1","m2","m3");

You can pass a set of field names (e.g., ‘m1’, ‘m2’, ‘m3’) to the constructor,
or specify this later using the inherited MultiShapeFrame.setFields(arr)
property. The dimensions are specified in the following order: [angle,
magnitude, radius].

• Angle: The angle of the stem line

CHART SCRIPT REFERENCE

2416 of 2477

• Magnitude: The length of the stem line

• Radius: The radius of the circle

Full Name
inetsoft.graph.aesthetic.VineShapeFrame

VineShapeFrame: setEndAngle, setStartAngle

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

VineShapeFrame.SETENDANGLE(VALUE)

The angle to which the maximum angle in the data is mapped. (Note that
the max property of any applied scale also affects the displayed angle.)

Parameter
value the angle in degrees

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "m1", "m2", "m3"],["NJ",
200,90,25,50],["NY", 300,30,15,15]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new VineShapeFrame();
var mscale = new LinearScale();
var rscale = new LinearScale();
mscale.setMin(0);
mscale.setMax(5);
rscale.setMin(0);
rscale.setMax(90);
frame.setScales([rscale, mscale, mscale]);
frame.setFields(["m1", "m2", "m3"]);
frame.setStartAngle(0);
frame.setEndAngle(90);
elem.setShapeFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2417 of 2477

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

VineShapeFrame.SETSTARTANGLE(VALUE)

The angle to which the minimum angle in the data is mapped. (Note that
the min property of any applied scale also affects the displayed angle.)

Parameter
value the angle in degrees

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "m1", "m2", "m3"], ["NJ",
200,90,25,50], ["NY", 300,30,15,15]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var frame = new VineShapeFrame();
var mscale = new LinearScale();
var rscale = new LinearScale();
mscale.setMin(0);
mscale.setMax(5);
rscale.setMin(0);
rscale.setMax(90);
frame.setScales([rscale, mscale, mscale]);
frame.setFields(["m1", "m2", "m3"]);
frame.setStartAngle(0);
frame.setEndAngle(90);
elem.setShapeFrame(frame);
graph.addElement(elem);

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2418 of 2477

CR.7.34 ThermoShapeFrame

The ThermoShapeFrame object contains the shape styles for two-
dimensional “thermometer” elements. To create a ThermoShapeFrame
object, call the ThermoShapeFrame constructor.

var frame = new ThermoShapeFrame("Height", "Weight");

You can pass a pair of field names (e.g., ‘Height’, ‘Weight’) to the
constructor, or specify this later using the inherited
MultiShapeFrame.setFields(arr) property. The dimensions are specified in
the order [level, width].

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","Height","Weight"], ["NJ",
200,50,1], ["NY", 300,30,4]];
graph = new EGraph();
var frame = new ThermoShapeFrame();
var elem = new PointElement("State", "Quantity");
var hscale = new LinearScale()
var wscale = new LinearScale()
hscale.setMin(0);
hscale.setMax(100);
wscale.setMin(0);
wscale.setMax(5);
frame.setFields(["Height", "Weight"]);
frame.setScales([hscale, wscale]);
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.ThermoShapeFrame

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2419 of 2477

CR.7.35 StarShapeFrame

The StarShapeFrame object contains the shape styles for multi-dimensional
“star” (closed line) elements. To create a StarShapeFrame object, call the
StarShapeFrame constructor.

var frame = new StarShapeFrame("m1","m2","m3");

You can pass a set of field names (e.g., ‘m1’, ‘m2’, ‘m3’) to the constructor,
or specify this later using the inherited MultiShapeFrame.setFields(arr)
property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","m1","m2","m3"], ["NJ",
200,5,1,3], ["NY", 300,3,4,4]];
graph = new EGraph();
var frame = new StarShapeFrame();
var elem = new PointElement("State", "Quantity");
frame.setFields(["m1","m2","m3"]);
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.StarShapeFrame

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.36 SunShapeFrame

The SunShapeFrame object contains the shape styles for multidimensional
“sun” (radial line) elements. To create a SunShapeFrame object, call the
SunShapeFrame constructor.

var frame = new SunShapeFrame("m1","m2","m3");

CHART SCRIPT REFERENCE

2420 of 2477

You can pass a set of field names (e.g., ‘m1’, ‘m2’, ‘m3’) to the constructor,
or specify this later using the inherited MultiShapeFrame.setFields(arr)
property.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","m1","m2","m3"], ["NJ",
200,5,1,3], ["NY", 300,3,4,4]];
graph = new EGraph();
var frame = new SunShapeFrame();
var elem = new PointElement("State", "Quantity");
frame.setFields(["m1","m2","m3"]);
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.SunShapeFrame

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.37 BarShapeFrame

The BarShapeFrame object contains the shape styles for multi-dimensional
“mini-bar chart” elements. To create a BarShapeFrame object, call the
BarShapeFrame constructor.

var frame = new BarShapeFrame("m1","m2","m3");

You can pass a set of field names (e.g., ‘m1’, ‘m2’, ‘m3’) to the constructor,
or specify this later using the inherited MultiShapeFrame.setFields(arr)
property. The dimensions are mapped to the bar heights from left to right.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2421 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","m1","m2","m3"], ["NJ",
200,5,1,3], ["NY", 300,3,4,4]];
graph = new EGraph();
var frame = new BarShapeFrame();
var elem = new PointElement("State", "Quantity");
frame.setFields(["m1","m2","m3"]);
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.BarShapeFrame

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.38 PieShapeFrame

The PieShapeFrame object contains the shape styles for multi-dimensional
“mini-pie” elements to be used together with a point-type (PointElement)
chart. To create a PieShapeFrame object, call the PieShapeFrame
constructor.

var frame = new PieShapeFrame("m1","m2","m3");

You can pass a set of field names (e.g., ‘m1’, ‘m2’, ‘m3’) to the constructor,
or specify this later using the inherited MultiShapeFrame.setFields(arr)
property. The dimension values are mapped proportionately to the areas of
the pie slices.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2422 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity","m1","m2","m3"], ["NJ",
200,5,2,3], ["NY", 300,2,4,4]];
graph = new EGraph();
var frame = new PieShapeFrame();
var elem = new PointElement("State", "Quantity");
var sframe = new StaticSizeFrame(15);
frame.setFields(["m1","m2","m3"]);
elem.setShapeFrame(frame);
elem.setSizeFrame(sframe);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.PieShapeFrame

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.39 ProfileShapeFrame

The ProfileShapeFrame object contains the shape styles for multi-
dimensional “mini-line chart” elements. To create a ProfileShapeFrame
object, call the ProfileShapeFrame constructor.

var frame = new ProfileShapeFrame("m1","m2","m3");

You can pass a set of field names (e.g., ‘m1’, ‘m2’, ‘m3’) to the constructor,
or specify this later using the inherited MultiShapeFrame.setFields(arr)
property. The dimensions are mapped to the line segments from left to
right.

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","m1","m2","m3"], ["NJ",
200,5,1,3], ["NY", 300,3,4,4]];
graph = new EGraph();
var frame = new ProfileShapeFrame();
var elem = new PointElement("State", "Quantity");

CHART SCRIPT REFERENCE

2423 of 2477

frame.setFields(["m1","m2","m3"]);
elem.setShapeFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.ProfileShapeFrame

Inherits from
MultiShapeFrame: setFields, setScales
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.40 TextFrame

The TextFrame object contains a mapping between values and displayed
text.

Full Name
inetsoft.graph.aesthetic.TextFrame

TextFrame: setText

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

Created by
DefaultTextFrame

TextFrame.SETTEXT(VALUE,TEXT)

Specifies the mapping between a value and the text that should be
displayed.

Parameters
value the data value to be replaced
text the replacement string

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2424 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var cframe = new CategoricalColorFrame();
var tframe = new DefaultTextFrame();
var spec = cframe.getLegendSpec();
cframe.setField("State");
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
spec.setTextFrame(tframe)
elem.setColorFrame(cframe);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.41 DefaultTextFrame

The DefaultTextFrame object contains data to display in text form, as well
as a mapping between these values and any desired replacement text. To
create a DefaultTextFrame object, call the DefaultTextFrame constructor.

var frame = new DefaultTextFrame('Quantity');

You can pass a field name (e.g., ‘Quantity’) to the constructor, or specify
this later using the inherited VisualFrame.setField(field) property. To
stylize or reposition text created using a DefaultTextFrame, use the
GraphElement.setTextSpec(spec) and
GraphElement.setLabelPlacement(value) options.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setTextField("Company",Chart.STRING)
Chart1.bindingInfo.textFrame = new DefaultTextFrame;

CHART SCRIPT REFERENCE

2425 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",203], ["NY",327]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var spec = new TextSpec();
var frame = new DefaultTextFrame();
spec.setFont(java.awt.Font('Verdana',java.awt.Font.BOLD,
14));
frame.setField("Quantity");
elem.setTextFrame(frame);
elem.setTextSpec(spec);
graph.addElement(elem);

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var cframe = new CategoricalColorFrame();
var tframe = new DefaultTextFrame();
var spec = cframe.getLegendSpec();
cframe.setField("State");
tframe.setText('NJ','New Jersey');
tframe.setText('NY','New York');
spec.setTextFrame(tframe)
elem.setColorFrame(cframe);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2426 of 2477

Full Name
inetsoft.graph.aesthetic.DefaultTextFrame

Inherits from
TextFrame: setText
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.42 LineFrame

The LineFrame object contains the line design for visual chart objects.
LineFrame objects allow you to represent additional data dimensions by
using the physical attributes of chart elements, or to apply a fixed (static)
line style.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.lineFrame = new LinearLineFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

CHART SCRIPT REFERENCE

2427 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ",200], ["NY",300],
["PA",100]];
graph = new EGraph();
var elem = new LineElement("State", "Quantity");
var frame = new StaticLineFrame();
frame.setLine(GLine.DASH_LINE);
elem.setLineFrame(frame);
graph.addElement(elem)

Full Name
inetsoft.graph.aesthetic.LineFrame

Created by
LinearLineFrame
CategoricalLineFrame
StaticLineFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.43 StaticLineFrame

The StaticLineFrame object contains a line frame defined by explicit line
data in the VisualFrame.setField(field) column, or by the fixed line in
StaticLineFrame.setLine(value). To create a StaticLineFrame object, call
the StaticLineFrame constructor.

var frame = new StaticLineFrame(GLine.LARGE_DASH);

You can pass a GLine object or a field name (e.g., ‘Line’) to the
constructor, or specify this later using the StaticLineFrame.setLine(value)
or inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

CHART SCRIPT REFERENCE

2428 of 2477

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.lineFrame = new StaticLineFrame;
Chart1.bindingInfo.lineFrame.line = GLine.LARGE_DASH;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity","Line"],
["NJ",200,Chart.THICK_LINE], ["NY",300,Chart.MEDIUM_DASH]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var sizeframe = new StaticSizeFrame(9);
var lineframe = new StaticLineFrame();
lineframe.setField("Line");
elem.setLineFrame(lineframe);
elem.setSizeFrame(sizeframe);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.StaticLineFrame

StaticLineFrame: setLine

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2429 of 2477

StaticLineFrame.SETLINE(VALUE)

Specifies the static line style for graphical elements. If the data in the
column assigned to the inherited VisualFrame.setField(field) property are
GLine objects, these data values are used instead of StaticLineFrame.line.

Parameter
value GLine or

Chart.NONE // Empty border

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setShapeField("Company",Chart.NUMBER)
Chart1.bindingInfo.lineFrame = new StaticLineFrame;
Chart1.bindingInfo.lineFrame.line = GLine.LARGE_DASH;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 300], ["NY", 200]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity")
var frame = new StaticLineFrame();
frame.setLine(GLine.DOT_LINE);
elem.setLineFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2430 of 2477

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.44 LinearLineFrame

The LinearLineFrame object contains a continuous line frame that returns
varying line styles. To create a LinearLineFrame object, call the
LinearLineFrame constructor.

var frame = new LinearLineFrame('Quantity');

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setShapeField("Total",Chart.NUMBER);
Chart1.bindingInfo.lineFrame = new LinearLineFrame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity","Total"], ["NJ",300,1000],
["NY",200,1500]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity")
var lframe = new LinearLineFrame();
var sframe = new StaticSizeFrame();
lframe.setField("Total");
sframe.setSize(10);
elem.setLineFrame(lframe);
elem.setSizeFrame(sframe);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2431 of 2477

Full Name
inetsoft.graph.aesthetic.LinearLineFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.7.45 CategoricalLineFrame

The CategoricalLineFrame object contains a unique line style for each
discrete value. To create a CategoricalLineFrame object, call the
CategoricalLineFrame constructor.

var frame = new CategoricalLineFrame('Quantity');

You can pass the name of a field (e.g., ‘Quantity’) to the constructor, or
specify this later using the inherited VisualFrame.setField(field) property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
Chart1.bindingInfo.lineFrame = new CategoricalLineFrame;
Chart1.bindingInfo.lineFrame.setLine('Robert',
GLine.LARGE_DASH);
Chart1.bindingInfo.lineFrame.setLine('Eric',
GLine.LARGE_DASH);
Chart1.bindingInfo.lineFrame.setLine('Sue',GLine.DOT_LINE);
Chart1.bindingInfo.lineFrame.setLine('Annie',
GLine.DOT_LINE);

CHART SCRIPT REFERENCE

2432 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State",
"Quantity"],["NJ",300],["NY",200],["PA",100]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
var frame = new CategoricalLineFrame();
frame.setField("State");
elem.setLineFrame(frame);
graph.addElement(elem);

Full Name
inetsoft.graph.aesthetic.CategoricalLineFrame

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CategoricalLineFrame: setLine

CategoricalLineFrame.SETLINE(VAL,LINE)

Assigns a line style to the specified value.

Parameter
val a data value
line a GLine value

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

CHART SCRIPT REFERENCE

2433 of 2477

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
Chart1.bindingInfo.lineFrame = new CategoricalLineFrame;
Chart1.bindingInfo.lineFrame.setLine('Robert',
GLine.LARGE_DASH);
Chart1.bindingInfo.lineFrame.setLine('Eric',
GLine.LARGE_DASH);
Chart1.bindingInfo.lineFrame.setLine('Sue',
GLine.DOT_LINE);
Chart1.bindingInfo.lineFrame.setLine('Annie',
GLine.DOT_LINE);

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity")
frame = new CategoricalLineFrame();
frame.setField("State");
frame.setLine('NJ',GLine.THIN_LINE);
frame.setLine('NY',GLine.LARGE_DASH);
elem.setLineFrame(frame);
graph.addElement(elem);

Inherits from
VisualFrame: setField, setLegendSpec, setScale, setScaleOption

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2434 of 2477

CR.8 Chart Annotation and Decoration

This section describes objects used to add arbitrary text, shapes, and lines
to a chart.

CR.8.1 GraphForm

The GraphForm object contains information for form (i.e., shape) elements
manually drawn on the chart.

Full Name
inetsoft.graph.guide.form.GraphForm

GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure, setZIndex

Created by
LabelForm
TagForm
ShapeForm
RectForm
LineForm

GraphForm.SETCOLOR(VALUE)

Specifies the line and fill color of the form.

Type
value Number

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addPoint(new java.awt.Point(0,0));
form.addPoint(new java.awt.Point(100,100));
form.addPoint(new java.awt.Point(200,100));
form.setColor(java.awt.Color(0xff0000));
graph.addForm(form);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2435 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphForm.SETFILL(BOOLEAN)

Specifies whether the form should be filled or unfilled.

Type
boolean true: fill the shape

false: do not fill the shape

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addPoint(new java.awt.Point(0,0));
form.addPoint(new java.awt.Point(100,100));
form.addPoint(new java.awt.Point(200,100));
form.setFill(true);
graph.addForm(form);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2436 of 2477

GraphForm.SETINPLOT(BOOLEAN)

For forms that use relative positioning (values or tuples), specifies whether
the chart should be resized so that forms remain fully visible in the chart
area.

Type
boolean true: resize chart

false: do not resize chart (crop forms)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var form = new LineForm();
var elem = new IntervalElement("State", "Quantity");
form.addValues(['NJ',0]);
form.addValues(['NJ',300]);
form.addValues(['NY',400]);
form.setInPlot(true);
form.setFill(true);
graph.addForm(form);
graph.addElement(elem);

See Also
AxisSpec.setInPlot(boolean), to adjust plot boundaries to include graph
labels.
GraphElement.setInPlot(boolean), to adjust plot boundaries to include
graph elements.
DataSet, to use a Data Block or query as the dataset source.

GraphForm.SETLINE(VALUE)

Specifies the line style used to draw the form.

Type
value a GLine constant

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2437 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var form = new LineForm();
var elem = new IntervalElement("State", "Quantity");
form.addPoint(new java.awt.Point(0,0));
form.addPoint(new java.awt.Point(100,100));
form.addPoint(new java.awt.Point(200,100));
form.setLine(Chart.DASH_LINE);
graph.addForm(form);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphForm.SETMEASURE(COL)

Specifies the measure for which the form should be displayed. If the chart
contains a measure of this name, the form object is displayed. Otherwise it
is not displayed. This is useful for FacetCoord charts, when the form
should be displayed only for the chart that represents a particular measure.

Type
col name of a column (String)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity", "Sales"], ["NJ", 200, 800],
["NY", 300, 600]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var elem2 = new IntervalElement("State", "Sales");
var form = new LabelForm();
form.setValues(['NJ',200]);
form.setLabel("NJ Sales");
form.setAlignmentX(Chart.CENTER_ALIGNMENT);
form.setMeasure("Sales");
graph.addForm(form);
var scale = new CategoricalScale("State");
var qscale = new LinearScale("Quantity");

CHART SCRIPT REFERENCE

2438 of 2477

var sscale = new LinearScale("Sales");
var qcoord = new RectCoord(scale, qscale);
var scoord = new RectCoord(scale, sscale);
var facet = new FacetCoord();
facet.setInnerCoordinates([qcoord, scoord]);
graph.setCoordinate(facet);
graph.addElement(elem);
graph.addElement(elem2);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphForm.SETXOFFSET(VALUE)

Specifies an offset (in pixels) by which to shift the form object horizontally.
Positive values offset the object to the right; negative values offset the
object to the left.

Type
value an integer (pixels)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"],["NJ", 200],["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setValues(['NY', 100]);
form.setXOffset(-50)
form.setYOffset(100)
graph.addForm(form);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphForm.SETYOFFSET(VALUE)

Specifies an offset (in pixels) by which to shift the form object vertically.
Positive values offset the object upward; negative values offset the object
downward.

CHART SCRIPT REFERENCE

2439 of 2477

Type
value an integer (pixels)

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"],["NJ", 200],["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setValues(['NY', 100]);
form.setXOffset(-50)
form.setYOffset(100)
graph.addForm(form);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GraphForm.SETZINDEX(VALUE)

Specifies the layering order for forms. A shape with a larger zIndex
overlays a shape with a smaller zIndex. To ensure that a manually drawn
shape appears in front of other chart elements, select a large zIndex. See Z-
Index Defaults for the values of standard chart objects.

Type
value the index, a positive integer

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LineForm();
var form2 = new LineForm();
form1.addPoint(new java.awt.Point(0,0));
form1.addPoint(new java.awt.Point(100,100));
form1.addPoint(new java.awt.Point(200,100));
form1.setColor(java.awt.Color(0xff0000));
form1.setFill(true);
form1.setZIndex(300);
form2.addPoint(new java.awt.Point(100,0));
form2.addPoint(new java.awt.Point(150,150));
form2.addPoint(new java.awt.Point(200,100));
form2.setColor(java.awt.Color(0xffff00));
form2.setFill(true);
form2.setZIndex(200);
graph.addForm(form1);
graph.addForm(form2);

CHART SCRIPT REFERENCE

2440 of 2477

graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.8.2 LineForm

The LineForm object contains information for lines manually drawn on the
chart. To create a LineForm object, call the LineForm constructor.

var line = new LineForm();

Full Name
inetsoft.graph.guide.form.LineForm

LineForm: setEndArrow, setPoints, setStartArrow, setTuples, setValues

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

LineForm.SETENDARROW(BOOLEAN)

Specifies whether an arrow should be drawn at the end of the line (i.e., at
the last point specified for the line form).

Type
boolean true: draw arrow

false: no arrow

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addPoint(new java.awt.Point(0,0));
form.addPoint(new java.awt.Point(100,100));
form.setEndArrow(true);
form.setColor(java.awt.Color(0xff0000));
graph.addForm(form);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2441 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

LineForm.ADDPOINT(VALUE)

Specifies the pixel location (integer values) or proportional location
(fractional values) defining a point on the line. (Positive values specify
distance from left/bottom. Negative values specify distance from right/top.)

