Leveraging Low-Rank Relations between Surrogate Tasks in Structured Prediction
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-SETTING - rCONTRIBUTIONS IN A NUTSHELL - EXCESS RISK BOUNDS
j_ettt_lbn%_: X mgt;txsg?c? y;ﬁy 01; s;}rtitléred outputs, p probability o Study the interplay between surrogate methods for structured Theorem 2. (Informal) Assume that ) is compact and that ||g.||. < +o0.
ISLADULION on 1055 £ ' prediction and multitask learning (MTL) methods. Then, the minimizer g of (1) satisfies
Goal: learn f: X' — )/ minimizing the expected risk e Propose a trace norm regularization algorithm that does not require R(§) — min R(g) < M N3 w.h.p.
E(S) = Jxuytlf(x),y)dp(z,y), explicit knowledge of the surrogate framework (e.g. coding/decoding). g:X—H B
given only n observations (z;, ;)i ~ p. ) ’
e Derive excess risk bounds for Low-rank Structured Prediction. The comparison inequality automatically lifts to the original problem any
-BACKGROUND | advantage deriving from enforcing low-rankness in the surrogate problem.
Surrogate methods are strategies to address supervised learning prob- e Identity regimes where the proposed MTL estimator exhibits better - ;o AL
lems with structured outputs. ceneralization performance than its “independent task™ counterpart. Corollary 3. Thefestlmator J = do g satisfies .
YV coding surrogate problem LOW RANK ESTIMATOR | 5(f) — f.]g}iilyg(f) < vM n w.h.p.
c:)V — 7:[ H Hilbert space N | Y
L-HxH =R Is it useful to enforce low-rank structures among surrogate tasks? | —
decodin R(g) = [ L (9(2). c())d The constant M determines whether the M TL-inspired trace-norm
) d:H —s :5 9) = Jaxy S\, )P Can we deal with infinite dimensional surrogate spaces when estimator is favorable over the “Independent’ task Iearning counterpart:
f=dog €rrenensmnarnanns ERM — g enforcing such low-rank structures? /2|1, (12
~ low-rank: M = ||C||;/ 2N g2 + . ..
The class of Structure Encoding Loss Functions (SELF) implic- min n~° E lg(x;) — c(y:) |5, (1) no low-rank: M = (1 Cllop)lgls
itly define a coding function c, since they can be written as g: X —H - : C : :
, , Low-rank is beneficial in the following regime:
Uy,y') = (cly), Vely))u This yields the decoded estimator: e The tasks have a low rank structure — [|g.| 1]
for some bounded linear operator V' : H — H. | k7 11T THS
f(gj) ~ aryggljmzzloz () €y, i) e [he marginal py has HC’Hl/2 < 1
This leads to a surrogate framework by choosing where " : X — R is given by the algorithm below Example. X = RY, p is uniform on the unit sphere: HCHl/z —1/Vd
. N h B2
Surrog.ate loss: L(7, h)_ |h— K] . Algorithm 1 - Low-rank Structured Prediction h
Decoding: d(h) = argmin .y, (c(y), Vh),, for h € H e - _ _
Input: K, Kaf c R"™™" empirical k.ernel matrices for.mput- and output Remark 1: Our analysis extends to (nonlinear) multitask learning.
data, A regularizer, r rank, v step size, kK number of iterations. Remark 2: The bound in Thm. 2 holds in general for least-squares

Surrogate estimator §: LS 4+ Tikhonov re . . .
5 I T S R"%T randomly regression with trace norm regularization.

n Initalize: Sample My, Ny & .
- —1 N\ N (12 , |

M, = (1 — )\V)M — W(KyM;N; — D)K,N,
g(z) = 3 ai(z)c(y), a(z) = (K, +n\) v, Niz1=(1— )N, — v(N,; MTK — K, M We evaluated the empirical performance of the proposed method on
i=1 ranking applications, specifically the pairwise ranking setting.

Return: The weighting function o'" : X — R"

Decoded estimator / = d o § (Loss trick!) with a™(x) = NyM, v, for any z € X ml100k Jesterl sushi
. / AdaRank 0.509 (+0.007) 0.534 (£0.009) 0.588 (£0.051)
f(x) = d(g(x)) = argmin. £ ai(x)0(y, ). Let g(-) = AB*¢(-)withp: X - F, A:H >R, B: F 5 R" N 0215 (0000) 0507 (0007 6201 (o 10§
yey 1= Using the variational formulation of trace norm, (1) can be rewritten as SELF + ||, 0. 3 2 (£0.005) 0.386 (£0.005) 0.391 (::0.003)
Comparison Inequality (links structured and surrogate problem): ., n * 2 : : (Ours) SELF + |||, 0.156 (£0.005)0.247 (4+-0.002)0.313 (0.003)
min 0 S AB (xi) = (i)l +A|Allks+l Bllks).— (2) ||
£(dog) - £(f) < 2VI(R(g) - R(g") REFERENCES
\ ) Theorem 1. (LOSS trick) The k-th iterate of GD on problem (2) i [1] C. Ciliberto et .aI, A Consistent Regu/a.ri?atiion .Approach for Structured Prediction, NIPS 2016
The f " cal when 4 is infinite di _ ! R ( ) o o ( ) C(:Ij) with o obtained after & stebs of Ale 1 2] F. Bach, Consistency of trace norm minimization, JMLR 2008
€ Tramework Is practical when IS INTINItE dimensionail: AT =1**k ' k P 5 - 3] Srebro et al, Maximum-margin matrix factorization, NIPS 2005




