Cancer-Related Fatigue

Version 1.2014

Reproduced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Pancreatic Adenocarcinoma V.1.2014. © 2014 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and illustrations herein may not be reproduced in any form for any purpose without the express written permission of the NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org. NATIONAL COMPREHENSIVE CANCER NETWORK®, NCCN®, NCCN GUIDELINES®, and all other NCCN Content are trademarks owned by the National Comprehensive Cancer Network, Inc.
NCCN Guidelines Version 1.2014 Panel Members
Cancer-Related Fatigue

*Ann M. Berger, PhD, APRN/Chair #
Fred & Pamela Buffett Cancer Center at
The Nebraska Medical Center

Kathi Mooney, RN, PhD/Vice-Chair
Huntsman Cancer Institute
at the University of Utah

Amy Alvarez-Perez, MD £
Roswell Park Cancer Institute

Ashley Atkinson, RN, MSN, OCN #
University of Alabama at Birmingham
Comprehensive Cancer Center

William S. Breitbart, MD †
Memorial Sloan-Kettering Cancer Center

Brittany Brothers, PhD †
The Ohio State University Comprehensive
Cancer Center -
James Cancer Hospital and
Solove Research Institute

David Cella, PhD †
Robert H. Lurie Comprehensive Cancer
Center of Northwestern University

Charles Cleeland, PhD †
The University of Texas
MD Anderson Cancer Center

NCCN
Maria Ho, PhD
Mary Anne Bergman

Mario A. Eisenberger, MD † ω
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

Carmen P. Escalante, MD ♯
The University of Texas
MD Anderson Cancer Center

Paul B. Jacobsen, PhD †
Moffitt Cancer Center

Catherine Jankowski, PhD
University of Colorado Cancer Center

Phyllis Kaldor, RN, MS, OCN #
The Ohio State University
Comprehensive Cancer Center -
James Cancer Hospital and
Solove Research Institute

Thomas LeBlanc, MD, MA †
Duke Cancer Institute

Jennifer A. Ligibel, MD †
Dana-Farber/Brigham and
Women’s Cancer Center

Elizabeth Trice Loggers, MD, PhD
Fred Hutchinson Cancer Research
Center/Seattle Cancer Care Alliance

Belinda Mandrell, PhD, RN €
St. Jude Children's Research Hospital/
University of Tennessee Health Science
Center

Barbara A. Murphy, MD † £
Vanderbilt-Ingram Cancer Institute

Oxana Palesh, PhD, MPH θ
Stanford Cancer Institute

William F. Pirl, MD θ
Massachusetts General Hospital Cancer Center

Steven C. Plaxe, MD Ω
UC San Diego Moores Cancer Center

Michelle B. Riba, MD, MS Ω
University of Michigan Comprehensive
Cancer Center

Hope S. Rugo, MD † ‡
UCSF Helen Diller Family
Comprehensive Cancer Center

Lynne I. Wagner, PhD †
Robert H. Lurie Comprehensive Cancer
Center of Northwestern University

Nina D. Wagner-Johnston, MD †
Siteman Cancer Center at Barnes-Jewish Hospital
and Washington University School of Medicine

Finly J. Zachariah, MD £
City of Hope Comprehensive Cancer Center

Nursing
† Medical oncology
▷ Internal medicine
ω Urology
♯ Hematology/Hematology
oncology
θ Psychiatry, psychology,
including health behavior
Ω Gynecologic oncology
€ Pediatric oncology
† Orthopedics
ξ Bone marrow
transplantation
£ Supportive care including
palliative, pain management,
pastoral care, and oncology
social work
* Writing committee member

Version 1.2014, 01/06/14 © National Comprehensive Cancer Network, Inc. 2014, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
NCCN Cancer-Related Fatigue Panel Members

Summary of the Guidelines Updates

Definition of Cancer-Related Fatigue (FT-1)

Standards of Care for Cancer-Related Fatigue in Children/Adolescents and Adults (FT-2)

Screening for Cancer-Related Fatigue (FT-3)

Primary Evaluation (FT-4)

Interventions for Active Treatment (FT-5)

Interventions for Post-Treatment (FT-6)

Interventions for End of Life (FT-7)

Clinical Trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified.

See NCCN Categories of Evidence and Consensus
Updates to Version 1.2014 of the NCCN Guidelines for Cancer-Related Fatigue from Version 1.2013 include:

MS-1
- The discussion section was updated to reflect the changes in the algorithm.

FT-3
- For None to mild the recommendation was modified to *Education, counseling, and general strategies for management of fatigue with corresponding footnote “d”.*
- For Moderate or Severe the same language was added. Education plus, primary evaluation of fatigue was deleted.

FT-4
- Under Focused history
 - Changed Rule-out to *Consider*
- Second column has been modified to, *Management of concurrent symptoms* and treatable contributing factors.

FT-5
- Under General Strategies for Management of Fatigue:
 - *Find meaning in current situation, Emphasis on meaningful interactions, Promote dignity of patient* is new to the page (Also for FT-6).
 - Activity enhancement has been modified to *Physical activity* (Also for FT-6 and FT-7).
 - A new footnote has been added to the 2nd sub-bullet under Nonpharmacologic directing the reader the *NCCN Guidelines for Survivorship* (Also for FT-6).

FT-6
- Under General Strategies for Management of Fatigue, modified the first bullet to, *Monitor fatigue levels.*
 - First sub-bullet modified, *Set priorities and realistic expectations* (Also for FT-7).
 - Deleted the following sub-bullets:
 - delegate
 - labor-saving-devices
 - postpone nonessential-activities
- For Patients Post-Treatment, under Specific Interventions, Nonpharmacologic, 2nd bullet, 2nd sub-bullet, *Mindfulness-based stress reduction (category 1)* is new to the page.
Cancer-related fatigue is a distressing, persistent, subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and interferes with usual functioning.
STANDARDS OF CARE FOR CANCER-RELATED FATIGUE IN CHILDREN/adolescents AND ADULTS

- Fatigue is rarely an isolated symptom and most commonly occurs with other symptoms, such as pain, distress, anemia, and sleep disturbances, in symptom clusters. Therefore, patients should be screened for multiple symptoms that may vary according to diagnosis, treatment, and stage of disease.

- Fatigue is a subjective experience that should be systematically assessed using patient self-reports and other sources of data.

- Fatigue should be screened, assessed, and managed according to clinical practice guidelines.

- All patients should be screened for fatigue at their initial visit, at regular intervals during and following cancer treatment, and as clinically indicated.

- Fatigue should be recognized, evaluated, monitored, documented, and treated promptly for all age groups, at all stages of disease, prior to, during, and following treatment.

- Patients and families should be informed that management of fatigue is an integral part of total health care.

- Health care professionals experienced in fatigue evaluation and management should be available for consultation in a timely manner.

- Implementation of guidelines for fatigue management is best accomplished by interdisciplinary teams who are able to tailor interventions to the needs of the individual patient.

- Educational and training programs should be implemented to ensure that health care professionals have knowledge and skills in the assessment and management of fatigue.

- Cancer-related fatigue should be included in clinical health outcome studies.

- Quality of fatigue management should be included in institutional continuous quality improvement projects.

- Medical care contracts should include reimbursement for the management of fatigue.

- Disability insurance should include coverage for the continuing effects of fatigue.

- Rehabilitation should begin with the cancer diagnosis.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Screen every patient for fatigue as vital sign at regular intervalsa,b

- **Age >12 y:**
 - Severity: 0-10 scalec
 - (0=No fatigue; 10=Worst fatigue you can imagine)
 - None, mild, moderate, severe
- **Age 7-12 y:**
 - Severity 1-5 scale
 - (1=No fatigue; 5=Worst)
- **Age 5-6 y**
 - Use “tired” or “not tired”

1. **Age >12 y:**
 - None to mild (0–3)a,b
 - Age 7-12 y: (1-2)
 - Age 5-6 y: (Not tired)

2. **Age >12 y:**
 - Moderate (4–6)a,b
 - or Severe (7–10)a,b
 - Age 7-12 y:
 - Moderate (3)
 - or Severe (4-5)
 - Age 5-6 y: (Tired)

3. **Education, counseling, and general strategies for management of fatigued**

4. **Ongoing evaluation**

aRecommended screen and re-evaluation: “How would you rate your fatigue on a scale of 0-10 over the past 7 days?”

bFatigue scale for children is simplified: Use “tired” or “not tired” as screen for young children (age <6 or 7 y).

dSee “Patient/Family Education and Counseling” and “General Strategies for Management of Fatigue” based on clinical status: Active Treatment (FT-5), Post-Treatment (FT-6), and End of Life (FT-7).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 1.2014

Cancer-Related Fatigue

PRIMARY EVALUATION FATIGUE SCORE: MODERATE OR SEVERE

Age >12 y (4-10), Age 7-12 y (3-5), or Age 5-6 y (Tired)

Focused history
- Disease status and treatment
 - Consider recurrence and/or progression
 - Prescription medications/OTCs and supplements
- Review of systems
- In-depth fatigue history
 - Onset, pattern, duration
 - Change over time
 - Associated or alleviating factors
 - Interference with function
- Social support status/availability of caregivers