Type
value a subclass of java.awt.geom.Point2D

e.g.,
java.awt.Point for pixels
java.awt.geom.Point2D.Double for proportion

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LineForm();
var form2 = new LineForm();

// Set form1 points in pixels:
form1.addPoint(new java.awt.Point(100, 0));
form1.addPoint(new java.awt.Point(100, 200));
form1.addPoint(new java.awt.Point(200,100));
form1.setColor(java.awt.Color(0xff0000));

// Set form2 points proportionally:
form2.addPoint(new java.awt.geom.Point2D.Double(.5,0));
form2.addPoint(new java.awt.geom.Point2D.Double(.5,.7));
form2.addPoint(new java.awt.geom.Point2D.Double(.7,.5));
form2.setColor(java.awt.Color(0xff00ff));

graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.Double.html

CHART SCRIPT REFERENCE

2442 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LineForm.SETSTARTARROW(BOOLEAN)

Specifies whether an arrow should be drawn at the start of the line (i.e., at
the first point specified for the line form).

Type
boolean true: draw arrow

false: no arrow

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addPoint(new java.awt.Point(0,0));
form.addPoint(new java.awt.Point(100,100));
form.setStartArrow(true);
form.setColor(java.awt.Color(0xff0000));
graph.addForm(form);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2443 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LineForm.ADDTUPLE(VALUE)

Specifies a point defining the line in logical space. The coordinates of the
points are relative to the prevailing axis scaling.

Type
value An [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addTuple([.5, 0]);
form.addTuple([.5, 200]);
form.addTuple([1,100]);
form.setColor(java.awt.Color(0xff0000));
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LineForm.ADDVALUES(VALUE)

Specifies a point defining the line in logical space. The coordinates of the
points are relative to prevailing axis scaling prior to transformation. So, for

CHART SCRIPT REFERENCE

2444 of 2477

a categorical X-axis (e.g., ‘NJ’, ‘NY’, ‘PA’, etc.), the X-values of points
should specify a categorical value (e.g., ‘NJ’).

Type
value an [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LineForm();
form.addValues(['NJ', 0]);
form.addValues(['NJ', 200]);
form.addValues(['NY', 100]);
form.setColor(java.awt.Color(0xff0000));
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.8.3 RectForm

The RectForm object contains information for rectangles manually drawn
on the chart. To create a RectForm object, call the RectForm constructor.

var rect = new RectForm();

Full Name
inetsoft.graph.guide.form.RectForm

RectForm: setBottomRightPoint, setBottomRightTuple, setBottomRightValues,
setTopLeftPoint, setTopLeftTuple, setTopLeftValues

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

CHART SCRIPT REFERENCE

2445 of 2477

RectForm.SETBOTTOMRIGHTPOINT(VALUE)

Specifies the pixel location (integer values) or proportional location
(fractional values) defining the bottom right corner of the rectangle.
(Positive values specify distance from left/bottom. Negative values specify
distance from right/top.)

Type
value a subclass of java.awt.geom.Point2D

e.g.,
java.awt.Point for pixels
java.awt.geom.Point2D.Double for proportion

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var rect1 = new RectForm();
var rect2 = new RectForm();

// Set rect1 points in pixels:
rect1.setTopLeftPoint(new java.awt.Point(100, 100));
rect1.setBottomRightPoint(new java.awt.Point(150, 50));
rect1.setColor(java.awt.Color(0xff0000));

// Set rect2 points proportionally:
rect2.setTopLeftPoint(new
java.awt.geom.Point2D.Double(.5,.8));
rect2.setBottomRightPoint(new
java.awt.geom.Point2D.Double(.8,.5));
rect2.setColor(java.awt.Color(0xff00ff));
graph.addForm(rect1);
graph.addForm(rect2);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.Double.html

CHART SCRIPT REFERENCE

2446 of 2477

RectForm.SETBOTTOMRIGHTTUPLE(VALUE)

Specifies the point in logical space for the bottom right corner of the
rectangle. The coordinates of the point are relative to the prevailing axis
scaling.

Type
value An [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var rect = new RectForm();
rect.setTopLeftTuple([1,200]);
rect.setBottomRightTuple([2,50]);
rect.setColor(java.awt.Color(0xff0000));
graph.addForm(rect);
graph.addElement(new IntervalElement("State", "Quantity"));

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

RectForm.SETBOTTOMRIGHTVALUES(VALUE)

Specifies the point in logical space for the bottom right corner of the
rectangle. The coordinates of the point are relative to prevailing axis
scaling prior to transformation. So, for a categorical X-axis (e.g., ‘NJ’,
‘NY’, ‘PA’, etc.), the X-value of bottomRightValues should specify a
categorical value (e.g., ‘NJ’).

Type
value an [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2447 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var rect = new RectForm();
rect.setTopLeftValues(['NJ',200]);
rect.setBottomRightValues(['NY',50]);
rect.setColor(java.awt.Color(0xff0000));
graph.addForm(rect);
graph.addElement(new IntervalElement("State", "Quantity"));

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

RectForm.SETTOPLEFTPOINT(VALUE)

Specifies the pixel location (integer values) or proportional location
(fractional values) defining the top left corner of the rectangle. (Positive
values specify distance from left/bottom. Negative values specify distance
from right/top.)

Type
value a subclass of java.awt.geom.Point2D

e.g.,
java.awt.Point for pixels
java.awt.geom.Point2D.Double for proportion

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var rect1 = new RectForm();
var rect2 = new RectForm();

// Set rect1 points in pixels:

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.Double.html

CHART SCRIPT REFERENCE

2448 of 2477

rect1.setTopLeftPoint(new java.awt.Point(100, 100));
rect1.setBottomRightPoint(new java.awt.Point(150, 50));
rect1.setColor(java.awt.Color(0xff0000));

// Set rect2 points proportionally:
rect2.setTopLeftPoint(new
java.awt.geom.Point2D.Double(.5,.8));
rect2.setBottomRightPoint(new
java.awt.geom.Point2D.Double(.8,.5));
rect2.setColor(java.awt.Color(0xff00ff));
graph.addForm(rect1);
graph.addForm(rect2);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

RectForm.SETTOPLEFTTUPLE(VALUE)

Specifies the point in logical space for the top left corner of the rectangle.
The coordinates of the point are relative to the prevailing axis scaling.

Type
value An [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var rect = new RectForm();
rect.setTopLeftTuple([1,200]);
rect.setBottomRightTuple([2,50]);
rect.setColor(java.awt.Color(0xff0000));
graph.addForm(rect);
graph.addElement(new IntervalElement("State", "Quantity"));

CHART SCRIPT REFERENCE

2449 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

RectForm.SETTOPLEFTVALUES(VALUE)

Specifies the point in logical space for the top left corner of the rectangle.
The coordinates of the point are relative to prevailing axis scaling prior to
transformation. So, for a categorical X-axis (e.g., ‘NJ’, ‘NY’, ‘PA’, etc.),
the X-value of topLeftValues should specify a categorical value (e.g., ‘NJ’).

Type
value an [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var rect = new RectForm();
rect.setTopLeftValues(['NJ',200]);
rect.setBottomRightValues(['NY',50]);
rect.setColor(java.awt.Color(0xff0000));
graph.addForm(rect);
graph.addElement(new IntervalElement("State", "Quantity"));

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

CHART SCRIPT REFERENCE

2450 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.8.4 LabelForm

The LabelForm object contains information for labels manually drawn on
the chart. To create a LabelForm object, call the LabelForm constructor:

var form = new LabelForm();

The label border color and style are set by the inherited
GraphForm.setColor(value) and GraphForm.setLine(value) properties.

Full Name
inetsoft.graph.guide.form.LabelForm

LabelForm: setAlignmentX, setAlignmentY, setCollisionModifier, setInsets, setLabel,
setPoint, setTextSpec, setTuple,setValues

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DefaultTextFrame, to automatically use data values as element labels.

LabelForm.SETALIGNMENTX(VALUE)

Specifies the horizontal alignment of the label with respect to the specified
X location. Alignment is also applied to the label text.

Values
Chart.LEFT_ALIGNMENT
Chart.CENTER_ALIGNMENT
Chart.RIGHT_ALIGNMENT

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LabelForm();
var form2 = new LabelForm();
form1.setLabel("label1");
form1.setPoint(new java.awt.Point(120, 100));
form2.setLabel("label2");
form2.setPoint(new java.awt.Point(120, 120));
form2.setAlignmentX(Chart.CENTER_ALIGNMENT);
graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2451 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LabelForm.SETALIGNMENTY(VALUE)

Specifies the vertical alignment of the label with respect to the specified Y
location.

Values
Chart.TOP_ALIGNMENT
Chart.MIDDLE_ALIGNMENT
Chart.BOTTOM_ALIGNMENT

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LabelForm();
var form2 = new LabelForm();
form1.setLabel("label1");
form1.setPoint(new java.awt.Point(100, 100));
form2.setLabel("label2");
form2.setPoint(new java.awt.Point(100, 100));
form2.setAlignmentY(Chart.TOP_ALIGNMENT);
graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2452 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LabelForm.SETCOLLISIONMODIFIER(VALUE)

Specifies how collisions (labels occupying the same location) should be
handled.

Values
VLabel.MOVE_NONE // no adjustment
VLabel.MOVE_FREE // move label any direction
VLabel.MOVE_RIGHT // move label right
VLabel.MOVE_UP // move label up

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LabelForm();
var form2 = new LabelForm();
form1.setLabel("label1");
form1.setValues(['NY', 100]);
form2.setLabel("label2");
form2.setValues(['NY', 100]);
form1.setCollisionModifier(VLabel.MOVE_FREE);
graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2453 of 2477

LabelForm.SETINSETS(VALUE)

Specifies the padding in pixels surrounding the label text.

Type
value a java.awt.Insets object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setValues(['NY', 100]);
var spec = new TextSpec();
spec.setBackground(java.awt.Color(0x00ff00));
form.setTextSpec(spec);
form.setInsets(new java.awt.Insets(0,15,0,15));
// Argument order: top,left,bottom,right
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LabelForm.SETLABEL(VALUE)

Specifies the text of the label. (Use “\n” to insert newline.)

Type
value a String containing label text

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Insets.html

CHART SCRIPT REFERENCE

2454 of 2477

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("Hello\nWorld");
form.setValues(['NY', 100]);
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.
DefaultTextFrame, to automatically use data values as element labels.

LabelForm.SETPOINT(VALUE)

Specifies the pixel location (integer values) or proportional location
(fractional values) for the label. (Positive values specify distance from left/
bottom. Negative values specify distance from right/top.)

Type
value a subclass of java.awt.geom.Point2D

e.g.,
java.awt.Point for pixels
java.awt.geom.Point2D.Double for proportion

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form1 = new LabelForm();
var form2 = new LabelForm();
form1.setLabel("label1");
form2.setLabel("label2");
// Set form1 points in pixels:
form1.setPoint(new java.awt.Point(50, 100));
// Set form2 points proportionally:
form2.setPoint(new java.awt.geom.Point2D.Double(.5,.7));
graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.Double.html

CHART SCRIPT REFERENCE

2455 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LabelForm.SETTEXTSPEC(SPEC)

Specifies the label text attributes, such as color, font, format, etc.

Type
spec a TextSpec object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setValues(['NY', 100]);
var spec = new TextSpec();
spec.setColor(new java.awt.Color(0xff0000));
form.setTextSpec(spec);
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

CHART SCRIPT REFERENCE

2456 of 2477

See Also
DataSet, to use a Data Block or query as the dataset source.

LabelForm.SETTUPLE(VALUE)

Specifies the point in logical space for the label text. The coordinates of the
point are relative to the prevailing axis scaling.

Type
value An [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setTuple([0, 100]);
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

LabelForm.SETVALUES(VALUE)

Specifies the location of the label text using coordinate values, numeric or
categorical. The coordinates of the point are relative to the prevailing axis
scaling. So, for a categorical X-axis (e.g., ‘NJ’, ‘NY’, ‘PA’, etc.), the X-
value of setValues should specify a categorical value (e.g., ‘NJ’).

Type
value an [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"],["NJ", 200],["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new LabelForm();
form.setLabel("label1");
form.setValues(['NY', 100]);

CHART SCRIPT REFERENCE

2457 of 2477

graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.8.5 TagForm

The TagForm object contains information for a tag form. A tag is a label
that is associated with a particular object and is automatically positioned to
avoid other objects.

To create a TagForm object, call the TagForm constructor:

var tag = new TagForm();

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset =
[["State","Quantity"],["NJ",200],["NY",300],["NY",305]];
graph = new EGraph();
var elem = new PointElement("State", "Quantity");
var form1 = new TagForm();
var form2 = new TagForm();
form1.setLabel("label1");
form1.setValues(['NY', 300]);
form2.setLabel("label2");
form2.setValues(['NY', 305]);
graph.addForm(form1);
graph.addForm(form2);
graph.addElement(elem);

Full Name
inetsoft.graph.guide.form.TagForm

Inherits from
LabelForm: setAlignmentX, setAlignmentY, setCollisionModifier, setInsets,
setLabel, setPoint, setTextSpec, setTuple,setValues
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

CHART SCRIPT REFERENCE

2458 of 2477

CR.8.6 ShapeForm

The ShapeForm object contains information for shapes manually drawn on
the chart.

Full Name
inetsoft.graph.guide.form.ShapeForm

ShapeForm: setAlignmentX, setAlignmentY, setPosition, setRotation, setShape, setSize,
setTuple, setValues

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

ShapeForm.SETALIGNMENTX(VALUE)

Specifies the horizontal alignment of the shape with respect to the specified
X position.

Values
Chart.LEFT_ALIGNMENT
Chart.CENTER_ALIGNMENT
Chart.RIGHT_ALIGNMENT

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var shape1 = new ShapeForm();
var shape2 = new ShapeForm();
shape1.setPoint(new java.awt.geom.Point2D.Double(.5,.75));
shape1.setShape(GShape.FILLED_TRIANGLE);
shape1.setColor(java.awt.Color(0xff0000));
shape1.setSize(new java.awt.Dimension(20,20));
shape1.setAlignmentX(Chart.LEFT_ALIGNMENT);
shape2.setPoint(new java.awt.geom.Point2D.Double(.5,.5));
shape2.setShape(GShape.FILLED_TRIANGLE);
shape2.setColor(java.awt.Color(0x000000));
shape2.setSize(new java.awt.Dimension(20,20));
shape2.setAlignmentX(Chart.CENTER_ALIGNMENT);
graph.addForm(shape1);
graph.addForm(shape2);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2459 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETALIGNMENTY(VALUE)

Specifies the vertical alignment of the shape with respect to the specified Y
position.

Values
Chart.TOP_ALIGNMENT
Chart.MIDDLE_ALIGNMENT
Chart.BOTTOM_ALIGNMENT

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var shape1 = new ShapeForm();
var shape2 = new ShapeForm();
shape1.setPoint(new java.awt.geom.Point2D.Double(.6,.5));
shape1.setShape(GShape.FILLED_TRIANGLE);
shape1.setColor(java.awt.Color(0xff0000));
shape1.setSize(new java.awt.Dimension(20,20));
shape1.setAlignmentY(Chart.TOP_ALIGNMENT);
shape2.setPoint(new java.awt.geom.Point2D.Double(.5,.5));
shape2.setShape(GShape.FILLED_TRIANGLE);
shape2.setColor(java.awt.Color(0x000000));
shape2.setSize(new java.awt.Dimension(20,20));
shape2.setAlignmentY(Chart.MIDDLE_ALIGNMENT);
graph.addForm(shape1);
graph.addForm(shape2);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2460 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETPOINT(VALUE)

Specifies the pixel location or proportional location where the shape is
placed. (Positive values specify distance from left/bottom. Negative values
specify distance from right/top.)

Type
value a subclass of java.awt.geom.Point2D

e.g.,
java.awt.Point for pixels
java.awt.geom.Point2D.Double for proportion

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var shape1 = new ShapeForm();
var shape2 = new ShapeForm();

// Set shape1 points in pixels:
shape1.setPoint(new java.awt.Point(150, 100));
shape1.setShape(GShape.FILLED_TRIANGLE);
shape1.setColor(java.awt.Color(0xff0000));
shape1.setSize(new java.awt.Dimension(10,10));

// Set shape2 points proportionally:
shape2.setPoint(new java.awt.geom.Point2D.Double(.5,.5));
shape2.setShape(GShape.FILLED_TRIANGLE);
shape2.setColor(java.awt.Color(0xff0000));
shape2.setSize(new java.awt.Dimension(20,20));

graph.addForm(shape1);
graph.addForm(shape2);
graph.addElement(elem);

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Point.html
http://download.oracle.com/javase/7/docs/api/index.html?java/awt/geom/Point2D.Double.html

CHART SCRIPT REFERENCE

2461 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETROTATION(VALUE)

Specifies the shape rotation in degrees.

Type
Number

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var shape1 = new ShapeForm();
var shape2 = new ShapeForm();
shape1.setPoint(new java.awt.geom.Point2D.Double(.6,.5));
shape1.setShape(GShape.FILLED_TRIANGLE);
shape1.setColor(java.awt.Color(0xff0000));
shape1.setSize(new java.awt.Dimension(20,20));
shape1.setRotation(45);
shape2.setPoint(new java.awt.geom.Point2D.Double(.5,.5));
shape2.setShape(GShape.FILLED_TRIANGLE);
shape2.setColor(java.awt.Color(0x000000));
shape2.setSize(new java.awt.Dimension(20,20));
graph.addForm(shape1);
graph.addForm(shape2);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2462 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETSHAPE(SHAPE)

Specifies the type of shape as a GShape or SVGShape.

Type
GShape
SVGShape
GShape.ImageShape

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new ShapeForm();
form.setValues(['NJ',100]);
form.setShape(GShape.FILLED_TRIANGLE);
form.setColor(java.awt.Color(0xff0000));
form.setSize(new java.awt.Dimension(50,50));
graph.addForm(form);
graph.addElement(elem);

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.setImage(logo);
var form = new ShapeForm();
form.setValues(['NJ',100]);
form.setShape(shape);
form.setSize(new java.awt.Dimension(150,40));
graph.addForm(form);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2463 of 2477

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETSIZE(VALUE)

Specifies the size of the shape in pixels.

Type
value a java.awt.Dimension object

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
var arr = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
var data = new DataSet(arr);
var graph = new EGraph(data);
var elem = new IntervalElement("State", "Quantity");
var form = new ShapeForm();
form.setValues(['NJ',100]);
form.setShape(GShape.FILLED_TRIANGLE);
form.setColor(java.awt.Color(0xff0000));
form.setSize(new java.awt.Dimension(50,50));
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETTUPLE(VALUE)

Specifies the location of the shape in logical space. The coordinates of the
location are relative to the prevailing axis scaling.

http://download.oracle.com/javase/7/docs/api/index.html?java/awt/Dimension.html

CHART SCRIPT REFERENCE

2464 of 2477

Type
value An [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var form = new ShapeForm();
form.setTuple([.5,100]);
form.setShape(GShape.FILLED_TRIANGLE);
form.setColor(java.awt.Color(0xff0000));
form.setSize(new java.awt.Dimension(50,50));
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

ShapeForm.SETVALUES(VALUE)

Specifies the location of the shape in logical space. The coordinates of the
location are relative to prevailing axis scaling prior to transformation. So,
for a categorical X-axis (e.g., ‘NJ’, ‘NY’, ‘PA’, etc.), the X-value of the
location should specify a categorical value (e.g., ‘NJ’).

Type
value an [X,Y] pair

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();

CHART SCRIPT REFERENCE

2465 of 2477

var elem = new IntervalElement("State", "Quantity");
var form = new ShapeForm();
form.setValues(['NJ',100]);
form.setShape(GShape.FILLED_TRIANGLE);
form.setColor(java.awt.Color(0xff0000));
form.setSize(new java.awt.Dimension(50,50));
graph.addForm(form);
graph.addElement(elem);

Inherits from
GraphForm: setColor, setFill, setInsidePlot, setLine, setMeasure,
setZIndex

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.9 Utility Objects

This section describes objects which provide useful constants.

CR.9.1 GTexture

The GTexture object contains a set of patterns. Create a GTexture object by
referring to a pattern number, 1–19.

var texture = GTexture.PATTERN_5;

The image below presents the available textures and their corresponding
numbers.

See Also
StaticTextureFrame, for information on using static textures.

CR.9.2 GLine

The GLine object provides the following predefined line style constants:

CHART SCRIPT REFERENCE

2466 of 2477

GLine.THIN_LINE
GLine.DOT_LINE
GLine.DASH_LINE
GLine.MEDIUM_DASH
GLine.LARGE_DASH

You can also create a GLine object by passing a Chart constant (see Line
Styles) to the object constructor, as follows:

var line = new GLine(Chart.DOT_LINE);

To create a user-defined style, pass a dash size and width (both type
doubles) to the object constructor, as follows.

var line = new GLine(dashsize, width);

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a line-type chart to the sample ‘All Sales’ query, with ‘Company’ (top
5) on the X-axis, and Sum(Total) on the Y-axis. Add the following script in
the onLoad Handler.

Chart1.bindingInfo.setShapeField("Company",Chart.NUMBER)
Chart1.bindingInfo.lineFrame = new StaticLineFrame;
Chart1.bindingInfo.lineFrame.line = GLine(20,10);

See Also
Line Styles, for the built-in styles available as Chart Constants constants.
StaticLineFrame, for information on using GLines.

CR.9.3 GShape

The GShape object contains a set of shapes. For element properties
requiring a GShape object, the shape can be specified as shown below.

