

Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning

Anusha Nagabandi*, Ignasi Clavera* Simin Liu, Ron S. Fearing, Pieter Abbeel, Sergey Levine, Chelsea Finn

Problem

Our Deep-RL agents mostly operate in the regime where they are very good at succeeding in specific settings, but fail in the face of any changes or new settings at run time.

Need adaptation

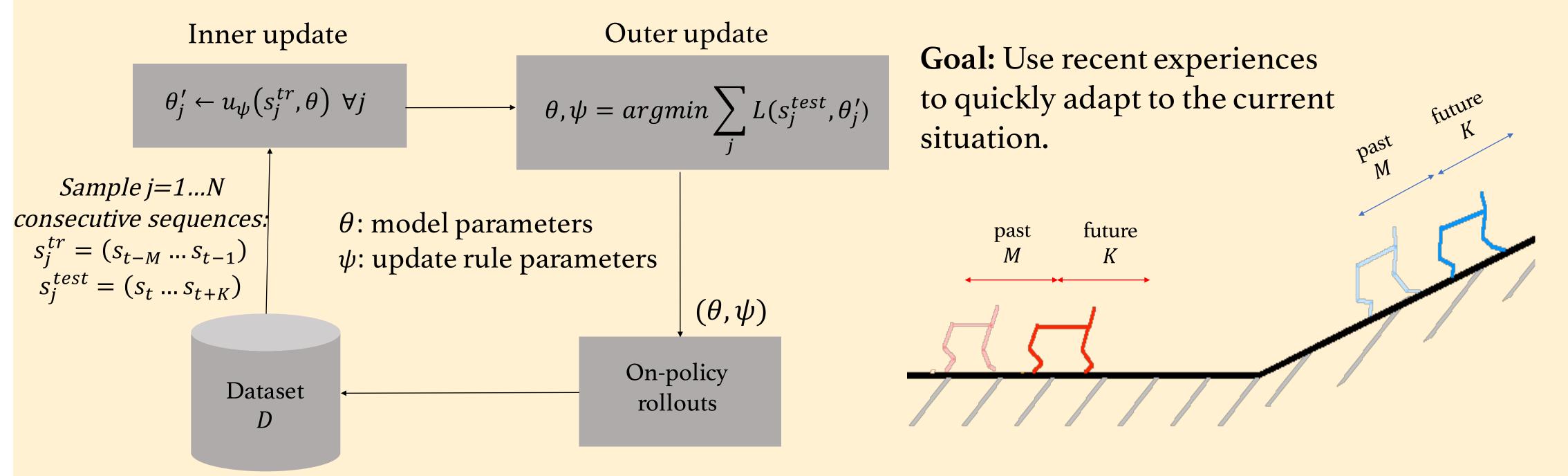
Large function approximators cannot naively be updated online, using small amount of data

• Need **meta-learning** to allow for fast adaptation

We want to adapt to dynamics changes, and also, collecting training data in expensive

• Use a **sample-efficient**, model-based reinforcement learning algorithm

Train time: Learning to Adapt



We construct "tasks" by using windows of time: Recent experience can be informative of current/near-future settings (i.e., dynamics, environmental perturbations, goals, etc.)

Background: Meta-Learning

Goal: find optimal parameters (θ, ψ) such that updated model parameters θ' produced by the update rule u_{ϕ} optimize our objective, across tasks T:

