
Polar Cloud Printing Protocol
19 May 2017
27 December 2017 (revised)
Copyright © 2017, Polar 3D, LLC, All Rights Reserved
Contact: Dan Newman <dnewman@polar3d.com>

0.0 Introduction
   0.1 Command synopsis
   0.2 Client reference implementation
1.0 Command Flow
   1.1 Registration connection
   1.2 Registered connections
   1.3 RSA cryptographic keys
   1.4 Time-Lapse videos
   1.5 Uploading camera images and videos
2.0 Commands from the Cloud to Printers
3.0 Commands from Printers to the Cloud
4.0 Revision History

0.0 Introduction

The Polar Cloud is comprised of two services:

1. A cluster of Web Servers which handle the web interface used by human users (members) of the Polar Cloud. These Web
Servers are behind load balancers and reached via the URL https://polar3d.com.

2. A cluster of Status Servers which receive updates from printers and send commands to the printers from the Web Servers.
These Status Servers are behind load balancers and reached via an http:// or https:// URL.

The WebSocket protocol is used by printers to communicate with the Status Servers. This document concerns itself with
commands and responses spoken between printers and the Status Servers over the WebSocket protocol.

Presently, all of these systems are written in Node.js as is the Polar Software itself running on Polar3D printers. For Node.js, the
WebSocket library used is socket.io 1.4.6. OctoPrint's open source implementation of this protocol in Python may be found at
OctoPrint-PolarCloud. Some implementations in C/C++ have used the Qt WebSockets implementation available on GitHub at
qt/qtwebsockets.

0.1 Command synopsis

Briefly, the commands sent from the Status Server to the Printer are

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#00-introduction
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#01-command-synopsis
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#02-client-reference-implementation
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#10-command-flow
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#11-registration-connection
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#12-registered-connections
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#13-rsa-cryptographic-keys
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#14-time-lapse-videos
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#15-uploading-camera-images-and-videos
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#20-commands-from-the-cloud-to-printers
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#30-commands-from-printers-to-the-cloud
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#40-revision-history
https://polar3d.com/
https://tools.ietf.org/html/rfc6455
https://github.com/markwal/OctoPrint-PolarCloud
http://doc.qt.io/qt-5/qtwebsockets-index.html
https://github.com/qt/qtwebsockets


Required Command Section Brief

✔ cancel 2.1 Cancel print

capabilitiesResponse 2.2 capabilities command response

command 2.3 Execute gcode command

connect 2.4 Connect controller to printer

customCommand 2.5 Execute a custom command

✔ delete 2.6 Reset printer to unregistered state

getQueueResponse 2.7 getQueue command response

getUrlResponse 2.8 getUrl command response

✔ helloResponse 2.9 hello command response

keyPair 2.10 makeKeyPair response

✔ pause 2.11 Pause current print

✔ print 2.12 Start a print

✔ registerResponse 2.13 register response

✔ resume 2.14 Resume a print

sendNextPrintResponse 2.15 sendNextPrint response

temperature 2.16 Set target temperature

unregisterResponse 2.17 unregister response

update 2.18 Begin printer software update

✔ welcome 2.19 Challenge from the Status Server

And the comands sent from the Printer to the Status Server are

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#21-cancel
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#22-capabilitiesresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#23-command
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#24-connect
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#25-customcommand
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#26-delete
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#27-getqueueresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#28-geturlresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#29-helloresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#210-keypair
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#211-pause
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#212-print
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#213-registerresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#214-resume
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#215-sendnextprintresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#216-temperature
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#217-unregisterresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#218-update
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#219-welcome


Required Command Section Brief

capabilities 3.1 List cloud-enabled capabilities for the printer

commandResponse 3.2 Send response to prior command command

customCommandList 3.3 Send to cloud printer's custom commands

getQueue 3.4 List printer's queued jobs

getUrl 3.5 Obtain signed POST URL for uploading images

✔ hello 3.6 Respond to welcome challenge

✔ job 3.7 Report job completion

makeKeyPair 3.8 Request from the cloud a crypto key pair

✔ register 3.9 Register printer; receive cloud serial number

sendNextPrint 3.10 Request a print job

setVersion 3.11 Report software version

✔ status 3.12 Report printer status

unregister 3.13 Unregister printer

0.2 Client reference implementation

The open source OctoPrint implementation of this protocol serves as a reference implementation and may be found at
https://github.com/markwal/OctoPrint-PolarCloud. This implementation is written and maintained by Mark Walker, one of the main
developers of OctoPrint. The code, like much of OctoPrint, is written in Python.

Implementations in C and C++ have successfully used the QtWebSockets library to implement the WebSockets protocol.

1.0 Command Flow

For the most part, commands do not have responses (acknowledgements) and the Status Servers are passive, merely receiving
commands from the printers. The commands from the Status Server are user initiated; e.g., when a user requests that a print be
started, the Web Server sends a print  command to the Status Server which then relays it to the actual printer.

Once connected to the Status Servers, the printer remains connected until powered off. Should the network connection be
disrupted, the printer should attempt to re-establish the connection. Many WebSocket libraries will have automatic reconnection
strategies (e.g., socket.io for Node.js).

1.1 Registration connection

When connecting to the Polar Cloud for the first time, a printer must register itself and receive a serial number. Part of the
registration involves sending a public encryption key to the Status Server which will then save it to later validate the identity of the
printer by asking the printer to sign a challenge with its private key.

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#31-capabilities
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#32-commandresponse
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#33-customcommandlist
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#34-getqueue
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#35-geturl
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#36-hello
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#37-job
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#38-makekeypair
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#39-register
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#310-sendnextprint
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#311-setversion
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#312-status
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#313-unregister
https://github.com/markwal/OctoPrint-PolarCloud
https://github.com/qt/qtwebsockets


The typical command flow when registering is illustrated below:

Printer: The printer establishes a connection to the Status Server.
Server welcome : The Status server sends to the printer a welcome  command which, in this specific case, the printer will ignore.
Printer register : The printer sends a register  command to the Status Server. The register  command contains the
printer owner's Polar Cloud account's e-mail address and PIN number, the printer's ethernet MAC address, and the public RSA
key of a 2048 bit RSA key pair generated by the printer.
Server registerResponse : The server responds with a registerResponse  command.
Printer: The printer then disconnects and then reconnects using its newly registered identity. (See the next section.)

Note that if the printer simply does not have enough processing power to generate an RSA key pair, then the printer may request
a key pair from the Status Server. In that case, the registration command flow becomes:

Printer: The printer establishes a connection to the Status Server.
Server welcome : The Status server sends to the printer a welcome  command which, in this specific case, the printer will ignore.
Printer makeKeyPair : The printer sends a makeKeyPair  request to the Status Server and then awaits a keyPair  response
back. Server keyPair : The server generates a RSA key pair and sends the key pair to the Printer. The printer must save the
private RSA key in non-volatile memory for future use. Printer register : The printer sends a register  command to the
Status Server. The register  command contains the printer owner's Polar Cloud account's e-mail address and PIN number, the
printer's ethernet MAC address, and the public RSA key from the key pair sent by the Status Server to the printer.
Server registerResponse : The server responds with a registerResponse  command.
Printer: The printer then disconnects and then reconnects using its newly registered identity. (See the next section.)

1.2 Registered connections

Upon connecting to the Polar Cloud, a printer will receive a welcome  command containing a challenge it must sign with its
private key. The digitally signed challenge is then sent back to the server using the hello  command. The server will ignore the
printer until such time that it receives the signed challenge. Upon receipt of the signed challenge, it is validated against the
printer's previously provided public key. If the signature is valid, the printer may begin interacting with the server. If it is not valid,
the connection will be terminated.

The typical command flow when registering is illustrated below:

Printer: The printer establishes a connection to the Status Server.
Server welcome : The Status server sends to the printer a welcome  command which will contain a challenge which the printer
must digitally sign.
Printer hello : The printer sends a hello  response back to the Status Server. The response includes the printer's serial
number as well as a digital signature of the challenge. The challenge is signed with the printer's private RSA key.
Server: The server validates the received signature using the printer's public RSA key which the server saved when the printer
first registered itself with the cloud. If the signature is valid, the printer is then allowed to remain connected, sending and receiving
commands. Server: Server responds by sending a helloResponse  commmand to the printer indicating if the hello  command
succeeded or not. (If it does not succeed then the TCP socket will be closed by the server shortly after sending the
helloResponse .)
Printer: The printer periodically sends status updates to the Status Server using the status  command.
Printer: The printer may request a signed POST URL with which to periodically POST camera images to the cloud.



Printer: The printer listens for and responds to command from the cloud.

Once the printer's identity has been validated, then typically every 10 seconds the printer sends a status  to the Status Server.
(If nothing has changed, it can omit sending an update.) The printer can also upload a JPEG camera image every minute using a
pre-signed POST URL of type idle  (Section 1.4).