GShape.ImageShape (user-defined image)
GShape.ARROW
GShape.ARROWBAR
GShape.CIRCLE
GShape.CROSS
GShape.DIAMOND
GShape.FILLED_ARROW
GShape.FILLED_ARROWBAR

CHART SCRIPT REFERENCE

2467 of 2477

GShape.FILLED_CIRCLE
GShape.FILLED_DIAMOND
GShape.FILLED_SQUARE
GShape.FILLED_TRIANGLE
GShape.HYPHEN
GShape.LINE
GShape.LSHAPE
GShape.SQUARE
GShape.STAR
GShape.STICK
GShape.TRIANGLE
GShape.VSHAPE
GShape.XSHAPE
GShape.NIL (no shape)

See Also
SVGShape, for information on using built-in and custom SVG images.
ShapeForm, for information on using GShapes as decorative shapes.
StaticShapeFrame, for information on using GShapes as static shapes.

CR.9.4 GShape.ImageShape

The GShape.ImageShape object contains a custom image to be used as a
fill pattern with StaticShapeFrame and CategoricalShapeFrame objects.
To create an ImageShape object, call the object constructor:

var shape = new GShape.ImageShape("http://.../image.gif");

You can provide the image location as input to the constructor, e.g.,

var shape = new GShape.ImageShape("http://.../image.gif");

or specify this later using the GShape.ImageShape.image property.

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField('Employee',Chart.STRING)
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.image = logo;
var frame = new StaticShapeFrame(shape);
Chart1.bindingInfo.shapeFrame = frame;

CHART SCRIPT REFERENCE

2468 of 2477

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.image = logo;
var frame = new StaticShapeFrame(shape)
elem.setShapeFrame(frame);
graph.addElement(elem);

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape(logo);
var frame = new CategoricalShapeFrame("State");
frame.setShape("NJ", shape);
elem.setShapeFrame(frame);
graph.addElement(elem);

CHART SCRIPT REFERENCE

2469 of 2477

Full Name
inetsoft.graph.aesthetic.GShape.ImageShape

GShape.ImageShape: setShape, setTile

See Also
DataSet, to use a Data Block or query as the dataset source.
StaticShapeFrame, for information on using custom images.

GShape.ImageShape.IMAGE

Specifies the image to use as the fill.

Type
Image object, see getImage()

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.image = logo;
var frame = new StaticShapeFrame(shape);
Chart1.bindingInfo.shapeFrame = frame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and
Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.setImage(logo);

CHART SCRIPT REFERENCE

2470 of 2477

var frame = new StaticShapeFrame(shape)
elem.setShapeFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

GShape.ImageShape.TILE

Specifies whether the image should be stretched to fit the fill area or tiled at
the original size.

Type
boolean true: keep original size, and tile to fit

false: stretch to fit (default)

Note: Report script that modifies 'bindingInfo' should be placed in
the onLoad handler.

Example (Report)
Bind a point-type chart to the sample ‘All Sales’ query, with ‘Company’
(top 5) on the X-axis, and Sum(Total) on the Y-axis. Add the following
script in the onLoad handler.

Chart1.bindingInfo.setShapeField("Employee",Chart.STRING);
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.image = logo;
shape.tile = true;
var frame = new StaticShapeFrame(shape);
Chart1.bindingInfo.shapeFrame = frame;

Note: Script that modifies 'graph' should be placed at the element
level. See Adding Element-Level Script in Report Scripting and

CHART SCRIPT REFERENCE

2471 of 2477

Adding Component Script in Dashboard Scripting for more
information.

Example (Report or Viewsheet)
dataset = [["State", "Quantity"], ["NJ", 200], ["NY", 300]];
graph = new EGraph();
var elem = new IntervalElement("State", "Quantity");
var logo = getImage("http://www.inetsoft.com/images/home/
logo.gif");
var shape = new GShape.ImageShape();
shape.setImage(logo);
shape.setTile(true);
var frame = new StaticShapeFrame(shape)
elem.setShapeFrame(frame);
graph.addElement(elem);

See Also
DataSet, to use a Data Block or query as the dataset source.

CR.9.5 SVGShape

The SVGShape object contains a set of shapes for use with
StaticShapeFrame and ShapeForm. For element properties requiring a
SVGShape object, the shape can be specified as shown below.

SVGShape.CHECK
SVGShape.DOWN_ARROW
SVGShape.FACE_BLANK
SVGShape.FACE_HAPPY
SVGShape.FACE_OK
SVGShape.FACE_SAD
SVGShape.FACE_SMILE
SVGShape.FEMALE
SVGShape.LEFT_ARROW
SVGShape.MALE
SVGShape.MINUS
SVGShape.PLUS
SVGShape.RIGHT_ARROW
SVGShape.STAR
SVGShape.SUN
SVGShape.UP_ARROW
SVGShape.WARNING
SVGShape.X
SVGShape.NIL (no shape)

You can also create a custom SVGShape from an SVG image stored in the
local file system or on a server.

CHART SCRIPT REFERENCE

2472 of 2477

Example 1 (Built-in SVG Shape)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new PointElement("State","Quantity");
var shapeFrame = new StaticShapeFrame(SVGShape.FACE_HAPPY);
var sizeFrame = new StaticSizeFrame(10);
elem.setSizeFrame(sizeFrame);
elem.setShapeFrame(shapeFrame);
graph.addElement(elem);

Example 2 (Local SVG Shape)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new PointElement("State","Quantity");
var svg = new SVGShape("file:\C:/HappyFaceSVG.svg");
var shapeFrame = new StaticShapeFrame(svg);
var sizeFrame = new StaticSizeFrame(10);
elem.setSizeFrame(sizeFrame);
elem.setShapeFrame(shapeFrame);
graph.addElement(elem);

Example 3(Remote SVG Shape)
dataset = [["State","Quantity"], ["NJ",200], ["NY",300]];
graph = new EGraph();
var elem = new PointElement("State","Quantity");
var svg = new SVGShape("http://www.w3.org/Icons/SVG/svg-
logo.svg");
var shapeFrame = new StaticShapeFrame(svg);
var sizeFrame = new StaticSizeFrame(10);
elem.setSizeFrame(sizeFrame);
elem.setShapeFrame(shapeFrame);
graph.addElement(elem);

See Also
GShape, for information on using built-in bitmap shapes.
GShape.ImageShape, for information on using custom bitmap shapes.
ShapeForm, for information on using GShapes as decorative shapes.
StaticShapeFrame, for information on using GShapes as static shapes.

CR.10Z-Index Defaults

The GraphForm.setZIndex(value) property of a form object determines
whether the object lies above or below other chart objects. When an object
has a higher zIndex than a second object, the first object will partially or
fully occlude the second object

CHART SCRIPT REFERENCE

2473 of 2477

The table below provides the default zIndex settings for common chart
objects.

CR.11Chart Constants

The Chart object is a static object that contains definitions for constants
related to charts (line styles, etc.). These constants can be accessed without
explicitly creating an instance of a Chart object, as shown below:

Chart1.singleStyle['Sum(Total)'] = Chart.CHART_LINE;

CHART STYLES

The following Chart Constants style constants are available for the
singleStyle and separatedStyle chart properties within report onLoad
handler script.

OBJECT DEFAULT ZINDEX

Coordinate border 20
Grid line 30
Axis 40
Axis border 50
Visual object 60
Grid line on top of Object 70
Form object 80
Facet gridline 90
Text 100

CHART STYLE DESCRIPTION

CHART_AUTO Automatic style selection
CHART_PARETO Pareto chart.
CHART_LINE Line chart
CHART_LINE_STACK Stacked line chart
CHART_POINT Point chart
CHART_BAR 2D bar chart
CHART_BAR_STACK Stacked bar chart
CHART_PIE 2D pie chart
CHART_3D_BAR 3D bar chart
CHART_3D_BAR_STACK 3D stacked bar chart
CHART_3D_PIE 3D pie chart
CHART_STOCK High-low-closing chart
CHART_AREA Area chart
CHART_AREA_STACK Stacked area chart
CHART_RADAR Radar chart
CHART_FILL_RADAR Filled radar chart
CHART_CANDLE Candle chart

CHART SCRIPT REFERENCE

2474 of 2477

LINE STYLES

The Chart Constants line style constants below can be used in all chart
properties requiring line styles, such as axis grid lines, target lines, etc.

See Also
xGridStyle, to set the graph grid lines.

SUMMARIZATION FORMULAS

The Chart Constants summarization formulas below are available for chart
scripting.

CHART_WATERFALL Waterfall chart
CHART_MAP Map chart

LINE STYLE DESCRIPTION

 NONE No line
 ULTRA_THIN_LINE Very thin line at ¼ of a point width
 THIN_THIN_LINE Very thin line at ½ of a point width
 THIN_LINE Thin line at one point width
 MEDIUM_LINE Medium width line
 THICK_LINE Thick width line
 DOT_LINE Dotted line
 DASH_LINE Dash line
 MEDIUM_DASH Medium size dash line
 LARGE_DASH Large size dash line

NONE NTHMOSTFREQUENT
AVERAGE NTHSMALLEST
CONCAT POPULATIONSTANDARDDEVIATION
CORRELATION POPULATIONVARIANCE
COUNT PRODUCT
COVARIANCE PTHPERCENTILE
DISTINCTCOUNT STANDARDDEVIATION
MAX SUMSQ
MEDIAN SUMWT
MIN SUM
MODE VARIANCE
NTHLARGEST WEIGHTEDAVERAGE

CHART SCRIPT REFERENCE

2475 of 2477

LEGEND POSITIONS

The following legend positions are available for
EGraph.setLegendLayout(value).

CR.12Miscellaneous Chart Functions

This section presents special-purpose charting functions.

CREATEBULLETGRAPH(MEASURE, RANGES, TARGET, COLOR, XDIMS,
YDIMS, OPTS)

The createBulletGraph() function generates a bullet graph to display a
specified measure along with a target and multiple value ranges. (All
parameters are optional. To omit any parameter setting, pass null as the
value.)

Parameter
measure Name of column to provide the measure values
ranges Array of column names to provide range values,

displayed as shaded regions
target Name of column to provide the target value,

displayed as vertical bar
color A single color or array of colors to be used

for bullets. See below.
xdims Array of column names to use as dimensions on

X-axis
ydims Array of column names to use as dimensions on

Y-axis
opts String containing additional options:

'vertical=false': force horizontal bars
'ylabel=false': hide y-dimension labels
'xlabel=false': hide x-dimension labels
'vlabel=false': hide the measure value labels

The color parameter can be either a scalar hex color value (e.g.,
0x0000FF.), or an array of colors. The organization for the color array is as
follows:

[measure, target, range 1, range 2, range 3, ...]

e.g., [0x0000FF, 0xFF0000, 0xDD0000, 0xBB0000, 0x990000]

LEGEND POSITION DESCRIPTION

Chart.NONE No legend
 Chart.BOTTOM Below X-axis title, aligned left
 Chart.TOP Above graph, aligned left
 Chart.LEFT To left of Y-axis title, aligned top
 Chart.RIGHT To right of graph, aligned top (default)
 Chart.IN_PLACE Superimposed on graph

CHART SCRIPT REFERENCE

2476 of 2477

Example
Consider the Worksheet Data Block called, ‘Query1’, shown below. (This
Data Block is a mirror of the ‘All Sales’ query, with grouping on the
‘Employee’ and ‘Company’ fields, aggregation on the ‘Total’ field, and
expression columns for ‘Target’, ‘range1’, ‘range2’, and ‘range3’.)

Create a Viewsheet based on this Data Worksheet, add a Chart component,
and insert the following Chart script:

dataset = viewsheet['Query1']
graph = createBulletGraph('Total',
['range1','range2','range3'],'Target',0x0000FF,
['Company'],['Employee'],'vertical=false');

See Also
DataSet, for information on specifying the chart data in script.

END OF DOCUMENT

2477 of 2477

End of Document

Please visit www.inetsoft.com for technical support, software updates, and
new releases.

Style Report™, Style Scope™, and Style Intelligence™ are owned and
licensed exclusively by InetSoft Technology Corporation, ©1996-2013
InetSoft Technology Corp. All rights reserved. All other products, names,
or brands are the trademarks of their respective holders.

http://www.inetsoft.com

	Evaluation Guide - Start Here
	1 Connecting to Data
	1.1 Defining a JDBC Data Source
	1.2 Importing a Data File into a Data Worksheet

	2 Creating a Data Worksheet
	2.1 Creating the New Data Worksheet
	2.2 Joining the Tables
	2.3 Modifying the Table Columns
	2.4 Adding an Expression Column
	2.5 Saving the Data Block

	3 Creating a Dashboard
	3.1 Starting the Server
	3.2 Creating a New Viewsheet
	3.3 Creating a Table
	3.4 Saving the Viewsheet
	3.5 Adding Selection (Filter) Components
	3.6 Adding an Output Component
	3.7 Adding an Input Component
	3.8 Adding a Chart
	3.9 Adding Decorative Components
	3.10 Previewing the Dashboard
	3.11 Using the Dashboard

	4 Creating a Report
	4.1 Creating a Blank Report
	4.2 Adding a Text Element
	4.3 Adding a Table
	4.4 Saving the Report
	4.5 Previewing the Report
	4.6 Formatting the Table
	4.7 Filtering the Table
	4.8 Adding a Chart
	4.9 Adding a Filter to the Chart
	4.10 Using a Report

	5 Where Do I Go From Here?
	APPENDIX A: Connecting to Other Databases
	A.1 SQL Server
	A.2 Oracle
	A.3 MySQL
	A.4 Microsoft Access
	A.5 SQL Server Analysis Services Cubes
	A.6 General Tips

	Getting Started
	1 Getting Started with Style Intelligence Development
	1.1 Development Workflow
	1.2 Query vs. Model vs. Worksheet
	1.3 Report vs. Dashboard
	1.4 Developing as a Team

	2 Getting Started with Dashboards
	2.1 Creating a Dashboard
	2.2 Creating a Materialized View
	2.3 Using a Dashboard

	3 Working with Style Studio
	3.1 Starting Style Studio
	Launching Style Studio from the Start Menu
	Launching Style Studio from the Command Line

	3.2 Style Studio Interface
	3.2.1 Moving a Panel
	3.2.2 Minimizing and Maximizing a Panel
	3.2.3 Closing and Opening a Panel
	3.2.4 Restoring the Original Layout
	3.2.5 Console
	3.2.6 Undoing an Operation

	3.3 Configuring Style Studio
	3.3.1 Configuring a Repository
	Creating a New Repository
	Selecting the Working Repository
	Sharing a Repository
	Team Development Using Independent Repositories
	Creating a Clean Local Repository

	3.3.2 Configuring General Style Studio Properties
	3.3.3 Configuring the Style Studio License
	3.3.4 Configuring the Style Studio Classpath

	3.4 Features of Style Studio
	3.4.1 Data Modeling
	3.4.2 Data Mashup
	3.4.3 Report Design and Scripting
	3.4.4 Reusable Components

	3.5 Deploying a Report, Data Source, or Other Asset
	3.5.1 Deploying a Report or Asset to a Remote Repository
	3.5.2 Deploying a Report or Asset to a JAR File
	3.5.3 Importing Assets from a JAR File

	4 Getting Started with Data Modeling
	4.1 Defining a Data Source
	4.2 Getting Started With Data Models
	4.2.1 Creating the Physical View
	4.2.2 Creating the Logical Model

	5 Getting Started with Data Mash-Up
	5.1 Constructing a Data Block
	5.2 Manipulating a Data Block
	5.3 Saving a Data Block

	6 Getting Started with Reports
	6.1 Creating a Report
	6.2 Adding Report Elements
	6.2.1 Adding Text and Presentation Elements
	6.2.2 Adding Data Elements

	6.3 Saving a Report to the Working Repository
	6.4 Using a Report

	7 Where Do I Go From Here?
	7.1 Data
	7.2 Dashboards
	7.3 Reports
	7.4 End User
	7.5 Administration

	APPENDIX A: Packages

	End User
	1 User Portal
	1.1 Logging In
	1.2 Portal Functions
	1.3 User Preferences

	2 Dashboards
	2.1 Opening a Dashboard
	2.2 Closing a Dashboard
	2.3 The Dashboard Toolbar
	2.4 Using Input Components
	2.4.1 Slider
	2.4.2 Spinner
	2.4.3 CheckBox
	2.4.4 RadioButton
	2.4.5 ComboBox
	2.4.6 Embedded Table
	2.4.7 TextInput

	2.5 Using Selection Components
	2.5.1 Selection List
	Selection List Toolbar
	Selection List Icons
	Selection List Walkthrough

	2.5.2 Selection Tree
	2.5.3 Range Slider
	2.5.4 Calendar
	Calendar Toolbar
	Calendar Range Options
	Filtering a Range of Dates
	Comparing a Range of Dates

	2.5.5 Selection Container
	Using Selection Components in a Selection Container
	Adding Selection Components into a Selection Container

	2.6 Using Data View Components
	2.6.1 Table and Crosstab
	Sorting
	Filtering
	Exporting
	Drilling Down
	Editing

	2.6.2 Charts
	Formatting Chart Elements
	Setting Chart Plot Properties
	Adding a Target Line, Target Band, or Statistical Measure to a Chart

	2.7 Using Output Components
	2.8 Using Bookmarks
	2.8.1 Saving Dashboard Settings in a New Bookmark
	2.8.2 Restoring Settings from a Bookmark
	2.8.3 Updating an Existing Bookmark with New Settings
	2.8.4 Deleting a Bookmark
	2.8.5 Modifying a Bookmark
	2.8.6 Setting Initial Dashboard State with a Default Bookmark

	2.9 Using Annotations
	2.9.1 Adding an Annotation to a Dashboard
	Adding an Annotation to the Dashboard body
	Adding an Annotation to an Output, Data View, or Shape Component
	Adding an Annotation to a Chart Data Point
	Adding an Annotation to a Table Cell
	Positioning an Annotation

	2.9.2 Editing Annotation Text
	2.9.3 Formatting the Annotation Box and Line
	2.9.4 Showing or Hiding an Annotation

	2.10 Importing and Exporting from a Dashboard
	2.10.1 Exporting a Dashboard for Viewing
	2.10.2 Exporting a Dashboard for Editing in Excel
	2.10.3 Importing Excel Data into a Dashboard

	3 Deploying a Dashboard
	3.1 Adding a Dashboard to the Dashboard Tab
	3.2 Editing or Deleting a Dashboard

	4 Production Reports
	4.1 Report Toolbar
	4.1.1 Exporting a Report
	4.1.2 Saving As Archived Report or Live Report
	4.1.3 Navigation
	4.1.4 Browser Printing
	4.1.5 Server Printing
	4.1.6 Report Explorer
	4.1.7 Searching
	4.1.8 Scheduling

	4.2 Interactive Reports
	4.2.1 Parameters
	4.2.2 Drilldowns
	4.2.3 Sorting
	Sort On Header
	Sorting with Report Explorer

	4.2.4 Filtering
	4.2.5 Showing and Hiding Columns
	Hiding Table Columns
	Show Summary Rows only

	4.2.6 Searching

	4.3 Archived and Batch Reports
	4.3.1 Accessing Archived/Batch Reports
	4.3.2 Managing Archived Reports

	4.4 Scheduling Reports and Dashboards
	4.4.1 Basic Scheduling from Toolbar
	4.4.2 Adding a Report to the Scheduler Queue
	4.4.3 Creating a Scheduled Task
	4.4.4 Schedule Conditions
	4.4.5 Scheduler Actions
	Report Action
	Email and Save to Disk Parameters

	Viewsheet Action
	Burst Action
	User Defined Action
	Specifying Multiple Actions

	4.4.6 Schedule Options
	4.4.7 Schedule Management

	APPENDIX A: Using Dashboards on a Mobile Device
	APPENDIX B: Navigating a Dashboard With the Keyboard

	Data Modeling
	1 Contents
	2 Introduction - Data Block Architecture
	3 Data Modeling Features
	3.1 Accessing a Data Source, Query, Model, VPM
	3.2 Configuring Data Source and Query Registries
	3.3 The Data Modeling Toolbar
	3.4 Data Source/Query Tree
	3.4.1 Grouping Queries Using Folders
	3.4.2 Grouping Data Sources Using Folders
	3.4.3 Deploying a Data Source, Query, or Data Model

	3.5 Advanced Toolbar Buttons
	3.5.1 Query Properties
	3.5.2 Query Parameters
	Acquiring a Query Parameter from User Input
	Acquiring a Query Parameter from a Query Field

	3.6 Auto Back-Up and Recovery

	4 Relational Databases
	4.1 Data Source Configuration
	4.1.1 Creating a New JDBC Data Source
	Limitations of Hadoop Hive Data Sources
	Other Data Source Issues

	4.1.2 Parameterizing the Data Source
	4.1.3 Assigning User-Specific Data Source Login Credentials
	4.1.4 Adding Additional Connections

	4.2 Semantic Layer - Data Model
	4.3 Physical View
	4.3.1 Creating a Physical View
	Defining a New Physical View
	Adding Database Tables to the Physical View
	Adding an Embedded SQL View
	Defining Join Relationships
	Resolving Loop Traps