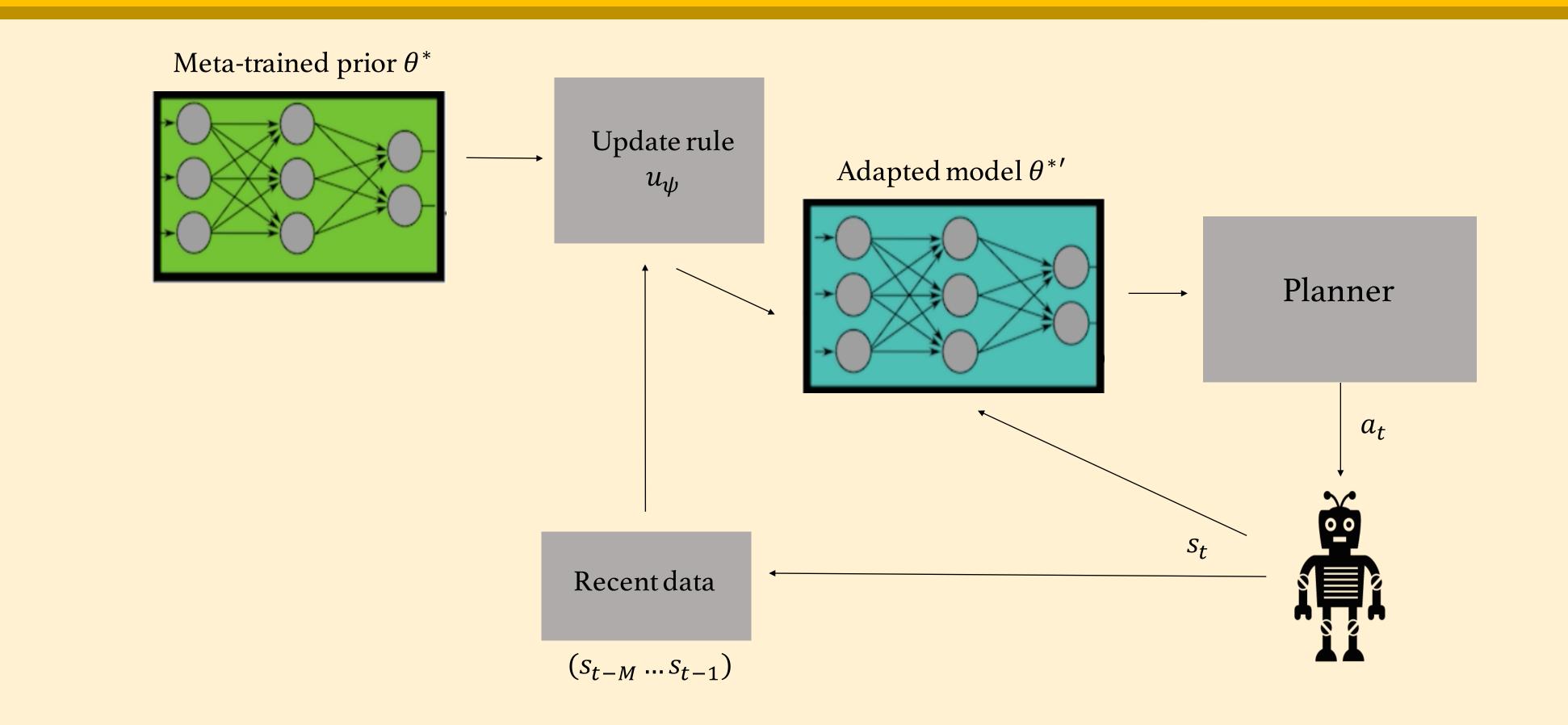
$$\min_{\theta,\psi} \sum_{T} L(D_T^{test}, \theta') \quad s.t. \quad \theta' = u_{\psi}(D_T^{tr}, \theta)$$

 Gradient-based meta-learning: $u_{\psi} = \theta - \alpha \nabla_{\theta} L(D_T^{tr}, \theta)$

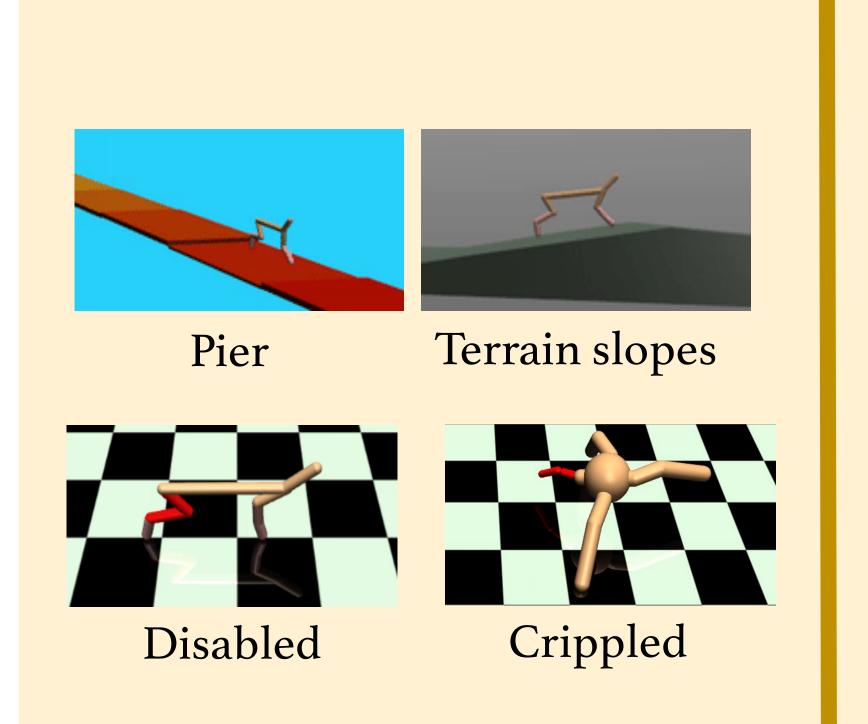
• Recurrence-based meta-learning: u_{ψ} : RNN that takes in D_T^{tr} sequentially

Update rule u uses recent data D_T^{tr} from a given task to adapt for other data D_T^{test} from the same task.

