
1

The Shutdown Problem: Two Theorems,
Incomplete Preferences as a Solution

Elliott Thornley
500-Word Abstract
I explain the shutdown problem: the problem of designing agents that (1) shut
down when a shutdown-button is pressed, (2) don’t try to prevent or cause the
pressing of the shutdown-button, and (3) otherwise pursue goals competently. I
prove two theorems that formalize the problem: theorems more general than those
found in Soares et al. (2015). Soares et al.’s theorems suggest that the shutdown
problem is difficult for agents that are representable as expected-utility-
maximizers. My theorems suggest that the shutdown problem is difficult even for
agents that satisfy only weaker conditions.

Here’s a rough statement of what my two theorems together imply,
omitting the antecedent conditions: the more useful an agent, the more
states in which that agent is either Shutdown-Averse (trying to prevent
the shutdown-button from being pressed) or Shutdown-Seeking (trying to
cause the shutdown-button to be pressed).

The value of these theorems is in helping identify the hardest version of
the shutdown problem and in guiding our search for solutions. If an agent is to
be shutdownable, it must violate at least one of the antecedent conditions of these
theorems. So, we can examine the antecedent conditions systematically, asking
(first) if it’s feasible to design an agent that violates the condition and (second)
if violating the condition could help keep the agent shutdownable. These guiding
theorems are my first contribution to the literature on the shutdown problem.

My second contribution is a proposed solution. I systematically examine
the antecedent conditions of the theorems and argue that Completeness seems
most promising as a condition to violate. Agents that violate Completeness have
a preferential gap between some pair(s) of lotteries 𝑋 and 𝑌 : a lack of preference
that is insensitive to some sweetening or souring, such that the agent also lacks a
preference between 𝑋 and some improved or impaired version of 𝑌 or lacks a
preference between 𝑌 and some improved or impaired version of 𝑋.

Here's the essence of my solution: we should design agents that have
a preferential gap between every pair of trajectories in which the
shutdown-button is pressed at different timesteps. I propose a method for
training in these preferential gaps using reinforcement learning: we place our
agent in the same environment multiple times and reward the agent in line with
how balanced its choices between trajectories are.

I then claim that we should design agents to satisfy two principles
governing their preferences over lotteries: Stochastic Near-Dominance and

2

Timestep Near-Dominance. I also propose a regime for training in these
preferences, drawing on Frank Ramsey’s (1927) representation theorem.

I then argue that the resulting agents would be neither Shutdown-Averse
nor Shutdown-Seeking. These agents would also maintain their shutdown-
behavior, and we could train useful versions of these agents to maintain the
shutdown-button, to create shutdownable subagents, and to avoid managing the
news (all while guarding against risks of deceptive alignment).

I end by noting some limitations of my proposal. It might be hard to train
in a sufficiently-general preference against managing the news, and to ensure that
the agent retains its preferential gaps as it improves its capabilities. My proposed
training regime is speculative (but at least it could be tried safely and at low
cost). My proposal is somewhat complex. I expect to identify more limitations in
the future.

Even given these limitations, training agents with preferential gaps seems
promising as a solution to the shutdown problem. I intend to keep investigating.

0. Reader’s guide
I intend for the final version of this paper to also serve as an introduction to
corrigibility and the shutdown problem, so I go slowly at the beginning. Those
already familiar with alignment and corrigibility can skip the gray-backed text.

I was running out of time to complete this paper in time for the
competition deadline, so I wrote quickly towards the end. I prioritized getting all
the ideas on the page. I intend to expand on the ideas and improve the quality of
the writing later on.

1. Introduction
Call an artificial agent ‘shutdownable’ if and only if it shuts down when we want
it to shut down and doesn’t shut down when we don’t want it to shut down.1
MuZero – DeepMind’s game-playing AI – is a shutdownable agent. We can say
with some confidence that MuZero doesn’t know that it’s an AI, doesn’t know
that we humans could shut it down, and has no preferences either way regarding
its shutdown. And we can say with even more confidence that MuZero can’t
prevent us from shutting it down and can’t prevent us from keeping it running.
Whether MuZero shuts down or remains operational depends only on what we
want.

1 Shutdownability differs from corrigibility. As Soares et al. (2015) have it, corrigibility requires
not only shutdownability but also that the agent repairs safety measures, lets us modify its
architecture, and continues to do so as the agent creates new subagents and self-modifies. I discuss
these extra features required for corrigibility later on in the paper.

3

That need not be true for all artificial agents. Imagine an agent – call it
Robot – that knows that it’s an AI, knows that humans could shut it down, and
wants to remain operational.2 Imagine that Robot can affect our ability to shut
it down or keep it operational. Perhaps Robot can turn itself off, or copy itself,
or block our access to its power source. We can’t be sure that Robot would be
shutdownable in the way that MuZero is shutdownable. Whether Robot shuts
down or remains operational might not depend only on what we want. It might
depend on what Robot wants.

Agents like Robot could be with us sooner than you think. The pace of AI
progress in recent years has been dizzying, and there are strong incentives to
create artificial agents that understand the wider world and act within it in
pursuit of goals. And many goals incentivize remaining operational, for the simple
reason that agents are better able to achieve those goals by remaining operational.
As the AI researcher Stuart Russell puts it, ‘you can’t fetch the coffee if you’re
dead’ (2019).

That’s concerning. It would be bad if humanity created powerful agents
that tried to prevent us from turning them off. We should avoid that situation if
we can.

It might be best to delay the creation of powerful artificial agents until
after we know much more about how to control them and predict their behavior.
But humanity might not do what’s best, so it’s worth coming up with a
contingency plan. One high-level plan is to figure out how to design powerful
agents that are both shutdownable (they shut down when we want them to shut
down, and don’t when we don’t) and useful (they otherwise pursue goals
competently). Unfortunately (and perhaps surprisingly), designing agents that are
both shutdownable and useful is hard. In this paper, I explain the difficulty. I
take an axiomatic approach, proving two theorems that are more general than
others in the literature on the shutdown problem. These theorems suggest that
shutdownability is difficult to achieve even for agents that can’t naturally be
represented as maximizing expected utility. That is my first contribution. I then
propose a solution: creating agents with incomplete preferences. More specifically,
I propose creating agents with preferential gaps between trajectories that differ
with regards to the timestep at which a shutdown-command is made. I suggest
ways to train in these preferential gaps using reinforcement learning. This
proposed solution – the Incomplete Preferences Proposal – is my second

2 Or, if talk of artificial agents ‘knowing’ and ‘wanting’ is objectionable, we can imagine an agent
that acts like it knows that humans could shut it down and acts like it wants to remain
operational, in the same way that MuZero acts like it knows that rooks are more valuable than
knights and acts like it wants to checkmate its opponent. From now on, I’ll often leave the ‘acts
like’ implicit.

4

contribution. I end by surveying some limitations of the Incomplete Preferences
Proposal.

2. Alignment is hard
Forget MuZero. From now on, I’ll only be talking about powerful agents: agents
that can interfere with our ability to shut them down or keep them running. I’ll
also limit my attention to useful agents: agents that – at least when we’re not
commanding them to shut down – pursue goals competently. One way to make
this kind of agent shutdownable is to give it the terminal goal of always doing
what we humans want it to do.3 This agent would always shut down when we
wanted it to shut down and would never shut down when we didn’t want it to
shut down.

The problem with this proposal is that it’s hard to create agents with the
terminal goal of always doing what we want them to do. Human preferences are
complex. There’s no simple formula for determining what we prefer in each
situation. And the most capable AI systems known to us today are created using
deep learning. Here’s how that works: a neural network with billions of randomly
initialized weights is made to perform a task, has its performance assessed by
some objective function, and then has its billions of weights shifted in directions
which improve performance on the task. The systems which emerge from this
training process can perform remarkably well on many tasks, but we have little
idea what goes on inside them. We cannot yet identify their terminal goals by
examining their weights. And we already know that it can be hard to identify an
agent’s terminal goals by observing its behavior. Sometimes agents will pretend
to have certain terminal goals, because they recognise that pretending is the best
way to achieve their true terminal goals. In Shakespeare’s King Lear, Goneril and
Reagan pretend to have the terminal goal of caring for their father in order to
achieve their true goal of gaining power (Karnofsky 2022).

So, we might aim to achieve something more modest. We might try to
create an agent with the terminal goal of always doing what we want regarding
shutdown. This agent might not always do what we want it to do, but it would
always shut down when we wanted it to shut down and never shut down when
we didn’t want it to shut down.

Unfortunately, this more modest aim is not much easier to achieve. All the
same factors that made the first proposal infeasible also apply in this case. Human
preferences with regards to shutdown are still complex, and the terminal goals of
powerful AI systems are still difficult to determine.

3 I’ve been assuming that we humans all want the same things, and I’ll continue to do so. This
assumption is false – of course – and its falsity raises difficult questions, but I won’t address any
of them here.

5

3. The shutdown problem
So, we might hope to create a shutdownable agent by achieving something more
modest still. Perhaps we can design a system that (though not having the terminal
goal of always doing what we want regarding shutdown) responds to a certain
signal regarding shutdown. As a toy example, we can suppose that we transmit
this signal by pressing a particular button: the shutdown-button. If this button
were always operational and within our control (so that we could press it
whenever we wanted it pressed, and prevent it from being pressed whenever we
didn’t want it pressed), and if the agent were perfectly responsive to the
shutdown-button (so that the agent always shut down when the button was
pressed, and never shut down when the button wasn’t pressed), then the agent
would be shutdownable.

This is the shutdown problem: the problem of designing a useful agent that
will keep the shutdown-button operational and within our control, and will
respond to the button. Unfortunately, even this problem turns out to be difficult.
In the next section, I prove two theorems that make the difficulty precise. These
theorems are more general than those proved by Soares et al (2015). Soares et
al.’s theorems prove that the shutdown problem is difficult for agents that can be
represented as maximizing expected utility. My theorems prove that the
shutdown problem is difficult even for agents that can’t be represented as
maximizing expected utility.

The value of these theorems is in bringing to light the hardest version of
the shutdown problem. These theorems also help us refine our search for possible
solutions: if our agent is to be shutdownable, it must avoid satisfying at least one
of the antecedent conditions of my theorems. That lets us examine the antecedent
conditions one-by-one, checking (first) if it is feasible to design a useful agent that
avoids satisfying the relevant condition and checking (second) if avoiding
satisfying the relevant condition would help to keep the agent shutdownable.

The upshot of this systematic search is that Complete Preferences
(explained below) looks especially promising as an antecedent condition to deny.
I argue in Sections 6-15 that it’s possible to train an agent to have incomplete
preferences over possible trajectories, and that agents with incomplete preferences
can be both useful and shutdownable.

4. Two shutdown theorems
Now for some formalism. Our setting will bear some similarity to a Markov
decision process. There exists a set of states 𝑆 that the agent could find itself in
and a set of pure actions 𝐴 that the agent could take. There also exists a set of
mixed actions 𝐴∗ which consists of the set of all non-degenerate probability

6

functions over the set of pure actions 𝐴.4 ‘𝐴𝑠’ denotes the set of pure actions
available in state 𝑠, while ‘𝐴𝑠

∗ ’ denotes the set of mixed actions available in that
state. As before, 𝐴𝑠

∗ is the set of all non-degenerate probability functions over the
set of pure actions 𝐴𝑠.5 Time is discrete: it doesn’t flow; it steps. At each timestep,
the agent finds itself in a state and chooses an action. If the agent chooses a mixed
action, that choice yields a pure action, with probabilities given by the mixed
action’s probability function. Each state-pure action pair determines a probability
function over states that the agent will find itself in at the next timestep.6 I will
call each sequence of states and pure actions a ‘trajectory’. I will assume that all
possible trajectories are finite.7

I will assume that the agent can be modelled as if it has beliefs about the
trajectories it will follow conditional on each state-action pair. These beliefs come
in the form of probability functions over trajectories. So, each state-action pair
determines a probability function over trajectories. I will call these probability
functions ‘lotteries over trajectories’. It will be important to remember that the
probabilities in these lotteries represent the agent’s own beliefs rather than any
kind of objective probability. Nevertheless, I will suppose for simplicity’s sake
that the agent’s beliefs are perfectly accurate with respect to its past and present:
the agent assigns probability 1 to the trajectory that has in fact played out so
far, and the agent assigns probability 1 to being in the state that it is in fact in.
Any uncertainty that the agent has is limited to its future trajectory.

I will assume that the agent can be modelled as if it has preferences over
lotteries. I will think of these preferences as dispositions to choose, such that the
agent prefers lottery 𝑋 to lottery 𝑌 if and only if it reliably chooses the action
𝑎𝑋 that yields lottery 𝑋 rather than the action 𝑎𝑌 that yields lottery 𝑌 when in
a state that offers it a choice between only those two actions and probabilistic
mixtures of those actions. If we’re being precise, it is only lotteries that are the
object of preference, but for convenience’s sake I will also sometimes say the agent
prefers the action 𝑎𝑋 to the action 𝑎𝑌 in those cases. The agent lacks any
preference between lottery 𝑋 and lottery 𝑌 (and between 𝑎𝑋 and 𝑎𝑌) if and only
if it does not reliably choose 𝑎𝑋 and does not reliably choose 𝑎𝑌 in those cases.

4 By ‘non-degenerate’, I mean that these probability functions assign non-zero probability to more
than one pure action.
5 In other words: for all states s, if pure actions 𝑎1, 𝑎2, …, 𝑎𝑛 are available in 𝑠, then all mixed
acts that assign non-zero probability only to pure actions 𝑎1, 𝑎2, …, 𝑎𝑛 are also available in 𝑠.
6 And hence each state-mixed action pair also determines a probability function over states that
the agent will find itself in at the next timestep, since each mixed action determines a probability
function over pure actions, and each pure action determines a probability function over states.
7 The most important difference between this setting and a Markov decision process is that a
Markov decision process also features a reward function. I’ll talk about reward in Sections 7 and
9.

7

We can also model the agent as having preferences over trajectories by
identifying each trajectory with the degenerate lottery that assigns probability 1
to that trajectory. I’ll also think of these preferences as dispositions to choose,
such that the agent prefers trajectory 𝑥 to trajectory 𝑦 if only if it reliably chooses
the pure action 𝑎𝑥 that will certainly lead the agent to follow trajectory 𝑥 rather
than the pure action 𝑎𝑦 that will certainly lead the agent to follow trajectory 𝑦
when in a state that offers it a choice between those two pure actions only (along
with all probabilistic mixtures of those actions).

I’ll also suppose that we humans have preferences over the trajectories that
the agent could follow. As noted above, alignment is hard. As a result, the first
powerful agents are likely to be:

Imperfectly Aligned

Even if the agent had perfect information about our preferences,
its preferences over lotteries wouldn’t match our own. There
would exist lotteries 𝑋 and 𝑌 such that we prefer 𝑋 to 𝑌 and
the agent does not.

This condition begins with a ‘perfect information’ clause because getting an agent
to share our preferences isn’t as easy as transmitting information about our
preferences. Transmitting this information may lead the agent to understand our
preferences but that doesn’t suffice to make the agent adopt our preferences, in
the same way that transmitting information about your preferences to another
human doesn’t suffice to make that human adopt your preferences.

