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Problem Background: Meta-Learning
Our Deep-RL agents mostly operate in the regime where they are very good at succeeding 1n specific settings, but Goal: find optimal parameters (6, 1) such that updated model - Gradient-based meta-learning:
fail in the face of any changes or new settings at run time. parameters 6’ produced by the update rule Ug optimize our uy = 6 — aVyL(D tr )
* Need adaptation objective, across tasks 1 * Recurrence-based meta-learning:

Large function approximators cannot naively be updated online, using small amount of data uy: RNN that takes in D" sequentially

* Need meta-learning to allow for fast adaptation
We want to adapt to dynamics changes, and also, collecting training data in expensive
* Use a sample-efficient, model-based reinforcement learning algorithm

Train time: Learning to Adapt Test time: Model-Based Meta-RL
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Update rule u uses recent data D from a given task to adapt for other data D" from the same task.
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We construct “tasks” by using windows of time: =
Recent experience can be informative of current/near-future settings (Se—p -+ St—1) i
(i.e., dynamics, environmental perturbations, goals, etc.)
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errors are reduced after model adaptation.
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Takeaways

* Use of meta-learning to enable fast adaptation (i.e. k-shot) of large function approximators
* Sample-etficient meta-training via our model-based formulation
* Local fine-tuning of a prior precludes need for a globally accurate model and allows for online adaptation to changes
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