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Lesson 1:
A Bag of Trigs

OBJECTIVE
Students will apply both right triangle and non-right tri-
angle trigonometry within the context of aviation.  

NATIONAL STANDARDS
Mathematics
Number and Operations

• compute fluently and make reasonable estimates 
Algebra

• represent and analyze mathematical situations
and structures using algebraic symbols

• use mathematical models to represent and un-
derstand quantitative relationships

• analyze change in various contexts
Geometry

• specify locations and describe spatial relation-
ships using coordinate geometry and other repre-
sentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and apply mathematics in contexts

outside of mathematics
Representation

• select, apply, and translate among mathemati-
cal representations to solve problems

• use representations to model and interpret
physical, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Change, constancy, and measurement
Physical science

• Motions and forces
Science and technology

• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Historical perspectives

Technology
Standard 17 - Students will develop an understand-

ing of and be able to select and use information and
communication technologies.

MATERIALS
• Handout of FAA Airport Diagram—one per student

group.  Download diagrams from the National 
Aeronautical Charting Office - http://www.faa.gov/
airports/runway-safety/diagrams or use one from
a set of “approach plates”.  (Approach Plates is a
common term used to describe the printed proce-
dures or charts, more formally Instrument Approach
Procedures, that pilots use to fly approaches during
Instrument Flight Rules (IFR) operations.) See the ex-
ample in Appendix II

• Chalk, masking tape, or other suitable method of re-
producing an airport diagram

• Die-cast airplane models (hopefully) scaled to the air-
port diagram

• Meter sticks—at least two
• A copy (or actual) of your area’s aviation sectional

chart.  Consider also downloading the pdf of the chart
to project during whole-class discussions

• Twine (or other non-stretchy string)
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BACKGROUND INFORMATION
Applications of trigonometry abound in aviation.

Two examples of computations involving trignonometry
and aviation are the crosswind component at an air-
port given runway heading and wind information, and
the heading and estimated time enroute (ETE) for a
basic flight plan. The former employs right-triangle
trigonometry while the latter
usually involves non-right
triangles.

Computing a crosswind
component before takeoff
or landing helps prepare
the pilot for the action, sug-
gests how much “correc-
tion” might be needed, and
helps determine whether
the action should even be
attempted.  Specific tech-
niques must be used for crosswind takeoffs and land-
ings, which have a practical maximum given aircraft
design and pilot skill.  Consider teaching students a
“rule of thumb” that adequately estimates the cross-
wind calculation after demonstrating the trigonometry
upon which they are derived–which immediately fol-
lows.

One must first know the orientation of a runway.
For example, if Mr. Smith stood on the end of a runway
as it stretched ahead and the heading on his compass
read 160°, then it would be called “Runway 16.”  Note
the trailing zero is dropped from the compass heading.
The opposite direction runway (standing from the op-
posite end) would be “Runway 34” because 340° is an
“about face” (a rotation of 180°).  Note that this can be
confusing when an airport has reversed digits for the
opposing runways (Rwy 13 and Rwy 31).  Runway
heading is magnetic (rather than “true”) because the
primary navigation instrument in airplanes is a mag-
netic compass.  

When wind direction is spoken, such as from sur-
face observations broadcast over aviation band radios,
it is given as a magnetic direction “from” its source.
Imagine holding a compass and facing directly into the
wind–the compass reads the wind direction.  Note that
the wind is actually traveling in the
opposite direction, as with a 220°
wind comes from the Southwest it is
actually traveling in the Northeast di-
rection.  Reporting wind this way sim-
plifies calculations.

Use the facts above: Runway 16
and Winds 220° at 15 knots.  Sub-
tract the runway heading from the
wind direction.  Then, take the sine of

the resulting angle (60°) and multiply it by 15 to get the
crosswind component.  15•sin(60°) ≈ 13.  The following
diagram shows why the angles were subtracted and
why sine is used.  Note that the cosine results in the
“headwind component” of the wind, which could ne-
cessitate a change in the airspeed of an airplane on
approach.

Student pilots should memorize three sine ratios
(sines of 30°, 45°, and 60° which are 0.5,  0.7, and 0.9
respectively).  The cosines, of course, have the same
ratios, only reversed in order because they are from
the complementary angle of the triangle.  It makes lit-
tle sense to fumble for a calculator during critical
phases of flight when a mentally computed estimate is
just as good.  All wind angles will be close enough to
30°, 45°, or 60° suggesting one uses the actual wind
speed for wind directions of 60° or more.  Note that
wind gusts are not addressed in the classroom appli-
cation.

Knowing where to aim the aircraft (heading), its
speed over the ground (groundspeed), and the amount
of time a flight should take (estimated time enroute) are
the primary components of flight planning.  The
process is very simple when there is no wind: heading
and distance are read directly from the aviation chart,
groundspeed = airspeed, and ETE = (distance) ÷ (air-
speed).  This, of course, is rare because the atmos-
phere is constantly in motion.
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To compute airspeed, use actual forecast winds aloft
(see ADDS link at the end of this lesson), convert the
direction into magnetic (wind directions are true when
in textual form), and complete a triangle diagram.  As-
sume the course (magnetic heading between depar-
ture and destination airports) is 72° magnetic and at a
distance of 86 NM (nautical miles).  The winds at 3000’,
6000’, and 9000’ respectively read “9900 1906+16
1914+10” and are translated to “calm, from 190° at 6
KTS, and from 190° at 14 KTS.”  The +16 and +10 are
the forecast temperatures (in Celsius).  The magnetic
variation is about 18° East, so the wind direction to use
in the calculation is 190° – 18° = 172°.    At this point,
students make a scale drawing on graph paper (North
up) so they can “get the feel” of the relative distances
and angles.  When the drawings are reasonably well
understood, transition to sketches like the following:

The course line extends past where the wind vec-
tor intersects so one can visualize this external angle.
The angle from the course to the wind origin is 100° in
this example, making its supplement 80°.  Here’s what
is known so far: one angle of the triangle measures 80°
and the side opposite it will be the airspeed of the air-
craft (use 102 KTS).  Solve for the “correction angle”
and know the opposite side has length 14 KTS (the
wind speed).  Solve using the Law Of Sines as follows:

which equals a correction angle of
approximately 7.8°, rounded up to 8°.  This makes the
heading 72 + 8 = 80°– aim the aircraft at this heading
and the aircraft should fly along the course line.  Solve

for the groundspeed by computing the “length” of the
side of the triangle along the course (note: all these
computations involve speeds).  The unknown angle of
the triangle is 180 – (8 + 80) = 92° so one can use the
Law Of Sines again, as follows:

although the Law Of Cosines would also work. 
Although the answer is approximately 103.5, round this
down to 103 KTS because it’s better to underestimate
speed, and travel slightly slower, to make sure 
the plane has enough fuel!  The ETE would be

0.835 hours, which is reported as 50 minutes.
Allow students to obtain practice with this by  tak-

ing “fantasy trips” to various airports.  Check answers
with the Low Approach online calculator (Heading,
Groundspeed, and Wind Correction Angle section). 

PROCEDURE
Headwind and Crosswind
1. Create a model of your

local airport that is a rea-
sonably large scale and
oriented the same as the
airport.  Reproduce the
FAA airport diagram for
students to replicate
using chalk or using

masking tape on the floor of the classroom.  Scaling
the diagram to a die cast model makes for a good
additional exercise.

2. Place a meter stick adjacent to the “runway” on a
heading the wind might have (such as use 190° if
the runway were at 160°).  Let every ten centime-
ters (a decimeter) represent one knot of wind speed.
Have students measure the angle between the run-
way and the “wind” and repeat several times until
they discover all they have to do is subtract the wind
direction from the runway heading.  Measure with
meter sticks the legs of the right triangle formed rel-
ative to the runway (see the first diagram).

3. Leave one of the set-ups and have students create
scale drawings using the Crosswind and Headwind
Practice handout.  

4. Introduce the trigonometry (using sine and cosine)
that will facilitate computation (without the tedium of
scale drawings).

Flight Planning
1. Create a model of your area’s aviation sectional

chart in the classroom or another location that will
remain undisturbed for a few days.  This has the po-
tential to be a long term project where terrain, high-
ways, and other geographic features are included
along with airport symbols and navigation aids.  Take
care to orient the scale chart to true North.
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2. Select a departure airport and a destination airport
on your chart.  Students will then measure the dis-
tance between them (in nautical miles–the number
of minutes of latitude) and compass heading (taken
off the chart, corrected for magnetic variation, and
confirmed with a compass).  Measure the distance
with meter sticks or trundle wheel (not string–the
reason to avoid string will be revealed in Step 4).

3. Obtain (or invent) wind speed and direction.  Place
a box fan (as in the variations above) to signify the
wind. (You can use winds aloft from Aviation-
weather.gov.) 

4. Stretch twine (or other non-stretchy string) between
the departure and destination airports.  Announce
that the length of the twine represents the SPEED
of the aircraft through the air, and, therefore, its
ground speed in a no-wind condition. Make marks
on the twine at each end of the course. Compute the
length of the twine proportional to the wind speed.
(For example, if the twine is 4.5 m long, the airspeed
is 100 KTS, and the wind is 10 KTS then the wind
twine is 1/10 as long, therefore 45 cm.) Place an-
other length of twine on the destination airport, mark
on the twine the proper length, and stretch the twine
in the direction of the wind. While holding one end of
the course twine at the departure airport, move the
twine from the destination end until it intersects the
wind twine at the mark representing the wind speed.
The angle between the course line and the airspeed
twine is the “correction angle” and the length of twine
from the destination airport and the intersection point
is the ground speed of the aircraft.  Refer to the dia-
gram in the Teacher Notes area.

5. Solve a few more situations using the process in Step 4.
6. Debrief this part of the activity by requesting sug-

gestions for advantages and disadvantages of this
method. Hopefully someone will say it is fairly cum-
bersome (even though it can be implemented on an
actual chart rather than a larger replica). Lead the
students towards “there MUST be a more efficient
way!” Conclude this session with the reasons
trigonometry was invented and how it easily trans-
lates to this application.

7. Using the example in the Teacher Notes and the
Law of Sines, the correction angle is solved using
the equation:

which equals a correction angle of approximately
7.8° after the algebra is completed. Continue as in
the Teacher Notes and work another example.

SUMMARY
The calculations are performed by pilots every day, al-
though the traditional method (using an “E6B Flight
Computer”) avoids the actual mathematics and, in-
stead, depends upon using a step-by-step method.
With the actual mathematics revealed, students (in-
cluding student pilots) better understand what they are
computing and can better judge the reasonableness of
the outcome.

EVALUATION
Choose both departure and destination airports not al-
ready practiced. Provide winds aloft and winds at the
destination. Then, allow students to perform computa-
tions.  They should measure both course and enroute
distance before beginning computations. Consider per-
forming the same calculations over several days using
current conditions to reinforce that the atmosphere is
constantly changing and that flight plans must be ad-
justed accordingly.

LESSON ENRICHMENT/EXTENSION
Headwind and Crosswind Variations
• Place a box fan at the departure end of a classroom

“runway” to signify the wind (turn it on, of course).  Its
angle to the runway should replicate that of the wind in
the exercises.

• Have students approximate using the sines of 30°,
45°, and 60° rather than worrying about exact an-
swers (as explained previously). The rapidity of men-
tal math and having values to the nearest knot are
sufficient for our purposes (and those of actually fly-
ing aircraft).

Flight Planning Variations
• Consider beginning the activity without the scale chart

if students had a reasonable understanding of charts
and had access to them (i.e., every student or work
group had a chart). See the links below for (inexpen-
sive) practice aeronautical sectional charts and the
Seattle Sectional in PDF form.

• Bring in a ground school instructor to teach students
how to solve for heading and ground speed using a
traditional “flight computer” (known as an E6B).  They
will quickly realize that using trig is actually less com-
plicated.  
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• Obtain performance data from an aircraft flight man-
ual (see Appendix I) to determine how much time and
distance will be devoted to the climb to cruise altitude.
Note that the Cessna 172 P is expected to take 20
minutes over a distance of 26 nautical miles (NM) in
a climb to 9000 feet.

• Account for descent to the destination airport—typi-
cally the winds are different and the descent speed is
greater than cruise speed, so further calculation
would be needed.  A Cessna 172 can usually (and
safely) descend at 120 KTS, however the descent
rate is kept to around 500 feet per minute for the com-
fort of pilot and passengers.  This means if the plane
must lose 7000 feet from cruise altitude to enter the
traffic pattern above an airport, then the descent
would take 7000 ÷ 500 = 14 minutes.  This means the
descent must begin 28 NM from the destination.

ASSOCIATED WEBSITES AND/OR LITERATURE
• Airport diagrams and terminal procedures 
http://www.faa.gov/airports/runway_safety/
diagrams

• Geodetic Calculations software
http://avn.faa.gov/index.asp?xml=aeronav/
applications/programs/compsys

•Airport/Facility Directory - digital
http://aeronav.faa.gov/afd.asp?cycle=afd_
05APR2012&eff=04-05-2012&end=05-31-2012

• E6B online calculator
http://www.theultralightplace.com/
E6B%20Calculator.htm 

• Live ATC feed
http://www.liveatc.net/

• Aviation Digital Data Services (ADDS) Forecast
Winds Aloft 

http://aviationweather.gov/products/nws/winds/

• Paper navigation charts available through
FAA, AeroNav Services Team
REDIS, AJW-379
10201 Good Luck Road
Glenn Dale, MD 20769-9700

(800) 638-8972 toll free, U.S. only
9-AMC-Chartsales@faa.gov
aeronav.faa.gov

• Washington State Sectional chart - digital version,
for classroom training only!

http://www.wsdot.wa.gov/aviation/Charts/
default.htm

• Reasons trigonometry was invented - Reasons
Trigonometry was invented 

http://www.math.rutgers.edu/~cherlin/History/
Papers2000/hunt.html
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Crosswind and Headwind Practice

Assume the wind is blowing FROM 190° at 16 KTS.  Calculate the crosswind and headwind components for each
of the given airports relative to their named runway. 

Boeing Field, RWY 13 Bremerton, RWY 19

Paine Field, RWY 16 Tacoma Narrows, RWY 17

Paine Field, RWY 11 Shelton, RWY 23

Port Townsend, RWY 09 Crest Airpark, RWY 15
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Appendix I
Cessna 172 P Climb Performance

Page 5-15 from the Information Manual for a 1981 Cessna 172P.
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Appendix II
Example of Airport Diagram

http://aeronav.faa.gov/d-tpp/1205/00384AD.PDF
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Lesson 2:
Day Length For Various Latitudes

Along A Longitude
OBJECTIVE
Students will model real-world data using the 
trigonometric function Tangent.

NATIONAL STANDARDS
Mathematics
Algebra

• represent and analyze mathematical situations
and structures using algebraic symbols

• use mathematical models to represent and un-
derstand quantitative relationships

• analyze change in various contexts
Geometry

• specify locations and describe spatial relation-
ships using coordinate geometry and other repre-
sentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• apply and adapt a variety of appropriate strate-

gies to solve problems
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among mathe-

matical ideas
• recognize and apply mathematics in contexts out-

side of mathematics

Representation
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret 

physical, social, and mathematical phenomena
Science
Unifying concepts and processes in science

• Change, constancy, and measurement
Science and technology

• Understanding about science and technology
History and nature of science

• Science as a human endeavor
• Nature of scientific knowledge

Technology
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

Standard 17 - Students will develop an under-
standing of and be able to select and use information
and communication technologies.

MATERIALS:
• Internet access to

the US Navy Obser-
vatory Website

• Computer-based
graphing program
(such as Grapher on
the Macintosh)

• One hand out 
(Day Length Along A 
Longitude) for each
student
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BACKGROUND INFORMATION:
During the debrief of an activity comparing day

length over a year for Boston versus Seattle, a precal-
culus student asked, “What would a graph of the day
lengths along a line of longitude look like?”  The
teacher became excited because he suspected the
outcome to appear like a tangent function.  The
teacher’s suspicions were later confirmed after col-
lecting and plotting the “data” from the US Navy Ob-
servatory (USNO) Website (see Appendix I). Because
modeling with trigonometric functions is typically lim-
ited to using sine (or a shifted cosine), the teacher, who
is also the author of this book, created this project as
a way to model with tangent.

