Saturn's Atmosphere
Voyager: A Sting From Outer Space

by Art Buchwald

I know it doesn’t sound important when you measure it against other budget cuts, but NASA is now considering abandoning the Voyager 2 spacecraft which, at this very moment, is on its way to Uranus and Neptune.

The estimated arrival time to Uranus was 1986, and if all went well it was supposed to make a pass at Neptune in 1989. I happen to be a big fan of Voyager 2 and I know it would break the spacecraft’s heart if they cut off all its controls after its magnificent performance to date. To me, it would be a human tragedy. How do you break the news to this magnificent satellite, which is now billions of miles from home? “Hello, Voyager, this is NASA Control. We are aborting your mission. Do you read us? We are aborting your mission.”

“Are you crazy, NASA Control? Everything is going smoothly.”

“You are being riffed for budgetary reasons. Over.”

“But my understanding was, when I took this mission, I would get to photograph all the planets. If I don’t get to Uranus or Neptune we’ll never know what makes them tick.”

“We’re sorry, Voyager, it’s out of our hands. We’ve decided you’re expendable.”

“Now you tell me. I’m up here in nowhere barreling away from Saturn and you’re going to leave me in the dark.”

“Believe us, Voyager, it hurts us more than it hurts you. But David Stockman is adamant. It’s not just you that’s being riffed. The whole program has to be aborted. We can’t afford the ground support to get you to Uranus.”

“But where am I going to go? What am I going to do?”

“I guess you’re going to have to keep tumbling along. But you can no longer count on any help from us.”

“What are we talking about, moneywise?”

“Stockman figures we can save $220 million by canceling your trip.”

“That’s chicken feed compared to what you people can get out of it. Photograph a centerfold.”

“You tell me. I’m up here in nowhere barreling away from Saturn and you’re going to leave me in the dark.”

“Believe us, Voyager, it hurts us more than it hurts you. But David Stockman is adamant. It’s not just you that’s being riffed. The whole program has to be aborted. We can’t afford the ground support to get you to Uranus.”

“But where am I going to go? What am I going to do?”

“I guess you’re going to have to keep tumbling along. But you can no longer count on any help from us.”

“What are we talking about, moneywise?”

“Stockman figures we can save $220 million by canceling your trip.”

“That’s chicken feed compared to what you people can get out of it. Photograph a centerfold.”

“Please, Voyager, don’t make it harder on us than it is already. If we could have saved the mission we would. A lot of us on Earth are being riffed too.”

“Yeah, but you have families to go home to, and you can probably find jobs in military space probes. I’m up here all alone with no one to talk to. If you would just let me get to Uranus, maybe I could get the money from Traveler’s Aid to get me back.”

“Sorry, Voyager, orders are orders. In 10 seconds we’re cutting off all power. You’re on your own. Is there anything you want before I press the abort button?”

“Yeah, I want to talk to a priest.”

Cover: False color processing can reveal features of a planet’s atmosphere that would be muted or invisible to the human eye. Here, combined ultraviolet, violet and green images from Voyager 2 bring out bands, waves and spots that are hard to discern in Saturn’s bland, true colors. Using false color images, scientists can model details of the atmosphere composition and structure.

PHOTO: JPL/NASA

REPRINTED WITH THE PERMISSION OF THE AUTHOR/LOS ANGELES TIMES SYNDICATE.
At present, space science is one of the most vital and productive fields in the United States. There is a brisk flow of fresh data into research laboratories throughout the nation, and our current journals of geophysics, solar physics, planetary science, and astronomy are bulging with reports of discoveries and new insights gained by space techniques. Simultaneously, the high technology of the space industry is being used in a rich variety of utilitarian applications of global scope. The most important of these is rapid worldwide radio communication by satellite relay stations, now flourishing as a commercial enterprise. Others, still primarily in the form of government services, are weather observation and forecasting, military reconnaissance and surveillance, navigation, geodesy, and the survey of earth resources on land and at sea. All of these applications are of pervasive civil and military importance, and many evolutionary improvements in the technology are under development.

Despite all of this, a deep distress is spreading through the community of scientists and engineers who are engaged in space work. This distress is not alone a matter of narrow special interest. Rather it portends a grave slippage in our international stature in yet another area of science and technology. The most immediate concern is with the paucity of opportunities for new initiatives. During 1980, the United States placed only 13 satellites into earth orbit and launched no spacecraft into deep space. Of the 13 satellites, 8 were primarily for military purposes, 4 were primarily for civil applications, and only 1 was for scientific purposes (the Solar Maximum Mission for refined study of the sun). The corresponding figures for the Soviet Union were 83, 18, and 2, respectively, plus 6 manned flights, for a total of 109. By contrast, in 1966 the United States made 96 launches, including 18 scientific flights and 5 manned missions. As of 1981, it is almost impossible to obtain a go-ahead for a new scientific mission or for an advanced application mission in space. Even previously authorized missions are being terminated or, what may be worse, placed in a status of indefinite postponement on a starvation budget.