	4.3.2 Navigating a Physical View
	4.3.3 Identifying Query Traps
	Loop Traps
	Fan Trap
	Chasm Trap (Cardinality Trap)

	4.3.4 Extending a Physical View

	4.4 Logical Model
	4.4.1 Creating a Logical Model
	Defining a New Logical Model
	Adding Entities and Attributes
	Modifying Entities and Attributes
	Detecting Model Validity Problems
	Sorting and Filtering a Physical View
	Customizing the Browse Data List
	Defining Expression Attributes

	4.4.2 Auto-Drilldown
	Adding Auto-Drilldown to a Logical Model
	Adding Auto-Drilldown to a Query

	4.4.3 Adding a Format to a Data Field
	4.4.4 Extending a Logical Model

	4.5 Independent Query
	4.5.1 Creating a New Query
	4.5.2 Creating a Derived Query
	4.5.3 Editing a Query
	4.5.4 Editing a Query SQL String
	4.5.5 Creating a Local Query
	Creating a Local Query
	Exporting a Local Query to the Global Repository
	Importing a Local Query from the Global Repository

	4.5.6 Accessing a Stored Procedure

	4.6 Virtual Private Model - Security
	4.6.1 Creating a VPM
	4.6.2 VPM Conditions
	4.6.3 VPM Hidden Columns
	4.6.4 Trigger Scripts
	Lookup Trigger
	Column Trigger
	Condition Trigger

	4.6.5 VPM Example
	4.6.6 VPM Filtering of Unparsable Queries

	4.7 OLAP Overlay - Multidimensional Analysis
	4.7.1 Creating a Hierarchical OLAP Overlay
	4.7.2 Editing Dimension and Measure Properties
	4.7.3 Creating Derived Measures
	4.7.4 Example: OLAP Overlay
	4.7.5 Design Considerations

	5 Multidimensional Databases
	5.1 Configuring a Multidimensional Database Data Source

	6 Non-Relational Data Sources
	6.1 XML Data Source
	6.1.1 Defining an XML Data Source
	6.1.2 XML Element Types

	6.2 Web Service Data Source
	6.2.1 Defining a Web Service Data Source
	6.2.2 Creating the Client Stub

	6.3 Text Data Source
	6.3.1 Defining a Text Data Source
	6.3.2 Modifying Text Source Meta-Data

	6.4 Java Object Data Source
	6.4.1 Selecting the Type of Data Loader
	Data Loader based on Introspection
	Data Loader based on DataLoader Interface
	Data Loader based on DataLoader2 interface
	Using a Data Helper

	6.4.2 Leveraging JavaBean Properties
	6.4.3 Defining a Java Object Data Source

	6.5 SAP Data Source
	6.6 Querying Non-relational Data Sources
	6.6.1 Querying XML or Web Service Data Source
	Selection Tree Path
	Table Construction
	Tree Node Filtering

	6.6.2 Querying a Text Data Source
	6.6.3 Querying a Java Object Data Source
	6.6.4 Advanced Query Concepts
	Sub-Query
	List Comparison for Queries using Hierarchical Meta Data
	List Pattern Matching for Queries using Hierarchical Meta Data

	Appendix A: Hierarchical Query Condition Expression Syntax
	A.1 Named Values
	A.1.1 Child Node Values
	A.1.2 Node Attributes
	A.1.3 Variables

	A.2 Constant Values
	String
	Number
	Boolean
	Date

	A.3 Simple Expressions
	Arithmetic Expressions
	Comparison Expressions
	Logical Expressions

	A.4 SQL Predicates
	A.4.1 Between Operator
	A.4.2 In Operator
	A.4.3 SQL Pattern Matching Operator
	A.4.4 Existence Operator
	A.4.5 List Comparison

	A.5 Regular Expressions
	A.5.1 Regular Expression Operator
	Language Summary

	A.5.2 List Regular Expression Matching

	A.6 Aggregate Functions
	Sum
	Avg
	Max
	Count

	A.7 Sub-Query
	A.8 Sub-Selection

	Appendix B: OLAP Server Setup
	B.1 Microsoft SQL Server 2000
	B.2 Microsoft SQL Server 2005

	Data Mashup
	1 Contents
	2 Introduction
	2.1 Style Studio and Visual Composer
	2.1.1 Editing a Data Worksheet in Style Studio
	2.1.2 Editing a Worksheet in Visual Composer

	2.2 Editing Data Worksheets
	2.2.1 Creating a New Data Worksheet
	2.2.2 Creating a Local Worksheet
	Creating a Local Worksheet
	Exporting a Local Worksheet to the Global Repository
	Importing a Local Worksheet from the Global Repository

	2.2.3 Opening a Data Worksheet
	2.2.4 Saving a Data Worksheet
	Saving a New Version of an Existing Worksheet
	Saving a New Worksheet
	Visibility of Saved Worksheet Assets

	2.2.5 Closing a Data Worksheet
	2.2.6 Navigating a Data Worksheet
	2.2.7 Setting Global Worksheet Options

	3 Assets: Reusable Worksheet Components
	3.1 Using an Asset
	3.1.1 Using a Data Table
	Using a Data Table in a Viewsheet
	Using a Data Table in a Report
	Using a Data Table within a Worksheet

	3.1.2 Using a Named Condition
	3.1.3 Using a Named Grouping
	3.1.4 Using a Date Range
	3.1.5 Using a Variable

	3.2 Saving an Asset
	3.2.1 Saving an Asset by Saving the Worksheet
	3.2.2 Saving an Asset by Dragging to the Repository
	3.2.3 Deploying an Asset

	3.3 Renaming an Asset
	3.3.1 Renaming an Asset in the Worksheet
	3.3.2 Renaming an Asset in the Asset Repository

	3.4 Deleting an Asset
	3.4.1 Deleting an Asset in the Worksheet
	3.4.2 Deleting an Asset in the Asset Repository

	3.5 Editing a Non-Tabular Asset
	3.6 Setting an Asset as Primary
	3.7 Automatically Updating an Asset
	3.8 Controlling Access to an Asset
	3.8.1 Setting Asset Scope
	3.8.2 Changing Asset Scope

	4 Creating a Data Table
	4.1 Creating a Regular Data Table
	4.1.1 Creating a Table from a Query or Data Model
	4.1.2 Creating a Table from Database Tables
	4.1.3 Creating a Table from Existing Table Columns

	4.2 Creating an Embedded Table
	4.2.1 Creating a New Embedded Table
	4.2.2 Converting a Regular Table to an Embedded Table
	4.2.3 Importing Data Into an Embedded Table

	4.3 Adding a Table Column
	4.3.1 Adding a Column to a Regular Table
	4.3.2 Adding a Column to an Embedded Table
	4.3.3 Adding or Removing a Row from an Embedded Table
	4.3.4 Creating an Expression/Formula Column
	4.3.5 Automatically Substituting JavaScript For SQL
	4.3.6 Creating a Numeric Range Column
	4.3.7 Creating a Date Range Column
	Available Date Ranges

	4.4 Editing a Table Column
	4.4.1 Renaming a Column
	4.4.2 Reordering a Column
	4.4.3 Showing and Hiding a Column
	4.4.4 Changing the Column Type in an Embedded Table
	4.4.5 Editing an Expression Column
	4.4.6 Editing a Range Column

	4.5 Deleting a Table Column
	4.6 Copying a Table
	4.7 Mirroring a Table
	4.8 Table Operations
	4.8.1 Setting Table Query and Display Properties
	4.8.2 Viewing the SQL Query Plan of a Table
	4.8.3 Editing a Composition Table
	4.8.4 Changing the Source of a Composition Table
	4.8.5 Previewing a Table
	4.8.6 Showing Live Data in a Table
	4.8.7 Limiting the Number of Rows in a Table
	4.8.8 Displaying the Length of a Table
	Displaying Table Length in Preview
	Displaying Table Length in Live Preview Mode

	4.8.9 Rotating a Table
	4.8.10 Unpivoting a Table

	5 Combining Data Tables
	5.1 Concatenating Tables
	5.1.1 Creating a Concatenated Table
	5.1.2 Union
	5.1.3 Intersect
	5.1.4 Minus
	5.1.5 Changing the Concatenation Type

	5.2 Joining Tables
	5.2.1 Inner Join
	Creating a Inner Join by Dragging Columns
	Creating an Inner Join with the ‘Join Table’ Button

	5.2.2 Outer Join
	5.2.3 Cross Join
	5.2.4 Merge Join
	5.2.5 Changing the Join Type

	5.3 Merging Tables

	6 Manipulating Tabular Data
	6.1 Sorting
	6.1.1 Sorting a Single Column
	6.1.2 Sorting Multiple Columns

	6.2 Filtering
	6.2.1 Defining Simple Conditions
	6.2.2 Defining Advanced Conditions
	Pre-aggregate, Post-aggregate, and Ranking Conditions

	6.2.3 Defining a Materialized View Update Condition
	Special Parameters for Materialized View Update Conditions

	6.2.4 Filtering Operators
	6.2.5 Using a Parameter in a Condition
	6.2.6 Using a Field in a Condition
	6.2.7 Using an Expression in a Condition
	SQL vs. JavaScript in Expressions

	6.2.8 Using a Subquery in a Condition
	6.2.9 Specifying a Subquery
	Subquery Returns a Fixed Value
	Subquery Returns a Fixed List
	Subquery Returns a Row-Dependent Value

	6.3 Grouping
	6.3.1 Grouping and Aggregating Data
	6.3.2 Defining a Crosstab Table
	6.3.3 Crosstab Aggregation Measures
	6.3.4 Switching Between Detail and Aggregate View

	7 Creating Non-Tabular Assets
	7.1 Creating a Named Condition
	7.1.1 Creating a New Named Condition
	7.1.2 Extracting a Named Condition from a Table

	7.2 Creating a Named Grouping
	7.3 Creating a Date Range
	7.3.1 Defining a Sliding Date Range
	7.3.2 Defining a Fixed Date Range

	7.4 Creating a Variable
	7.4.1 Defining a Variable
	7.4.2 Creating an Embedded Variable List
	7.4.3 Creating a Query-Based Variable List

	8 Applications
	8.1 User Conference Mailing
	8.2 What-If Analysis

	Appendix A: Toolbar Buttons
	Appendix B: Accessing Table Cells in Script
	B.1 Cell on the Current Row
	B.2 Cell on a Previous Row
	B.3 Column of Any Table
	B.4 Cell of Any Table
	Referencing by Row Index
	Referencing by Value Lookup

	Appendix C: Built-in Ranges and Groupings
	C.1 Built-in Date Ranges
	C.2 Built-in Date Groupings

	Report Design
	1 Contents
	2 Introduction
	3 Report Design Tools
	3.1 The Report Design Toolbox
	3.2 Using Grids and Rulers

	4 Report Layout
	4.1 Creating a Blank Report Template
	4.2 Tabular Report Layout
	4.2.1 Setting up the Layout Grid
	Drawing the Layout Grid
	Setting Layout Grid Properties

	4.3 Flow Report Layout
	4.4 Freehand Shapes
	4.5 Meta-Templates
	4.5.1 Creating a Report Based on a Meta-Template
	4.5.2 Designing a Meta-Template

	4.6 Report Properties
	4.7 Page Setup
	4.7.1 Configuring Page Properties
	4.7.2 Setting Page Orientation
	4.7.3 Setting a Background Color/Image

	4.8 Headers and Footers
	4.8.1 Adding Headers and Footers to a Report
	4.8.2 Adding Page Numbers and Dates in Headers/Footers
	4.8.3 Displaying a Header/Footer for Specific Page Types
	4.8.4 Associating Headers/Footers with Specific Elements

	5 Report Elements
	5.1 Element ID and Alias
	5.2 Inserting Elements
	5.2.1 Text Mode vs. Insertion Mode

	5.3 Property Dialog Boxes
	5.4 Positioning and Sizing a Report Element
	5.5 Brushing Element Styles
	5.6 Text Element
	5.6.1 Text Element
	Adding a New Text Element
	Text Wrapping

	5.6.2 TextBox

	5.7 Table Element
	5.7.1 Adding a Blank Table to a Report
	5.7.2 Table Properties
	Table Layout
	Matching Column Sizes in Two Tables
	Adding a Table Style
	Creating a Custom Table Style
	Complex Table Layout

	5.8 Crosstab Element
	5.9 Section Element
	5.9.1 Adding a Section Element
	5.9.2 Setting Global Section Options
	5.9.3 Section Properties
	5.9.4 Viewing Information for Elements Inside a Section
	5.9.5 Manually Adding Elements to a Section
	Adding a Table or Chart to a Section
	Adding Text Elements to a Section
	Adding Heading Elements to a Section

	5.9.6 Moving and Resizing Elements in a Section
	5.9.7 Aligning Elements in a Section
	5.9.8 Distributing Elements in a Section
	5.9.9 Changing Sizes of Elements in a Section

	5.10 Chart Element
	5.10.1 Adding a Chart Element
	5.10.2 Chart Properties
	Plot Property
	Legend Property
	X-Axis Label Property
	X-Axis Title Property
	Y-Axis Label Property
	Y Axis Title Property
	Chart Properties: Advanced Tab

	5.11 Special Elements
	5.11.1 Report Bean
	Creating and Saving a Report Bean
	Exposing the Properties of Report Bean Elements
	Editing a Report Bean
	Using a Report Bean in a Report

	5.11.2 Subreport
	5.11.3 Heading
	5.11.4 Table of Contents
	5.11.5 Painter
	5.11.6 Image
	Adding an Image Element
	Specifying the Image Location

	5.12 Decorative Elements
	5.12.1 Tab
	Defining a Tab Stop
	Adding a Tab
	Creating a Right-Aligned Tab
	Adding a Tab Leader (Filling)

	5.12.2 Space
	5.12.3 Bullet
	5.12.4 Editable Region
	5.12.5 Separator
	5.12.6 Newline
	5.12.7 Page Break
	5.12.8 Area Break

	5.13 Report Explorer View
	5.14 Element Property View

	6 Data Binding
	6.1 Data Binding Toolbar Buttons
	6.2 Creating a New Table, Crosstab, or Section using a Wizard
	6.2.1 Walkthrough: Choosing the Binding Data Source
	6.2.2 Data Sources Available for Binding
	Local Queries and Local Worksheets

	6.2.3 Specifying Columns in Data Binding Wizard
	Selecting Columns in Data Binding Wizard
	Sorting Columns in Data Binding Wizard
	Hiding Columns in Data Binding Wizard
	Creating a Formula Column in Data Binding Wizard
	Walkthrough: Selecting and Creating Columns in Data Binding Wizard

	6.2.4 Filtering Data in Data Binding Wizard
	Walkthrough: Adding Conditions in Data Binding Wizard
	Removing or Modifying a Condition in Data Binding Wizard
	Reserved Parameter Names
	Dynamically Dropping a Filter Condition in the Data Binding Wizard

	6.2.5 Grouping and Summarization in Data Binding Wizard
	Summarization Formulas
	Walkthrough: Grouping and Summary in Data Binding Wizard

	6.2.6 Data Binding Options

	6.3 Binding Data to a Text Element
	6.3.1 Binding a Text Element to a Query
	6.3.2 Binding a Text Element to a Parameter

	6.4 Binding Data to a Table Element
	6.4.1 Creating a Table Using the Data Binding Wizard
	Walkthrough: Selecting Data Source Columns using the Wizard
	Walkthrough: Adding Table Grouping using the Wizard
	Table Grouping Options

	6.4.2 Creating a Table Using Freehand Operations
	Creating a New Table Using Freehand Operations
	Inserting Rows and Columns into a Table
	Deleting Rows and Columns from a Table
	Inserting New Columns with Data Binding
	Selecting a Cell, Row, or Column of a Table
	Splitting and Merging Table Cells
	Resizing Table Rows and Columns
	Changing the Table Column Order
	Changing a Table Cell Data Binding
	Changing the Table Data Source
	Changing the Column Sort Order
	Filtering Data in a Table
	Grouping Data in a Table
	Displaying the Grouping Field in the Detail Row
	Displaying the Grouping Field in a Group Region

	Modifying Table Grouping Properties
	Setting Global Grouping Options
	Setting Group Cell Display Options
	Summarizing Data in a Table
	Modifying Summary Properties
	Walkthrough: Freehand Operations on a Table
	Walkthrough: Defining Formulas

	6.5 Binding Data to a Crosstab Element
	6.5.1 Creating a Crosstab Using the Data Binding Wizard
	Walkthrough: Creating a Crosstab using Data Binding Wizard
	Walkthrough: Setting Layout for a Crosstab

	6.5.2 Creating a Crosstab Using Freehand Operations
	Crosstab Options

	6.6 Binding Data to a Chart Element
	6.6.1 Binding a Chart to a Data Source
	6.6.2 Working with Multiple Measures and Subseries
	Setting a Chart Style for an Individual Dataset
	Single Chart vs. Separate Charts
	Adding a Sub-Series
	Adding a Non-Displaying Measure to a Chart

	6.6.3 Representing Data with Visual Formats
	Adding a Fixed Visual Format
	Adding Formats to Dimensions
	Adding Formats to Measures
	Representing Data With Color
	Representing Data With Shape
	Representing Data With Size
	Representing Data With Text

	6.6.4 Setting the Chart Style
	Chart Examples

	6.6.5 Binding a Chart to Geographical Data (Map)
	Resolving Geographical Data
	Using Latitude and Longitude Data
	Transforming Longitude/Latitude for Alaska and Hawaii

	6.6.6 Editing Dimensions and Measures
	Editing a Dimension
	Editing a Measure

	6.6.7 Filtering Data in a Chart
	6.6.8 Calculating a Measure Representation
	6.6.9 Calculation Methods
	Percent Calculation
	Change Calculation
	Running Calculation
	Sliding Calculation
	Converting between a Measure and Dimension
	Displaying a Measure as Discrete Values

	6.6.10 Rotating a Chart
	6.6.11 Setting Date Grouping Properties

	6.7 Binding Data to a Section Element
	6.7.1 Creating a Section Using the Data Binding Wizard
	Named Groups
	Section Options for Data Binding Wizard

	6.7.2 Modifying a Section Using Freehand Operations
	Creating a Section Using Freehand Operations
	Inserting Bands into a Section
	Deleting/Hiding a Section Band
	Displaying Section Details within a Table
	Inserting New Fields with Data Binding
	Moving Fields within a Section
	Changing a Section Element Data Binding
	Changing the Section Data Source
	Changing the Element Sort Order
	Filtering Data in a Section
	Grouping Data in a Section
	Displaying the Grouping Field in the Detail Row
	Displaying the Grouping Field in a Group Region

	Summarizing Data in a Section
	Section Options for a Freehand Section

	6.7.3 Running Total
	6.7.4 Subreports
	Walkthrough: Designing the Subreport
	Walkthrough: Embedding the Subreport

	6.8 Calculating a New Query Field
	6.9 Updating Data Binding After Query Modification

	7 Advanced Topics
	7.1 Form Design
	7.1.1 Accessing the Form Controls
	7.1.2 Form Elements
	Button
	Image Button
	Check Box
	Radio Button
	Choice
	List
	Date Combo
	Text Field
	Text Area

	7.2 Parameterization
	7.2.1 Parameterizing a Condition
	7.2.2 Defining and Editing Report Parameters
	7.2.3 Acquiring a Parameter Value
	7.2.4 Parameter Sheets
	Reusable Parameter Sheets
	Staged Parameters
	Cascading Parameter Sheets
	Embedded Parameter Sheets

	7.3 Hyperlinks
	7.3.1 Defining a Hyperlink
	Passing Report Parameters

	7.3.2 Hyperlinks to a Target (Anchor)
	Defining a Target (Anchor)
	Hyperlinking to a Target

	7.4 Highlighting
	7.4.1 Highlighting a Text or Textbox Element
	7.4.2 Highlighting Data in a Table

	7.5 Formatting
	7.5.1 Format Types
	Date and Time Formats
	Text Formats
	Example 1: Adding a Prefix
	Example 2: Adding a Prefix and Suffix
	Localizing a Text Format

	Number Formats

	7.5.2 Table Formatting
	Cell Alignment
	Cell Data Format
	Cell Presenter

	7.6 Report Bursting
	7.6.1 Implementing Report Bursting
	7.6.2 Report Partitioning

	7.7 Localization/Internationalization
	7.8 Viewer Actions
	7.9 HTML Report Features
	7.9.1 Adding HTML to a Report
	7.9.2 CSS Styles

	7.10 Page Areas
	7.10.1 Adding a New Page Area
	7.10.2 Associating a Page Area with a Report Element
	7.10.3 Non-Flow Page Areas
	Fixed Position Elements
	Advantages and Disadvantages of Fixed Position Elements
	Walkthrough: Fixed Position Elements
	Parallel Report Flows

	7.11 Formula Tables
	7.11.1 Walkthrough: Creating a Formula Table
	7.11.2 Combining Multiple Data Sources in a Formula Table
	7.11.3 Creating a Formula Table Using Script (Advanced)
	Cell Expansion
	Expansion Hierarchies
	Defining Formulas by Referencing Cells
	Page Break on Group in Formula Tables
	Suppressing Duplicates and Zeros in Formula Tables
	Spanning Cells
	Advanced Formula Table Walkthrough