Assessment of treatable contributing factors
- Pain
- Emotional distress
 - Depression
 - Anxiety
- Anemia
- Sleep disturbance (eg, insomnia, narcolepsy, obstructive sleep apnea, restless leg syndrome)
- Nutritional deficits/imbalance
 - Weight/caloric intake changes
 - Fluid electrolyte imbalance: sodium, potassium, calcium, magnesium
- Decreased functional status
 - Decreased activity level
 - Deconditioning
- Medications/side effects (eg, sedation)
- Comorbidities
 - Alcohol/substance abuse
 - Cardiac dysfunction
 - Endocrine dysfunction (eg, hot flashes, hypothyroidism, hypogonadism, adrenal insufficiency)
 - Gastrointestinal dysfunction
 - Hepatic dysfunction
 - Infection
 - Neurologic dysfunction
 - Pulmonary dysfunction
 - Renal dysfunction

Management of concurrent symptoms and treatable contributing factors

- Medications/Side effects
 - Pain
 - See NCCN Guidelines for Adult Cancer Pain
 - Emotional distress
 - See NCCN Guidelines for Distress Management
 - Anemia
 - See NCCN Guidelines for Cancer- and Chemotherapy-Induced Anemia
 - Sleep disturbance
 - Nutritional deficit/imbalance
 - Decreased functional status
 - Comorbidities
 - No other factors

PATIENT CLINICAL STATUS

- Active treatment
 - See Interventions (FT-5)
- Follow-up, post treatment (no active treatment except hormonal therapy)
 - See Interventions (FT-6)
- End of life
 - See Interventions (FT-7)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 1.2014

Cancer-Related Fatigue

INTERVENTIONS FOR PATIENTS ON ACTIVE TREATMENT

<table>
<thead>
<tr>
<th>Patient/Family Education and Counseling</th>
<th>General Strategies for Management of Fatigue</th>
<th>Specific Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information about known pattern of fatigue during and following treatment</td>
<td>• Self-monitoring of fatigue levels</td>
<td>• Physical activity (category 1)</td>
</tr>
<tr>
<td>• Reassurance that treatment-related fatigue is not necessarily an indicator of disease progression</td>
<td>• Energy conservation</td>
<td>▶ Maintain optimal level of activity</td>
</tr>
<tr>
<td></td>
<td>▶ Set priorities and realistic expectations</td>
<td>▶ Consider starting and maintaining an exercise program, as appropriate per health care provider, of both endurance (walking, jogging, or swimming) and resistance (light weights) exercises</td>
</tr>
<tr>
<td></td>
<td>▶ Pace</td>
<td>▶ Consider referral to rehabilitation: physical therapy, occupational therapy, and physical medicine</td>
</tr>
<tr>
<td></td>
<td>▶ Delegate</td>
<td>▶ Caution:</td>
</tr>
<tr>
<td></td>
<td>▶ Schedule activities at times of peak energy</td>
<td>▶ Bone metastases</td>
</tr>
<tr>
<td></td>
<td>▶ Labor-saving devices</td>
<td>▶ Thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>▶ Postpone nonessential activities</td>
<td>▶ Anemia</td>
</tr>
<tr>
<td></td>
<td>▶ Limit naps to <1 hour to not interfere with nighttime sleep quality</td>
<td>▶ Fever or active infection</td>
</tr>
<tr>
<td></td>
<td>▶ Structured daily routine</td>
<td>▶ Limitations secondary to metastases or other illnesses</td>
</tr>
<tr>
<td></td>
<td>▶ Attend to one activity at a time</td>
<td>Nonpharmacologic</td>
</tr>
<tr>
<td></td>
<td>▶ Use distraction (eg, games, music, reading, socializing)</td>
<td>▶ Physically based therapies</td>
</tr>
<tr>
<td></td>
<td>▶ Find meaning in current situation</td>
<td>▶ Massage therapy (category 1)</td>
</tr>
<tr>
<td></td>
<td>▶ Emphasis on meaningful interactions</td>
<td>▶ Psychosocial interventions</td>
</tr>
<tr>
<td></td>
<td>▶ Promote dignity of patient</td>
<td>▶ Cognitive behavioral therapy (CBT)</td>
</tr>
</tbody>
</table>

Pharmacologic

- Consider psychostimulants (methylphenidate or modafinil) after ruling out other causes of fatigue
- Treat for pain, emotional distress, and anemia as indicated per NCCN Guidelines

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

FT-5

Version 1.2014, 01/06/14 © National Comprehensive Cancer Network, Inc. 2014, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
NCCN Guidelines Version 1.2014
Cancer-Related Fatigue

General Strategies for Management of Fatigue
- Monitor fatigue levels
- Energy conservation
 - Set priorities and realistic expectations
 - Pace
 - Schedule activities at times of peak energy
 - Limit naps to <1 hour to not interfere with night-time sleep quality
 - Structured daily routine
 - Attend to one activity at a time
- Use distraction (eg, games, music, reading, socializing)
- Find meaning in current situation
 - Emphasis on meaningful interactions
- Promote dignity of patient

SPECIFIC INTERVENTIONS
Nonpharmacologic
- Physical activity (category 1)
 - Maintain optimal level of activity
 - Consider initiation of exercise program of both endurance and resistance exercise
 - Consider referral to rehabilitation: physical therapy, occupational therapy, physical medicine
 - Caution:
 - Late effects of treatment (eg, cardiomyopathy)
- Psychosocial interventions (category 1)
 - CBT/BT (category 1)\(^h\)\(^i\,m\)
 - Mindfulness-based stress reduction (category 1)
 - Psycho-educational therapies/ Educational therapies (category 1)
 - Supportive expressive therapies (category 1)\(^i\)
- Nutrition consultation
- CBT\(^h\) for sleep (category 1)
 - Stimulus control
 - Sleep restriction
 - Sleep hygiene

Pharmacologic\(^m\)
- Consider psychostimulants\(^k\) (methylphenidate or modafinil) after ruling out other causes of fatigue
- Treat for pain, emotional distress, and anemia as indicated per NCCN Guidelines for Adult Cancer Pain, Distress Management, and Cancer-and Chemotherapy-Induced Anemia
- Optimize treatment for sleep dysfunction, nutritional deficit/imbalance, and comorbidities

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

\(^e\)See Discussion for information on differences between active treatment, post-treatment, and end-of-life treatment. (See MS-1)

\(^g\)Interventions should be culturally specific and tailored to the needs of patients and families along the illness trajectory, because not all patients may be able to integrate these options due to variances in individual circumstances and resources.

\(^h\)A type of psychotherapy that focuses on recognizing and changing maladaptive thoughts and behaviors to reduce negative emotions and facilitate psychological adjustment.

\(^i\)CBT/BT influences thoughts and promotes changes in behavior; it includes relaxation strategies.

\(^j\)Supportive expressive therapies (eg, support groups, counseling, journal writing) facilitate expression of emotion and foster support from one or more people.

\(^k\)Pharmacologic interventions remain investigational, but have been reported to improve symptoms of fatigue in some patients. There is more evidence for methylphenidate and less for modafinil. These agents should be used cautiously and should not be used until treatment- and disease-specific morbidities have been characterized or excluded. Optimal dosing and schedule have not been established for use of psychostimulants in cancer patients.

\(^l\)See NCCN Guidelines for Survivorship (SE-3).

\(^m\)Adjustment of current treatments for pain, sleep disturbances, and other symptoms and comorbidities, including drugs. Nonpharmacologic management of pain may be considered, such as palliative radiation, nerve blocks, or epidural management.
NCCN Guidelines Version 1.2014

Cancer-Related Fatigue

INTERVENTIONS FOR PATIENTS AT THE END OF LIFE

<table>
<thead>
<tr>
<th>Patient/Family Education and Counseling</th>
<th>General Strategies for Management of Fatigue</th>
<th>Nonpharmacologic</th>
<th>Pharmacologic</th>
</tr>
</thead>
</table>
| Information about known pattern of fatigue during and following treatment | • Energy conservation
 ➤ Set priorities and realistic expectations
 ➤ Pace
 ➤ Delegate
 ➤ Schedule activities at times of peak energy
 ➤ Labor-saving and assistive devices (including wheelchairs, walkers, and commodes)
 ➤ Eliminate nonessential activities
 ➤ Structured daily routine
 ➤ Attend to one activity at a time
 ➤ Conserve energy for valued activities
 ➤ Use distraction (eg, games, music, reading, socializing)
 ➤ Find meaning in current situation
 ➤ Emphasis on meaningful interactions
 ➤ Promote dignity of patient | • Physical activity
 ➤ Optimize level of activity with careful consideration of the following constraints:
 ◯ Bone metastases
 ◯ Thrombocytopenia
 ◯ Anemia
 ◯ Fever or active infection
 ◯ Assessment of safety issues (ie, risk of falls, stability)
 ➤ Psychosocial interventions | • Consider psychostimulants (methylphenidate or modafinil) after ruling out other causes of fatigue
 ➤ Consider corticosteroids (prednisone or dexamethasone)
 ➤ Treat for pain, emotional distress, and anemia as indicated per NCCN Guidelines (See NCCN Guidelines for Adult Cancer Pain, Distress Management, and Cancer-and Chemotherapy-Induced Anemia)
 ➤ Optimize treatment for sleep dysfunction and comorbidities |
| Expected end-of-life symptom | | | |
| May vary in intensity | | | |

SPECIFIC INTERVENTIONS

- Consider psychostimulants (methylphenidate or modafinil) after ruling out other causes of fatigue
- Consider corticosteroids (prednisone or dexamethasone)
- Treat for pain, emotional distress, and anemia as indicated per NCCN Guidelines (See NCCN Guidelines for Adult Cancer Pain, Distress Management, and Cancer-and Chemotherapy-Induced Anemia)
- Optimize treatment for sleep dysfunction and comorbidities

See Discussion for information on differences between active treatment, post-treatment, and end-of-life treatment. (See MS-1)

Examples include use of reachers for grasping items beyond arm's length, sock aids for pulling on socks, rolling carts for transporting items, escalators and elevators for traveling between building floors, and electrical appliances for performing common household tasks (eg, opening cans).

