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Setting: X input space, Y set of structured outputs, ρ probability
distribution on X × Y , loss ` : Y × Y → R.

Goal: learn f : X → Y minimizing the expected risk
E(f ) :=

∫
X×Y `(f (x), y) dρ(x, y),

given only n observations (xi, yi)ni=1 ∼ ρ.

SETTING

Surrogate methods are strategies to address supervised learning prob-
lems with structured outputs.

The class of Structure Encoding Loss Functions (SELF) implic-
itly define a coding function c, since they can be written as

`(y, y′) = 〈c(y), V c(y′)〉H
for some bounded linear operator V : H → H.

This leads to a surrogate framework by choosing
Surrogate loss: L(h, h′) = ‖h− h′‖2

Decoding: d(h) = argminy∈Y 〈c(y), V h〉H for h ∈ H

Surrogate estimator ĝ: LS + Tikhonov reg

ĝ(x) =
n∑
i=1
αi(x)c(yi), α(x) = (Kx + nλI)−1vx,

Decoded estimator f̂ = d ◦ ĝ (Loss trick!)

f̂ (x) = d(ĝ(x)) = argmin
y∈Y

n∑
i=1
αi(x)`(y, yi),

Comparison Inequality (links structured and surrogate problem):

E(d ◦ g)− E(f ∗) ≤ 2‖V ‖
√
(R(g)−R(g∗))

The framework is practical when H is infinite dimensional!

BACKGROUND

• Study the interplay between surrogate methods for structured
prediction and multitask learning (MTL) methods.

• Propose a trace norm regularization algorithm that does not require
explicit knowledge of the surrogate framework (e.g. coding/decoding).

• Derive excess risk bounds for Low-rank Structured Prediction.

• Identify regimes where the proposed MTL estimator exhibits better
generalization performance than its “independent task” counterpart.

CONTRIBUTIONS IN A NUTSHELL

Is it useful to enforce low-rank structures among surrogate tasks?

Can we deal with infinite dimensional surrogate spaces when
enforcing such low-rank structures?

This yields the decoded estimator:
f̂ (x) = argmin

y∈Y

n∑
i=1
αtn
i (x) `(y, yi)

where αtn : X → R is given by the algorithm below

Algorithm 1 - Low-rank Structured Prediction
Input: KX , KY ∈ Rn×n empirical kernel matrices for input and output
data, λ regularizer, r rank, ν step size, k number of iterations.
Initalize: Sample M0, N0 ∈ Rn×r randomly.
For j = 0, . . . , k:

Mj+1 = (1− λν)Mj − ν(KXMjNj − I)KYNj

Nj+1 = (1− λν)Nj − ν(NjM
>
j KX − I)KXMj

Return: The weighting function αtn : X → Rn

with αtn(x) = NkM
>
k vx for any x ∈ X

Let g(·) = AB∗φ(·) with φ : X → F , A : H → Rr, B : F → Rr.
Using the variational formulation of trace norm, (1) can be rewritten as

min
A,B,r

n−1 n∑
i=1
‖AB∗φ(xi)−ψ(yi)‖2

H+λ
(
‖A‖2

HS+‖B‖2
HS

)
, (2)

Theorem 1. (Loss trick) The k-th iterate of GD on problem (2) is
ĝk(x) = ∑n

i=1α
tn
k (x) c(x), with αtn

k obtained after k steps of Alg. 1.

LOW RANK ESTIMATOR

Theorem 2. (Informal) Assume that Y is compact and that ‖g∗‖∗ < +∞.
Then, the minimizer ĝ of (1) satisfies

R(ĝ)− min
g:X→H

R(g) ≤ M n−
1
2 w.h.p.

The comparison inequality automatically lifts to the original problem any
advantage deriving from enforcing low-rankness in the surrogate problem.

Corollary 3. The estimator f̂ = d ◦ ĝ satisfies

E(f̂ )− min
f :X→Y

E(f ) ≤
√

M n−
1
4 w.h.p.

The constant M determines whether the MTL-inspired trace-norm
estimator is favorable over the “independent” task learning counterpart:

low-rank: M = ‖C‖1/2
op ‖g∗‖2

∗ + . . .

no low-rank: M = (1+‖C‖1/2
op )‖g∗‖2

HS + . . .

Low-rank is beneficial in the following regime:
• The tasks have a low rank structure → ‖g∗‖∗ ∼ ‖g∗‖HS
• The marginal ρX has ‖C‖1/2

op � 1

Example.X = Rd, ρX is uniform on the unit sphere: ‖C‖1/2
op = 1/

√
d.

Remark 1: Our analysis extends to (nonlinear) multitask learning.
Remark 2: The bound in Thm. 2 holds in general for least-squares

regression with trace norm regularization.

EXCESS RISK BOUNDS

We evaluated the empirical performance of the proposed method on
ranking applications, specifically the pairwise ranking setting.

ml100k jester1 sushi
AdaRank 0.509 (±0.007) 0.534 (±0.009) 0.588 (±0.051)

Random Forests 0.526 (±0.022) 0.548 (±0.001) 0.566 (±0.010)
SVMrank 0.513 (±0.009) 0.507 (±0.007) 0.541 (±0.005)

SELF + ‖·‖HS 0.312 (±0.005) 0.386 (±0.005) 0.391 (±0.003)
(Ours) SELF + ‖·‖∗ 0.156 (±0.005) 0.247 (±0.002) 0.313 (±0.003)
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