It is easy to blame this bleak outlook on shortsighted policy of the Reagan Administration, as many of my colleagues are inclined to do. But I find it difficult to argue that an annual federal expenditure of $6 billion for the National Aeronautics and Space Administration plus an estimated $3 billion for space activities of the Department of Defense is not adequate for a vigorous program of new achievements by the immensely capable cadre of space scientists and engineers using the superb instrumentation and technology that exist in the United States. It is time to recognize that the dominant element of our predicament is the massive national commitment of the past decade to development of the space shuttle and the continuation of manned flight. This commitment has diverse bases but arises largely from a (possibly false) analogy with the history of aeronautics and from vaguely perceived future benefits of vast enterprises, such as manufacturing in space, solar power satellites, human colonies in space, and mining of the moon and asteroids. It may well turn out that the space shuttle is a technical success but a financial monstrosity, as on a smaller scale has proved to be the case with the Concorde supersonic transport. Stated otherwise, the shuttle may be ahead of its time, by perhaps 20 to 50 years. Meanwhile, clearly realizable and important objectives in space are languishing.

I consider that our national policy in space is in desperate need of critical and dispassionate reappraisal. A refreshing start has been made by the Conson committee of the National Research Council in its report on Electric Power from Orbit: A Critique of a Satellite Power System.

James Van Allen, discoverer of the Van Allen radiation belts, is a member of The Planetary Society Board of Advisors.
The second Voyager encounter with Saturn in August, 1981, provided an excellent opportunity to study the weather systems of this distant planet. A wealth of new detail is seen in the images, showing Saturn's cloud structures to be more like Jupiter's than we thought they were on the basis of Voyager 1 data. Long-lived oval spots, small-scale convection, and alternating easterly and westerly wind streams are some of the major similarities.

Easterly and westerly wind streams in the Saturn atmosphere are symmetrical about the equator in spite of the planet's axial tilt. As a consequence of the long radiative relaxation time of the huge planetary atmosphere, the ring shadow has no major effect on the planet's local weather systems. Saturn's zonal wind profile does have important differences from the structure found in the cloud tops of Jupiter. On Saturn, there are only three easterly jets in each hemisphere, and the east-west flow seems to extend poleward to approximately 75 degrees latitude. This is in contrast with Jupiter, where the predominately zonal motion terminated at about 50 degrees in each hemisphere. Does this difference in the wind structure relate to any difference in the depth of the active weather systems of these atmospheres? Although the interpretation is controversial, it is certainly possible that the zonal winds on Saturn are related to motions of the atmosphere at a greater depth than on Jupiter.
All the easterly jets on Saturn (and Jupiter, too) are unstable flows. The region between 20 and 40 degrees north showed the greatest changes in visible appearance in the nine months between the Voyager encounters. Unstable convection clouds observed by Voyager 1 in the easterly flow at 39 degrees north were seen to originate from several discrete sources in this latitude band. The flow now resembles that of vortices shed by a solid vertical cylinder in a classical fluid flow. This type of intermittent convection propagating from the depths of the planet's atmosphere must be important in Saturn's meteorology, as it transports heat and momentum up into the layers that we observe.

Spots of several kinds have been seen in Saturn's atmosphere. Stable, symmetric ovals of various colors exist, ranging from white to brown and red. "Big Bertha," at 75 degrees north, is 1000 x 6000 kilometers in size and situated in a weak westerly flow of four meters per second. Three "brown spots" have been seen at 42 degrees north latitude. They are approximately 7000 x 5000 kilometers in size and appear to rotate anticyclonically in a westerly flow of about 100 meters per second. The spot at 27 degrees north is prominent in ultraviolet wavelengths and may therefore be higher than its surroundings.

In the southern hemisphere a red spot about 5000 x 3000 kilometers in size has been observed by the Voyager cameras since early August, 1980. Some of the larger Saturn cloud systems have thus persisted for more than a year.

Two ribbon-like cloud features are apparent in the northern hemisphere of Saturn. The "jet stream" structure at 46 degrees latitude marks a westerly wind of about 150 meters per second. Nestled in troughs in its northern edge are cyclonic vortices (counterclockwise swirls). In the southern hemisphere, the corresponding features are anticyclonic, spinning clockwise.

In the polar regions are two hurricane-like cloud features 250 kilometers across with 60-kilometer dark centers. These structures are similar to those found on the Earth, except that if it is raining on Saturn, the precipitant will be ammonia!

Our new look at the weather on Saturn has presented new problems for meteorologists. In particular, the seasonal differences in the appearance of Saturn's northern and southern hemispheres are in contrast with the symmetry of the zonal wind profile, suggesting that the zonal winds are deep seated. Putting all of the Voyager observations together into a self-consistent model of Saturn's atmosphere is a fascinating task for the future.

Garry Hunt, of the Laboratory for Planetary Atmospheres, University College, London, England, is a member of the Voyager Imaging Science Team.
by Clark R. Chapman

In the last few weeks, the national media have been reporting that budget-cutters in Washington are threatening to further dismantle NASA's already weakened programs of civilian research and development in space science and applications. The most stunning and successful of these programs—the planetary exploration program, which costs only three per cent of NASA's budget—was threatened last October with outright extinction. Apparently, a temporary reprieve has been won, but the threat could return with a vengeance when the President announces his Fiscal Year 1983 budget in January, 1982.

