Virtual Journal Club
The Changing Landscape of Chemotherapy for Nonsquamous Non-Small Cell Lung Cancer Treatment (NSCLC)

Discussants:
Francesco Grossi, MD
National Institute for Cancer Research
Genoa, Italy

Martin Reck, MD, PhD
Hospital Grosshansdorf
Grosshansdorf, Germany
Key Factors for Selecting Initial Therapy in Advanced NSCLC

- Histology
- Molecular pathology
- Age
- Performance status (PS)
- Comorbidities
- Patient’s preferences

Histologic and Molecular Subtypes of NSCLC

Adenocarcinoma
- Unknown
- EGFR
- KRAS
- ERBB2
- PIK3CA
- ROS1 rearrangement
- ALK rearrangement
- BRAF
- MET amplification
- NRAS
- Others

Squamous cell carcinoma
- Others

First-Line Treatment Strategies in Advanced NSCLC

EGFR-mutation-analysis

ALK-mutation testing

EGFR mutant positive

ALK positive

Platinum-doublet: A combination of cisplatin or carboplatin with third generation agents (pemetrexed, paclitaxel, vinorelbine, gemcitabine, docetaxel)

Platinum-Based Chemotherapy for Nonsquamous NSCLC
JMDB Trial: Cisplatin/Pemetrexed vs Cisplatin/Gemcitabine: Study Design

Randomization factors:
- Stage
- PS
- Gender
- Histology vs cytologic treatment
- Brain metastases

Vitamin B12, folate and dexamethasone given in both arms

Randomize 1:1

Cisplatin 75 mg/m²
Pemetrexed 500 mg/m²
D1 q 3 weeks up to 6 cycles (n = 862)

Cisplatin 75 mg/m²
Gemcitabine 1250 mg/m²
D1, 8 q 3 weeks up to 6 cycles (n = 863)

JMDB Trial: Overall Survival (OS) in Nonsquamous and Squamous Patients

Nonsquamous
- Median (95% CI)
 - CP: 11.8 (10.4, 13.2)
 - CG: 10.4 (9.6, 11.2)
- Adjusted HR (95% CI)
 - CP vs CG: 0.81 (0.70, 0.94)

Squamous
- Median (95% CI)
 - CP: 9.4 (8.4, 10.2)
 - CG: 10.8 (9.5, 12.1)
- Adjusted HR (95% CI)
 - CP vs CG: 1.23 (1.00, 1.51)

CP, cisplatin plus pemetrexed; CG, cisplatin plus gemcitabine
Pemetrexed Meta-Analysis of Randomized Trials: Histology Analysis

Nonsquamous

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Log [HR]</th>
<th>SE</th>
<th>Weight</th>
<th>HR, IV, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciuleanu 2009, nonsquamous</td>
<td>-0.36</td>
<td>0.12</td>
<td>19.7%</td>
<td>0.70 [0.55, 0.88]</td>
</tr>
<tr>
<td>Gornberg 2009, nonsquamous</td>
<td>-0.04</td>
<td>0.14</td>
<td>14.9%</td>
<td>0.96 [0.73, 1.26]</td>
</tr>
<tr>
<td>Hanna 2009, nonsquamous</td>
<td>-0.25</td>
<td>0.13</td>
<td>17.1%</td>
<td>0.78 [0.60, 1.00]</td>
</tr>
<tr>
<td>Scagliotti 2008, nonsquamous</td>
<td>-0.17</td>
<td>0.07</td>
<td>48.2%</td>
<td>0.84 [0.74, 0.97]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.82 [0.73, 0.91]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 3.42, df = 3 (P = 0.33); I^2 = 12%
Test for overall effect: Z = 3.58 (P = .0003)