The USNO’s Astronomical Applications Website
was accessed to make the initial plot (see Appendix II
for both the “data” and the modeling function). The
122° W longitude was selected (the closest to Seattle)
and 21 June 2010 (the Summer solstice).  After enter-
ing the longitude and 90° N along with “8 hours West
of Greenwich,” the Website was unable to calculate for
latitudes beyond 82° (both North and South).  Both 80°
and 70° returned no times for either sunrise or sunset,
so the day length was inferred to be 24 hours.  See the
images in Appendix IV for an interesting pictorial con-
firmation. Times of sunrise and sunset were given for
the remaining latitudes (entered in 10° increments)
through 60° S, after which “0” was inferred for the day
length.  Because a tangent function was assumed, y =
a•tan(x) + 12  was chosen as the general format where
“x” represents the latitude and “y” represents the day
length in hours.  The “12” belongs in the equation be-
cause the day length at the Equator is approximately
12 hours regardless of the time of the year.  The “for-
mula” needed to fit Seattle’s actual day length (as you
will for your location), so another area of the USNO
Website was used to get actual day length (see Ap-
pendix III) to fit the curve.  The day length was found to
be 16.00 hours and 47.0° was used for the latitude to
create the function:
16.00 = a•tan(47.0°) + 12.00
4.00  = a•tan(47.0°)
a = 4.00/tan(47.0°) ≈ 3.73
Therefore the function for the 122°W longitude on 21
June 2010 is y ≈ 3.73•tan(x) + 12. This is represented
by the curve in the plot in Appendix II. Note the function
give a pretty close fit, deviating by only a few minutes
at most.  

Satisfied with the graphs, the teacher wrote an ac-
tivity for his precalculus classes, assigned each stu-
dent a different date (the class was able to cover the
entire year with one-week increments), and posted stu-

dent graphs in chronological order so the class could
see the trend over the year. The process, detailed
below, will (of course!) lead to further mathematical ex-
plorations!

PROCEDURE:
1. Consider engaging in other trigonometric modeling

activities before this one, especially one that uses the
Earth’s grid lines (such as Modeling Satellite Orbits).

2. Remind students of the basic gridlines on the Earth.
They should understand the similarity between
Cartesian graphing relative to using the intersection
of the Equator and Prime Meridian as the “origin”
with W  longitudes “negative x-values”  while the E
longitudes represent “positive x-values.”  The y-axis,
of course, extends from –90 to 90 (from the South
Pole to the North Pole respectively).

3. Ask students to sketch or graph the day length for
your location along with the day length for a city they
know that is a few degrees North or South of your lo-
cation. Have them speculate how graphs would
change as one moved closer to the poles (more ex-
tremes) or towards the equator (less extreme). The
graphs would all have their maxima and minima on
the same day. Invite speculation on the reasons be-
hind these hypotheses.

4. Show the example in Appendix II or create a similar
one for your area. Follow with the illumination dia-
grams (Appendix IV).  

5. Derive the modeling function for the data using 
y = a•tan(x) + 12 as the general format.  Show your
solution for “a.”

6. Assign specific days of the year to students with
hopes of representing the entire year at reasonable
intervals.  Avoid 21 June because it has already
been done.  

7. Moderate as students locate and record the sunrise
and sunset times. Suggest that a “number buddy”
check the arithmetic used to compute the decimal
equivalent for day length.

One sample of a diagram comparing hours of daylight to latitude.
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8. Check students’ work as they solve for “a” to derive
their modeling function.

9.  Assist students as they graph the data and function,
which should be on the same axes.

10. Post students’ papers in chronological order.  Ask
students to record the date and “a” then write a
short paragraph on how the graphs change over
the year.

11. As a challenge question, consider asking students
to create a function that results in the day length
given the day of the year (e.g. 5 February is day
#36) and latitude.  Note: this procedure and model
are merely a “rough and dirty” approximation of the
day length and NOT what the USNO uses.

12. Find out what new questions were generated by
students as they worked on this activity.  Perhaps
one of your students will “kick start” your next ac-
tivity!  

SUMMARY:
Interesting questions emerge when exploring day-
length data.  Students develop a greater understanding
of how the sun illuminates the globe by comparing
changes over a year at various latitudes.  Note that the
solstices are easy to determine from 5 day-length data
but the equinoxes are somewhat variable by latitude.

EVALUATION:
Have students write a response to the following ques-
tion: What pattern emerges in the graphs from 1 Jan-
uary through the year?  Address each of the following
in your response:
• how well the data is approximated by the Tangent

function
• how the shape of the graph changes over the year
• the “end behavior” of the graphs over the year
• how the graphs would change if a different longitude

were chosen for the activity (e.g. 90° to the East or
West)

ASSOCIATED WEBSITES AND/OR LITERATURE:
• http://www.usno.navy.mil/USNO/astronomical-
applications/data-services/rs-one-day-world 

• http://my.hrw.com/math06_07/nsmedia/tools/
Graph_Calculator/graphCalc.html 

• http://www.usno.navy.mil/USNO/astronomical-
applications/data-services/earthview

• http://www.usno.navy.mil/USNO/astronomical-
applications/data-services/rs-one-year-us

• http://www.usno.navy.mil/USNO/astronomical-
applications/data-services/duration-us

• http://www.jgiesen.de/SME/ - This website contains
an applet that allows you to find the altitude and az-
imuth of the sun and moon at any point on earth at any
time.
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Appendix I
USNO Astronomical Applications

Day Length of Specified Day on Given Longitude & Latitude
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Note: The plot in Appendix II was constructed in Grapher (a Macintosh computer application).

Appendix II
Sample Plot: 21 June 2010 along the 122°W longitude
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Appendix III
Sunrise and Sunset for Seattle, 2010

Source: http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-year-us 
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Appendix IV
Illumination of Earth, 04 July 2010

Source: http://www.usno.navy.mil/USNO/astronomical-applications/data-services/earthview
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Day Length Along a Longitude

Your name: _____________________________________________________________________________ .

The date you were assigned for data: ________________________________________________________ .

The latitude our class is using:______________________________________________________________ .

“Reference city” our class is using:___________________________________________________________ .

Number of “time zone” hours our class is using: ________________________________________________ .

The purpose of this project is to provide you an opportunity to employ some unusual trigonometric modeling.
Your product will be a scatter plot of day length along the given line of longitude for various latitudes from the
North to South pole. Superimposed upon the scatter plot will be a graph of the trigonometric function you will
derive to model the data (see below).

Obtain sunrise and sunset data from 
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-day-world

Obtain day length data for our reference city from 
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-year-us

1. Record the sunrise and sunset times along the given longitude for every 10° of latitude (input the appropri-
ate “time zone” value).  Write the times in the included table following those in the example table.

2. Subtract the times to give the number of hours (and decimal hours) of “daylight.” Note: there are sixty (60) min-
utes in an hour so 21:36 – 02:44 = 18:52 = 18.87 hours.

3. Make a scatter plot of the data using a full sheet of graph paper. Use –90 ≤ x ≤ 90; 0 ≤ y ≤ 24. Ignore repeated
“24” and “0” readings (graph, at most, one of each).

4. Model the data as a tangent function and draw the function on the scatter plot.  Use your reference city’s day
length for your date then solve y = a•tan(x) + 12 where x represents the latitude and y represents the day
length in hours and decimal hours. Consult the USNO Website for the day length for our city. Show your work!

5. Graph the data and model using Excel, computer-based, or an online graphing resource. The goal is to have
the scatter plot and function graphed together.

6. Participate in the “gallery walk” that displays a sequence of days of the year. Take some notes on the simi-
larities and differences of the graphs over time. Record the day of the year and its associated “a” value.

7. Special challenge: create a function that results in the day length given the day of the year (e.g. 5 February
is day #36) and latitude.

8. Write any new questions that came to mind while you worked on this activity.
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Day Length For Various Latitudes Along The _________________ Longitude

Your Date:

Note: “ ” represents data unavailable.
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Lesson 3:
Dreamliner Designer

OBJECTIVE:
Students “reverse engineer” the wing shape of the
Boeing 787 Dreamliner by modeling with a polynomial
function.

NATIONAL STANDARDS
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations and

structures using algebraic symbols
• use mathematical models to represent and under-

stand quantitative relationships
Geometry

• specify locations and describe spatial relationships
using coordinate geometry and other representa-
tional systems

• use visualization, spatial reasoning, and geometric
modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measurement
• apply appropriate techniques, tools, and formulas

to determine measurements
Problem Solving

• build new mathematical knowledge through prob-
lem solving

• solve problems that arise in mathematics and in
other contexts

• monitor and reflect on the process of mathematical
problem solving

Communication
• communicate mathematical thinking coherently

and clearly to peers, teachers, and others
• use the language of mathematics to express math-

ematical ideas precisely
Connections

• recognize and use connections among mathemat-
ical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts out-
side of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Form and function
Science as inquiry

• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 3 - Students will develop an understanding

of the relationships among technologies and the con-
nections between technology and other fields of study.

Standard 9 - Students will develop an understanding
of engineering design.

MATERIALS:
• Handout (Dreamliner Designer)
• Graph paper—one sheet per student
• Scissors—enough for the class to all finish cutting out

the diagram in a reasonable amount of time
• Glue sticks—enough so everyone can glue their dia-

gram to the graph paper in a rea-
sonable amount of time

• Graphics-based calculator capable
of manipulating matrices (such as
a TI-83+)

• Computer graphing program
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BACKGROUND INFORMATION:
Polynomials are used for a wide variety of applica-

tions—from the design of fonts to the creation of figures
in digital animation. Despite their power, teachers  may
rarely see them explored beyond roots and asymptotes.
This lesson teaches precalculus students how to de-
velop a polynomial equation that contains specified
points and use that knowledge in a project in which they
determine a pair of equations that follow the leading and
trailing edges of a Boeing 787 Dreamliner wing.

Fitting a polynomial to a set of points is distinctively
different from modeling data wherein one seeks a “best
fit” function.  As the class transitions to curve-fitting, the
class also explores the limit of graphing calculators at
quartic regression and overlays it with the intrigue re-
garding the development of a formula to solve for the
roots of cubic polynomials (see the story of Ferrari,
Cardano, Fior, and Tartaglia). The class should arrive
at creating a system of equations from the general form
from which they generate the coefficients of the se-
lected polynomial.

Students infer from a short activity that one can “fit
a curve” to a given set of points if the number of points
is one greater than the order of the polynomial.  Two
points are needed for linear (1st order polynomial),
three for cubic, four for quartic, etc.  The terrifying part
of the process may be the realization that one might
be tasked with solving a huge system of equations.
Technology comes to the rescue!

As long as there is a unique solution, Cramer’s
Rule (using matrices) will find it.  Students can use their
TI-83+ calculators to handle matrices up to 9 x 9, which
allows one to obtain the coefficients of an eighth-order
polynomial (which should be sufficient for our pur-
poses).  The following are the general steps of under-
standing to use Cramer’s Rule for this purpose:
Agree that 

If Ax = B
Then x = B/A

Which can also be written as A–1B
(using our understanding of multiplicative inverses).

Therefore
[A] [x] = [B]

and [x] = [A]–1[B]

Apply the above to polynomials by first understanding

The general formula for a polynomial is:
y = a1xn + a2x(n – 1) + a3x(n – 2) + … + an+1

Then the specific points (x1, y1); (x2, y2), etc. are sub-
stituted into the general form to arrive at the system of
equations.  The numerical coefficients are then tran-

scribed into matrices to solve for the unique polynomial
that contains the given points.

Example:  Create the polynomial that contains the
given points (–2, 15), (–1, 2), and (2, 11).

Solution:  the polynomial is quadratic because it has
three points, so use the general form to get each of the
equations from the general form

a(–2)2 + b(–2) + c = 15
4a – 2b + c = 15

a(–1)2 + b(–1) + c = 2
1a – 1b + c = 2

a(2)2 + b(2) + c = 11
4a + 2b + c = 11

So the system of equations becomes
4a – 2b + c = 15
1a – 1b + c = 2

4a + 2b + c = 11
And the equivalent matrix equation is

Which is solved
by entering the first matrix as [A] and the last as [B]
then performing  [A]–1[B] so

Yielding the polynomial y = 4x2 – x – 3 (which you can
now use to solve for the roots, if you want, using the
quadratic formula or by graphing).  
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PROCEDURE:
1. Make sure students are grounded in curve-fitting

with polynomials and solving a system of equations
using Cramer’s Rule.

2. Consider exploring the increase in level of complex-
ity from quadratic, to cubic, then quartic formulae.
This would also be a good place to include the in-
trigue about the development of a cubic formula.

3. Distribute the handout and allow students to read
and then ask questions. Make sure they understand
they must provide the points on which to create a
polynomial of choice. 

4. Allow work time in class to cut out the wing diagram,
paste it onto the paper, and choose points. Hope-
fully each student will have chosen her/his points
and began creating the system of equations before
class ends.

5. Assign as homework to write and solve both systems
of equations and write the associated polynomial.

6. Take students to the computer lab the next day to
graph their equations on paper. Make certain stu-
dents understand the scales of the printed graph
must match the diagram (meaning if the x-axis of the
wing diagram is 25 cm long the printed graph must
be too).

7. Have students cut out their printed graphs (both
should be on the same set of axes) and staple on
top of the original wing diagram.

8. Culminate the project by posting the finished products
“poster presentation” style and having students look
at each to determine the similarities and differences
between each of their classmates’ and their own.

9. Celebrate!  

SUMMARY:
The lowest order polynomial that approximates a
shape is the best to use because it is the easiest to
create and mathematically manipulate, should anima-
tion be desired.  Polynomials of order higher than cal-
culators can compute can be determined by writing a
system of equations such that the order of the polyno-
mial is one less than the number of points the polyno-
mial must contain.

EVALUATION:
Use an old-fashioned overhead projector to overlay the
graphs students produce from polynomials with the
Dreamliner wing (see artwork of Dreamliner wing on
next page). Display several approximations and the
functions that produce them. Have students write a re-
sponse to the question: What would you change about
your solution process to obtain a better approximation
of the Dreamliner wing?

LESSON ENRICHMENT/EXTENSION:
Provide other shapes to model with polynomials, in-
cluding (but not limited to) fonts, logos, and outlines of
animated characters (e.g. those from Toy Story).

ASSOCIATED WEBSITES AND/OR LITERATURE:
Cramer’s Rule
• http://mathworld.wolfram.com/CramersRule.html
•http://www.purplemath.com/modules/cramers.htm

Lodovico Ferrari
• http://www.gap-system.org/~history/
Biographies/Ferrari.html

• http://fermatslasttheorem.blogspot.com/
2006/11/lodovico-ferrari.html

• http://plus.maths.org/blog/2008/01/eventful-
life-of-lodovico-ferrari.html

Nicolo Tartaglia (AKA Niccolo Fontana)
• http://www.gap-system.org/~history/
Biographies/Tartaglia.html

• http://en.wikipedia.org/wiki/Niccolo_Fontana_
Tartaglia

• http://www.answers.com/topic/niccolo-
fontana-tartaglia

Gerolamo Cardano
• http://en.wikipedia.org/wiki/Cardano
• http://www.math.wichita.edu/history/men/
cardano.html

• http://www.gap-system.org/~history/
Biographies/Cardan.html

Higher Order Polynomial Solutions
• http://mathworld.wolfram.com/
QuarticEquation.html
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Dreamliner Designer

Name:_________________________________________________________________________________

Your task is to create a pair of equations that follow the leading and trailing edges of a Boeing 787 Dreamliner
wing (see the diagram on the next page). Show all your work on a separate sheet of paper and follow the fol-
lowing procedure:
1. Cut out the wing diagram as carefully as you can. Note that the “spike” on the leading edge near the wing root
can be cut off and discarded.

2. Place the cut-out on a sheet of graph paper so the wingtip is at (0, 0) and the wing root is on the x-axis.

3. Label several points along the leading edge of the wing that will “force” a polynomial to follow the wing’s
curve. Try to use the fewest number of points that will map the shape of the wing.

4. Select the polynomial that will fit those points exactly then solve for that polynomial by substituting the coordi-
nates into the polynomial’s general form to create a system of equations. Use Cramer’s Rule to solve the system.

5. Check your polynomial on your calculator to ensure it contains the desired points.

6. Repeat steps 3 & 4 for the trailing edge of the wing.

7. Confirm on your calculator the equation contains the chosen points.

8. Graph your equations using Excel (or other appropriate graphing tool) so the scale and spacing matches the
size and scale in step 2 above.  Put both graphs on the same set of axes (so the output looks like the wing di-
agram).

9. Print your graph and turn it in with your work.

10. Write a few sentences that reflect upon your process and accomplishment.
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Graphic of Dreamliner Wing provided by
Russell Garlow of The Boeing Company
and Aerospace Education Officer for
Washington Wing, Civil Air Patrol
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Lesson 4:
Far And Away

OBJECTIVE:
Students compute global distances using latitude and
longitude by employing the Pythagorean Theorem and
an ancient (but new to most of them) global measure-
ment system. Coordinates are found in a publication
commonly used by pilots: the FAA Airport/Facility 
Directory (A/F D).