	8 Viewing a Report
	8.1 Displaying a Report in Live Edit View
	8.2 Displaying a Report in the Preview Tab
	8.3 Displaying a Report in the User Portal

	9 Saving a Report
	9.1 Saving a Report into the File System
	9.2 Saving a Report into the Working Repository
	9.3 Opening a Report in Style Studio
	9.4 Deploying a Report
	9.5 Exporting a Report

	10 Best Practices
	10.1 Planning a Group of Reports
	10.2 Planning Report Design
	10.2.1 Deciding on Elements and Queries
	10.2.2 Determining the Appropriate Layout
	10.2.3 Specifying Preferences
	10.2.4 Tables vs. Sections
	10.2.5 Design for Accessibility

	10.3 Performance Tuning
	10.4 Precautions and Safeguards
	Disabling Ad Hoc Analysis
	Limiting the Maximum Number of Rows
	Setting a Query Timeout
	Limiting the Maximum Number of Pages

	10.5 Designing Reports for Section 508 Compliance

	Ad Hoc Reporting
	1 Contents
	2 Introduction to Ad Hoc Reporting
	3 New Report Wizards
	3.1 Creating a New Report
	3.2 Chart Wizard
	3.3 Table Wizard
	3.3.1 Creating a Table-Based Report
	3.3.2 Creating an Expression Column
	Accessing Java in Script

	3.4 Crosstab Wizard
	3.5 Section Wizard

	4 Editing Report Layout
	4.1 Enabling Ad Hoc Mode
	4.1.1 Editing a Report Before Generation
	4.1.2 Editing a Report After Generation
	4.1.3 Ad Hoc Toolbar

	4.2 Page Setup
	4.3 Report Layout

	5 Editing Report Elements
	5.1 Manipulating a Report Element
	5.2 Table Element
	5.2.1 Table Properties
	5.2.2 Table Format
	5.2.3 Table To Crosstab

	5.3 Crosstab Element
	Crosstab Options
	Crosstab To Table

	5.4 Chart Element
	Chart Properties

	5.5 Section Element
	5.5.1 Section Properties
	5.5.2 Section Layout

	5.6 Other Elements
	Text and TextBox
	Image
	Separator

	6 Editing Data Binding
	6.1 Walkthrough: Modifying a Data Binding
	6.2 Features of the Data Binding Interface
	6.2.1 Global Features
	6.2.2 Column Features
	Grouping order
	Grouping options
	Sort
	Show/Hide
	Aggregate formula

	6.2.3 Aggregation Functions

	7 Filtering
	7.1 Comparison Operators
	7.2 Create Expression
	7.3 Indent/Unindent Conditions
	7.4 Browse Data
	7.5 Parameterizing a Condition

	8 Highlighting
	9 Parameter Sheets
	9.1 Designing a Parameter Sheet
	9.2 Walkthrough: Designing a Parameterized Report
	9.3 Walkthrough: Adding a Parameter Sheet

	Report Scripting
	1 Contents
	2 Introduction
	2.1 Introduction to JavaScript Programming
	2.1.1 The JavaScript Language
	2.1.2 Object-Oriented Concepts
	2.1.3 JavaScript Syntax Basics
	Comments and Names
	Declaration and Assignment
	Object Types and Scopes
	Number Type
	Boolean Type
	String Type
	Date Type
	Arrays
	Conditionals
	For Loop
	While Loop
	Switch Statement
	Functions

	2.2 Editing Script
	Adding Element-Level Script
	Adding Report-Level Script
	2.2.1 Locating Scripted Elements
	2.2.2 Using an External Script Editor
	2.2.3 Using the Default Script Editor
	Script Editor Options
	Syntax Auto-Completion
	Fixed Value Selection
	Syntax Checking

	2.2.4 Basic Editing Functions
	2.2.5 Editing Multiple Element Scripts
	2.2.6 Using the Script Library
	Adding a Function to the Script Library
	Editing a Function in the Script Library
	Function Scope

	2.3 Script Debugging
	2.3.1 Keep the Script Small
	2.3.2 Associate Script with Elements
	2.3.3 Use log() to View Diagnostic Messages
	2.3.4 Protect Reports from Script Errors

	2.4 Script Evaluation
	2.5 Host Environment
	2.6 Accessing Element Properties

	3 Element Script
	3.1 Element Inheritance Hierarchy
	3.2 Common Element Properties
	3.2.1 Color Property
	3.2.2 Font Property
	3.2.3 Visibility Property
	3.2.4 Alignment Property
	3.2.5 fullName Property
	3.2.6 Target Property

	3.3 Common Constants
	3.4 Adding Tooltips to Elements
	3.4.1 Adding Tooltips to a Table or Chart
	3.4.2 Specifying a Data Format for Tooltip Text

	3.5 Text and TextBox
	3.5.1 Text Property
	3.5.2 Useful Text/String Functions
	Changing a String to Upper/Lower Case
	Searching Within a String

	3.5.3 Useful Date Functions
	Finding the Difference Between Dates
	Calculating a Past or Future Date
	Extracting a Date Component
	Formatting a Date

	3.6 Data Tables
	3.6.1 Accessing Table Data
	3.6.2 Setting Cell and Row Visual Properties
	3.6.3 Displaying Images in Table Cells

	3.7 Formula Tables
	3.7.1 Extracting Data from a Query
	3.7.2 Extracting Data from a Report Element
	3.7.3 Referencing Query Data
	Referencing a Query Column
	Deriving a Result Set from Query Columns
	Referencing a Query Column With Field Filtering
	Referencing a Column With Expression Filtering
	Referencing a Column with Positional (Index) Filtering

	3.7.4 Cell Referencing
	Referencing a Cell for Column Filtering
	Referencing Cells in Summary Formulas
	Group Numbering
	Referencing a Cell with Relative Parent Group Reference
	Referencing a Cell with Absolute Parent Group Reference
	Referencing a Cell with Parent Group Reference as an Expression

	3.7.5 Special Functions
	inArray
	toArray
	rowList
	mapList
	toList

	3.7.6 Visual Properties
	Walkthrough: Formula Table Expansion
	Pre-Expansion Script
	Post-Expansion Script

	3.8 Charts
	3.9 Sections
	3.9.1 Accessing Data
	3.9.2 Setting Visual Properties

	3.10 Report Beans
	3.10.1 Bean Handlers
	3.10.2 Bean Scripting Scopes
	Accessing Report Elements of Same Name
	Dynamically Modifying the Parent Report
	Accessing Bean Properties from Parent Report

	3.10.3 Report Bean Example
	Report Header Bean
	Total Field Bean

	4 Queries
	4.1 Running a Query
	4.1.1 Running a Query from Script
	4.1.2 Query Performance Considerations
	4.1.3 Query Example

	4.2 Binding Queries
	Query Compatibility

	5 Report Handlers
	5.1 onClick Handler
	5.1.1 Using the onClick Handler
	5.1.2 Setting the onClick Range

	5.2 onInit Handler
	5.3 onLoad Handler
	5.4 onPageBreak Handler
	The OnPageBreak Event Handler
	The rewound property

	5.5 onPrint Handler
	5.6 Report Handler Example
	5.6.1 Calculate Page Total
	5.6.2 Band Rewinding

	6 Server-Side Features
	6.1 Accessing Report/Request Parameters
	6.2 HTTP Request, Session, and Principal
	6.3 Interactive Forms
	6.3.1 Creating a Form
	Adding Form Controls
	Client-Side JavaScript
	Storing JavaScript in an External File

	6.3.2 Processing a Form
	Scripting the onClick Handler
	Server-Side JavaScript

	Appendix SI: Style Intelligence Object Reference
	SI.1 Global Functions
	addParameter(name, default, type, alias, hidden)
	newInstance(name)
	getImage(string)
	isNull(object)
	docInfo(string)
	log(string)
	runQuery(query_name [,parameters])

	SI.2 Element Object
	SI.2.1 General Properties
	alignment
	background
	font
	foreground
	indent
	keepWithNext
	scheduleAction(Boolean[,emails])
	adhocEnabled(Boolean)
	sectionID
	sectionLevel
	sectionRow
	sectionType
	spacing
	target
	visible
	value
	position
	field
	hints

	toList(list [,options])
	SI.2.2 Tables and Sections
	average(column[, group[,condition]])
	concat(column[, group[,condition]])
	correlation(column, column2[, group[,condition]])
	count(column[, group[,condition]])
	countDistinct(column[, group[,condition]])
	covariance(column, column2[, group[,condition]])
	max(column[, group[,condition]])
	median(column[, group[,condition]])
	min(column[, group[,condition]])
	mode(column[, group[,condition]])
	nthLargest(n, column[, group[,condition]])
	nthMostFrequent(n, column[, group[,condition]])
	nthSmallest(n, column[, group[,condition]])
	populationStandardDeviation(column[, group,condition])
	populationVariance(column[, group[,condition]])
	pthPercentile(p, column[, group[,condition]])
	product(column[, group[,condition]])
	standardDeviation(column[, group[,condition]])
	sum(column[, group[,condition]])
	variance(column[, group[,condition]])
	weightedAverage(column, column2[, group[,condition]])

	SI.2.3 Fixed Tables
	average(cellRange)
	concat(cellRange)
	count(cellRange)
	countDistinct(cellRange)
	max(cellRange)
	median(cellRange)
	min(cellRange)
	mode(cellRange)
	nthLargest(n, cellRange)
	nthMostFrequent(n, cellRange)
	nthSmallest(n, cellRange)
	populationStandardDeviation(cellRange)
	populationVariance(cellRange)
	product(cellRange)
	standardDeviation(cellRange)
	sum(cellRange)
	variance(cellRange)

	SI.2.4 Global Objects
	average(tablelens,column[,condition])
	concat(tablelens,column[,condition])
	correlation(tablelens,column1,column2 [,condition])
	count(tablelens,column[,condition])
	countDistinct(tablelens,column[,condition])
	covariance(tablelens,column, column2[, group[,condition]])
	max(tablelens,column[,condition])
	median(tablelens,column[,condition])
	min(tablelens,column[,condition])
	mode(tablelens,column[,condition])
	nthLargest(tablelens,n,column[,condition])
	nthMostFrequent(tablelens,n,column [,condition])
	nthSmallest(tablelens,n,column[,condition])
	populationStandardDeviation(tablelens,column [,condition])
	populationVariance(tablelens,column [,condition])
	pthPercentile(tablelens,p,column[, group,condition])
	product(Tablelens,column[, condition])
	standardDeviation(tablelens,column [,condition])
	sum(tablelens,column[,condition])
	variance(Tablelens,column[,condition])
	weightedAverage(tablelens,column,column2 [,condition]])

	SI.3 Tab Object
	fillStyle
	rightTab
	tabStops

	SI.4 Text Object
	hyperlink
	justify
	orphanControl
	grow
	text
	textAdvance

	SI.5 Heading Object
	level

	SI.6 Table Object
	SI.6.1 General Properties
	fixedWidths
	layout
	orphanControl
	columnMatching
	fillPage
	rowVisible
	regionVisible
	row
	dataRow
	padding
	table
	table.length
	table.size
	data
	data.length
	data.size
	cellRowBorderColor
	cellColBorderColor
	cellRowBorder
	cellColBorder
	cellInsets
	cellSpan
	cellFont
	cellAlignment
	cellLineWrap
	cellForeground
	cellBackground
	cellFormat
	cellPresenter
	colAlignment
	colBackground
	colBorder
	colBorderColor
	colFont
	colForeground
	colInsets
	colLineWrap
	colWidth
	MaxColWidth
	rowAlignment
	rowBackground
	rowBorder
	rowBorderColor
	rowFont
	rowForeground
	rowInsets
	rowLineWrap
	rowHeight
	format
	rowFormat
	hyperlink
	highlighted(name)
	setHyperlink(row, col, hyperlink)
	presenter
	rowPresenter
	size
	query
	grow
	tableLens
	tableAdvance
	tableWidth

	SI.6.2 The Table bindingInfo Property
	bindingInfo.addGroupCol(colName)
	bindingInfo.setDateLevel(colName, level)
	bindingInfo.setDateInterval(colName, value)
	bindingInfo.addHiddenColumn(colName)
	bindingInfo.addSummaryCol(colName)
	bindingInfo.getColumnOrder(colName)
	bindingInfo.getFormula(i)
	bindingInfo.getGroupCol(i)
	bindingInfo.getGroupColCount()
	bindingInfo.getGroupOrder(colName)
	bindingInfo.getSummaryCol(i)
	bindingInfo.getSummaryColCount()
	bindingInfo.getTopN(groupCol)
	bindingInfo.getTopNGroupCol(groupCol)
	bindingInfo.getTopNSummaryCol(groupCol)
	bindingInfo.isSummarize(colName)
	bindingInfo.isTopNReverse(groupCol)
	bindingInfo.removeAllGroupCols()
	bindingInfo.removeGroupCol(colName)
	bindingInfo.removeHiddenColumn(colName)
	bindingInfo.removeSummaryCol(colName)
	bindingInfo.setColumnOrder(colName,order)
	bindingInfo.setColumnSequence(seq)
	bindingInfo.setColumnVisible(colName,value)
	bindingInfo.setFormula(col, formula)
	bindingInfo.setGroupOrder(colName, order)
	bindingInfo.setSummarize(colName, sum)
	bindingInfo.setTopN(groupCol, n)
	bindingInfo.setTopNGroupCol(groupCol1, groupcol2)
	bindingInfo.setTopNReverse(groupCol, bottom)
	bindingInfo.setTopNSummaryCol(groupCol, col)
	bindingInfo.setOption(name, value)

	SI.6.3 The groupedTable Property
	groupedTable.getAvailableLevels(row)
	groupedTable.getGroupFirstRow(row)
	groupedTable.getGroupLastRow(row)
	groupedTable.getGroupFirstRowWithLevel(row, level)
	groupedTable.getGroupLastRowWithLevel(row, level)

	SI.7 Freehand Table Object
	regionRow

	SI.8 Painter Object
	anchor
	hyperlink
	image
	layout
	margin
	rotation
	size
	wrapping

	SI.9 TextBox Object
	border
	borders
	borderColor
	cornerSize
	justify
	padding
	shape
	shadow
	text
	textAlignment

	SI.10 Chart Object
	SI.10.1 General Properties
	query
	graph
	setHyperlink(col, hyperlink)
	highlighted(name)
	size
	toolTip

	SI.11 Field Object
	form
	name

	SI.12 Button Object
	text

	SI.13 ImageButton Object
	resource

	SI.14 DateCombo Object
	promptTime

	SI.15 CheckBox Object
	selected
	text

	SI.16 Choice Object
	choices
	selectedItem
	values

	SI.17 TextField Object
	cols
	text
	maxLength

	SI.18 TextArea Object
	cols
	rows
	text

	SI.19 List Object
	choices
	selectedItems
	values

	SI.20 CondPageBreak Object
	condHeight

	SI.21 Newline Object
	count

	SI.22 Section Object
	SI.22.1 General Properties
	tableLens
	table
	data
	query
	band

	SI.22.2 The Section bindingInfo Property
	bindingInfo.addGroupCol(colName)
	bindingInfo.addHiddenColumn(colName)
	bindingInfo.addSummaryCol(colName)
	bindingInfo.getFormula(i)
	bindingInfo.getGroupCol(i)
	bindingInfo.getGroupColCount()
	bindingInfo.getGroupOrder(colName)
	bindingInfo.getSummaryCol(i)
	bindingInfo.getSummaryColCount()
	bindingInfo.getTopN(groupCol)
	bindingInfo.getTopNGroupCol(groupCol)
	bindingInfo.getTopNSummaryCol(groupCol)
	bindingInfo.isSummarize(colName)
	bindingInfo.isTopNReverse(groupCol)
	bindingInfo.removeAllGroupCols()
	bindingInfo.removeGroupCol(colName)
	bindingInfo.removeHiddenColumn(colName)
	bindingInfo.removeSummaryCol(colName)
	bindingInfo.setFormula(col, formula)
	bindingInfo.setGroupOrder(colName, order)
	bindingInfo.setSummarize(colName, sum)
	bindingInfo.setTopN(groupCol, n)
	bindingInfo.setTopNGroupCol(groupCol, col)
	bindingInfo.setTopNReverse(groupCol, boolean)
	bindingInfo.setTopNSummaryCol(groupCol, col)

	SI.23 Section Band Object
	atBottom
	background
	breakable
	height
	shrinkToFit
	visible
	pageBefore
	pageAfter
	repeatHeader
	setPresenter(string, presenter)
	suppressBlank
	underlay
	topBorder
	leftBorder
	bottomBorder
	rightBorder

	SI.24 Separator Object
	separatorAdvance
	style

	SI.25 Space Object
	space

	SI.26 TOC Object
	toc

	SI.27 Bean Object
	Bean properties
	beanName
	elements
	lineAfter

	SI.28 XType Data Types
	SI.29 Toolbar Object
	ToolBar.isActionVisible(name)
	ToolBar.setActionVisible(name,boolean)

	SI.30 PageBreak Event Object
	elementID
	region
	firstElementID
	firstRegion
	lastPage
	pageIndex

	SI.31 Selection Event Object
	elementID
	item

	SI.32 Request Event Object
	repletRequest

	SI.33 Query Parameter Object
	SI.34 RepletRequest Object
	SI.35 ReportSheet Object
	SI.36 Style Intelligence Global Object
	showReplet(replet, request)
	showURL(url, target)
	promptParameters(reqname)
	sendRequest(request)
	refresh()
	scrollTo(eid, row)
	showStatus(message)
	pviewsheet

	SI.37 Replet Object
	parameter
	sortOnHeader
	pageSize
	orientation
	principal
	roles
	addLink(eid, [item], replet [,request])
	addLinkURL(eid, item, url, target)
	addRequest(eid, item, request)
	addStatus(eid, item, message)
	addPopupMenu(eid, item, items)
	addMenuAction(eid, item, menuitem, action)
	addFormLink(form, replet)
	removeAllActions()

	SI.38 ParentReport Object
	SI.39 RepletParameters Object
	addBoolean(string, boolean)
	addChoice(string, object, array)
	addDate(string, date)
	addDateTime(string, date)
	addList(string, default, list)
	addOption(string, default, list)
	addParameter(string, default, format)
	addPassword(string)
	addRadio(string, default, list)
	addTextArea(string, default, rows, cols)
	addTime(string, date)
	clear()
	setAlias(name, alias)
	setVisible(string, boolean)

	SI.40 PDF Security Provider Subsets
	SI.41 StyleReport Object

	Dashboard Design
	1 Contents
	2 Visual Composer
	2.1 Quick Start: Creating a Dashboard
	2.2 Exploratory Visualization
	2.3 Using Visual Composer
	2.3.1 Launching Visual Composer
	2.3.2 Visual Composer Interface

	2.4 Managing Viewsheets
	2.4.1 Creating a New Viewsheet
	2.4.2 Opening an Existing Viewsheet
	2.4.3 Saving a Viewsheet
	Saving a New Version of an Existing Viewsheet
	Saving a New Viewsheet

	2.4.4 Renaming a Viewsheet
	2.4.5 Linking a Viewsheet to a Data Source
	2.4.6 Opening a Linked Worksheet
	2.4.7 Controlling Access to a Viewsheet
	2.4.8 Changing Viewsheet Scope
	2.4.9 Limiting Data Retrieved by a Viewsheet
	2.4.10 Suppressing Query Execution in Design View
	2.4.11 Suppressing Parameter Prompting

	2.5 Configuring Viewsheet Appearance
	2.5.1 Viewsheet Toolbar
	2.5.2 Tailoring the Viewsheet for Specific Screen Size
	2.5.3 Modifying the Viewsheet Grid
	Inserting a Cell, Row, or Column into a Viewsheet
	Deleting a Cell, Row, or Column from the Viewsheet
	Resizing the Viewsheet Grid
	Zooming the Viewsheet Grid

	2.5.4 Setting Viewsheet Options
	2.5.5 Creating a Background
	2.5.6 Previewing a Viewsheet
	2.5.7 Refreshing a Viewsheet
	2.5.8 Adding Annotations to a Viewsheet

	2.6 Deploying a Viewsheet
	2.6.1 Deploying a Viewsheet to the Repository
	2.6.2 Deploying a Viewsheet as a Dashboard
	2.6.3 Building a Composite Dashboard
	Nesting a Viewsheet
	Opening a Nested Viewsheet
	Configuring Interactivity among Nested Viewsheets

	2.6.4 Synchronizing Selection Elements and Input Elements
	2.6.5 Enabling End-User Chart and Crosstab Editing
	2.6.6 Setting Default Viewsheet State
	2.6.7 Localization/Internationalization

	3 Using Viewsheet Components
	3.1 Common Operations
	3.1.1 Adding a Component
	3.1.2 Deleting a Component
	3.1.3 Positioning a Component
	Moving a Component
	Resizing a Component
	Moving Components using Cut and Paste
	Overlapping Components