Squamous

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Log [HR]</th>
<th>SE</th>
<th>Weight</th>
<th>HR, IV, random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciuleanu 2009, squamous</td>
<td>0.07</td>
<td>0.17</td>
<td>23.0%</td>
<td>1.07 [0.77, 1.50]</td>
</tr>
<tr>
<td>Gornberg 2009, squamous</td>
<td>-0.09</td>
<td>0.21</td>
<td>16.4%</td>
<td>0.91 [0.61, 1.38]</td>
</tr>
<tr>
<td>Hanna 2009, squamous</td>
<td>0.44</td>
<td>0.19</td>
<td>19.3%</td>
<td>1.55 [1.07, 2.25]</td>
</tr>
<tr>
<td>Scagliotti 2008, squamous</td>
<td>0.21</td>
<td>0.11</td>
<td>41.2%</td>
<td>1.23 [0.99, 1.53]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.19 [0.99, 1.43]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.01; Chi^2 = 4.02, df = 3 (P = 0.26); I^2 = 25%
Test for overall effect: Z = 1.85 (P = .06)
CISCA (Cisplatin vs Carboplatin)
Meta-Analysis: The Role of Histology in the Subgroup Analysis

Survival: Test of interaction positive for histology ($P = .098$) and for type of chemotherapy ($P = .093$)

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>HR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsquamous histology</td>
<td>1.12</td>
<td>1.01-1.23</td>
<td>.026</td>
</tr>
<tr>
<td>Squamous histology</td>
<td>0.97</td>
<td>0.85-1.10</td>
<td>.586</td>
</tr>
<tr>
<td>Second-generation chemo</td>
<td>0.94</td>
<td>0.80-1.11</td>
<td>.467</td>
</tr>
<tr>
<td>Third-generation chemo</td>
<td>1.11</td>
<td>1.01-1.21</td>
<td>.026</td>
</tr>
</tbody>
</table>

The overall survival was significantly superior for cisplatin in the subgroup of nonsquamous NSCLC and in patients treated with third-generation regimens.

Norwegian Lung Cancer Study Group: First-Line Pemetrexed Plus Carboplatin (PC) vs Gemcitabine Plus Carboplatin (GC)

Primary endpoint:
- Health-related quality of life

Secondary endpoints:
- Overall survival
- Toxicity

Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC (n = 127)</td>
<td>7.8</td>
<td>5.4 to 10.1</td>
</tr>
<tr>
<td>GC (n = 121)</td>
<td>7.5</td>
<td>6.0 to 9.4</td>
</tr>
</tbody>
</table>

\[P = .77 \]

Pointbreak Trial: Pemetrexed/Carboplatin Plus Bevacizumab (PCBev) vs Paclitaxel/Carboplatin Plus Bevacizumab (PacCBev)

Overall survival

- OS median (95% CI), mo:
 - PCBev: 12.6 (11.3 to 14.0)
 - PacCBev: 13.4 (11.9 to 14.9)

- Survival rate, %
 - 1-year: PCBev: 52.7, PacCBev: 54.1
 - 2-year: PCBev: 24.4, PacCBev: 21.2

Progression-free survival

- PFS median (95% CI), mo:
 - PCBev: 6.0 (5.6 to 6.9)
 - PacCBev: 5.6 (5.4 to 6.0)

- Survival rate, %
 - 1-year: PCBev: .83 (0.71 to .96), PacCBev: .83 (0.71 to .96)

Primary endpoint: OS

Secondary endpoints: PFS, response rate (RR), etc

First-Line Pemetrexed/Carboplatin (PC) vs Docetaxel/Carboplatin (DC)

Primary endpoint: Survival without grade 3 or 4 toxicity
 - Significantly longer for pemetrexed/carboplatin (3.2 vs 0.7 months; \(P = .001 \))

Secondary endpoints: OS, PFS, RR, etc

A Randomized Phase III of Docetaxel Plus Cisplatin (DCis) vs Pemetrexed Plus Cisplatin (PCis) in First-Line Nonsquamous NSCLC

Primary endpoint: PFS
- Similar PFS

Secondary endpoints: RR and safety
- Similar RR
- Safety: More toxicity in docetaxel/cisplatin arm

N = 149

Driving Factors Beyond Histology for Chemotherapy Selection in Advanced NSCLC

• PS
• Age
• Comorbidities
• Treatment strategy beyond first-line therapy
NAVotrial 01
Oral Vinorelbine Plus Cisplatin as First-line Chemotherapy in Nonsquamous Non-Small Cell Lung Cancer: Final Results of an International Randomized Phase II Study