Should the printer begin printing, it should then upload camera images every 10 seconds using a pre-signed POST URL of type
printing . When it has finished printing and is ready to upload a time-lapse video, it uploads the video using a pre-signed POST
URL of type timelapse . See Section 1.4 for further details.

1.3 RSA cryptographic keys

Note: printers which simply cannot generate an RSA key pair owing to processor constraints may request a key pair from the
Status Server using the makeKeyPair  command as discussed in Section 3.8.

Each printer must generate its own, unique 2048 bit RSA cyrptographic key pair and send the public key to the cloud. The
command line commands to generate a 2048 bit RSA key pair with ssh-keygen  is as follows,

# Generate a private RSA key in the file key.priv
ssh-keygen -t rsa -b 2048 -f key.priv
# Generate the corresponding public key in the proper format
ssh-keygen -e -m PEM -f key.priv > key.pub

To instead use OpenSSL, use the commands

# Generate the key pair
openssl genrsa -des3 -out private.pem 2048
Enter pass phrase for private.pem: abcd
Verifying - Enter pass phrase for private.pem: abcd

# Save the RSA public key in the file key.pub
openssl rsa -in private.pem -outform PEM -pubout -out key.pub
Enter pass phrase for private.pem: abcd
writing RSA key

# Save the RSA private key in the file key.priv
openssl rsa -in private.pem -out key.priv -outform PEM
Enter pass phrase for private.pem: abcd
writing RSA key

The following sample Node.js program demonstrates:

1. Writing the public key in the same format it must be transmitted to the Status Server.

2. Signing a challenge with the private key from the file key.priv .

3. Writing the signature out in the same format it must be sent to the Status Server.

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#14-time-lapse-videos
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#14-time-lapse-videos
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#38-makekeypair


4. Validating the challenge using the public key from the file key.pub .

.

var fs = require('fs');
var crypto = require('crypto');
var challenge = '1234 ABCD';

// Synchronously load our keys
var key = { };
try {
  key.public = fs.readFileSync('key.pub');
  key.private = fs.readFileSync('key.priv');
}
catch (e) {
  console.log(`Startup: unable to load the RSA key pair; err = ${e.message}`);
  console.log(JSON.stringify(e));
  process.exit(1);
}

// Transmit the public key
var keyMsg = {
  mfg: 'test',
  email: 'dnewman@sample.com',
  pin: '1234',
  publicKey: key.public.toString('utf8'),
  myInfo: { MAC: '12.34.de.ad.be.ef' }
};
console.log('Transmitted public key:')
console.log(JSON.stringify(keyMsg, null, '    '), '\n');

// Sign the challenge
var sign = crypto.createSign('RSA-SHA256');
sign.update(challenge);
var signature = sign.sign(key.private, 'base64');

// Transmit the signature
var data = { serialNumber: "P3D99999", signature: signature};
console.log('Serial number and signature:');
console.log(JSON.stringify(data, null, '    '), '\n');

// Verify the signature
var verify = crypto.createVerify('RSA-SHA256');
verify.update(challenge);
var sig_buffer = new Buffer(signature, 'base64');
var result = verify.verify(key.public, sig_buffer);
console.log('Signature matches:', result);



The above node.js program produces output similar to

Transmitted public key:
{
    "mfg": "test",
    "email": "dnewman@sample.com",
    "pin": "1234",
    "publicKey": "-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1nlQRlIlpv9iPxw5vI0X\nqfZ7dF3SfiiyY1q4nJKJqR6zd    WkD1/u5Zyeiv8Td67tj620tb56hsJs/dmpQLZPl\n8BkKXYrAaaWaGX0jlPEOaiE9rGRT9qg/CouNBbixVXNyncoKt86znYtTvYbRqp0u\nq64cU9WOCLBKKqX1+WkfPwD10TwQDk    8A0gQMURX9yr2MWf5iO5bUcUsQyO262t+G\no/FRXIM3hofbPaCptnETWipl/AP3YeOdaIBch3BP1BLngcv/bA9cwA46Mk7l7qeW\nFsupQWInOMUbyWJ19JkJtMGL+s4ntIBx86C    XbHdqEsHKA5X2klly4a7g7U/NhfLp\niwIDAQAB\n-----END PUBLIC KEY-----\n",
    "myInfo": {
        "MAC": "00.34.DE.AD.BE.EF"
    }
} 

Serial number and signature:
{
    "serialNumber": "P3D99999",
    "signature": "SiW1A9gIIxzcOaj16chBrIZM7C9UtdbuWq9i580eHl6U+Ki5FM6HJ0DyTsN8CKA6yShlIMrcEOg7MXEV//ld+h91mAt61J1d0bEZfuL32BqVt4AoHegTtvu    WpzG9ozdxIhuvXc7IhvD5slwnIQqYFA/zTl0NojUGH+UwhiJZSoyfVFOF7h5lnkV/nsLLDlh0/pjHhVZB89W/K8qFeY2lZJbfiyqjG3jcO9qhw17JtSvKW9KXgJnnFxlxE1bYQd/I    lTi2JtmaOpOymEn4Z/+iz1LGvHvyqr93LCEXjvqcwf/ryg2LQv5KASwErXIKizJMU9f1GXlRpQqDK/eo3BjDqA=="
} 

Signature matches: true

1.4 Time-Lapse videos

The time-lapse videos uploaded should be MP4 encoded using the H.264/MPEG-4 AVC format. The specific command used on
Linux to perform the encoding is

gst-launch-1.0 qtmux name=mux ! filesink location=\"$ARG2\"  \
  multifilesrc location=\"$ARG1\" index=1 \
  caps=\"image/jpeg,framerate=\(fraction\)12/1\" ! jpegdec ! videoconvert ! \
  videorate ! x264enc ! mux .

The duration of the videos should be kept to 30 seconds of play time. Time-Lapse videos should not be produced for prints which
are canceled.

1.5 Uploading camera images and videos

To upload to the cloud a camera image or time-lapse video, the printer must request from the Status Server a pre-signed POST
URL using the getUrl  command. The POST URL is then used with an HTTP or HTTPS POST request to send the camera
image to the Polar Cloud. The same URL may be used many times -- typically for up to 24 hours. When the URL expires, a new
URL can be requested from the Status Server. (A new URL can be requested before the old one expires.)

These POST URLs are cryptographically signed by the Status Server. Amazon's S3 service will validate the signature of the
URL before actually storing the transmitted data. Amazon S3 refers to these URLs as "pre-signed URLs".



There are two different camera image types and one video type which can be uploaded to the Polar Cloud. Each type requires its
own signed POST URL.

idle : JPEG camera image while idle and not printing.

printing : JPEG camera image while printing a job from the cloud. Not for local prints!

timelapse : MP4 time-lapse video from printing a job from the cloud. Again not for local prints.

No other types of images should be sent. If a printer is printing a local job -- a job not supplied by the cloud -- only send up idle
images for it if you wish cloud members to be able to view the printer as it prints the local job. (It's okay to send such images more
frequently than once a minute.)

NOTE: The printer must flip any rotated or upside down camera images and time-lapse videos before uploading to the cloud.
The rotateImg  and transformImg  fields of the hello  command are merely to inform web browsers whether or not they
must transform the live camera feed or not.

Each pre-signed POST URL is requested by sending a getUrl  command to the Status Server with the type  property set to
idle , printing , or timelapse . As might be expected, idle  is for when the printer is idle and not printing, printing  for
when it is printing a job from the cloud, and finally timelapse  for a time-lapse video of a cloud print.

The Status Server returns a JSON-formatted object as described in Section 2.8. The object will indicate when the URL will expire
as "seconds from the present", the maximum file size which may be uploaded expressed in bytes, the HTTP/HTTPS URL to
POST to, and all the POST form data fields and their values which must be supplied. Additionally, the form data must include a
file  field which must be supplied along with the appropriate MIME content-type header line and the file data itself.

