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Abstract

Implicit neural representations (INRs) have significantly ad-
vanced the field of arbitrary-scale super-resolution (ASSR)
of images. Most existing INR-based ASSR networks first ex-
tract features from the given low-resolution image using an
encoder, and then render the super-resolved result via a multi-
layer perceptron decoder. Although these approaches have
shown promising results, their performance is constrained
by the limited representation ability of discrete latent codes
in the encoded features. In this paper, we propose a novel
ASSR method named GaussianSR that overcomes this lim-
itation through 2D Gaussian Splatting (2DGS). Unlike tra-
ditional methods that treat pixels as discrete points, Gaus-
sianSR represents each pixel as a continuous Gaussian field.
The encoded features are simultaneously refined and up-
sampled by rendering the mutually stacked Gaussian fields.
As a result, long-range dependencies are established to en-
hance representation ability. In addition, a classifier is de-
veloped to dynamically assign Gaussian kernels to all pix-
els to further improve flexibility. All components of Gaus-
sianSR (i.e., encoder, classifier, Gaussian kernels, and de-
coder) are jointly learned end-to-end. Experiments demon-
strate that GaussianSR achieves superior ASSR performance
with fewer parameters than existing methods while enjoying
interpretable and content-aware feature aggregations.

Introduction

The vision world is continuous, presenting scenes and ob-
jects in their natural, uninterrupted forms. However, com-
puter vision tasks predominantly employ pixel-based dis-
crete representations for image processing, which inherently
constrains the ability capture the continuous nature with
high fidelity across different resolutions. The emergence of
implicit neural representations (INR) has revolutionized this
challenge by treating images as continuous functions. Pi-
oneered by LIIF (Chen, Liu, and Wang 2021), INR-based
methods leverage Multi-Layer Perceptrons (MLPs) to model
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the RGB values of high-resolution (HR) images as continu-
ous functions of low-resolution (LR) features and pixel coor-
dinates. This continuous representation enables LIIF to per-
form super-resolution at arbitrary scales without the need
for creating and training separate models for each scaling
factor. Building upon LIIF, numerous variants and exten-
sions have subsequently emerged (Lee and Jin 2022; Xu,
Wang, and Shi 2022; Yang et al. 2021; Cao et al. 2023),
further advancing the capabilities of INR-based Arbitrary-
Scale Super-Resolution (ASSR).

Although INR-based ASSR methods have demonstrated
their effectiveness, several intrinsic limitations remain. La-
tent codes are stored individually, which necessitates the use
of Multi-layer Perceptrons (MLPs) to interpolate these dis-
crete features into a continuous output. This process may
not fully preserve key physical properties of the scene, such
as lighting and texture consistency, reducing the overall in-
terpretability and physical fidelity of the generated images.
Moreover, as depicted in Figure 1(a), when query location
24 moves in 2D domain, the selection of z; can abruptly
switch from one to another if z, crosses the dashed lines, po-
tentially leading to checkerboard artifacts in the output im-
age. To counteract this, a strategy involving a weighted com-
bination of nearby latent codes is employed, which, while
effective, increases the computational load and may become
a bottleneck for real-time applications.

How about continuously storing latent codes? After
discussing the limitations of existing INR-based methods
in handling 2D image super-resolution (SR) with continu-
ous integrity, we explore the potential application of con-
cepts derived from 3D reconstruction technologies to ad-
dress these issues. Inspired by the recent advancements in
3D Gaussian Splatting (3DGS) for detailed scene rendering
and object reconstruction (Kerbl et al. 2023; Keetha et al.
2024; Yan et al. 2024; Matsuki et al. 2024), we propose
a method that adapts this technology to more efficiently
handle continuous data representation. The key concept of
3DGS involves representing objects as 3D Gaussian fields,
allowing for the construction of continuous structures with
significantly reduced parameter requirements. By applying
this method, overlapped Gaussian spheres can form vari-
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Figure 1: Comparison of Feature Storage between INR-based ASSR and our GaussianSR. INR methods treat pixels as
discrete points. Instead, our GaussianSR method models each pixel as a continuous Gaussian field. By representing pixels
as continuous fields instead of discrete points, GaussianSR can explicitly represent the field values at any position (e.g ).
GaussianSR achieves arbitrary-scale upsampling in a more elegant and natural way.

ous detailed shapes, offering a potential pathway to achieve
higher fidelity in 2D image SR while maintaining computa-
tional efficiency.