NAVotrial 01: Study Rational

- Vinorelbine and cisplatin combination is a well established third-generation chemotherapy regimen used in adjuvant therapy and in treatment of advanced NSCLC
- The efficacy of oral vinorelbine (NVBo) in combination with platinum has been confirmed in phase II and phase III studies in advanced NSCLC
- Subset analysis of Global Lung Oncology Branch trial 3 (GLOB3) (first-line oral vinorelbine/cisplatin vs docetaxel/cisplatin) in squamous and nonsquamous NSCLC confirmed increased chemosensitivity in adenocarcinoma vs squamous NSCLC
- There are no specific studies reporting use of NVBo and cisplatin in nonsquamous NSCLC
- These findings warranted consideration of the impact of a platinum based combination with NVBo in a subset of patients with nonsquamous NSCLC

Oral Vinorelbine in Nonsquamous NSCLC NAVoTrial 01: Study Design

- A multicentric randomized open phase II study

A

- Advanced nonsquamous NSCLC not suitable for locoregional treatment

- **n = 50**
 - Pemetrexed
 - 500 mg/m² d1
 - Cisplatin
 - 75 mg/m² d1

- Maintenance
 - Pemetrexed

B

- Oral vinorelbine
- 60mg/m² C1, d1-d8
- 80mg/m² C2-4, d1-d8
- Cisplatin
- 80mg/m² d1

- Maintenance
- Oral vinorelbine

- Overall response rate (ORR) or stable disease (SD)

From Oct 2009 to Feb 2011, 151 patients were treated in 34 centers of 11 countries

NAVoTrial 01: Main Selection Criteria

- Chemo-naive patients ≤75 years
- Karnofsky performance status (KPS) ≥80%
- Nonsquamous histologically or cytologically proven NSCLC
- Stage IIIB/IV (2009 TNM classification) or relapsed NSCLC after local therapy and not suitable for locoregional treatment
- Life expectancy more than 12 weeks
- Adequate bone marrow, hepatic and renal functions
- At least one measurable indicator lesion (RECIST criteria, V 1.1)

NAVoTrial 01: Study Objectives

• Primary objective
 – Disease control rate (PR, CR, SD)

• Secondary objectives
 – ORR
 – PFS
 – OS
 – Time to treatment failure
 – Safety

PR, partial response; CR, complete response

NAVoTrial 01: Patient Characteristics (1/2)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Arm B NVBo + cisplatin (n = 100)</th>
<th>Arm A Pemetrexed + cisplatin (n = 51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, (N,%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>62 (62.0)</td>
<td>33 (64.7)</td>
</tr>
<tr>
<td>Median age (year, range)</td>
<td>61.0 (38.4-75.1)</td>
<td>63.8 (40.3-75.5)</td>
</tr>
<tr>
<td><65 years (%)</td>
<td>71.0</td>
<td>60.8</td>
</tr>
<tr>
<td>≥65 years (%)</td>
<td>29.0</td>
<td>39.2</td>
</tr>
<tr>
<td>Karnofsky performance status (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td>42.0</td>
<td>41.2</td>
</tr>
<tr>
<td>90%</td>
<td>25.0</td>
<td>35.3</td>
</tr>
<tr>
<td>100%</td>
<td>33.0</td>
<td>23.5</td>
</tr>
<tr>
<td>Smoker at randomization (%)</td>
<td>40.0</td>
<td>37.3</td>
</tr>
</tbody>
</table>

Characteristics

Arm B
NVBo + cisplatin (n = 100)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic subtype (%)</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>1.0</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>88.0</td>
</tr>
<tr>
<td>Large-cell carcinoma</td>
<td>10.0</td>
</tr>
<tr>
<td>Others</td>
<td>1.0</td>
</tr>
<tr>
<td>Stage at randomization (%)</td>
<td></td>
</tr>
<tr>
<td>IIIB</td>
<td>8.0</td>
</tr>
<tr>
<td>IV</td>
<td>88.0</td>
</tr>
<tr>
<td>Relapse</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Median delay between diagnosis and study entry, month (range)

- 0.7 (0.2-8.6)
- 0.9 (0.2-75.2)

Histopathological diagnosis

- Cytologic (%) 26.0
- Histologic (%) 74.0

Number of organ(s) involved (%)