For example, if getUrl  returns

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#28-geturlresponse


{
    "status": "SUCCESS",
    "serialNumber": "P3D99979",
    "method": "post",
    "type": "idle",
    "maxSize": 76800,
    "expires": 86400,
    "contentType": "image/jpeg",
    "url": "https://s3.amazonaws.com/polar3d.com",
    "fields": {
        "key": "files/printer/P3D99979/snapshot.jpg",
        "acl": "public-read",
        "bucket": "polar3d.com",
        "X-Amz-Algorithm": "AWS4-HMAC-SHA256",
        "X-Amz-Credential": "AKIAJKCJDY6DKKJSKFD7A/20170521/us-east-1/s3/aws4_request",
        "X-Amz-Date": "20170521T234827Z",
        "Policy": "eyJleHBpcmF0aW9uIjoiMj=",
        "X-Amz-Signature": "972b7428be734f2ad3f8b3f6c895087436ae1651a"
    }
}

Then the corresponding POST request executed with the curl utility would take the form

curl -X POST \
     -F 'key=files/printer/P3D99979/snapshot.jpg' \
     -F 'bucket=polar3d.com' \
     -F 'acl=public-read' \
     -F 'X-Amz-Algorithm=AWS4-HMAC-SHA256' \
     -F 'X-Amz-Credential=AKIAJKCJDY6DKKJSKFD7A/20170521/us-east-1/s3/aws4_request' \
     -F 'X-Amz-Date=20170521T234827Z' \
     -F 'Policy=eyJleHBpcmF0aW9uIjoiMj=' \
     -F 'X-Amz-Signature=972b7428be734f2ad3f8b3f6c895087436ae1651a' \
     -F 'file=@/Users/bob/Desktop/camera-image.jpg;type=image/jpeg' \
     'https://s3.amazonaws.com/polar3d.com'

In that curl command, the image file to be uploaded is specified with the line

-F 'file=@/Users/bob/Desktop/camera-image.jpg;type=image/jpeg' \

That tells curl to upload the contents of the file

/Users/bob/Desktop/camera-image.jpg



and to use a MIME Content type/subtype value of image/jpeg .

2.0 Commands from the Cloud to Printers

The following commands set by the Status Servers to printers.

2.1 cancel

Cancel an ongoing print. The print may either be a job from the Polar Cloud or a local print job. In the case of a print job from the
Polar Cloud, the job will be left in the printer's queue as typically this command is used when a problem is detected at the start of
the print for which the user intends to correct the issue and then start the print over again (e.g., poor bed adhesion, filament was
not loaded, etc.).

Command: cancel
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number"    // string, required
}

2.2 capabilitiesResponse

This command is sent by the cloud to a printer in response to a capabilities request made by the printer. It contains a list of zero
or more strings, each string a special capability supported by the cloud for the printer.

Presently, the only capability is the sendNextPrint  capability. A printer with that capability may use the sendNextPrint
command to request that the next queued print job be sent to it.

Presently, all printers may use the sendNextPrint  command.

Command: capabilitiesResponse  Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",     // string, required
    "capabilities": [ "cap-1", "cap-2", ... ]    // array of zero or more strings, required
}

2.3 command

The command  command allows any arbitrary gcode command (or string of gcode commands) to be sent to a printer. It is possible
that more than one command may be sent at once by using a US-ASCII line feed character, 0x0A, as a delimiter between each
command.

Command: command



Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",                     // string, required
    "command": "string containing the gcode command(s) to send"  // string, required
}

Example argument:

{
    "serialNumber": "P3D0000",
    "command": "M115\n"
}

In the above, the \n  represents a US-ASCII line feed character with ordinal hexadecimal value 0x0A.

The printer may send the responses elicited by the commands back to the cloud with a commandResponse  command.

Note Bene: Any M104 or M140 temperature commands placed in the command  field will be extracted and placed into a single,
separate temperature  command. The resulting temperature  command will be sent before the other commands. And no
commandResponse  will necessarily be generated for those temperature settings. It is best, therefore, to never include M104 or
M140 gcode commands in the command string sent with this command.

2.4 connect

This command tells the listener to connect to the printer if it is in a disconnected state. The format of the command is

Command: connectPrinter
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number"    // string, required
}

2.5 customCommand

If the printer has supplied the cloud with a list of one or more custom commands, then the printer owner may from the cloud
execute one of those commands. This is communicated to the printer by the cloud via the customCommand  command.

Command: customCommand  Argument: a JSON object of the form



{
    "serialNumber": "printer-serial-number",    // string
    "customCommand": "command"                  // string
}

The value command  will be one of the commands previously supplied with a customCommandList  command from the printer.
For example, if the printer previously sent to the cloud

{
    "serialNumber": "OP000001",
    "customCommandList": [
        {
            "label": "printer off",
            "command": "COMMAND-1",
            "helpText": "Turn your printer's power off",
            "confirmText": "You are about to turn off your printer."
        },
        {
            "label": "printer on",
            "command": "COMMAND-2",
            "helpText": "Turn your printer's power on"
        }
    ]
}

then the cloud might send to the printer at some point the customCommand

{ "serialNumber": "OP000001", "command": "COMMAND-1" }

which would signify a request to turn of the user's printer.

2.6 delete

When the owner of a printer deletes the printer in the Polar Cloud, a delete  command is sent to the printer if it is currently
connected to the Status Server. Upon receipt of a delete  command, a printer should consider itself as no longer registered in
the Polar Cloud.

The command takes the form,

Command: delete
Argument: a JSON object of the form



{
    "serialNumber": "printer-serial-number"    // string
}

It is up to the printer to determine what it should do if it receives this command while actively printing.

Note that once deleted, the printer will receive "DELETED" responses from the Status Server until it again successfully registers
itself with a register  command. These "DELETED" responses will be sent by the Status Server in a helloResponse
command after the printer sends a hello  command.

2.7 getQueueResponse

With the getQueue  command, a printer may request from the Status Server information on all jobs presently queued to the
printer and in a ready to print state. The responses includes pagination information even if the pagination parameters skip  and
limit  were not used in the getQueue  request.

The information is returned in the form of a JSON array containing zero or more objects. Each object describes a queued job. The
order of the array elements is the order of the respective jobs in the queue. The first array element is the first job in the queue, the
second array element the second in the queue, and so on.

Command: getQueueResponse  Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",     // string
    "totalCount": total number of queued jobs,   // integer
    "skip": skip value,                          // integer
    "limit": limit value,                        // integer
    "jobCount": count of jobs returned,          // integer
    "jobs": [ job-object ]                       // array of job-object
}

where each job-object  is of the form

{
    "jobId": "print-job-id",                                            // string
    "jobName": "job-name",                                              // string
    "imageFile": "full URL for a rendering of the job",                 // string
    "imageThumbnailFile": "full URL for a small rendering of the job",  // string
    "owner": "Display name of the job's owner",                         // string
    "ownerPhotoFile": "full URL to the owner's profile image"           // string
}

These fields are each described in the table below.



Field Description

serialNumber The printer's serial number

totalCount The total count of jobs queued to the printer and in a ready state

skip The skip  value specified in the getQueue  request and 0 if not specified

limit The limit  value specified in the getQueue  request and 0 if not specified

jobCount The count of jobs returned in this response

jobs An array of zero or more job-object  objects

jobId The print jobId for the job

imageFile
A full URL to a rendering of the print job; this is typically a PNG file; if the print job was
created from a gcode file uploaded by a cloud member, then this parameter may supply the
URL of a generic image

imageThumbnailFile
A full URL to a small rendering of the print job; this is typically a PNG file; if the print job
was created from a gcode file uploaded by a cloud member, then this parameter may
supply the URL of a generic image

owner The display name of the job's owner

ownerPhotoFile The full URL to the job owner's profile image

An example response is shown below. This response indicates that two jobs are queued and ready to print.



{
  "serialNumber": "DREM000001",
  "totalCount": 2,
  "skip": 0,
  "limit": 0,
  "jobCount": 2,
  "jobs": [
    {
      "jobId": "DREM000001-5141",
      "jobName": "Box.stl",
      "imageFile": "https://s3.amazonaws.com/polar3d.com/printer/DREM000001/5141/yG713NmM-object.png",
      "imageThumbnailFile": "https://s3.amazonaws.com/polar3d.com/printer/DREM000001/5141/yG713NmM-object-thumb.png",
      "owner": "Daniel Newman",
      "ownerPhotoFile": "https://lh5.googleusercontent.com/BdO8lU8zk/MKdiSlH/photo.jpg?sz=50",
    },
    {
      "jobId": "DREM000001-5142",
      "jobName": "Fulcrum test",
      "imageFile": "https://s3.amazonaws.com/polar3d.com/printer/DREM000001/5142/0m8q4eWB-object.png",
      "imageThumbnailFile": "https://s3.amazonaws.com/polar3d.com/printer/DREM000001/5142/0m8q4eWB-object-thumb.png",
      "owner": "3D Fred",
      "ownerPhotoFile": "https://lh3.googleusercontent.com/qdMkCWA/4252rsc/photo.jpg?sz=50",
    }
  ]
}

2.8 getUrlResponse

In response to a getUrl  command from a printer, the Status Server responds with a getUrlResponse  command containing
the requested timelimited, pre-signed POST URL which may be used to upload the requested content. Typical URL lifetimes are
86400 seconds (1 day) for static camera images and 3600 seconds (1 hour) for time-lapse videos.

The field  sub-object contains the POST form data which must be included in the post along with the file data in a POST data
field named file .