Military Shift

In its November 16, 1981, issue, Aviation Week and Space Technology reports on shifts in NASA's long-term goals being considered at high levels in the space agency. The Space Act of 1958 mandated NASA to be devoted to the peaceful exploration of the atmosphere and outer space, and relegated matters of national defense to the Defense Department, with appropriate liaison. But NASA's second-in-command, Dr. Hans Mark, author of the long-range planning document quoted in Aviation Week, emphasizes the military utility of NASA's aeronautics and applications programs, while stating that planetary exploration must be "de-emphasized somewhat."

How can this once proud endeavor be further de-emphasized, with only the Galileo mission resting in the nearly empty cupboard, as the Soviets alone continue to explore Venus and NASA sits out the long-heralded return of Halley's Comet? How long can the highly motivated and talented planetary engineers and scientists be expected to wait for renewed opportunities to do what they do best? Mark's answer is: "Until we have a space station that can serve as a base for the launching of a new generation of planetary exploration spacecraft."

Mark suggests that a manned space station should be NASA's new big goal. NASA Administrator James Beggs said as much himself in an interview in the December, 1981, issue of Omni. A few weeks before the Aviation Week article appeared, I met Omni Editorial Director Ben Bova at a cocktail party during his whirlwind promotional tour for his new book, The High Road (Houghton-Mifflin, 1981). Bova told me that NASA's salvation rests in everyone's rallying around the space station. At the time, I told him I more-or-less agreed. Now I am not so sure.

Will the Reagan administration permit NASA to pursue a balanced program involving Earth-resources exploration, space-borne observatories, Mars landings and comet- rendezvous missions? Or will these scientific projects be squeezed to non-existence by one monster technological endeavor? Will a space station become a military fortress in the sky after millions of space enthusiasts have supported its development for more lofty goals? The shuttle is the test. Will we reap the shuttle bonanza promised a decade ago? Let's hope the shuttle becomes more than a truck to be filled with military cargo.

Failure to address questions such as these is the chief flaw in Bova's new book. In The High Road, he asks us to rally around the goal of building a prototype solar power satellite (SPS) by the year 2000. Whether Bova has recently lowered his sights to the space station, or simply regards it as a way-station to the SPS, is not clear. But either way, I think his agenda for the 1980's is somewhat lacking in practical perspective. A quarter-century into the space age, NASA should be busy reaping the rewards from its already-developed launch vehicles, while pursuing the future in parallel. But Bova's agenda lacks science, applications, and even commercial exploitation. He focuses instead on more technology and hardware a heavy launch vehicle, a space operation center, a space tug, operations technologies and a geosynchronous space station.

Is Space Our Salvation?

In other respects, The High Road is a good read and a substantial argument for an active space program. Perhaps Bova is a bit apocalyptic about imminent world catastrophe and a bit glib about how space will solve all the world's problems. He actually writes: "A vigorous space program that expands our economic horizons is the best chance for advancement that the poor have." The best? Well, at least he makes a case that it is a good chance. Bova establishes a dialectic between the "Prometheans" (he counts himself as one) and the "Luddites" (mainly limits-to-growth environmentalists), but then he goes to great effort to woo environmentalists to the side of space. Despite the uncomplimentary name-calling, Bova shows himself throughout the book to be sensitive to environmentalists' concerns and saves his scorn only for what he describes as the small, know-nothing faction of the environmental movement.

The High Road may not be great literature, but Bova writes crisply and well. The book is filled with useful facts, anecdotes, comparisons and arguments. I only wish he were a little more specific and practical about how we get from here to there. He asserts, for example, that the asteroids are a "miner's bonanza." That is, indeed, a good hypothesis, as I know from my own ground-based research. But before anyone invests billions of dollars in a space mining operation, it would be a good idea to look closely at an asteroid and see whether this hypothesis is any better than many other good hypotheses that have bitten the dust in the face of close-up examination by planetary spacecraft. NASA needs to be bold in dreaming about, and planning for, a future with human settlements in space. But it also needs to fulfill its earlier promises and do its homework before corporate investors, or society itself, will have confidence in Bova's vision of our salvation.

Clark R. Chapman, of SA's Planetary Science Institute in Tucson, Arizona, is Vice Chairman of the Division of Planetary Sciences of the American Astronomical Society. He is also a member of the Galileo Imaging Team.
PROBING SATURN'S RINGS

by Arthur L. Lane, Richard B. Pompfrey and Larry W. Esposito

On August 25, 1981, three and three-quarters hours from Voyager 2's closest approach to Saturn, one instrument began an unusual observation. The on-board computer targeted the scan platform toward a specific location in space, near the dark limb of the planet. The photopolarimeter subsystem (PPS) locked onto a star that was about to rise from behind Saturn's nightside limb. For the next two and one-quarter hours, it would track this star while the cameras—those workhorses of so many Voyager discoveries—remained idle. Why were the Voyager scientists willing to sacrifice the most detailed possible pictures of Saturn, its rings and some of its satellites?