- 1 7.0
- 2 28.0
- ≥3 65.0

Arm A
Pemetrexed + cisplatin (n = 51)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic subtype (%)</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>-</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>82.4</td>
</tr>
<tr>
<td>Large-cell carcinoma</td>
<td>7.8</td>
</tr>
<tr>
<td>Others</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Histopathological diagnosis

- Cytologic (%) 25.5
- Histologic (%) 74.5

Number of organ(s) involved (%)

- 1 5.9
- 2 35.3
- ≥3 58.8

NAVoTrial 01 Efficacy:
ORR and DCR (RECIST)
(According to Investigator, ITT population)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Combination period</th>
<th>Combination and maintenance periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arm B</td>
<td>Arm A</td>
</tr>
<tr>
<td></td>
<td>NVBo + cisplatin</td>
<td>Pemetrexed + cisplatin</td>
</tr>
<tr>
<td></td>
<td>(N = 100)</td>
<td>(N = 51)</td>
</tr>
<tr>
<td>PR</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>21.0</td>
<td>23.5</td>
</tr>
<tr>
<td>SD</td>
<td>54</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>54.0</td>
<td>52.9</td>
</tr>
<tr>
<td>DCR</td>
<td>75</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>76.5</td>
</tr>
<tr>
<td>PD</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>15.7</td>
</tr>
<tr>
<td>NE</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>7.8</td>
</tr>
</tbody>
</table>

* For 10 patients in NVBo + cisplatin arm and 4 patients in P + cisplatin arm, PR was confirmed during maintenance

DCR, disease control rate; RECIST, Response Evaluation Criteria in Solid Tumors; ITT, intent to treat; PD, progression disease; NE, nonevaluable

NAVoTrial 01 Efficacy: PFS (ITT Population)

Survival Probability

Kaplan-Meier PFS estimates and 95% CI

<table>
<thead>
<tr>
<th>Timepoint</th>
<th>NVBo + cisplatin</th>
<th>P + cisplatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>33.0% (95% CI = 24.0-42.2)</td>
<td>29.4% (95% CI = 17.7-42.1)</td>
</tr>
<tr>
<td>12 months</td>
<td>11.0% (95% CI = 5.8-18.0)</td>
<td>7.8% (95% CI = 2.5-17.2)</td>
</tr>
<tr>
<td>18 months</td>
<td>5.0% (95% CI = 1.9-10.5)</td>
<td>3.9% (95% CI = 0.7-11.9)</td>
</tr>
</tbody>
</table>

NAVoTrial 01 Efficacy: OS (ITT Population)

Kaplan-Meier OS estimates and 95% CI

<table>
<thead>
<tr>
<th>Timepoint</th>
<th>NVBo + cisplatin</th>
<th>P + cisplatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>69.0% (95% CI = 58.9-7.1)</td>
<td>69.0% (95% CI = 58.9-7.1)</td>
</tr>
<tr>
<td>12 months</td>
<td>40.0% (95% CI = 30.4-49.4)</td>
<td>40.0% (95% CI = 30.4-49.4)</td>
</tr>
<tr>
<td>18 months</td>
<td>30.0% (95% CI = 21.4-39.1)</td>
<td>30.0% (95% CI = 21.4-39.1)</td>
</tr>
</tbody>
</table>

Survival Probability

- NVBo + cisplatin
- P + cisplatin

Median (95% CI)
- NVBo + cisplatin: 10.2 (7.8-11.9)
- P + cisplatin: 10.8 (7.0-16.4)

Number of events
- NVBo + cisplatin: 80
- P + cisplatin: 40

Number censored
- NVBo + cisplatin: 20
- P + cisplatin: 11

Hazard ratio (95% CI)
- 1.00 (0.65-1.54)

NAVoTrial 01 Toxicity: Hematological Grade 3-4 Toxicities

<table>
<thead>
<tr>
<th>Toxicity per patient</th>
<th>Combination period</th>
<th>Maintenance period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arm B NVBo + cisplatin</td>
<td>Arm A Pemetrexed + cisplatin</td>
</tr>
<tr>
<td>Hematologic, %</td>
<td>N = 100</td>
<td>N = 49</td>
</tr>
<tr>
<td>Anemia</td>
<td>9.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Leucopenia</td>
<td>26.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>44.0</td>
<td>18.3</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>0</td>
<td>6.1</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