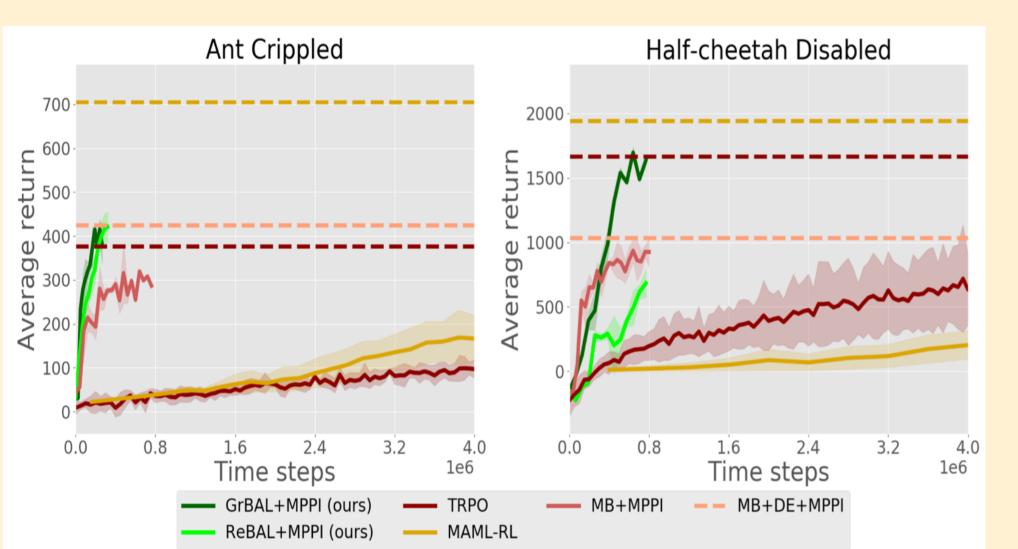
Test time: Model-Based Meta-RL



Simulation Results

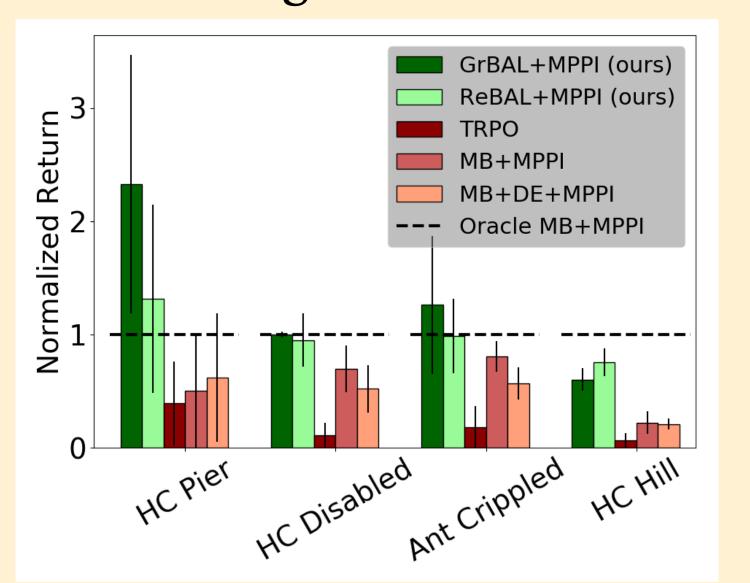


Meta-training Sample Efficiency



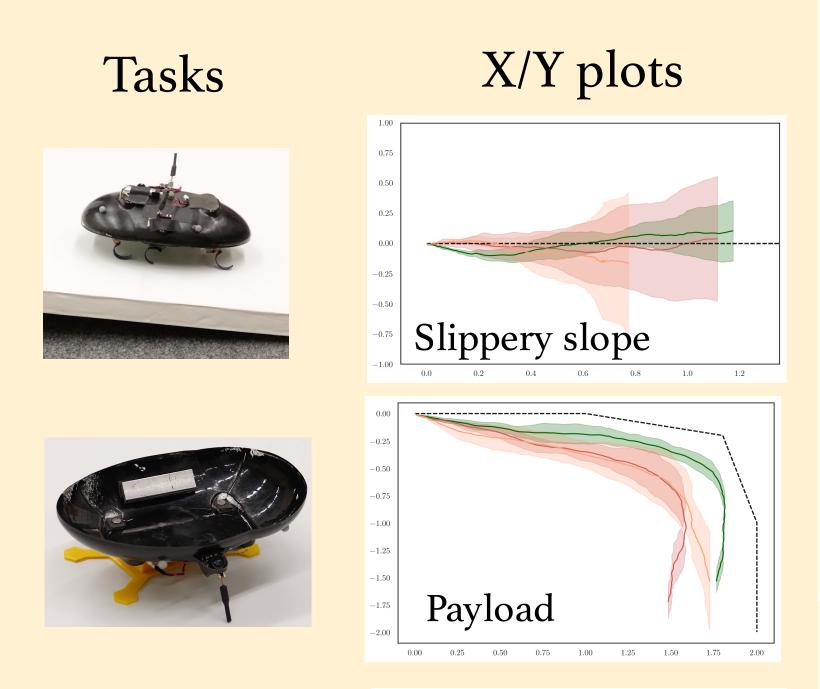
Sample efficiency: requires 1000x less meta-training data than the model-free methods, and achieves higher performance than the model-based methods.

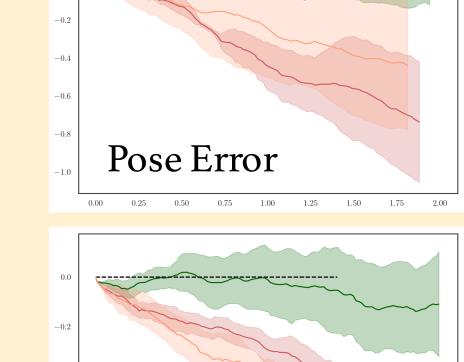
Testing Performance

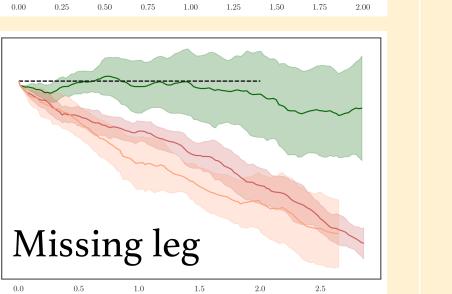