NATIONAL STANDARDS
Mathematics
Algebra

• use mathematical models to represent and un-
derstand quantitative relationships

Geometry
• specify locations and describe spatial relation-

ships using coordinate geometry and other rep-
resentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formu-
las to determine measurements

Data Analysis and Probability
• formulate questions that can be addressed with

data and collect, organize, and display relevant
data to answer them

Problem Solving
• build new mathematical knowledge through

problem solving
• solve problems that arise in mathematics and in

other contexts
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among 

mathematical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts
outside of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret 

physical, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Evidence, models, and explanation
Science and technology

• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Historical perspectives

Technology
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

MATERIALS:
• A copy (or actual) of your area’s aviation sectional

chart. Consider also downloading the pdf of the
chart to project during whole-class discussions.
(The pdf is available from National Aeronautical
Charting Office – NACO. See the link at the 
end of this lesson.)

• Meter sticks – one per student group
• Protractors (as large as possible –

one per student group
• Several copies of FAA Air-

port/Facility Directory (A/F D)
or Internet access to use the
online product
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BACKGROUND INFORMATION:
Consider the following statement: “The Earth is

covered by about 30% land and about 70% water BUT
100% of it is covered by air–that’s why we fly!” In a less
facetious sense, aircraft are typically faster than cars
and have the added advantage of traveling on a (rela-
tively) straight line from point-to-point rather than fol-
lowing the twists and turns of highways. One
disadvantage of aircraft is running out of fuel can be
catastrophic because one cannot merely “pull to the
side of the road” as with a car. Knowing the distance
between departure and destinations, therefore, is crit-
ically important!  

Pilots learn in ground school to measure a route di-
rectly from an aeronautical chart using a “plotter” (a
ruler-like tool featuring several scales). The distance is
usually measured in nautical miles (NM) because air-
speed is typically given in nautical miles per hour
(known as “knots” and abbreviated as KTS). Recall
that a nautical mile is one minute (one-sixtieth of a de-
gree) of latitude whereas a statute mile (a statute is a
“law” therefore it was dictated) is defined as 5280 feet.
Of course, the length of a foot is currently defined in
meters, but originated as the length of the king’s foot
(hence, the term ruler for the measuring device).  Many
believe the United States uses the length of King Henry
I’s foot.    

Distances can be calculated without a chart using
latitude and longitude along with the definition for nau-
tical mile.  This method is particularly useful when air-
ports are on different charts or opposite sides of the
same chart.  The basic plan is to compute the differ-
ences in both latitude and longitude (in minutes) and
then apply the Pythagorean Theorem to solve for the
enroute distance.  Lat and Long can be found in the
FAA Airport/Facility Directory (both textual and online,
referred to as A/F D).  Note that correction is required
for longitude because the lines converge at the poles,
so measure a degree of longitude and see how many
minutes of latitude it stretches (divide by 60 to get the
number of nautical miles per minute of longitude).  Ex-
ample: a degree of longitude is about 40 NM at Seat-
tle’s latitude (near the 48th parallel North).

Here is a sample problem.  Assume one will fly
from SeaTac International Airport (SEA) to Yakima
(YKM).  Their respective latitude and longitude are
N47° 26.99’; W122° 18.71’ and N46° 34.09’; W120°
32.64’.  Here, one must think like a Babylonian and
convert 47° 26.99’ into 46° 86.99’ so one can subtract
YKM’s latitude.  Note the difference is 52.90 minutes,
which is also 52.90 NM.  Similarly one converts 122°
18.71’ into 121° 78.71’ and arrives at 1° 46.07’ which is
equivalent to 106.07’ (but NOT that many nautical

miles).  Because longitudes “squeeze together,” the
horizontal displacement is computed thusly: (40/60)
(106.07’) = 70.71 NM. The enroute distance is, therefore

= 88.31 NM. Note that for flight
planning purposes, only the whole number distance
(88 NM) is used rather than all the significant digits
even though they are significant. Note that if an indi-
vidual is within a nautical mile of his/her destination by
air, the airport appears to be very close, whereas by
car, missing one’s destination by a mile is, indeed, a
miss!

The super-acute observer has already realized the
method detailed above is correct only for “reasonably
close” points on the globe.   The chord of the great cir-
cle route between places is actually being calculated
rather than the arc; one will always get an underesti-
mate!  More accurate calculations require solving for
the angle  at the Earth’s center—an extension detailed
in Lesson 6: Going The Distance.

PROCEDURE:
1. Explore measures: mile, nautical mile, statute mile,

cubit, foot, etc. An essential outcome is students un-
derstand a nautical mile is one minute of latitude.

2. Have students measure the distances, in nautical
miles, between several points on an aeronautical
chart.  Consider letting them use only a meter stick
so they will need to compare the measured length
to the latitudes marked at the left to determine how
many minutes.

3. Introduce the correction for longitude. Consider hav-
ing students measure a degree of longitude and
then counting the number of minutes of latitude.

4. Have students draw the vertical and horizontal dis-
placements as the legs of a right triangle, label the
lengths of the sides in nautical miles, and request a
solution method for the hypotenuse. It is likely at
least one student will suggest using the Pythagorean
Theorem.  

5. Obtain longitude & latitude for departure and desti-
nation airports from some official resource. Either
textual or online Airport Facilities Directory (A/F D)
are ideal (and authentic) sources.

1951 plotters and handbook
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6. Increase distances between airports, selecting a pair
that are on opposite sides of the globe, such as Cairo,
Egypt (N30° 2’; E31° 21’) and Papeete, Tahiti (S17°
32’; W149° 34’). Note the students must accommo-
date for latitudes on opposite sides of the Equator and
both East & West of the Prime Meridian. The 
result is
9340 NM if correction for longitude were “averaged”
as 50 minutes per degree. Note that, by definition,
the Earth would have 360° • 60 NM/degree = 21,600
NM for the circumference, and, therefore 10,800 NM
for “half way around.” From this analysis, one gets
close but not quire right. Computing the distance by
arc on the globe (as with Going The Distance) will
provide a better estimate.

SUMMARY:
The Pythagorean Theorem provides reasonable esti-
mates of distances between two points on the globe
but only when near the Equator and “reasonably close”
(within about 60 NM). Although a correction can be
made away from the Equator by using a scaled-down
number for the distance between degrees of longitude,
computing distances across the surface (the arc
length) must be performed as distances increase. Of
course, these changes require deeper mathematical
understanding and application. 

EVALUATION:
Ask students to write the procedure to compute dis-
tances between two points on the globe given their lat-
itude and longitude. State that they are writing for an
audience much younger (e.g., ten years old) who can
follow written instructions well in addition to having pro-
ficiency in addition, subtraction, multiplication, division,
and square rooting on a calculator. No “complicated
language” (i.e., “square”) is allowed, and the instruc-
tions must allow for coordinates in both degrees, min-
utes, seconds and degrees, minutes, and decimal
minutes.

LESSON ENRICHMENT/EXTENSION:
• Suggest students could “automate” the solution

process by writing a program for their calculator. The
inputs would be degrees and minutes for both longi-
tude and latitude with the correction factor for longi-
tude.

• Compare outcomes to those from measuring or on-
line computation device to model “correction factors”
for various conditions (distance between airports or
extreme differences in latitude).

ASSOCIATED WEBSITES AND/OR LITERATURE:

• http://aeronav.faa.gov/index.asp?xml=aeronav/
applications/d_afd 
- digital - Airport/Facility Directory.

• http://www.wsdot.wa.gov/aviation/Charts/
default.htm 
- Washington State Sectional chart—digital version,
for classroom training only: not for navigation!

• http://avn.faa.gov/index.asp?xml=aeronav/
applications/programs/compsys
- Geodetic Calculations software

• http://www.infoplease.com/ipa/A0001769.
html#axzz0yax0in4e
- Latitude & longitude of World cities

• www.landings.com/_landings/pages/search/
search_dist_apt.html 
- Flight Route Planner

• http://www.sgeier.net/tools/llp.php
- Great Circle calculator

• http://faacharts.faa.gov/ProductDetails.aspx
?ProductID=TRSSEA
- Seattle Sectional Training Chart - Product ID
TRSSEA, cost $1.35 US

Paper charts available through
FAA, AeroNav Services Team
REDIS, AJW-379
10201 Good Luck Road
Glenn Dale, MD 20769-9700
(800) 638-8972 toll free, U.S. only
9-AMC-Chartsales@faa.gov
aeronav.faa.gov
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Seattle Sectional Training Chart
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Lesson 5:
Far Out!

OBJECTIVE:
Students use methods “of the ancients” to compute the
distances from the Earth to the Moon and Venus.

NATIONAL STANDARDS:
Mathematics
Algebra

• represent and analyze mathematical situations and
structures using algebraic symbols

• use mathematical models to represent and under-
stand quantitative relationships

• analyze change in various contexts
Geometry

• specify locations and describe spatial relationships
using coordinate geometry and other representa-
tional systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measurement
• apply appropriate techniques, tools, and formulas

to determine measurements
Problem Solving

• build new mathematical knowledge through prob-
lem solving

• solve problems that arise in mathematics and in
other contexts

• apply and adapt a variety of appropriate strategies
to solve problems

• monitor and reflect on the process of mathematical
problem solving

Communication
• organize and consolidate mathematical thinking

through communication
• communicate mathematical thinking coherently

and clearly to peers, teachers, and others
• use the language of mathematics to express math-

ematical ideas precisely
Connections

• recognize and use connections among mathemat-
ical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts out-
side of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Evidence, models, and explanation
• Change, constancy, and measurement

Science as inquiry
• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 3 - Students will develop an understanding

of the relationships among technologies and the con-
nections between technology and other fields of study.

MATERIALS: 
• Several copies of the CRC Handbook

of Chemistry and Physics or Internet
access to use the online product.
They need not be particularly current
because planetary data has not
changed significantly in the past few
decades.  

• Twine (or other non-stretchy string)
• One large protractor with two straws (for sighting

Venus’s angle to the Sun). A surveyor’s transit. Be
careful about looking directly at the Sun!

• Internet access to 
http://www.fourmilab.ch/cgi-bin/Solar
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BACKGROUND INFORMATION:
Although most people believe the Earth and other

planets orbit the Sun, few appear to know the relative
distances, periods of revolution, or how these values
are determined. It is intriguing to imagine the observa-
tions and mathematics employed several centuries ago
by which these were computed.  

Given the radius of the Earth, Earth’s distance from
the Sun can be calculated using ge- ometry and
trigonometry. Eratosthenes’ method of noting shadow
angle on two different locations and then measuring
the distance between them yielded the Earth’s circum-
ference, by some accounts, to within 1% (there is some
disagreement on the size of the unit used to measure
the distance between Syene and Alexandria).  Figure I
shows how to use Earth’s radius to compute the dis-
tance from the Earth to the Moon using right-triangle
trigonometry (Cassini’s method). This result allows one
to compute the Sun-Earth distance.

Aristarchus noted that the Sun must be at a right
angle relative to Earth when half illuminated (the half-
Moon phases).  Knowing the distance to the Moon and
the angle from the Moon to the Sun allows one to, once
again, employ right-triangle trigonometry to compute
Earth’s distance to the Sun (see Figure II).

One more application of right-triangle trigonometry
will result in the computation of other planets’ distance
to the Sun.  Awaiting Venus’s apparent maximum dis-
tance from the Sun (as seen from Earth) will create a
right triangle–its hypotenuse will be the line joining the
Earth to the Sun, and the Earth-Venus-Sun angle is
90°.  One then measures the Venus-Earth-Sun angle
to provide the remaining needed fact to perform the
calculations (see Figures III and IV).  

Because people today “stand on the shoulders of
giants” (Newton), they can accept the figures for the
Earth-Sun and the Venus-Sun distances or compute
them themselves using the previously employed meth-

ods.  Either way, an individual can use non-right-trian-
gle trigonometry to compute Earth’s distance from
Venus at any time it is visible.  

Facts (from the CRC Handbook of Chemistry and
Physics)

•  Earth’s orbit takes 1.0000 years.
•  Venus’ orbit takes 0.6152 (Earth) years.
•  Mars’ orbit takes 1.8808 (Earth) years.

PROCEDURE:
1. Complete The Planet Dance activity so students will

understand relative position and distance. Set up the
inner planets (the four closest to the Sun) in their
current positions (follow the Solar System Live Web-
site URL). http://www.fourmilab.ch/cgi-bin/Solar
- detailed set-up instructions:
• Set "Time" to the date on which the activity will be

given. By default, the Website will use the current date.
• For "Display" select the "Inner system" radio but-

ton and "600" for "Size" (you will get a larger and
finer-grained graphic than the default value).

• Select "Real" for "Orbits."
• Select "Colour on white background" for "Colour

Scheme" (this graphic will print better than the
black background of the default view.)

• Click the "Update" button.
• Copy the graphic and paste into your worksheet

document or save to disc.
• Stretch string from your model’s Sun to Earth then to

Venus. Measure the angle. Have students sketch
the situation and label the known values (the angle
and the Earth-Sun and the Venus-Sun distances).
Although the solar system depiction is for 4 July
2011 you can select any day you want (the default
upon entering the URL is the current date).

2. Use the diagram and measures to solve for the
Earth-Venus-Sun distance. Either Law of Cosines or
Law of Sines will give solutions BUT the former will
provide two solutions unless the Earth-Venus-Sun
angle is 90°. Please see Figures III and IV. Note how
this is a good opportunity to emphasize a weakness
in the Law of Cosines and can lead to a discussion
of why this happens (note the visual cue from the in-
tersection of Venus’ orbit with the Earth-Venus line).

3. Engage the class in developing a method to meas-
ure the Venus-Earth-Sun angle. The discussion
should include when (at sunrise or sunset), where
(the horizon must be unobstructed), and how (build
a large protractor and sight through straws OR em-
ploy a surveyor’s transit—be careful about looking
directly at the Sun!).

4. Assign student teams (pairs work best) to make ob-
servations over one-week intervals so that each pair
has measurements and estimated distance to Venus.

5. Celebrate the application of two millennia of astronom-
ical and mathematical discoveries and developments! 
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SUMMARY:
Distances to the Moon, Venus, and several other plan-
ets can be computed using relatively simple observa-
tions and mathematics—simple enough to be
performed by high school mathematics students.
Therefore, knowledge of interplanetary distances was
available to people much longer ago than most mod-
erns realize.  

EVALUATION:
Assign a variety of dates in the current year to student
work groups to compute the distance to Venus using
past, present, and future.  Have students write a re-
sponse to the question “About how frequently would
conditions support computing the distance of the Earth
to Venus?  Show how you arrived at your estimate.”

LESSON ENRICHMENT/EXTENSION:
• Make all preliminary measurements (Earth’s circum-

ference, Earth-Moon distance, etc.) and computa-
tions. This way you have the astronomical figures
rather than looking them up.

• Use the orbital facts to calculate the greatest and
smallest angle between Venus (or Mars), Earth and
the Sun.

• Model (create a function) that outputs Earth’s dis-
tance from Venus (or Mars) given the number of days
since the day the activity was given.

• Use orbital facts and current positions to solve for the
number of years that must pass before Earth and
Venus will be aligned with the Sun. A harder
problem would be the amount of time before
Earth, Venus, and Mars will be aligned. Still
harder would be the amount of time before
Mercury, Earth, Venus, and Mars will be
aligned.  

ASSOCIATED WEBSITES 
AND/OR LITERATURE:
• Distances within the Solar System
http://spiff.rit.edu/classes/phys240/
lectures/solar_sys/solar_sys.html; and,
http://galileoandeinstein.physics.
virginia.edu/lectures/gkastr1.html

• Calculating Earth’s radius
http://sierra.nmsu.edu/morandi/
CourseMaterials/RadiusOfEarth.html;
http://eduwww.mikkeli.fi/opetus/myk/kv/
comenius/erathostenes.htm; and
http://heasarc.gsfc.nasa.gov/docs/cosmic/
earth_info.html

• Calculating Earth-Moon Distance 
http://www.newton.dep.anl.gov/askasci/
ast99/ast99155.htm
See the second paragraph of Answer 2.

• Calculating Earth-Sun Distance 
http://www.newton.dep.anl.gov/askasci/
ast99/ast99155.htm See Answer 2.