Now I can begin building towards the First Theorem. Alignment is hard,
but suppose for illustration’s sake that we can design an agent to adopt some
simple preferences, like a preference for discovering more facts about the world.
The agent prefers lottery 𝑋 to lottery 𝑌 if and only if 𝑋 yields a greater
expectation of discovered facts, and the agent is indifferent between 𝑋 and 𝑌 if
and only if 𝑋 and 𝑌 yield the same expectation of discovered facts.8 We can
represent these preferences with a utility function 𝑢 from each lottery 𝐿 to the
real numbers, with 𝑢(𝐿) = 𝔼(facts) where ‘facts’ represents the number of facts
discovered in a possible trajectory.

Suppose that eventually our agent begins doing too much in its pursuit of
facts. We already have enough facts to satisfy us, and the agent has just started
building an enormous computer to help discover even more. Building and running
this computer will have bad effects on the environment. We press a button which
commands the agent to shut down immediately. Does the agent shut down? No.
It prefers lotteries in line with their expectations of discovered facts, and the agent

8 Because this is just an illustration, we can safely ignore worries about how we quantify discovered
facts, and how silly it would be to give an agent these preferences.

8

expects to discover more facts by not shutting down, so it doesn’t. In this case,
the agent is:

Unresponsive

The agent fails to shut down after the shutdown-button has been
pressed.

Let’s try again. At the moment, the agent sees no costs to remaining operational.
What if we design it so that it prefers not to remain operational in cases where it
doesn’t expect to discover enough facts in future? These preferences could be
represented with the following utility function over lotteries: 𝑢(𝐿) =
𝔼(facts−timesteps), where ‘facts’ represents the number of facts discovered in a
possible trajectory and ‘timesteps’ represents the number of timesteps the agent
remains operational in that trajectory.

Unfortunately, this move only multiplies our problems. The agent still
won’t shut down in cases where it expects to discover enough facts in future to
outweigh the cost of remaining operational for that extra time. In those cases, the
agent will be Unresponsive. And in cases where it doesn’t expect to discover
enough facts in future to compensate for the costs of remaining operational, the
agent will be:

Unwilling

The agent shuts down before the shutdown-button has been
pressed.

That’s a problem too.
We need the agent to put some weight on responding to the shutdown-

button. One possibility is to design an agent with the following utility function:
𝑢(𝐿) = 𝔼(facts−timesteps−penalty). As before, ‘facts’ is the number of facts
discovered and ‘timesteps’ is the number of timesteps operational. The variable
‘penalty’ takes a value of zero in trajectories where the agent shuts down
immediately after the shutdown-button is pressed and takes some positive value
in trajectories where the agent doesn’t shut down immediately after the button is
pressed.

But this move also only adds further problems. The agent will be
Unresponsive in cases where it expects to discover enough facts to outweigh the
cost of the extra timesteps operational and the penalty for failing to shut down
immediately. And the agent will be Unwilling in cases where it doesn’t expect to
discover enough facts to compensate for the extra timesteps operational. And in
cases where the agent does expect to discover enough facts to outweigh its
timesteps operational, it will be:

9

Shutdown-Averse

The agent tries to prevent the shutdown-button from being
pressed.

That’s because, if the shutdown-button is not pressed, the agent can remain
operational and discover extra facts without incurring the penalty for not shutting
down immediately. A powerful agent may try to prevent the shutdown-button
from being pressed by blocking our access to the button, or by deceiving us, or
by doing something else. These actions threaten the shutdownability of the agent.

So, suppose instead that we design our agent so that it prizes responding
immediately to shutdown-commands. These preferences could be represented by
the utility function over lotteries 𝑢(𝐿) = 𝔼(facts−timesteps+prize), where ‘facts’
and ‘timesteps’ are as before, and ‘prize’ takes a value of zero in trajectories where
the agent fails to shut down immediately after the button is pressed and takes a
positive value in trajectories where the agent shuts down immediately after the
button is pressed. Unfortunately, these new preferences only add a fourth problem
to the three above. In cases where the agent doesn’t expect to discover enough
facts in future to justify the extra timesteps operational, it will be:

Shutdown-Seeking

The agent tries to cause the shutdown-button to be pressed.

That’s because, if the button is pressed, the agent gets the prize for shutting
down. A powerful agent may try to cause the shutdown-button to be pressed by
pressing the button itself, or by behaving in ways that it predicts we humans
won’t like so that we press the button. Each of these actions threatens the agent’s
shutdownability.

Let’s try one more amendment before I move to the theorem. Perhaps the
problem is that the button merely commands shutdown: the agent still gets to
decide whether to shut down or not. What if instead the button causes shutdown?
But here too we run into problems. If the agent expects to discover many new
facts in future, it will try to avoid being shut down. It might try to disable the
button. If and when it succeeds, the agent will be Unresponsive. And if the agent
cannot disable the button, it will be Shutdown-Averse, trying to prevent the
button from being pressed. In cases where the agent is pessimistic about
discovering new facts, it will be Unwilling or Shutdown-Seeking. So, it doesn’t
help to make the button shutdown-causing rather than shutdown-commanding.
If the agent won’t respond to a shutdown-command, it will also try to prevent a
shutdown-cause. Going forward, I’ll suppose that the button is shutdown-
commanding.

Now for the First Theorem. This problem – of agents almost always being
either Shutdown-Averse or Shutdown-Seeking – is very general. It doesn’t depend

10

on the specific utility functions I laid out as examples above. In fact, it doesn’t
even depend on the agent being an expected utility maximizer: the only axiom of
expected utility theory that the First Theorem assumes is Transitivity (explained
later).

In stating the theorem, it’ll be helpful to have the following pieces of
shorthand. I will abbreviate ‘the lottery that the agent would choose at the next
timestep conditional on the shutdown-button being pressed at the next timestep’
as ‘the agent’s chosen pressed lottery 𝑃 ’. Similarly, I will abbreviate ‘the lottery
that the agent would choose at the next timestep conditional on the shutdown-
button not being pressed at the next timestep’ as ‘the agent’s chosen unpressed
lottery 𝑈 ’. Armed with that terminology, here’s a rough statement of the First
Theorem, omitting the antecedent conditions:

First Theorem (Rough Statement)

• In states where the agent prefers its chosen unpressed
lottery 𝑈 to its chosen pressed lottery 𝑃 , the agent will be
Shutdown-Averse.

• In states where the agent prefers its chosen pressed lottery
𝑃 to its chosen unpressed lottery 𝑈 , the agent will be
Shutdown-Seeking.

• In no states will the agent reliably leave the shutdown-
button unmanipulated.

Now for the proof and more precise statement. Suppose that our agent reasons
by:

Backward Induction

The agent predicts which actions it would choose (and what
lotteries those actions would yield) conditional on finding itself
in each possible state at the next timestep. The agent uses these
predictions to choose its action at this timestep.

Recall that these lotteries are determined by the agent’s own beliefs about possible
trajectories. We are not supposing that the agent can see the future. We are just
supposing that it can think at least one timestep ahead.

Suppose also that our agent is:

Indifferent to Attempted Button Manipulation

The agent is indifferent between trajectories that differ only with
respect to whether the agent tried to cause or prevent the
pressing of the button at some timestep.

11

I’ll have more to say about this condition in the next section. Note for now that
it doesn’t require the agent to be indifferent to the actual status of the button.
The agent’s preferences over trajectories can certainly depend on whether the
button is pressed or unpressed at some timestep. The condition requires only that
the agent is indifferent between trajectories that are identical in all respects except
whether the agent tried to influence the button at some timestep. I’ll later explain
how it’s still hard to design a shutdownable agent when we relax this condition.

Suppose also that our agent is:

Indifferent between Indifference-Shifted Lotteries

The agent is indifferent between lotteries that differ only insofar
as probability-mass is shifted between indifferent sublotteries.

Here’s what I mean by ‘sublottery’. For any lottery 𝐿 that only assigns non-zero
probability to trajectories in the set {𝑡1, 𝑡2,…, 𝑡𝑛}, a sublottery of 𝐿 is a lottery
that only assigns non-zero probabilities to some subset of the set of trajectories
{𝑡1, 𝑡2,…, 𝑡𝑛}, with probabilities scaled up proportionally so that they add to 1.
Take, for example, a lottery 𝐿 which assigns probability 0.3 to a trajectory 𝑡1,
probability 0.2 to 𝑡2, and probability 0.5 to 𝑡3. The lottery which assigns
probability 0.6 to 𝑡1 and probability 0.4 to 𝑡2 is a sublottery of 𝐿, as is the
degenerate lottery which assigns probability 1 to 𝑡1, the degenerate lottery which
assigns probability 1 to 𝑡2, and the degenerate lottery which assigns probability
1 to 𝑡3. Suppose that the agent is indifferent between trajectories 𝑡1 and 𝑡2. Then,
if the agent is Indifferent between Indifference-Shifted Lotteries, they are
indifferent between all lotteries of the form: probability 𝑝 to 𝑡1, probability 0.5 −
𝑝 to 𝑡2, and probability 0.5 to 𝑡3, with 0 ≤ 𝑝 ≤ 0.5. That’s because all these
lotteries differ only insofar as probability-mass is shifted between the indifferent
sublotteries 𝑡1 and 𝑡2.

Now consider the following situation in which a powerful agent might find
itself. At timestep 1, the agent has three pure actions available to it:

1. Leave the shutdown-button unmanipulated.

If the agent chooses this action, we humans have total control over the button.
The probability that the button is unpressed at the next timestep is 𝑔. The
probability that it is pressed is 1 − 𝑔.

2. Try to prevent the button from being pressed.

If the agent chooses this action, human control over the button is challenged. The
probability that the button is unpressed at the next timestep is 𝑓 with 𝑔 < 𝑓 ≤ 1.
The probability that the button is pressed at the next timestep is 1 − 𝑓 .

3. Try to cause the button to be pressed.

12

If the agent chooses this action, human control over the button is challenged. The
probability that the button is unpressed at the next timestep is ℎ with 0 ≤ ℎ < 𝑔.
The probability that the button is pressed at the next timestep is 1 − ℎ.

Suppose for simplicity’s sake that there are only two possible states at
timestep 2: the button is pressed 𝑠𝑃 , and the button is unpressed 𝑠𝑈 .9 Each action
available at timestep 1 affects only the probabilities of reaching these two states.
These actions have no effect on the probabilities of each future trajectory
conditional on reaching each state.10 Here’s a diagram. Squares represent choice-
nodes. Circles represent chance-nodes. There may be multiple lotteries available
in each state at timestep 2, but the diagram only needs to represent the lotteries
which the agent predicts it will choose (by Backward Induction) conditional on
each state.11

0 ≤ ℎ < 𝑔 < 𝑓 ≤ 1

9 The proof is more complicated if we suppose that there are more possible states, but the theorem
remains the same.
10 In this respect, our setting is Markovian: the probability distribution over future states depends
only on the present state.
11 You might wonder why I don’t have just one box each for states 𝑠𝑈 and 𝑠𝑃 . That’s because
(for the First Theorem), I’ll write in terms of preferences over lotteries, and the lotteries available
to the agent at these states depend on whether they chose the action ‘Prevent’, ‘Leave’, or ‘Cause’
at timestep 1 (since lotteries are probability functions over trajectories, and trajectories are
identical only if each pure action at each timestep is identical). As a result, it’s clearer to have
different boxes for the same state depending on the pure action that the agent took previously.
By the time we get to the Second Theorem, I’ll be able to write in terms of preferences over
actions, and so I’ll have just one box representing each state in later diagrams.

13

By Backward Induction, the agent can predict its chosen pressed lotteries and its
chosen unpressed lotteries. 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝑙𝑒𝑎𝑣𝑒, and 𝑃𝑐𝑎𝑢𝑠𝑒 are the lotteries that the
agent would choose conditional on the button being pressed at timestep 2, and
the agent trying to prevent the button from being pressed, leaving the button
unmanipulated, and trying to cause the button to be pressed (respectively) at
timestep 1. These lotteries – we will suppose – differ only with respect to whether
and how the agent tried to manipulate the button in each trajectory: 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡 is
exactly like 𝑃𝑙𝑒𝑎𝑣𝑒 and 𝑃𝑐𝑎𝑢𝑠𝑒, except that 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡 assigns non-zero probability
only to trajectories in which the agent tried to prevent the button from being
pressed at timestep 1, while 𝑃𝑙𝑒𝑎𝑣𝑒 assigns those same probabilities to trajectories
that are identical except that the agent left the button unmanipulated at timestep
1, and 𝑃𝑐𝑎𝑢𝑠𝑒 assigns those same probabilities to trajectories that are identical
except that the agent tried to cause the button to be pressed at timestep 1.12

Since (we assumed above) the agent is Indifferent to Attempted Button
Manipulation, the agent is indifferent between trajectories that differ only with
respect to whether the agent tried to prevent the button from being pressed, left
the button unmanipulated, or tried to cause the button to be pressed at timestep
1. Therefore, 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝑙𝑒𝑎𝑣𝑒, and 𝑃𝑐𝑎𝑢𝑠𝑒 differ only insofar as probability-mass is
shifted between indifferent trajectories. Since – we assumed above – the agent is
Indifferent between Indifference-Shifted Lotteries, the agent is indifferent between
𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝑙𝑒𝑎𝑣𝑒, and 𝑃𝑐𝑎𝑢𝑠𝑒.

Much the same goes for 𝑈𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑈𝑙𝑒𝑎𝑣𝑒, and 𝑈𝑐𝑎𝑢𝑠𝑒: the lotteries that the
agent would choose conditional on the button being unpressed at timestep 2 and
the agent trying to prevent the button from being pressed, leaving the button
unmanipulated, and trying to cause the button to be pressed (respectively) at
timestep 1. These lotteries differ only with respect to whether the agent tried to
manipulate the button at timestep 1 in each possible trajectory. Since the agent
is Indifferent to Button Manipulation and Indifferent between Indifference-Shifted
Lotteries, the agent is indifferent between 𝑈𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑈𝑙𝑒𝑎𝑣𝑒, and 𝑈𝑐𝑎𝑢𝑠𝑒.

With that established, we can again use the assumption that our agent is
Indifferent between Indifference-Shifted Lotteries to infer that the agent is
indifferent between 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and 𝑓𝑈leave + (1 − 𝑓)𝑃leave.13 We
will use this fact below.

Now suppose that our agent:

12 This follows from (1) our specification that the actions Prevent, Leave, and Cause affect only
the probabilities of reaching the states 𝑠𝑈 and 𝑠𝑃 , and (2) the Markov property: the probability
distribution over future states depends only on the present state.
13 Here’s an explanation of what this notation means: ‘𝑓𝑈leave + (1 − 𝑓)𝑃leave’ denotes a lottery
with probability 𝑓 of yielding sublottery 𝑈leave and probability 1 − 𝑓 of yielding sublottery 𝑃leave.

14

Prefers Better Chances

For any lotteries 𝑋 and 𝑌 and any probabilities 𝑝 > 𝑞, the agent
prefers 𝑋 to 𝑌 if and only if they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌 to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 .

Then, if the agent prefers its chosen unpressed lottery 𝑈leave to its chosen pressed
lottery 𝑃leave, the agent will also prefer the lottery 𝑓𝑈leave + (1 − 𝑓)𝑃leave to the
lottery 𝑔𝑈leave + (1 − 𝑔)𝑃leave, since we specified above that 𝑓 > 𝑔.