In this paper, we introduce a paradigm shift for ASSR by
proposing the GaussianSR pipeline, which utilizes 2D Gaus-
sian Splatting (2DGS) to overcome the inherent discontinu-
ity of pixel-based INR methods. GaussianSR is built upon
the insight that pixel values intrinsically exhibit intensity
variations which can be more accurately captured through
a continuous Gaussian representation. As illustrated in Fig-
ure 1(b), each pixel under our methodology is modeled as a
self-adaptive continuous field instead of a single value. This
continuous representation naturally and explicitly yields the
field value at any query position x4, avoiding the informa-
tion loss associated with discrete representations.

Specifically, our method enables the dynamic adaptation
of kernels to match varied input qualities effectively. We
train a classifier that assigns a Gaussian kernel to each in-
put pixel. Rather than applying a global kernel or a fixed
set of kernels, the classifier can tailor the kernel for each
pixel based on its specific characteristics, resulting in a
more adaptive and context-aware processing of the input
data. Moreover, our technique overcomes the limitations
of fixed receptive fields inherent in traditional INR-based
ASSR methods by employing flexible and adaptable Gaus-
sian kernels, which can be stacked together. This flexibil-
ity not only enables the model to capture features across
multiple scales but also bolsters its capacity for represent-
ing complex, enhanced features, resulting in superior per-
formance in SR tasks. Our efforts have successfully built a
bridge between Gaussian representations and image restora-
tion, marking a pioneering step in the field of ASSR. In sum-
mary, the contribution of this paper can be summarized in
three parts:

* We pioneer building a novel paradigm for ASSR through
the 2D Gaussian Splatting representation, namely Gaus-
sianSR. Our approach builds a bridge between discrete
and continuous feature representation by turning pixel
point into Gaussian field.

* We train a classifier that adaptively assigns the appro-
priate 2D Gaussian kernel to each pixel, which facili-
tates the adaptive matching of diverse input character-
istics with suitable Gaussian kernels, effectively accom-
modating a wide range of input variations.

» Extensive experiments demonstrate that seamlessly tran-
sitioning existing INR-based ASSR to our GaussianSR
framework can achieve better performance with reduced
parameter, underscoring the efficacy and great capability
of our proposed approach.

Related Work
Implicit Neural Representation

Implicit Neural Representations (INRs) elegantly model sig-
nals across a continuous domain and have gained promi-
nence in numerous fields, including 3D reconstruction (Park
et al. 2019; Chen and Zhang 2019; Saito et al. 2019), scene
rendering (Park et al. 2021a; Sitzmann, Zollhofer, and Wet-
zstein 2019), robotics (Chen et al. 2021a; Li et al. 2021),
and image and video compression (Chen et al. 2021b; Zhang
et al. 2022). Notably, NeRF (Mildenhall et al. 2020) innova-
tively represents complex 3D scenes with continuous neu-
ral implicit functions and has enabled novel view synthe-
sis, although it faces challenges with dynamic scenes due to
its static nature and lacks explicit geometric representations.
Attempting to address dynamic content, Deformable Neural
Radiance Fields (Park et al. 2021a) have introduced a warp-
ing mechanism to the static NeRF, and Neural Sparse Voxel
Fields (Liu et al. 2020) have coupled implicit functions with
sparse voxel grids to enhance efficiency and facilitate geo-
metric interpretability. Despite the impressive outcomes of
these methods, their discrete storage of each latent code or
feature often misses the opportunity to encapsulate the in-
tricacies or characteristics inherent to the signals in ques-
tion. PixeINeRF (Yu et al. 2021) endeavors to overcome this
by tying pixel-level features to the implicit representation,
while HyperNeRF (Park et al. 2021b) utilizes hypernetworks
to augment the neural encoder’s capabilities, potentially al-
lowing for a more nuanced capture of intrinsic properties.
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Figure 2: The main pipeline of GaussianSR. GaussianSR begins with an encoder that extracts features from the input image,
followed by Selective Gaussian Splatting which assigns a learnable Gaussian kernel to each pixel, converting discrete feature
points into Gaussian fields. Features at arbitrary query point x, in the plane are computed using the overlapping Gaussian
functions that modulate their influence based on the spatial location. Finally, these continuous-domain features are rendered into
a high-resolution space and refined through a decoder to reconstruct the desired RGB output at the specified query coordinates.