• Calculating Sun-Venus Distance
http://curious.astro.cornell.edu/question.php?
number=400;http://eaae-astronomy.org/
WG3-SS/WorkShops/VenusOrbit.html; or,
http://athena.cornell.edu/kids/tommy_
tt_issue3.html

• Solar System Live 
http://www.fourmilab.ch/cgi-bin/Solar

• http://www.astronomyforbeginners.com/
astron omy/howknow.php

• Handbook of Chemistry & Physics Online
http://www.hbcpnetbase.com/

Websites with instructions for building a sextant:

• http://wow.osu.edu/experiments/Measurement/
Making%20A%20Sextant

• http://www2.jpl.nasa.gov/files/educator/sextant.txtSurveyor’s transits - 
past (left) and present (above)
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Figure 1
Computing distance from Earth to Moon

Assume we already know Earth’s 
radius (let it be “r” in the diagram). 
Let the angle between the observers
(located at the center of the Earth) be
θ. The Earth – Moon distance (“dˆ– r”
noting that “d” is the tangent to the
Earth) is r• tan(θ) – r.

http://www.astronomyforbeginners.com/astronomy/howknow.php

Figure II
Computing distance from Earth to Sun using Aristarchus’ method

Assume we already know Earth –
Moon distance (let it be “d” in the
diagram). Let the angle between
the Earth and Sun be θ. The
Earth–Sun distance is d• cos(θ).
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Lesson 6:
Going the Distance

OBJECTIVE:
Students compute global distances using latitude and
longitude by employing a formula that combines angle
measures in both degrees and radians, outputting an
arc length that is a “great circle route.” 

NATIONAL STANDARDS:
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations

and structures using algebraic symbols
• use mathematical models to represent and under-

stand quantitative relationships
• analyze change in various contexts

Geometry
• specify locations and describe spatial relationships

using coordinate geometry and other representa-
tional systems

• use visualization, spatial reasoning, and geometric
modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• monitor and reflect on the process of mathematical

problem solving
Communication

• organize and consolidate their mathematical think-
ing though communication

• communicate their mathematical thinking coher-
ently and clearly to peers, teachers, and others

• use the language of mathematics to express math-
ematical ideas precisely

Connections
• recognize and use connections among mathemat-

ical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts out-
side of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Change, constancy, and measurement
Science and technology

• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 3 - Students will develop an understanding

of the relationships among technologies and the con-
nections between technology and other fields of study.

Standard 8 - Students will develop an understanding
of the attributes of design.

Standard 17 - Students will develop an understand-
ing of and be able to select and use information and
communication technologies.

MATERIALS:
• One large globe.
• Various maps of the World.
• Moldable material (clay or Play-Doh).
“Large” elastic (e.g. a rubber band, sliced to make a
“string”)—long enough to stretch most of the way
around the class’ globe.
• Non-stretchy string.
• Pencil stubs (or equivalent) to signify the poles of the

Earth.
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BACKGROUND INFORMATION:
Consider the question: if the distance between two

points on a map is measured directly or computed from
latitude and longitude, is the curve of the surface of the
Earth adequately taken into account? One way to over-
come the possibility of this oversight is to compute the
“great circle route” (the arc formed from the intersection
of a plane that passes through both points on the globe
and the center of the Earth).

Two points on the globe form an angle with the cen-
ter of the Earth whereby the length of the arc lying on
the surface of the Earth formed by that angle is the dis-
tance between the points. Multiplying the angle’s
measure, in radians, by the radius of the Earth gives
the arc length, and subsequently, the length of the
great circle route. The difficulty in this approach is com-
puting the angle knowing the latitude and longitude of
the two points.

Latitude and longitude are in degrees and subdi-
vided into minutes (1/60 degree).  Further subdivisions
are either decimal minutes or seconds (1/60 minute,
which is 1/3600 degree). Airport coordinates, as listed
in the FAA publication Airport/Facility Directory, are
given in degrees, minutes, and decimal minutes. The
Earth has a diameter of about 6875 NM (360°•60
NM/degree ÷ π), giving it a radius of about 3438 NM.
Working backwards to obtain the desired information
(an arc length between two points on the Earth), one
would multiply the radius of the Earth by the measure
(in radians) of the angle subtending the arc. The fol-
lowing process allows the distance from airport A to air-
port B to be computed using their latitude and
longitude.
• Convert latitude and longitude of locations A and B to

degrees and decimal degrees.
• Put your calculator in Degree mode.
• Let a = cos–1[cos(lat A)*cos(lat B)*cos(lon B – lon A)

+ sin(lat A)*sin(lat B)]
• Convert a into radians (aπ/180 = the angle measure

in radians).
• Multiply the angle measure by the radius of the Earth.
Example:
• Let A = Sea Tac airport (N47° 26.99’; W122° 18.71’)

and B = Yakima (N46° 34.09’; W120° 32.64’).  A =
N47.45°; W122.31° and B = N46.57°; W120.54°.
Note that both of these airports are in Washington
State and appear on the Seattle Sectional Aeronauti-
cal Chart (available as a free pdf or as paper “practice
charts” for $1.25).

• Therefore a ≈ cos–1(0.99966) ≈ 1.4941° ≈ 0.026068
radians.

• The distance between the airports is 0.026068 • 3438
≈ 89.6 NM.  Record 90 NM on the flight plan because
the nearest whole number is good enough (it looks

close when within one NM of an airport because of
the view from the air).

Procedure:
1. Prompt students for the possible disadvantages or

inaccuracies resulting from determining distance be-
tween two points on the Earth by measuring on
maps. The “answer we’re looking for” involves the
insight that the Earth curves and the maps do not,
therefore, inaccuracy increases with increasing dis-
tance between the points. Most importantly, the es-
timates will be less than the actual value which could
lead to fuel management errors.

2. Use a globe to demon-
strate a “great circle
route” between two
points by stretching a
rubber band from one
point to the other. Allow
students to speculate
how the course could
be constructed geomet-
rically (e.g., a plane slic-
ing a sphere).  A 12”
globe may be pur-
chased from a local dollar store.  

3. Make a large “Earth” from clay or Play-Doh and
sketch the major land masses on its surface. Note
the location of the poles by inserting pencil stubs (or
equivalent). Mark two points, such as New York and
Los Angeles. Use a wire to slice the globe through
the two points and the center of the globe. Draw the
central angle that contains the points on the surface
then measure the central angle. Convert the angle to
radians then multiply the angle measure by the ra-
dius of the globe (measured again). The result is the
arc distance (AKA the great circle route between the
two cities). “Confirmation” can be estimated by lay-
ing non-stretchy string along the arc and measuring
its length—compare the outcome to the calculated
value. Ask students to debrief this part of the activ-
ity by listing the steps of the procedure used to cal-
culate the arc length.

Example of Great Circle Route
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4. Suggest there must be a mathematical way to get
the central angle that leads to the arc length.  Re-
veal the formula, and then allay students’ panic by
saying that, although the formula looks daunting,
there are only a few values to input and two trig func-
tions to use.  

5. Lead a practice for students using New York (La
Guardia: N40°46.64’; W73°52.36’) and Los Angeles
(N33°56.55’ W118°24.43’).  The result should be
about 3140 NM.

6. Practice with several other routes. Consider allowing
students the opportunity to indulge themselves on
where they want to fly—many enjoy the fantasy of
“taking themselves” to a new location. Students typ-
ically have to make several attempts (usually three)
before inputting the values becomes reliable. This is
an interesting and important subsidiary outcome.  

SUMMARY:
The method revealed in this lesson compensates for the
inaccuracies inherent in using the Pythagorean Theo-
rem, as introduced in Lesson 4: Far and Away. Students
typically need significantly more practice to produce an
acceptable answer, which is only worth the extra effort
when distances are becoming large (over 60 NM) or lat-
itudes are noticeably away from the Equator.

EVALUATION:
Select two locations that students would not likely
choose but would recognize (such as Anchorage, AK
and Cape Canaveral, FL). Show the location of the lo-
cations on a globe and have students write an estimate
of the distance between them (in nautical miles). Give
the latitude and longitude for the locations and allow
students to work independently on the solution.Have
students write a an explanation of their method of es-
timation and how it compares to the computation.

LESSON ENRICHMENT/EXTENSION:
• Do Lesson 4: Far and Away first—it intro-

duces global measurement using the
Pythagorean Theorem.

• Provide clay or Play-Doh to student groups
to slice, measure central angles, and com-
pute arc length on the “surface” of their
globes. 

• Suggest students could “automate” the so-
lution process by writing a program for
their calculator.  The inputs would be de-
grees & minutes for both longitude & lati-
tude. Note that the program would have to
change modes—starting in degrees and
ending in radians.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• http://www.naco.faa.gov/
(National Aeronautical Charting Office–NACO)

• http://www.naco.faa.gov/index.asp?
xml=aeronav/applications/d_afd

(digital - Airport/Facility Directory)

• http://www.wsdot.wa.gov/aviation/Charts/
default.htm

(Washington State Sectional chart—digital version,
for classroom training only: not for navigation!

• http://www.naco.faa.gov/index.asp?xml=
aeronav/online/compsys

(Geodetic Calculations software) 

• http://www.infoplease.com/ipa/A0001769.html
#axzz0yax0in4e

(Latitude and longitude of world cities)

• www.landings.com/_landings/pages/search/
search_dist_apt.html

(Flight Route Planner)

• http://www.sgeier.net/tools/llp.php 
(Great Circle calculator).

• http://naco.faa.gov/ecomp/ProductDetails.aspx?
ProductID=TRSSEA

Seattle Sectional Training Chart 
(Product ID TRSSEA, cost $1.25 US)

Paper charts available through
FAA, AeroNav Services Team
REDIS, AJW-379
10201 Good Luck Road
Glenn Dale, MD 20769-9700
(800) 638-8972 toll free, U.S. only
9-AMC-Chartsales@faa.gov
aeronav.faa.gov



OBJECTIVE
Students use a current diagram showing the orbital
path of the International Space Station (ISS) to create
an equation that will trace its path. The equation will be
a sine function requiring values for amplitude, fre-
quency, and horizontal shift.

NATIONAL STANDARDS:
Mathematics
Algebra

• represent and analyze mathematical situations
and structures using algebraic symbols

• analyze change in various contexts
Geometry

• specify locations and describe spatial relation-
ships using coordinate geometry and other repre-
sentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• apply and adapt a variety of appropriate strate-

gies to solve problems
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among mathe-

matical ideas
• understand how mathematical ideas interconnect

and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts
outside of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Evidence, models, and explanation
• Change, constancy, and measurement

Science as inquiry
• Understanding about scientific inquiry

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

Standard 8 - Students will develop an understand-
ing of the attributes of design.

Standard 17 - Students will develop an under-
standing of and be able to select and use information
and communication technologies.

MATERIALS: (one set for each group)
• Copy of the handout Space Station Tracker
• Copy of the ISS orbit track
• Graphing calculator
• Ruler or straightedge
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Lesson 7:
Modeling Satellite Orbits
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BACKGROUND INFORMATION:
You have probably noticed NASA’s tracking board

features offset sine curves. This presentation began in
early missions, continued with the Space Shuttle Or-
biter, and continues today with the International Space
Station (ISS). Most people have viewed a replica of it
in movies, such as The Right Stuff and Apollo 13, while
still others seek out Internet versions for various or-
biters.  

This activity will develop the formula required to
track the ISS using information from the tracking board.
The following diagram shows three orbits of the ISS on
5 January 2010.

Orbiting patterns are sinusoidal because the ISS
orbits at an angle to the Equator, and the speeds of the
Earth and the ISS are different. The map is divided ver-
tically into twelfths; hence, the lines are separated by

30° of longitude with the Prime Meridian at the center
of the map. The Equator runs through the horizontal
center, with the lines also separated by 30° of latitude.
There are 360° from the left end to the right end of the
map and 180° from the bottom to the top.

The challenge in this activity is for students to de-
termine amplitude, frequency, horizontal shift, and ver-
tical shift. Then, they will apply their findings to the
general form  y = A•sin[B (x – C)] + D to determine
the equation by which the ISS position can be plotted.
Note that if the equation is close enough to being cor-
rect, it will provide the position for several orbits into
the future!

This activity is appropriate for students who have
graphed a variety of trigonometric functions and had
the opportunity to “tinker” a basic sine equation to fit a
graph. They should be familiar with the terms in the first

paragraph of this sec-
tion, have a graphing
tool available (computer
or graphing calculator),
and some practice
modeling real-world
data. This activity was
originally developed for
precalculus students for
a unit on modeling peri-
odic data.  It may be
used, however, in ad-
vanced algebra through
advanced calculus.  
Note: consider creating
the equation yourself
and compare to the
sample solution.

PROCEDURE:
Students should work in pairs on the following tasks:
1. Obtain a current tracking diagram (if possible) of the

ISS from Space Station Tracker or show the one in-
cluded in this module (if you cannot obtain a current
one). Show it to the class and invite observations.
Record the observations on chart paper, white
board, etc., for future reference.

2. Clarify all dimensions on the map and their refer-
ences: the Equator for the horizontal “zero” and the
Prime Meridian. Make sure students understand that
successive orbits trace successive curves (set to the
left a measurable increment).

3. Consider showing Appendix I (Viewing Continuity of
Orbits) so students will get a perspective of how the
ISS transitions from the right hand side of the map to
the left side. The diagram was created by capturing the
graphic on the Website, reducing it to a width of 2.5

inches, and placing a copy of the diagram adjacent.
4. Confirm all students and calculators are operating in

degrees rather than radians.
5. Inform students that they will have to measure am-

plitude, shift, and frequency to arrive at the appro-
priate equation for the ISS orbit.

6. Distribute handout Space Station Tracker and let
students work.

7. Circulate and monitor.
8. Debrief by having student groups volunteer their

equation. Write what they say so there is a record.
Hopefully the equations are close.  

9. Have students graph their equations for several or-
bits to see where they predict the ISS will be located.  

10. Celebrate success!  Consider awarding a sticker
badge saying “Rocket Scientist In Training” to
those groups who are closest to the actual position
after 3, 6, and 9 orbits.

Space Station Tracker (http://spaceflight.nasa.gov/realdata/tracking/)
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SUMMARY:
This real-world application of modeling with sine func-
tions helps explain how periodic phenomena can be
roughly forecast based upon observation.

EVALUATION:
Have students write responses to the following:
•  How did you determine the amplitude, frequency,

and horizontal shift that approximates the ISS or-
bits in the given diagram? 

•  Detail the measurements you made on the diagram
and whatever assumptions you employed.

LESSON ENRICHMENT/EXTENSION:
• Host a “star party” to view the major stars, planets,

and constellations. Plan it when a reasonably long
(at least 3 minutes) transit of the ISS can be seen in
your area.

• Find relevant facts for orbiting bodies such as the
typical angle of their orbit relative to the plane of
Earth’s orbit around the Sun and period of their
orbit—then develop a tracking diagram based
upon the facts. This is how the tracking
board is developed!

• Have students use their formula to pre-
dict when the ISS will be visible in their
region (keeping in mind that it must be
dark to see it). Check using the “Sighting
Opportunities” Website. One fact stu-
dents will need is that the ISS completes
one orbit in about 92 minutes.

• Complete the Space Station Spotter activity in con-
junction with this one. Solve the equation students
write for the longitudes the ISS will be at your loca-
tion’s latitude, and then use the other activity to de-
termine if the ISS will be visible.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• Space Station Tracker information 
http://space flight.nasa.gov/realdata/tracking/

• ISS Sighting Opportunities website 
http://spaceflight.nasa.gov/realdata/sightings/
help.html

• ISS Operations info
http://www.nasa.gov/mis
sion_pages/station/main/index.html

Space Debris including SatellitesTracking Map
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Modeling Satellite Orbits
Space Station Tracker

Group Member #1: ____________________________________________________________________

Group Member #2: ____________________________________________________________________

Determine amplitude, frequency, horizontal shift, and vertical shift, then apply your findings to the general form
y = A•sin[B (x – C)] + D

to determine the equation by which the ISS position can be plotted.

1. Draw the Equator on your map. Measure from the Equator to the “highest” point of the ISS orbit.  Confirm
that this is the same value as the “lowest” point. Note that this measure will be in “degrees latitude” and
represents the amplitude of the function. This is “A” in the formula. Your findings:

2. Locate the crest of the wave that is furthest right. This is the ISS’s first orbit in this tracking diagram. Draw
a vertical line and estimate its longitude as accurately as you can. Trace the curve back to its trough and
estimate its longitude as accurately as you can. The distance between these is one-half wave—double the
value you just measured and you have the number of degrees for one wave (call this “T”). Note that a sine
wave usually has 360° for a wave, so the frequency (“B”) is 360° ÷ T.

3. Note where the “first” orbit intersects the Equator. This is the “horizontal shift” (“C”) wherein the value is pos-
itive if the graph is “pulled left” and negative if “pulled right.”

4. Explain why D = 0.
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Modeling Satellite Orbits
Sample Solution

Herein is a solution for of the ISS on 5 January 2010 by determining amplitude, frequency, horizontal shift,
and vertical shift, then apply your findings to the general form

y = A•sin[B (x – C)] + D
to determine the equation by which the ISS position can be plotted.