Comparison: Outperforms previous model-free (TRPO), model-based (MB), and adaptive (MB+DE) modelbased methods.

Real-world Results





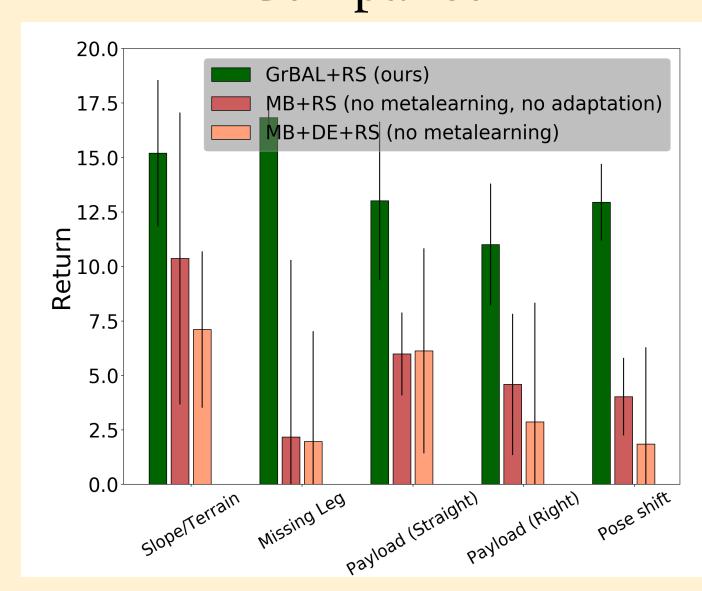


Model Adaptation



Model accuracy: Model prediction errors are reduced after model adaptation.

Comparison



Takeaways

- Use of meta-learning to enable fast adaptation (i.e. k-shot) of large function approximators
- Sample-efficient meta-training via our model-based formulation
- Local fine-tuning of a prior precludes need for a globally accurate model and allows for online adaptation to changes