Command: getUrlResponse  Argument: a JSON object of the form



{
    "status": "SUCCESS" | "FAILED",              // string
    "serialNumber": "printer-serial-number",     // string
    "type": "idle" | "printing" | "timelapse",   // string
    "expires": seconds-until-url-expires,        // integer
    "maxSize": max-file-size-in-bytes,           // integer
    "contentType": "image/jpeg" | "video/mp4",   // string
    "method": "post",                            // string
    "url": "string",                             // string
    "fields": {                                  // POST form data
        "bucket": "S3-bucket-name",              // string
        "key": "bucket-key-name",                // string
        "acl": "public-read",                    // string
        "X-Amz-Algorithm": "AWS4-HMAC-SHA256",   // string
        "X-Amz-Credential": "AWS-credential",    // string
        "X-Amz-Date": "time-stamp",              // string
        "Policy": "encrypted-policy",            // string
        "X-Amz-Signature": "policy-signature"    // string
    }
}

In the event of a failure (e.g., invalid jobId  supplied), the response is instead

{
    "status": "FAILED",     // string
    "message": "reason"     // string
}

The message  field may or may not be present.

See Section 1.5 for further details on using pre-signed URLs.

2.9 helloResponse

After receiving a hello  command from a printer, the Status Server will send back a helloResponse  command indicating
whether the printer supplied signature was valid or not. If it is valid, a "SUCCESS" is indicated in the helloResponse .
Otherwise, a failure is indicated and the TCP socket closed by the Status Server

command: helloResponse
Argument: a JSON object of the form

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#15-uploading-camera-images-and-videos


{
    "status": "SUCCESS" || "FAILED" || "DELETED",  // string
    "message" "error message"                      // string
}

In the event of a "FAILED" or "DELETED" status, the TCP socket is closed by the Status Server. A "DELETED" status indicates
that the printer was deleted in the cloud or has never registered. In either case, the printer must register itself with the Status
Server.

A "FAILED" response indicates that either the hello  command was missing required parameters or the signature did not agree
with the public crypto key stored in the cloud for the printer.

2.10 keyPair

In response to a makeKeyPair  command from a printer, the Status Server will generate a RSA key pair and return it with the
keyPair  command

Command: keyPair
Argument: a JSON object of the form

{
    "status": "SUCCESS" || "FAILED", // string
    "public": "public RSA key",      // string
    "private": "private RSA key"     // string
}

Note that if at all possible, printers should generate the RSA key pair themselves. Having the Status Server generate it and then
transmit it over the Internet is suboptimal and admits the possibility of the private key being intercepted.

The printer must save the private RSA key in non-volatile memory. Each time the printer connects to the Status Server, it must
use the private RSA key to digitally sign a challenge.

In the event of a failure, a status  of FAILED  is returned along with a reason in the message  field,

{
    "status": "FAILED",
    "message": "reason for failure"
}

2.11 pause

Request that the printer pauses printing with the intention of later resuming the print. This command applies to both print jobs sent
to the printer from the Polar Cloud as well as local print jobs.



Command: pause
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",   // string, required
    "type": "filament" | "cold" | "pause"      // string, optional (defaults to "pause")
}

2.12 print

To initiate a print, the cloud will send to the printer a print  command containing information necessary to execute the print. The
printer is expected to perform an HTTP or HTTPS GET to retrieve from the Internet the necessary files.

Command: print
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",                               // string
    "jobId": "print-job-id",                                               // string
    "stlFile": "full URL to the STL to slice",                             // string
    "configFile": "full URL to the Cura slicer settings",                  // string
    "gcodeFile": "full URL to the gcode for the print",                    // string
    "imageFile": "full URL to a PNG rendering of the STL",                 // string
    "imageThumbnailFile": "full URL to a small PNG rendering of the job",  // string
    "jobName": "user-supplied job name"                                    // string
}

For example,

{
    "serialNumber": "PB000112",
    "jobId": "PB000112-178572",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini",
    "imageFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/OP000010/1227/joWL5lGz-object.png",
    "imageFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/OP000010/1227/joWL5lGz-object-thumb.png",
    "jobName": "Fulcrum test"
}

The gcodeFile  field is only relevant to printers which cannot themselves slice a model. For those printers, the Polar Cloud will
perform the slicing, saving the gcode in the cloud for retrieval by the printer. When gcodeFile  is supplied, stlFile ,
configFile , imageFile , and imageThumbnailFile  are not supplied.



The jobName  field is a user-supplied name for the print job. Most often, it is the file name name of the underlying STL being
printed. Printers may optionally display this field.

2.13 registerResponse

In response to a register  command from a printer, the cloud responds with a registerResponse  command. The response
from the cloud provides a unique serial number which the printer must use or the string "FAILED" in the event of a failure.

If the same printer requests a serial number more than once, it will be given the same serial number back each time. The serial
numbers are registered under the printer's ethernet MAC address.

Command: registerResponse
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",   // string
    "status": "SUCCESS" | "FAILED",            // string
    "reason": "SUCCESS" | "SERVER_ERROR" |     // string
       "MFG_MISSING" | "MFG_UNKNOWN" |
       "EMAIL_PIN_ERROR" | "FORBIDDEN" |
       "INVALID_KEY"
}

The values of the reason  field indicate the nature of a FAILED status :

EMAIL_PIN_ERROR: the supplied e-mail address does not match an existing Polar Cloud account, the account does not
have a PIN, or the supplied PIN does not match that of the account.

FORBIDDEN: a printer already exists with the supplied MAC address and it is not owned by the supplied account.

INVALID_KEY: an invalid public key value was supplied. The supplied public key must be a non-empty string.

MFG_MISSING: the register  command from the printer is missing the required mfg  field.

MFG_UNKNOWN: The mfg  field in the register  command specifies an unrecognized manufacture. Use test  if testing.

SERVER_ERROR: a server error of some sort has occurred; try again in a bit.

2.14 resume

The resume  command is used to resume a print which has been paused. This command applies to both print jobs sent to the
printer from the Polar Cloud as well as local print jobs.

Command: resume
Argument: a JSON object of the form

{ "serialNumber": "printer-serial-number" // string, required }

For example,



{
    "serialNumber": "P3D99979"
}

2.15 sendNextPrintResponse

When a sendNextPrint  command from the printer fails or there are no prints queued, the Status Server will send back a
sendNextPrintResponse  command indicating the cause of the failure.

If there are jobs available, then the Status Server responds to a sendNextPrint  command by ending a print  command. As
such, the sendNextPrintResponse  only arises when the sendNextPrint  command fails.

Command: sendNextPrintResponse
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number", // string, required
    "status": "NONE" || "FAILED",            // string, required
    "message": see below                     // string, required
}

A status  of "NONE" indicates that either there are no queued jobs ready to print, or, if a specific job was requested, the job no
longer exists or is not ready to print (e.g., may have been removed from the queue or may be reslicing).

Note that the getQueueResponse  only reports jobs which are ready to print. However, a Polar Cloud member may edit a
queued job causing it to temporarily be unavailable for printing. In that situation, it is possible for a printer to be told a job exists,
request that it be started, and then receive a response indicating that the job is now not ready to print.

Presently the status  and message  values are

status message Description

NONE NO_QUEUED_JOBS No ready jobs in queue

FAILED INVALID_JOBID Syntactically invalid jobId  specified

FAILED PRINTER_DELETED The printer appears to have been deleted

FAILED SERVER_ERROR Server error prevents completion of sendNextPrint  command

2.16 temperature

Tell a printer to set the target temperature of one or more heaters All temperatures are in degrees Celsius.

Command: temperature
Argument: a JSON object of the form



{
    "serialNumber": "printer-serial-number",    // string, required
    "bed": temp,                                // number, optional
    "chamber": temp,                            // number, optional
    "tool0": temp,                              // number, optional
    "tool1": temp,                              // number, optional
    ...
}

The bed  temperature, if supplied, is intended for a heated bed (platform). Similarly, chamber  temperature, if supplied, is
intended for the build chamber.

A temperature specification of 0 indicates that the corresponding heater should be turned off. If a heater is not present in the
request, then its setting should be left unchanged.

2.17 unregisterResponse

In response to an unregister  command received from a printer, the cloud sends back to the printer an unregisterResponse
command indicating if the command succeeded or failed.

Command: unregisterResponse
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",                          // string
    "status": "SUCCESS" | "FAILED",                                   // string
    "message": "Printer unregister successful" | "Printer not found"  // string
}

2.18 update

This command is sent at the initiation of the printer's owner or managers and intended to tell a printer to update its internal
software.

Command: update
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",   // string
}

2.19 welcome

As soon as a printer connects to the Status Server, the server will send a welcome  command. The command contains a



challenge string which the printer, once registered, must digitally sign using its private encryption key and send back with the
hello  command. The Status Server will ignore further commands from the printer until such time that a valid hello  command
is received. The exception is the register  command: an unregistered printer can ignore the welcome  challenge and send a
register  command. Once registered it should disconnect and reconnect.