1. Draw the Equator on your map.  Measure from the Equator to the “highest” point of the ISS orbit.  Confirm
that this is the same value as the “lowest” point.  Note that this measure will be in “degrees latitude” and
represents the amplitude of the function. This is “A” in the formula. Your findings:

Amplitude appears to be about 50° of latitude.  

2. Locate the crest of the wave that is furthest right. This is the ISS’s first orbit in this tracking diagram. Draw
a vertical line and estimate its longitude as accurately as you can. Trace the curve back to its trough and
estimate its longitude as accurately as you can. The distance between these is one-half wave—double the
value you just measured and you have the number of degrees for one wave (call this “T”). Note that a sine
wave usually has 360° for a wave, so the frequency (“B”) is 360° ÷ T.

Crest to trough appears to be about 170°, therefore a whole wave would be 340°.  B = 360/340.

3. Note where the “first” orbit intersects the Equator. This is the “horizontal shift” (“C”) wherein the value is 
positive if the graph is “pulled left” and negative if “pulled right.”

The first orbit appears to be about 10° “ahead of” the Prime Meridian, so C = –10.  

4. Explain why D = 0.

The ISS orbits at an angle to the plane of the Earth’s orbit around the Sun, so it will have an equal
amount about and below the Equator resulting in NO vertical shift of the function.  
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Appendix I
Viewing Continuity of Orbits
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OBJECTIVE:
Students calculate “area under the curve” to determine
the distance a spacecraft has traveled in the first two
minutes after liftoff.  

NATIONAL STANDARDS
Mathematics
Algebra

• analyze change in various contexts
Geometry

• specify locations and describe spatial relation-
ships using coordinate geometry and other rep-
resentational systems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formu-
las to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coher-
ently and clearly to peers, teachers, and
others

• use the language of mathematics to ex-
press mathematical ideas precisely

Connections
• recognize and use connections among

mathematical ideas
• understand how mathematical ideas inter-

connect and build on one another to pro-
duce a coherent whole

• recognize and apply mathematics in con-
texts outside of mathematics

Representation
• create and use representations to organ-

ize, record, and communicate mathematical
ideas

• select, apply, and translate among mathematical
representations to solve problems

• use representations to model and interpret physi-
cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Evidence, models, and explanation
Science as inquiry

• Understanding about scientific inquiry
Science and technology

• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 17 - Students will develop an under-

standing of and be able to select and use information
and communication technologies.

MATERIALS:
• Computer with Internet connection connected to a

projector
• Graphing calculators or computer-based modeling

software (for students)
• One hand out, sheet of graph paper, and ruler for

each student

Lesson 8:
Out To Launch

Last Launch of Space Shuttle - Atlantis (STS-135) - July 8, 2011
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BACKGROUND INFORMATION:
Consider allowing precalculus students an oppor-

tunity to experience the underpinnings of integral cal-
culus. This activity was created with that goal in mind.
Students will experience computing the “area under a
curve” and attempt to bring meaning to the outcome.

Consider presenting the activity to students as a
semester project wherein they may attempt modeling
of actual data and try to make sense of it. The activity
is appropriate for students at virtually all high school
levels as long as they are comfortable with graphing &
modeling data, familiar with power functions, and have
some background (or facility) with dimensional analy-
sis.

Area formulae

• Left endpoint approximation: 

• Right endpoint approximation: 

• Midpoint approximation: 
where a and b are the endpoints of the interval

• Trapezoidal approximation: 
where a and b are the endpoints of the interval

PROCEDURE:
1. Discuss why the label “rocket scientist” has long

been synonymous with “stellar” problem solving ca-
pabilities. If “it’s not rocket science” means “you can
do this” then “it’s rocket science” probably means
“only the best thinkers can do this.”

2. Remind students the basic form of a power model
and how one differs from the others (the general
form for power functions is y = axb).  Consider re-
minding students how to derive the coefficient if the
power is given (or known).

3. Lead a discussion on how students would “compute
the areas under a curve” if the equation were y = 2x
+ 3; 0 = x = 4.  Either demonstrate this or have stu-
dents perform the area calculation independently.
Hopefully, they will quickly determine that the shape
is merely a trapezoid, and the area can be calcu-
lated easily.

4. Extend the discussion to how students would “com-
pute the areas under a curve” if the equation were y =
2x2 + 3; 0 = x = 4.  Place emphasis on how the “curve”
makes the job a bit more complicated than for a line.
Lead students to understanding they can approximate
the area with small trapezoids and add them up.

5. Show the Space Shuttle launch (http://www.
youtube.com/watch?v=4FROxZ5i67k) and explain
how the Solid Rocket Boosters (SRBs) detach about

two minutes
after launch.
From there, the
main engines lift
the Orbiter to its
orbital altitude.
Tell the class tol
assume the
Shuttle ascends
pretty much vertically (which is, of course, not true).

6. Distribute the Out To Launch worksheet, graph
paper, and rulers.  

7.  Monitor as students draw the interval lines and
begin computing areas. The result should be
around 173,000 feet.

8. Assure all students have completed all area com-
putations, have a total, and have addressed the
questions.

9. Discuss the answers on the paper and explore the
variability of students’ area approximations.  Ask if
the approximation would be an underestimate or
over estimate of the Shuttle altitude at SRB separa-
tion.

10. Conclude by announcing to students that they are
now on their way to becoming rocket scientists!

Note: A reasonable squared power function is y =
(4151 ÷ 1252)x2 where x is the number of seconds after
launch and y is the speed of the Space Shuttle in
feet/second.  This is reasonable because a rocket’s ac-
celeration should increase in an increasing rate be-
cause of lost mass during combustion, the curve
should go through (0, 0) and (125, 4151), and the “ap-
proximation” the model provides will miss the values
where the shuttle engines were throttled back; hence,
the model provides the speed at 125 seconds if the en-
gines delivered constant thrust.  The area, therefore,
is the altitude at SRB separation (assuming the Shut-
tle ascends vertically).

Area formulae

• Left endpoint approximation:  

• Right endpoint approximation: 

• Midpoint approximation:   
where a and b are the endpoints of the interval

• Trapezoidal approximation:
where a and b are the endpoints of the interval

Solid Rocket Boosters detach from Shuttle
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SUMMARY:
Integral calculus need not be mysterious nor laden with
cryptic formulae; it can be understood from the per-
spective of performing arithmetic (appropriately) on the
graphical representation of an outcome. If the units on
the axes support the computation (e.g., meters/second
* number of seconds = number of meters) adding the
areas of the representative columns (the “Riemann
Sum”) gives an approximation of the true area under
the curve. Using narrower columns gives an even bet-
ter estimate and making them infinitesimal in width is
calculus!  

EVALUATION:
See the Challenge Problem. (Page 49)

LESSON ENRICHMENT/EXTENSION:
• Secretly produce four versions of the activity, each

using a different method for calculating the areas of
the intervals—rectangles using left endpoint, right
endpoint, or midpoint for the height of the rectangle;
or, trapezoids using both endpoints. Consider pro-
ducing them on different colors of paper and having
students with the same color of paper work together.
Have students compare answers during the activity
debrief, see if they can explain why the answers dif-
fer, and, for this function, which method should pro-
vide the closest approximation.

• Have different groups approximate the
area using intervals of different widths.
Then, compare the approximations.
Draw students to the realization that the
approximate approaches the correct
value for the area the more intervals
are used.

• Use a spreadsheet to calculate the
areas and explore changing interval
widths.

• Connect to Riemann Sum for beginning

calculus students. (A Riemann Sum is a method for
approximating the total area underneath a curve on a
graph, otherwise know as an integral. It may also be
used to define the integration operation. The method
was named after German mathematician, Bernhard
Riemann.) 

• Connect to Simpson’s Rule for advanced calculus
students. (Simpson's rule is a staple of scientific data
analysis and engineering. It is
widely used, for example, by
Naval architects to calculate the
capacity of a ship or lifeboat.)

ASSOCIATED WEBSITES 
AND/OR LITERATURE:

• You Tube video of shuttle launch:
http://www.youtube.com/
watch?v=4FROxZ5i67k

• Riemann Sum calculator: 
http://mathworld.wolfram.com/
RiemannSum.html Space Shuttle Launch

Riemann Sum ConvergenceSimpson’s Rule
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Out To Launch

Name: _______________________________________________________________________________

On 7 May 1992, the space shuttle Endeavour was launched on mission STS-49, the purpose of which was to
install a new perigee kick motor in an Intelsat communications satellite. The following table gives the velocity data
for the shuttle between liftoff and the jettisoning of the solid rocket boosters (SRBs).

1. Make a scatter plot of the data using a full sheet of graph paper.

2. Model the data as a squared power function and draw the function on
the same graph as the scatter plot. 
Note: this is NOT the same as a quadratic function!

3. Explain why this particular model is best/most appropriate for the con-
text of a shuttle launch.

4. Draw vertical lines on the graph every 10.0 seconds and note where
they intersect the graph of the model.
Note that the last interval will be half the normal width, so the last verti-
cal line will be at x = 125.

5. Determine the heights of the sides of each interval and transcribe the
measurements into the “data table”

6. Substitute the values from #5 into an appropriate formula and 
calculate the area of each region obtained in #4.

7. Add up all the interval areas.  Report the value with appropriate units.

8. Answer the question, “What is the significance of the area under the curve of the shuttle launch data?”

9. What advantage would using intervals 5.0 seconds wide for the entire graph provide?

Event Time(s) Velocity (ft/s)

Launch 0 0

Begin roll maneuver 10 185

End roll maneuver 15 319

Throttle to 89% 20 447

Throttle to 67% 32 742

Throttle to 104% 59 1325

Maximum dynamic pressure 62 1445

SRB separation 125 4151

Launch of STS-49, Endeavour, 
on 7 May 1992
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Interval Left
height

Right
height Width Area Formula (with 

substitutions) Area

10

20

30

40

50

60

70

80

90

100

110

120

125



49

Challenge Problem
Velocity vs. time for a 1961 Thunderbird in a test area

Determine the distance the car has driven. 
Watch out for the units (miles per hour are on the vertical axis and number of seconds on the horizontal axis).



50

Lesson 9:
The Parachute Paradox

OBJECTIVE:
Students determine the relationship between the area
of a parachute and the rate a given weight will fall.

NATIONAL STANDARDS:
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations

and structures using algebraic symbols
• use mathematical models to represent and un-

derstand quantitative relationships
• analyze change in various contexts

Geometry
• use visualization, spatial reasoning, and geo-

metric modeling to solve problems
Measurement

• understand measurable attributes of objects
and the units, systems, and processes of meas-
urement

• apply appropriate techniques, tools, and formu-
las to determine measurements

Problem Solving
• build new mathematical knowledge through

problem solving
• solve problems that arise in mathematics and in

other contexts
• apply and adapt a variety of appropriate strate-

gies to solve problems
• monitor and reflect on the process of mathemat-

ical problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among mathe-

matical ideas
• understand how mathematical ideas intercon-

nect and build on one another to produce a co-
herent whole

• recognize and apply mathematics in contexts
outside of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Systems, order, and organization
• Evidence, models, and explanation
• Change, constancy, and measurement
• Form and function

Science as inquiry
• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 1 - Students will develop an under-

standing of the characteristics and scope of technol-
ogy.

Standard 7 - Students will develop an under-
standing of the influence of technology on history.

Standard 8 - Students will develop an under-
standing of the attributes of design.

Standard 9 - Students will develop an under-
standing of engineering design.

Standard 17 - Students will develop an under-
standing of and be able to select and use informa-
tion and communication technologies.

Standard 20 - Students will develop an under-
standing of and be able to select and use construc-
tion technologies.
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MATERIALS
• Plastic, large dry-cleaning sheath-type bags (Local

dry cleaners will typically provide several of these for
free if you tell them you are a teacher.)

• String (a large spool of medium weight
• Scissors (one per group)
• Several rolls of clear cellophane tape (not frosted)
• Hand-held (single) hole punch
• Washers, bolts, clothes pins, or other constant weight

objects
• Stopwatch (consider the APP on TI-Education that

uses TI-83+ and TI-84+ calculators)
• A stairway that allows a drop of at least 15 feet, cat-

walk above a gymnasium, or equivalent (Ladders are
a bit too risky.)  

BACKGROUND INFORMATION:
The job of a parachute is to arrest acceleration and

create a constant descent rate, which various online
parachute organizations suggest should be about 15
feet per second (about 4.6 meters per second). Given
practical constraints of the packing size of a folded
parachute and its weight, the smallest parachute that
gives the desired performance is most desired. There-
fore, to address the question, “What is the relationship
between the size of a parachute and the rate it allows
an object to fall?” students will relate area of circular
parachutes to the parachutes’ descent rate, tested with
various weights. To simplify the investigation, students
drop the test parachutes from the same height (as
closely as possible) and time their drop,
performing multiple trials of each para-
chute/weight combination.

Consider how the three variables—
parachute area, amount of weight being
dropped, and time of the drop—will be
graphed and subsequently mathemati-
cally modeled. The two independent vari-
ables (parachute area and weight being
dropped) will each affect the time of the
drop (assuming height of drop is kept
constant throughout the investigation).
Decide how you want students to ad-
dress this difficulty before beginning; that
way you determine the level of their in-
quiry a priori. You could constrain the in-
vestigation by providing explicit direction
(e.g., graph parachute area vs. weight
being dropped for only those systems
that do not exceed 15 fps and use specified colors to
indicate better descent rates) or leave totally “open” by
merely announcing the challenge of three variables
and leave the analysis to the students.  

PROCEDURE:
1. Ask students to explain the purpose of a parachute.

Guide their discussion towards cessation of accel-
eration using air resistance rather than “practical ap-
plications” (e.g., recreation or safety during planned
extreme aircraft maneuvers). Consider referring to
the story of The Candy Bombers who delivered sup-
plies to West Berliners during the 1948 blockade and
also dropped candy to kids using handkerchiefs (the
effort is often deemed “the most successful human-
itarian action of all time”) for background on hand-
made parachutes.

2. Have students hypothesize the size of a parachute
each individual student would need to make a safe
descent. Reveal that “safe descent” could be defined
as 15 feet per minute.

Candy Bomber, Col Gail Halvorsen, during the Berlin Airlift
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3. Announce the intent to perform an investigation that
will use a mathematical model to compute the area
of parachutes required for them to fall safely. Note
that statements like “more area makes descent
slower” is a naïve statement.  There must be a prac-
tical limit to size because a VERY large parachute
would likely be too bulky to be practical and would
provide unpredictable descents rather than safe
(and somewhat vertical) descents. Parachutes have
weight and volume!

4. Suggest students construct parachutes of various
sizes and drop them from the same height with vary-
ing weights. Make strong statements about increas-
ing reliability of measurements (i.e., performing
multiple trials with each set-up and not including tri-
als suspected of mis-measurement).

5. Have students make parachutes from circles with six
equally spaced hole punches around the perimeter.
Tape the holes before punching to reinforce the hole.
Then, tie strings on each punch-out. Tie a single
weight onto the strings such that each string is the
same length (see Appendix II).

6. Instruct students to have timers call out “ready, set,
go!” in a predictable cadence. Start the stopwatch at
“go” and simultaneously release the parachute. 

7. Allow data collection and analysis to proceed
through consensus of the student groups.

8. Conduct a debrief on the findings.

SUMMARY:
A parachute is not as simple
as one may think because its
size must be determined be-
fore one takes a leap, and
larger does not necessarily
mean it will be better. Once a
reasonable model is deter-
mined through experimenta-
tion, the required size of a
full-scale parachute can be
computed.

EVALUATION:
• How do “conventional parachutes” differ from what

DaVinci invented?
• What is the LIMIT of area to weight (where accelera-

tion is adequately arrested)?
• How must this investigation be modified if a person

were to jump from very high altitudes? Note that the
stories of Joe Kittinger and Felix Baumgartner would
be appropriate here.

LESSON ENRICHMENT/EXTENSION:
• Use two timers for each group in order to provide a

cross-check for reliability.  If the times do not agree
acceptably, or if the timers were not confident in their
start or stop, then the data is not considered in the
analysis.

• Use photo gates and electronic data gathering de-
vices (e.g. CBL and calculator) rather than stop-
watches operated by students.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• Descent rate of a round parachute 
http://www.pcprg.com/rounddes.htm.

• Descent rate calculator 
http://www.aeroconsystems.com/
tips/descent_rate.htm.

• The Candy Bombers 
http://thecandy bombers.com.

• Example of displaying multiple variables:
Napoleon’s March by Charles Joseph Minard 

http://www.edwardtufte.com/tufte/posters.

• Timer APP (application) for use on the 
TI-83+ and TI-84+ calculators 

http://education.ti.com/educationportal/
sites/US/homePage/index.html.