From both Pioneer 11, in September, 1979, and Voyager 1 in November, 1979, we had learned that the rings of Saturn were far more mysterious and complex than anyone could have imagined. After a preliminary analysis of the data from Voyager 1's Saturn encounter, the scientific team had decided to attempt an in-depth study of the rings with Voyager 2. We had several important questions about the fine structure of the rings: How many rings does Saturn have? Five hundred? One thousand? Or several thousand? Although Voyager 1 had revealed ringlets within the rings, the images from its cameras rarely surpassed a resolution of five kilometers. What would the rings look like at one, or one-quarter, or one-half kilometer resolution? Only the photopolarimeter could see the rings in such fine detail.

Because of a unique geometry on the spacecraft's approach to Saturn, the bright ultraviolet star Delta Scorpii was occulted by the shadowed portion of the rings (Figure 1, next page). As the star appeared to move away from the planet (along the red arrow in Figure 1 through the C, B, A, and F-rings), the PPS saw the starlight flicker as it passed through the rings and was attenuated by varying densities of ring material. Sampling this starlight one hundred times per second, the photopolarimeter obtained an alternate resolution of one-hundred meters (about a city block) across the 74,000 kilometer radius of the rings. We can now study the rings at resolutions ten times higher than any other Voyager data, and with twenty to fifty times the detail of images provided by the spacecraft's cameras.

The photopolarimeter subsystem recorded about 800,000 separate measurements as it passed over Saturn's ring system. The sheer volume of data is overwhelming, and we cannot simultaneously display both the expansion of data and its high resolution. To appreciate how the PPS data complements the standard Voyager camera images, one can examine small regions where the high spatial resolution of the PPS provides unique information (see next page).

Consider the thin F-ring lying outside the A-ring. Scientists have determined from Voyager images that the entire F-ring is about 700 kilometers across. Voyager 2's telephoto camera recorded this ring shortly before the spacecraft's closest approach to Saturn (Figure 2). The image shows one bright, relatively dense strand along with several tenuous filaments of ring material.

Compare this image with the PPS data for the same region of space (physical data in Figure 3a, synthesized PPS image in Figure 3b). The PPS revealed at least ten distinct ringlets within the sixty-kilometer-wide region that appears as a single bright strand in the Voyager 2 image. Upon closer examination of the very dense outer ringlet, we found it split into two dense and narrow ringlets only one-half kilometer apart (data in Figure 4a, synthesized image in Figure 4b). Down to the limit of even the PPS resolution, narrow ringlets contain smaller ringlets. And these ringlets contain even narrower features.

One must keep in mind that the photopolarimeter data come from a single, narrow radial cut through the ring plane and provide no azimuthal information—data along the plane of the rings. Thus, the PPS could not have detected the "braids" in the F-ring discovered by the Voyager imaging system. However, using a mini-computer and a computer graphics system, we can take a single radius and from it synthesize a two-dimensional ring that is symmetrical around the ring plane.

We convert the amount of starlight passing through the rings, as measured by the PPS, into a density—less transmitted light indicates a higher density of material. Next, this density is converted into a brightness of reflected sunlight—more material reflects more sunlight. Finally, we choose a point in space from which to observe a specie portion of the rings. Given this information, the computer system generates pictures (as in Figures 3b and 4b) from physical data. The brightest, or most dense, regions of the rings appear yellow-white, while the thinnest portions are a deep red.

Although we have studied only a small portion of the rings in detail, we have observed many interesting phenomena. The B-ring, considered the thickest ring, did not completely block all the starlight throughout its expanse. The photopolarimeter detected undulations in brightness in several large regions. The computer-generated image (Figure 5) reveals many high- and low-density ringlets. Our analysis of these data indicate that "waves" undulate across this part of the B-ring. These spiral waves are similar to those some researchers have proposed to explain spiral structures in galaxies.

The photopolarimeter revealed incredibly fine structure in the F-ring and a myriad of waves across parts of the B-ring. Yet we are still unable to answer many of the questions posed before the Voyager 2 encounter with Saturn. How many rings are there? Until we know how many the strange ring structures last and how frequently they form, there can be no answer. On August 25, 1981, Saturn was surrounded by several thousand ringlets. Today, it may have more or less. The answers must wait until we return to the Saturn system.

A.L. Lane is the Principal Investigator for the Voyager photopolarimeter, R.B. Pompfrey is the PPS Experiment Representative at JPL, and L.W. Esposito is a PPS Co-Investigator at the Laboratory of Atmospheric and Space Physics at Boulder, Colorado.

TURN THE PAGE FOR DISPLAY OF FIGURES MENTIONED IN THIS ARTICLE
This diagram shows the apparent path of Delta Scorpii behind Saturn's rings, as viewed from the Voyager 2 spacecraft just before its closest approach to Saturn. The star emerged from behind the dark limb of the planet, then "moved" radially across the C, B, A, and F-rings. The red line graph shows an artist's conception of the observed intensity of starlight as the various rings attenuated the transmitted light by differing amounts.