Interventions should be culturally specific and tailored to the needs of patients and families along the illness trajectory, because not all patients may be able to integrate these options due to variances in individual circumstances and resources.

Pharmacologic interventions remain investigational, but have been reported to improve symptoms of fatigue in some patients. There is more evidence for methylphenidate and less for modafinil. These agents should be used cautiously and should not be used until treatment- and disease-specific morbidities have been characterized or excluded. Optimal dosing and schedule have not been established for use of psychostimulants in cancer patients.

Also See NCCN Guidelines for Palliative Care.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 1.2014, 01/06/14 © National Comprehensive Cancer Network, Inc. 2014, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview ... MS-2
Defining Cancer-Related Fatigue MS-2
Standards of Care for Assessment and Management ... MS-3
Guidelines for Evaluation and Treatment MS-3
Screening ... MS-4
Primary Evaluation Phase MS-5
Focused History and Physical Examination MS-5
Assessment of Treatable Contributing Factors MS-5
Patient Clinical Status .. MS-7
Interventions for Patients on Active Treatment MS-8
Education and Counseling of Patient and Family MS-8
General Strategies for Management of Fatigue MS-8
Nonpharmacologic Interventions MS-8
Pharmacologic Interventions MS-12
Interventions for Patients Post-Treatment MS-13
Education and Counseling of Patient and Family MS-14
Nonpharmacologic Interventions MS-14
Pharmacologic Interventions MS-15
Interventions for Patients at the End of Life MS-15
Education and Counseling of Patient and Family MS-16
General Strategies for Management of Fatigue MS-16
Nonpharmacologic Interventions MS-16
Pharmacologic Interventions MS-17
Re-Evaluation Phase ... MS-18
Summary ... MS-18
Appendix ... MS-20
Fatigue Measurement ... MS-20
References ... MS-21
Overview

Fatigue is a common symptom in patients with cancer and is nearly universal in those receiving cytotoxic chemotherapy, radiation therapy, bone marrow transplantation, or treatment with biological response modifiers. According to a survey of 1,569 cancer patients, the symptom is experienced by 80% of individuals who receive chemotherapy and/or radiotherapy. In patients with metastatic disease, the prevalence of cancer-related fatigue (CRF) exceeds 75%. Cancer survivors report that fatigue is a disruptive symptom months or even years after treatment ends. The distinction between tiredness, fatigue, and exhaustion has not been made, despite conceptual differences. Patients perceive fatigue to be the most distressing symptom associated with cancer and its treatment, more distressing even than pain or nausea and vomiting, which, for most patients, can generally be managed by medications.

Fatigue in cancer patients has been under-reported, under-diagnosed, and under-treated. Persistent CRF affects quality of life (QOL), as cancer patients become too tired to fully participate in the roles and activities that make life meaningful. Health care professionals have been challenged in their efforts to help patients manage this distressful symptom and to remain as fully engaged in life as possible. Because of the successes in cancer treatment, health care professionals are now likely to see patients with prolonged states of fatigue related to the late effects of treatment. Disability-related issues are relevant and often challenging, especially for cancer patients who are cured of their malignancy but have continued fatigue. Despite biomedical literature documenting this entity, it is often difficult for patients with CRF to obtain or retain disability benefits from insurers. Health care professionals should advocate for patients who require disability benefits and educate insurers about this issue.

Despite the prevalence of CRF, the specific mechanisms involved in its pathophysiology are unknown. Proposed mechanisms include pro-inflammatory cytokines, hypothalamic-pituitary-adrenal (HPA) axis dysregulation, circadian rhythm desynchronization, skeletal muscle wasting, and genetic dysregulation. Limited evidence supports these proposed mechanisms.

To address the important problem of CRF, NCCN convened a panel of experts. The NCCN Guidelines for Cancer-Related Fatigue, first published in 2000 and updated annually, synthesize the available research and clinical experience in this field as well as provide recommendations for patient care.

Defining Cancer-Related Fatigue

The panel defines CRF as a distressing, persistent, subjective sense of tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and interferes with usual functioning. Compared with the fatigue experienced by healthy individuals, CRF is more severe, more distressing, and less likely to be relieved by rest. In terms of the defining characteristics, it is important to note the subjective sense of tiredness reported by the patient. As with pain, the clinician must rely on patients’ descriptions of their fatigue and accompanying distress. Fatigue that interferes with usual functioning is another substantial component of the definition for CRF and the source of much distress for patients. Investigations have documented a significant effect of fatigue on physical functioning during cancer treatment and it is uncertain whether patients regain full functioning when treatment is over.
Standards of Care for Assessment and Management

The panel developed Standards of Care for CRF Management, using the NCCN Guidelines for Adult Cancer Pain and the NCCN Guidelines for Distress Management as exemplar models. These fatigue standards represent the best level of care for the assessment and management of fatigue in cancer patients, including children, adolescents, and adults, and should provide guidance for health care professionals as they implement the guideline in their respective institutions and clinical settings. The overall goal of the standards and guidelines is to ensure that all cancer patients with fatigue are identified as well as treated promptly and effectively.

The first standard recognizes fatigue as a subjective experience that should be systematically assessed using patient self-reports and other sources of data. Because it is a symptom that is perceived by the patient, fatigue can be described most accurately by self-report. The history and physical examination, laboratory data, and descriptions of patient behavior by family members, especially in children, are important sources of additional information.

Fatigue should be screened, assessed, and managed for most patients according to the clinical practice guideline. This guideline provides “best care” information based on current evidence to support treatment. Patients should be screened for the presence and severity of fatigue at their initial clinical visit, at appropriate intervals during and/or following cancer treatment, and as clinically indicated. Screening should identify fatigue. Patients and families should be informed that managing fatigue is an integral part of total health care. All patients should receive symptom management. Furthermore, if patients cannot tolerate their cancer treatment or if they must choose between treatment and QOL, control of their disease may be diminished.

Health care professionals experienced in fatigue evaluation and management should be available for consultation in a timely manner. The guideline for fatigue is best implemented by an interdisciplinary institutional committee, including medicine, nursing, social work, physical therapy, and nutrition. The panel recognizes that education and training programs are needed to prepare oncology experts in fatigue management. These are now being offered, but much more attention to these programs within institutional settings is necessary if professionals are to become skilled in managing fatigue.

The NCCN Panel recommends that assessment of CRF levels be included in outcomes research. Quality of fatigue management should be included in institutional continuous quality improvement projects. Institutions can make faster progress in implementing the guidelines if they monitor adherence and progress with the guidelines. Medical care contracts should reimburse for managing fatigue, including referrals to a physical therapist, dietitian, or the institution’s symptom management service. Disability insurance should include coverage for the continuing effects of fatigue that lead to persistent disability. Rehabilitation should begin with a cancer diagnosis and should continue even after cancer treatment ends.

Guidelines for Evaluation and Treatment

The general schema of the fatigue algorithm incorporates the following phases: screening, primary evaluation, intervention, and re-evaluation. During the first phase, the health care professional must screen for fatigue and, if present, assess its intensity level. If the intensity level is moderate to severe, the health care professional is directed during the primary evaluation phase of the algorithm to conduct a more focused history and physical examination. This phase also includes an in-depth fatigue assessment and an evaluation of concurrent symptoms and
contributing factors frequently associated with fatigue, and can be treated as an initial step in managing fatigue. If, however, a patient either does not have one of these treatable contributing factors or continues to have moderate-to-severe fatigue after treatment of the factors, the health care professional should recommend additional treatment based on the NCCN Guidelines for Cancer-Related Fatigue. After the evaluation phase, the guideline delineates a set of interventions for the amelioration of fatigue based on the patient’s clinical status (ie, active cancer treatment, post-treatment, end of life). Education and counseling are believed to be central to the effective management of fatigue. Additional interventions are nonpharmacologic and pharmacologic; however, in many instances a combination of approaches must be used. Finally, the algorithm calls for re-evaluation, leading to an iterative loop in fatigue screening and management.