Another method for making parachutes is
using a napkin, stick-on dots, and string.
Another variable in parachute making can
be type of material used to make the canopy.
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Appendix I

Group Members:

__________________________________________    _________________________________________

__________________________________________    _________________________________________

Drop height: ______________________________     Weight: __________________________________

Trials

Note: The person timing calls out “ready, set, go!” If there is any doubt about the release, the trial is not counted
in the analysis BUT is still recorded. Use a new table for each change in area, weight, etc.

Diameter Area Time Comments
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Lesson 10:
Polar Expressions

OBJECTIVE:
Students construct polar graphs of Sun transit data.
Comparisons can be made of transits of different days
of the year and at different longitudes, latitudes, and
altitudes.

NATIONAL STANDARDS:
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations

and structures using algebraic symbols
• use mathematical models to represent and un-

derstand quantitative relationships
• analyze change in various contexts

Geometry
• specify locations and describe spatial relation-

ships using coordinate geometry and other repre-
sentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• apply and adapt a variety of appropriate strate-

gies to solve problems
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate their mathematical
thinking though communication

• communicate their mathematical thinking coher-
ently and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among mathe-

matical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts
outside of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Systems, order, and organization
• Evidence, models, and explanation
• Change, constancy, and measurement

Science as inquiry
• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

Standard 7 - Students will develop an understand-
ing of the influence of technol-
ogy on history.

Standard 17 - Students will
develop an understanding of
and be able to select and use
information and communica-
tion technologies.
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MATERIALS:
Materials—one set for each group
• Magnetic compass
• Device for measure angle of elevation of the Sun (see

Appendix III for a crude diagram)
• Altitude & Azimuth data for your location
Materials—for each student
• Polar graphing paper
• Masking tape or tacks to affix graph to the wall

BACKGROUND INFORMATION:
Everyday examples of complex math prob-

lems give students some reason to remember
and understand the lesson.  For this lesson, the
arc of the Sun as it travels accross the sky is
likely overlooked but easily observed by all and
lends itself to polar graphing.  As an aid, pub-
lished periodic weather data provides details to
enhance the experience.  Polar graphing is the
plot of two angle measures. Mapping the Sun’s
path includes altitude (angle above the horizon)
and azimuth (path along the horizon).

The students will graph the altitude and azimuth of
the Sun for a particular day (data available from the US
Navy Observatory). Polar graph paper can be printed
from the online source listed below. Inform students
that azimuth observations should be plotted on the ou-
side circle (0° through 360°) and altitude should be
plotted on the concentric circles.  One altitude plus one
azimuth reading result in a point similar to an x,y coor-
dinate.  Provide no further details and see what hap-
pens.  Note that altitude could be plotted with the zero
at the origin or the outer-most circle and azimuth could
be referenced from 0° at the top (“North”—as with a
magnetic compass or lines of longitude) or at the right
(as with standard protractor measurements).  Four dif-
ferent graphs could result. 

One graphical variation is given in Appendix II.
Have students compare their graphing approaches.
Ask the following questions:
1. Which mapping version most closely emulates the

arc of the Sun across the sky?

2. What do the negative values (for “altitude”) mean?
3. What is happening to the Sun when the points get

further apart for successive half-hour intervals?
4. Was the Sun directly overhead at noon?
5. Explain how to identify “local noon” from the plot.
6. How will the plot differ for another date?
7. How will the plot differ for a different location?

To create a similar dataset, begin at the USNO
Website, click “Astronomical Applications,” then
“more…”   Under the heading Positions of Selected Ce-
lestial Objects choose  “Altitude and Azimuth of the
Sun or Moon During One Day.”  The data in Appendix
I was created by selecting 4 July 2011 at Seattle, WA
and 30 minute intervals, so choose an appropriate date
and interval (30 minutes works well for most students). 
PROCEDURE:

1. Ask students to explain the path the Sun will make
across the sky that day. Probe for what differences
location or time of year would make.

2. Task students to measure the angle of elevation of
the Sun and record the time at which the measure-
ment was made. See Appendix III for a crude dia-
gram of a device that will assist in this measurement.
Caution: do NOT look directly at the Sun! Use a
magnetic compass to approximate the Sun’s direc-
tion.

3. Debrief step #2 by requesting speculation about how
to graph the angle of elevation of the Sun over a day.

4. Show Azimuth vs. Altitude data, like that shown in
Appendix I. Demonstrate how the azimuth (number
of degrees clockwise from North) and altitude (num-
ber of degrees of elevation from the horizontal) are
measured kinesthetically.

5. Hand out Altitude & Azimuth data (ideally, each stu-
dent or student pair would get a different date for the
same location). 

Polar Graphing paper

As shown in the figure below, azimuth is the angle of an object around
the horizon, while altitude (or "elevation") is the angle of an object above
or below the horizon.
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6. Hand out polar graphing paper that has at least nine
concentric circles and rays at least every 10° (every
5° is preferred). Explain that azimuth will be plotted
around the circles with North at the top.That’s all
(leave whether students graph from inside out or
outside in).

7. Students now graph their data.
8. Collect the papers that are plotted the same way

(North at top, clockwise increase to angles, and the
same treatment for “altitude” then post them around
the room in chronological order. Students now en-
gage in a “gallery walk” to understand the story the
graphs tell.

9. Debrief by soliciting student ideas and insights.
Share yours too.

SUMMARY:
Plotting Sun transit data in polar form gives practice in
polar graphing and provides a way to both understand
the phenomena and hypothesize what one would see
at other global locations. This activity has the potential
of inciting a great deal of incidental learning.

EVALUATION:
Have students write a response to the following ques-
tions and explain their reasoning:
•  How would the Sun transit plot differ for a location

5° north of ours? 
•  How would the Sun transit plot differ for a location

5° south of ours?
•  How would the Sun transit plot differ for a location

5° east of ours? 

LESSON ENRICHMENT/EXTENSION:
• Plot a second location (but the same day) on the

graph. Examine the plot for differences caused by
longitude (there should be none) and latitude (the “al-
titude” difference should be connected to the differ-
ence in latitude.)

• Construct a gnomon (the part of a sundial that casts
a shadow) where it will cast a shadow from the Sun
from sunrise through sunset. Plot a point onto a sheet
of paper every half hour
where the tip of the gnomon
casts its shadow. Record
the time and the angle
(clockwise from True North)
for each point. Compute the
angle of elevation of the
Sun for each point using the
height of the gnomon and
arctan. Compare the com-
puted angles with the table
of Azimuth and Altitude Of The Sun from the USNO.

• Make multiple plots as in the previous bullet with ob-
servations spread apart by one week.  Discuss how
to use the USNO data to replicate such plots.

• Consider other graphs, such as day length for a lo-
cation over a year (use the azimuth as day of the year
because 360° ≈ 365 days).

ASSOCIATED WEBSITES AND/OR LITERATURE:
• Create your own graph paper  
http://incompetech.com/graphpaper/ 

• US Navy Observatory altitude and azimuth of the
sun on a given day and location  

http://aa.usno.navy.mil/data/docs/AltAz.php 

• NOAA’s Solar Position Calculator 
http://www.srrb.noaa.gov/highlights/sunrise/
azel.html

• Derivation of The Elevation Angle of the Sun 
http://www.sjsu.edu/faculty/watkins/elevsun.htm

Homemade Gnomon



57

Appendix I
Altitude and Azimuth of the Sun for Seattle, WA
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Appendix II
Graph of Altitude and Azimuth of the Sun for Seattle, WA 

This plot treats “azimuth” as a compass or true heading and “altitude” with ) at the center.  
The plotted times are from 0300 to 1400 PST.
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Appendix III

Device for measuring the angle of elevation of the sun (the “altitude”).
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Lesson 11:
Prop Me Up!

OBJECTIVE:
Students explore the relationship between the diame-
ter of a propeller and the thrust it produces.

NATIONAL STANDARDS:
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations

and structures using algebraic symbols
• use mathematical models to represent and un-

derstand quantitative relationships
• analyze change in various contexts

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among mathe-

matical ideas
• understand how mathematical ideas interconnect

and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts out-
side of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems

• use representations to model and interpret physi-
cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Systems, order, and organization
• Change, constancy, and measurement
• Form and function

Science as inquiry
• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Physical science
• Motions and forces
• Interactions of energy and matter

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor

Technology
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

Standard 7 - Students will develop an understand-
ing of the influence of technology on history.

Standard 17 - Students will develop an under-
standing of and be able to select and use information
and communication technologies.
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MATERIALS: (USING AN R/C AIRCRAFT)
• Electric or fuel-powered airplane with an engine large

enough to accommodate a wide variety of propeller
diameters

• Propellers, in all diameters the engine can reason-
ably throw, making sure the pitch and propeller brand
remain unchanged. Use propellers of the same pitch
for the investigation (such as 12x6, 13x6, 14x6, etc.)

• Mini tachometer (about $18 from hobby shops)
• Spring scale, fish scale, Vernier Force Sensor, or

other reasonably reliable method to measure static
thrust

• Starter box, fuel, safety goggles, hearing protection,
fire extinguisher, etc.

• Data tables (each student is given or makes one that
has columns labeled Prop Diameter and Thrust along
with rows with each prop diameter listed).  A sample
is located on page 63

• Graphing calculators or computer-based modeling
software (for students)

MATERIALS: (USING INTERNET RESOURCES)
• Computer with Internet connection connected to a

projector
• Data tables (each student is given or makes one that

has columns labeled Prop Diameter and Thrust along
with rows with each prop diameter listed).  A sample
is located on page 63

• Graphing calculators or computer-based modeling
software (for students)

BACKGROUND INFORMATION:
Radio controlled (R/C) airplanes are fully functional

airplanes subject to all the forces of flight.  For the pur-
pose of scientific investigation, R/C airplanes are also
a very affordable and accessible means of exploring
the forces of flight.  They provide a simple platform for
testing ideas with very dramatic, tangible, and graph-

able results.  This lesson will explore ways to optimize
aircraft thrust, one of the basic forces of flight.

A quick fix for more power (thrust) in a road vehicle
is to use a bigger engine.  The balance of an airplane,
however, does not allow for much change in engine
size or weight.  In most cases, the aircraft performance
worsens if it changes at all.  Another means to change
aircraft thrust is to try various propellers on the same
engine and measure the “pull” of the airplane using a
fish scale.  Surprisingly, the diameter of the propeller
has a big impact on thrust.  A larger diameter propeller
turning slower can produce significantly more thrust
than a slightly smaller one that is turning faster.
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PROCEDURE: (USING AN R/C AIRCRAFT)
1. Remind students of the “four forces of flight.” One of

them, of course, is thrust, which differentiates an air-
plane from a glider.

2. Show a wide variety of propellers, including those
made from wood, fiberglass, and plastic.

3. Demonstrate the meaning of “pitch” by moving a
propeller through the air the correct number of
inches as you revolve it once. A 12 x 6  propeller is
12 inches in diameter and will “move through” 6
inches of air in one revolution.

4. Agree, as a class, that RPM, pitch, air temperature,
etc., will all be held constant throughout the data
gathering trials while propeller diameter is varied.

5. Hook scale or force sensor to tail wheel or loop a
cord around the airplane’s empennage, making ab-
solutely certain the airplane cannot get away. 

6. Conduct a  safety briefing: listen at all times for in-
structions, stand to the side of the airplane (never in
front or behind), etc.  Wear proper eye protection. 

7. Run the engine to the agreed-upon RPM and meas-
ure the force. Students record it.

8. Repeat with other propellers at the agreed-upon
RPM. Use at least six propellers.

9. Return to the classroom for students to use their cal-
culators to compute the Power Model for the data.
Hold a discussion as to why Linear and Exponential
would be inappropriate.

PROCEDURE: (USING INTERNET RESOURCES)
1. Select a Website such as 
http://personal.osi.hu/fuze sisz/strc_eng/index.htm or
http://adamone.rchomepage.com/calc_thrust.htm
to generate the data.  Spend some time with it on
your own before you present to the class. See an
example on page 63.

SUMMARY
Using an actual R/C airplane or online sim-
ulation software, we see that a small in-
crease in propeller diameter makes a big
difference in thrust when RPM and pro-
peller pitch are kept constant.  

EVALUATION:
• Have students write a response to the question, “Why

is a power function or polynomial a better model of
propeller diameter vs. thrust rather than linear or ex-
ponential?”

• Have students write a response to the question,
“What power model appears to be most appropriate
for the relationship between propeller diameter vs.
thrust?

LESSON ENRICHMENT/EXTENSION:
• Run the trials several times for each propeller to

cross-check the force values.
• Mount the propellers on different airplanes to see if

the thrust values are the same at the same RPM.
• Check the values you compiled experimentally with

those from one of the Websites.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• http://personal.osi.hu/fuzesisz/strc_eng/index.htm

• http://adamone.rchomepage.com/calc_thrust.htm
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Diameter (in) Thrust (pounds)

6

7

8

9

10

11

12

13

14

15

Thrust vs. Propeller Diameter

http://adamone.rchomepage.com/calc_thrust.htm
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Lesson 12:
Rules of Thumb

OBJECTIVE:
Students will evaluate a variety of “rules of thumb” for
their “domain of acceptability” (values over which the
“rule” is a reasonable approximation of the phenom-
ena).

NATIONAL STANDARDS:
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations

and structures using algebraic symbols
• use mathematical models to represent and under-

stand quantitative relationships
• analyze change in various contexts

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Data Analysis and Probability
• select and use appropriate statistical methods to

analyze data
• develop and evaluate inferences and predictions

that are based on data
Problem Solving

• build new mathematical knowledge through prob-
lem solving

• solve problems that arise in mathematics and in
other contexts

• apply and adapt a variety of appropriate strategies
to solve problems

• monitor and reflect on the process of mathematical
problem solving

Reasoning and Proof
• make and investigate mathematical conjectures

Communication
• organize and consolidate mathematical thinking

through communication
• communicate mathematical thinking coherently

and clearly to peers, teachers, and others
• analyze and evaluate the mathematical thinking

and strategies of others
• use the language of mathematics to express math-

ematical ideas precisely

Connections
• recognize and use connections among mathemat-

ical ideas
• understand how mathematical ideas interconnect

and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts out-
side of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Systems, order, and organization
• Evidence, models, and explanation
• Change, constancy, and measurement

Science as inquiry
• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 3 - Students will develop an understanding

of the relationships among technologies and the con-
nections between technology and other fields of study.

Standard 7 - Students will develop an understanding
of the influence of technology on history.

Standard 17 - Students will develop an understand-
ing of and be able to select and use information and
communication technologies.
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MATERIALS:
• Graph paper and/or geometric construction tools

(Some students may need “labware,” e.g., CBL and
temperature probes).

• Poster board if presentations will be made

BACKGROUND INFORMATION:
Nearly every scientific principle can be resolved

into a reasonably straight-forward function—typically
linear, polynomial, exponential, or trigonometric.  A few
examples are orbits of planets, tides, and height of a
column of mercury versus air pressure.  Some rela-
tionships may be approximated by simple functions
even though they require calculus.  An example is pre-
dicting the temperature of a liquid as it cools because
the relationship is a differential equation (Newton’s Law
of Cooling) but can be reasonably modeled as an ex-
ponential.  The preciseness of the actual functions al-
lows for predictability and extension to other areas;
however, it may not be necessary for many “practical
applications.”

Often “close enough is good enough” in our daily
lives.  The same is true in aviation, where a precise an-
swer is not only unnecessary, it might also require too
much time to compute and, therefore, create a poten-
tially dangerous distraction.  “Rules of thumb” (ROT)
are, therefore, commonly taught because they allow
for mental math and provide an acceptable answer
without unduly adding to the pilot’s workload.  This ac-
tivity reveals many of the common ROT and examines
them for their level of applicability.

PROCEDURE:
1. Ask students to plot the Altitude vs. Pressure data

in Appendix I. When they are finished, announce
that student pilots are taught in ground school that
pressure decreases at the rate of one inch of mer-
cury per thousand feet of altitude gain. Facilitate a
discussion as to why this “rule” is taught when the
data is clearly exponential. As the discussion sub-

sides, ask students to draw the line with the slope
(1”/1000’) and a y-intercept of 29.92” (standard pres-
sure). Group students in pairs to discuss, again, why
this “rule” is taught. Hold a classroom discussion
after the groups concur and steer the discussion to-
wards the ROT existing over an acceptable domain
(in this case, the altitudes applicable for general avi-
ation) and being an easy relationship to remember.

2. Assign other ROT to student pairs or allow them to
choose one that appeals to them. See Appendix II
for a list of suggested ROT. Consider distributing the
ROT on slips of paper or with the ROT written on the
handout in Appendix III.

