
• Use of meta-learning to enable fast adaptation (i.e. k-shot) of large function approximators
• Sample-efficient meta-training via our model-based formulation
• Local fine-tuning of a prior precludes need for a globally accurate model and allows for online adaptation to changes

Learning to Adapt in Dynamic, Real-World
Environments Through Meta-Reinforcement Learning

Anusha Nagabandi*, Ignasi Clavera*
Simin Liu, Ron S. Fearing , Pieter Abbeel, Sergey Levine, Chelsea Finn

Problem

Train time: Learning to Adapt

Comparison

X/Y plots

Slippery slope

Pose Error

Payload

Missing leg

Our Deep-RL agents mostly operate in the regime where they are very good at succeeding in specific settings, but
fail in the face of any changes or new settings at run time.

• Need adaptation
Large function approximators cannot naively be updated online, using small amount of data

• Need meta-learning to allow for fast adaptation
We want to adapt to dynamics changes, and also, collecting training data in expensive

• Use a sample-efficient, model-based reinforcement learning algorithm

Goal: find optimal parameters (𝜃, 𝜓) such that updated model
parameters 𝜃& produced by the update rule 𝑢(optimize our
objective, across tasks T:

Model accuracy: Model prediction
errors are reduced after model adaptation.

Background: Meta-Learning

Goal: Use recent experiences
to quickly adapt to the current
situation.

Takeaways

• Gradient-based meta-learning:
𝑢* = 𝜃 − 𝛼𝛻/𝐿(𝐷234, 𝜃)

• Recurrence-based meta-learning:
𝑢*: RNN that takes in 𝐷234 sequentially

Pier Terrain slopes

Disabled Crippled

min
/,*

	9	
2

𝐿 𝐷23:;3 , 𝜃& 			𝑠. 𝑡. 		𝜃& = 𝑢*(𝐷234, 𝜃)

Update rule 𝑢 uses recent data 𝐷234 from a given task to adapt for other data 𝐷23:;3 from the same task.

Test time: Model-Based Meta-RL

Update rule
𝑢*

Planner

Recent data

Meta-trained prior 𝜃∗

Adapted model 𝜃∗′

𝑎3

𝑠3

(𝑠3BC …𝑠3BE)

On-policy
rollouts

𝜃,𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛9𝐿(𝑠K3:;3, 𝜃K&)
K

Inner update Outer update

𝜃K
& ← 𝑢* 𝑠K

34, 𝜃 		∀𝑗

Dataset
𝐷

(𝜃, 𝜓)

Sample	j=1…N	
consecutive	sequences:
𝑠K34 = 𝑠3BC … 𝑠3BE
𝑠K3:;3 = 𝑠3 … 𝑠3^_

We construct “tasks” by using windows of time:
Recent experience can be informative of current/near-future settings

(i.e., dynamics, environmental perturbations, goals, etc.)

past
𝑀

future
𝐾

Meta-training Sample Efficiency

Sample efficiency: requires 1000x less
meta-training data than the model-free
methods, and achieves higher performance
than the model-based methods.

Testing Performance

Comparison: Outperforms previous
model-free (TRPO), model-based
(MB), and adaptive (MB+DE) model-
based methods.

Simulation Results Real-world Results

Tasks

Model Adaptation

𝜃:	model parameters
𝜓:	update rule parameters