	3.1.4 Setting a Component to be Visible within External Viewsheets
	3.1.5 Selecting Components
	3.1.6 Selecting Groups and Grouped Components
	3.1.7 Grouping Components

	3.2 Properties Dialog Box
	3.2.1 General Tab
	3.2.2 Data Tab
	3.2.3 Advanced Tab
	3.2.4 Script Tab

	3.3 Format Dialog Box
	3.3.1 Format Tab
	Date Format
	Number Format
	Currency Format
	Text Format
	Text Format Examples
	Localizing a Text Format

	Percent Format

	3.3.2 Alignment Tab
	3.3.3 Font Tab
	3.3.4 Border Tab
	Setting Borders

	3.3.5 Color Tab
	Setting Colors

	3.3.6 CSS Tab
	CSS Properties and Syntax

	3.4 Using HTML in Viewsheet Text

	4 Data View Components
	4.1 Tables
	4.1.1 Creating a Table
	Creating a Table by Dragging a Data Block
	Creating a Table with the Table Element

	4.1.2 Creating an Embedded Table
	4.1.3 Table Properties
	Table Properties: General Tab
	Table Properties: Advanced Tab

	4.1.4 Setting Column Editing Options
	4.1.5 Validating User Input
	Text Editor
	ComboBox Editor
	Date Editor
	Number Editor
	Float Editor
	Boolean Editor

	4.1.6 Resizing a Table Column
	4.1.7 Resizing a Table Row
	4.1.8 Adding Hyperlinks to a Table
	Adding Hyperlinks to a Regular Table
	Adding Hyperlinks to an Embedded Table

	4.1.9 Adding Highlights to a Table
	4.1.10 Changing Table Column Headers
	4.1.11 Sorting Table Columns
	4.1.12 Filtering Table Columns
	4.1.13 Exporting Table Data for Viewing
	4.1.14 Exporting Table Data for Editing

	4.2 Freehand Tables
	4.2.1 Creating a Freehand Table
	Creating a Freehand Table as a New Component
	Creating a Freehand Table from an Existing Table or Crosstab

	4.2.2 Walkthrough: Freehand Table
	4.2.3 Freehand Table Properties
	Freehand Table Properties: General Tab
	Freehand Table Properties: Advanced Tab

	4.3 Crosstabs
	4.3.1 Creating a Crosstab
	4.3.2 Crosstab Properties
	Crosstab Properties: General Tab
	Crosstab Properties: Advanced Tab
	Crosstab Properties: Hierarchy Tab

	4.3.3 Crosstab Aggregation Methods
	Aggregation Example
	Aggregation Options

	4.3.4 Percentage Representation for Aggregation
	4.3.5 Grouping Crosstab Headers into Named Groups
	4.3.6 Drilling Down into a Crosstab
	4.3.7 Exporting Crosstab Data
	Exporting Detail Data
	Formatting Detail Data

	4.4 Charts
	4.4.1 Creating a Chart
	Creating a New Chart
	Editing an Existing Chart
	Exiting the Chart Editor

	Setting the Chart Style
	Chart Examples

	4.4.2 Editing a Dimension
	4.4.3 Editing a Measure
	Calculating a Measure Representation
	Calculation Methods
	Setting a Geographical Field
	Converting between Measure and Dimension
	Displaying a Measure as Discrete Values

	4.4.4 Editing Chart Formats
	Editing an Axis Title
	Editing a Chart Axis
	Editing a Chart Legend
	Positioning a Chart Legend
	Editing Plot Properties

	4.4.5 Changing the Chart View
	Selecting Chart Data
	Zooming a Chart
	Excluding Data From a Chart
	Drilling Down into a Chart
	Maximizing a Chart
	Showing Chart Data
	Exporting Chart Data
	Formatting Chart Data

	Showing Detail Data
	Exporting Detail Data
	Formatting Detail Data

	Rotating a Chart
	Sorting a Chart Dimension by Value
	Clearing Chart Data
	Manually Refreshing a Chart
	Changing Chart Element Spacing
	Changing Chart Axis Spacing
	Grouping Chart Labels into Named Groups
	Creating a Chart Legend

	4.4.6 Brushing a Chart
	4.4.7 Working with Multiple Measures and Subseries
	Setting a Chart Style for an Individual Dataset
	Single Chart vs. Separate Charts
	Controlling Axes in Separate Chart View
	Adding a Sub-Series
	Adding a Non-Displaying Measure to a Chart

	4.4.8 Chart Properties
	Chart Properties: General Tab
	Chart Properties: Advanced Tab
	Chart Properties: Hierarchy Tab

	4.4.9 Representing Data with Visual Formats
	Adding a Fixed Visual Format
	Adding Formats to Dimensions
	Adding Formats to Measures
	Representing Data With Color
	Representing Data With Shape
	Representing Data with Size
	Representing Data With Text

	4.4.10 Adding Highlights to a Chart
	4.4.11 Adding Hyperlinks to a Chart

	4.5 Map Charts
	4.5.1 Creating a Map Chart
	Resolving Geographical Data
	Using Latitude and Longitude Data
	Transforming Longitude/Latitude for Alaska and Hawaii

	4.5.2 Map Chart Properties

	5 Data View Features
	5.1 Highlights
	5.1.1 Creating a Highlight
	5.1.2 Modifying a Filter/Highlight Condition
	Inserting a Filter/Highlight Condition
	Modifying a Filter/Highlight Condition or Connector
	Nesting/Ordering a Filter/Highlight Condition
	Reordering a Filter/Highlight Condition

	5.2 Filter Conditions
	5.2.1 Creating a Filter Condition

	5.3 Hyperlinks
	5.3.1 Creating a Hyperlink to a Report or Viewsheet
	5.3.2 Creating a Hyperlink to a Web Page
	5.3.3 Passing Multiple Parameters in a Hyperlink

	5.4 Calculated Fields
	5.4.1 Creating a Calculated Field from Detail Data
	5.4.2 Creating a Calculated Field from Aggregate Data
	5.4.3 Editing a Calculated Field

	6 Selection Components
	6.1 Selection List
	6.1.1 Creating a Selection List
	Creating Selection List from Data Block
	Creating Selection List from Selection List Component
	Creating Selection List from a Table Column
	Creating Selection List from Chart Data Source

	6.1.2 Selection List Properties
	Selection List Properties: General Tab
	Selection List Properties: Data Tab

	6.1.3 Changing the Column Layout in a Selection List
	6.1.4 Displaying Aggregate Data in Selection List

	6.2 Selection Tree
	6.2.1 Creating a Selection Tree from Individual Columns
	Creating a Selection Tree from Data Block Columns
	Creating a Selection Tree from Cube Dimensions
	Creating a Selection Tree from Selection Tree Component
	Creating a Selection Tree from Chart Data Source

	6.2.2 Creating a Selection Tree from Recursive Hierarchy
	6.2.3 Selection Tree Properties
	Selection Tree Properties: General Tab
	Selection Tree Properties: Data Tab

	6.2.4 Adding Hierarchy Levels to a Selection Tree
	Adding Hierarchy Levels from Component Tree
	Adding Hierarchy Levels from Properties Dialog Box

	6.3 Selection Container
	6.3.1 Displaying Selections
	6.3.2 Containing Selection Components
	6.3.3 Selection Container Properties

	6.4 Using Selection Lists and Trees
	6.4.1 Submitting, Clearing, and Reversing Selections
	Submitting a Selection
	Filtering Selections
	Clearing a Selection
	Reversing a Selection

	6.4.2 Selection List Symbols
	6.4.3 Interacting with a Selection List

	6.5 Range Slider
	6.5.1 Creating a Range Slider
	6.5.2 Range Slider Properties
	Range Slider Properties: General Tab
	Range Slider Properties: Data Tab
	Range Slider Properties: Advanced Tab

	6.6 Calendar
	6.6.1 Creating a Calendar
	6.6.2 Calendar Properties
	Calendar Properties: General Tab
	Calendar Properties: Data Tab
	Calendar Properties: Advanced Tab

	7 Output Components
	7.1 Thermometer/Cylinder/Sliding Scale/Gauge
	7.1.1 Creating an Output Component
	7.1.2 Output Component Properties
	Output Component Properties: General Tab
	Output Component Properties: Data Tab
	Output Component Properties: Advanced Tab
	Setting Ranges for Output Components

	7.2 Text
	7.2.1 Creating a Text Element
	7.2.2 Text Properties
	Text Properties: General Tab
	Text Properties: Data Tab

	7.2.3 Adding Highlights to Text

	7.3 Image
	7.3.1 Creating an Image
	7.3.2 Image Properties
	Image: General Tab
	Image: Data Tab
	Image: Advanced Tab

	7.3.3 Scaling an Image
	7.3.4 Adding Highlights to an Image
	7.3.5 Tinting an Image

	7.4 Adding Hyperlinks to Output Components

	8 Input Components
	8.1 Using Input Components
	8.1.1 Configuring an Embedded Table
	8.1.2 Passing Inputs to an Embedded Table or Variable

	8.2 Slider and Spinner
	8.2.1 Creating a Slider or Spinner
	8.2.2 Slider and Spinner Properties
	Slider and Spinner Properties: General Tab
	Slider and Spinner Properties: Data Tab
	Slider and Spinner Properties: Advanced Tab

	8.3 Radio Button, Check Box, Combo Box
	8.3.1 Creating a Radio Button/Check Box/Combo Box
	Populating Label/Value Pairs Manually
	Populating Label/Value Pairs from Query
	Populating Label/Value Pairs from Both a Query and Embedded List
	Acquiring Date Input Using a Calendar Control

	8.3.2 Radio Button/Check Box/Combo Box Properties
	Radio/Check/Combo Properties: General Tab
	Radio/Check/Combo Properties: Data Tab

	8.4 Submit Button
	8.4.1 Creating a Submit Button
	8.4.2 Submit Button Properties
	Submit Button Properties: General Tab
	Submit Button Properties: Script Tab

	8.5 TextInput
	8.5.1 TextInput Properties
	TextInput Properties: General Tab
	TextInput Properties: Option Tab
	TextInput Properties: Script Tab

	9 Shape Components
	9.1 Creating a Shape
	9.2 Shape Properties
	9.2.1 Shape Component Properties: General Tab
	9.2.2 Shape Component Properties: Shape Tab

	9.3 Anchoring a Line to another Component

	10 Organization Components
	10.1 Container
	10.1.1 Creating a Container
	10.1.2 Container Properties
	Container Properties: General Tab
	Container Properties: Advanced Tab

	10.2 Tabbed Interface
	10.2.1 Creating a Tabbed Interface
	10.2.2 Tabbed Interface Properties

	10.3 Nesting Viewsheets
	10.3.1 Nested Viewsheet Properties

	11 Dynamic Properties
	11.1 Parameterizing a Property using an Input Control
	11.2 Parameterizing a Condition using an Input Control
	11.3 Matching Dynamic Values to Property Values

	Dashboard Scripting
	1 Contents
	2 Introduction to JavaScript Programming
	2.1 Server-Side vs. Client-Side Scripting
	2.2 Object-Oriented Concepts
	2.3 JavaScript Language Basics
	Comments and Names
	Declaration and Assignment
	Object Types and Scopes
	Number Type
	Boolean Type
	String Type
	Date Type
	Arrays
	Conditionals
	For Loop
	While Loop
	Switch Statement
	Functions

	2.4 Useful Text/String Functions
	2.4.1 Changing a String to Upper/Lower Case
	2.4.2 Searching Within a String

	2.5 Useful Date Functions
	2.5.1 Finding Difference Between Dates
	2.5.2 Calculating a Past or Future Date
	2.5.3 Extracting a Date Component
	2.5.4 Formatting a Date

	2.6 Protecting a Viewsheet from Script Errors
	2.7 Debugging a Viewsheet Script

	3 Adding Script to a Viewsheet
	3.1 Script Evaluation Order
	3.2 Accessing Java in Script
	3.3 Adding Property Script (Expressions)
	3.4 Adding Component Script
	3.4.1 Common Component Properties
	Color Property
	Font Property
	Visibility Property
	Alignment Property

	3.5 Adding Viewsheet Script
	3.5.1 onInit Handler
	3.5.2 onLoad Handler

	4 Accessing User Input in Script
	4.1 Walkthrough: Accessing User Selections
	4.2 Walkthrough: Interactive Chart Drilldown

	5 Accessing Component Data
	5.1 Accessing Table Data
	5.2 Accessing Data With Relative References
	5.2.1 Accessing Data in the Current Cell (‘value’)
	5.2.2 Accessing Data in the Same Row (‘field’)
	5.2.3 Accessing Data in Different Row or Column (‘row’/ ‘col’)

	5.3 Accessing Data With Absolute/Mixed References
	5.4 Accessing User-Modified Data in a Table
	5.5 Accessing User-Modified Data from TextInput
	5.6 Accessing the Most Recent User Modification
	5.7 Committing User-Modified Data to Database (Database Write-Back)

	6 Accessing Worksheet Data
	6.1 Referencing Data in the Worksheet Data Block
	6.2 Aggregating Data in the Worksheet Data Block

	7 Changing Images with Script
	8 Running a Query from Script
	Appendix VS: Viewsheet Object Reference
	VS.1 Global Functions and Properties
	VS.1.1 thisViewsheet
	thisViewsheet.scheduleAction(Boolean[,emails])
	thisViewsheet.isActionVisible(name)
	thisViewsheet.setActionVisible(name,Boolean)
	thisViewsheet.updateTime

	VS.1.2 parameter
	parameter._GROUPS_
	parameter._ROLES_
	parameter._USER_
	parameter.__principle__
	parameter.length
	parameter.parameterNames

	VS.1.3 pviewsheet
	VS.1.4 event
	VS.1.5 runQuery
	runQuery(query_name [,parameters])

	VS.2 Common Properties
	alignment
	alpha
	background
	borderColors
	borders
	dataConditions
	enabled
	font
	foreground
	format
	formatSpec
	position
	selectedLabel
	selectedLabels
	selectedObject
	selectedObjects
	size
	title
	visible
	wrapping

	VS.3 Table
	commit(type)
	data
	data.length
	data.size
	getFormRow(row)
	getFormRows([type])
	appendRow(row)
	deleteRow(row)
	insertRow(row)
	setActionVisible(name, Boolean)
	isActionVisible(name)
	setHyperlink(row, col, hyperlink)
	setObject(row,col,value)
	setPresenter(row,col,presenter)
	table
	table.length
	table.size
	tableStyle
	tablelens
	shrink
	value
	field
	col
	row
	cellFormat
	colFormat

	tipView
	flyoverViews(arr)
	flyOnClick

	VS.4 Crosstab Table
	drillEnabled
	fillBlankWithZero
	summarySideBySide

	VS.5 Chart
	drillEnabled
	flyoverViews(arr)
	flyOnClick
	tipView
	setActionVisible(name,Boolean)
	isActionVisible(name)
	toolTip
	data

	VS.6 Selection List and Tree
	drillMember
	dropDown
	setActionVisible(name,Boolean)
	singleSelection
	sortType
	submitOnChange

	VS.7 Selection Container
	adHocEnabled
	showCurrentSelection

	VS.8 Range Slider
	currentVisible
	length
	rangeSize
	maxRangeSize
	max
	min
	logScale
	maxVisible
	minVisible
	rangeType
	tickVisible
	upperInclusive

	VS.9 Calendar
	daySelection
	doubleCalendar
	dropdown
	period
	yearView
	singleSelection

	VS.10 Text
	hyperlink
	shadow
	text
	value

	VS.11 Image
	hyperlink
	image
	maintainAspectRatio
	scale9
	scaleImage
	shadow
	tile

	VS.12 Gauge, Thermometer, Sliding Scale, Cylinder
	hyperlink
	labelVisible
	majorInc
	max
	min
	minorInc
	rangeColors
	rangeGradient
	ranges
	shadow
	value

	VS.13 Slider
	currentVisible
	increment
	labelVisible
	max
	maxVisible
	min
	minVisible
	tickVisible

	VS.14 Spinner
	increment
	max
	min

	VS.15 Check Box, Radio Button, Combo Box
	lables
	rowCount
	values

	VS.16 TextInput
	value

	VS.17 Submit Button
	VS.18 Line
	beginArrowStyle
	endArrowStyle
	lineStyle
	shadow

	VS.19 Rectangle
	lineStyle
	roundCorner
	shadow

	VS.20 Oval
	lineStyle
	shadow

	VS.21 Tabbed Interface
	labels
	selectedIndex
	VS.21.1 Viewsheet
	isActionVisible(name)
	setActionVisible(name,Boolean)

	Administration Reference
	1 Contents
	2 Getting Started with Enterprise Manager
	2.1 Launching Enterprise Manager
	2.2 Navigating the Enterprise Manager
	2.3 Repository Directory
	2.3.1 Specifying the Repository Directory
	2.3.2 Creating a Clean Repository Directory

	2.4 Editing the Servlet and Server URL
	2.5 Setting the Servlet URL Pattern
	2.6 Monitoring Servlet Status
	2.7 Servlet Environment and Prerequisites
	Administering License Keys
	Java
	Browser Requirements

	3 User Interface Introduction
	3.1 Server Tab
	3.1.1 Server Node
	Status
	Cluster
	Scheduler
	Security
	Deployment
	JVM

	3.1.2 Configuration Node
	Server
	Datasource/Lib
	Database
	Mail
	Printer
	Localization
	Performance

	3.1.3 Repository Node
	Data Space
	Archive
	Audit
	Cache
	Disk Quota
	Export Asset
	Import Asset
	Asset Dependency
	Materialized View

	3.1.4 Presentation Node
	General
	Portal
	Report
	Viewsheet
	Dashboard
	PDF
	Ad Hoc

	3.1.5 Log Node
	Log Configuration
	Server
	Scheduler

	3.1.6 Monitoring Node
	Settings
	Reports
	Viewsheets
	Queries
	Cache
	Requests
	Users
	Exceptions
	Summary

	3.2 Report Tab
	Repository
	Prototype
	Trashcan
	User

	3.3 Users Tab
	Users
	Roles

	3.4 Objects Tab
	Data Source
	Global Worksheet
	Library
	Action

	3.5 Schedule Tab
	Scheduled Tasks
	Cycles

	3.6 Data Space Tab
	Folder
	File

	3.7 Audit Tab

	4 Server Environment
	4.1 Viewing Server Status
	4.2 Changing the Server Type
	4.2.1 Servlet with Embedded Report Engine
	4.2.2 RMI Server
	4.2.3 CORBA Server

	4.3 Configuring Server Clustering
	4.3.1 Server Clustering Procedure
	4.3.2 Installing Node 1 for Repository and Admin Servlets
	4.3.3 Installing Additional Nodes for Repository Servlets
	4.3.4 Installing the Load Balancer Proxy
	4.3.5 Defining the Cluster Nodes
	4.3.6 Assigning Machine-Specific Properties
	4.3.7 Using a Clustered Environment
	Load Balancer
	Running the Scheduler on a Cluster Node

	4.4 Specifying Data Source Information
	Connection Pool

	4.5 Configuring Database for Audit/Data Space
	4.6 Configuring Server Email
	Mail Session JNDI URL
	System Admin Email Address
	Emails Subject Format
	Maximum Attachment Size

	4.7 Configuring Server Printing
	4.8 Localization/Internationalization
	4.8.1 Registering Locales
	4.8.2 Localizing the User Portal Interface
	4.8.3 Localizing Reports, Viewsheets, Data Models/Queries
	4.8.4 Defining Custom Number Format Multipliers

	4.9 Tailoring Server Performance
	4.9.1 Performance Options and Safeguards
	4.9.2 Limiting Query Size and Execution Time

	4.10 Configuring Logging
	4.10.1 Basic Log Configuration
	4.10.2 Viewing the Server Log
	4.10.3 Advanced Log Configuration
	4.10.4 Writing Log Messages in Custom Code
	4.10.5 Implementing a Custom Log Handler

	4.11 Configuring User and Developer Help
	4.12 Monitoring Server Activity
	4.12.1 Configuring Monitoring Resolution
	4.12.2 Reports
	4.12.3 Viewsheets
	4.12.4 Queries
	4.12.5 Cache
	4.12.6 Requests
	4.12.7 Users
	4.12.8 Exceptions
	4.12.9 Summary
	4.12.10 Configuring Remote Monitoring
	HTML Adaptor
	HTTP Connector Server
	RMI Connector Server
	SNMP Adaptor Server

	5 Repository
	5.1 Data Space
	5.1.1 Configuring the Data Space
	File System Data Space
	Database Data Space

	5.1.2 Managing Resources in the Data Space
	Managing Folders
	Managing Files

	5.1.3 Backing up the Data Space files

	5.2 Reports, Viewsheets, Worksheets
	5.2.1 The Repository Page
	5.2.2 Configuring Reports
	Report Tab
	Options Tab
	Parameter Tab
	Security Tab

	5.2.3 Configuring Viewsheets
	Viewsheet Tab
	Materialized View Tab
	Security Tab

	5.2.4 Configuring Data Worksheets
	5.2.5 Report Pregeneration
	5.2.6 Prototype Reports
	5.2.7 Creating Folders
	5.2.8 Report Bursting

