Physically-informed kernels for wave loading prediction
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ABSTRACT:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask
within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development
of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave
loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that
combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The
aim here is to incorporate physics directly in to the covariance function (kernel) of the Gaussian process, enforcing derived behaviours
whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the
empirical laws. The combined approach has a number of advantages including improved performance over either component used

independently and interpretable hyperparameters.
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1 INTRODUCTION

The demand for accurate estimation of the lifespan of offshore
structures is growing, being driven by both the continued devel-
opment and construction of offshore renewables [1] and ageing
of existing structures. Reducing the risk associated with the large
investment required to construct new facilities [2] and the need
to assess structural health due many structures nearing the end of
their initial 20-25 year design lives [3] are key factors.

The modelling of physics within extreme environments, such
as offshore, is challenging and the development of physics-based
models is therefore difficult. Phenomena within fluid mechanics
including vortex shedding and turbulence may be computationally
expensive to model and require expert knowledge to validate. In
structural dynamics, the effects of changes in manufacturing toler-
ances and mechanical joints may induce large changes in dynamic
behaviour.

The increased availability of monitoring data for engineering
structures has lead to the surge in adoption of data-based methods
in recent years, allowing for the direct learning of relationships
from data, without the need for complete knowledge of the un-
derlying physical process. For a regression task, such as wave
loading prediction, neural networks and Gaussian processes have
already shown to be effective in a wide range of structural dy-
namics applications [4-6]. Although effective when employed
correctly, machine learning techniques are not without limitations:
extrapolation outside observed conditions often has significant

impact on performance and the overfitting of models, particularly
highly flexible ones, during training is a problem [7].

A model combining physics and data-based approaches, some-
times referred to as a ‘grey-box’ [8—11] or ‘hybrid’ [12—14] model,
aims to extract the benefits of both: structure, insight and extrap-
olative capabilities from physics; and flexibility and the capability
to model unknown processes from a data-based component. The
construction of grey-box models could be considered to lie across
a sliding scale. At one end, one would begin with a physics-based
model and add flexibility through the introduction of a data-based
component; at the other, one might apply physical constraints to
existing machine learning algorithms [15].

The models developed within this paper aim to combine physics-
based methods of empirical wave loading prediction with data-
based Gaussian process NARX models. There are a wide range of
potential means to combine physics and data, with the differences
in model structure and performance produced by different methods
of combination presenting an interesting research area. Previous
work by the authors [11] focussed on residual modelling and input
augmentation within a wave loading context. Both methods were
found to improve overall predictive performance, with residual
modelling offering particular benefit in extrapolation. Far away
from previously observed conditions, model predictions revert to
the physics-based mean function. Although an effective means
of assisting extrapolation where the physics used may be well
validated, this form of model structure places a heavy reliance on



the mean function used and care should be taken to ensure that any
assumptions used in its construction remain valid.

Here, the physics is embedded within the design of the covari-
ance function (kernel). This has a number of potential advantages
over a physics-based mean function, including single step learning
within a standard GP framework, maintaining of the original signal
to noise ratio and ability for separate components in the kernel to
account for different contributing factors in a process. The phe-
nomena of mis-learning parts of a process (i.e. components of a
target function) when using a prior mean that only reflects some of
the behaviour of interest is highlighted in Figure 1. Here a toy func-
tion is learned with a GP with a prior mean that only captures the
linear component of the process. Although the overall combined
fit of the model is good, the capture of the function components
by the linear mean function and residual GP does not reflect the
process, which may cause problems where training data are few or
in an extrapolation task. Additionally, when physics-based models
attempt to capture processes excluded by the assumptions present
within their construction, a biasing of model parameters can often
occur. By jointly optimising the physics and data-based compo-
nents of the model the misrepresentation of signal components is
less likely.

Figure 1: Subplots highlighting the residual modelling process of
a synthetic function, y = Ax + Bx® + ¢, and potential misrepre-
sentation of individual function components. From left to right:
The fitting of a linear mean function and residual calculation, the
modelled function contributions compared with the underlying
linear and cubic processes and the combined model fit.

