
• Use of meta-learning to enable fast adaptation (i.e. k-shot) of large function approximators
• Sample-efficient meta-training via our model-based formulation
• Local fine-tuning of a prior precludes need for a globally accurate model and allows for online adaptation to changes
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Our Deep-RL agents mostly operate in the regime where they are very good at succeeding in specific settings, but 
fail in the face of  any changes or new settings at run time.

• Need adaptation
Large function approximators cannot naively be updated online, using small amount of  data

• Need meta-learning to allow for fast adaptation
We want to adapt to dynamics changes, and also, collecting training data in expensive

• Use a sample-efficient, model-based reinforcement learning algorithm

Goal: find optimal parameters (𝜃, 𝜓) such that updated model 
parameters 𝜃& produced by the update rule 𝑢(	optimize our 
objective, across tasks T: 

Model accuracy: Model prediction 
errors are reduced after model adaptation. 

Background: Meta-Learning

Goal: Use recent experiences 
to quickly adapt to the current 
situation.

Takeaways

• Gradient-based meta-learning:                 
𝑢* = 𝜃 − 𝛼𝛻/𝐿(𝐷234, 𝜃)

• Recurrence-based meta-learning:           
𝑢*: RNN that takes in 𝐷234 sequentially
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𝐿 𝐷23:;3 , 𝜃& 			𝑠. 𝑡. 		𝜃& = 𝑢*(𝐷234, 𝜃)

Update rule 𝑢 uses recent data 𝐷234 from a given task to adapt for other data 𝐷23:;3 from the same task. 

Test time: Model-Based Meta-RL
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Sample	j=1…N	
consecutive	sequences:
𝑠K34 = 𝑠3BC … 𝑠3BE
𝑠K3:;3 = 𝑠3 … 𝑠3^_

We construct “tasks” by using windows of time: 
Recent experience can be informative of current/near-future settings

(i.e., dynamics, environmental perturbations, goals, etc.)
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Meta-training Sample Efficiency

Sample efficiency: requires 1000x less 
meta-training data than the model-free 
methods, and achieves higher performance 
than the model-based methods.

Testing Performance

Comparison: Outperforms previous 
model-free (TRPO), model-based 
(MB), and adaptive (MB+DE) model-
based methods.

Simulation Results Real-world Results

Tasks

Model Adaptation

𝜃:	model parameters
𝜓:	update rule parameters