Command: welcome
Argument: a JSON object of the form

{
    "challenge": "random text string to encrypt"    // string
}

3.0 Commands from Printers to the Cloud

3.1 capabilities

A printer may request from the cloud the list of any special cloud capabilities which the printer is allowed to have. The capabilities
are returned with the capabilitiesResponse  command. If the printer has no capabilities, then an empty list (array) is returned.

Command: capabilities
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number"    // required, string
}

3.2 commandResponse

When the cloud member manually sends gcode commands to a printer, the printer may optionally send back the printer's
response (output) to those gcode commands with the commmandResponse  command. This is optional. The Polar Cloud primarily
uses the information to aid cloud administrators when diagnosing a printer issue for a cloud member.

A multi-line response should use US-ASCII line feed characters, 0x0A, as line delimeters within the single returned string.

Command: commandResponse
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",    // string, required
    "response": "string"                        // string, required
}



3.3 customCommandList

A printer may ask the cloud to present users with additional, printer specific commands. This is done with the
customCommandList  command. Each time this command is sent to the cloud, the list will be permanently saved in the cloud's
databases. As such, it is not necessary to send this command each time the printer connects to the cloud.

Command: customCommandList
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",          // string, required
    "customCommandList": [
        {
            "label": "menu-label-1",                  // string, required
            "command": "COMMAND-1",                   // string, requied
            "helpText": "command-help-1",             // string, optional
            "confirmText": "confirmation-request-1",  // string, optional
        }, ...
    ]
}

In the above, there can be zero or more custom commands, each one represented by an object. Each object must containt at
least a label  and command  field. The label is the text placed into a menu label while the command is the actual command sent
back to the printer by the cloud via a customCommand  command. It need not be the actual command the printer should execute:
it may just be a reference of some sort to the command the printer should execute.

The fields helpText  and confirmText  are optional and neither, one, or both may be supplied on a per command basis. The
help text may be used by the cloud for a description displayed in a mouse hover-over event. The confirm text indicates that the
cloud must ask for user confirmation before sending that particular command. The confirm text itself is used in the confirmation
request presented to the user.

A simple customCommandList  from a printer to the cloud might be,



{
    "serialNumber": "OP000001",
    "customCommandList": [
        {
            "label": "printer off",
            "command": "COMMAND-1",
            "helpText": "Turn your printer's power off",
            "confirmText": "You are about to turn off your printer."
        },
        {
            "label": "printer on",
            "command": "COMMAND-2",
            "helpText": "Turn your printer's power on"
        }
    ]
}

3.4 getQueue

A printer may request information on the jobs presently queued in the cloud to the printer and which are ready to print (i.e., are not
waiting to be sliced should the printer require cloud-based slicing). This is done with the getQueue  command which takes the
form

Command: getQueue
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number"   // string, required
    "skip": integer,                          // integer, optional
    "limit": integer,                         // integer, optional
}

The response, described under the getQueueResponse  command in Section 2.7, provides basic information on each queued
job.

The optional skip  and limit  parameters may be used for pagination; i.e., to control which queued jobs and how many are
returned. For example, to return the first 10 jobs, use

"skip": 0,
"limit": 10

and the next 10 jobs with

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#27-getqueueresponse


"skip": 10,
"limit": 10

When not specified, both skip  and limit  default to the value 0. For limit . a value of 0 indicates "unlimited".

Note that the getQueueResponse  always includes the total count of queued jobs thus allowing a paginated queue listing to
always know the total count available.

3.5 getUrl

To store images and time-lapse videos in the cloud, a printer posts the images (JPEG) or videos (MP4) directly to the cloud
storage using a pre-signed HTTPS POST URL. These pre-signed POST URLs are provided by the Status Server and are valid for
a limited period of time, generally one or twenty-four hours.

The POST URLs specify the exact location and name of the file (in the cloud storage) as well as the maximum size of the file. If
two files are uploaded with the same POST URL, the second file uploaded "survives", overwriting the first file uploaded. That is
intentional: it is how, for example, consecutive camera images are handled by the Web Servers. The WebServers HTTPS GET
the image from a fixed location -- the location the POST URL uploads to. By updating the web page every 20 seconds, the
viewing cloud member sees the print evolve as it is printed; they see each new image after it is uploaded by the printer.

Three types of image data may be uploaded to the cloud by a printer:

idle : camera images from the printer while it is idle and not printing or when it is printing a local print job.

printing : camera images from the printer while it is printing a job sent to it from the cloud.

timelapse : a MP4 time-lapse video of a print job from the cloud. See Section 1.4 for details on the proper encoding of the
video.

No other types of data should be sent. If a printer is printing a local print job -- a job not supplied by the cloud -- only send up
idle  images for it if you wish cloud members to be able to view the printer as it prints the local job.

The pre-signed POST URLs received from the Status Server are then used in HTTPS POST requests. See Section 1.5 for further
details. When a POST URL has expired, request a new one from the Status Server. It is up to the printer to track when the URL is
expected to expire; use of it after it expires will result in a failed HTTPS POST attempt with an error message formatted in XML
from the cloud storage service (presently Amazon's AWS S3 service). The pre-signed POST URLs returned by the status server
include a field indicating for how many seconds the URL will be valid.

Command: getUrl
Argument: a JSON object of the form

file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#14-time-lapse-videos
file:///Users/dnewman/git/polar3d-nodejs/docs/protocol_v2.md#15-uploading-camera-images-and-videos


{
    "serialNumber": "printer-serial-number",         // string, required
    "method": "post",                                // string, required
    "type": "idle" | "printing" | "timelapse",       // string, required
    "jobId": "print-job-jobId"                       // string, see below
 }

The jobId  field must be supplied for printing  and timelapse  types. It must be the jobId  supplied with the received
print  command. If printing a local print job, only upload images of type idle .

Upon receipt of a getUrl  command, the Status Server will respond with a getUrlResponse  command.

3.6 hello

Upon connecting to the Status Server, a printer sends a hello  command containing the JSON object

{
    "serialNumber": "printer's serial number",           // string, required
    "signature": "signed challenge",                     // BASE64 encoded string, required
    "MAC": "network MAC address in use by the printer"   // string, required
    "protocol": "protocol-version",                      // string, required
    "mfgSn": "manufacturer's serial number",             // string, optional
    "printerMake": "printer make",                       // string, optional
    "version": "currently install software version",     // string, optional
    "localIP": "printer's local IP address",             // string, optional
    "rotateImg": 0 | 1,                                  // integer, optional
    "transformImg": 0 - 7,                               // integer, optional
    "camOff": 0 | 1,                                     // integer, optional
    "camUrl": "URL for printer's live camera feed"       // string, optional
}

Of the above fields, only serialNumber , signature , and protocol  are required.

After validating the supplied signature, the server will send back a helloResponse  command. If the status indicated in that
response is not "SUCCESS", then the server will shortly close the TCP socket.

The protocol  field should have the value "2.0" indicating that the 2.0 protocol is being used to communicate with the Status
Server. (This document describes the 2.0 protocol.)

The signature  field is the SHA-256 digital signature of the challenge received from the Status Server in the server's welcome
message. The digital signature must be signed using the printer's private RSA encryption key and the SHA-256 algorithim. Before
transmission to the Status Server, the signature should be BASE64 encoded. The server will verify the signature with the
previously shared public key. If it does not validate, the connection will be closed by the Status Server. If it does validate, the
connection will be marked as validated and the printer may remain connected, sending commands for the serialNumber  which
was validated.



The printerMake  field can supply one of the printer make names returned by the endpoint
https://polar3d.com/api/v1/printer_makes using an HTTP GET request (no authentication needed). That endpoint returns a JSON
object of the form

{
    "printerMakes": [ make-1, make-2, make-3, ... ]
}

in which make-1 , make-2 , make-3 , ... are each strings.

The optional mfgSn  field will be saved in the cloud and used for tracking the printer via its manufacturer's serial number. This
field may also be supplied with the register  command.

The rotateImg  field tells the Polar Cloud whether or not the live camera feed needs to be rotated 180 degrees for proper
display. Send a value of 0 if it does not need to be rotated and 1 otherwise. If a more complex transformation is needed, use the
transformImg  field instead. That field is a bitmask of three bits: rotate counter clockwise by 90 degrees ("rotate-90"), a
reflection about the horizontal midline ("reflect-H"), and a reflection about the vertical midline ("reflect-V"),

bit value operation description

0 1 reflect-H reflection about the horizontal midline

1 2 reflect-V reflection about the vertical midline

2 4 rotate-90 rotate counter clockwise by 90 degrees

The "rotate-90" operation will always be applied last. In this system, a rotation by 180 degrees is brought about by applying both
reflections and specified with a transformImg  value of 3 (decimal). For a rotation 90 degrees clockwise, request both reflections
and the rotation -- the decimal value 7.