Arbitrary-Scale Super-Resolution

Traditional single image super-resolution (SISR) tech-
niques, such as interpolation, have been outperformed by
deep learning-based methods, due to their ability to learn
hierarchical features and map LR to HR images. Various SR
architectures have been proposed, including sub-pixel con-
volutional layers, residual blocks, dense connections, diffu-
sion process, and state space models, etc.(Shi et al. 2016;
Lim et al. 2017; Zhang et al. 2018; Chen et al. 2024; Li
et al. 2024; Liu et al. 2024; Chen and Zhang 2024) How-
ever, these methods lack flexibility as they are designed for
fixed integer-scale upsampling, limiting their applicability.

Arbitrary-scale super-resolution (ASSR) techniques have
gained prominence for their adaptability across various scal-
ing factors. MetaSR (Hu et al. 2019) pioneered CNN-based
ASSR, while LIIF (Chen, Liu, and Wang 2021) introduced
an innovative framework leveraging implicit neural repre-
sentations to treat images as continuous functions. Subse-
quent studies, such as LTE (Lee and Jin 2022), SADN (Wu,
Ni, and Zhang 2023), and A-LIIF (Li et al. 2022), have
aimed to address limitations like spectral bias, multi-scale
feature integration, and artifact mitigation. However, these
methods treat all features discretely without accounting for
inherent variations, lack adaptive receptive fields to natu-
rally and explicitly handle diverse-scale inputs, and rely on
generic kernel weights independent of individual samples
during inference.

Model Architecture
Preliminary: 3D Gaussian Splatting

3D Gaussian splatting (3DGS) (Kerbl et al. 2023) represents
a paradigmatic shift from the prevalent neural radiance fields
(NeRF) (Mildenhall et al. 2020) methodology for scene rep-
resentation and rendering. Grounded in a fundamentally dis-

tinct approach, 3DGS circumvents the computational com-
plexities and controllability limitations inherent to NeRF
while retaining the capability to synthesize photorealistic
novel views from sparse input data. The forward process of
3DGS can be summarized as: e 3D Gaussian Represen-
tation. The scene is represented using a collection of 3D
Gaussians, each characterized by learnable properties such
as position, opacity, covariance matrix, and color. This ex-
plicit representation allows efficient rendering through par-
allelized workflows. e Splatting and Tiling. The 3D Gaus-
sians are first projected onto the 2D image plane through
a splatting process. The image is then divided into non-
overlapping patches or tiles” to facilitate parallel computa-
tion. e Sorted Gaussian Rendering. The projected Gaus-
sians are sorted by depth within each tile, and the final
pixel color is computed by alpha compositing, leveraging
the sorted order. The impact of a 3D Gaussian ¢ on an arbi-
trary 3D point p in 3D is defined as follows:

filp) = olos) exp(= 5 (p = )2 (0 = ) (1)

where p represents an arbitrary point in a 3D Cartesian co-
ordinate system. The 3D Gaussian i is parametrized by (1)
mean y;, (2) covariance X, (3) opacity o(«; ), (4) color pa-
rameters ¢;, either 3 values for (R, G, B) or spherical har-
monics coefficients. The image formation model of Gaus-
sian splatting can be formulated as:

Csnasp) = el [[( - £2P0) @
iEN j=1

where f2P is a projection of f;(p) into 2D, i.e., onto an im-
age plane of the camera that is being rendered.
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Figure 3: Training and Inference Process of GaussianSR. GaussianSR employs the Selective Gaussian Splatting (SGS)
module, which adaptively assigns Gaussian kernels to pixels based on their distinctive features. During training, SGS leverages
the Gumbel Softmax to generate soft labels, enabling gradient backpropagation and parameter optimization for both logits
and the Gaussian bank (which stores standard deviations and opacities). In the inference phase, SGS switches to hard labels,
selecting the most likely Gaussian kernel for each pixel based on the optimized parameters.

2D Gaussian Splatting

Although 3DGS (Kerbl et al. 2023) has shown remarkable
performance in various 3D tasks, its inherent 3D formula-
tion may not be optimally suited for certain 2D tasks such as
image restoration. Motivated by the need for continuous rep-
resentation, we propose a 2D adaptation of Gaussian splat-
ting, termed 2D Gaussian Splatting (2DGS). Our 2DGS sim-
plifies the approach compared to 3DGS by eliminating op-
erations and parameters specific to 3D scene rendering, such
as project transformations and spherical harmonics,

The process of 2DGS consists of two main steps: ® Grid
Transformation. Initially, we create an affine-transformed
grid that takes into account the standard deviations of all
Gaussian kernels. This grid is tailored to match the high
resolution (HR) dimensions of the target output, preparing
the scene for subsequent feature mapping. e Feature Value
Rendering. Following the grid setup, the feature values un-
dergo alpha blending, and then these blended values are pro-
jected onto the transformed grid for rendering. This step en-
sures that the upsampled image preserves natural continuity
and visual integrity.