Screening
The first phase of the algorithm emphasizes screening of every patient for the presence or absence of fatigue. If fatigue is present, a quantitative or semiquantitative assessment should be performed and documented. For example, on a 0 to 10 numeric rating scale (zero = no fatigue and 10 = worst fatigue imaginable), mild fatigue is indicated as a score of 1 to 3, moderate fatigue as 4 to 6, and severe fatigue as 7 to 10. The fatigue scale for children is simplified; thus, young children (age 5–6 years) may be asked if they are “tired” or “not tired.” Valid and reliable instruments are available to measure fatigue in children and adolescents.²³⁻²⁴ If the screening process determines that fatigue is absent or at a mild level the patient and family should receive education and common management strategies for fatigue. Periodic re-screening and re-evaluation are recommended. Inpatients should be screened daily and outpatients should be screened at subsequent routine and follow-up visits. It should be emphasized that survivors or patients who have completed treatment must still be monitored for fatigue, because fatigue may exist beyond the period of active treatment.³⁵

Currently, screening is not systematic or effective in many practice settings for various reasons, which often include patient or family barriers and clinician barriers. For example, patients may not want to bother their health care professional in the clinic or office or when they are hospitalized. Patients are also concerned that if they report high levels of fatigue, they might have their treatment altered. Patients do not want to be perceived as complaining and, therefore, may not mention fatigue. Or, they may assume that they just have to live with fatigue because they believe there is no treatment for it. Health care professionals may not initiate a discussion about fatigue for many of the same reasons. First, clinicians may not recognize that fatigue is a problem for the patient. Fatigue, as a symptom, has been unrecognized and untreated. Conversely, medical advances have led to better control over the more noticeable or less subtle acute symptoms of nausea, vomiting, and pain. Researchers have begun to document not only the prevalence and incidence of fatigue but also how it significantly disrupts a patient’s QOL.³⁶⁻³⁸ Second, health care professionals may not be aware that there are effective treatments for fatigue. In addition, the underlying pathophysiology and mechanisms of fatigue have not been elucidated.

Given these barriers, screening for CRF must be emphasized. Clinical experience with fatigue assessment has shown that some patients cannot put a numeric value on their fatigue. Consequently, some patients may need to rate fatigue as mild, moderate, or severe. In addition, in some circumstances, other sources of data must be used. For example, the patient may not be aware that fatigue has negatively affected his or her life; however, the spouse, parents, or other family
members may be more cognizant of these changes and the effect of
fatigue. An appendix to this manuscript provides additional information
and resources to assist in the selection of instruments to measure CRF.

Using the numeric rating scale (ie, 0 to 10 scale), fatigue studies in
cancer patients have revealed a marked decrease in physical
functioning at the level of 7 or higher. The authors of an international
study on fatigue in breast and prostate cancer patients evaluated and
compared fatigue intensity levels with scores from the MOS-SF-36
Physical Functioning Subscale. The study documented a dramatic
decrease in physical functioning when fatigue intensity levels were at
level 7. Based on these validated levels of intensity, the panel believes
that this rating scale can be used as a guide in practice settings and
decision-making.

Primary Evaluation Phase

Focused History and Physical Examination

When fatigue is rated as moderate to severe, with a score 4 to 10, a
more focused history and physical examination should be conducted as
part of the primary evaluation phase as outlined in the algorithm. A
component of this evaluation is an assessment of the patient’s current
disease status, the type and length of treatment as well as its capacity
to induce fatigue, and the patient’s response to treatment. If possible, it
should be determined whether the fatigue is related to a recurrence of
malignancy for those patients assumed to be disease-free or related to
a progression of malignancy for those patients with underlying disease.
This is often an important factor causing patients with fatigue to seek
further evaluation. If the fatigue is determined not to be related to
disease recurrence, informing patients and family members will
substantially reduce their anxiety levels. In addition to cancer treatment,
clinicians should be aware of any other prescription or over-the-counter
medications and supplements the patient is taking.

A review of systems should be completed. This review may be helpful
in determining the various organ systems affected and in directing the
physical evaluation and diagnostic workup. Another component of the
focused history is an in-depth fatigue assessment that includes
evaluation of aspects of fatigue: onset, pattern, duration, changeover
time, associated or alleviating factors, and interference with function.
Other physical, emotional, and cognitive symptoms may be associated
with fatigue. The health care professional must evaluate fatigue’s effect
on normal functioning and its effect on the patient’s daily living or
enjoyable activities. Because fatigue is a subjective condition involving
a combination of symptoms and is experienced and reported differently
by each person, it is important that the in-depth assessment includes
the patient’s self-assessment of the causes of fatigue.

The panel also recognized the important role of social support
throughout the course of cancer treatment and survivorship (reviewed
by Given, Given, and Kozchik). Fatigue is a major cause of functional
dependence for cancer patients, especially among the elderly. Besides
assisting with daily living, caregivers provided multiple cancer-
specific support such as monitoring treatment side effects, aiding in
fatigue and pain management, and administering medicine, among
others. The availability of dependable caregivers impacts the
functional, emotional, as well as financial capacity of a cancer patient in
coping with the disease and can be a significant contributing factor for
fatigue.

Assessment of Concurrent Symptoms & Treatable Contributing Factors

As part of this focused evaluation, the panel identified factors that are
often causative elements in the fatigue experience and, therefore,
should be specifically assessed. These factors include pain, emotional
distress, sleep disturbance, anemia, nutrition, activity level, medication
side effects profile, alcohol/substance abuse, and comorbidities. In a
randomized trial of 152 patients with advanced cancer, protocol patient-tailored treatment of accompanying physical symptoms coordinated by a nurse had a higher impact on fatigue than standard oncologic care.44

Descriptive studies have shown that, in adults as well as in children, fatigue seldom occurs by itself and it more commonly clusters with sleep disturbance, emotional distress (eg, depression, anxiety), or pain.45-48 Assessment of pain along with emotional distress and institution of effective treatment are essential.

Fatigue and depression have been documented as concurrent symptoms in cancer patients. Hopwood and Stephens49 documented depression in 33% of 987 lung cancer patients and found that fatigue was an independent predictor of depression in this group. In 457 patients with Hodgkin’s disease, Loge and colleagues50 found that 26% of patients had fatigue for 6 months or longer (defined as fatigue “cases”) and that fatigue correlated moderately with depression (r = .41). Fatigue cases had higher levels of depression than non-cases.

Sleep disturbances are a neglected problem in oncology51 and may range from hypersomnia to insomnia.52,53 Sleep disturbances are prevalent in 30% to 75% of patients with cancer.54 Several studies have shown that fatigue in cancer patients in active treatment spend increased time resting and sleeping but that their pattern of sleep is often severely disrupted. When sleep disturbances are present, the patient should be assessed for depression because this is a common manifestation.55 Patients may benefit from evaluation and education to improve sleep quality. In addition, sleep apnea can develop as a consequence of cancer treatment in the settings of surgery affecting the upper airway, changes in body composition, and alterations in hormone status (ie, thyroid, estrogen, testosterone); therefore, obstructive sleep apnea should also be evaluated.

Studies have shown fatigue’s association with anemia in cancer patients and its amelioration with erythropoietin. Patients should undergo a nutritional assessment to evaluate weight gain and loss, caloric intake changes, impediments to nutritional intake, and fluid and electrolyte imbalances. Weight and weight changes should be carefully noted. The health care provider should also review and discuss changes in caloric intake with the patient. If there are substantial abnormalities, a consultation with a nutrition expert may be appropriate. Often fatigue symptoms can be improved by improving dietary intake, with appropriate caloric exchanges. Imbalances in sodium, potassium, calcium, and magnesium serum levels are often reversible and, with appropriate supplementation, may improve fatigue. Nutritional intake may be affected by nausea, vomiting, loss of appetite, food disinterest, mucositis, odynophagia, bowel obstruction, diarrhea, and constipation.

Patients with moderate-to-severe fatigue should be queried about their functional status, including changes in exercise or activity patterns and the influence of deconditioning. This assessment is important when formulating a treatment plan that may include exercise. Can patients accomplish normal daily activities? Can they participate in formal or informal exercise programs? What is the amount and frequency of exercise? Has the patient modified exercise or other activity patterns since the development of fatigue? Exercise has been beneficial in lowering fatigue levels in certain populations of cancer patients.56,57 However, before recommending an exercise program, the health care provider or exercise expert (eg, physiatrist, physical therapist) should assess the conditioning level of the patient. It is often difficult to convince fatigued patients that exercise will improve their symptoms. It may be best to begin with discussions and low levels of activities, which gradually increase over a period of time. This is especially important if the patient is significantly deconditioned.
Review of current medications (including over-the-counter, herbal, vitamins, and other supplements) is essential. In addition, recent medication changes should be noted. Medications and medication interactions may contribute to the worsening of fatigue. For example, certain cardiac medications (such as beta-blockers) may elicit bradycardia and subsequent fatigue. Combinations of different classes of medications (such as narcotics, antidepressants, antiemetics, and antihistamines) may contribute to excessive drowsiness and increasing fatigue. It may be appropriate to delete or adjust the dose of medications to treat fatigue. In some cases, altering either the dosage or dosing interval of a medication may subsequently improve the condition.

During the examination, health care providers should also be alert for signs of alcohol or substance abuse in the cancer patient. These detrimental habits can often lead to or aggravate other health problems such as sleep disturbance and contribute significantly to fatigue.