3. Monitor students as they work. Provide suggestions
regarding geometric constructions or data gathering
for the ROT that might need these methods.

4. Provide a venue in which to share student findings.
For each one, have students explicate the domain
of acceptability (values over which the “rule” is a rea-
sonable approximation of the phenomena) for the
ROT—after all, that’s the reason they exist!  

SUMMARY:
“Rules of Thumb” exist to  both provide an easier way
to understand a phenomena, relationship, or principle
and a quick way to approximate computations.  Flu-
ency in “mental math” is prized and supported by the
use of rules of thumb.

EVALUATION:
Explain in simple language (e.g., using terms under-
standable by someone much less sophisticated and
less mathematically knowledgeable than you) how to
determine the “domain of acceptability” of a rule of
thumb.

LESSON ENRICHMENT/EXTENSION:
• Allow students time to produce a poster of their find-

ings. The product should include the ROT, the actual
relationship, any sources of information students
used, and the domain under which the ROT is ac-
ceptable. Host a “gallery walk” where students can
view all other posters.

• Facilitate a brainstorming session where students ei-
ther “invent” or recall ROT they can test.

ASSOCIATED WEBSITES AND/OR LITERATURE:
•  http://www.phrases.org.uk/meanings/
rule-of-thumb.html

• http://rulesofthumb.org/
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Appendix I

Table of pressure vs. altitude
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Appendix II 
Examples of Rules of Thumb

• SOMETHING IN THE SKY. You can describe the location of objects that are low in the sky by holding your
hand in front of you at arm's length. With your palm facing in and your pinkie on the horizon, the width of your
hand covers 15 degrees of arc above the horizon.

• ESTIMATING DISTANCES. Hold your thumb at arm's length against a distant background. Estimate how far
your thumb jumps on the background when you look at it with one eye and then the other. The background
is ten times that distance from you.

• HOW FAR OFF COURSE. You will be one nautical mile off course when traveling 60 NM for each 1° devia-
tion.

• TEMPERATURE LAPSE RATE.  Air temperature decreases at the rate of 2° C for each 1000’ of altitude.

• ESTIMATING ALTITUDE AND AZIMUTH. Your hands can be used to make fairly accurate measurements of
altitude and azimuth. Close one eye and hold your fist at arms length, so that the thumb is toward the zenith.
The amount of sky covered by the fist from little finger to thumb is approximately 10 degrees. Half a fist, or
the width of two extended fingers is 5 degrees. Measure a star's altitude by estimating how many fists and
fingers it is above the horizon; for measurements in azimuth, simply turn your fist 90 degrees.

• DISTANCE TO THE HORIZON. The distance to the horizon, in miles, is the square root of half again your
height, in feet. If you're 6 feet tall, you can see 3 miles. From 600 feet, you can see 30 miles (sq. rt. of 900).
Conversely, you can see a 150-foot building from 15 miles away.

• DISTANCE TO THE HORIZON.  The distance to the horizon is equal to the square root of your altitude mul-
tiplied by 1.22.

• CROSSWIND COMPONENT. The crosswind component (the “wind vector” perpendicular to the runway) at
an airport will be about 70% of the wind speed.

• DME IS THE SAME AS GROUND DISTANCE.  DME is measured from an aircraft to a station on the ground.
The distance over the ground from the point directly under the airplane is about the same as the DME.

• ESTIMATING WIND SPEED.  Expect a 15 KT wind when small tree branches are moving and 25 KT when
small trees are swaying.

• HYDROPLANING SPEED.  The speed at which aviation tires will hydroplane is nine times the square root of
the tire pressure.

• TAKEOFF DISTANCE.  The distance to clear a 50’ obstacle is 80% more than the ground roll which is 80%
more than the landing distance.

• MEASURING ANGLES.  For a small angle x measured in radians, sin x = x.  This approximation is frequently
used in astronomy.

• CONVERT DEGREES CELSIUS TO DEGREES FAHRENHEIT.  Double the Celsius temperature and add
thirty.

• FUEL WEIGHT.  Multiply the number of gallons of gasoline by six to get the number of pounds of fuel.  Mul-
tiply by seven for Jet A fuel and eight for water.

• POUNDS OF JET FUEL TO GALLONS. To convert pounds of jet fuel to gallons, drop the zero and then add
50 percent to that.
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• WHEN TO BEGIN A DESCENT.  Divide cruise altitude by two and ignore the last two digits (usually zeros)
to get the number of nautical miles away from a destination airport to begin a descent.

• ALTITUDE TO EXPECT CLOUD BOTTOMS.  Subtract the dew point from the temperature to get the num-
ber of thousands of feet to expect cloud formations.

• ESTIMATING SPEED. Speed in feet per second is about 1.5 times speed in miles per hour.

• HEIGHT OF A HILL. The rate at which an object falls is independent of how fast it is traveling laterally. To
determine the height in feet of a slope, throw a rock out level and time its fall. Square the number of sec-
onds it takes the object to land, then multiply by 16. This will be your height in feet above the landing site.

• MULTIPLYING BY FIVE.  To figure what any number times five is, take half the number and multiply by 10.

• THE SUM OF THE DIGITS OF ANY MULTIPLE OF NINE WILL EQUAL TO NINE OR A MULTIPLE OF NINE.

• BUILDING STAIRS. A set of steps will be comfortable to use if two times the height of one riser, plus the width
of one tread is equal to 26 inches.

• FINDING YOUR DOMINANT EYE. To find your dominant eye, make a circle of your thumb and forefinger
about 6 inches in front of your face. Look through the circle with both eyes at an object across the room. Now
close one eye; if the object stays in the circle, the open eye is the dominant one.

• HANDWRITING ANALYSIS. If handwriting consists of all capitals, the chances are greater than 50 percent
that it is a man's. If the capitals are slanted or joined, the odds are 75 percent that it is a man's. If the capi-
tals are both slanted and joined, 85 percent of the time it was written by a man.

• DOLLAR BILL RULER. A US dollar bill is about six inches long (denomination is unimportant).

• QUARTER IS AN INCH. A US quarter is a trifle under an inch in width.

• HEIGHT BY ARMSPAN. Your "Wingspan"(Arm span) is about the same distance as your Height. If your 6
feet tall your arms from hand to hand is about 6 feet wide.

• CENTIMETER. A centimeter is about as long as the width of an average adult's little finger nail.

• WALKING SPEED. An average walking speed is about 5 km/h (3 mph).

• HEIGHT AS AN ADULT. Your adult height will be twice your height at the age of 22 months.

• LEANING A LADDER. When you use an extension ladder, you should put the bottom of the ladder one foot
away from the wall for every four feet of vertical height.

• VOLUME OF A TANK. A cylindrical tank 15 inches in diameter holds about 1 gallon for each inch of height.
A 30-inch diameter tank holds 4 gallons per inch.

• SPOTTING A CARNIVORE. Mammals with eyes looking straight ahead are carnivorous. Mammals with
eyes looking to the side are vegetarian.

• THE RULE OF TWICE.  Twice around the thumb is once around the wrist; twice around the wrist is once
around the neck; twice around the neck is once around the waist.

Appendix II (continued)
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Appendix III

Partner 1: ___________________________________________________________________

Partner 2: ___________________________________________________________________

Our Rule of Thumb: ___________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

Instructions: Locate the actual function that governs the relationship approximated by your assigned Rule of
Thumb. Sources would include your own geometric constructions, data you gather through a reasonably pre-
cise method, encyclopedias, and textbooks. Provide a graphical representation of both relationships (e.g., graphs
or diagrams) and suggest a domain over which the Rule of Thumb is a reasonable approximation.
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Lesson 13:
Sky Wars!

OBJECTIVE:
Students practice 3-D graphing in the context of a
game that is similar to Battleship, only in three dimen-
sions rather than two.

NATIONAL STANDARDS:
Mathematics
Algebra

• use mathematical models to represent and un-
derstand quantitative relationships

• analyze change in various contexts
Geometry

• specify locations and describe spatial relation-
ships using coordinate geometry and other repre-
sentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• apply and adapt a variety of appropriate strate-

gies to solve problems
• monitor and reflect on the process of mathemati-

cal problem solving

Communication
• organize and consolidate mathematical thinking

through communication
• use the language of mathematics to express

mathematical ideas precisely
Connections

• recognize and use connections among mathe-
matical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts
outside of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Change, constancy, and measurement
Science and technology

• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Historical perspectives

Technology
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

Standard 17 - Students will develop an under-
standing of and be able to select and use information
and communication technologies.

MATERIALS - (one set for each pair of students)
• Sky Wars rules
MATERIALS - (for each student)
• Sky Wars game sheets 

(three pages: Squadron Coordinates, Defense
Grids, and Attack Grids)
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BACKGROUND INFORMATION:
Plotting points in three dimensions is difficult to de-

pict, especially when restricted to the two dimensions
afforded by paper.  One method, practiced with this
game, is to “layer” several sets of x-y planes to depict
graphing along the z-axis.

This activity is a derivation of the popular game
BattleshipTM.  The commercial version of the game has
letters along one axis and integers along the other.
Sky Wars was developed so 3-D graphing could be
practiced in a similar way.  Three identical grids repre-
sent the x, y, and z axes, so a point like (1, 2, 1) is lo-
cated on the first grid, across one from the origin and
“up” two along the y-axis.  The z-axis begins at 1 to
represent planes that are suspended above the ground
at various heights.  This lesson should help students
extend their understanding of 3-D graphing.

Note: a typical game can take up to two hours from set-
up to conclusion.  Produce some extra packets for stu-
dents to take home to play “just for fun.”  

PROCEDURE:
1. Remind students how to graph in two dimensions.

Everyone must be clear on how the points (2, 3), (–2,
3), and (–2, –3) differ.  If some doubt exists on stu-
dents’ understanding, consider having students play
the 2-D version (http://edgerton.us/Battleship.pdf) first.

2. Demonstrate graphing in 3-D using the layered grids
from one of the game pages.

3. Pass out copies of the first two pages of the activity
(duplex copying works fine for this).  Give students
time to read the instructions and ask questions.

4. Clarify who is playing whom.  Review the Special
Provisions if you want or need to have three stu-
dents play each other.

5. Decide whether to play on the whole x-y plane or to re-
strict the x-y planes to make finding aircraft easier to
“find.”  Typical “shrinking” of the x-y planes would be to
prohibit greater than or equal to x = 5, y = 5, or both.

6. Pass out copies of the last two pages of the activity
and ask students to “hide” their aircraft in the De-
fense Grid.  Remind students they may place aircraft
“horizontally” or “vertically” in the space but not di-
agonally.  Make sure students understand the
fighter/attack aircraft is the only one that can be rep-
resented vertically and stay in the game space.

7. Check student papers to make sure their aircraft are
depicted correctly in their Defense Grids.

8. Let play begin and monitor to see if points are
recorded and graphed correctly.

9. Stop play and debrief the activity when the games
are nearing conclusion (one participant is nearly out

of aircraft) or when time is running out.  Ask students
what they learned and what should be changed
about the game if they (or anyone else) were to play
it again.

SUMMARY:
Graphing in three dimensions is difficult because one
is restricted to two dimensions (paper, computer
screens) unless one employs “tricks” such as stacking
the grids (as with this game) or using color (as com-
mon in the computer application world).  Sky Wars pro-
vides practice in “visualizing” one representation of 3-D
graphing.

EVALUATION:
Explain in simple language (e.g., using terms under-
standable by someone much less sophisticated and
mathematically wise than you) how to graph the points
(1, 2, 3) and (3, 1, 2).

LESSON ENRICHMENT/EXTENSION:
• Allow two “flank bursts” which hit any adjacent coor-

dinate in the x-y plane.
• Add additional x-y planes so the z-axis has more levels.
• Host a Sky Wars tournament.  
• Show from 0:45 to 5:15 of the movie Pushing Tin to

introduce a practical example of 3-D reasoning.  Ex-
plain the purpose of the TRACON, the “blocks” used
to keep track of aircraft, and language used in vec-
toring aircraft—all while the clip is playing.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• http://www.livephysics.com/ptools/online-
3d-function-grapher.php

• http://www.math.uri.edu/~bkaskosz/flashmo/
graph3d/

• http://www.houseof3d.com/pete/applets/graph/
index.html

• http://www.ies.co.jp/math/java/misc/Simple
Graph3D/SimpleGraph3D.html

• http://www.archimy.com/

• http://reference.wolfram.com/mathematica/
ref/Plot3D.html

• http://www.originlab.com/index.aspx?go=
Prod ucts/Origin/Graphing/3D

• http://www.gnuplot.info/
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Sky Wars Student Sheet

Name _______________________________________________________________________

Opponent ___________________________________________________________________

INTRODUCTION
The purpose of this game is to practice visualizing and plotting points in 3-D.  As you can tell, this game is merely
a variant of the popular board game BattleshipTM.  Play one opponent by shooting at a "hidden" aircraft while
keeping track of all shots, hits, and misses. Hopefully, this exercise will be fun and educational for you and your
opponent.  Use the multiple four-quadrant grids which accompany this page that stack to make the z-levels.

PREPARATION FOR PLAY
"Hide" your aircraft by plotting their symbol (see below) on the graph using whole numbered values in your De-
fense Grids. Aircraft may be placed anywhere on the graph as long as the proper number of dots appears where
the "grid lines" intersect.  Place aircraft either in a single x-y grid or vertically–no diagonal aircraft!  Before you
begin firing, be sure to check with your teacher to make sure that your aircraft have been properly placed on the
grid.  Make sure no aircraft are placed between grid lines and all five aircraft are used.  Write the coordinates
of the "hidden" aircraft on the sheet entitled "Squadron Coordinates."

RULES
Take turns calling out the coordinates of a point that you think will “hit” an aircraft on your opponent’s grid.  The
attacker will call a point, such as (2, 3, 1), and the defender will respond either “hit” or “miss.”  BOTH persons
will record (on the paper) each point called in attack and mark with  “H” for hit or “M” for miss.  When all dots for
an aircraft have been hit, it is identified to the attacker and crossed off both lists.  The winner, provided you are
able to play long enough, is the person who first destroys the other person’s squadron.

SUGGESTIONS
Record all shots on the appropriate grids, using a “dot” for each shot (•) and “x” when there is a hit.  Check with
your teacher a few times at the beginning of the game to make sure that your are proceeding properly.

SPECIAL PROVISION FOR GROUPS OF MORE THAN TWO
Three or four persons can also play together. However, the competition and complexity increases dramatically.
Each person’s shots land in each of the opponent’s grids.  It is, therefore, possible to have multiple hits with one
shot.  Each person records the shots of every competitor, and play continues until only one person remains.

Representing Symbols Aircraft Type

Fighter / attack aircraft (three dots)

Aerial tanker (four dots)

* * * * * Transport aircraft (five dots) - Make two of these.

* * * * * * Bomber (six dots)

* * *

* * * *
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Squadron Coordinates

Write the coordinates of each point of your aircraft here.
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ATTACK GRIDS 

Shoot at opponent’s aircraft here
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DEFENSE GRIDS 

Hide your aircraft here
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Lesson 14:
Space Station Spotter

OBJECTIVE:
Students apply geometry to determine when the Inter-
national Space Station (ISS) will be visible.

NATIONAL STANDARDS:
Mathematics
Algebra

• understand patterns, relations, and functions
• represent and analyze mathematical situations

and structures using algebraic symbols
• use mathematical models to represent and un-

derstand quantitative relationships
• analyze change in various contexts

Geometry
• analyze characteristics and properties of two-

and three-dimensional geometric shapes and de-
velop mathematical arguments about geometric
relationships

• specify locations and describe spatial relation-
ships using coordinate geometry and other repre-
sentational systems

• use visualization, spatial reasoning, and geomet-
ric modeling to solve problems

Measurement
• understand measurable attributes of objects and

the units, systems, and processes of measure-
ment

• apply appropriate techniques, tools, and formulas
to determine measurements

Problem Solving
• build new mathematical knowledge through prob-

lem solving
• solve problems that arise in mathematics and in

other contexts
• monitor and reflect on the process of mathemati-

cal problem solving
Communication

• organize and consolidate mathematical thinking
through communication

• communicate mathematical thinking coherently
and clearly to peers, teachers, and others

• use the language of mathematics to express
mathematical ideas precisely

Connections
• recognize and use connections among mathe-

matical ideas
• understand how mathematical ideas interconnect

and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts
outside of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Science as inquiry

• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 1 - Students will develop an understand-

ing of the characteristics and scope of technology.
Standard 3 - Students will develop an understand-

ing of the relationships among technologies and the
connections between technology and other fields of
study.

Standard 17 - Students will develop an under-
standing of and be able to select and use information
and communication technologies.

