1. Effct of this experiment

You will realize
2. Preparation

Planetary mass
-

Universal G force
Unversal G force

Planetary revolution radius

Change the actual value to a value suitable for the experiment

	mass $\left(\times 10^{21} \mathrm{~kg}\right)$	Revolition radius $\left(\times 10^{4} \mathrm{~km}\right)$	Universal gravitation (N)
Mercury	330.2	5790	$9.85 \times 10^{7} \mathrm{GM}$
Venus	4868.5	10800	$4.17 \times 10^{8} \mathrm{GM}$
PlanetX	2986.8	12880	$1.80 \times 10^{8} \mathrm{GM}$
Earth	5973.6	14960	$2.67 \times 10^{8} \mathrm{GM}$
Mars	641.85	22790	$1.24 \times 10^{7} \mathrm{GM}$

	mass (g)	Revolition radius (m)	Universal gravitation (gw)
Mercury	5.53	0.174	99.1
Venus	81.5	0.325	422
PlanetX	50	0.388	182
Earth	100	0.45	270
Mars	10.7	0.685	12.5

G;Gravitational constant M;mass of the sun
3. Experimental method

Fig. 1 Experiment
4. Planet type

1. Have a glass tube
2. Do not touch threads or weights
3. Spin above the head
4. Spin fast enough so that the black mark stabilizes at the top of the glass tube
5. Measure the time of 10 revolutions

Black mark

It comes out when you turn it quickly It sinks when turned slowly

Mercury

Venus
5. Processing

6. Hope

I hope you will get the results shown in the figure.
Enjoy the experiment.

PlanetX

Earth

Mars

1. Work out the average of the period data (T) for each planet
2. Record the period data(T) in Excel
3. Make a scatter plot of the relationship between the T^{2} and the r^{3} (cube of the radius) of revolution.