NAVoTrial 01 Toxicity: Nonhematological Grade 3-4 Toxicities

<table>
<thead>
<tr>
<th>Toxicity per patient, %</th>
<th>Combination period</th>
<th>Maintenance period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arm B NVBo + cisplatin</td>
<td>Arm A Pemetrexed + cisplatin</td>
</tr>
<tr>
<td>Nonhematologic, %</td>
<td>n = 100</td>
<td>n = 49</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7</td>
<td>3.9</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>11.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Nausea</td>
<td>5.0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Constipation</td>
<td>1.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Respiratory, thoracic disorders				
Respiratory, thoracic disorders	0	4.0	-	-
Pulmonary hemorrhage	0	2.0	-	-
Pulmonary embolism	0	2.0	-	-
Deep vein thrombosis	0	2.0	-	-
Renal failure	2.0	2.0	-	-

Cost-Effectiveness: NVBo Plus Cisplatin vs Pemetrexed Plus Cisplatin

Cost considered in the analysis:
- Anticancer drugs
- Administration settings (ie, outpatient / inpatient / at home)
- Serious adverse events (defined as involving hospitalization and suspected to anticancer drugs)

<table>
<thead>
<tr>
<th></th>
<th>NVBo + cisplatin</th>
<th>Pemetrexed + cisplatin</th>
<th>NVBo + cisplatin vs pemetrexed + cisplatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticancer drugs</td>
<td>1,763</td>
<td>13,615</td>
<td>-11,852</td>
</tr>
<tr>
<td>Administration settings</td>
<td>1,703</td>
<td>344</td>
<td>1,359</td>
</tr>
<tr>
<td>Serious adverse events</td>
<td>611</td>
<td>569</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>4,077</td>
<td>14,528</td>
<td>-10,451</td>
</tr>
</tbody>
</table>

Conclusions:
Given the reported efficacy outcomes with both regimens, NVBo/cisplatin followed by maintenance with NVBo provides substantial savings (€10,451 per patient on average), appearing a cost-effective treatment option in advanced nonsquamous NSCLC.

Three Out of Four Patients Prefer Oral Compared to intravenous (IV) Vinorelbine

<table>
<thead>
<tr>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Undecided</th>
<th>Agree</th>
<th>Strongly agree</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median for all patients (n≤39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median for patients preferring oral treatment (n≤29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median for patients preferring IV treatment (n≤11)</td>
</tr>
</tbody>
</table>

- Infusion is more efficient against cancer than capsules: P = .77
- I worry about the IV line: P = .30
- Capsules have fewer side effects than infusion: P = .00
- I am afraid of forgetting to take the capsules on time: P = .82
- I worry about troubles finding a vein for infusion: P = .99
- Capsules work better for me: P = <.001
- I worry about nausea on the way home after infusion: P = .16
- I am concerned about vomiting up the capsules: P = .03
- The pain of an IV line distresses me: P = .59
- It is inconvenient to spend time at the clinic for IV: P = .048
- I worry about taking the capsules at home without supervision: P = .12
- I prefer taking capsules at home instead of IV at the clinic: P = .004
- I have difficulties swallowing the capsules: P = .57
- Capsules have more side effects than infusion: P = <.001
- My family and friends prefer that I take capsules: P = .040
- My everyday life is less affected by capsules: P = .002

Answers to questions regarding whether maintenance therapy would be worthwhile in relation to the mode of administration.

T0, time at start of first-line chemotherapy; T1, after two cycles of chemotherapy; T2, after four cycles of chemotherapy; Q3wk, every 3 weeks; OD, once daily

NAVoTrial 01: Conclusions

- The doublet oral vinorelbine plus cisplatin showed efficacy in nonsquamous NSCLC in line with a standard treatment of pemetrexed plus cisplatin.
- Both regimens presented a different, but easily managed safety profile.
- The treatment sequence should be decided based on individual histologic and molecular parameters as well as patient preference and cost of treatment.
- Platinum doublet with oral vinorelbine is an option in first-line chemotherapy for advanced nonsquamous NSCLC with the user-friendly oral formulation.