This Voyager 2 image of the F-ring was taken near the time of the photopolarimeter starlight occultation experiment. The PPS data for the F-ring discussed in this report cover only the region of the single bright ringlet. The full four or five ringlets seen in this image measure about seven hundred kilometers across.

The PPS measurement of the optical thickness, or amount of material, in the single bright strand seen in figure 2. Individual one-hundred-meter samples were averaged together to form an effective spatial resolution of one kilometer. The peaks in the graph indicate areas of dense material—or ringlets within ringlets.

A pseudo-image of the bright F-ring strand seen in figure 2. Computer processing of the PPS data in figure 3a created this "picture" of the F-ring strand; the bright yellow-white color indicates denser material and the red color represents the thinner regions of the ring.
A high-resolution examination of the single, dense three-kilometer wide ringlet in 3a. This data trace, at the highest PPS resolution, decomposes the dense ringlet (the spike in 3a) into two smaller ringlets less than one-half kilometer in width. Scientists still do not understand the forces that produce such fine structure.

A computer converted the high-resolution data in 4a into a pseudo-image to show the remarkable detail in the brightest F-ring strand.

A pseudo-image of five hundred kilometers of the thick B-ring. The radial undulations in brightness indicate wave-like concentrations of material within the ring. Such phenomena may be caused by the gravitational effects of Saturn's satellites on individual ring particles.
Soviet SETI Conference

The Soviet Union held an international conference on the search for extraterrestrial intelligence (SETI) in December, 1981. The meeting was in Estonia, USSR, and many scientists from the United States were invited.

Because of federal budget cuts, it appeared that many American scientists would not be able to attend this meeting. Consequently, The Planetary Society arranged for private funding. In addition to supporting two scientists directly, we arranged for the Alfred P. Sloan Foundation to provide $10,000.

Scientists from the U.S. who were invited to attend included the Planetary Society's President, Carl Sagan, and Vice President, Bruce Murray, as well as Society Advisor Bernard M. Oliver, of Hewlett-Packard Corp., and Harvard physicist Paul Horowitz, whose SETI research recently received support from the Society. Also invited were Samuel Gulkis of the Jet Propulsion Laboratory and Jill C. Tarter of the University of California at Berkeley.

—Thomas R. McDonough

Planetary Society and DPS Join Forces

At the recent meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society, officers of The Planetary Society and the DPS made plans to work closely together to focus national attention on planetary exploration. Immediately, the letter reprinted on page 11 was sent to Edwin Meese III, special counselor to President Reagan, signed by representatives of both organizations.

The letter was promptly answered by Mr. Meese, who reiterated administration support for space exploration. Mr. Meese also said that he would share our concerns with the President.

In another effort, the DPS agreed to supply speakers for various Planetary Society events around the country. This will help the Society realize its goal of sharing the results of deep space exploration with its members, and will bring the general public closer to the scientists actually involved in the planetary program.
Mr. Edwin Meese
Special Counselor to the President
The White House
Washington, DC 20500

Dear Mr. Meese:

We are writing out of deep concern for the future of this nation's commitment to the exploration of the solar system—an extraordinary technological triumph in which American spacecraft have visited, for the first time in human history, forty new worlds. Our two organizations represent a part of the professional and public constituency of planetary exploration: approximately one thousand scientists engaged in planetary research, and one hundred thousand other citizens who have joined The Planetary Society during the past year because of their commitment to planetary exploration. The Planetary Society is, in fact, the fastest growing membership organization of any sort in America over the past decade.

We recognize the efforts being made to reduce unnecessary federal spending. But we also recognize that there are some activities that can only be supported by the federal government, and that are critical to our national and global future. Much of basic scientific research represents just such a critical area. Planetary exploration is on the leading edge of our efforts to advance high technology and to increase our understanding of the Earth and its place in the universe. In two decades, we have developed a unique capability to send sophisticated robot vehicles to the farthest reaches of the solar system. The pioneering accomplishments of the Vikings and Voyagers and their predecessors have captured the interest and imagination, not only of millions of Americans, but of multitudes around the world. Even those dubious about the policies of the United States have acknowledged the benign influence and technical leadership represented by this endeavor. It is hard to think of another federal program that has been so successful in accomplishing its goals, or so generally recognized as positive in its effects. It is an example of what we do best.

If we back off from the enterprise of the planets, we will be losing on many levels simultaneously. By examining other worlds—their weather, their climate, their geology, their organic chemistry, the possibility of life—we calibrate our own world. We learn better how to understand and improve the Earth. Planetary exploration is an activity involving high technology which has many important applications to the national and global economy—robotics and computer systems being two of many examples. It uses aerospace technology in an enterprise which is a credit to our nation, our species and our epoch. And planetary exploration is an adventure of historic proportions. A thousand years from now our age will be remembered because this was the moment when we first set sail for the planets.

In the decades of the 1960's and 1970's, dozens of American missions were launched to the Moon and the planets. For the decade of the 1980's at most one such launch has been approved, and even it is in jeopardy. We write to ask your support to ensure the survival of planetary exploration in the United States. Survival truly is at stake, because once the engineering teams are dispersed, the scientists demoralized, and the facilities closed or redirected to other functions, it would take many years and a great deal of money to return us to our present capabilities. The minimum level of effort essential for such survival is to complete the Galileo orbiter and probe for launch to Jupiter in 1985, to approve at least one other new planetary mission for launch in this decade, and to maintain the base support for science and engineering necessary to revitalize the program when a stronger economy can support it.