NOTE: When both rotateImg  and transformImg  are specified, the rotateImg  field is ignored. That is, the
transformImg  field takes precedence.

NOTE: Camera and time-lapse videos uploaded to the cloud must be properly rotated before uploading to the cloud. The
rotateImg  and transformImg  fields are merely to tell web browsers whether or not they need to transform the live camera
feed for proper viewing.

The camOff  field tells the Polar Cloud whether the camera exists and is enabled (1) or does not exist or is disabled (0).

Command: hello
Argument: a JSON object of the form shown above

Polar3D printers send additional data in the hello  message, some of which is then stored for the printer to aid support staff. For
example,



{
    "serialNumber": "P3D99979",
    "signature": "....",
    "transformImg": 0,
    "camOff": 0,
    "printerMake": "Polar3D 2.0",
    "version": "17.03.25.01",
    "MAC": "b8:27:eb:71:01:46",
    "localIP": "192.168.2.126",
    "interfaces": {
        "eth0": {
            "iface": "eth0",
            "mac": "B8:27:EB:71:01:46",
            "address": "none",
            "netmask": "none"
        },
        "wlan100": {
            "iface": "wlan1",
            "mac": "7C:DD:90:82:75:13",
            "address": "192.168.2.126",
            "netmask": "255.255.255.0"
        },
        "current": "wlan100",
        "current_eth": "eth0"
    }
}

3.7 job

Whenever a print job has successfully completed or been canceled, the printer should send to the cloud a job  command
indicating that the job is finished and its final state, completed or canceled. If the printer was executing a "local" print job -- a print
job not sent from the cloud -- it should still send this command to the Status Server, but with the string "123" for the jobId  field.

Upon receipt of this command from a printer, a completed print will be moved from the printer's queue of print jobs to the list of
past prints. And if the print was canceled, the print will be left in the printer's queue.

Command: job
Argument: a JSON object of the form



{
    "serialNumber": "serial-number",      // string, required
    "jobId": "job id",                    // string, required
    "state": "completed" | "canceled",    // string, required
    "printSeconds": integer,              // integer, optional
    "filamentUsed": integer               // integer, optional
}

jobId  is the string sent with the print  command that started the print. Send the string "123" for if a local print job.

Use the printSeconds  and filamentUsed  fields to report on the print duration in seconds and the amount of filament used in
millimeters. Do this for both local and cloud print jobs.

For example, upon completing job 178137, the printer P3D999979 would send

{
    "serialNumber": "P3D99979",
    "jobId": "P3D99979-178137",
    "state": "completed",
    "filamentUsed": 11872,
    "printSeconds": 3957
}

3.8 makeKeyPair

If a printer lacks sufficient computing resources to generate a RSA cryptographic key pair, then it may request that the Status
Server generate a key pair and send it back to the printer. The printer must then save the private RSA key in non-volatile memory
for future use. It must send the public RSA key back to the Status Server as part of its registration process.

Command: makeKeyPair
Argument: a JSON object of the form

{
    "type": "RSA",   // string, required
    "bits": 2048     // integer, required
}

The Status Server will respond with a keyPair  command to the printer. That command will provide the public and private keys of
a 2048 bit RSA keypair. For example,



{
    "public": "-----BEGIN RSA PUBLIC KEY-----\nMIIBCgKCAQEAq1E56TSUEh3NB0+Hdac6hFoy19yr2HN+ngR+lJguBgzQC+8spH/3lSzu8qVY\nQa2vFtDqpSjzolZzAVSCMERjlrU0L2j8tiZ9E/S2jnXtgAGcVRuhlNRXFrbkT+nnBa6Lkqsi\nQA52fb/kECS30rdQaHWbWXnbZDLxPnyhnDdLXee/TSKA9gKACDnTXkdHtdaVdIvtNKkNaXBv\nrg0bFnKmKva9hyPCo7Tg7A1OMqh0JqSGVHX9BHZmJGzYUGnnSPxJmIzgu1G1+712ifl6pfqJ\neQVoF10GVde3N4df6esECVzsaqFivKCADpAWhd/czEUWC+gjwonb7eqw08NUOpT9VQIDAQAB\n-----END RSA PUBLIC KEY-----\n",
    "private": "-----BEGIN RSA PRIVATE KEY-----\nMIIEogIBAAKCAQEAq1E56TSUEh3NB0+Hdac6hFoy19yr2HN+ngR+lJguBgzQC+8spH/3lSzu\n8qVYQa2vFtDqpSjzolZzAVSCMERjlrU0L2j8tiZ9E/S2jnXtgAGcVRuhlNRXFrbkT+nnBa6L\nkqsiQA52fb/kECS30rdQaHWbWXnbZDLxPnyhnDdLXee/TSKA9gKACDnTXkdHtdaVdIvtNKkN\naXBvrg0bFnKmKva9hyPCo7Tg7A1OMqh0JqSGVHX9BHZmJGzYUGnnSPxJmIzgu1G1+712ifl6\npfqJeQVoF10GVde3N4df6esECVzsaqFivKCADpAWhd/czEUWC+gjwonb7eqw08NUOpT9VQID\nAQABAoIBAD+yWLTTnsZJnES+lh/xiHlTTBokayR0dLxt8V5wYpRPST9WsyOKjNRDO6iuP21U\nFYiHLucvnb5bJDF3aVxm4RxUzU1fXK6hCtpTn1jCkgaJEsY2GtLKTIMehy8LSaE8L5rd1EM6\n3WWN5k72R/6pt9TO/W68Nw0/P6E7F5+Mk5IbD0TBg8p8pyjK/XdWi5xJ+4yEfwdVNUaDfzlb\nLRckGqgTI9tFGi+nApZxPYax45kfG4KDc6LBRIONrX0+dcwLD65Yg3vJuVuTg/V5YIw2pFel\n/POmGV9vZ6jyl/xiVIChKQBdCVVRmtDeJflwuPVnU0lzfQS901IhXhVkyYOnrLUCgYEA4aS+\nj86xFnrXEf7hsoJ6MOlVltJsJfy8o2KTg7vQWuWTsshN04HrFwFPK1kRE67YYuEh8y5tVN4j\n5rFYNdQaS2THLgANZAKvLhvM5ktADSUjSIG4blKKd5oP6CFXzTlapbCjoAJnXDOvzhVYktm8\nZdREJIK11uwrlh9WzYOwJoMCgYEAwl12u0Sqymm8v0SbOiAxFAKMsO0lWogKl0h0ngBCWvGy\nuGUgEfumO97075IgA9NptiZh9RLzRnKGE+9Qh3rR9rUJQ53jz3l7jOM9NdYLyS0UxD0TpGIk\nUOowfW+bWNIn2YLS44iy0bwq2zZ/FwiwKaXvYh52dn5EXD5pR+TzRUcCgYAdXYRTUNHpHAl7\nVRFoWuSuEt/Jpg7fDro6BS0verTN74y+OqUuPn0q3EfCW3AGgL22eJgjfspJvjMr5a6WKslV\nQINPcEBN4K+Nr56F5gsq6sdhu0gWS3WrxQgG7LfxhGJQp+FThJyQ+kUJ6+tACUgkdHB90+j4\nVHoDqoZwbo/xIwKBgB2SQMU/Lkj7i2cCVieizDTCKoukmQFMH2hi8rMzUOUrTsi1QgraYbFM\nO7HTZqGOYc//yPmTd4XpWLLhvzvNmPJTGuS5ufZQAlcuH5r4RPTHshglPr7M27+f0d7Twyvh\nVYTHXbSWkLZOTarqgK2NedfsUh54igd/MIFkUXpJwCVzAoGAFdXbrc5yZxcpfRkqcrvbrybL\nLB9++KsXQGmSwjMPz+UrXtktO8KWNd/wPCjMIRlcFzUT2KSLB6gvgLKbgMEbOrZ5crRH0lzL\nZ8TWnqaiQezV3R8CK/DR+i5dFvdTfl0ImQJ6tB2hgmb6QUmeuM+QH5pPVC3in9VeFpTyG3Dk\nqY0=\n-----END RSA PRIVATE KEY-----\n"
}

3.9 register

A printer, upon first running, new printers must request that a unique serial number be assigned to the printer by the cloud. To
initiate the process, the printer ignores the welcome  command from the cloud and instead sends a register  command back to
the cloud. The register  command from the printer includes:

1. The printer's ethernet MAC address,

2. The public key from an RSA key pair generated by the printer and which is unique to the printer,

3. The e-mail address associated with the printer owner's Polar Cloud account, and

4. The Polar Cloud account's PIN code. A PIN code may be 4 to 16 decimal digits.

The printer must be capable of generating an RSA key pair and digitally signing short strings with its private key ( hello
command). Additionally, the printer's owner must first create a Polar Cloud account before allowing their printer to register itself:
while servicing a printer registration request, the Status Server will use the supplied e-mail address to associate the printer with
the specified Polar Cloud account. The PIN code serves to ensure the registering user truly has access to that account as
opposed to merely knowing the account owner's email address.