MATERIALS:
• Ruler, protractor, drawing compass, inclinometer,

and a magnetic compass
• Table of sunrise and sunset times for your area
• Estimated sighting opportunities for the ISS (see

Appendix I)

NASA Control tracking ISS
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BACKGROUND INFORMATION:
A great thrill is to watch a

celestial object made by peo-
ple pass overhead, especially
if there are people aboard.
Putting humans into space
and returning them safely is a
difficult task and one now
shared with several nations in the construction and
servicing of the International Space Station (ISS). Per-
sonally seeing any part of this endeavor is an opportu-
nity worth taking!

The activity in Lesson 7: Modeling Satellite Orbits
leads students through creating an equation that pro-
vides the location of the ISS but stops short of whether
it might be visible at a particular location.  Viewing the
ISS as it passes overhead requires, in addition to a rel-
atively clear sky, sunlight reaching the satellite and a
dark enough sky to provide contrast.  This activity al-
lows students to determine if the ISS will be visible
when it passes nearby.

Assume the Earth is a sphere with a radius of 3960
statute miles (SM), and the ISS will orbit at an altitude
of 250 SM. Using right triangles and the Pythagorean
Theorem, the ISS must pass within about 1400 SM of
the ground-based observer to be viewed. See Appen-
dix II—the tangent line from a location on Earth’s sur-
face must contact part of the ISS orbit. Because the
tangent forms a right angle, the remaining leg of the tri-
angle is easily solved. Note that the central angle must
be cos–1(3960/4210) ≈ 19.8°. This analysis, of course,
ignores refraction of the atmosphere, which the USNO
indicates “the average amount of atmospheric refrac-
tion at the horizon is 34 arcminutes” (about 0.57°).  The
angle just derived will become more important when
the illumination of the ISS by the Sun is determined.

One’s knowledge of the stars “vanishing” after sun-
rise suggests the ISS will be invisible during daylight
hours.  One may also reason that the Earth would
eclipse the sunlight most of the night and deprive the
ISS illumination. One can estimate the time an ISS
transit would be visible by drawing a line representing
the Sun’s rays from below the horizon so it will intersect
the ISS transit at its apex (selecting this arbitrarily so at
least half the transit is visible).  Note in Appendix III that
the central angle is identical to the one previously com-
puted and, therefore, about 20°. Since the Earth ro-
tates 15° per hour (360° ÷ 24 hours), the ISS should
be visible from about 80 minutes before sunrise until
sunrise itself and from sunset until about 80 minutes
after sunset. Consult the sunrise/sunset table from the
USNO for your area and overlay the times with those
generated for the orbit of the ISS.  You then have
knowledge of whether the ISS will be visible.  

PROCEDURE:
1. Brief students on the ISS orbits, missions, and

crews.  Consider completing the Modeling Satellite
Orbits activity first. Plan this at a time when there will
be several ISS sighting opportunities and during the
winter months when students’ availability will more
likely coincide with opportunities.

2. Show the computer-generated sighting opportunities
to students and ask them to examine the listings for
an “interesting pattern.”  See Appendix I for an ex-
ample.  Hopefully, someone will notice the opportu-
nities exist only just before sunrise or just after
sunset (otherwise prompt for when people can see
the ISS).

3. Host sightings of the ISS. Attempt to confirm the
entry and exit latitudes of the transits along with the
maximum elevation above the horizon the ISS is
forecast to make. Use a magnetic compass and in-
clinometer for measurements. Note: find out the
magnetic variation (difference between true and
magnetic North) for your area.

4. Invite your students (in a whole-class discussion) to
hypothesize why the ISS can be seen at some times
and not others. Encourage sketches shared with all
students that include the Earth, the ISS orbit, Sun
position, etc.

5. Assign student pairs to develop the geometry by
which one can “see” the ISS if it orbits at 250 SM
and the Earth’s radius is 3960 SM.

6. Once concordance is reached on ISS viewing, chal-
lenge students to develop Sun angles that allow ISS
visibility. These should include disappearance of the
ISS at sunrise but visibility at identifiable angles be-
fore sunrise (or after sunset).

7. Press for the amount of time the geometry suggests
for ISS visibility. Students may not realize at first the
Earth rotates at 15° per hour.

8. Overlay the conclusion of the above with the out-
come of the Modeling Satellite Orbits activity from
lesson 7.

9. Compare findings with both observations (time, rise
and set latitudes, and visibility).

10. Debrief by, once again, showing the Sighting Op-
portunities printout and suggesting someone must
have already worked out the formulae!



78

SUMMARY:
Using geometry, construction, and/or trigonometry, it
can be concluded that the ISS will be visible from about
80 minutes before sunrise until the Sun lights the sky
enough that it (and the stars) are no longer visible.
Likewise, the ISS can be viewed when the sky is suffi-
ciently dark until about 80 minutes after sunset.

EVALUATION:
Explain in simple language (e.g., using terms under-
standable by someone much less sophisticated and
less mathematically knowledgeable than you) why the
ISS is not visible during each of the following situations:
between sunrise and sunset, and between 80 minutes
after sunset until 80 minutes before sunrise.  Include a
diagram with each situation.

LESSON ENRICHMENT/EXTENSION:
• Have students compute the closest the ISS will pass

on a specified orbit by using its “maximum elevation”
above the horizon. Note that if the elevation is 90°, it
will pass directly overhead and will, therefore, be only
250 miles away!

• Build a scale model of the ISS. Use the CAP Interna-
tional Space Station curriculum module as a 
template. The finished product makes a great con-
versation piece hanging in a classroom!  Show the
ISS assembly video several times during the process.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• NASA International Space Station page
http://www.nasa.gov/mission_pages/station/main/
index.html

• ISS Orbital Tracking
http://spaceflight.nasa.gov/re aldata/tracking/

• US Navy Observatory Astronomical Application for
sunrise and sunset times

http://www.usno.navy.mil/USNO/astronomical-
applications/data-services/rs-one-year-us

• ISS assembly 
http://i.usatoday.net/tech/graphics/iss_timeline/
flash.htm

• Life aboard the Space Station
http://www.nasa.gov/audience/foreducators/
teachingfromspace/dayinthelife/index.html

• Station Spacewalk Game 
http://www.nasa.gov/multimedia/3d_resources/
station_spacewalk_game.html

• NASA Human Space Flight
http://spaceflight.nasa.gov/

Tracking the ISS

Station Spacewalk Game
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Appendix I

Only days with sighting opportunities are listed
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Appendix II

Earth with ISS orbit.  Not to scale.
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Appendix III

Illumination for the ISS to be visible overhead.  Not to scale.
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Lesson 15:
Planet Dance

OBJECTIVE:
Students create a scale model of our solar system and
simulate planetary orbits by physically walking the
“planets” around the “Sun.”

NATIONAL STANDARDS
Mathematics
Algebra

• use mathematical models to represent and under-
stand quantitative relationships

Geometry
• specify locations and describe spatial relationships

using coordinate geometry and other representa-
tional systems

• use visualization, spatial reasoning, and geometric
modeling to solve problems

Measurement
• understand measurable attributes of objects and the

units, systems, and processes of measurement
• apply appropriate techniques, tools, and formulas

to determine measurements
Problem Solving

• monitor and reflect on the process of mathematical
problem solving

Communication
• organize and consolidate mathematical thinking

through communication
• communicate mathematical thinking coherently

and clearly to peers, teachers, and others
• use the language of mathematics to express math-

ematical ideas precisely
Connections

• recognize and use connections among mathemat-
ical ideas

• understand how mathematical ideas interconnect
and build on one another to produce a coherent
whole

• recognize and apply mathematics in contexts out-
side of mathematics

Representation
• create and use representations to organize,

record, and communicate mathematical ideas
• select, apply, and translate among mathematical

representations to solve problems
• use representations to model and interpret physi-

cal, social, and mathematical phenomena

Science
Unifying concepts and processes in science

• Systems, order, and organization
• Evidence, models, and explanation
• Change, constancy, and measurement

Science as inquiry
• Abilities necessary to do scientific inquiry
• Understanding about scientific inquiry

Physical science
• Motions and forces

Science and technology
• Abilities of technological design
• Understanding about science and technology

History and nature of science
• Science as a human endeavor
• Nature of scientific knowledge
• Historical perspectives

Technology
Standard 1 - Students will develop an understanding

of the characteristics and scope of technology.
Standard 17 - Students will develop an understand-

ing of and be able to select and use information and
communication technologies.

MATERIALS - (one set for each group)
• A copy of the Scaling Our Planet handout
• Computer access (or copy of the data from 

Solar System Data at 
http://hyperphysics.phyastr.gsu.edu/Hbase/
Solar/soldata.html#c1)
• Meter stick
• Magnetic compass
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BACKGROUND INFORMATION:
The objective of this activity is to confront several

common misconceptions about planetary orbits, par-
ticularly alignment and scale. Many people may believe
the planets line up (at least most of the time), probably
because posters, Websites, and books portray them
that way. The second common misconception is the
planets orbit closer to each other and move more
slowly when compared to their size.  For example, the
Earth traverses about 200 of its diameters each day
while orbiting and Mars orbits more than 6000 Earth
diameters further from the Sun than Earth—difficult for
most to believe!

The age or grade-level appropriateness of this ac-
tivity depends on the audience’s maturity, resourceful-
ness, mathematical capability, prior understanding of
the solar system, and ability to work independently.
Generally speaking, the activity is in five parts:
1. Decide on a scale that will allow all the planets to

orbit within the school yard (nearby field, etc.).  Avoid
arguments on whether Pluto should be included by
saying the class is choosing to be egalitarian—in-
cluding all good sized orbiting bodies.  

2. Calculate the distances each of the “planets” must
be from the center.

3. Construct scale models of the Sun and each planet.
This scale must align with the one used for the plan-
etary orbits.

4. Calculate the “scale pace” each planet revolves
around the center.

5. Go out to your field and have student groups walk
the orbits of the planets; hence, the planet dance!

Suggestion: Before proceeding, consider tinkering
with the Build A Solar System Website hosted by 
the Exploratorium
http://www.exploratorium.edu/ronh/solar_sys tem/

PROCEDURE:
1. Announce your intent to have the class “construct” a

model of the solar system that will fit in the school
athletic field (or other large equivalent).

2. Ask the class what they know about the orbits of the
planets.  Write whatever they say (even incorrect
facts—address them in the debrief) without editing

(paraphrasing is acceptable).  Record the responses
on chart paper, whiteboard, overhead projector, etc.,
so they can be reviewed during the debrief of the ac-
tivity.  See if you can get the class to agree on the re-
lationships between the sizes of the planets and
their distances apart.

3. Invite the class to speculate how to create the scale
factor that will fit the solar system in the field.  A good
response will require a couple of facts: the width of
the field (say 150 meters) and the greatest distance
a planet will orbit the sun (about 6 billion km).  Note
that the diameter of the solar system (about 12 bil-
lion km) would have to fit into the field.  This means,
of course, each meter on the field is about 80 mil-
lion km!

4. Select groups (do not exceed three students per
group—too many students per group means some-
one will be idle).  Their responsibility will be to cre-
ate the scale model of their planet and determine the
scale radius and pace of their orbit.  Assign dwarf
planets such as Ceres, Pallas, Vesta, or Haumea if
you have additional groups. 

5. Distribute one Scaling Our Planet handout per
group, and either provide them Internet access to
get the necessary data to perform their calculations
or provide the data for the class yourself (either by
handout or projecting).

6. Provide time for students to find the appropriate data
and perform calculations.  Encourage groups to
check with other groups to see if their answers make
sense.  Refer to the table in Appendix I to see if the
groups’ computations are reasonable (adjusting as
needed for the size of your field).

7. Determine the speed (m/s) the scale “Earth” will re-
volve around the scale “Sun.”  Depending on the
mathematical facilities of the students, you may give
them the data and let them compute, lead them
through the computation, or merely provide it.  The
key is how you want to define a “year” (one revolu-
tion about the Sun) and use the circumference for-
mula to “walk” the planet at the correct rate.  Check
groups’ calculations.

8. Have students practice walking the rate their planet
is supposed to orbit.  Have them all begin and stop
on your command (both auditory and by hand sig-
nal).

9. Show a diagram of the current position of the plan-
ets (see Solar System Live).  Adjust the parameters
to your approximate latitude and longitude along
with the day and time you expect the activity to be
executed.  See Appendix II for a model set in Seat-
tle on 01 January 2010.

10. Show a diagram of your field, which way is North
(or other recognizable point) with the position of the
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planets overlaid. Measure approximate angles for
each planet. Make sure all groups have their “az-
imuth” (compass heading) and distance to their ini-
tial position.

11. You stand at the center (as the solar system re-
volves around you). Upon your signal, the “planets”
begin to move according to their proper pace. For
younger students, hold your arms above your head
and clap each second so the groups will advance at
the same time. More mature students can take their
experience from “walking” the distance while hold-
ing a watch to get the speed approximately right.
Continue for about two Earth “years.”

12. Reset all planets to their original positions and run
the orbiting again.

13. Switch groups so the outer planet groups become
inner planets and vice versa. Run two more times.

14. Return to the classroom and have students write,
individually, a response to the question: How do the
speeds of the outer planets compare to the speeds
of the inner planets? Let students write silently for
two minutes.

15. Invite comments, ideas, suggestions, and insights.
During the discussion, prompt for how the size of
the planets compared to the space between them.

16. Follow up at a later time with questions such as:
• How do “we” send spacecraft to other planets

(and about how much time that would take)?
• If the solar system fits in the field, how much

space is needed for our galaxy?
• When will the planets be aligned?

SUMMARY:
The solar system is much larger than most people be-
lieve, particularly the size of the orbits relative to the
size of the planets.  The “dynamic” nature of the simu-
lation punctuates the huge difference in orbital speed.

EVALUATION:
Explain in simple language (e.g., using terms under-
standable by someone much less sophisticated and
less mathematically wise than you) why the amount of
time it takes a planet to orbit the Sun is NOT related to
its size. Include several diagrams with facts to support
your argument.

LESSON ENRICHMENT/EXTENSION:
Recall that Kepler’s Third Law Of Planetary Motion

is:    
where T represents the orbital period (the

amount of time for one revolution), R represents the
radius of the orbit (or, in the case of elliptical orbits, the
semi-major axis), and k is a constant for all bodies or-
biting the same object.  
• Use the Solar System Data found at http://hyper
physics.phyastr.gsu.edu/Hbase/Solar/soldata.
html#c1 to confirm the constant, k, is the same for
Earth and Mars.  

• Use the constant, k, derived above to compute the
period of our solar system’s largest asteroid, 4 Vesta,
if it orbits at a radius of 375 * 106 km. Note that Ceres
is much more massive than Vesta, but has been pro-
moted to dwarf planet status.

ASSOCIATED WEBSITES AND/OR LITERATURE:
• Solar System Data 
http://hyperphysics.phyastr.gsu.edu/Hbase/
Solar/soldata.html#c1)

• The Nine Planets 
http://www.nineplanets.org/

• Solar System Live 
http://www.fourmilab.ch/cgi-bin/uncgi/Solar/
action?sys=-Si

• http://www.universetoday.com/15611/largest-
asteroid-in-the-solar-system/

• http://pds.nasa.gov/
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Appendix I
Solar System Scale Models

Sun diameter 4 cm. (golf ball)

*For the given scale (Sun diameter 4 cm) the bullet represents the relative size of the planet when using Times New Roman font.

Planetary Data from http://hyperphysics.phy-astr.gsu.edu/Hbase/Solar/soldata.html#c1
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Appendix II

Screen Shot of Solar System Live
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Appendix III

Relative sizes of “the nine planets”
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THE PLANET DANCE
Scaling Our Planet

Group Member #1: _______________________________________________________________

Group Member #2: _______________________________________________________________

Group Member #3: _______________________________________________________________

Our planet’s name: _______________________________________________________________

Our class’ agreed upon scale factor: ________________________________________________

Planetary facts
See Solar System Data (http://hyperphysics.phy-astr.gsu.edu/Hbase/Solar/soldata.html#c1)

Our planet’s diameter:__________________________________________ (km)

Our planet’s orbital radius:______________________________________ (106 km)

Our planet’s orbital period:______________________________________ (Earth years)

Calculations
(Show your work!)

Our planet’s diameter: __________________________________________ (m)

Our planet’s orbital radius:_______________________________________ (m)

Our planet’s orbital period: _______________________________________ (Earth years)

Orbiting speed

Amount of time our class agreed is one Earth year:_______________ (min.)

Amount of time for our planet to make one orbit: _________________ (min.)

Scale distance of our planet’s orbit:________________  (m)

Scale speed to walk our planet in its orbit:__________________ (m/sec)

When we get in the field,
we will find our position
by: 

• A compass heading of
_____________.

• A distance from the
“Sun” of _______m. 
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