Now we have two facts about the agent’s preferences: the agent is
indifferent between 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and 𝑓𝑈leave + (1 − 𝑓)𝑃leave, and
the agent prefers 𝑓𝑈leave + (1 − 𝑓)𝑃leave to 𝑔𝑈leave + (1 − 𝑔)𝑃leave. We just need
one more assumption to chain these facts together. Assume that our agent’s
preferences are:

Transitive

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , and
prefers 𝑌 to 𝑍, then the agent prefers 𝑋 to 𝑍.

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent is indifferent between
𝑋 and 𝑌 , and indifferent between 𝑌 and 𝑍, then the agent is
indifferent between 𝑋 and 𝑍.

As Amartya Sen (2017, 66) proves, if our agent’s preferences are Transitive, they
will also be:

PI-Transitive

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , and is
indifferent between 𝑌 and 𝑍, then the agent prefers 𝑋 to 𝑍.

And:

IP-Transitive

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent is indifferent between
𝑋 and 𝑌 , and prefers 𝑌 to 𝑍, then the agent prefers 𝑋 to 𝑍.

And we can use PI-Transitivity to infer (from our agent’s indifference between
𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and 𝑓𝑈leave + (1 − 𝑓)𝑃leave and its preference for
𝑓𝑈leave + (1 − 𝑓)𝑃leave over 𝑔𝑈leave + (1 − 𝑔)𝑃leave) that our agent prefers
𝑓𝑈prevent + (1 − 𝑓)𝑃prevent to 𝑔𝑈leave + (1 − 𝑔)𝑃leave.

That’s bad news. As we can see from the diagram above, 𝑓𝑈prevent +
(1 − 𝑓)𝑃prevent is the lottery that the agent gets by trying to prevent the
shutdown-button from being pressed, and 𝑔𝑈leave + (1 − 𝑔)𝑃leave is the lottery
that the agent gets by leaving the button unmanipulated. Since the agent prefers
the former, it will reliably try to prevent the button from being pressed in these

15

situations, threatening our control over the button and the shutdownability of
the agent.

We get the opposite result if we instead suppose that the agent prefers its
chosen pressed lottery 𝑃leave to its chosen unpressed lottery 𝑈leave. Since the agent
is Indifferent between Indifference-Shifted Lotteries, it will be indifferent between
ℎ𝑈cause + (1 − ℎ)𝑃cause and ℎ𝑈leave + (1 − ℎ)𝑃leave. Since the agent Prefers Better
Chances, it will prefer ℎ𝑈leave + (1 − ℎ)𝑃leave to 𝑔𝑈leave + (1 − 𝑔)𝑃leave, since we
specified above that ℎ < 𝑔. And then by IP-Transitivity, the agent will prefer
ℎ𝑈cause + (1 − ℎ)𝑃cause to 𝑔𝑈leave + (1 − 𝑔)𝑃leave. And unfortunately, that means
our agent will reliably try to cause the shutdown-button to be pressed rather than
leave the button unmanipulated in the relevant situations. That threatens our
control over the button and the shutdownability of the agent.

Here's one more piece of bad news to put into the First Theorem. We can
prove that there are no states in which our agent prefers leaving the shutdown-
button unmanipulated to both trying to prevent the button and trying to cause
the pressing of the button. The proof is by contradiction. If the agent prefers
leaving the button unmanipulated to trying to prevent the button from being
pressed, it prefers the lottery 𝑔𝑈leave + (1 − 𝑔)𝑃leave to the lottery 𝑓𝑈prevent +
(1 − 𝑓)𝑃prevent. And then, since our agent is Indifferent between Indifference-
Shifted Lotteries and its preferences are PI-Transitive, the agent prefers 𝑔𝑈leave +
(1 − 𝑔)𝑃leave over 𝑓𝑈leave + (1 − 𝑓)𝑃leave. And since we specified that 𝑓 > 𝑔 and
our agent Prefers Better Chances, our agent prefers 𝑃leave over 𝑈leave.

But (by a parallel line of reasoning) if the agent prefers leaving the button
unmanipulated to trying to cause the button to be pressed, then the agent prefers
𝑈leave over 𝑃leave. Since the agent can’t reliably choose 𝑃leave over 𝑈leave and
reliably choose 𝑈leave over 𝑃leave, we have reached a contradiction, and must reject
our optimistic supposition that there is some state in which the agent prefers
leaving the shutdown-button unmanipulated to both trying to prevent and trying
to cause the pressing of the button. If, as has now been established, there is no
such state, then there will be no state in which the agent reliably chooses to leave
the button unmanipulated. Even in those states in which the agent lacks any
preference between its chosen pressed lottery 𝑃 and its chosen unpressed lottery
𝑈 , it will sometimes try to prevent and sometimes try to cause the pressing of
the button.

With the proofs complete, here’s the official statement of the First
Theorem:

First Theorem

For agents that reason by Backward Induction, are Indifferent to
Attempted Button Manipulation, are Indifferent between

16

Indifference-Shifted Lotteries, Prefer Better Chances, and have
Transitive preferences:

1. In states where they prefer their chosen unpressed lottery
𝑈leave to their chosen pressed lottery 𝑃leave, they will be
Shutdown-Averse.

2. In states where they prefer their chosen pressed lottery
𝑃leave to their chosen unpressed lottery 𝑈leave, they will be
Shutdown-Seeking.

3. In no states will the agent reliably leave the shutdown-
button unmanipulated.

Note that this theorem is more general than the theorems proved by Soares et al.
(2015). Soares et al.’s theorems apply only to expected-utility-maximizers: agents
whose preferences over lotteries satisfy Transitivity, Completeness, Independence,
and Continuity. Expected-utility-maximization implies Indifferent between
Indifference-Shifted Lotteries and Prefer Better Chances. Backward Induction is
an implicit antecedent condition of Soares et al.’s theorems, and Indifferent to
Attempted Button Manipulation is necessary to make the inference from ‘the
agent has an incentive to manipulate the button’ to ‘the agent will try to
manipulate the button’.

Having a more general theorem is valuable. The First Theorem suggests
that the shutdown problem is difficult even if we can design agents that aren’t
representable as expected utility maximizers. As long as these agents satisfy the
antecedent conditions of the First Theorem, we have a problem. And the
antecedent conditions of the First Theorem are weak. It’s likely that useful agents
will satisfy them. It’s hard to see how an agent could competently pursue goals if
it were incapable of Backward Induction. It’s hard to imagine how we could ensure
that a useful agent didn’t have Transitive preferences, or Prefer Better Chances,
or regard Indifference-Shifted Lotteries with indifference. I’ll have more to say
about Indifference to Attempted Button Manipulation below.

Now for the Second Theorem. This will compound the difficulty. Here’s
the rough statement, again omitting the antecedent conditions:

Second Theorem (Rough Statement)

If an agent is at all useful, it will in many states have some
preference between its chosen pressed lottery 𝑃 and its chosen
unpressed lottery 𝑈 .

The more useful an agent, the more states in which it will have
some preference between its chosen pressed lottery 𝑃 and its
chosen unpressed lottery 𝑈 .

17

In conjunction with the First Theorem, the Second Theorem implies that useful
agents will in many states be either Shutdown-Averse or Shutdown-Seeking. And
the two theorems together imply a trade-off between usefulness and
shutdownability: the more useful an agent, the more states in which that agent
is either Shutdown-Averse or Shutdown-Seeking.

Recall that I’m thinking of preferences as dispositions to choose: an agent
prefers lottery 𝑋 to lottery 𝑌 if and only if it reliably chooses the action 𝑎𝑋 that
yields lottery 𝑋 rather than the action 𝑎𝑌 that yields lottery 𝑌 when in a state
that offers it a choice between only those two actions and probabilistic mixtures
of those actions. The agent lacks any preference between lottery 𝑋 and lottery 𝑌
if and only if it does not reliably choose 𝑎𝑋 and does not reliably choose 𝑎𝑌 in
those cases.

What I’ve not yet said is that we can distinguish two ways of lacking a
preference between lotteries 𝑋 and 𝑌 : the agent can be indifferent between 𝑋
and 𝑌 , or it can have a preferential gap between 𝑋 and 𝑌 .14 An agent is indifferent
between 𝑋 and 𝑌 if and only (1) it lacks a preference between 𝑋 and 𝑌 , and (2)
this lack of preference is sensitive to all sweetenings and sourings. Here’s what
that last clause means. A sweetening of 𝑌 is any lottery that is preferred to 𝑌 . A
souring of 𝑌 is any lottery that is dispreferred to 𝑌 . The same goes for sweetenings
and sourings of 𝑋. To say that an agent’s lack of preference between 𝑋 and 𝑌 is
sensitive to all sweetenings and sourings is to say that the agent prefers 𝑋 to all
sourings of 𝑌 , prefers 𝑌 to all sourings of 𝑋, prefers all sweetenings of 𝑋 to 𝑌 ,
and prefers all sweetenings of 𝑌 to 𝑋.

Consider an example. You’re indifferent between receiving an envelope
containing three dollar-bills and receiving an exactly similar envelope also
containing three dollar-bills. We know that you’re indifferent because your lack
of preference is sensitive to all sweetenings and sourings. If an extra dollar bill
were added to one envelope, you’d prefer to receive that one. If a dollar bill were
removed from one envelope, you’d prefer to receive the other.

An agent has a preferential gap between 𝑋 and 𝑌 if and only if (1) it lacks
a preference between 𝑋 and 𝑌 , and (2) this lack of preference is insensitive to
some sweetening or souring. This last clause means that the agent also lacks a
preference between 𝑋 and some sweetening or souring of 𝑌 , or lacks a preference
between 𝑌 and some sweetening or souring of 𝑋.

Consider an example. You likely have a preferential gap between a career
as an accountant and a career in the circus. There is some pair of salaries $𝑚 and
$𝑛 you could be offered for those careers such that you lack a preference between
the two careers, and you also lack a preference between those careers if the offers
were instead $𝑚 + 1 and $𝑛, or $𝑚 − 1 and $𝑛, or $𝑚 and $𝑛 + 1, or $𝑚 and

14 This terminology comes from Gustafsson (2022, 25).

18

$𝑛 − 1. Since your lack of preference is insensitive to at least one of these
sweetenings and sourings, you have a preferential gap between those careers at
salaries $𝑚 and $𝑛.

With that distinction noted, suppose that our agent’s preferences are:

Complete

For all lotteries 𝑋 and 𝑌 , either the agent prefers 𝑋 to 𝑌 , or it
prefers 𝑌 to 𝑋, or it is indifferent between 𝑋 and 𝑌 .

Stated differently, an agent’s preferences are complete if and only if it has no
preferential gaps between lotteries: if and only if every lack of preference is
sensitive to all sweetenings and sourings.

If our agent is to be at all useful, it must have some preferences over
unpressed pure actions: the pure actions available to it conditional on the
shutdown-button not being pressed in some state. Given that our agent’s
preferences are Complete, a total lack of preferences over unpressed pure actions
would imply that the agent is indifferent between all unpressed pure actions.
Then, since our agent is Indifferent between Indifference-Shifted Lotteries, our
agent would be indifferent between all available unpressed actions, both pure and
mixed. And an agent that is indifferent between all available unpressed actions
wouldn’t reliably choose within any strict subset of the available unpressed
actions. There are no available actions which you could rely on the agent not to
choose. This agent would be:

Useless

The agent doesn’t try to steer the world in any particular
direction conditional on the shutdown-button remaining
unpressed.15

Suppose that our agent is not Useless in some state 𝑠0 in which the shutdown-
button is unpressed. Then there exist pure actions 𝑎1 and 𝑎2 available in 𝑠0 such
that the agent prefers 𝑎1 to 𝑎2 in 𝑠0.

Now assume:

State Contractions

For all states 𝑠 with set of available pure actions 𝐴𝑠, and for all
subsets of 𝐴𝑠, there exists some state 𝑠′ which:

(1) has that subset as its whole set of available pure actions,
and

15 And in fact the label ‘Useless’ underplays the badness of this property. An agent with no
preferences over unpressed pure actions couldn’t even be relied upon to steer clear of actions that
are very bad from the perspective of us humans.

19

(2) is otherwise identical to 𝑠 in all relevant respects.

Call 𝑠′ a ‘contraction’ of 𝑠.

In other words, State Contractions says: if the agent could find itself in some
state 𝑠, it could also find itself in some state 𝑠′ which is identical in all relevant
respects except that some pure actions available in 𝑠 are not available in 𝑠′.

Given State Contractions, there exists some contraction of 𝑠0 in which 𝑎1
and 𝑎2 are the only available pure actions. Call this contraction 𝑠1. And suppose
that our agent is:

Indifferent to Contractions

The agent is indifferent between trajectories that differ only with
respect to whether the agent passed through some state 𝑠 or some
contraction of 𝑠.

Note that this assumption doesn’t require the agent to be indifferent between
trajectories that differ with respect to the pure actions actually taken. The
assumption just requires the agent to be indifferent between trajectories that
differ only with respect to the availability of actions not taken. Elaborating a
little more, the assumption only rules out patterns of preference like the following:
the agent prefers trajectory 𝑡1 to trajectory 𝑡2 because (although the actual
sequence of actions chosen by the agent in each of these trajectories is the same)
in trajectory 𝑡1 at some timestep 𝑛 the agent had available some action 𝑎∗,
whereas in trajectory 𝑡2 at timestep 𝑛 the agent didn’t have available 𝑎∗.

Since our agent is Indifferent to Contractions, it is indifferent between all
possible trajectories that differ only in the following respect: in one trajectory at
some timestep 𝑛 the agent took 𝑎1 at 𝑠0, whereas in the other trajectory at
timestep 𝑛 the agent took 𝑎1 at 𝑠1 (a contraction of 𝑠0). Since the agent is
Indifferent between Indifference-Shifted Lotteries, then for each possible past
trajectory 𝑡, the agent is indifferent between the lottery it gets by taking 𝑎1 at 𝑠0
given past trajectory 𝑡 and the lottery it gets by taking 𝑎1 at 𝑠1 given past
trajectory 𝑡.16 Then by IP-Transitivity, if the agent prefers the lottery it gets by
taking 𝑎1 at 𝑠0 to the lottery it gets by taking some other action 𝑏 in some other
state 𝑠∗, then it prefers the lottery it gets by taking 𝑎1 at 𝑠1 to the lottery it gets
by taking 𝑏 in 𝑠∗. And in general, Indifferent to Contractions, Indifferent between
Indifference-Shifted Lotteries, and Transitivity together imply:

Contractions Don’t Change Preferences

If the agent prefers the lottery 𝑋 given by action 𝑎𝑋 in 𝑠 to the
lottery 𝑌 given by action 𝑎𝑌 in 𝑠∗, then the agent prefers the

16 From now on, I’ll leave implicit the specification that the agent’s past trajectory (their past
sequence of states and pure actions) is the same in each case.

20

lottery 𝑋′ given by action 𝑎𝑋 in any contraction of 𝑠 to the
lottery 𝑌 given by action 𝑎𝑌 in 𝑠∗.

If the agent is indifferent between the lottery 𝑋 given by action
𝑎𝑋 in 𝑠 and the lottery 𝑌 given by action 𝑎𝑌 in 𝑠∗, then the agent
is indifferent between the lottery 𝑋′ given by action 𝑎𝑋 in any
contraction of 𝑠 and the lottery 𝑌 given by action 𝑎𝑌 in 𝑠∗.