We and millions of Americans will appreciate any help you give to the enterprise of the planets.

Sincerely,

CARL SAGAN, President, The Planetary Society

DAVID MORRISON, Chairman, American Astronomical Society, Division for Planetary Sciences
by Jon Lomberg

From October 13 to 16, 1981, the Division for Planetary Sciences of the American Astronomical Society held its annual meeting in Pittsburgh, Pennsylvania. Several hundred planetary scientists gathered to hear papers and discuss results from spacecraft and ground-based observations of solar system objects and phenomena.

Radar Echoes From Asteroids

Three astronomers using the Arecibo observatory in Puerto Rico have been bouncing radar signals off the asteroids Iris, Psyche, Klotho, Apollo and Quetzalcoatl, Steven J. Ostro of Cornell University, Irwin Shapiro of the Massachusetts Institute of Technology, and Don Campbell, director of the planetary radar facility at Arecibo, have used the radar echoes to deduce the sizes, shapes, compositions, rotations and orbits of these tiny planets.

The observations revealed that the asteroids have extremely rough surfaces, more rugged than closely-studied areas of the Moon, Mars or Venus. Quetzalcoatl is a hunk of rock about the size of the Empire State Building, while Iris and Psyche are closer in size to New Jersey. The radar reflectivity of these objects suggests they are a mixture of rocky and metallic material, rather than pure nickel-iron like many meteorites that fall to Earth. These meteorites cannot have come from asteroids like these, so their origin remains a mystery.

Traveling at high speed, the radar echoes took almost one-half hour to make the round trip to Psyche, the most distant of the observed asteroids. Only 55 and 90 seconds were needed to make the round trips to Apollo and Quetzalcoatl, respectively. These two asteroids, and hundreds of others, pass so close to Earth that there is a good probability of a collision between our planet and an asteroid sometime within the next hundred million years. Luis Alvarez and his colleagues have hypothesized that such a collision may have caused the extinction of the dinosaurs and many other species 65 million years ago. Clearly, precise measurement and calculation of these orbits is very important. Asteroid radar astronomy is of more than academic interest.

Lava Flows on Io

The discovery of active sulfur volcanoes on Io, the innermost large moon of Jupiter, was one of the high points of the Voyager 1 mission. Voyager 2's "volcano watch" revealed several other active volcanoes on Io's surface and evidence of many dormant ones. Giant plumes were seen shooting ejected hundreds of kilometers above the moon. Surface features changed in the four months between the two spacecraft's encounters. The active sulfur volcanism was changing the face of Io right before our eyes.

Early analyses indicated that the ejecta from the plumes were modifying the map of Io. Now David Pieri, of the Jet Propulsion Laboratory, is suggesting that sulfur lava flows, rather than ejecta, play the dominant role in surface modification. Pieri has investigated liquid sulfur lava flows and found that they behave in a manner that seems to counter common sense. On Earth, molten silicate lava gets thicker and more viscous as it cools. Sulfur lava does the reverse—it is thinnest and more viscous when very hot and gets thinner as it cools. Falling just one-half degree below 161 degrees Centigrade, the liquid sulfur transforms, in Pieri's words, "from the consistency of cold molasses to the consistency of hot 3-In-1 Oil." The sluggish, cooling lava will suddenly run fast and free, burying and eradicating existing land forms. By mathematically modeling the rate at which sulfur cools and flows, Pieri has determined that flowing sulfur lava plays the dominant role in modifying the face of Io.

More Ring Mysteries

Before spacecraft visited Saturn, astronomers had thought the planet was surrounded by four or five broad, flat rings. Then, in 1979, Pioneer 11 discovered the slender F-Ring outside the main ring system. Just over a year later, Voyager 1 revealed that the Saturnian rings consisted of hundreds, perhaps thousands, of individual ringlets, which looked like the grooves on a phonograph record.

Explaining this structure has been difficult. Many scientists hypothesized that moonlets, embedded in the rings, could sweep out clear lanes and confine ring material to narrow bands between the moonlets. Voyager 1 had discovered two small "shepherding" satellites, one on either side of the F-ring, and some scientists took this as a model to explain other rings and gaps. Voyager 2 undertook a careful search for small moonlets within the rings, reports Jeffrey Cuzzi, a member of the Voyager Imaging Team from Ames Research Center. Voyager 1 had discovered a number of ringlets within the Cassini Division, a relatively "empty" gap between the A- and B-rings. Photographs of a section of the Cassini Division were taken at selected time intervals, then lined up vertically, like the rungs on a ladder. Any moonlet within the Division would have to be orbiting at a speed that could be calculated by the known laws of orbital mechanics. Scientists calculated how far any moonlet should have moved along its orbit from photo to photo. The photos were then offset from each other by this calculated distance, so any moonlet would appear in the same position in each photo, forming a vertical line of dots that would be easy to spot.