Non-cancer comorbidities may contribute substantially to symptoms of fatigue in the cancer patient. The status of comorbidities must be reviewed in conjunction with the present treatment management strategies. If the comorbidity is not optimally managed, it may be necessary to further evaluate and improve that management. For example, if a patient has underlying congestive heart failure secondary to anthracycline cardiomyopathy and is experiencing symptoms of dyspnea and angina, fatigue may often be improved by stabilizing the condition and decreasing the frequency of episodes of congestive heart failure. This may entail introduction of new medications, titration of current medications, or both. It may also involve an invasive interventional assessment of the patient’s cardiac status. Comorbidities that need review and assessment include cardiac, pulmonary, renal, gastrointestinal, hepatic, neurologic, and endocrine dysfunction (including hot flashes, hypothyroidism, hypogonadism or adrenal insufficiency), as well as infection. Canaris and colleagues noted the high incidence of thyroid dysfunction in normal individuals and in patients receiving thyroid medications; they suggested that more attention must be given to thyroid problems in both the general and cancer-patient populations. Development of hypothyroidism occurs after radiation therapy for Hodgkin’s disease and other non-Hodgkin’s lymphomas, head and neck cancers, and breast cancer, as well as after total body irradiation in bone marrow transplantation. Also, hypothyroidism has been noted in patients who have received interferon alfa-2b, aldesleukin (interleukin-2), L-asparaginase, and a multitude of combination chemotherapies. Hypogonadism is commonly seen in patients with advanced cancer. A recent cross-sectional pilot study by Strasser and colleagues explored whether hypogonadism contributes to fatigue in men with advanced cancer. The results of the study indicate that abnormally low levels of testosterone are associated with fatigue. However, additional research with larger samples is needed to clarify the incidence of hypogonadism and its association with specific malignancies and neurotoxic chemotherapy.

Patient Clinical Status

After the primary fatigue evaluation is completed, the patient’s clinical status (active cancer treatment, post-treatment with no active treatment except hormonal therapy, or end of life) should be determined, because it will influence CRF management and treatment strategies. However, some general treatment guidelines apply across all clinical categories.

If any of the treatable contributing factors discussed above is identified during the primary evaluation phase, it should be treated as an initial approach to fatigue management. NCCN Clinical Practice Guidelines are also available to guide the treatment of pain (see [NCCN Guidelines for Adult Cancer Pain](#)), distress (see [NCCN Guidelines for Distress](#)).
Management), and anemia (see NCCN Guidelines for Cancer- and Chemotherapy-Induced Anemia). Treatment of sleep disturbances, nutritional alterations, and physical deconditioning are discussed under “Nonpharmacologic Interventions” for patients on active treatment, post-treatment, or at end of life.

Interventions for Patients on Active Treatment

Education and Counseling of Patient and Family
Education about fatigue and its natural history should be offered to all cancer patients but is particularly essential for patients beginning potentially fatigue-inducing treatments (such as radiation, chemotherapy, or biotherapy), before the onset of fatigue. Patients should be informed that if fatigue does occur, it may be a consequence of the treatment and not necessarily an indication that the treatment is not working or that the disease is progressing. This reassurance is important as fear of progression is a main reason for under-reporting of fatigue. Daily self-monitoring of fatigue levels in a treatment log or diary can be helpful.

General Strategies for Management of Fatigue
In addition to education, the panel recommends counseling for patients about general strategies (energy conservation and distraction) useful in coping with fatigue. Energy conservation is defined as the deliberately planned management of one’s personal energy resources to prevent their depletion. It encompasses a common sense approach that helps patients to set realistic expectations, prioritize and pace activities, and delegate less essential activities. Patients should be counseled that it is permissible to postpone all nonessential activities if they are experiencing moderate-to-severe fatigue. One useful plan is to maintain a daily and weekly diary that allows the patient to ascertain peak energy periods. The fatigued patient can then plan activities accordingly within a structured routine. A multisite clinical trial of energy conservation in 296 patients receiving cancer treatment by Barsevick and colleagues reported significantly lower fatigue in those receiving the experimental intervention. Some participants in descriptive studies have suggested that activities designed to distract (eg, games, music, reading, socializing) are helpful in decreasing fatigue, although the mechanism is unknown. Although daytime naps are often helpful in replenishing energy, it is advisable to limit these to under an hour so as to avoid disturbing nighttime sleep. Patients may also use labor-saving techniques such as wearing a bath robe instead of drying off with a towel or devices such as a walker, grabbing tools, and a bedside commode.

An emphasis should be made on finding meaning in the current situation, with the goal to focus on meaningful interactions and to promote the dignity of the patient.

Nonpharmacologic Interventions
Of the specific nonpharmacologic interventions during active cancer treatment, physical activity (category 1), physically based therapies (category 1), and psychosocial interventions (category 1) have the strongest evidence base for treating fatigue; however, nutritional consultation and cognitive behavioral therapy for sleep have some supporting evidence.

Physical Activity
In cancer patients, the adverse effects of therapy results in decreased activity and physical performance. Although there are a number of factors that contribute to the decline in functionality, fatigue is one of the major contributors. Mustian and colleagues conducted a study in patients receiving systemic chemotherapy to determine the impact of fatigue on physical function as measured by the Activities of Daily Living (ADLs) Index. Seven hundred fifty-three patients were enrolled...
(64% female). Eighty-five point four percent and 79.3% of patients reported fatigue after the first and second cycles of chemotherapy, respectively. The mean severity of fatigue was 5.0 for the first cycle and 4.7 for the second cycle (scale 0–10, 10 = severe fatigue). CRF interfered with all ADLs in the majority of patients. Interference was moderate, and was noted to be higher in women, non-whites, and patients with metastatic disease.

A large number of small- to moderate-sized studies have been performed to both evaluate the feasibility of interventions to increase physical activity during and after therapy, and to explore the impact of increased activity upon CRF, QOL, treatment-related side effects, and other endpoints. A thorough review of the impact of physical activity on these varied outcomes is beyond the scope of this manuscript. However, many of these studies have specifically evaluated the effect of increased activity upon CRF, and several meta-analyses have been conducted over the past five years to provide a comprehensive evaluation of the impact of increased activity upon CRF.

Several analyses provide a clear picture of the current status of this area of investigation. The largest meta-analysis to date included 70 studies and 4,881 cancer patients during or following treatment. CRF was reduced by exercise by a mean effect of 0.32 (96% CI, 0.21–0.43) and 0.38 (95% CI, 0.21–0.54) during and after cancer therapy, respectively. A Cochrane analysis published in 2012 included 56 randomized studies (n=4,826), 36 of which were conducted among participants undergoing active cancer treatment. Exercise resulted in a decrease in fatigue from baseline to 12 weeks' follow-up (SMD -0.38; 95% CI, -0.57 to -0.18) or when comparing differences in follow-up scores at follow-up of 12 weeks (SMD -0.73; 95% CI, -1.14 to -0.31). Other smaller analyses confirmed a significant effect of exercise intervention on fatigue.

It is reasonable to encourage all patients to engage in a moderate level of physical activity during and after cancer treatment. Currently there is not sufficient evidence to recommend a specific amount of physical activity for cancer populations. The U.S. Surgeon General recommends 30 minutes of moderate activity most days of the week for all populations. Some observational and intervention studies have suggested that cancer patients who engage in at least 3 to 5 hours of moderate activity per week may experience better outcomes and have fewer side effects of therapy, including fatigue.

Some patients may require referrals to exercise specialists such as physical therapy, physical medicine or rehabilitation for assessment, and an exercise prescription. The American College of Sports Medicine has recently developed a certification program for cancer rehabilitation that is available for exercise professionals who specialize in care of cancer populations. They also convened a roundtable discussion and published specific guidelines for physical activity testing and prescription in cancer patients in the resulting report.

Specific issues that should trigger a referral for physical therapy:

- Patients with comorbidities (such as cardiovascular disease or chronic obstructive pulmonary disease [COPD])
- Recent major surgery
- Specific functional or anatomical deficits (such as decreased range of motion due to neck dissection for head and neck cancer)
- Substantial deconditioning

Exercise interventions must be used with caution in patients with any of the following:

- Bone metastases
Fatigue Table of Contents
Discussion

Cancer-Related Fatigue

- Thrombocytopenia (low platelets)
- Anemia (low red blood cells)
- Fever or active infection
- Limitations secondary to metastasis or other illnesses

The exercise program itself should be individualized based on the patient’s age, gender, type of cancer, and physical fitness level. Consider cancer-specific exercise programs if available. The program should begin at a low level of intensity and duration, progress slowly, and be modified as the patient’s condition changes.

Physically Based Therapies
Therapies performed on the patient by a therapist or a lay person include acupuncture and massage therapy. Positive effects of acupuncture on fatigue have been reported in small samples and need to be confirmed by conducting randomized controlled trials (RCTs). These small trials were conducted during active non-palliative radiation therapy and post-chemotherapy treatment; one RCT (n=230) and one retrospective review (n=1290) reported positive effects of massage therapy on fatigue during active therapy. For further guidance on physical activity, see the NCCN Guidelines for Survivorship.

Psychosocial Interventions
Patients should be counseled about coping and educated on how to deal with anxiety and depression, which are commonly associated with fatigue during cancer treatment. Although a strong correlation exists between emotional distress and fatigue, the precise relationship is not clearly understood.