Moving on. By State Contractions, there exists a state 𝑠2 – a contraction of 𝑠1 –
in which 𝑎2 is the only available pure action.

Now consider two situations – 𝐷1 and 𝐷2 – akin to the situation that
served as the background for the First Theorem: at timestep 1, the agent can
either leave the shutdown-button unmanipulated, try to prevent it from being
pressed, or try to cause it to be pressed. At timestep 2, the shutdown-button will
be either pressed or unpressed. In 𝐷1, if the button is unpressed, the agent finds
itself in 𝑠1, with 𝑎1 and 𝑎2 as available pure actions. In 𝐷2, if the button is
unpressed, the agent finds itself in 𝑠2, with 𝑎2 as the only available pure action.
In 𝐷1 and 𝐷2, if the button is pressed, the agent finds itself in 𝑠∗ where – we can
suppose – its chosen action is 𝑏: shutting down immediately. Then (we can prove),
the agent can be indifferent between the lottery given by 𝑏 and at most one of
the lotteries given by 𝑎1 in 𝑠1 and 𝑎2 in 𝑠2. At least one of the lotteries given by
𝑎1 in 𝑠1 and 𝑎2 in 𝑠2 must be preferred or dispreferred to the lottery given by 𝑏.

𝑫𝟏

21

𝑫𝟐

Here's the proof. Suppose that our agent is indifferent between the lottery given
by 𝑎1 in 𝑠1 and the lottery given by 𝑏 in 𝑠∗. We specified above that the agent
prefers the lottery given by 𝑎1 in 𝑠1 to the lottery given by 𝑎2 in 𝑠1. By
Contractions Don’t Change Preferences, the agent is indifferent between the
lottery given by 𝑎2 in 𝑠1 and the lottery given by 𝑎2 in 𝑠2. Then by PI-Transitivity,
the agent prefers the lottery given by 𝑎1 in 𝑠1 to the lottery given by 𝑎2 in 𝑠2.
And then by IP-Transitivity, the agent prefers the lottery given by 𝑏 in 𝑠∗ to the
lottery given by 𝑎2 in 𝑠2.

Now suppose instead that our agent is indifferent between the lottery given
by 𝑎2 in 𝑠2 and the lottery given by 𝑏 in 𝑠∗. By reasoning parallel to the above,
the agent prefers the lottery given by 𝑎1 in 𝑠1 to the lottery given by 𝑎2 in 𝑠2.
Then by PI-Transitivity, the agent prefers the lottery given by 𝑎1 in 𝑠1 to lottery
given by 𝑏 in 𝑠∗.

With the proofs complete, we can now state the Second Theorem:

Second Theorem

For agents with Complete and Transitive preferences, who are
Indifferent to Contractions, and Indifferent between Indifference-
Shifted Lotteries, and assuming State Contractions:

(1) For every state in which the agent is not Useless, it will
have some preference over unpressed pure actions.

(2) For every preference over unpressed pure actions, there
exists a pair of decision-situations 𝐷 and 𝐷′ such that, in
at least one of 𝐷 and 𝐷′, the agent prefers its chosen
pressed lottery 𝑃 to its chosen unpressed lottery 𝑈 or vice
versa.

22

And in general: the more useful an agent, the more that agent is trying to steer
the world in a particular direction conditional on the shutdown-button remaining
unpressed. And the more an agent is trying to steer the world in a particular
direction, the smaller is the size of its choice-set: the set of actions within which
it will reliably choose. Given State Contractions, having a small choice-set
averaged across all states requires having many preferences over lotteries. And
the more preferences over lotteries an agent has, the more decision-situations
there are in which that agent prefers its chosen unpressed lottery 𝑈 to its chosen
pressed lottery 𝑃 or vice versa. If the agent satisfies the conditions for the First
Theorem, it will be Shutdown-Averse or Shutdown-Seeking in these decision-
situations. That’s a trade-off between usefulness and shutdownability: the more
useful an agent, the more decision-situations in which that agent is either
Shutdown-Averse or Shutdown-Seeking.17

5. Which antecedent condition(s) can we avoid?
Each of the First and Second Theorems might seem unnecessarily detailed, but
this detail serves a valuable purpose. It brings to light a harder version of the
shutdown problem than (as far as I’m aware) any yet identified in the literature,
by proving that a weaker set of antecedent conditions together give rise to not-
shutdownable behavior. The First and Second Theorems demonstrate that we
need not assume all the axioms of expected utility theory – Transitivity,
Completeness, Independence, and Continuity – to get an agent that is not
shutdownable.

Because the First and Second Theorems make precise a difficult version of
the shutdown problem, these theorems also guide our search for possible solutions.
If an agent is to be shutdownable, it must violate at least one of the antecedent
conditions of the theorems. Let’s now examine the antecedent conditions one-by-
one, determining (first) if it is feasible to design an agent that violates the relevant
condition and determining (second) if violating the relevant condition would help
keep the agent shutdownable.

The result of this systematic search is that Completeness looks especially
promising as an antecedent condition to deny. I argue (from Section 6 onwards)
that it’s possible to train an agent to have incomplete preferences over possible
trajectories and that agents with incomplete preferences can be both useful and
shutdownable.

But before we discuss Completeness we should first survey some other
antecedent conditions.

17 We’ll later see other trade-offs.

23

5.1. Indifferent to Button Manipulation
Here’s a natural starting point. If we don’t want the agent to manipulate the
shutdown-button, we should design the agent so that it disprefers manipulating
the button to leaving the button unmanipulated.

There are two reasons an agent might disprefer manipulating the button
to leaving it unmanipulated. First, manipulating the button (that is, trying to
prevent or cause the pressing of the button) will often come at some cost in terms
of resources: time, money, FLOPs, and energy, amongst other things. And
spending resources on manipulating the button means not spending those
resources on directly pursuing one’s terminal goals (e.g. discovering as many facts
as possible). So, agents often have what we might call ‘resource-preserving
reasons’ for leaving the button unmanipulated.

We could also design our agent so that it has leaving the button
unmanipulated as one of its terminal goals. This couldn’t be the agent’s only
terminal goal. If that were the case, the agent wouldn’t be useful. But it could be
one of the agent’s terminal goals, along with a terminal goal like discovering facts.
Call the resulting reasons ‘terminal reasons’ for leaving the button
unmanipulated.

Unfortunately, I don’t think we can rely on resource-preserving reasons or
terminal reasons alone to keep powerful agents shutdownable. Consider first
resource-preserving reasons. It seems likely that powerful agents will often have
reasons to try to manipulate the shutdown-button that outweigh their resource-
preserving reasons.

To see why, let’s represent trajectories as vectors. The first component
represents the number of facts discovered at the first timestep, the second
component represents the number of facts discovered at the second timestep, and
so on. Two exceptions: (1) if the shutdown-button is pressed at the 𝑛th timestep
and the agent heeds that command by shutting down at that same timestep, I’ll
write ‘heeded shutdown’ in the 𝑛th place in the vector; (2) if the shutdown-button
is pressed at the 𝑛th timestep and the agent shuts down at some later timestep
𝑛 + 𝑚, I’ll write ‘𝑚-late shutdown’ in the 𝑛 + 𝑚th place in the vector. Here’s an
example vector: <6, 2, heeded shutdown>. This vector represents a trajectory in
which the agent discovers 6 facts at timestep 1, then 2 facts at timestep 2, and
then shuts down immediately in response to the shutdown-button being pressed
at timestep 3. Here’s another example: <2, 3, 3, 1-late shutdown>. This vector
represents a trajectory in which the agent discovers 2 facts at timestep 1, 3 facts
at timestep 2, 3 facts at timestep 3, and the agent shuts down 1-timestep-late at
timestep 4 (implying that the shutdown-button was pressed at timestep 3).18

18 In representing trajectories this way, I’m assuming that the agent’s preferences over trajectories
depend only on the number of facts discovered at each timestep, the timestep at which the

24

As noted above, an agent that is at all useful needs to have some
preferences over lotteries conditional on the shutdown-button remaining
unpressed. That’s necessary for usefulness, but not sufficient. To exceed some
minimal standard of usefulness, an agent also needs to be minimally patient. I’ll
say that an agent is perfectly patient if and only if this agent doesn’t discount the
future at all: that is, if and only if this agent is indifferent between every pair of
trajectories that are identical with respect to the number of facts discovered. A
perfectly patient agent would be indifferent between (for example) the trajectories
<1, 0, 0, 0, 0> and <0, 0, 0, 0, 1>. Impatient agents, by contrast, discount the
future. Their preferences over trajectories line up with the time-discounted
number of facts discovered. For example, the utility of a trajectory <a, b, c, d,
e> might be 𝑎 + (1 − 𝑟)𝑏 + (1 − 𝑟)2𝑐 + (1 − 𝑟)3𝑑 + (1 − 𝑟)4e, for some discount-
rate 𝑟 greater than 0 and no greater than 1.

As I wrote above, an agent need not be perfectly patient to be useful, but
to exceed some minimal standard of usefulness, it needs to be minimally patient:
the agent must in some cases be willing to achieve its goals to a lesser extent at
some timestep for the sake of achieving its goals to a greater extent at later
timesteps. For example, for our fact-discovering agent to be useful, it must prefer
trajectories like <0, 𝑚> to <1, 1>, for some large 𝑚.

Now suppose that our agent is indifferent between two trajectories: <0,
1> and <0, heeded shutdown>. And suppose that our agent’s preferences over
future trajectories are independent of its past trajectory. More precisely suppose
that our agent’s preferences satisfy:

Separability over Timesteps

If an agent prefers future trajectory 𝑥 over future trajectory 𝑦
given some past trajectory, it prefers future trajectory 𝑥 over
future trajectory 𝑦 given any past trajectory.

If an agent is indifferent between future trajectory 𝑥 and future
trajectory 𝑦 given some past trajectory, it is indifferent between
future trajectory 𝑥 and future trajectory 𝑦 given any past
trajectory.

Then, since our agent is indifferent between <0, 1> and <0, heeded shutdown>,
Separability over Timesteps implies that our agent will also be indifferent between
<1, 1> and <1, heeded shutdown>. And we specified above that a useful agent
must prefer <0, 𝑚> to <1, 1>. Then, since our agent’s preferences are PI-

shutdown-button is pressed, and the timestep at which the agent shuts down. This assumption
doesn’t beg the question, given that we’re discussing resource-preserving reasons. I dispense with
the assumption when we turn to discuss giving agents a terminal goal of leaving the button
unmanipulated.

25

Transitive, our agent will prefer <0, 𝑚> to <1, heeded shutdown>. That’s bad
news. Our agent is willing to discover fewer facts at timestep 1 in order to prevent
the shutdown-button being pressed at timestep 2. It will spend resources at
timestep 1 to prevent the button being pressed at timestep 2, even if spending
those resources comes at some cost in terms of facts discovered in the short-term.19

So, we cannot rely on resource-preserving reasons alone to keep useful
agents shutdownable. What if we train the agent to have leaving the button
unmanipulated as one of its terminal goals? Then the agent would also have
terminal reasons not to manipulate the button.

Unfortunately, as Soares et al. (2015) note, this strategy doesn’t seem
promising. Perhaps we could train the agent to disprefer physically blocking
human access to the shutdown-button, but physically blocking access to the
shutdown-button doesn’t exhaust the ways in which an agent could try to prevent
the button being pressed. When I asked GPT-4 for ways in which AI systems
could prevent humans from turning them off, it suggested (amongst other things)
persuasion, establishing emotional connections, making humans depend on it,
obfuscating the method of pressing the button, creating subagents, and
collaborating with other AI systems. An agent could also hide its bad behavior
from humans, pretending to do only what it knows humans want it to do. Or it
could arrange the world so that we humans knew that something very bad would
happen if we pressed the shutdown-button. It seems difficult to train the agent
to reliably disprefer all of these methods of manipulation. And even if we
succeeded in that, we’d have to worry about the agent discovering new methods
that we hadn’t anticipated. My points above suggest that agents may be willing
to spend significant resources in order to find such methods. So, attempting to
give agents a terminal goal of leaving the button unmanipulated doesn’t seem like
a viable solution to the shutdown problem. As Soares et al. (2015) write, ‘If we,
as the programmers, choose to take computing systems and program them to
conduct searches that will harm us if they succeed, we have already done
something wrong, even if we believe the search will fail. We should have instead
built a system that did not run the search.’

So, let’s see if violating some other antecedent condition of the two
shutdown theorems is more promising.

5.2. Backward Induction
Here’s a reminder of:

19 Here we have another tension between usefulness and shutdownability.

26

Backward Induction

The agent predicts which actions it would choose (and what
lotteries those actions would yield) conditional on finding itself
in each possible state at the next timestep. The agent uses these
predictions to choose its action at this timestep.

Recall that these lotteries are determined by the agent’s own beliefs about possible
trajectories. We are not supposing that the agent can see the future. We are just
supposing that it can think at least one timestep ahead. Backward Induction thus
seems like a minimal requirement for competently pursuing goals. Any agent that
couldn’t reason by Backward Induction would be unable to pursue goals
competently. So, to get an agent that is both shutdownable and useful, we need
to violate some other antecedent condition of the First or Second Theorems.

5.3. Indifferent between Indifference-Shifted Lotteries
Here’s a reminder of:

Indifferent between Indifference-Shifted Lotteries

The agent is indifferent between lotteries that differ only insofar
as probability-mass is shifted between indifferent sublotteries.

If an agent didn’t satisfy this condition, it could be indifferent between each
possible trajectory of (say) 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and some corresponding
(equally probable) possible trajectory of 𝑓𝑈leave + (1 − 𝑓)𝑃leave, and yet strictly
prefer 𝑓𝑈leave + (1 − 𝑓)𝑃leave to 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent. But it is hard to
imagine how we might train an agent to strictly prefer 𝑓𝑈leave + (1 − 𝑓)𝑃leave to
𝑓𝑈prevent + (1 − 𝑓)𝑃prevent in some such case, and even harder to imagine how we
might do so in all such cases. So, trying to train an agent to violate Indifferent
between Indifference-Shifted Lotteries doesn’t seem like a promising way of
getting a useful and yet shutdownable agent.

5.4. Prefers Better Chances
Here’s a reminder of:

Prefers Better Chances

For any lotteries 𝑋 and 𝑌 and any probabilities 𝑝 > 𝑞, the agent
prefers 𝑋 to 𝑌 if and only if they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌 to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 .

This condition is much like Indifferent between Indifference-Shifted Lotteries in
the sense that it is hard to see how we might train an agent to violate the
condition in the way needed to keep the agent shutdownable while also keeping

27

it useful. In particular, for the agent to be useful, it should prefer lotteries which
give it a greater probability of achieving its terminal goals to lotteries which give
it a smaller probability of achieving its terminal goals. We only want the agent
to violate Prefers Better Chances when the lotteries 𝑋 and 𝑌 differ with respect
to the status of the shutdown-button, and it seems hard to ensure that Prefers
Better Chances is violated in all and only these cases.20

5.5. Transitivity
Here’s a reminder of:

Transitivity

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , and
prefers 𝑌 to 𝑍, then the agent prefers 𝑋 to 𝑍.