	5.3 User Reports
	Managing User Reports

	5.4 Archive
	5.4.1 The Archive Page
	5.4.2 Archive Types
	5.4.3 File System Archive
	5.4.4 CVS Archive
	5.4.5 User-Defined Archive
	5.4.6 Archived Reports
	Archiving a Report
	Opening an Archived Report

	5.4.7 Administering Archived Reports
	Removing and Restoring Archived Reports
	Archive Report Options

	5.4.8 Viewsheet Management

	5.5 Audit
	5.5.1 Enabling Auditing
	5.5.2 Viewing Audit Logs

	5.6 Cache
	5.7 Disk Quota
	Setting the Disk Quota

	5.8 Incremental Deployment of Assets
	5.8.1 Exporting Assets
	5.8.2 Importing Assets
	5.8.3 Ant Task for Import/Export of Assets
	Ant Task Parameters
	Remote Import/Export Only
	Local Import/Export Only

	Including and Excluding Assets
	Running the Ant Task

	5.8.4 Auditing Asset Dependencies

	5.9 Materialized Views
	5.9.1 Creating a Materialized View
	5.9.2 Incrementally Updating a Materialized View
	Incrementally Updating a Mergeable Query
	Incrementally Updating a Non-Mergeable Query

	5.9.3 Data Security with Materialized Views
	Implementing Security at the Data Block Level
	Multi-tenant Considerations

	5.9.4 Materialized View Performance Considerations
	5.9.5 Transformations and Faults
	5.9.6 Managing Materialized Views
	5.9.7 Distributing Materialized Views (Data Grid)
	Report Server, Data Server, and Data Node on Same Machine (Default)
	Report and Data Server on Machine 1, Data Nodes on Machines 2-N
	Report Server on Machine 1, Data Server on Machine 2, Data Nodes on Machines 3-N
	Default Materialization in a Clustered Environment
	Distributed Materialization in a Clustered Environment
	Troubleshooting

	6 Security
	6.1 Specifying a Security Provider
	6.1.1 The Security Provider Page
	6.1.2 Configuring the Default Security Provider
	6.1.3 Configuring an LDAP Security Provider
	Defining the LDAP Schema
	Notes on LDAP Security Providers
	Sun ONE (iPlanet) Server
	Active Directory Server
	Generic LDAP Server

	6.1.4 Custom Security Integration
	Composite Security Provider
	Porting Custom Security From v8.0 and Lower

	6.2 Users, Roles, and Groups
	6.2.1 Rules Governing Users and Roles
	6.2.2 Searching the User/Role Tree
	6.2.3 Creating and Editing Roles
	6.2.4 Creating and Editing Groups
	6.2.5 Creating and Editing Users
	6.2.6 Emulating a User Login

	6.3 Setting Permissions
	6.3.1 Repository Permissions
	Setting Permissions for a Report, Dashboard, or Folder
	Notes on Report Permissions

	6.3.2 Component/Object Permissions
	Notes:

	6.3.3 Parent Permissions

	7 Scheduler
	7.1 Configuring the Scheduler
	7.2 Scheduler Properties
	7.2.1 Notes on Scheduler Configuration

	7.3 Scheduler Tasks
	7.3.1 Creating a Scheduler Task
	7.3.2 Scheduler Conditions
	7.3.3 Specifying Multiple Conditions
	7.3.4 Scheduler Actions
	Report Action
	Viewsheet Action
	Burst Action
	User-Defined Action
	Specifying Multiple Actions
	Creation Parameters

	7.3.5 Scheduler Options

	7.4 Monitoring and Managing Scheduler Tasks
	7.5 Scheduler Cycle
	7.6 Viewing the Scheduler Log
	7.7 Programmatic Scheduler Access
	7.8 Automated Alerts

	8 Presentation
	8.1 General Presentation
	8.2 Portal
	8.2.1 Look-and-Feel
	Portal CSS Customization

	8.2.2 Integration
	8.2.3 Welcome Page

	8.3 Report
	8.3.1 Viewer Options
	Parameter Dialog HTML Template
	Parameter Dialog CSS File
	Custom Replet Error Page
	Tool Dialog CSS File

	8.3.2 Report Toolbar Options
	Security-Based Toolbar Buttons

	8.3.3 Custom Icons
	8.3.4 Report Export Menu Options
	8.3.5 Windows and Frames

	8.4 Viewsheet
	8.4.1 Viewsheet Toolbar Options
	8.4.2 Viewsheet Export Menu Options

	8.5 Dashboards
	8.5.1 Enabling Dashboards
	8.5.2 Creating a Dashboard
	8.5.3 Enabling Server-Side Update for a Dashboard
	8.5.4 Editing or Deleting a Dashboard
	8.5.5 Managing Dashboards

	8.6 PDF Generation
	8.6.1 Setting PDF Properties
	8.6.2 TrueType Fonts
	8.6.3 Type 1 Fonts
	8.6.4 CJK Fonts
	Supporting CJK Characters
	Supporting Unlisted CJK Fonts

	8.7 Adding PDF Security
	8.8 Ad Hoc
	8.8.1 Ad Hoc Wizard
	8.8.2 Ad Hoc Settings

	9 Special Deployment Issues
	9.1 Deploying the Application as a WAR File
	Note
	9.1.1 Creating a WAR File Using Enterprise Manager
	Creating the WAR File
	Notes

	Updating the Deployed War File

	9.2 Modifying Data Source Definition During Deployment
	9.2.1 Using the Ant Task to Change Data Source
	9.2.2 Available DSM Tags
	<ds_jdbc>
	<ds_text>
	<ds_corba>
	<ds_ejb>
	<ds_xml>
	<ds_soap>

	Appendix A: Troubleshooting
	None of my settings have taken effect.
	I cannot see my reports after I deploy them.
	I can see my reports in the repository tree but when I try to view them I get a “replet not found” error.
	I deployed a template but I cannot see it.
	I can see the body of my report, but the fields are not populated with data.
	My Charts seem to have jagged edges, especially pie charts.
	The Repository does not bind to the RMIREGISTRY.
	The RMI node will not start.
	The repository does not bind to the name service.
	Is it possible to run a task continuously (i.e. Have a task that executes every few minutes)?
	This software will not run in WebSphere.
	CVS Archive will not work with Sun ONE (iPlanet) application server.

	Appendix B: Configuration Properties
	B.1 Server Engine Properties
	B.2 DHTML Generation Properties
	B.3 Repository Properties
	B.4 Web Properties and Safeguards
	B.5 Security Service Properties
	B.6 Scheduling Service Properties
	B.7 Mailing Service Properties
	B.8 Log Service Properties
	B.9 PDF and Font Properties
	B.10 Image Properties
	B.11 Search Properties
	B.12 Archive Properties
	B.13 Miscellaneous Properties

	Appendix C: Manually Deploying a WAR File
	C.1 Manual Creation of a WAR file
	C.2 WebSphere 5.0 and higher
	C.3 WebLogic 7.0 and higher
	C.4 Tomcat 4.1 and higher

	Appendix D: Exploding Configuration Files
	D.1 Exploding asset.dat into Individual Components
	D.2 Exploding stylereport.srl into Individual Components

	Appendix E: Creating a Custom Map
	E.1 Installing OpenJUMP and the InetSoft Extension
	E.2 Exporting a Shape File as a Style Intelligence Map
	E.3 Adding a Layer to a Custom Map
	E.3.1 Adding a Layer Based on a New Shape File
	E.3.2 Adding a Layer Based on Merged Regions

	E.4 Overlaying a Shape on a Custom Map
	E.5 Editing a Custom Map

	Appendix F: Section 508 Accessibility Compliance

	Integration
	1 Contents
	2 Integrating Style Intelligence into Your Web Application
	2.1 Integrating the Web User Interface
	2.1.1 Embedding the Entire Style Intelligence Portal
	2.1.2 Embedding a Tab of the Style Intelligence Portal
	2.1.3 Embedding a Report or Viewsheet
	2.1.4 Embedding the Visual Composer

	2.2 Configuring Single Sign-On (SSO)
	2.2.1 Form-Based Single Sign-On
	2.2.2 Session-Based Single Sign-On
	Request Filter mapped to the Style Intelligence Proxy Servlet
	Request Filter mapped to the Style Intelligence Report Servlet
	Request Filter Example
	Partial SSO: Logging In the User without a Group or Role Assignment
	Complete SSO - Logging In the User with a Group and Role Assignment

	Deploying the Request Filter

	2.3 Selecting and Configuring a Security Provider
	2.3.1 Security Provider Functions
	Form Based SSO
	Session Based SSO

	2.3.2 Selecting a Security Provider
	Default File-Based Security Provider
	LDAP Security
	Custom DB-based or API-Based Security Provider

	3 Java API Utility Applications
	3.1 Security API: Configuring the File Security Provider
	3.2 Creating a Custom Report List
	3.3 Managing the Data Repository (datasource.xml)
	3.4 Accessing the Servlet Context
	HTTP Request and Response

	3.5 Pooling Database Connections Programmatically
	3.5.1 getConnection()
	3.5.2 releaseConnection()
	3.5.3 Setting the Connection Pool

	3.6 Scheduler API
	3.6.1 User-Defined Conditions
	3.6.2 User-Defined Actions

	3.7 Presenters
	3.8 Exporting Reports Programmatically
	3.8.1 Exporting to PDF Programmatically
	Printing to a PDF File
	Compression Options
	Font Handling in PDF (Base-14 Fonts)
	Embedded Fonts
	PDF Bookmarks and Hyperlinks
	CJK Characters in PDF

	3.8.2 Exporting to Excel Format Programmatically
	ExcelGenerator and ExcelSheetGenerator Classes
	Different Excel Versions

	3.8.3 Exporting to HTML Programmatically
	Image Files
	Exporting an HTML Bundle
	Setting the DHTML Meta-Data Information

	3.8.4 Exporting to RTF Programmatically
	3.8.5 Exporting to Text File (CSV) Programmatically

	3.9 Portal Customization
	3.9.1 Custom Buttons
	Custom Button Example
	Configuring a Custom Button

	3.9.2 Custom Repository Protocol

	4 SOAP Web Services
	4.1 Web Service Deployment
	4.1.1 Apache (Axis2)
	4.1.2 WebLogic
	4.1.3 WebSphere

	4.2 Creating the SoapRepository Client
	4.2.1 Example: Executing a Report
	4.2.2 Example: Emailing a Report
	4.2.3 Example: Archiving a Report
	4.2.4 Example: Scheduling a Server Task

	4.3 Creating a DataService Client

	5 Design for Multi-Tenant Environment
	6 Accessing the User Session with SRPrincipal
	6.1 Accessing the SRPrincipal Object
	6.1.1 Accessing SRPrincipal in Custom JSP/Servlets
	6.1.2 Accessing SRPrincipal via Login Listener
	6.1.3 Accessing SRPrincipal in Script

	6.2 SRPrincipal Properties
	6.2.1 setProperty()
	6.2.2 setParameter()

	6.3 Use Case: Simulating User Sessions

	Appendix A: Changing the Name of the ‘Sree’ Web Application
	Appendix B: Common Portal Frameworks
	B.1 IIS Web Server
	Discrete Web Server and Reporting Server (Recommended Approach)
	IIS Tomcat Redirector

	B.2 SharePoint Portal Framework

	Appendix C: Servlet Repository Parameters
	C.1 Displaying a Viewsheet
	C.2 Passing a Parameter to a Viewsheet
	C.3 Displaying a Report
	C.4 Displaying a Report Chart as an Image
	C.5 Passing a Parameter to a Report
	C.6 Exporting a Report
	C.7 Displaying a Page of a Generated Report
	C.8 Displaying the Repository Tree
	C.9 Displaying the Dashboard Page
	C.10 Displaying the Dashboard Configuration Page
	C.11 Displaying an Ad Hoc Wizard
	C.12 Displaying the Scheduler Task Page
	C.13 Passing Credentials and Locale to Report Server
	C.14 Pinging the Report Server

	Appendix D: Configuring Style Intelligence for JSP Tags
	D.1 Tag Library Import
	D.2 Cache Tag
	D.3 Create Tag
	D.4 Parameter Tag
	D.5 Header Tag
	D.6 Toolbar and Body Tags
	D.7 Button Tag
	D.8 Parameters Containing Unicode Characters

	Appendix E: JSP Tag Library Reference
	E.1 Cache Tag
	E.2 Create Tag
	E.3 Parameter Tag
	E.4 Header Tag
	E.5 Body Tag
	E.6 Toolbar Tag
	E.7 Button Tag

	Common Function Reference
	Appendix JS: General JavaScript Functions
	JS.1 Global Object Functions
	formatDate(date, string)
	formatNumber(number, string, string)
	undefined
	eval(string)
	parseInt(string, radix)
	parseFloat(string)
	parsedate(String, format)
	encodeURI(uri)
	decodeURI(uri)
	registerPackage(string)
	importPackage(package)

	JS.2 String Object Functions
	length
	concat(string2[,string3][,string4][,...])
	substring(indexA, indexB)
	charAt(index)
	charCodeAt(index)
	indexOf(searchValue[, fromIndex])
	lastIndexOf(searchValue[, fromIndex])
	replace(regexp, newStr)
	search(regexp)
	toLowerCase()
	toUpperCase()
	split(separator, limit)
	slice(start, end)

	JS.3 Number Object Functions
	toString([radix])
	toFixed(fractionDigits)
	toexponential(fractionDigits)
	toLocaleString()
	toPrecision(precision)

	JS.4 Date Object Functions
	getMilliseconds()
	toString()
	toDateString()
	toTimeString()
	dateAdd(interval, amount, date)
	dateDiff(interval, date1, date2)
	datePart(interval, date)

	JS.5 Array Object Functions
	concat(array1, array2, …, arrayN)
	slice(begin[, end])
	sort([compareFunction])
	join(separator)
	reverse()

	JS.6 Math Object Functions
	abs(number)
	acos(number)
	asin(number)
	atan(number)
	ceil(number)
	cos(number)
	exp(number)
	floor(number)
	log(number)
	max(x, y)
	min(x, y)
	pow(base, exponent)
	random()
	round(number)
	sin(number)
	sqrt(number)
	tan(number)

	JS.7 CALC Object Functions
	JS.7.1 Date and Time Functions
	CALC.dateValue(date)
	CALC.day(date)
	CALC.days360(start_date, end_date, Method)
	CALC.edate(date, months)
	CALC.eomonth(date, months)
	CALC.hour(timeInstant)
	CALC.minute(timeInstant)
	CALC.month(date)
	CALC.monthname(date)
	CALC.networkdays(date1, date2, [Holiday_array])
	CALC.now()
	CALC.quarter(date)
	CALC.second(date)
	CALC.time(hour, minute, second)
	CALC.timeValue(date)
	CALC.today()
	CALC.weekday(date, [number])
	CALC.weekdayname(date)
	CALC.weeknum(date)
	CALC.workday(date, days, [Holiday_array])
	CALC.year(date)
	CALC.yearfrac(date1, date2, [basis])

	JS.7.2 Financial Functions
	CALC.accrint(issue, interest, settlement, rate, par, freq, [basis])
	CALC.accrintm(issue, maturity, rate, par, [basis])
	CALC.amordegrc(cost, date_purchased, first_period, salvage, period, rate, [basis])
	CALC.amorlinc(cost, date_purchased, first_period, salvage, period, rate, [basis])
	CALC.coupdaybs(settlement, maturity, frequency, [basis])
	CALC.coupdays(settlement, maturity, frequency, [basis])
	CALC.coupdaysnc(settlement, maturity, frequency, [basis])
	CALC.coupncd(settlement, maturity, frequency, [basis])
	CALC.coupnum(settlement, maturity, frequency, [basis])
	CALC.couppcd(settlement, maturity, frequency, [basis])
	CALC.cumipmt(rate, nper, pv, start_period, end_period, type)
	CALC.cumprinc(rate, nper, pv, start_period, end_period, type)
	CALC.db(cost, salvage, life, period, [month])
	CALC.ddb(cost, salvage, life, period, [factor])
	CALC.disc(settlement, maturity, pr, redemption, [basis])
	CALC.duration(settlement, maturity, coupon, yld, frequency, [basis])
	CALC.effect(nominal_rate, npery)
	CALC.fv(rate, nper, pmt, [pv], [type])
	CALC.fvschedule(principal, schedule)
	CALC.intrate(settlement, maturity, investment, redemption, [basis])
	CALC.ipmt(rate, per, nper, pv, fv, type)
	CALC.ispmt(rate, per, nper, pv)
	CALC.mduration(settlement, maturity, coupon, yld, frequency, [basis])
	CALC.mirr(values, finance_rate, reinvest_rate)
	CALC.nominal(effect_rate, npery)
	CALC.nper(rate, pmt, pv, fv, type)
	CALC.npv(rate, [value1, value2, [....]])
	CALC.pmt(rate, nper, pv, fv, type)
	CALC.ppmt(rate, per, nper, pv, fv, type)
	CALC.price(settlement, maturity, rate, yld, redemption, frequency, [basis])
	CALC.pricedisc(settlement, maturity, discount, redemption, [basis])
	CALC.pricemat(settlement, maturity, issue, rate, yld, [basis])
	CALC.pv(rate, nper, pmt, fv, type)
	CALC.received(settlement, maturity, investment, discount, [basis])
	CALC.sln(cost, salvage, life)
	CALC.syd(cost, salvage, life, per)
	CALC.tbilleq(settlement, maturity, discount)
	CALC.tbillprice(settlement, maturity, discount)
	CALC.tbillyield(settlement, maturity, pr)
	CALC.vdb(cost, salvage, life, start_period, end_period, factor, no_switch)
	CALC.xnpv(rate, values, dates)
	CALC.yielddisc(settlement, maturity, pr, redemption, [basis])
	CALC.yieldmat(settlement, maturity, issue, rate, pr, [basis])

	JS.7.3 Logical Functions
	CALC.and(boolean1, boolean2, …)
	CALC.iif(logical_test, value_if_true, value_if_false)
	CALC.not(boolean)
	CALC.or(boolean1, boolean2,)

	JS.7.4 Math Functions
	CALC.abs(number)
	CALC.Acos(number)
	CALC.AcosH(number)
	CALC.Asin(number)
	CALC.Asinh(number)
	CALC.atan(number)
	CALC.atan2(numberX, numberY)
	CALC.atanh(number)
	CALC.ceiling(number, significance)
	CALC.combin(totalnumber, groupnumber)
	CALC.cos(number)
	CALC.cosh(number)
	CALC.degrees(number)
	CALC.even(number)
	CALC.exp(number)
	CALC.fact(number)
	CALC.factdouble(number)
	CALC.floor(number, SIgnificance)
	CALC.gcd(Array)
	CALC.integer(number)
	CALC.lcm(array)
	CALC.ln(number)
	CALC.log(number, base)
	CALC.log10(number)
	CALC.mdeterm(array)
	CALC.minverse(array)
	CALC.mmult(array1, array2)
	CALC.mod(number, divisor)
	CALC.mround(number, multiple)
	CALC.multinomial(array)
	CALC.odd(number)
	CALC.pi()
	CALC.power(number, power)
	CALC.product(array)
	CALC.quotient(numerator, denominator)
	CALC.radians(angle)
	CALC.roman(number)
	CALC.round(number, num_digits)
	CALC.rounddown(number, num_digits)
	CALC.roundup(number, num_digits)
	CALC.seriessum(x, n, m, coefficients)
	CALC.sin(angle)
	CALC.sinH(number)
	CALC.sqrt(number)
	CALC.sqrtpi(number)
	CALC.subtotal(functionnumber, array)
	CALC.sum(Array)
	CALC.sumif(Array1, ConditionString, array2)
	CALC.sumproduct(2DArray)
	CALC.sumsq(Array)
	CALC.sumx2my2(array1, array2)
	CALC.sumx2py2(array1, array2)
	CALC.sumxmy2(array1, array2)
	CALC.tan(angle)
	CALC.tanh(number)
	CALC.trunc(number, num_digits)

	JS.7.5 Statistical Functions
	CALC.avedev(array)
	CALC.average(array)
	CALC.averagea(array)
	CALC.binomdist(number_s, trials, probability_s, cumulative)
	CALC.correl(array1, array2)
	CALC.count(array)
	CALC.counta(array)
	CALC.countblank(array)
	CALC.countDistinct(array)
	CALC.countn(array)
	CALC.countif(array, criteria)
	CALC.covar(array1, array2)
	CALC.devsq(array)
	CALC.expondist(x, lambda, cumulative)
	CALC.fisher(x)
	CALC.fisherinv(x)
	CALC.forecast(x, known_y_values, known_x_values)
	CALC.frequency(data_array, bins_array)
	CALC.geomean(array)
	CALC.harmean(array)
	CALC.hypgeomdist(sample_s, number_sample, population_s, number_population)
	CALC.intercept(arrayY, arrayX)
	CALC.kurt(array)
	CALC.large(array, k)
	CALC.max(array)
	CALC.maxa(array)
	CALC.median(array)
	CALC.min(array)
	CALC.mina(array)
	CALC.mode(array)
	CALC.negbinomdist(number_f, number_s, probability_s)
	CALC.pearson(array1, array2)
	CALC.percentile(array, k)
	CALC.percentrank(array, x, significance)
	CALC.permut(number, number_chosen)
	CALC.poisson(x, mean, cumulative)
	CALC.prob(arrayx, arrayprob, lower_limit, upper_limit)
	CALC.quartile(array, quart)
	CALC.rank(number, array, order)
	CALC.rsq(known_y_values, known_x_values)
	CALC.skew(array)
	CALC.slope(arrayy, arrayx)
	CALC.small(array, k)
	CALC.standardize(x, mean, standard_dev)
	CALC.stdev(array)
	CALC.stdeva(array)
	CALC.stdevp(array)
	CALC.stdevpa(array)
	CALC.steyx(arrayy, arrayx)
	CALC.trimmean(array, percent)
	CALC.varN(array)
	CALC.vara(array)
	CALC.varp(array)