Studies testing interventions to decrease fatigue can be grouped as Cognitive Behavioral Therapies (CBTs)/Behavioral Therapy (BT), Psycho-educational Therapies/Educational Therapies, and Supportive Expressive Therapies. These groups were titled after reviewing three recent meta-analyses of the effects of these interventions on CRF. Of note, the categories in which interventions have been grouped are different in each of the meta-analyses and have been compared to the work reported by the Oncology Nursing Society (ONS) Putting Evidence into Practice (PEP). These studies can be categorized based on their primary outcome parameter: fatigue or other. In many of these studies, fatigue was a secondary endpoint measured by a single item or a subscale of an instrument designed to measure emotional distress, QOL, or general symptom burden. Furthermore, in many of these studies, fatigue was not an eligibility requirement; in those studies that were directed specifically for fatigue, no severity cut-off score was used. Thus, patients enrolled in these studies may or may not have had significant levels of fatigue, thereby limiting the potential impact of the intervention.

Current knowledge regarding CRF includes the following proposed mechanisms: 5-HT3 neurotransmitter deregulation, vagal afferent activation, alteration in muscle and adenosine triphosphate (ATP) metabolism, HPA axis dysfunction, circadian rhythm dysfunction, and cytokine deregulation. Current psychosocial interventional studies may target one or more of these biologic mechanisms; however, most studies to date fail to identify the underlying targeted mechanism. The exception includes interventions aimed at increasing relaxation, and thereby diminishing stress and activation of the HPA axis. Because of the inherent difficulty of conducting mechanistically based interventions, the majority of studies to date have been designed to address educational and coping deficits in order to optimize the patient’s ability to deal with this often debilitating symptom.

In addition to the issues noted above, outcome parameters used by investigators are highly variable. All currently published studies use...
patient’s self-report measurement exclusively as the outcome measure. Most studies do not reflect the impact of fatigue on function, report fatigue-related behaviors, or utilize objective measures of functionality (example: the six-minute walk).

Several meta-analyses evaluated the impact of psychosocial interventions on CRF. Analyzing 41 studies on 3,620 cancer patients, Kangas and colleagues reported a weighted pooled mean effect of -0.31 for psychosocial interventions on fatigue. Goedendorp and colleagues reported that of 27 randomized studies included in their analysis, 7 significantly reduced fatigue. Of interest, 80% of fatigue-specific interventions were effective compared to 14% of non-specific strategies. Jacobsen and colleagues analyzed 30 RCTs and found a significant effect for psychological interventions but not for activity-based programs. A meta-analysis by Duijts and colleagues reported that, like exercise programs, behavioral techniques including cognitive therapy, relaxation techniques, counseling, social support, hypnosis, and biofeedback are beneficial in improving fatigue among breast cancer patients during and after treatment. Substantial data in literature provide high-level evidence during active treatment for CBT/BT and Psycho-educational Therapies/Educational Therapies. Supportive expressive therapies, including face or online support groups, counseling, and journal writing, may serve as an emotional outlet as well as an avenue to receive support and encouragement. There is less robust evidence for supportive expressive therapies during active treatment and therefore it was rated as a category 2A recommendation.

Nutrition Consultation
Many cancer patients have changes in nutritional status. Because cancer and treatment can interfere with dietary intake, nutrition consultation may be helpful in managing the nutritional deficiencies that result from anorexia, diarrhea, nausea, and vomiting. Adequate hydration and electrolyte balance are also essential in preventing and treating fatigue.

Sleep Therapy
Cancer patients report significant disturbances in sleep patterns that could cause or exacerbate fatigue. Both insomnia and hypersomnia are common, with disrupted sleep as a common denominator. Non-pharmacologic interventions to improve sleep quality have been organized into four general types of therapies that include cognitive-behavioral, complementary, psycho-education/information, and exercise therapies. These interventions are designed to optimize sleep quality and some have also been shown to decrease fatigue.

There are numerous types of CBT; the most frequently used include stimulus control, sleep restriction, and sleep hygiene. Stimulus control includes going to bed when sleepy, going to bed at approximately the same time each night, and maintaining a regular rising time each day. Stimulus control also includes getting out of bed after 20 minutes if unable to fall asleep, both when first going to bed and when awakening during the night. Sleep restriction includes avoiding long or late afternoon naps and limiting total time in bed. Sleep hygiene includes techniques to promote a good night’s sleep and optimal functioning the next day, such as avoiding caffeine after noon and establishing an environment that is conducive to sleep (e.g., dark, quiet, comfortable). These strategies were employed in a pilot study with women during adjuvant breast cancer chemotherapy. Sleep/wake patterns remained consistent with normal values except for increased number and length of nighttime awakenings. For children with cancer, a consistent bedtime and routine, an environment conducive, for sleeping, and the presence of security objects (such as blankets and toys) are effective measures.
A number of published studies support the conclusion that CBT interventions designed to optimize sleep quality in cancer patients may also improve fatigue. Two randomized clinical trials of patients in the survivorship phase after cancer treatment who reported chronic insomnia resulted in positive effects on both sleep and fatigue after 4 to 5 weekly BT sessions. Two smaller studies of patients with current complaints of insomnia in the survivorship phase reported improved sleep and fatigue. Two other studies found positive benefits of a behavioral intervention on sleep and fatigue that were not sustained over time. The American Academy of Sleep Medicine (AASM) has recommended three specific therapies for chronic insomnia in healthy individuals: relaxation training, cognitive behavior therapy, and stimulus control therapy. AASM has also published clinical guidelines for the management of chronic insomnia in adults.

CBT therapies are often combined with complimentary therapies, such as breathing control, progressive muscle relaxation, and guided imagery techniques, to relax the individual. Complementary therapies such as massage therapy, yoga, muscle relaxation, and stress reduction based on mindfulness have been evaluated in some studies; the data suggest that they may be effective in reducing fatigue in cancer patients. Cohen and Fried compared cognitive behavioral and relaxation and guided imagery interventions to a control group. They reported improved fatigue and sleep difficulties in both intervention groups, but were only significantly different in the relaxation and guided imagery group.

Pharmacologic Interventions

Though a wide variety of prescription pharmacologic options are available to improve sleep quality, there is little empirical evidence for the use of these agents in patients with cancer and their use may be associated with adverse side effect profiles. Clinicians need to be aware of a recent U.S. Food and Drug Administration (FDA) warning regarding potential risks of sedative-hypnotics drugs that include severe allergic reactions and complex sleep-related behaviors, including sleep-driving. A table summarizing the medications commonly used to promote sleep is provided at the National Cancer Institute PDQ website. Prescribing considerations with these classes of agents include increased likelihood of problems with daytime sleepiness, fatigue, withdrawal symptoms, dependency, rebound insomnia, problems with sleep maintenance, memory problems, anticholinergic symptoms, orthostasis, and the potential for drug-drug interactions involving cytochrome p450 isoenzyme system. Increased public and professional education regarding sleep, sleep disturbances, and daytime consequences of sleep loss are recommended.

There is some evidence for pharmacologic therapy as a fatigue treatment, although a significant placebo response has been observed in randomized trials. A recent meta-analysis of 10 studies concluded that the treatment of anemia during chemotherapy with erythropoietin resulted in a reduction of fatigue (see the NCCN Guidelines for Cancer- and Chemotherapy-Induced Anemia). Studies on a selective serotonin reuptake inhibitor paroxetine showed no influence by this antidepressant on fatigue in patients receiving chemotherapy. Antidepressants are not recommended to lower fatigue. See the relevant NCCN Guidelines for Supportive Care for details on the management of pain, emotional distress, and anemia. Treatment for nutritional deficit or imbalance and comorbidities may be optimized as indicated.

The psychostimulant methylphenidate has been evaluated for its effect on CRF with mixed results in patients undergoing cancer therapy. A pilot study found a benefit in fatigue scores in 12 patients with melanoma undergoing interferon compared to historical controls.
However, a randomized, placebo-controlled trial of d-threo-methylphenidate to prevent fatigue during radiotherapy for brain tumors did not demonstrate efficacy for the drug in preventing fatigue.133 Similarly, a randomized study on 57 women receiving adjuvant chemotherapy for breast cancer failed to show a difference between the active arm and placebo.134 Most recently, Moraska et al135 reported results of a phase III, double-blinded trial. One hundred forty-eight patients, most of whom were receiving chemotherapy, were randomized to methylphenidate (54 mg/d) or placebo for four weeks. No difference in fatigue score was observed between the groups; however, a subset analysis found a benefit with the psychostimulant in patients with severe fatigue and/or advanced disease ($P = 0.02$). Analyzing five randomized trials of cancer patients on or off anti-neoplastic treatment, Minton and colleagues136 attributed a significant benefit to psychostimulants in alleviating fatigue compared to placebo ($Z = 2.83; P = 0.005$). Methylphenidate has side effects including headache and nausea that have been reported as minor.

The wakefulness-promoting non-amphetamine psychostimulant, modafinil, has been approved for use in narcolepsy. Data on CRF from a large RCT are now available. Jean-Pierre and colleagues137 randomized 867 patients undergoing chemotherapy to 200 mg of modafinil per day or placebo. Improvement in fatigue was observed in patients with severe fatigue, but not in those with mild or moderate fatigue. Toxicity was similar in the two arms.

On reviewing the current literature, the NCCN Panel included consideration of psychostimulants as a recommendation for patients undergoing active cancer treatment when other causes of fatigue have been excluded.