In our framework, the image representation unit is repre-
sented as a 2D Gaussian defined by its position z; € R? and
the covariance matrix X; = ([S4, pi, [pi, Zyi]) € R**2
To prevent ¥, 3, from being negative, we apply the sig-
moid function for activation. The Gaussian field is repre-
sented as:

1

[ i;zi:
fi(plpi, i) N

where p is an arbitrary coordinate in R? space. In situations
where multiple Gaussian fields overlap, we use alpha blend-
ing to combine their feature values v; € R*, modulated by
corresponding opacity §; € R:
ci=0(§) v 4)
Based on the relative distance between the query coor-
dinate p and the center of each Gaussian field, we can de-
termine the transmittance value f;(p|u;, X;), which is then
used to calculate a weighted sum with ¢;, allowing us to ren-
der the value at p.

—3(p—pa) "= (p—pa) 3)

Arbitrary-Scale Super-Resolution Pipeline

The shift from a discrete feature storage methodology to a
continuous feature field, characterized by a Gaussian dis-
tribution, represents a significant advancement in the field
of image restoration. This transformation enables any point
within the feature field to be explicitly determined accord-
ing to the Gaussian distribution, thereby facilitating a more
natural implementation of ASSR. Based on 2DGS, we have
designed a novel image SR framework called GaussianSR,
which introduces Gaussian representation for the first time
in image restoration tasks. In this section, we discuss the key
components of the GaussianSR framework.

Overall Architecture. The architecture of GaussianSR
is illustrated in Figure 2. The process begins with an encoder
that extracts features from the input images. These features
are then mapped onto a learnable Gaussian field via Selec-
tive Gaussian Splatting, assigning a Gaussian distribution to
each pixel. At any given query coordinate x4, multiple over-
lapping Gaussian fields determine the feature value through
their collective Gaussian functions explicitly. The features
are subsequently rendered into the high-resolution space and
processed through several fully connected layers to restore
the channel dimension and produce the RGB value at z,.
Since z, can be any point within the R? space, the frame-
work achieves arbitrary-scale super-resolution.

LR Initialization. LR feature initialization involves
fetching features from the input LR image and representing
them as initialization points within a continuous Gaussian
feature field. Specifically, the value of the LR feature is used
as the initial amplitude of the Gaussian, while the coordi-
nates of the LR feature determine the center of the Gaus-
sian field. Mathematically, let (m;, n;, v;) be the set of LR
feature coordinates and their corresponding values, where
i = 1,2,---,N, and N is the total number of features.
Each LR feature is then represented as a Gaussian distri-
bution f;(p|u;, X;) within the continuous feature field, with
its mean p; = (m;, n;) corresponding to the normalized LR
feature coordinates and its amplitude initialized to v;, the ac-
tual value of the feature of the LR image. The feature value



at any coordinate p within the continuous Gaussian feature
field is determined by summing the function values from all
individual Gaussian distributions centered at the LR feature
coordinates:

Copas(plv,p, 3,8) = Z fi(plpi, 35) - ¢ %)

where f;(-), ¢;(+) are the same as defined in Equations 3 amd
4. LR feature initialization ensures that subsequent upsam-
pling and reconstruction processes can effectively leverage
the spatial and intensity information from the LR image, ul-
timately leading to high-quality HR image reconstruction.

Selective Gaussian Splatting.  Convolutional opera-
tions, while effective, are inherently limited by their fixed
kernel sizes, incapable of adapting to varying input charac-
teristics. Moreover, high-resolution LR images can induce
redundancy among Gaussian kernels due to similar standard
deviations and opacities. To address these limitations, we
propose the Selective Gaussian Splatting (SGS) technique,
which adaptively assigns Gaussian kernels to pixels based
on their unique features, minimizing kernel redundancy and
parameter overhead. SGS leverages logits from an encoder
corresponding to 100 distinct classes per pixel, each associ-
ated with a Gaussian kernel differentiated by standard devi-
ation and opacity. Initially varied in shape and transparency
(refer to Figure 3), these kernels are optimized during train-
ing, aligning with encoder logits to generate customized
Gaussian distributions for each pixel location. Gumbel Soft-
max facilitates gradient backpropagation with soft labels
during training and hard labels during inference, enhancing
optimization while maintaining interpretability.