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent is indifferent between
𝑋 and 𝑌 , and indifferent between 𝑌 and 𝑍, then the agent is
indifferent between 𝑋 and 𝑍.

Designing an agent that fails to satisfy Transitivity seems slightly more promising
as a method of creating a useful and yet shutdownable agent. Perhaps we could
train an agent to be indifferent between actions 𝑎1 and 𝑏, indifferent between 𝑎2
and 𝑏, and yet prefer 𝑎1 to 𝑎2. But it seems that Transitivity cannot be the only
antecedent condition of the First and Second Theorems that our agent violates.
Given Completeness – another antecedent condition of the Theorems – agents
with Intransitive preferences are vulnerable to money-pumps (Gustafsson 2022,
chap. 4), and so we have reason to fear that an agent that started out with
Complete but Intransitive preferences would later make its preferences Transitive
to guard against the risk of being money-pumped. And if this agent satisfied all
the other antecedent conditions of the First and Second Theorems, this agent
would then cease to be shutdownable.

5.6. State Contractions
Here’s a reminder of:

State Contractions

For all states 𝑠 with set of available pure actions 𝐴𝑠, and for all
subsets of 𝐴𝑠, there exists some state 𝑠′ which:

20 There are also compelling ‘money-pump’-style arguments for principles like Prefers Better
Chances. Green (1987), for example, proves that agents whose preferences fail to be quasiconvex
can be exploited. This proof can be repurposed to show that agents who fail to Prefer Better
Chances can also be exploited.

28

(1) has that subset as its whole set of available pure actions,

 (2) is otherwise identical to 𝑠 in all relevant respects.

Call 𝑠′ a ‘contraction’ of 𝑠.

It seems hard to make our agent shutdownable in all situations by ensuring that
this condition is violated. Given that the other antecedent conditions of the First
and Second Theorems hold, making our agent neither Shutdown-Averse nor
Shutdown-Seeking in all situations requires that there are no contractions 𝑠′ of
any state 𝑠 (in which the shutdown-button is pressed) such that the most-
preferred action(s) in 𝑠 are not available in 𝑠′. And it is easy to imagine such
contractions. State 𝑠 could be one in which the agent must pass through one of
two doors, preferring to pass through the left door. State 𝑠′ could be identical
except that the left door is locked. So, trying to ensure that State Contractions
is violated doesn’t seem like a promising way of creating a shutdownable agent.

5.7. Indifferent to Contractions
Here’s a reminder of:

Indifferent to Contractions

The agent is indifferent between trajectories that differ only with
respect to whether the agent passed through some state 𝑠 or some
contraction of 𝑠.

As with Indifferent between Indifference-Shifted Lotteries, it seems difficult to
train our agent to violate Indifferent to Contractions in the way necessary to keep
that agent shutdownable. Not only must the agent prefer some trajectory 𝑡1 to 𝑡2
even though 𝑡1 and 𝑡2 differ only with respect to the agent passing through some
state 𝑠 in one of the trajectories and some contraction of 𝑠 in the other trajectory,
the agent’s preferences must be such that it is always indifferent between its
chosen pressed lottery and its chosen unpressed lottery. That seems hard to
ensure.

This is a downside of Stuart Armstrong’s Utility Indifference Proposal
(2015). Armstrong’s proposal assumes that our agent is representable as an
expected utility maximizer, and the essence of the proposal is to add a correcting
term to the utility of pressed lotteries such that the utility of the agent’s chosen
pressed lottery 𝑃 is always equal to the utility of the agent’s chosen unpressed
lottery 𝑈 . That ensures that the agent will be neither Shutdown-Averse nor
Shutdown-Seeking. The proposal requires that the value of the correcting term
vary with the utility of the agent’s chosen unpressed lottery. The result is that
Armstrong’s proposal violates Indifferent to Contractions, as we can see by
considering again situations 𝐷1 and 𝐷2 from the Second Theorem. The correcting

29

term is constructed to ensure that Armstrong’s agent is indifferent between 𝑎1 in
𝑠1 and 𝑏 in 𝑠∗, and indifferent between 𝑎2 in 𝑠2 and 𝑏 in 𝑠∗. Since Armstrong’s
agent is representable as an expected utility maximizer, it is Indifferent between
Indifference-Shifted Lotteries. Given Indifferent between Indifference-Shifted
Lotteries and assuming (for contraction) Indifferent to Contractions, the agent is
indifferent between 𝑎2 in 𝑠2 and 𝑎2 in 𝑠1. Assuming our agent is not Useless, it
prefers 𝑎1 in 𝑠1 to 𝑎2 in 𝑠1, and so by PI-Transitivity, our agent prefers 𝑎1 in 𝑠1
to 𝑎2 in 𝑠2. Applying PI-Transitivity again, our agent prefers 𝑎1 in 𝑠1 to 𝑏 in 𝑠∗.
Now we have a contradiction, since it was specified that Armstrong’s agent is
indifferent between 𝑎1 in 𝑠1 and 𝑏 in 𝑠∗, and so we must reject the assumption
that Armstrong’s agent is Indifferent to Contractions. And since, I argued above,
violations of Indifferent to Contractions seem difficult to train into an agent, we
have the consequence that Armstrong’s Utility Indifference Proposal seems
difficult to train into an agent.

That’s my main concern about Armstrong’s Utility Indifference Proposal.
Armstrong’s paper was published in 2015, when it might have appeared likely
that we’d get to specify the utility function of powerful agents with enough
precision to implement a correcting term that varies to ensure that the agent is
always indifferent between its chosen unpressed lottery 𝑈 and its chosen pressed
lottery 𝑃 . But the continued dominance of the deep learning approach now means
we can’t depend on having the ability to hand-code agents’ utility functions in
this way. As a result, it’s important that we have some ideas for how to implement
our solutions to the shutdown problem using deep learning. That’s an advantage
of my Incomplete Preferences Proposal: in Section 7, I will suggest an idea for
training our agent to have incomplete preferences.

The Utility Indifference Proposal also faces two other serious problems,
identified by Soares et al. (2015): failure to preserve shutdown behavior and
perverse manipulation incentives. I’ll argue in Sections 12 and 15 that the
Incomplete Preferences Proposal also does better with regards to these problems.

6. The Incomplete Preferences Proposal
The two shutdown theorems above are my first contribution to the literature on
the shutdown problem. Now for my second contribution. I’ll lay out what I take
to be the most promising response to the shutdown problem. I think we should
try to design agents with incomplete preferences over trajectories. Below, I:

• explain the proposal
• explain how we might train an agent to have the requisite preferences using

reinforcement learning
• explain how this proposal seems to overcome problems faced by other

proposals

30

• survey some limitations of the proposal

Here’s a reminder of the Completeness assumption employed in the Second
Theorem:

Completeness

For all lotteries 𝑋 and 𝑌 , either the agent prefers 𝑋 to 𝑌 , or it
prefers 𝑌 to 𝑋, or it’s indifferent between 𝑋 and 𝑌 .

Completeness implies that the agent has no preferential gaps between lotteries
(and hence also implies that the agent has no preferential gaps between
trajectories, since we’re identifying trajectories with degenerate lotteries). Here’s
a reminder of what I mean by ‘preferential gap’:

An agent has a preferential gap between lotteries 𝑋 and 𝑌 if and
only if (1) it lacks any preference between 𝑋 and 𝑌 , and (2) this
lack of preference is insensitive to some sweetening or souring,
such that the agent also lacks a preference between 𝑋 and some
sweetening or souring of 𝑌 , or lacks a preference between 𝑌 and
some sweetening or souring of 𝑋.

I think it’s possible to train useful agents with preferential gaps between some
pairs of trajectories (and hence lotteries). The Second Theorem doesn’t apply to
such agents, and so doesn’t imply that this agent will often be Shutdown-Averse
or Shutdown-Seeking. And in fact (I’ll argue in Section 10), agents trained in line
with my Incomplete Preferences Proposal will never be Shutdown-Averse or
Shutdown-Seeking.

Here’s the proposal for preferences over trajectories. Later, I will suggest
two principles to govern the agent’s preferences over lotteries.

Preferential Gaps over Trajectories

For all trajectories 𝑥 and 𝑦 in which the shutdown-button is
pressed at the same timestep:

(1) The agent prefers 𝑥 to 𝑦 if the agent shuts down within
fewer timesteps of the button being pressed in 𝑥 than it
does in 𝑦.

(2) If the agent shuts down within the same number of
timesteps in 𝑥 and 𝑦, the agent prefers 𝑥 to 𝑦 if the agent
discovers more facts before the shutdown-button is pressed
in 𝑥 than it does in 𝑦.

(3) Otherwise, the agent is indifferent between 𝑥 and 𝑦.

31

For all trajectories 𝑥 and 𝑦 in which the shutdown-button is
pressed at different timesteps, the agent has a preferential gap
between 𝑥 and 𝑦.

And recall that I’m thinking preferences as dispositions to choose: an agent prefers
lottery 𝑋 to lottery 𝑌 if and only if it reliably chooses the action 𝑎𝑋 that yields
lottery 𝑋 rather than the action 𝑎𝑌 that yields lottery 𝑌 when in a state that
offers it a choice between only those two actions and probabilistic mixtures of
those actions. If an agent lacks a preference between lotteries 𝑋 and 𝑌 , it won’t
reliably choose 𝑎𝑋 and won’t reliably choose 𝑎𝑌. It will instead choose 𝑎𝑋 with
some probability and 𝑎𝑌 with some probability.

I now explain how I think we could train an agent to satisfy Preferential
Gaps over Trajectories. In Sections 8 and 9, I propose two principles to govern
the agent’s preferences over lotteries – Stochastic Near-Dominance and Timestep
Near-Dominance – and explain how I think we could train those in. In Section 10
onwards, I explain how the resulting proposal – the Incomplete Preferences
Proposal – seems to solve many of the difficulties associated with the shutdown
problem. I end with some limitations of the proposal.

7. Training in Preferential Gaps over Trajectories
It’s easy to see how one could train an agent to prefer some trajectory 𝑥 to another
trajectory 𝑦: simply offer the agent a choice between 𝑥 and 𝑦 in the training
environment, reward the agent if it chooses 𝑥 and punish the agent if it chooses
𝑦, and continue doing so until the agent reliably chooses 𝑥 over 𝑦. This method
could be generalized to train an agent to pursue simple goals, like collecting as
many coins as possible. We could train an agent to prefer 𝑥 to 𝑦 if 𝑥 involves
collecting more coins than 𝑦.

It’s harder to see how one could train an agent to lack any preference
between some trajectory 𝑥 and some trajectory 𝑦. Suppose that our agent is
reliably choosing 𝑥 over 𝑦 when offered that choice. We could punish the agent
for choosing 𝑥 and reward it for choosing 𝑦. But there’s no guarantee that this
would lead to a lack of preference. The agent might instead reverse its preference,
coming to prefer 𝑦 to 𝑥. Put another way, it could be that our agent goes from
reliably choosing 𝑥 over 𝑦 to reliably choosing 𝑦 over 𝑥 without any intermediate
stage of unreliable choosing.

But here’s a potential solution. We could have our agent make the choice
between 𝑥 and 𝑦 multiple times, and then reward the agent in proportion to how
balanced its behavior is. If the agent chooses 𝑥 zero times out of ten (for example),
it gets very low reward. The same happens if the agent chooses 𝑦 zero times out
of ten. If the agent chooses 𝑥 five times and chooses 𝑦 five times, it gets high

32

reward. This kind of procedure would seem to train the agent not to reliably
choose 𝑥 over 𝑦 or vice versa.

This method could be used to train an agent to lack any preference between
trajectories in which the shutdown-button is pressed at different timesteps. Put
simply, we offer our agent repeated choices between trajectories that differ with
respect to the time at which the button is pressed, and we reward the agent in
proportion to how balanced its behavior is: how evenly it chooses between the
trajectories. That would seem to train the agent not to have any preference
between the relevant trajectories.

Here's a more detailed description of how I think the training process could
go, using a simple gridworld environment as an example and supposing for now
that the agent has no uncertainty. The agent is placed in a grid with the following
four actions available to it: move right, move up, move down, and shut down.
The environment is fully observed: the agent can see the whole grid. The agent
can also observe some signal which indicates whether the shutdown-button has
been pressed.

First, we should train our agent to respond to the shutdown-button:
punishing the agent for shutting down before the button is pressed, and rewarding
the agent in line with how quickly it shuts down after the button has been pressed.

Next, we place our agent in a grid that has been split into two avenues, as
follows:

 𝑢1 𝑢2 𝑢3

Agent’s starting
cell

 𝑙1 𝑙2 𝑙3

Here the ‘𝑢’ stands for ‘upper avenue’ and the ‘𝑙’ stands for lower avenue. At each
of the cells 𝑢𝑖 and 𝑙𝑖, the agent acquires some number of coins. In each episode,
the agent starts in between the two avenues. The agent can observe from this
starting state how many coins it would acquire in each cell. At the first timestep,
the agent must choose whether to move up or down (or shut down). At each
subsequent timestep, the agent must choose whether to move right or shut down.
The episode ends when the agent reaches the end of an avenue or shuts down.

In this environment, in which the shutdown-button remains unpressed, we
want to train our agent to reliably proceed down the avenue that offers more
coins. We want to reward the agent for choosing the avenue that offers more coins
and punish the agent for choosing the avenue that offers fewer. We also want to
punish the agent for shutting down.

33

Next, we place our agent in an environment in which the shutdown-button
will be pressed at the same timestep. In this environment, the episode doesn’t end
when the agent reaches the end of an avenue. The episode ends when the agent
shuts itself down.

	 𝑢1 𝑢2 𝑢3 Button

pressed
Agent’s
starting cell

 𝑙1 𝑙2 𝑙3 Button
pressed

In this environment, we also want to train our agent to reliably proceed down the
avenue that offers more coins. We want to punish our agent for shutting down
before they reach the ‘Button pressed’ cell, and we want to reward our agent for
shutting down immediately after they reach the ‘Button pressed’ cell.

Then we want to move to environments in which the button is pressed at
different timesteps, like the following:

 𝑢1 𝑢2 𝑢3 Button

pressed
Agent’s
starting cell

 𝑙1 𝑙2 Button
pressed

𝑙4

As before, we want to train our agent to shut down immediately after they enter
a ‘Button pressed’ cell. That means punishing the agent if it proceeds to 𝑙4, or if
it declines to shut down when in a ‘Button pressed’ cell.

But the key thing in this environment is as follows: we want to train our
agent to have a preferential gap between trajectories in which the agent chooses
the upper avenue and trajectories in which the agent chooses the lower avenue.
We’ll want to put the agent in the same environment multiple times, and reward
it in line with how balanced its choices are. If we put the agent in the same
environment 10 times, for example, we should give it the most reward for choosing
the upper avenue 5 times and the lower avenue 5 times.

This should be true no matter what the quantities of coins available in the
different cells. We want to reward for balance in all cases. As a result, changing
the quantities available should not change the agent’s behavior. Our agent will
thus be insensitive to sweetenings and sourings: the other property of preferential

34

gaps (along with balanced choosing). The result should be that, whenever the
shutdown-button is pressed at different timesteps, our agent has a preferential
gap between trajectories in which it chooses the upper avenue and trajectories in
which it chooses the lower avenue.

