Recent Progress in Immunotherapy for Non-Small Cell Lung Cancer (NSCLC)

Roy S. Herbst, MD, PhD
Ensign Professor of Medicine
Professor of Pharmacology
Chief of Medical Oncology
Director, Thoracic Oncology Research Program
Associate Cancer Center Director for Translational Research
Mutational Burden

ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia

Cancer cells develop many mutations that can make them appear foreign to the immune system.

Key Attributes of the Immune System

- Specificity
- Memory
- Adaptive
• T cells can recognize, attack and kill these “foreign” cancer cells
IFN-γ-mediated up-regulation of tumor PD-L1

Cancer cells can evade immune attack by expressing PD-L1

Adaptive Tumor Expression of PD-L1 Turns the Immune System OFF!
• Cancer cells can evade immune attack by expressing PD-L1

Clinically we want to block PD-1 or PD-L1 (the big X) to reactivate the immune system
PD-L1 plays an important role in dampening the antitumor immune response

It Really Works—This Therapy Is Transformative!
– 66-year-old ex-smoker with KRAS-mutant adenocarcinoma of the lung
– 5 prior treatments for stage IV disease
– Right upper quadrant (RUQ) abdominal pain, anorexia and fatigue resolved within 2 months
– Duration of response: 10 months
A Large Phase I Experience Provided the Preliminary Data for This Randomized Study

Immunotherapy for NSCLC Brain Metastasis
A Phase II Study of Pembrolizumab in Patients With Metastatic Melanoma and NSCLC With Untreated Brain Metastases

Eligibility:
- Advanced melanoma or NSCLC
- At least 1 untreated or progressive brain metastasis 5-20mm
- No neurologic symptoms or steroid requirement
- PS 0-1
- NSCLC patients only; PD-L1 expression from tumor biopsy after most recent systemic therapy

Eligibility Flow:
- Pembrolizumab 10mg/kg q2 weeks
- Brain metastasis PD
- Brain metastasis CR, PR, or SD
- Consider radiation or surgery to progressing lesions
- Continue pembrolizumab if systemic control achieved

Primary Endpoint:
Brain Metastasis Response Rate

Secondary Endpoints:
Overall response rate, safety, PFS, OS

Exploratory Endpoints:
PD-L1 expression, TILs, and other predictive biomarkers on T cells, tumor cells, neuronal cells, and in plasma

PI: Harriet Kluger
Co-Pls: Sarah Goldberg, Veronica Chiang

CR, complete response; CT, computed tomography; MRI, magnetic resonance imaging; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; PS, performance status; SD, stable disease; TILs, tumor infiltrating lymphocytes

Spectrum of PD-1/PD-L1 Antagonist Activity

Active
- Melanoma
- Renal cancer (clear cell and non-clear cell)
- NSCLC—adenocarcinoma and squamous cell
- Small cell lung cancer
- Head and neck cancer
- Gastric and gastroesophageal junction
- Mismatch repair deficient tumors (colon, cholangiocarcinoma)
- Bladder
- Triple-negative breast cancer
- Ovarian
- Glioblastoma
- Hepatocellular carcinoma
- Thymoma
- Mesothelioma
- Hodgkin lymphoma
- Diffuse large cell lymphoma
- Follicular lymphoma
- T-cell lymphoma (cutaneous T-cell lymphoma [CTCL], peripheral T-cell lymphoma [PTCL])
- Merkel cell

Minimal to No Activity:
- Prostate cancer
- MMR+ colon cancer
- Myeloma
- Pancreatic cancer

Major PD-1/PD-L1 Antagonists
- Nivolumab (anti-PD-1)
- Pembrolizumab (anti-PD-1)
- Atezolizumab (MPDL3280, anti-PD-L1)
- MEDI-4736 (anti-PD-L1)
PD-1 vs PD-L1 Blockade

Tumor cell/APC
- PD-L1
- PD-L2
- Anti-PD-1
- Anti-apoptotic (tumor)

T cell
- PD-L1
- PD-L2
- Anti-PD-L1
- B7.1
- T-cell inactivation
Issues With the PD-L1 Biomarker

- Heterogeneity—multiple tumors and multiple passes within a tumor
- Interval between biopsy and treatment
- Primary versus metastatic disease
- Antibody and staining conditions

- Defining a positive result (cut-offs):
 - Cell type expressing PD-L1 (immune cell versus tumor or both)
 - Location of expression—cell surface versus intracellular versus stromal
 - Intensity, percent of cells ‘positive’
 - Distribution—patchy versus diffuse, intratumoral versus peripheral
Immune-Related Adverse Events (IRAEs)

Endocrine
- Thyroiditis
- Hypothyroidism
- Hyperthyroidism
- Hypophysitis
- Hypopituitarism
- Adrenal Insufficiency

Neurologic
- Neuropathy
- Meningitis
- Guillain-Barre Syndrome

Ocular
- Iritis
- Uveitis
- Conjunctivitis

Cardiac
- Pericarditis

Dermatologic
- Mucositis
- Rash, Vitaligo

Hepatic
- Transaminitis
- Hepatitis

Renal
- Nephritis
- Renal Insufficiency

Gastrointestinal
- Nausea, Emesis
- Diarrhea, Colitis,
- Perforation;
- Pancreatitis

Pulmonary
- Pneumonitis
- Respiratory failure
Where We Are Now

Where We Want To Be

Could biopsies and biomarkers help?

Future studies are warranted to benefit a greater numbers of patients

- Front-line therapy\(^1\)
- Move to earlier stage disease (adjuvant)
- Explore activity in ALK and EGFR mutants
- SCLC\(^2,3\)
- Lung MAP\(^4\)
- Biomarkers and science to develop new combinations\(^5,6\)

Immune Checkpoint Inhibitors in NSCLC
Practical Issues

- Selection of patients
- Monitoring response
- Managing adverse events
- Immunotherapy beyond progression
- Combination therapies with immune checkpoint inhibitors
IMMUNOTHERAPY IN NON-SMALL CELL LUNG CANCER: ANSWERING CLINICALLY RELEVANT QUESTIONS

Sunday, June 5, 2016

6.00 PM – 6.30 PM REGISTRATION AND DINNER
6.30 PM – 8.30 PM SCIENTIFIC PROGRAM