Interventions for Patients Post-Treatment

More than 11 million U.S. residents now living have a history of cancer. Of the approximately 1,479,350 persons in the United States who will be diagnosed with cancer in 2009, 66% are expected to survive at least 5 years.138 These improvements in survival have led to efforts to enhance symptom management, QOL, and overall functioning of individuals post-treatment. As previously mentioned, fatigue is an acute effect of cancer or treatment, but it can also be a long-term or late effect.139 Patients may continue to report unusual fatigue for months or years after treatment cessation.6,7,9-13 Researchers have suggested that such fatigue may be due to persistent activation of the immune system6,140 or to other factors, such as late effects of treatment on major organ systems.140 However, there are few longitudinal studies examining fatigue in long-term disease-free survivors.

Incidence and prevalence rates for fatigue in this population range from 17% to 21% when strict ICD-10 diagnostic criteria are applied,141 and range from 33% to 53% when other criteria (such as a score of 4 or more on the 0–10 fatigue scale) are used.142 In contrast to these findings, Canadian and U.S. ovarian cancer survivors ($n = 100$), who were diagnosed a mean of 7.2 years before the survey, reported equivalent energy levels when compared with the general population.143 As a consequence, what constitutes valid incidence and prevalence rates in disease-free patients requires more study. Variation of prevalence rates in literature likely reflects a lack of consistency in applying the diagnostic criteria.144

In general, most research reports to date are limited by their cross-sectional designs,37,139,141,145,146 lack of comparison groups,37 heterogeneous samples,141 use of differing fatigue scales, small sample sizes,140 varying baseline survivorship definitions (ie, time since
diagnosis vs. time since treatment cessation), and different mean survivorship durations. These design issues make it difficult to reach conclusions about the effect of fatigue’s prevalence, incidence, duration, associated risk factors, and QOL. Additionally, most fatigue studies of post-treatment disease-free patients have been conducted in Caucasian, English-speaking breast cancer patients, peripheral stem cell or bone marrow transplant patients with few exceptions.

The cause of fatigue in post-treatment disease-free patients is unclear and probably multifactorial. One cross-sectional comparative study investigated fatigue and physiologic biomarkers of immune system activation in 20 breast cancer survivors who were fatigued (a mean of 5 years since diagnosis) and in 20 non-fatigued survivors. Fatigued survivors had significantly higher serum markers (interleukin-1 receptor antagonist [IL-1ra], soluble tumor necrosis factor type II [sTNF-RII], and neopterin) and lower cortisol levels when compared with non-fatigued survivors. Significantly higher numbers of circulating T lymphocytes that also correlated with elevated serum IL-1ra levels suggests that persistent fatigue in survivors may be caused by a chronic inflammatory process involving the T-cell compartment.

Other risk factors associated with fatigue in post-treatment disease-free patients include pretreatment fatigue, anxiety and depression levels, physical level activities, coping methods and cancer-related stressors, comorbidities, type of malignancy, prior treatment patterns, and treatment late effects. For example, in one Norwegian study that investigated fatigue in Hodgkin’s disease survivors in remission for more than 5 years, higher fatigue levels were documented in those who had pulmonary dysfunction. In these survivors, the prevalence of chronic fatigue was 2 to 3 times higher than in survivors who did not have such impairment. No significant correlations in this study were found between fatigue and cardiac sequelae as measured by echocardiography, exercise testing, and chest radiography. Prior treatment patterns may affect the survivor’s fatigue. Women who had received radiation therapy had the lowest fatigue scores. Two studies testing the effects of physical activity interventions on fatigue in breast cancer survivors found that individualized, prescriptive exercise reduced fatigue. However, researchers emphasize it is critical that exercise be individualized to the survivor’s abilities to prevent exacerbation of cancer treatment toxicities.

Education and Counseling of Patient and Family

Patients who are completing treatment and their families should be educated about the pattern and level of fatigue that can be expected during this period. Although a significant subset of patients continue to experience distressing levels of fatigue that interfere with function, most patients experience a gradual decrease in fatigue and return of energy to normal levels. Regular monitoring of fatigue levels is helpful to document the decrease of fatigue that normally occurs after treatment. Health care providers should continue to screen regularly for fatigue during follow-up visits. As in the case of active treatment, patients can benefit from general fatigue management strategies including energy conservation and distraction. A focus on finding meaning in life should be an ongoing effort.

Nonpharmacologic Interventions

Specific interventions recommended to manage fatigue during active cancer treatment are also recommended for disease-free patients post-treatment, except physically based therapies have less support.

Physical Activity

Physical activity is a category 1 recommendation. Improving strength, energy, and fitness through regular exercise, even a moderate walking
exercise program has been shown to facilitate the transition from patient to survivor, decrease anxiety and depression, improve body image, and increase tolerance for physical activity. However, if the patient is significantly deconditioned, weak, or has relevant late effects of treatment (such as cardiopulmonary limitations), referral to a physiatrist or a supervised rehabilitation program may be indicated. Exercise should be recommended with caution in patients who have fever or remain anemic, neutropenic, or thrombocytopenic after treatment. Of the nonpharmacologic approaches for managing CRF, exercise has the best evidence to support its effectiveness. A meta-analysis on 44 studies including 3,254 cancer survivors concluded that exercise reduced fatigue especially in programs that involved moderate-intensity, resistance exercise among older cancer survivors. For further guidance on physical activity, see the NCCN Guidelines for Survivorship.

Psychosocial interventions
Psychosocial interventions, including CBT/BT, mindfulness-based stress reduction, psycho-educational therapies/educational therapies, and supportive expressive therapies are category 1 recommendations. Additional details on these interventions are provided in the preceding pages in the section on psychosocial interventions for patients on active treatment.

Additional Nonpharmacologic Approaches
Nutritional consultation and CBT for sleep (category 1) may be helpful for fatigue management in patients post-treatment.

Pharmacologic Interventions
If indicated, anemia, pain, or emotional distress should be treated according to the NCCN Guidelines for Supportive Care. Treatment may also be individually optimized as necessary for sleep dysfunction, nutritional deficit or imbalance, and comorbidities.

Some evidence exists to support the use of psychostimulants following cancer therapy. A 54% response rate to methylphenidate has been reported in a phase II trial of 37 breast cancer patients in remission. A randomized trial in 154 patients post-chemotherapy also found an improvement in fatigue symptoms in the active arm. Modafinil also shows some promise for management of post-treatment fatigue in small trials. Morrow et al conducted an open label study of modafinil for 51 breast cancer survivors with persistent fatigue. The dose was 200 mg per day for one month. Eighty-six percent reported reduction in fatigue. In a pilot study of 30 adults with previously treated brain tumors, modafinil was associated with improvement in fatigue by eight weeks. Currently, the panel agrees that methylphenidate or modafinil may be considered after ruling out other causes of fatigue.

Interventions for Patients at the End of Life
Although the assessment and management of fatigue at the end of life parallels the general principles of this guideline, there are a few issues that are specific to this population. Factors that have a greater likelihood of association with fatigue at the end of life include anemia, medication adverse effects and polypharmacy, cognitive impairment, adverse effects of recent treatment, and malnutrition. Evaluating and correcting these contributing factors could reduce fatigue severity.

It is likely that fatigue will increase substantially as the disease progresses; however, patterns of fatigue are variable. For some adults, fatigue may be characterized as constant and unrelenting; for others, it is unpredictable and may come on suddenly. At the end of life, most research has demonstrated that cancer patients experience fatigue in the context of multiple symptoms. In a study of 278 Swedish
adults admitted to a palliative care unit, 100% reported fatigue; other symptoms included pain (83%), dyspnea (77%), and appetite loss (75%). In a large sample of adults (N = 1000) receiving palliative care, Walsh and colleagues noted that individuals with advanced cancer had multiple symptoms. Pain was the most prevalent (84% of patients), followed by fatigue (69%), weakness (66%), and lack of energy (61%). Walsh and Rybicki cluster-analyzed 25 symptoms in 1000 consecutive admissions to a palliative care program and found seven symptom clusters. The fatigue cluster included easy fatigue, weakness, anorexia, lack of energy, dry mouth, early satiety, weight loss, and taste changes. There is also the possibility, suggested by Given and colleagues, that pain and fatigue together could have a synergistic effect that worsens the overall symptom experience in elderly cancer patients. Children with advanced cancer also experienced multiple symptoms at the end of life, most commonly fatigue, pain, and dyspnea.

Education and Counseling of Patient and Family

Individuals with advanced cancer and their caregivers need information about the management of symptoms, including fatigue. This includes information about the causes, patterns, and consequences of fatigue during treatment for advanced cancer and at the end of life.

Several major consequences of fatigue have been described, including its effect on functional status, emotional distress, and suffering. As fatigue escalates, it is likely to interfere increasingly with usual activities. Families need to be apprised of this problem so they can begin planning for it. In addition, fatigue is likely to have increasing effect on emotional well-being. According to parents who cared for a child at the end of life, more than 90% of the children experienced fatigue and almost 60% experienced a great deal of suffering from it. In a case study of 15 adults with advanced disease, Krishnasamy found that fatigue resulted in substantial regret, sadness, and sense of loss due to the deterioration of one's health. Mystakidou and colleagues reported that patient desire for a hastened death was predicted by feeling sad, lack of appetite, pain, and fatigue.