Dual-Stream Feature Decoupling.  Addressing the is-
sues of high memory consumption inherent in Gaussian
splatting methodologies, we introduce the Dual-Stream Fea-
ture Decoupling architecture, specifically aimed at enhanc-
ing super-resolution processes while maintaining parame-
ter efficiency. This approach strategically decouples encoded
features along the channel dimension into two tensors with
reduced channels but preserved spatial resolution. For one
tensor, an additional feature unfolding step is performed be-
fore Gaussian splatting. This unfolding operation rearranges
the input tensor into a lower-resolution representation, ef-
fectively reducing the memory consumption for the subse-
quent Gaussian splatting operation. After Gaussian splatting
for detail preservation, a corresponding feature folding op-
eration restores the original spatial dimensions. The other
tensor stream is bicubically upsampled for efficiency. The
augmented outputs from these two parallel streams are then
fused and refined through the decoder, producing the high-
resolution RGB output.

Experiments
Datasets

For our training, we use the DIV2K dataset (Agustsson
and Timofte 2017). Sourced from the NTIRE challenge
(Radu Timofte and Zhang. 2017), this dataset comprises
1000 diverse 2K-resolution images featuring a wide range
of content, including individuals, urban scenes, flora, fauna

and natural landscapes. Within this collection, we allocate
800 images for the training set, 100 images for validation.
To evaluate the generalization performance of the model,
we report the results on the DIV2K validation set with 100
images. Another four benchmark datasets are also utilized,
namely Generall00 (Dong, Loy, and Tang 2016), BSD100
(Martin et al. 2001), Urban100 (Huang, Singh, and Ahuja
2015), and Mangal09, (Matsui et al. 2016) which provided a
comprehensive landscape for assessing cross-dataset robust-
ness. Consistent with previous work (Chen, Liu, and Wang
2021; Hu et al. 2019; Yang et al. 2021), we utilized bicubic
downsampling to synthesize the LR images.

Implementation Details

To simulate a continuous magnification process, the down-
sampling factor is randomly sampled from a uniform dis-
tribution, U(1, 4). To accommodate the GaussianSR frame-
work, within each batch, the downsampling factor remains
constant across different GPUs (if multi-GPU training is em-
ployed). The loss function used is the L; distance between
the reconstructed image and the ground truth image. Follow-
ing the settings in LIIF and its variants (Chen, Liu, and Wang
2021; Li et al. 2022; Yang et al. 2021), we randomly crop the
LR images into 48 x48 patches, collect 2304 random pixels
on the HR images. The initial learning rate for all modules
is set to le-4, and is halved every 200 epochs. The model is
trained in parallel on 4 Tesla V100 GPUs with a mini-batch
size of 16. The training process takes about 2000 epochs to
converge.

Quantitative and Qualitative Results

To validate the efficacy of our GaussianSR, we conduct a
comparative analysis against several advanced methods, in-
cluding MetaSR (Hu et al. 2019), LIIF (Chen, Liu, and
Wang 2021), and its variants ITSRN (Yang et al. 2021),
A-LIIF (Li et al. 2022), DIINN (Nguyen and Beksi 2023)).
All models are re-trained under a unified framework for fair-
ness. Due to the different framework of CiaoSR (Cao et al.
2023), it is excluded from our analysis. Results in Tables
1 and 2 show that our method achieves competitive perfor-
mance across five datasets for various scaling factors, par-
ticularly excelling in non-integer scaling factors due to the
flexible Gaussian representation. While our model performs
similarly to LIIF and A-LIIF on lower-resolution datasets
like Generall00 and BSD100, it significantly outperforms
them on higher-resolution datasets such as Urban100 and
Mangal09, with especially notable results on Urban100.
Figure 4 offers a qualitative comparison with other
arbitrary-scale SR methods. Our model excels at synthesiz-
ing SR images with sharper textures. For instance, in the
second column of the first row and the second column of
the second row, our method successfully recovers the tex-
ture of buildings despite significant texture degradation in
the low-resolution images. In contrast, other methods tend
to produce erroneous redundant artifacts that detract from
the visual quality of the image due to limitations in local
integration and insufficient feature extraction. More visual
comparisons can be found in the supplementary materials.
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Figure 4: Qualitative comparison for x4 SR to other ASSR methods on Urban100 (Huang, Singh, and Ahuja 2015)
dataset. EDSR-baseline (Lim et al. 2017) is used as an encoder for all methods. For all the shown examples, our method
significantly outperforms other methods, particularly in the image rich in repeated textures and structures.