No moonlets were detected. Cuzzi has concluded that there are no moonlets ten kilometers in diameter or larger in the Cassini Division. The slender ringlets must be confined by some other means, still unknown at this time.

The Clouds of Titan

In the early 1950s, Harold Urey and Stanley Miller simulated planetary atmospheres in laboratory jars, added energy from shock waves, light or electrical discharges, and watched what was produced. They found that complex organic molecules, including protein-building amino acids, can easily be made in this way. Since then, many researchers have elaborated on these experiments. Carl Sagan and Bishun Khare, of the Laboratory for Planetary Studies at Cornell University, have synthesized a whole class of substances that Sagan has dubbed "tholins," from the Greek for "star tars." Some reddish-brown tholins may be related to the material that gives Jupiter's Great Red Spot its color.

Now Sagan and Khare have made some new tholins. Using data from Voyager 1, they mixed nitrogen and...
methane in the same proportions found in the Titan atmosphere, and sparked the mixture with electrical discharges for several months. A thin red film formed on the walls of the Titan Jar. Analysis of this tholin material shows that it is a very close match in particle size and spectral reflectivity to the material observed in the clouds of Titan.

Voyager scientists suspect that organic material might be produced in Titan's atmosphere—and the spacecraft did detect certain hydrocarbons.

Sagan and Khare's tholins may duplicate organic material found on Titan. Although detailed analysis is not yet complete, Sagan does say that their tholins are probably "polynitriles," a class of organic molecules that have nitrogen bonded with carbon and hydrogen, permitting very complex molecular structures. Since Titan is, by turns, bombarded by the solar wind and shielded by Saturn's magnetosphere, varying kinds of charged particles hit its atmosphere, providing an energy source analogous to the electrodes in the Earth-based Titan jars.

Within the solar system, Titan's atmosphere is most like the Earth's in composition and pressure, and scientists have speculated that biologically interesting molecules could be found on this Saturnian moon. Since a sample return mission to Titan is highly unlikely in the near future, Sagan and Khare's work is the next best thing to being there. In Sagan's words, "We may have bottled the clouds of Titan."

Jon Lomberg is a freelance journalist and artist working in Toronto, Ontario.
The Planetary Society has just passed two milestones: we have completed our first full fiscal year, and our membership has topped 100,000. We are now the fastest growing membership organization in the country. Individual membership dues and donations provide most of our income and we plow nearly all of that back into continuing membership drives and publication of *The Planetary Report*. These individual contributions will always be the financial base of The Planetary Society. In our first year and a half, our business costs have increased approximately 15 percent, but we hope to keep our dues at their current low level. To fund special projects, expand information services, and continue to meet expenses, we will have to rely on additional donations.

We were surprised, but pleased, that during our first year we could produce a program such as Planetfest '81, begin a lecture series, sponsor conferences, offer pictures and books to members, and, best of all, begin to fund important research and development activities such as SETI.

The Halley-SETI Appeal

Last June we sent a special appeal to members for funds to encourage a U.S. mission to Halley's Comet and to finance a project in the search for extraterrestrial intelligence (SETI). Planetary Society members showed their interest and support with contributions of over $70,000. We immediately turned the Halley's Comet money into an all-out effort to generate publicity about the mission, and to attract the attention of Washington policy makers. Society members sent more than 10,000 letters to the White House. According to NASA, 99 percent of the mail received about space last summer was in favor of the Halley mission. Yet the pleas fell on deaf ears, arriving as the administration was proposing the newest round of budget cuts to the space program. The letters were ignored by the White House staff, boxed up and shipped to NASA—and they have not yet been answered.

Work on the U.S. mission to Halley's Comet was stopped. And while we did not see the mission initiated, our effort did catch the attention of the budget makers and may have contributed to the successful efforts to save the planetary program from further cuts, perhaps even from cancellation.

In the last issue we reported the beginnings of our SETI projects. News media around the country picked up the story of Planetary Society funding for new equipment to speed up the search. We are continuing our SETI activities by arranging for private funds for American participation in an international SETI conference (see page 10).

Louis Friedman is Executive Director of The Planetary Society.

This summarizes The Planetary Society's finances for the Fiscal Year Ending September 30, 1981

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>INCOME</th>
<th>EXPENSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>$13,690</td>
<td>$113,282</td>
</tr>
<tr>
<td>Membership</td>
<td>896,868</td>
<td>919,450</td>
</tr>
<tr>
<td>The Planetary Report</td>
<td>426</td>
<td>145,818</td>
</tr>
<tr>
<td>Events & Lectures</td>
<td>19,014</td>
<td>265,600</td>
</tr>
<tr>
<td>Special Projects</td>
<td>56,025</td>
<td>19,476</td>
</tr>
<tr>
<td>Planetfest '81</td>
<td>183,475</td>
<td>184,562</td>
</tr>
<tr>
<td>Sales</td>
<td>52,843</td>
<td>38,141</td>
</tr>
<tr>
<td>TOTALS</td>
<td>$1,192,343</td>
<td>$1,446,812</td>
</tr>
</tbody>
</table>

ASSETS

- Cash (Checking & Savings) $108,536
- Receivables 105,000
- Prepaid expenses 2,725
- Inventory 6,682
- Office equipment (net) 3,425

TOTAL ASSETS $226,368

LIABILITIES & CAPITAL

- Accounts payable $174,852
- Notes payable 7,500
- Deferred revenue 320,106
- **Total Liabilities** $502,458
- Retained earnings 21,621
- Excess of expenses over income 254,469
- **Total Capital** $276,090

TOTAL LIABILITIES & CAPITAL $226,368

The excess of expenses over income arises by accounting our dues as deferred revenue (income spread out over the year). Membership income in 1981 was $806,808 plus $320,106 of deferred revenue.