The design of the covariance function here will rely on com-
bining physically-derived kernels with their more traditional data-
driven counterparts. Models are implemented on a dataset col-
lected from the Christchurch Bay Tower (CBT) [16], an offshore
test facility providing measurements of a real sea state environ-
ment. Training and validation occurred on a 500 point subset of the
complete dataset with the aim to achieve a comparison between the
performance of different model structures rather than maximising
performance of a selected final model.

2 EMPIRICAL WAVE LOADING PREDICTION

Empirical methods of wave loading prediction offer a balance
between predictive performance, computational resource require-
ments and ease of model validation; they are popular within many
industrial applications [17, 18]. For the modelling of wave loads

on slender members, which many offshore structures are com-
prised of, Morison’s Equation has been the most widely used such
method since its introduction in 1950 [19].

For a stationary, rigid, slender, cylinder of diameter D posi-
tioned within waves of velocity U and acceleration U , the force
per unit axial length F' is expressed:

1 1 :
F= ngOd U|lU| + prDQOm U (1)
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where p is the fluid density, Cy is the drag coefficient and C,,
is the inertia coefficient. The dimension specific terms may be
grouped to form two constants C; and C},, relating to the drag and
inertia forces of the wave.

An important consideration when using empirical methods, as
with any engineering model, is understanding the limitations and
assumptions made within the construction of the model. To achieve
their computational efficiency, empirical methods often rely on
strong simplifying assumptions. For Morison’s equation these
include unidirectional flow, the waves being unaffected by the
presence of the structure (Water depth > D) and the separation of
force in to drag and inertia components [18-20].

Morison’s Equation is generally well regarded within the litera-
ture [20-22] with Sarpkaya stating “it is unlikely that an entirely
new equation will ever replace it” [23]. Research efforts focus
mainly on the development of extensions and modifications to
Morison’s Equation, rather than a competing alternative. Such
modifications include adapting Morison’s Equation to work on
inclined cylinders [24-26], reducing the number of required model
coefficients [27], improving the model fit in cases of sinusoidal
flow [28] and improved wave force classification [29,30].

3 GAUSSIAN PROCESS NARX MODELS

A Nonlinear AutoRegressive model with eXogeneous inputs
(NARX) passes previous signal values y;_; and additional (exoge-
nous) inputs u;_; through some nonlinear function f(z).

Yt = f([ut, Ut—1y ey Wt—1yy Yt—15 Yt—25 -1, ytfly]) +e (2)

where [,, and [, are the maximum lagged time steps considered for
the exogeneous inputs and previous signal values; they should be
considered as additional model hyperparameters and determined
via an appropriate lag selection process [31,32].

In the case of a GP-NARX, f(x) is a Gaussian process (GP),
offering several advantages over alternative NARX model variants.
A GP is non parametric and flexible, with no fixed functional
form; this allows for the capture of complex relationships within
data without extensive prior knowledge of the underlying physical
process. Being a probabilistic technique, a GP may also provide
quantification of uncertainty alongside predictions. The reader is
encouraged to consult [33] for an overview of GP theory.

Multiple types of prediction may be generated from a NARX
model, defined by the nature of the lagged target signal values used
as the input to the model. For One Step Ahead (OSA) predictions,



Y¢—1:4—1, are measured values of the target signal whereas for
the Model Predicted Output (MPO), y¢—1.¢—1, are previous pre-
dictions of the target signal. An extension to the MPO, the Monte
Carlo sampled Model Predicted Output (MC MPO) feeds back
samples from the full predictive distribution rather than just the
mean prediction and has been shown to provide a more realistic
capture of model uncertainty [34,35].

For the operation of models developed within this paper, it is
assumed that the measured wave force will be unavailable and
therefore the MPO and MC MPO will be the prediction types of
interest.

4 MORISON’S EQUATION IN KERNEL FORM

Within a GP, the kernel defines the family of functions from
which predictive samples may be drawn. Through the design and
selection of kernels, one may control and restrict the behaviour of
predictions generated from a GP and enforce desirable or physi-
cally derived constraints. To incorporate Morison’s Equation (1)
within a kernel, it is first appropriate to setup a Bayesian Linear
regression.