Methods General100 BSD100 Urban100 Mangal09 DIV2K100

x2 x3 x4 X2 %3 x4 x2 %3 x4 X2 %3 x4 x2 %3 x4
Bicubic 32.14 28.56 26.58(28.25 25.96 24.69(25.68 23.07 21.77|29.98 25.68 23.52|31.45 28.42 26.81
EDSR-baseline 38.21 33.93 31.42|32.16 29.09 27.57|31.98 28.15 26.04|38.54 33.45 30.35|34.55 30.90 28.94
EDSR-baseline-MetaSR 38.22 33.93 31.40|32.16 29.09 27.55|32.08 28.12 25.95|38.53 33.51 30.37|34.64 30.93 28.92
EDSR-baseline-LIIF 38.25 33.97 31.53|32.17 29.10 27.60 |32.15 28.22 26.15|38.63 33.47 30.54|34.67 30.96 29.00
EDSR-baseline-ITSRN 38.25 33.95 31.48|32.18 29.10 27.58|32.13 28.14 26.06 |38.58 33.47 30.47|34.67 30.93 28.97
EDSR-baseline-ALITF 38.21 33.95 31.48|32.18 29.11 27.60(32.09 28.19 26.14|38.53 33.42 30.47|34.65 30.95 28.99
EDSR-baseline-DIINNT - - - 130.69 27.73 262213029 2646 2449 - - - |34.63 30.93 28.98
EDSR-baseline-GaussianSR | 38.31 34.02 31.55|32.20 29.13 27.61|32.25 28.28 26.19 | 38.64 33.57 30.54|34.71 31.00 29.03

Table 1: Quantitative comparison for integer-scale super-resolution on other benchmarks (PSNR (dB)). Throughout the follow-
ing tables, the best results for each case are in bold. T As the DIINN method has not been open-sourced, we directly use the
results reported in their article.

Methods General100 BSD100 Urban100 Mangal09 DIV2K100
x1.5 x24 x3.6 | x1.5 x24 x3.6 | x1.5 x24 x3.6 | x1.5 x24 x3.6 | x1.5 x24 x3.6
Bicubic 34.89 30.12 27.17(30.78 27.09 25.11[27.92 2425 22.21(33.12 27.50 24.15|34.00 29.75 27.31

EDSR-baseline' - - - - - - - - - - - - _ _ -
EDSR-baseline-MetaSR 42.16 36.14 32.30(35.69 30.60 28.08 |36.05 30.07 26.74|42.67 36.18 31.56|38.57 32.78 29.62

EDSR-baseline-LIIF 4220 36.18 32.37|35.69 30.62 28.11|36.13 30.16 26.89 |42.67 36.19 31.59|38.57 32.82 29.67
EDSR-baseline-ITSRN 42.24 36.18 32.34|35.70 30.62 28.10|36.14 30.12 26.81|42.68 36.18 31.55|38.61 32.80 29.64
EDSR-baseline-ALIIF 42.14 36.16 32.33|35.67 30.60 28.10|36.02 30.07 26.84 |42.56 36.11 31.53|38.54 32.79 29.65

EDSR-baseline-GaussianSR | 42.24 36.23 32.40 | 35.73 30.64 28.13|36.27 30.23 26.94 | 42.72 36.25 31.60 | 38.64 32.85 29.70

Table 2: Quantitative comparison for arbitrary noninteger-scale super-resolution on other benchmarks (PSNR (dB)). t EDSR-
baseline (Lim et al. 2017) cannot handle noninteger-scale super-resolution.

In Table 3, we present a comparative analysis of our training samples to achieve better results. Notably, we en-
method against LIIF and ITSRN at early stage (epoch 100). sure that LIIF and ITSRN are trained under the same frame-
Our method consistently outperforms other methods on Ur- work for a fair comparison. In addition, we report the infer-
ban100 and BSD100, underscoring its superior performance ence time of GaussianSR and LIIF with the same input and
even before full training is completed. This shows that our output sizes in Table 4, providing a comprehensive evalua-

approach is more effective in leveraging a limited amount of tion of their efficiency.