	JS.7.6 Text Functions
	CALC.character(number)
	CALC.code(string)
	CALC.concatenate(array)
	CALC.dollar(number, decimals)
	CALC.exact(string1, string2)
	CALC.find(string1, String2, search_index)
	CALC.fixed(number, decimals, no_commas)
	CALC.left(string, num_chars)
	CALC.len(string)
	CALC.lower(string)
	CALC.mid(String, start_num, num_chars)
	CALC.proper(String)
	CALC.replace(old_string, start_num, num_chars, new_string)
	CALC.rept(text, number_times)
	CALC.right(string, num_chars)
	CALC.search(find_string, within_string, start_num)
	CALC.substitute(text, old_text, new_text, instance_num)
	CALC.t(value)
	CALC.text(value, format_text)
	CALC.trim(string)
	CALC.upper(string)
	CALC.value(string)

	JS.8 Regular Expression Object Functions
	compile(pattern[, flags])
	exec(str)
	test(str)

	JS.9 Java Objects (LiveConnect)
	JS.10 JavaScript Statements
	JS.10.1 Variable Definition
	JS.10.2 Function Definition
	JS.10.3 The ‘if’ Statement
	JS.10.4 The ‘try-catch’ Statement
	JS.10.5 Iteration Statements
	JS.10.6 The ‘switch’ Statement
	JS.10.7 The ‘with’ Statement

	JS.11 JavaScript Name/Value Pairs
	JS.12 JavaScript Operators
	JS.12.1 Assignment Operators
	JS.12.2 Comparison Operators

	JS.13 StyleConstant Object
	Alignments
	Chart Styles
	Line Styles
	Painter Layout
	Point Shapes
	Table Layout
	TextBox Shapes
	Wrapping Style

	Appendix CT: Chart Script Tutorial
	CT.1 Modifying Chart Properties
	CT.1.1 Modifying the Chart Style
	CT.1.2 Modifying Axis Title Text
	CT.1.3 Modifying Axis Properties

	CT.2 Modifying a Chart Data Binding
	CT.3 Modifying a Chart Element using API Functions
	CT.4 Creating a Chart Using API Functions
	CT.5 Binding Data to a Chart in Script
	CT.5.1 Bind Chart Using Chart Editor (Report/Viewsheet)
	CT.5.2 Bind Chart to Query or Worksheet (Report/ Viewsheet)
	CT.5.3 Bind Chart to Query or Worksheet (Report Only)
	CT.5.4 Bind Chart to Data Block (Viewsheet Only)
	CT.5.5 Bind Chart to JavaScript Array (Report/Viewsheet)

	CT.6 Accessing Chart Data in Script
	CT.7 Changing Chart Scaling
	CT.7.1 Changing Scaling for Chart Axes
	CT.7.2 Changing Scaling for a VisualFrame

	CT.8 Changing the Appearance of Chart Elements
	CT.9 Changing Axis Properties
	CT.10 Changing Legend Properties
	CT.11 Changing Chart Labels
	Viewsheet
	Report
	Viewsheet and Report

	CT.12 Changing the Chart Coordinates
	CT.12.1 Rectangular Coordinates
	Assigning Rectangular Coordinates Automatically
	Assigning Rectangular Coordinates Explicitly

	CT.12.2 Polar Coordinates
	Converting Rectangular to Polar Coordinates
	Tailoring a Coordinate Mapping
	Example: Pie Chart

	CT.12.3 Parallel Coordinates
	CT.12.4 Facet Coordinates
	CT.12.5 Setting a Coordinate Background

	CT.13 Representing Data with Shape, Color, Size
	CT.14 Representing Multiple Measures
	CT.15 Adding Decorative Elements

	Appendix CR: Chart Script Reference
	CR.1 Chart Object
	CR.1.1 General Properties
	query
	graph
	setHyperlink(col, hyperlink)

	CR.1.2 General Axis Properties
	axis.labelVisible
	axis.lineVisible
	axis.ticksVisible
	axis.lineColor
	axis.labelColor
	axis.font
	axis.rotation
	axis.format

	CR.1.3 Measure Axis Properties
	axis.maximum
	axis.minimum
	axis.increment
	axis.minorIncrement
	axis.logarithmic
	axis.reversed
	axis.sharedRange
	xaxis
	yaxis
	y2axis

	CR.1.4 Title Properties
	xTitle.text
	yTitle.text
	xTitle.font
	yTitle.font
	xTitle.rotation
	yTitle.rotation
	xTitle.color
	yTitle.color
	xTitle.visible
	yTitle.visible
	x2Title.text
	y2Title.text
	x2Title.font
	y2Title.font
	x2Title.rotation
	y2Title.rotation
	x2Title.color
	y2Title.color
	x2Title.visible
	y2Title.visible

	CR.1.5 Plot Properties
	fillTimeGap
	fillZero
	singleStyle
	mapType
	separatedStyle
	valueFont
	valueFormat
	valueRotation
	valueColor
	valueFormats
	valueVisible
	addConfidenceIntervalTarget(measure, colors, values, options)
	addPercentageTarget(measure, colors, values, options)
	addPercentileTarget(measure, colors, values, options)
	addQuantileTarget(measure, colors, values, options)
	addStandardDeviationTarget(measure, colors, values, options)
	addTargetBand(measure, colors, values, options)
	addTargetLine(measure, colors, values, options)
	applyEffect
	plotAlpha
	pieExploded
	xGridColor
	yGridColor
	xGridStyle
	yGridStyle
	xBandColor
	yBandColor
	xBandSize
	yBandSize
	quadrantColor
	quadrantStyle
	diagonalColor
	diagonalStyle
	legendPosition
	legendBorder
	legendBorderColor
	legendTitleFont
	legendTitleColor
	colorLegend.font
	shapeLegend.font
	sizeLegend.font
	colorLegend.color
	shapeLegend.color
	sizeLegend.color
	colorLegend.title
	shapeLegend.title
	sizeLegend.title
	colorLegend.format
	shapeLegend.format
	sizeLegend.format
	colorField
	shapeField
	sizeField
	textField
	geoFields
	xFields
	yFields
	setLabelAliasOfColorLegend(value, alias)
	setLabelAliasOfShapeLegend(value, alias)
	setLabelAliasOfSizeLegend(value, alias)

	CR.1.6 The Chart bindingInfo Property
	bindingInfo.xFields
	bindingInfo.yFields
	bindingInfo.breakdownFields
	bindingInfo.geoFields
	bindingInfo.setMapLayer(col,layer)
	bindingInfo.getMapLayer(col)
	bindingInfo.getGroupOrder(col,binding)
	bindingInfo.setGroupOrder(col,grouping)
	bindingInfo.isTimeSeries(col)
	bindingInfo.setTimeSeries(col,boolean)
	bindingInfo.getColumnOrder(col)
	bindingInfo.setColumnOrder(col,order)
	bindingInfo.getTopN(col)
	bindingInfo.setTopN(col,N)
	bindingInfo.isTopNReverse(col)
	bindingInfo.setTopNReverse(col,boolean)
	bindingInfo.getTopNSummaryCol(col)
	bindingInfo.setTopNSummaryCol(col,agg)
	bindingInfo.getFormula(col,binding)
	bindingInfo.setFormula(col, formula, binding)
	bindingInfo.getPercentageType(col,binding)
	bindingInfo.setPercentageType(col,type)
	bindingInfo.getSecondaryField(col, binding)
	bindingInfo.setSecondaryField(col1, col2, binding)
	bindingInfo.getColorField()
	bindingInfo.setColorField(col, type)
	bindingInfo.getShapeField()
	bindingInfo.setShapeField(col, type)
	bindingInfo.getSizeField()
	bindingInfo.setSizeField(col, type)
	bindingInfo.getTextField()
	bindingInfo.setTextField(col, type)
	bindingInfo.setCandleBindingField(arr)
	bindingInfo.getCandleBindingField(measure)
	bindingInfo.setStockBindingField(arr)
	bindingInfo.getStockBindingField(measure)
	bindingInfo.colorFrame
	bindingInfo.shapeFrame
	bindingInfo.sizeFrame
	bindingInfo.textureFrame
	bindingInfo.lineFrame
	bindingInfo.colors
	bindingInfo.shapes
	bindingInfo.size
	bindingInfo.textures
	bindingInfo.lines
	bindingInfo.addMapping(col, value, geocode)
	bindingInfo.getMappings(col)
	bindingInfo.removeMapping(col,value)

	CR.2 Object Hierarchy
	CR.3 Getting and Setting Chart Properties
	CR.4 General Chart Properties
	CR.4.1 Data
	CR.4.2 Table
	CR.4.3 DataSet
	DataSet.getData(column,row)
	DataSet.getRowCount()
	DataSet.getColCount()
	DataSet.setOrder(dim,arr)

	CR.4.4 EGraph
	EGraph.addElement(elem)
	EGraph.addForm(form)
	EGraph.getCoordinate()
	EGraph.getElement(index)
	EGraph.getElementCount()
	EGraph.getForm(index)
	EGraph.getFormCount()
	EGraph.getScale(field)
	EGraph.setLegendLayout(value)
	EGraph.setCoordinate(coord)
	EGraph.setScale(field, scale)
	EGraph.setXTitleSpec(spec)
	EGraph.setX2TitleSpec(spec)
	EGraph.setYTitleSpec(spec)
	EGraph.setY2TitleSpec(spec)

	CR.4.5 LegendSpec
	LegendSpec.setBackground(value)
	LegendSpec.setBorder(value)
	LegendSpec.setBorderColor(value)
	LegendSpec.setPartial(boolean)
	LegendSpec.setPosition(value)
	LegendSpec.setPreferredSize(value)
	LegendSpec.setTextFrame(frame)
	LegendSpec.setTextSpec(spec)
	LegendSpec.setTitle(value)
	LegendSpec.setTitleTextSpec(spec)
	LegendSpec.setTitleVisible(boolean)
	LegendSpec.setVisible(boolean)

	CR.4.6 TitleSpec
	TitleSpec.setLabel(value)
	TitleSpec.setTextSpec(spec)

	CR.4.7 TextSpec
	TextSpec.setBackground(value)
	TextSpec.setColor(value)
	TextSpec.setFont(value)
	TextSpec.setFormat(format)
	TextSpec.setRotation(value)

	CR.4.8 AxisSpec
	AxisSpec.setAbbreviate(boolean)
	AxisSpec.setAllTicks(boolean)
	AxisSpec.setAxisStyle(value)
	AxisSpec.setGridAsShape(boolean)
	AxisSpec.setGridColor(value)
	AxisSpec.setGridOnTop(boolean)
	AxisSpec.setGridStyle(value)
	AxisSpec.setInPlot(boolean)
	AxisSpec.setLabelVisible(boolean)
	AxisSpec.setLineColor(value)
	AxisSpec.setLineVisible(boolean)
	AxisSpec.setTextFrame(frame)
	AxisSpec.setTextSpec(spec)
	AxisSpec.setTickVisible(boolean)

	CR.4.9 PlotSpec
	PlotSpec.setAlpha(value)
	PlotSpec.setBackground(value)
	PlotSpec.setBackgroundImage(value)
	PlotSpec.setLockAspect(boolean)
	PlotSpec.setXMax(value)
	PlotSpec.setXMin(value)
	PlotSpec.setYMax(value)
	PlotSpec.setYMin(value)

	CR.5 Chart Elements
	CR.5.1 GraphElement
	GraphElement.addDim(field)
	GraphElement.addVar(field)
	GraphElement.setCollisionModifier(value)
	GraphElement.setColorFrame(frame)
	GraphElement.setInPlot(boolean)
	GraphElement.setLabelPlacement(value)
	GraphElement.setLineFrame(frame)
	GraphElement.setHint(type,value)
	GraphElement.setShapeFrame(frame)
	GraphElement.setSizeFrame(frame)
	GraphElement.setTextFrame(frame)
	GraphElement.setTextSpec(spec)
	GraphElement.setTextureFrame(frame)

	CR.5.2 IntervalElement
	IntervalElement.addInterval(lower,upper)
	IntervalElement.setStackGroup(boolean)
	IntervalElement.setStackNegative(boolean)

	CR.5.3 LineElement
	LineElement.setClosed(boolean)
	LineElement.setEndArrow(boolean)
	LineElement.setStackGroup(boolean)
	LineElement.setStackNegative(boolean)
	LineElement.setStartArrow(boolean)

	CR.5.4 SchemaElement
	SchemaElement.setPainter(painter)
	SchemaElement.addSchema(col)

	CR.5.5 PointElement
	CR.5.6 AreaElement

	CR.6 Chart Coordinates & Scaling
	CR.6.1 Coordinate
	Coordinate.reflect(vert)
	Coordinate.rotate(value)
	Coordinate.setExtent(minX, minY, maxX, maxY)
	\Coordinate.transpose()

	CR.6.2 PolarCoord
	PolarCoord.setType(value)
	PolarCoord.setCoordinate(coord)

	CR.6.3 RectCoord
	RectCoord.setXScale(scale)
	RectCoord.setYScale(scale)
	RectCoord.setYScale2(scale)

	CR.6.4 Rect25Coord
	CR.6.5 ParallelCoord
	ParallelCoord.setScales(scales)

	CR.6.6 TriCoord
	TriCoord.setScale(scale)

	CR.6.7 FacetCoord
	FacetCoord.setInnerCoordinates(coord)
	FacetCoord.setOuterCoordinate(coord)
	FacetCoord.setVertical(boolean)

	CR.6.8 Scale
	Scale.init(dataset)
	Scale.setAxisSpec(spec)
	Scale.setDataFields(arr)
	Scale.setFields(field)
	Scale.setScaleOption(value)
	Scale.setSharedRange(boolean)

	CR.6.9 LinearScale
	LinearScale.setIncrement(value)
	LinearScale.setMax(value)
	LinearScale.setMin(value)
	LinearScale.setMinorIncrement(value)
	LinearScale.setReversed(boolean)
	LinearScale.setScaleRange(range)

	CR.6.10 LogScale
	LogScale.setBase(value)

	CR.6.11 PowerScale
	PowerScale.setExponent(value)

	CR.6.12 TimeScale
	TimeScale.setIncrement(value)
	TimeScale.setMax(value)
	TimeScale.setMin(value)
	TimeScale.setType(type)

	CR.6.13 CategoricalScale
	CategoricalScale.setFill(Boolean)
	CategoricalScale.setValues(value)

	CR.6.14 ScaleRange
	ScaleRange.setAbsoluteValue(boolean)

	CR.6.15 StackRange
	StackRange.setGroupField(value)
	StackRange.setStackNegative(boolean)

	CR.6.16 LinearRange

	CR.7 Chart Aesthetics
	CR.7.1 VisualFrame
	VisualFrame.setField(field)
	VisualFrame.setLegendSpec(spec)
	VisualFrame.setScale(scale)
	VisualFrame.setScaleOption(value)

	CR.7.2 ColorFrame
	CR.7.3 BrightnessColorFrame
	BrightnessColorFrame.setColor(value)

	CR.7.4 SaturationColorFrame
	SaturationColorFrame.setColor(value)

	CR.7.5 BipolarColorFrame
	CR.7.6 StaticColorFrame
	StaticColorFrame.setColor(value)
	StaticColorFrame.setNegativeColor(value)

	CR.7.7 CircularColorFrame
	CR.7.8 GradientColorFrame
	GradientColorFrame.setFromColor(value)
	GradientColorFrame.setToColor(value)

	CR.7.9 HeatColorFrame
	CR.7.10 RainbowColorFrame
	CR.7.11 RGBCubeColorFrame
	CR.7.12 CategoricalColorFrame
	CategoricalColorFrame.getColor(val)
	CategoricalColorFrame.init(val[,color])
	CategoricalColorFrame.setColor(val,color)

	CR.7.13 SizeFrame
	SizeFrame.setLargest(value)
	SizeFrame.setMax(value)
	SizeFrame.setSmallest(value)

	CR.7.14 StaticSizeFrame
	StaticSizeFrame.setSize(value)

	CR.7.15 LinearSizeFrame
	CR.7.16 CategoricalSizeFrame
	CategoricalSizeFrame.setSize(val,size)

	CR.7.17 TextureFrame
	CR.7.18 StaticTextureFrame
	StaticTextureFrame.setTexture(value)

	CR.7.19 LeftTiltTextureFrame
	CR.7.20 OrientationTextureFrame
	CR.7.21 RightTiltTextureFrame
	CR.7.22 GridTextureFrame
	CR.7.23 CategoricalTextureFrame
	CategoricalTextureFrame.setTexture(val,texture)

	CR.7.24 ShapeFrame
	CR.7.25 OvalShapeFrame
	OvalShapeFrame.setFill(value)

	CR.7.26 FillShapeFrame
	CR.7.27 OrientationShapeFrame
	CR.7.28 PolygonShapeFrame
	PolygonShapeFrame.setFill(boolean)

	CR.7.29 TriangleShapeFrame
	TriangleShapeFrame.setFill(boolean)

	CR.7.30 CategoricalShapeFrame
	CategoricalShapeFrame.setShape(val,shape)

	CR.7.31 StaticShapeFrame
	StaticShapeFrame.setShape(shape)

	CR.7.32 MultiShapeFrame
	MultiShapeFrame.setFields(arr)
	MultiShapeFrame.setScales(arr)

	CR.7.33 VineShapeFrame
	VineShapeFrame.setEndAngle(value)
	VineShapeFrame.setStartAngle(value)

	CR.7.34 ThermoShapeFrame
	CR.7.35 StarShapeFrame
	CR.7.36 SunShapeFrame
	CR.7.37 BarShapeFrame
	CR.7.38 PieShapeFrame
	CR.7.39 ProfileShapeFrame
	CR.7.40 TextFrame
	TextFrame.setText(value,text)

	CR.7.41 DefaultTextFrame
	CR.7.42 LineFrame
	CR.7.43 StaticLineFrame
	StaticLineFrame.setLine(value)

	CR.7.44 LinearLineFrame
	CR.7.45 CategoricalLineFrame
	CategoricalLineFrame.setLine(val,line)

	CR.8 Chart Annotation and Decoration
	CR.8.1 GraphForm
	GraphForm.setColor(value)
	GraphForm.setFill(boolean)
	GraphForm.setInPlot(boolean)
	GraphForm.setLine(value)
	GraphForm.setMeasure(col)
	GraphForm.setXOffset(value)
	GraphForm.setYOffset(value)
	GraphForm.setZIndex(value)

	CR.8.2 LineForm
	LineForm.setEndArrow(boolean)
	LineForm.addPoint(value)
	LineForm.setStartArrow(boolean)
	LineForm.addTuple(value)
	LineForm.addValues(value)

	CR.8.3 RectForm
	RectForm.setBottomRightPoint(value)
	RectForm.setBottomRightTuple(value)
	RectForm.setBottomRightValues(value)
	RectForm.setTopLeftPoint(value)
	RectForm.setTopLeftTuple(value)
	RectForm.setTopLeftValues(value)

	CR.8.4 LabelForm
	LabelForm.setAlignmentX(value)
	LabelForm.setAlignmentY(value)
	LabelForm.setCollisionModifier(value)
	LabelForm.setInsets(value)
	LabelForm.setLabel(value)
	LabelForm.setPoint(value)
	LabelForm.setTextSpec(spec)
	LabelForm.setTuple(value)
	LabelForm.setValues(value)

	CR.8.5 TagForm
	CR.8.6 ShapeForm
	ShapeForm.setAlignmentX(value)
	ShapeForm.setAlignmentY(value)
	ShapeForm.setPoint(value)
	ShapeForm.setRotation(value)
	ShapeForm.setShape(shape)
	ShapeForm.setSize(value)
	ShapeForm.setTuple(value)
	ShapeForm.setValues(value)

	CR.9 Utility Objects
	CR.9.1 GTexture
	CR.9.2 GLine
	CR.9.3 GShape
	CR.9.4 GShape.ImageShape
	GShape.ImageShape.image
	GShape.ImageShape.tile

	CR.9.5 SVGShape

	CR.10 Z-Index Defaults
	CR.11 Chart Constants
	Chart Styles
	Line Styles
	Summarization Formulas
	Legend Positions

	CR.12 Miscellaneous Chart Functions
	createBulletGraph(measure, ranges, target, color, xdims, ydims, opts)

	End of Document