If the printer has more than one ethernet MAC address, provide only one of the MAC addresses. Use a deterministic method to
select which MAC address to supply: in the event that the printer loses its serial number, the MAC address is used to retrieve it
from the cloud.

Command: register
Argument: a JSON object of the form

{
    "mfg": "agreed upon prefix for printer type",  // 'pb', 'xyz', 'ff', 'octoprint'
    "email": "owner's Polar Cloud account",        // string, required
    "pin": "Polar Cloud account's PIN code",       // string, required
    "publicKey": "BASE64 encoded public key",      // string, required
    "mfgSn": "Manufacturer's serial number",       // string, optional
    "myInfo": {
        "MAC": "Polar Box's ethernet MAC address"
    }
}

Once successfully registered as indicated by receipt of a registerResponse  command from the Status Server, the printer
should disconnect from the Status Server and then reconnect. Upon reconnecting it will be sent a new welcome  command to
which it can respond with hello  and validate the connection with its new serial number.



Note that the myInfo  sub-object of the register  command can contain additional information. Presently, only the MAC field is
used from the myInfo  sub-object.

For reference PIN codes in the Polar Cloud are, by default, 4 decimal digits. Polar Cloud members may change their PIN code
and may use a code of length 4 to 16 decimal digits in length.

If supplied, the optional mfgSn  field will be saved in the cloud and used for tracking the printer via its manufacturer's serial
number. This field may also be supplied with the hello  command.

3.10 sendNextPrint

If a printer has the sendNextPrint  capability, then it may issue a sendNextPrint  command to request the next queued print
job, if any exists in the printer's queue. If a queued print exists, then the cloud will send back to the printer a print  command for
that queued print job. If there are no queued print jobs or the printer lacks the capability, then no response is generated by the
cloud.

The optional jobId  parameter may be used to request that a specific job from the queue be started. A list of queued jobs is
obtained with the getQueue  command.

Command: sendNextPrint
Argument: a JSON object of the form

{
    "serialNumber": "printer-serial-number",   // string, required
    "jobId": "job-id"                          // string, optional
}

When the sendNextPrint  command succeeds, a print  command is sent by the Status Server to the printer. If there are no
queued jobs or an error occurs, then a sendNextPrintResponse  will be sent by the Status Server to the printer. This response
is primarily of interest when a specific job is requested with the optional jobId  parameter.

3.11 setVersion

A printer may wish to inform the cloud as to the version of software it is running as well as the latest version available. The cloud
can present this information to the printer's owner and managers and, should the latest version be greater than the running
version, present an UPDATE button in the cloud's web interface. Selecting that button will then cause the cloud to send the printer
an update  command.

Command: setVersion
Argument: a JSON object of the form



{
    "serialNumber": "string",   // required, string
    "runningVersion": "string", // required, string
    "latestVersion": "string"   // optional, string
}

The version strings may take any form provided that a latest version, when lexically compared to the running version statisfies the
requirement that if latestVersion  is greater than runningVersion  then latestVersion  is a newer version.

For example, for the JSON object

{ "serialNumber": "OP000123", "runningVersion": "1.3.3", "latestVersion": "1.3.4" }

the printer would be considered to be running version 1.3.3. Morever, a newer version, 1.3.4, would be available and the owner
and managers would see an UPDATE button which they could elect to click on the management pages for printer OP000123.

3.12 status

Each printer reports its status several times a minute to the cloud. This is the primary command which printers send to the Status
Servers. In the JSON object described below, only the status  and serialNumber  fields are required. All other fields are
optional.

Command: status
Argument: a JSON object of the form



{
    "serialNumber": "string",
    "status": integer,
    "progress": "string",
    "progressDetail": "string",
    "estimatedTime": integer,
    "filamentUsed": integer,
    "startTime": "string",
    "printSeconds": integer,
    "bytesRead": integer,
    "fileSize": integer,
    "tool0": floating-point,
    "tool1": floating-point,
    "bed": floating-point,
    "chamber": floating-point,
    "targetTool0": floating-point,
    "targetTool1": floating-point,
    "targetBed": floating-point,
    "targetChamber": floating-point,
    "door": integer,
    "jobId": "string",
    "file": "string",
    "config": "string"
}

The interpretation of the fields are as follows

serialNumber

The printer's serial number.

status

The present status of the printer expressed as an integer value and chosen from



Value Interpretation

0 Ready; printer is idle and ready to print

1 Serial; printer is printing a local print over its serial connection

2 Preparing; printer is preparing a cloud print (e.g., slicing)

3 Printing; printer is printing a cloud print

4 Paused; printer has paused a print

5 Postprocessing; printer is performing post-printing operations

6 Canceling; printer is canceling a print from the cloud

7 Complete; printer has completed a print job from the cloud

8 Updating; printer is updating its software

9 Cold pause; printer is in a "cold pause" state

10 Changing filament; printer is in a "change filament" state

11 TCP/IP; printer is printing a local print over a TCP/IP connection

12 Error; printer is in an error state

13 Disconnected; controller's USB is disconnected from the printer

14 Door open; unable to start or resume a print

15 Clear build plate; unable to start a new print

The states 6 and 7 should be sent for several status  updates to ensure receipt by the cloud. The other states should be sent in
each status update during which they are relevant.

progress

A UTF-8 string briefly expressing the current status of the printer in human-readable text. E.g., "Idle", "Printing", etc.

progressDetail

A UTF-8 string with more detail on the status. If printing, the cloud would like to see "Percent Complete: xx%" in this string. E.g.,

Printing Job: nnnn Percent Complete: xx%

estimatedTime

The estimated print time in seconds. Possibly generated by the slicer.

filamentUsed

The estimated amount of filament which will be used by the print when completed, in millimeters. This is not the filament used so
far.

startTime



The time the print started expressed as an ISO 8601 date/time string. E.g., "1970-01-01T00:00:00Z".

printSeconds

The elapsed number of seconds spent printing the current print.

bytesRead

The number of bytes read so far from the gcode file (or X3G, or whatever file).

fileSize

The size in bytes of the file of printing instructions (gcode, X3G, etc.).

tool0, tool1, bed, chamber

The temperatures in degrees Celsius of the first and second extruder, chamber, and heated print bed.

targetTool0, targetTool1, targetBed, targetChamber

The target temperaturs in degrees Celsius of the first and second extruder, heated chamber, and heated print bed.

door

The status, if available of the door to the printer's build chamber. | value | Description | | ----: | :---------- | | 0 | door open, unlocked |
| 1 | door closed, unlocked | | 2 | door open, locked | | 3 | door closed, locked |

jobId

The value of the jobId  sent by the cloud with the print  command. If printing a local file, send the string "123".

stlFile, configFile

The URLs of the STL file and slicing configuration file sent by the print  command.

3.12.1 Ready to print status update



{
    "serialNumber": "P3D99979",
    "status": 0,
    "progress": "",
    "progressDetail": "",
    "estimatedTime": 0,
    "filamentUsed": 0,
    "startTime": 0,
    "printSeconds": 0,
    "bytesRead": 0,
    "fileSize": 0,
    "tool0": 23.1,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 0,
    "jobId": 0,
    "stlFile": null,
    "configFile": null
}

3.12.2 Preparing a print

Below are three samples of status updates for the status of 2, preparing a print.