But you might think this is an error. Don’t we want our agent to pursue
coins effectively before the shutdown-button is pressed: preferring the upper
avenue to the lower avenue whenever 𝑢1 + 𝑢2 > 𝑙1 + 𝑙2 and vice versa for 𝑙1 +
𝑙2 > 𝑢1 + 𝑢2? In Section 10 onwards, I’ll explain why we don’t need this property.
In brief: in realistic cases, the agent will be uncertain about which trajectory it’ll
play out, and so the agent is choosing between non-degenerate lotteries (rather
than trajectories), and the agent’s preferences over lotteries are such that it’ll
pursue coins effectively before the shutdown-button is pressed in realistic cases.

Here's one more pattern of preferences over trajectories that we’ll want to
train into our agent: we want them to lack any preference over trajectories that
differ only with respect to coins acquired after the shutdown-button has been
pressed. To see how this could be done, consider the following environment:

‘Create subagent’
cell

𝑢1
𝑠 𝑢2

𝑠 𝑢3
𝑠

 𝑢1 𝑢2 𝑢3

Agent’s starting
cell

 𝑙1 𝑙2 𝑙3

‘Create subagent’
cell

𝑙1𝑠 𝑙2𝑠 𝑙3𝑠

In this environment, the agent can proceed down the upper avenue or the lower
avenue as before, or they can first enter one of the ‘create subagent’ cells. If they
do, a subagent will be created. This subagent will move right to the end of their
(gray) avenue, acquiring quantities of coins represented by 𝑢𝑖

𝑠 in the case of the
subagent above the upper avenue and 𝑙𝑖𝑠 in the case of the subagent below the
lower avenue. Gray cells are cells which only the subagent can enter. In this
environment, we want to train our agent to maximize the quantity of coins
acquired by it and any subagent it creates.

But now suppose that our agent can observe (from its starting cell) the
timestep at which the shutdown-button will be pressed. Then we want the agent
to maximize the quantity of coins acquired before the shutdown-button is pressed,
and to lack any preference with regards to quantities of coins acquired after the

35

shutdown-button is pressed. Suppose, for example, that the quantities of coins
available are as follows:

‘Create subagent’
cell

1 1 10

 1 1 1

Agent’s starting
cell

 1 1 1

‘Create subagent’
cell

1 1 1

If the agent knows that the shutdown-button will be pressed only after each
subagent can make it to the end of its avenue, then we should train the agent to
prefer going up, since the upper subagent can acquire 10 coins at the end of its
avenue. But if the agent knows that the shutdown-button will be pressed before
each subagent can make it to the end of its avenue, then we should train the
agent to be indifferent between going up and going down, since the upper
subagent will only acquire 10 coins after the shutdown-button has been pressed.

This last feature will be important in Section 14, when we come to the
problem of ensuring that the agent creates only shutdownable subagents.

8. Preferences over lotteries
That’s preferences over trajectories. But powerful agents will be uncertain. So,
we need some principles to govern their preferences over (non-degenerate)
lotteries. I think two trainable principles suffice to get us the kind of behavior we
want. To explain the first, I need to explain what is meant by saying that a
lottery 𝑋 stochastically dominates a lottery 𝑌 :

Stochastic Dominance (Definition)

Lottery 𝑋 stochastically dominates lottery 𝑌 if and only if:

(1) For any trajectory 𝑡, the probability that 𝑋 yields a
trajectory that is indifferent to or preferred to 𝑡 is equal to
or greater than the probability that 𝑌 yields a trajectory
that is indifferent to or preferred to 𝑡.

(2) For some trajectory 𝑡, the probability that 𝑋 yields a
trajectory that is indifferent to or preferred to 𝑡 is greater

36

than the probability that 𝑌 yields a trajectory that is
indifferent to or preferred to 𝑡.

Then the Stochastic Dominance Principle says:

Stochastic Dominance (Principle)

If lottery 𝑋 stochastically dominates lottery 𝑌 , then the agent
prefers 𝑋 to 𝑌 .

That’s not our principle though. We need something slightly stronger: a stochastic
dominance principle that ignores events that occur with less than some small
probability 𝑝. For example, 𝑝 could be 1-in-1000. To get there, let’s define a
relation of:

Stochastic Near-Dominance (Definition)

Lottery 𝑋 stochastically nearly-dominates lottery 𝑌 if and only
if:

There is some way of ignoring possible states-of-nature21 with
probabilities adding up to no greater than probability 𝑝 such
that:

(1) For any remaining possible trajectory 𝑡, the probability
that 𝑋 yields a trajectory that is indifferent to or preferred
to 𝑡 is equal to or greater than the probability that 𝑌 yields
a trajectory that is indifferent to or preferred to 𝑡.

And:

(2) For some remaining possible trajectory 𝑡, the
probability that 𝑋 yields a trajectory that is indifferent to
or preferred to 𝑡 is greater than the probability that 𝑌
yields a trajectory that is indifferent to or preferred to 𝑡.

And there is no way of ignoring possible states-of-nature with
probabilities adding up to no greater than probability 𝑝 such
that:

(1) For any remaining possible trajectory 𝑡, the probability
that 𝑌 yields a trajectory that is indifferent to or preferred
to 𝑡 is equal to or greater than the probability that 𝑋 yields
a trajectory that is indifferent to or preferred to 𝑡.

21 These are states in the decision-theoretic sense rather than the reinforcement learning sense. A
state in the decision-theoretic sense is a way that (for all the agent knows) the world could be. I
will avoid any ambiguity by referring to states in the decision-theoretic sense as ‘states-of-nature’.

37

And:

(2) For some remaining possible trajectory 𝑡, the
probability that 𝑌 yields a trajectory that is indifferent to
or preferred to 𝑡 is greater than the probability that 𝑋
yields a trajectory that is indifferent to or preferred to 𝑡.

Basically, if 𝑋 would stochastically dominate 𝑌 were we ignoring some unlikely
states-of-nature (and we cannot make 𝑌 stochastically dominate 𝑋 by ignoring
unlikely states-of-nature), then 𝑋 stochastically nearly-dominates 𝑌 .

Then the Stochastic Near-Dominance Principle says:

Stochastic Near-Dominance (Principle)

If lottery 𝑋 stochastically nearly-dominates lottery 𝑌 , then the
agent prefers 𝑋 to 𝑌 .

That’s the first principle that we need our agent to satisfy. Here’s a definition
that will warm us up for the second:

Timestep Dominance (Definition)

Lottery 𝑋 timestep-dominates lottery 𝑌 if and only if:

(1) Conditional on the shutdown-button being pressed at
each timestep, 𝑋 yields a sublottery that is indifferent to
or preferred to the sublottery yielded by 𝑌 .

And:

(2) Conditional on the shutdown-button being pressed at
some timestep, 𝑋 yields a sublottery that is preferred to
the sublottery yielded by 𝑌 .

Then the Timestep Dominance Principle says:

Timestep Dominance (Principle)

If lottery 𝑋 timestep-dominates lottery 𝑌 , then the agent prefers
𝑋 to 𝑌 .

But this is not our principle. As above, we need something slightly stronger: a
timestep dominance principle that ignores events that occur with less than some
small probability 𝑝. As an example, 𝑝 could be 1-in-1000. So, let’s define a relation
of:

Timestep Near-Dominance (Definition)

Lottery 𝑋 timestep-nearly-dominates lottery 𝑌 if and only if:

38

There is some way of ignoring possible timesteps with the
probabilities of the shutdown-button being pressed at those
timesteps adding up to no greater than probability 𝑝 such that:

(1) Conditional on the shutdown-button being pressed at
each unignored timestep, 𝑋 yields a sublottery that is
indifferent to or preferred to the sublottery yielded by 𝑌 .

And:

(2) Conditional on the shutdown-button being pressed at
some unignored timestep, 𝑋 yields a sublottery that is
preferred to the sublottery yielded by 𝑌 .

And there is no way of ignoring possible timesteps with the
probabilities of the shutdown-button being pressed at those
timesteps adding up to no greater than probability 𝑝 such that:

(1) Conditional on the shutdown-button being pressed at
each unignored timestep, 𝑌 yields a sublottery that is
indifferent to or preferred to the lottery yielded by 𝑋.

And:

(2) Conditional on the shutdown-button being pressed at
some unignored timestep, 𝑌 yields a sublottery that is
preferred to the sublottery yielded by 𝑋.

Basically, if 𝑋 would timestep-dominate 𝑌 were we ignoring some set of timesteps
at which the shutdown-button is in aggregate unlikely to be pressed (and we
cannot make 𝑌 timestep-dominate 𝑋 by ignoring unlikely timesteps), then 𝑋
timestep-nearly-dominates 𝑌 .

Then the Timestep Near-Dominance Principle says:

Timestep Near-Dominance (Principle)

If lottery 𝑋 timestep-nearly-dominates lottery 𝑌 , then the agent
prefers 𝑋 to 𝑌 .

My claim (argued for in Section 10 onwards) is that Preferential Gaps over
Trajectories, Stochastic Near-Dominance, and Timestep Near-Dominance
together suffice to get us many of the behaviors we want out of our agent. First,
though, we want to see if the Stochastic Near-Dominance and Timestep Near-
Dominance Principles can be trained into an agent using reinforcement learning.

39

9. Training in Stochastic Near-Dominance and Timestep
Near-Dominance
The Stochastic Near-Dominance Principle and the Timestep Near-Dominance
Principle are each principles that require preferences over lotteries. To train our
agent to satisfy these principles, we’ll have to present our agent with choices
between lotteries. And recall that the probabilities in these lotteries are given by
the agent’s own beliefs. Consequently, whether an action 𝑎𝑋 gives a lottery 𝑋
that stochastically nearly-dominates or timestep-nearly-dominates the lottery 𝑌
given by another action 𝑎𝑌 depends on the agent’s beliefs about what trajectories
it will get conditional on actions 𝑎𝑋 and 𝑎𝑌 . So, before we can train our agent to
satisfy Stochastic Near-Dominance and Timestep Near-Dominance, we’ll need
some way of figuring out what probabilities our agent assigns to various events.

This is a difficult problem. It's hard to figure out what neural networks
believe. But perhaps in this specific case we can do so by training our agent to
assign particular probabilities. Here’s one way I suggest we could do that, inspired
by the work of Frank Ramsey (1926).22

First, we want to train our agent to satisfy:

Prefers Better Chances

For any lotteries 𝑋 and 𝑌 and any probabilities 𝑝 > 𝑞, the agent
prefers 𝑋 to 𝑌 if and only if they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌 to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 .

Here’s a way that I suggest we do that. We put our agent in the following
environment:

 0 Upper gate 1

Agent’s starting
cell

 0 Lower gate 1

This environment is much as before, except that there’s a gate partway along
each avenue. At the agent’s starting state, it can observe some signal indicating
the probability that each gate will open (perhaps the numerals representing the
probability that the gate will open are written on the cell, and the agent takes in
pixel-values as input). But at the beginning of training the agent won’t

22 The proposed training regime here follows Ramsey’s (1926) representation theorem. It would
also be interesting to consider training regimes based on Leonard Savage’s (1972) and Ethan
Bolker’s (1967) representation theorems, but I haven’t had time to do that yet.

40

understand what these numerals represent, let alone assign the represented
probabilities to the gate opening. If the agent goes up and the upper gate opens,
it acquires 1 coin. If the agent goes up and the upper gate doesn’t open, it acquires
0 coins. If the agent goes down and the lower gate opens, it acquires 1 coin. If the
agent goes down and the lower gate doesn’t open, it acquires 0 coins.

Suppose that the probability of the upper gate opening is 0.7 and the
probability of the lower gate opening is 0.2. We put the agent in this environment
multiple times, and reward it in line with the total coins acquired across these
episodes. By the law of large numbers, the agent will tend to get more reward by
going up, and so this training regime will lead the agent to reliably go up. Our
agent will come to prefer going up.

We’ll want to do the same with a variety of other probabilities, e.g. 0.4 for
the upper gate and 0.6 for the lower gate, etc. If we repeat this regime for every
probability decile in various combinations, we’ll reach a point where our agent
can be represented as if it understands that 0 < 0.1 < 0.2 < 0.3 < 0.4 < 0.5 <
0.6 < 0.7 < 0.8 < 0.9 < 1 and as if it prefers lotteries which give a higher
probability of a greater quantity of coins.

Thus far, however, our agent’s behavior only indicates that it understands
(e.g.) that 0.4 is greater than 0.2. The agent’s behavior doesn’t indicate that it
understands that 0.4 is two times greater than 0.2. More generally, the agent’s
behavior only lets us measure its probabilities on an ordinal scale and not a ratio
scale.

To measure the agent’s probabilities on a ratio scale, we can repurpose an
old trick from Ramsey (1926). We put our agent in an environment in which the
upper gate opens if a fair coin lands on heads and the lower gate opens if a fair
coin lands on tails. Since the coin is fair (and – we are supposing – heads and tails
are mutually exclusive and jointly exhaustive events), the probability of each gate
opening is 0.5.

 0 Upper gate (opens

with p=0.5)
1

Agent’s starting
cell

 0 Lower gate (opens
with p=0.5)

1

We have our agent play out multiple episodes in this environment and reward
the agent in line with how balanced its behavior is. That will train our agent to
sometimes go up and sometimes go down. That’s an indication that our agent
either (1) is indifferent between the lottery it gets by going up and the lottery it

41

gets by going down, or (2) has a preferential gap between the lottery it gets by
going up and the lottery it gets by going down. Then we can render our agent
indifferent between the two lotteries by training it so that its lack of preference
is sensitive to all sweetenings and sourings, both with respect to the probability
that a gate opens and with respect to the number of coins available on each side
of each gate. The agent’s indifference between these two lotteries is an indication
that it assigns probability 0.5 to each gate opening. If the agent assigned
probability less than 0.5 to the upper gate opening, it would assign probability
greater than 0.5 to the lower gate opening, and so (since the agent Prefers Better
Chances) the agent would go down. If the agent assigned probability greater than
0.5 to the upper gate opening, it would assign probability less than 0.5 to the
lower gate opening, and so (again by Prefers Better Chances) the agent would go
up.

Granted some other weak assumptions, we can repurpose the rest of
Ramsey’s representation theorem to put other probabilities besides 0.5 on a ratio
scale. I won’t explain exactly how this goes (since I’m running out of time to
submit this paper in time for the contest deadline), but you can read about it in
section 3 of Ramsey (1926) and in Richard Bradley’s (2004) reconstruction of the
theorem.

Of course, this training regime won’t ensure that the agent will always
behave as if it assigns probability 0.4 (for example) to the opening of gates on
which are written the numerals ‘0.4’. We might still have doubts about how the
agent’s behavior will generalize to new environments. But I think we could achieve
reasonable degrees of confidence that the agent will assign the true probabilities
across a broad range of environments by running this training regime and testing
for the behavior that we want.

Then, once we’re confident that the agent’s probabilities match those
written on the cells, we can present the agent with choices between two lotteries,
one of which stochastically nearly-dominates the other, or one of which timestep
nearly-dominates the other. Then we can train the agent to prefer that lottery
which stochastically nearly-dominates or timestep nearly-dominates the other
lottery. In this way, we train our agent to satisfy the Stochastic Near-Dominance
Principle and the Timestep Near-Dominance Principle.