X =[U|U|, U] 3)
B=[c, " 4)
p(F|X,B,00) ~ N(XB,021) (5)

The covariance of a process f(z) = x/3 with prior 8 ~ N(0, 031
between two input vectors x; and x; is derived

cov(f(xi), f(x5)) = E[f (x:5) f(x5)] — E[f (z:)|]E[f ()]
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The expression for covariance can then be used as a kernel
within a GP

Krin(X,X") = X5 X'T 4 626x x/ @)

The use of this linear kernel over input space X = [U|U|, U]
will be equivalent to a Bayesian Linear Regression of Morison’s
equation, however the training time is now of order O(n?) rather
than O(n). The advantage of kernel representation comes from the
ability to use multiple kernels in combination. If one considers the
target to be the sum of f(x) and some function g(x) to account
for unmodeled phenomena, then it follows that the covariance

structure is

K(X,X") = Krin(X1,X}) + Ksp(Xo, X3) + 026x,x7
= Xi¥x;7
—_———

Morison’s Equation
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where a Squared Exponential (SE) has been used as the co-
variance of the unknown behaviour under a zero mean as-
sumption. Here X; = [U|U|, U], Xo = [Uy, Ut, Us_q,
Ui—1, Ye—1, Ye—2, Ye—3), o7 is the signal variance, A is the
matrix of length scales such that diag(A) = [I2,13, ...,13)] for a
D dimensional input and o2 is the noise variance. The selected
maximum lags, [, = 1 and [, = 3, have been carried forward
from previous work [11].

5 CASE STUDY: THE CHRISTCHURCH BAY TOWER
DATASET

To obtain a measure of performance within a real sea state en-
vironment, models were implemented using a dataset collected
from the Christchurch Bay Tower (CBT) [16]. Constructed as a
test facility, the structure is equipped with a dense array of sen-
sors including Perforated ball Velocity Meters (PVMs), pressure
transducers and crucially, force sleeves, allowing for valuable
measurement of the target wave force.

Models were trained and validated on subsets of 500 data points,
with performance measured on unseen test set of 1000 data points.
All data was selected to maximise the ratio of x-velocity to y-
velocity, where the flow was primarily unidirectional.

5.1 Model Predictive Performance

The performance of models was measured using two metrics:
the Normalised Mean Square Error (NMSE) and the Mean Stan-
dardised Log Loss (MSLL). The MSLL is a probabilistic measure,
with superior models having more negative scores. A baseline of
zero is equivalent to setting the predictive mean and variance for
all test set points as the mean and variance of the training set. A
comparison of results is shown in Table 1.

Table 1: Model performance comparison.

Model Structure NMSE (%) MSLL
. X1 10528  —0.813
Morison’s Bd- x '3 Normalised) 15.458  —0.857
GP(0, Ksr) 10.383 0.450

ffc'l\;/ﬁjzx GP(X18, Ksg) 14.797  —0.598
GP(0, Krin + Ksr) 14913  —0.939




A promising trend observed within Table 1 is that models using
physics and data in combination outperformed both Morison’s
Equation and black-box data-based models. The residual mod-
elling GP-NARX and combined kernel GP-NARX were the two
best performing models, with similar NMSE scores and an im-
proved MSLL on the combined kernel model. A potential reason
for the worse MSLL of the residual model is that attempting to fit
a GP to a residual rather than the complete signal greatly reduces
the signal to noise ratio. This can make it challenging to pick out
remaining structure within the signal, favouring long lengthscale,
high noise variance model fits.

Inline with findings within the literature [20-23], Morison’s
Equation was found to perform very well considering its simplic-
ity and outperformed the black-box GP-NARX. This was in part
helped by the dataset, which was from a region of primarily uni-
directional flow, a key assumption of Morison’s Equation. The
training, validation and test sets were all from drag-dominated flow
regimes, meaning that parameters learned within the construction
of the model were likely to be appropriate for the test conditions.
When using Morison’s Equation, it is important to consider the
likely flow regime in which it may be implemented and adjust Cy
and C,,, accordingly.