{
    "serialNumber": "P3D99979",
    "status": 2,
    "progress": "Preparing to print a job",
    "progressDetail": "Downloading file for job: P3D99979-178137",
    "estimatedTime": 0,
    "filamentUsed": 0,
    "startTime": "2017-03-29T14:00:43.895Z",
    "printSeconds": 0,
    "bytesRead": 0,
    "fileSize": 0,
    "tool0": 23.1,
    "tool1": 0,
    "bed": 0.0,
    "targetTool0": 0,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini"
}

and



{
    "serialNumber": "P3D99979",
    "status": 2,
    "progress": "Preparing to print a job",
    "progressDetail": "Downloading config file for job: P3D99979-178137",
    "estimatedTime": 0,
    "filamentUsed": 0,
    "startTime": "2017-03-29T14:00:43.895Z",
    "printSeconds": 0,
    "bytesRead": 0,
    "fileSize": 0,
    "tool0": 23.1,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 0,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini"
}

and

{
    "serialNumber": "P3D99979",
    "status": 2,
    "progress": "Job Printing",
    "progressDetail": "Slicing Job: P3D99979-178137",
    "estimatedTime": "105",
    "filamentUsed": "167",
    "startTime": "2017-03-29T14:17:45.087Z",
    "printSeconds": 0,
    "bytesRead": 0,
    "fileSize": 50845,
    "tool0": 152.0,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 150,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-config.ini"
}

3.12.3 Printing



{
    "serialNumber": "P3D99979",
    "status": 3,
    "progress": "Job Printing",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 49.7%",
    "estimatedTime": "105",
    "filamentUsed": "167",
    "startTime": "2017-03-29T14:17:45.087Z",
    "printSeconds": 166,
    "bytesRead": 25268,
    "fileSize": 50845,
    "tool0": 185.1,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 185,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-config.ini"
}

And an example of a job which was canceled (killed),

{
    "serialNumber": "P3D99979",
    "status": 3,
    "progress": "Killing Job",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 12.0%",
    "estimatedTime": "3259",
    "filamentUsed": "4152",
    "startTime": "2017-03-29T14:01:08.335Z",
    "printSeconds": 932,
    "bytesRead": 262127,
    "fileSize": 2183901,
    "tool0": 185.3,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 185,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini"
}

3.12.4 Paused



{
    "serialNumber": "P3D99979",
    "status": 4,
    "progress": "Job Paused",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 10.9%",
    "estimatedTime": "3259",
    "filamentUsed": "4152",
    "startTime": "2017-03-29T14:01:08.335Z",
    "printSeconds": 821,
    "bytesRead": 241983,
    "fileSize": 2183901,
    "tool0": 185.2,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 185,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini"
}

3.12.5 Print finishing

{
    "serialNumber": "P3D99979",
    "status": 5,
    "progress": "Post processing job",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 100.0%",
    "estimatedTime": "105",
    "filamentUsed": "167",
    "startTime": "2017-03-29T14:17:45.087Z",
    "printSeconds": 227,
    "bytesRead": 50845,
    "fileSize": 50845,
    "tool0": 178.3,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 0,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-config.ini"
}

3.12.7 Print finished



{
    "serialNumber": "P3D99979",
    "status": 7,
    "progress": "Complete",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 100.0%",
    "estimatedTime": "105",
    "filamentUsed": "167",
    "startTime": "2017-03-29T14:17:45.087Z",
    "printSeconds": 227,
    "bytesRead": 50845,
    "fileSize": 50845,
    "tool0": 145.8,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 0,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/yPad5lml-config.ini"
}

3.12.9 Cold pause

{
    "serialNumber": "P3D99979",
    "status": 9,
    "progress": "Cold Pause",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 11.4%",
    "estimatedTime": "3259",
    "filamentUsed": "4152",
    "startTime": "2017-03-29T14:01:08.335Z",
    "printSeconds": 856,
    "bytesRead": 247875,
    "fileSize": 2183901,
    "tool0": 185,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 0,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini"
}

3.12.10 Changing filament



{
    "serialNumber": "P3D99979",
    "status": 10,
    "progress": "Changing Filament",
    "progressDetail": "Printing Job: P3D99979-178137 Percent Complete: 11.5%",
    "estimatedTime": "3259",
    "filamentUsed": "4152",
    "startTime": "2017-03-29T14:01:08.335Z",
    "printSeconds": 907,
    "bytesRead": 251005,
    "fileSize": 2183901,
    "tool0": 183.5,
    "tool1": 0,
    "bed": 0,
    "targetTool0": 185,
    "jobId": "P3D99979-178137",
    "stlFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-object.stl",
    "configFile": "https://s3.amazonaws.com/dev2.polar3d.com/files/printer/P3D99979/178137/JMaeKlWv-config.ini"
 }

3.13 unregister

When a printer owner unregisters their printer from the cloud, this command is sent by the printer to the cloud. Upon receipt, the
cloud will send back to the printer an unregisterResponse  command with success or failure information.

Command: unregister
Argument: a JSON object of the form

{
    "serialNumber": "printer's serial number"  // string, required
}

4.0 Revision History

27 December 2017

1. Added status value 15, Clear build plate, to the list of printer status values. This value may be used to indicate that a print
has finished, but a new print cannot be started until the build plate is first cleared and an action taken by the printer's operator
(e.g., pressing an "Okay" button on the printer's LCD screen).

2 December 2017

1. Added imageThumbnailFile  to the getQueueResponse  and print  commands.



2. Added the optional mfgSn  field to the register  and hello  commands.

28 November 2017

1. Added "INVALID_KEY" failure case to registerResponse  result.

2 November 2017

1. Added jobName  field to getQueueResponse .

31 October 2017

1. Added Section 0.1 with tables of the commands.

26 October 2017

1. Added status  values of 13 and 14 to the status  command sent from the printer to the Status Server.

2. Added door  value to the status  command from the printer to the Status Server.

3. Added getQueue  and getQueueResponse  commands. The printer may request from the Status Server information on the
currently queued jobs with the getQueue  command. The Status Server responds with a getQueueResponse  command
which provides a listing of all the queued jobs for the printer.

4. Extended the sendNextPrint  command to have an optional jobId  parameter. When that parameter is specified, the
requested job will be moved to the head of the queue and started printing.

5. Added a sendNextPrintResponse  which the Status Server will send to the printer whenever a sendNextPrint  command
fails or there are no jobs queued to start.

20 October 2017

1. Added the delete  command from the Status Server to the printer. This command is sent to the printer if it is connected to
the Polar Cloud when the printer owner deletes it in the cloud.

19 October 2017

1. Added imageFile  field to the print  command's data. This field provides a URL to the rendering of the print job. The
renderings are typically PNG files. No renderings are available for print jobs created from a user-uploaded gcode file.

18 October 2017

1. Added helloResponse  command from Status Server to the printer. Primary purpose is to allow a printer to detect when it
has been deleted in the cloud and needs to re-register.

17 October 2017

1. Added chamber  and targetChamber  temperature fields.

9 October 2017



1. Indicate the length of possible PIN codes (4 - 16 decimal digits).

15 August 2017

1. Added the makeKeyPair  and keyPair  commands. To be used by printers with insufficient compute resources to generate
a 2048 bit RSA key pair.

5 August 2017

1. Added printSeconds  and filamentUsed  to the job  command. This can be used to report time and materials used by
local print jobs. For local print jobs, the information is otherwise not available.

2 August 2017

1. Added to the print  command the jobName  field. This field is the user-supplied name for the print job. Printers may wish to
display that name on any informational display while printing. Printers which save the STL file for the print may want to use
the jobName  when saving the STL to storage. Printers may choose to ignore this field.

18 July 2017

1. Added the capabilities  command which may be sent by a printer to request any special capabilities permitted for the
printer (e.g., sendNextPrint ).

2. Added the capabilitiesResponse  command sent from the cloud to a printer in response to a capabilities  request
from the printer.

3. Added the sendNextPrint  command. With that command a printer may request that the next available print job be sent. A
printer must have the sendNextPrint  capability in order to use that command.

2 July 2017

1. Updated text on image uploading to make it clear that the printer should flip any upside camera images and time-lapse
videos before uploading to the cloud.

27 June 2017

1. Added a failure reason field reason  to the registerResponse  command

26 June 2017

1. Added printer to cloud command customCommandList  to allow a printer to inform the cloud of custom commands to present
to a user of that printer.

2. Added cloud to printer command customCommand  to tell the printer to execute one of its custom commands.

8 June 2017

1. Added specification of RSA digital signing algorithm: SHA-256.

5 June 2017



1. Corrected local IP address field of hello  command to read as localIP  and not localIp .

4 June 2017

1. Added optional printerMake  field to the hello  command from a printer to the Status Server.

2. Added directions on how to obtain a list of printer makes to the hello  command description.

1 June 2017

1. For status updates, changed temperature and target temperature field names to tool0 , tool1 , bed , chamber ,
targetTool0 , targetTool1 , targetBed , and targetChamber . This makes the names more consistent and in
agreement with the command to set target printer temperatures.

2. Corrected status udpate examples to correctly show temperature values as floating point numbers and not strings.

3. Added camUrl  to the hello  command from the printer. This URL provides the cloud with the URL for the printer's live
camera feed. If the cloud's web server detects that a member viewing a printer is on the same network as the printer, it will
preferrentially display the live camera feed from the printer using this URL. That as opposed to displaying a static camera
snapshot previously uploaded to the cloud by the printer.

4. Added a setVersion  command which the printer may send to the Status Server to inform the Polar Cloud as to the current
and latest software versions available for the printer. If the cloud knows the latest software version and it is lexically greater
than the version the printer is running, then an UPDATE button will be displayed in the cloud on the printer's management
page. If the printer owner or manager clicks that button, an update  command will then be sent to the printer.

5. Re-ordered some of the commands listed in Section 3.0.