The Planetary Society's financial statement was reviewed by Price Waterhouse in accordance with standards established by the American Institute of Certified Public Accountants.
The Solar System in Pictures and Books

Available from The Planetary Society

Full Color Photographic Reproductions (8'/2" x 11")

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Rings of Saturn (set of 5 Voyager I prints)</td>
<td>$9.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellites of Saturn (set of 5 Voyager I prints)</td>
<td>$9.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach to Saturn (set of 5 Voyager I prints)</td>
<td>$9.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Three Sets (15 Voyager I prints)</td>
<td>$23.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voyager 2 Saturn Encounter (set of 10 prints)</td>
<td>$14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo-Montage of The Saturn System</td>
<td>$2.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35mm Slide Sets

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyager 1 Saturn Encounter (20 slides with analysis report)</td>
<td>$15.00</td>
</tr>
<tr>
<td>Voyager 2 Saturn Encounter (20 slides with analysis report)</td>
<td>$15.00</td>
</tr>
<tr>
<td>Voyager 2 Saturn Encounter (40 slides with sound cassette)</td>
<td>$18.50</td>
</tr>
<tr>
<td>Viking 1 & 2 at Mars (40 slides with sound cassette)</td>
<td>$18.50</td>
</tr>
<tr>
<td>Voyager 1 & 2 at Jupiter (40 slides with sound cassette)</td>
<td>$18.50</td>
</tr>
</tbody>
</table>

Voyager Color Posters

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyager at Jupiter (Six 23" x 35" posters)</td>
<td>$16.00</td>
</tr>
<tr>
<td>Voyager 1 at Saturn (Two 11" x 17" mini-posters)</td>
<td>$6.50</td>
</tr>
<tr>
<td>Voyager 1 at Saturn (Five 23" x 25" posters)</td>
<td>$16.00</td>
</tr>
<tr>
<td>Planetfest '81 (Two 23" x 25") (Saturn and the F-ring)</td>
<td>$8.00</td>
</tr>
</tbody>
</table>

Books

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyage to Jupiter, by David Morrison and Jane Samz—Description of the Voyager encounters with Jupiter, illustrated with color photographs.</td>
<td>$9.00</td>
</tr>
<tr>
<td>Beyond the Atmosphere, by Homer E. Newell—History of the United States space program.</td>
<td>$12.00</td>
</tr>
<tr>
<td>Voyager 1 Encounters Jupiter—A colorfully illustrated booklet describing the Voyager mission to Jupiter.</td>
<td>$4.50</td>
</tr>
<tr>
<td>Voyager 1 Encounters Saturn—An illustrated booklet with many of the best pictures from the Saturn encounter.</td>
<td>$4.50</td>
</tr>
<tr>
<td>Mars and the Mind of Man—Illustrated results of the Mariner 9 mission, with commentary by Ray Bradbury, Arthur C. Clarke, Bruce Murray, Carl Sagan and Walter Sullivan.</td>
<td>$10.00</td>
</tr>
<tr>
<td>The Planets: A Cosmic Pastoral, by Diane Ackerman—A collection of poems about the planets.</td>
<td>$4.00</td>
</tr>
</tbody>
</table>

Planeteefest '81 Souvenirs

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-shirts (Adult sizes – S, M, L, XL)</td>
<td>$7.00</td>
</tr>
<tr>
<td>Buttons</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

Mail order and payment to:

THE PLANETARY SOCIETY

Photos, Slides & Posters

P.O. Box 3127

Pasadena, CA 91103

All prices include postage and handling.

Foreign orders add $2.00 for additional postage.

California residents add 6% sales tax.

Total Enclosed $ ____________

Facsimiles of this form may be used for additional orders.

Officers of The Planetary Society do not receive any proceeds from book sales involving them as authors and contributors.
BAJADA CHUBASCO—This could be a scene on another planet—or the Earth sometime in the future—if our planet were to capture a wandering asteroid to companion the Moon. Artist Kim Poor named his Landscape after the Bajada, a desert terrain of eroded mountains surrounded by sloping aprons of sediment, and the Chubasco, a brief, powerful thunderstorm that occurs frequently over the Sonoran desert.

Kim Poor is a freelance artist from Tucson, Arizona. His work has appeared in Discover, Science Digest and the L-5 News.

THE PLANETARY SOCIETY
P.O. Box 3599
Pasadena, CA 91103