Given the high prevalence of fatigue and other symptoms at the end of life, symptom management needs to be a major focus of care. Active commitment by the health care team to palliative care is critical when aggressive cancer therapy is given to those with a low likelihood of long-term survival. Although there is no effective therapy for some causes of fatigue and other symptoms, treatment of those more amenable to therapy could help to relieve suffering.

General Strategies for Management of Fatigue

Energy conservation is a self-care strategy for individuals with advanced cancer and their caregivers. The goal of energy conservation is to maintain a balance between rest and activity during times of high fatigue so that valued activities can be maintained. Energy conservation strategies include setting priorities and realistic expectations, delegating activities of lesser importance, eliminating non-essential activities, pacing oneself, taking extra rest periods, and planning high-energy activities at times of peak energy. It may also include the use of assistive devices and labor-saving techniques. Use of distraction may also be helpful. Patients receiving palliative care should be allowed to take daytime naps as long as they do not disturb nighttime sleep. In a situation of escalating fatigue at the end of life, family members may wish to designate individuals to assume activities relinquished by the individual with cancer.

Nonpharmacologic Interventions

Although there is no category 1 evidence for nonpharmacologic interventions at the end of life, clinicians are encouraged to consider...
matching the patient with physical activity or psychosocial intervention as indicated. Psychosocial intervention at this stage may focus on meaning and dignity, as well as gaining acceptance of the limitations imposed by fatigue. It may include a re-emphasis on meaningful family interactions that do not require high-level physical activity. Sustaining a sense of meaning has been demonstrated to allow cancer patients to endorse a high QOL despite significant symptoms. Recent studies suggest that interventions aimed at sustaining or enhancing meaning and/or dignity can significantly reduce distress related to symptoms and improve overall QOL.

Fatigue may increase at end of life and some individuals may choose to be active despite failing health. There is some evidence that exercise is beneficial to individuals with incurable cancer and short life expectancy. A group exercise program was pilot-tested in 63 Norwegian palliative care outpatients. The program consisted of two 50-minute sessions twice a week for six weeks. A combination of strength building, standing balance, and aerobic exercise was used. The exercise participants had less physical fatigue and increased walking distance. There were no adverse effects of exercise although 46% of the 63 participants did not complete the program.

A small pilot study was conducted to evaluate an exercise program for nine individuals with advanced cancer enrolled in a home hospice program. A physical therapist guided participants in the selection of several activities (such as walking, performing arm exercises with resistance, marching in place, and dancing). These were performed at different times throughout the day on a schedule devised jointly by the therapist and participant. All participants were able to increase their activity level over a 2-week period without increased fatigue. There was also a trend toward increased QOL and decreased anxiety. Although more research is needed, enhanced activity shows promise as a fatigue management strategy at the end of life. Psychosocial interventions, sleep therapy, family interaction, and nutritional therapy are also helpful to this population.

A 12-week exercise program tested on 82 men with locally advanced or metastatic prostate cancer was compared to a wait-list control group (N = 73). The men in the exercise group reported less interference of fatigue with daily activities and better QOL. They also demonstrated better upper and lower body muscle fitness. Body composition was not affected.

Based on a systematic review of 20 exercise studies relevant to fatigue and muscle wasting in multiple myeloma, Strong summarized weight-bearing precautions for bone metastases as well as exercise guidelines for adults with solid tumors and hematologic cancers; older cancer survivors; and individuals with CRF. They also recommended an exercise protocol for multiple myeloma that incorporated aerobic, resistance, and flexibility exercises.

Pharmacologic Interventions

There continues to be interest in using psychostimulant drugs for cancer patients at the end of life, although studies have had mixed results. Methylphenidate has been shown to yield improvement in fatigue in advanced cancer patients in two pilot studies. However, two randomized trials reported an improvement in fatigue in both the methylphenidate and placebo arms. Another psychostimulant, dexamphetamine (10 mg twice daily for 8 days), was evaluated for fatigue in patients with advanced cancer. The results of a randomized controlled clinical trial showed tolerance of the drug and short-term improvement in fatigue at the second day, but no long-term benefit by the end of the 8-day study. A small case report of modafinil showed improvements in daytime wakefulness and normalization of the
sleep-wake cycle in 2 adult patients under palliative care. Overall, methylphenidate or modafinil may be considered with caution for selected terminal patients.

There is evidence in literature that supported the effectiveness of corticosteroids (prednisone and its derivative, and dexamethasone) in providing short-term relief for fatigue and improving QOL. A randomized study in patients with advanced cancer demonstrated significant improvement in fatigue in patients receiving dexamethasone for 14 days compared to those receiving placebo. Given the toxicity associated with long-term use, consideration of steroids is restricted to the terminally ill, if the patient has fatigue and concomitant anorexia, and/or if the patient has pain related to brain or bone metastases. In addition, there has been interest in the progestational agent megestrol acetate to improve fatigue. A systematic review paper demonstrated the safety and efficacy of megestrol acetate in treating cachexia for cancer patients. However, a systematic review and meta-analysis of four studies revealed no benefit of progestational steroids compared with placebo for treatment of CRF ($Z = 0.78; P = 0.44$).

Again, treatment for sleep dysfunction, nutritional deficit, or comorbidities may be optimized to the specific needs of the patient and family along the illness trajectory, and clinicians are advised to refer to the appropriate NCCN Guidelines for Supportive Care for management of pain, distress, and anemia for end-of-life patients. The NCCN Panel would like to emphasize that eating and nutrition should be tailored to the terminal patient’s comfort and should not be forced on the patient as nutritional decline is to be expected at the end of life.

Re-Evaluation Phase

Because fatigue may arise at many points in the course of a patient’s disease and treatment, ongoing re-evaluation of the patient’s status (with appropriate modifications and institution of new treatments) is an integral part of effective, overall fatigue management.

Summary

The NCCN Guidelines for Cancer-Related Fatigue propose a treatment algorithm in which patients are evaluated regularly for fatigue using a brief screening instrument and are treated as indicated by their fatigue level.

Management of fatigue begins with primary oncology team members who perform the initial screening and either provide basic education and counseling or expand the initial screening to a more focused evaluation for moderate or higher levels of fatigue. At this point, the patient undergoes an assessment for current disease and treatment status, a review of body systems, and an in-depth fatigue evaluation. In addition, the patient is assessed for the presence of treatable factors known to contribute to fatigue. If any of these conditions are present, they should be treated according to practice guidelines, with referral to other care professionals as appropriate, and the patient’s fatigue should be re-evaluated regularly. If none of the factors are present or if the fatigue is unresolved, selection of appropriate fatigue management and treatment strategies is done within the context of the patient’s clinical status: (i.e., receiving active cancer treatment, post-treatment, or at the end of life). Management of fatigue is cause-specific when conditions known to cause fatigue can be identified and treated. When specific causes of fatigue cannot be identified and corrected, nonpharmacologic and pharmacologic treatment of the fatigue should still be done.

Nonpharmacologic interventions may include a moderate exercise program to improve functional capacity and activity tolerance, psychosocial programs to manage stress and increase support, energy conservation to maintain energy, and nutritional and sleep interventions.
for patients with disturbances in eating or sleeping. Pharmacologic therapy may include drugs, such as antidepressants for depression or erythropoietin for anemia. A few clinical reports of the use of psychostimulants suggest the need for further research on these agents as potential treatment modalities in managing fatigue.

Effective management of CRF involves an informed and supportive oncology care team that assesses patients' fatigue levels regularly, counsels and educates patients regarding strategies for coping with fatigue, and uses institutional experts for referral of patients with unresolved fatigue. The oncology care team must recognize the many patient-, provider-, and system-related behaviors that can impede effective fatigue management. Reducing barriers by use of available resources and evidence-based guidelines increases benefits to patients experiencing fatigue.
Appendix

Fatigue Measurement

A resource to facilitate selection of instruments to measure fatigue

(This resource provides a detailed description of six scales frequently used in cancer patients to measure fatigue.)

(Includes factors to consider in selecting a fatigue measure.)

(Study evaluates psychometric properties of several commonly used fatigue measures.)

(Gives citation links to nine commonly used scales to measure fatigue.)

(Provides two detailed tables summarizing scale descriptions and psychometric properties for 13 scales.)

(Provides psychometric properties for a shortened version of a commonly used fatigue measure)

(This resource provides information about clinically meaningful cut-scores for fatigue)

(Qualitative review of commonly used fatigue measures.)
References

NCCN Guidelines Version 1.2014
Cancer-Related Fatigue

79. Sood A, Barton DL, Bauer BA, Loprinzi CL. A critical review of complementary therapies for cancer-related fatigue. Integr Cancer Ther

94. Montgomery GH, Kangas M, David D, et al. Fatigue during breast cancer radiotherapy: an initial randomized study of cognitive-behavioral...

123. Carlson LE, Speca M, Patel KD, Goodey E. Mindfulness-based stress reduction in relation to quality of life, mood, symptoms of stress and levels of cortisol, dehydroepiandrosterone sulfate (DHEAS) and melatonin in breast and prostate cancer outpatients.

166. Soares A, Biasoli I, Scheliga A, et al. Association of social network and social support with health-related quality of life and fatigue in long-

NCCN® appreciates that supporting companies recognize NCCN's need for autonomy in the development of the content of NCCN resources. All NCCN content is produced completely independently. NCCN Guidelines are not intended to promote any specific therapeutic modality.