Target Resolution | (128x128)  (256x256)  (384x384)
Methods Runtime (ms) |
LIIF 14.52 43.18 86.43
ITSRN 21.55 58.01 120.69
GaussianSR 12.56 41.70 106.72

Table 3: Latency comparison in milliseconds. The input is
a single RGB image of size 64x64. We report the average
runtime over 100 runs on a Tesla V100 GPU.

Urban100 BSD100
D X2 x3 x4 X2 x3 x4
LIIF 31.35 27.62 2565 | 31.98 28.95 27.44

ITSRN 3145 27.54 2556 | 32.03 2894 2743
GaussianSR | 31.63 27.79 2578 | 32.06 29.00 27.50

Table 4: Comparative analysis of early stage performance
between methods on Urban100 and BSD100.

Ablation Study

In this section, we conduct an ablation study to investigate
the effects of different settings in our architecture. Table 5
and Table 6 present the results of various hyperparameter
settings for channel decoupling and Gaussian bank.
Channel decoupling. The default configuration involves
8 channels undergoing 2DGS upsampling, while the remain-
ing channels are upsampled using bicubic interpolation. This
setup is designed to achieve memory-efficient inference. We
compare this configuration with settings where all channels
were upsampled using bicubic interpolation and where 16
channels were upsampled using 2DGS. When increasing
the channel size from 8 to 16, the model begins to overfit
to the training data, capturing irrelevant patterns instead of
meaningful, generalizable features. The two streams are de-
signed to complement each other: the Gaussian stream cap-
tures high-frequency details, while the bicubic stream pro-
vides a stable approximation of overall structure. Allocating
too many channels to the Gaussian stream can overshadow
the bicubic stream, disrupting the balance between them.
Gaussian bank. GaussianSR consists of 100 Gaussian
fields initialized in a stepwise manner. We conduct ablation
experiments by varying the number of Gaussian fields to
100, 400, and 900. Interestingly, the configuration with 100
Gaussians produces better results. We explore the frequency
of selection for each Gaussian, showing that fewer than 80
Gaussian kernels were frequently selected. Thus, increasing
the number of Gaussian fields is detrimental to training. Fig-
ure 5 visualizes the parameters within the Gaussian bank,
showing that the majority of sigma values are significantly

Setting DIV2K100

x2 X3 x4
Bicubic-64 34.4128 30.8311 28.8788
Bicubic-56, Gaussian-8 34.7134 31.0010 29.0281
Bicubic-48, Gaussian-16 34.6990 30.9853 29.0157

Table 5: Ablation study on channel proportion of 2DGS in
Dual-Stream Decoupling on DIV2K100 (PSNR (dB)).
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Figure 5: Frequency distributions of >, ¥, p, and opac-
ity in GaussianSR (top-down, left-right). Most of X values
are significantly greater than zero, demonstrating that each
pixel is represented by a Gaussian field instead of a point.

. Scale Factor
Classes of Gaussians 2 <3 4
64 347070  30.9923  29.0196
100 34.7134  31.0010  29.0281
400 34.7041 309914  29.0174
900 347072 30.9906  20.0229

Table 6: Ablation study on the number of Gaussian ellipses
in Gaussian Bank (PSNR (dB)).

greater than zero at the end of training. This indicates that
each pixel is represented by an ellipse, validating our ap-
proach of replacing points with fields.

Conclusion

The proposed GaussianSR represents a paradigm shift in
image super-resolution by introducing a continuous fea-
ture field characterized by a Gaussian distribution, departing
from the traditional discrete feature storage methodology.
This approach enables natural implementation of arbitrary-
scale upsampling, as any point within the field can be ex-
plicitly determined according to the Gaussian distribution.
By redefining pixel representations as continuous Gaussian
fields, GaussianSR offers a more natural and fluid repre-
sentation with fewer parameters. Furthermore, a classifier is
trained to assign optimal Gaussian kernels to each pixel, tai-
loring the model to diverse input characteristics. Experimen-
tal results show that GaussianSR enhances super-resolution
performance and reduces computational overhead, demon-
strating the potential of integrating Gaussian expressions in
computer vision tasks typically dominated by INR-based
methodologies. This framework not only advances arbitrary-
scale super-resolution but also suggests new directions for
conceptualizing and processing visual information.
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