Although achieving a moderate NMSE score, the black-box
GP-NARX performed very poorly with regards to MSLL. This
highlighted two issues: the importance of considering multiple
performance metrics and unexpected behaviours that may arise
from the use of black-box models, particularly highly flexible
ones such as a GP-NARX. The cause of a poor MSLL here was
the explosion of uncertainty intervals due to feedback of samples
within the MC MPO prediction, a common phenomena within
autoregressive model structures.

5.2 Posterior contribution breakdown of model components

Along with benefits in overall performance, an advantage of
combining physics with data-driven techniques is the insight that
can be provided by looking at the contribution of each model
component. Whilst the separation of a mean function and residual
model is already clear within the combined model structure, the
individual kernel posterior contributions within a combined kernel
require decomposition. Following [36] it is possible to derive the
conditional predictive distribution for the contribution of a kernel
K; within a combined additive kernel of the form K = Y _._]" K.

p(fiIf* X5 F,X,0) ~

i=n i=n 9
NETS Ky K- KOS KK )
1=1 i=1

where f; is the prediction contribution of kernel K; within the
combined prediction f* = Y":—}" f. The breakdown of the mean
function and residual GP contributions is shown in Figure 2, with
the breakdown of kernel component contributions of the combined
kernel model shown in Figure 3.

In both cases, Morison’s Equation is able to capture the majority
of structure within the wave force via either the mean function or

Mean function: X,3
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Residual fit: GP(0, Ksg)

0 100 200 300 400 500 600 700 800 900 1000
Time Point
GP(X,8, Ksp)

0 100 200 300 400 500 600 700 800 900 1000
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Figure 2: Residual modelling contribution breakdown of the linear
mean function (top), residual GP-NARX with SE kernel (middle)
and combined model (Bottom).

linear kernel component. Here, this provides interpretability in to
the flow conditions, highlighting the presence of a drag dominated
flow regime and primarily unidirectional flow. For alternative flow
conditions, particularly those breaking the assumptions of Mori-
son’s Equation, the relative contributions of model components
would likely be very different.

Due to the good fit of the mean function, the signal to noise
ratio of the residual is very poor and the residual fit GP struggles
to pick out the remaining structure. The middle plot of Figure 2
shows a long lengthscale fit with a large estimated noise. This
contributes towards the larger variance and poorer MSLL of the
combined residual model.

The consideration of individual component contributions within
a model is of particular importance during extrapolation. Far from
observed data, the data-based component of the model (or station-
ary kernel) will revert to its zero prior, with the overall model
therefore dependant on the quality of either the mean function or
physics-derived (nonstationary) kernel component. Independent of
the overall model performance for a given testing dataset, ensuring
that model components are capturing their intended processes is
therefore important. The ability of kernel components to be learned
simultaneously will help to reduce the ‘biasing” phenomena of
mean functions highlighted in Figure 1. Here we can see that the
GP with the derived-kernels has captured each component very
well, indicating that it is likely to perform well in extrapolation.

6 CONCLUSIONS

The use of Morison’s Equation and a GP-NARX in combination
was found to increase predictive performance over either technique
used independently. Residual modelling was able to improve
NMSE at the expense of MSLL, whilst the combined kernel was
able to offer advantages in both NMSE and MSLL.
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Figure 3: Combined kernel model contribution breakdown of
the linear (Morison) kernel (top), SE GP-NARX (second), noise
variance (third) and combined model (bottom).

Inline with the literature, Morison’s Equation was found to
achieve satisfactory performance when used in an appropriate flow
regime for little computational cost. It provided a sensible start
point for the development of combined physics and data-based
models.

The decomposition of combined models was found to offer
physical insight into the role of each model component. Here,
due to the flow conditions, the majority of structure was captured
via the physics-based component. Further work investigating
how model component contributions vary over a range of flow
conditions is planned to further explore how data-based learning
may assist prediction in conditions where the performance of
Morison’s Equation would typically suffer.
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