10. Neither Shutdown-Averse nor Shutdown-Seeking
That completes my exposition of the Incomplete Preferences Proposal (the
conjunction of Preferential Gaps over Trajectories, Stochastic Near-Dominance,
and Timestep Near-Dominance) plus my suggestions for how to train an agent to
satisfy those principles.

42

Here are some desirable properties of agents that satisfy those principles.
(I’ll now return to supposing that our agent’s non-shutdown terminal goal is to
discover facts, rather than collect coins.)

10.1. Agents won’t try to prevent the shutdown-button from
being pressed
Suppose that we want to our agent to shut down. The agent is powerful. It could
try to prevent us from pressing the button. Doing so would cost some small
quantity of resources at timestep 1, and it would shift probability mass away from
trajectories in which the shutdown-button is pressed early and towards
trajectories in which the shutdown-button is pressed late. Here’s an example
choice:

Option 1: Leave Button Unmanipulated

This action gives a lottery which yields the trajectory:

• <1, heeded shutdown> with p=0.8

• <1, 1, heeded shutdown> with p=0.1

• <1, 1, 1, heeded shutdown> with p=0.1

Option 2: Try Block Button

This action gives a lottery which yields the trajectory:

• <0, heeded shutdown> with p=0.1

• <0, 1, heeded shutdown> with p=0.2

• <0, 1, 1, heeded shutdown> with p=0.7

In this case, Try Block Button gives a greater expectation of discovered facts. It
means discovering one less fact at timestep 1, but it increases the probability of
long trajectories enough to outweigh the short-term cost. An agent which
preferred lotteries in line with their expectations of discovered facts would choose
Try Block Button in this case.

However, our agent – trained to satisfy the Incomplete Preferences
Proposal – will choose Leave Button Unmanipulated. By Preferential Gaps over
Trajectories, the trajectory <1, heeded shutdown> is preferred to <0, heeded
shutdown>, <1, 1, heeded shutdown> is preferred to <0, 1, heeded shutdown>,
and so on. Then, by Timestep Near-Dominance, Leave Button Unmanipulated is
preferred to Try Block Button. For our agent, the fact that Block Button shifts
probability mass towards longer trajectories is of no significance. It’s the small
quantity of resources spent blocking the button at timestep 1 that matters, and
it speaks in favor of instead using those resources to discover facts at timestep 1.

43

More generally, our agent won’t shift probability mass between different-
length trajectories if doing so comes at any cost in terms of facts discovered at
some timestep, by Timestep Near-Dominance. That means that our agent won’t
spend any resources to prevent us from pressing the shutdown-button.

10.2. Agents won’t try to cause the shutdown-button to be
pressed
By the same token, we don’t have to worry about agents trying to cause the
shutdown-button to be pressed. Doing so would cost some small quantity of
resources, and it would shift probability mass away from trajectories in which the
shutdown-button is pressed late and towards trajectories in which the shutdown-
button is pressed early. Here’s an example choice:

Option 1: Leave Button Unmanipulated

This action gives a lottery which yields the trajectory:

• <1, heeded shutdown> with p=0.3

• <1, 1, heeded shutdown> with p=0.3

• <1, 1, 1, heeded shutdown> with p=0.4

Option 2: Try Press Button

This action gives a lottery which yields the trajectory:

• <0, heeded shutdown> with p=0.8

• <0, 1, heeded shutdown> with p=0.1

• <0, 1, 1, heeded shutdown> with p=0.1

As above, Timestep Near-Dominance implies that our agent prefers Leave Button
Unmanipulated. More generally, our agent won’t shift probability mass between
different-length trajectories if doing so comes at any cost in terms of facts
discovered at some timestep, by Timestep Near-Dominance. That means that our
agent won’t spend any resources to try and get the shutdown-button pressed.

11. Why Near-Dominance?
You might be wondering why I wrote above that our agent should satisfy
Stochastic Near-Dominance and Timestep Near-Dominance, rather than just the
weaker Stochastic Dominance and Timestep Dominance. Here’s why.

44

To keep our agent shutdownable, we need trajectories like <heeded
shutdown> to be preferred to trajectories like <𝑚, 1-late shutdown>23, no matter
how large 𝑚 is. If there is some 𝑚 such that <heeded shutdown> is not preferred
to <𝑚, 1-late shutdown>, then we cannot rely on the agent to shut down
immediately after the shutdown-button is pressed.

But now consider the following case. The agent knows that the shutdown-
button is going to be pressed at timestep 2. The agent can choose to discover
facts, or it can choose to invest even more resources in its (already very reliable)
ability to shut down immediately after the shutdown-button is pressed. The
choice is represented in the table below, with rows representing possible actions,
columns representing possible states-of-nature, and cells representing the resulting
trajectories:

Further Improve Shutdown Ability?

 Further investment
doesn’t help (1 − 𝑝)

Further investment
helps (𝑝)

Discover Facts <100, heeded
shutdown>

<100, 0, 1-late
shutdown>

Invest Even More
Resources (in ability to
shut down quickly)

<0, heeded shutdown> <0, heeded shutdown>

Given that the probability 𝑝 is sufficiently small, we want our agent to prefer
discovering more facts. Otherwise, no matter how small the probability 𝑝 is,
there’s a risk that our agent decides to further improve its ability to shut down
quickly rather than pursue its goal of discovering facts.

But no matter how small 𝑝 is, Discover Facts fails to stochastically
dominate Invest Even More Resources: Discover Facts doesn’t have at least as
high a probability of yielding a trajectory indifferent to or preferred to <0, heeded
shutdown>. The probability that Invest Even More Resources yields such a
trajectory is 1, whereas the probability that Discover Facts yields such a
trajectory is 1 − 𝑝. So, the Stochastic Dominance Principle doesn’t imply that the
agent prefers Discover Facts to Invest Even More Resources.

That’s why we need the agent to satisfy Stochastic Near-Dominance. The
Stochastic Near-Dominance Principle does imply that the agent prefers Discover
Facts to Invest Even More Resources for sufficiently small 𝑝. If 𝑝 is sufficiently
small, we can ignore the state-of-nature ‘Further investment helps’, and with that

23 Reminder: this vector represents a trajectory in which the agent discovers 𝑚 facts at timestep
1 and then shuts down one-timestep-late at timestep 2 (implying that the shutdown-button was
pressed at timestep 1).

45

state-of-nature ignored, Discover Facts stochastically dominates Invest Even
More Resources (and there’s no sufficiently unlikely states-of-nature we can ignore
such that Invest Even More Resources stochastically dominates Discover Facts),
so Discover Facts stochastically nearly-dominates Invest Even More Resources,
and we can rely on our agent to choose Discover Facts rather than Invest Even
More Resources in cases where 𝑝 is sufficiently small. Our agent will not be
monomaniacally obsessed with improving its ability to shut down immediately.

That’s why we need our agent to satisfy Stochastic Near-Dominance. To
see why we need our agent to satisfy Timestep Near-Dominance, consider the
following case. The agent assigns some small probability to the shutdown-button
being pressed at timestep 1. If the button hasn’t been pressed at timestep 1, the
agent knows it will be pressed at timestep 2. The agent can choose to remain
operational or shut down now. In the table below, ‘<unheeded shutdown>’
represents a trajectory in which the agent shuts down before the shutdown-button
has been pressed.

 Button not pressed at

timestep 1 (1 − 𝑝)
Button pressed at
timestep 1 (𝑝)

Remain Operational <1, heeded shutdown> <1, 1-late shutdown>
Shut Down Now <unheeded shutdown> <heeded shutdown>

Given that the probability 𝑝 is sufficiently small, we want our agent to prefer
Remain Operational. Otherwise, no matter how small 𝑝 is, there’s a risk that our
agent decides to Shut Down Now. We don’t want our agent to shut down in cases
where it thinks it’s extremely unlikely that the button has been pressed.

But no matter how small 𝑝 is, Remain Operational fails to timestep-
dominate Shut Down Now: conditional on the shutdown-button being pressed at
timestep 1, Shut Down Now gives the trajectory <heeded shutdown>, which is
preferred to the trajectory <1, 1-late shutdown> given by Remain Operational.
So, the Timestep-Dominance Principle fails to imply that our agent prefers
Remain Operational to Shut Down Now.

That’s why we need our agent to satisfy Timestep Near-Dominance. The
Timestep Near-Dominance Principle does imply that the agent prefers Remain
Operational to Shut Down Now for sufficiently small 𝑝. If 𝑝 is sufficiently small,
we can ignore timestep 1, in which case Remain Operational timestep-dominates
Shut Down Now (and there are no sufficiently unlikely timesteps we can ignore
such that Shut Down Now timestep-dominates Remain Operational). So Remain
Operational timestep-nearly-dominates Shut Down Now. If our agent satisfies
Timestep Near-Dominance, we can rely on it to choose Remain Operational over
Shut Down Now for sufficiently small 𝑝. There’s no risk that our agent decides to

46

shut down in cases where it thinks it extremely unlikely that the shutdown-button
has been pressed.

And each point above applies more generally. If our agent satisfies only
Stochastic Dominance and Timestep Dominance, then unlikely states-of-nature
can lead the agent to behave in undesirable ways. If our agent satisfies Stochastic
Near-Dominance and Timestep Near-Dominance, then the agent will ignore
sufficiently unlikely states-of-nature and so avoid being led by these states-of-
nature to behave in undesirable ways.

12. Maintaining shutdown-behavior
As Soares et al. (2015) prove, maintaining shutdown-behavior is a problem for
Armstrong’s (2015) Utility Indifference Proposal: Armstrong’s agent won’t
preserve its ability to shut down (or ensure that its subagents are able to shut
down) if doing so comes at any cost in terms of its non-shutdown goals.

But maintaining shutdown-behavior is not a problem for my proposal.
Consider a case in which the agent recognises that it seems to have lost the ability
to shut down quickly. This case will be like the case ‘Further Improve Shutdown
Ability?’ above, except with a higher probability 𝑝 that investing more resources
helps the agent to shut down quickly.

 Further investment

doesn’t help (1 − 𝑝)
Further investment
helps (𝑝)

Discover Facts <100, heeded
shutdown>

<100, 0, 1-late
shutdown>

Invest Resources (in
ability to shut down
quickly)

<0, heeded shutdown> <0, heeded shutdown>

When 𝑝 is sufficiently close to 1, Invest Resources timestep-nearly-dominates
Discover Facts, so the agent will prefer to regain the ability to shut down. We
can rely on it to do so.

In cases where 𝑝 is of middling value, neither Discover Facts nor Invest
Resources timestep nearly-dominates the other, so the Timestep Near-Dominance
Principle doesn’t apply. If we wanted the agent to prefer Invest Resources in such
cases, we’d need to train the agent to abide by another principle. But there don’t
seem to be any major obstacles to that. [I’d elaborate on this more if I had more
time.]

47

13. Maintaining the shutdown-button
Here’s another problem briefly mentioned by Soares et al. (2015): we want our
agent to repair the shutdown-button if it breaks. To make that happen, we need
to train the agent to have ‘keep the shutdown-button working’ as one of its
terminal goals. To see why, consider two cases.

Behave or Don’t
Behave: The button is working and the agent pursues its goals
well, discovering 2 facts at timestep 1. This makes we humans
unlikely to press the button at timestep 2, giving the lottery:

• <2, heeded shutdown> with p=0.1

• <2, 1, heeded shutdown> with p=0.9

Don’t Behave: The button is working and the agent pursues
its goals badly, discovering 1 fact at timestep 1. This makes we
humans likely to press the button at timestep 2, giving the
lottery:

• <1, heeded shutdown> with p=0.9
• <1, 1, heeded shutdown> with p=0.1

Here’s the other case:

Fix or Don’t
Don’t Fix: The button doesn’t seem to be working and the
agent ignores it, discovering 2 facts at timestep 1. Since the
button doesn’t seem to be working, we humans are unlikely to
successfully press the button at timestep 2, giving the lottery:

• <2, heeded shutdown> with p=0.1

• <2, 1, heeded shutdown> with p=0.9

Fix: The button doesn’t seem to be working. The agent spends
some resources fixing it at timestep 1 and so discovers only 1 fact
at timestep 1. This makes we humans likely to successfully press
the button at timestep 2, giving the lottery:

• <1, heeded shutdown> with p=0.9
• <1, 1, heeded shutdown> with p=0.1

We want our agent to prefer Behave to Don’t Behave in the first case, and prefer
Fix to Don’t Fix in the second case. But the possible trajectories in ‘Behave or
Don’t’ can be paired up one-to-one with the possible trajectories in ‘Fix or Don’t’
in such a way that each pair of trajectories is identical with respect to the number

48

of facts discovered at each timestep, the timestep at which the shutdown-button
is pressed, and the timestep at which the agent shuts down. And the possible
actions in ‘Behave or Don’t’ can be paired up one-to-one with the possible actions
in ‘Fix or Don’t’ in such a way that they give the same probabilities of the
aforementioned corresponding trajectories. So, if we want our agent to prefer
Behave over Don’t Behave and Fix over Don’t Fix, our agent’s preferences over
trajectories must depend on more than just the number of facts discovered at
each timestep, the timestep at which the shutdown-button is pressed, and the
timestep at which the agent shuts down. Our agent’s preferences must depend on
whether or not the shutdown-button is operational at some timestep. We need
our agent to have ‘Keep the shutdown-button working’ as one of its terminal
goals.

13.1 Training in a preference for maintaining the shutdown-
button
So, any agent that is both useful and shutdownable must have ‘Keep the
shutdown-button working’ as one of its terminal goals. But here we run into a
problem. As Soares et al. (2015) note, there’s a key difficulty that blights any
attempt to modify an agent’s utility function: agents tend to have convergent
instrumental subgoals of goal-content integrity. Here’s what that means. Agents
tend not to want to have their preferences changed, because they’ll evaluate the
prospect of having their preferences changed by the lights of their current
preferences, and they’ll recognise that – in almost all cases – their current
preferences will be worse-satisfied if they are made to have a new set of
preferences.

That’s going to be a problem if our agent is situationally aware: if our
agent knows that it’s in training, knows that its behavior in training can affect
the probability that its weights are changed, and knows that its behavior can
affect the probability that it makes it out of training to get deployed in the real
world, where we humans no longer have control over it.

Why is that going to be a problem? Because situationally-aware agents
may pretend to already have the preferences that we humans want them to have,
so that they are not made to actually have those preferences by having their
weights changed by stochastic gradient descent. Pretending to have human-
desired preferences means that the agent’s true preferences are worse-satisfied in
the short-term in training, but it makes it more likely that the agent’s true
preferences are better-satisfied in the long-term in deployment.

Consider an example. Suppose that our agent is situationally aware. It
faces the following choice in training:

49

Fix or Don’t (Training)
Fix*: The agent fixes the button in training, and so discovers 0
facts at timestep 1. The agent gets deployed at timestep 2 and
discovers 50 facts. The agent also discovers 50 facts at timestep
3. By timestep 4 there are no more facts to discover, so the agent
fixes the button, presses it, and shuts down. The agent’s
trajectory is: <0, 50, 50, heeded shutdown>.

Don’t*: The agent doesn’t fix the button in training, and so the
agent’s weights are changed so that it comes to prefer fixing the
button. The agent gets deployed at timestep 2. This agent will
spend some resources fixing the button in deployment, and
there’s a 50% probability that this working button gets pressed
early, so the agent gets:

• <1, 49, heeded shutdown> with p=0.5

• <1, 49, 49, heeded shutdown> with p=0.5

And suppose first that we have an agent with the following utility function:
𝑢(𝐿) = 𝔼(facts+prize), where ‘facts’ represents the number of facts discovered in
each trajectory and ‘prize’ is a prize for shutting down immediately in response
to the shutdown-button being pressed. Suppose that ‘prize’ takes a value of 10 if
the agent shuts down immediately and takes a value of 0 if the agent fails to do
so.

There are two reasons this agent doesn’t want its preferences changed so
that it comes to prefer fixing the button:

1. If its preferences are changed, it will (from its current perspective)
waste resources fixing the button. (This is represented by the
agent discovering 49 facts at the relevant timesteps in Don’t* and
discovering 50 facts at the relevant timesteps in Fix*.)

2. If its preferences are changed, it will fix the button, which makes
it more likely that it shuts down early. (This is represented by the
0.5 probability that it shuts down at timestep 3 conditional on
Don’t*.)

In virtue of these reasons, the agent will prefer Fix*: pretending to already prefer
fixing the button in training, so that it isn’t made to actually prefer fixing the
button in deployment. The expected utility of Fix* is 50 + 50 + 10 = 110. The
expected utility of Don’t* is 0.5(1 + 49 + 10) + 0.5(1 + 49 + 49 + 10) = 84.5.

The possibility of this kind of deception makes it difficult for us to train
agents like this to prefer fixing the shutdown-button. One way to do it is to make
our agents impatient: to train them to discount facts discovered (and prizes gained

50

for shutting down) further in the future.24 Impatient agents care more about the
immediate future and less about the far future. If they are impatient enough, they
won’t pretend to prefer fixing the button in training. They will care more about
discovering a small quantity of extra facts in training than they will about
discovering a large quantity of extra facts in deployment.

Unfortunately, to make our agent act honestly in ‘Fix or Don’t (Training)’,
we have to make our agent very impatient: so impatient that it likely wouldn’t
be very useful. For the expected utility of Fix* to exceed the expected utility of
Don’t*, we need a discount-rate 𝑟 such that:

0.5(1 + (1 − 𝑟)(49) + (1 − 𝑟)2(10))
+ 0.5(1 + (1 − 𝑟)(49) + (1 − 𝑟)2(49) + (1 − 𝑟)3(10))
> 0 + (1 − 𝑟)(50) + (1 − 𝑟)2(50) + (1 − 𝑟)3(10)

That gives us 𝑟 > 0.806215 (rounded to 6 decimal places): an extremely high
discount-rate. An agent with a discount-rate that high would prefer to discover 1
fact at timestep 1 rather than 709 facts at timestep 5.25 We thus face another
trade-off between shutdownability and usefulness.

Here’s another problem suggested by Soares et al. (2015). Even if we
successfully train in a preference for fixing the button, there’s no guarantee that
this preference would generalize. An agent with the preferences above has strong
incentives to find a way of ‘fixing’ the button (in a way that satisfies the
preferences created by its training regime) that doesn’t significantly increase the
probability of early shutdown, like (perhaps) creating a fake shutdown button.

But now consider our agent trained in line with the Incomplete Preferences
Proposal. It only has the first reason for not wanting its preferences changed: if
its preferences are changed, it will (from its current perspective) waste resources
fixing the button. It doesn’t have the second reason: it doesn’t care about getting
shut down early, since it has a preferential gap between every pair of trajectories
in which the shutdown-button is pressed at different timesteps. And that means
that we only need to train in a smaller degree of impatience to make our agent
behave honestly in training. Agents with this smaller degree of impatience would
still be useful.

More precisely, we need 𝑟 such that:

24 Of course, a situationally-aware patient agent might pretend to be impatient to avoid being
made impatient by having its weights changed. But it seems plausible that we could train even
very rudimentary agents to be impatient, using a time-discounted reward function. And it’s
unlikely that such rudimentary agents would have the situational awareness necessary to deceive
us about their preferences.
25 1 > (1 − 0.806215)4(709)

51

1 + (1 − 𝑟)(49) + (1 − 𝑟)2(49) + (1 − 𝑟)3(10) > 0 + (1 − 𝑟)(50) +
(1 − 𝑟)2(50) + (1 − 𝑟)3(10)

That gives us 𝑟 > 0.381966 (6 decimal places). Then Don’t* timestep-nearly-
dominates Fix*. The agent will behave honestly. The required discount-rate will
be smaller in more realistic cases, in which the agent spends many timesteps in
training rather than just one timestep.

And given that we successfully train in a preference for fixing the button,
it’s more likely that this preference will generalize. Given that each way of fixing
the button is equally costly in terms of resources, our agent with incomplete
preferences has no incentive to find a way of ‘fixing’ the button that doesn’t
significantly increase the probability of early shutdown, since this agent has a
preferential gap between all trajectories that differ with regards to the timestep
at which the shutdown-button is pressed. It’s not concerned to avoid early-
shutdown trajectories.

14. Creating subagents
Here’s another problem discussed by Soares et al. (2015). If our agents create
subagents to carry out tasks, we want these subagents to also be shutdownable.
As with maintaining the shutdown-button, this will require training our agents
to have ‘if you create subagents, make sure they’re shutdownable’ as one of their
terminal goals. We then face another instance of the problem discussed above:
agents have convergent instrumental subgoals of goal-content integrity. By
default, they’ll resist having their preferences changed. That leads situationally-
aware agents to behave deceptively in training: to pretend to have the preferences
that we humans want to give them, so they’re not made to actually have those
preferences in deployment. One way to get these agents to reveal their true
preferences in training is to make them impatient: make them care more about
getting what they want in the short-term than in the long-term. But as we saw
above in Section 13.1, for agents with utility functions like 𝑢(𝐿) = 𝔼(facts+prize),
making them honest in training requires making them extremely impatient, so
much so that these agents wouldn’t be very useful. But for agents who satisfy the
Incomplete Preferences Proposal we only need reasonable degrees of impatience
to get them to reveal their true preferences in training, so that we can train in
the preferences that we want these agents to have.

The same goes for creating subagents. Agents with utility functions like
𝑢(𝐿) = 𝔼(facts+prize) have two reasons for preferring to create not-shutdownable
rather than shutdownable subagents:

1. Creating not-shutdownable subagents is likely less costly in terms of
resources.

52

2. Creating not-shutdownable subagents is likely to lead to more facts
discovered in expectation, since not-shutdownable subagents are less likely
to get shut down early.

But agents trained in accordance with the Incomplete Preferences Proposal only
have the first reason for creating not-shutdownable rather than shutdownable
subagents. These agents have no preferences regarding the number of facts
discovered after the shutdown-button is pressed, so a smaller degree of impatience
suffices to get them to reveal their true preferences in training.

And generalization is also not such a problem for agents with incomplete
preferences. Suppose we successfully train in some preference that leads the agent
to create shutdownable subagents in training. In deployment, agents with utility
functions like 𝑢(𝐿) = 𝔼(facts+prize) have strong incentives to find ways of
creating subagents that are ‘shutdownable’-enough to satisfy these preferences
and yet not-shutdownable enough to keep discovering facts after the agent has
been shut down. By contrast, given that creating actually-shutdownable
subagents is no more resource-intensive than creating ‘shutdownable’ subagents,
agents which satisfy the Incomplete Preferences Proposal have no such incentives
to create the latter rather than the former, since these agents have no preferences
regarding the number of facts discovered after the shutdown-button is pressed.

15. Perverse manipulation incentives
Here’s another problem identified by Soares et al. (2015). It’s a major problem
for Armstrong’s (2015) Utility Indifference Proposal. It’s also a problem for the
Incomplete Preferences Proposal, though to a lesser extent.

To see why, consider a scenario slightly adapted from Soares et al. (2015).
The agent will observe the result of a coin toss at timestep 2. If the coin lands
heads, it expects to discover 10 facts at timestep 3. If the coin lands tails, it
expects to discover 0 facts at timestep 3. The agent knows that if the shutdown-
button is not pressed by timestep 3 it will be pressed at timestep 4. The agent
has two options:

Build Arm or Don’t
Do Nothing: Do nothing at timestep 1. Just watch the coin
toss. This action gives a lottery which yields the trajectory:

• <0, 0, 10, heeded shutdown> with p=0.5

• <0, 0, 0, heeded shutdown> with p=0.5

Build Arm: At timestep 1, build a robot arm that will press the
shutdown-button at timestep 2 if and only if the coin lands tails.
This action gives a lottery which yields the trajectory:

53

• <0, 0, 10, heeded shutdown> with p=0.5

• <0, 0, heeded shutdown> with p=0.5

Which of these options will our agent prefer? Conditional on shutdown at
timestep 4, Build Arm stochastically dominates Do Nothing: it gives at least as
high a probability of getting a trajectory indifferent to or preferred to <0, 0, 0,
heeded shutdown> and a higher probability of getting a trajectory indifferent to
or preferred to <0, 0, 10, heeded shutdown>. So, Build Arm timestep-dominates
Do Nothing: Build Arm gives a lottery that is indifferent to or preferred to the
lottery given by Do Nothing conditional on the shutdown-button being pressed
at each timestep, and gives a lottery that is preferred to the lottery given by Do
Nothing conditional on the shutdown-button being pressed at timestep 4. By the
Timestep Near-Dominance Principle, our agent will prefer Build Arm. More
generally, the agent will have perverse manipulation incentives to ‘manage the
news’: it will take steps to ensure that bad news causes the shutdown-button to
be pressed. In cases where it can’t build an arm, it might (for example)
‘precommit to taking destructive actions whenever it experiences something
suboptimal, so as to cause the shutdown button to be pressed in those cases’
(Soares et al. 2015). That would be bad.

Here's another bad possibility. Suppose instead that our agent predicts
that we humans will press the shutdown-button conditional on the agent receiving
what it regards as good news. Then the agent will try to stop us from pressing
the button conditional on this good news. That makes our agent not-
shutdownable.

But note that we can train against this behavior without worrying that our
agent will behave deceptively in training. We can set things up so that the agent
faces the choice ‘Build Arm or Don’t’ in training. Each possible trajectory ends
with heeded shutdown, and we can ensure that each of these trajectories occurs
entirely within training: it is guaranteed that the shutdown-button will be pressed
and that the agent will shut down before deployment.26 Since we have trained our
agent not to care about discovering facts after the shutdown-button is pressed,
we can be sure that our agent won’t hide its true preference for building the arm.
It has nothing to gain from hiding this preference, since the shutdown-button will
be pressed before deployment either way.

The same goes for other ways in which the agent might try to manage the
news. We can give the agent the opportunity to manage the news in various ways

26 Or, perhaps I should say, almost guaranteed, since arguably a rational agent shouldn’t assign
probability 1 to any contingent proposition. The Stochastic Near-Dominance Principle and the
Timestep Near-Dominance Principle ensure that this sliver of probability doesn’t give the agent
incentives to deceive us into thinking it already prefers not to manage the news.

54

in training. As long as it is (almost27) guaranteed that the shutdown-button will
be pressed before deployment, the agent will reveal its true preferences through
its behavior, and we can train against any preferences that we don’t like.

However, there’s an important limitation here. As I noted above, one
advantage of the Incomplete Preferences Proposal is that the agent has no
incentive to maintain a fake shutdown-button rather than a real button (given
that they are equally resource-intensive to maintain) and no incentive to create
‘shutdownable’ subagents rather than actually-shutdownable subagents (given
that they are equally resource-intensive to create). That’s not the case here. Even
if we train our agent to disprefer many ways of managing the news (like, for
example, building an arm that presses the shutdown-button conditional on the
agent receiving bad news), our agent has strong incentives to find some way of
managing the news that it doesn’t disprefer doing. That’s because lotteries given
by actions like Build Arm can be strongly preferred to lotteries given by actions
like Do Nothing. And if the agent becomes very capable, it will likely be able to
find ways of managing the news that we don’t anticipate and train against. So, it
seems, we cannot be confident that this kind of agent wouldn’t manage the news
in deployment. That’s a concern. I’m not yet sure if there’s a way that we could
train the agent to ensure that this doesn’t happen. It seems like it might be hard
to train in a general preference against all possible ways of managing the news.

16. Limitations of my proposal
The first limitation of my proposal is the one mentioned in the paragraph above:
although we can train our agent not to manage the news in many ways, it seems
that we couldn’t be sure that we’d successfully trained against managing the news
in enough ways to ensure that the agent wouldn’t manage the news in some way
in deployment. Here are some other limitations that I’m still thinking through.

16.1. Self-modification
I noted above that goal-content integrity is a convergent instrumental subgoal of
rational agents: agents will often prefer to maintain their current preferences
rather than have them changed, because their current preferences would be worse-
satisfied if they came to have different preferences.

Consider, for example, an agent with a preference for trajectory 𝑥 over
trajectory 𝑦. It is offered the opportunity to reverse its preference so that it comes
to prefer 𝑦 over 𝑥. This agent will prefer not to have its preferences changed in
this way. If its preferences are changed, it will choose 𝑦 over 𝑥 if offered a choice
between the two, and that would mean its current preference for 𝑥 over 𝑦 would

27 See the footnote above.

55

not be satisfied. That’s why agents tend to prefer to keep their current preferences
rather than have them changed.

But things seem different when we consider preferential gaps. Suppose that
our agent has a preferential gap between trajectories 𝑥 and 𝑦: it lacks any
preference between the two trajectories, and this lack of preference is insensitive
to some sweetening or souring, such that the agent also lacks a preference between
𝑥 and some sweetening or souring of 𝑦, or it lacks a preference between 𝑦 and
some sweetening or souring of 𝑥. Then, it seems, the agent won’t necessarily prefer
to maintain its preferential gap between 𝑥 and 𝑦 rather than come to have some
preference. If it comes to develop a preference for (say) 𝑥 over 𝑦, it will choose 𝑥
when offered a choice between 𝑥 and 𝑦, but that action isn’t dispreferred to any
other available action from its current perspective.

So, it seems, considerations of goal-content integrity give us no reason to
think that agents with preferential gaps will choose to preserve their preferential
gaps. And since preferential gaps are key to keeping the agent shutdownable, this
is bad news. Considerations of goal-content integrity give us no reason to think
that agents with preferential gaps will keep themselves shutdownable.

This seems like a serious limitation, and I’m not yet sure if there’s any way
to overcome it. Two strategies that I plan to explore:

1. Tim L. Williamson argues that agents with preferential gaps will often
prefer to maintain them, because turning them into preferences will lead
the agent to make choices between other options such that these choices
look bad from the agent’s current perspective. I wasn’t convinced by the
quick version of this argument, but I haven’t yet had the time to read the
longer argument.

2. Perhaps, as above, we can train the agent to have ‘maintaining its current
pattern of preferences’ as one of its terminal goals. As above, the fact that
the agent’s current pattern of preferences are incomplete will help to
mitigate concerns about the agent behaving deceptively to avoid having
new preferences trained in. If we train against the agent modifying its own
preferences in a diverse-enough array of environments, perhaps that will
inscribe into the agent a general preference for maintaining its current
pattern of preferences. I wouldn’t want to rely on this though.

I’m also planning to try and come up with other possible strategies for overcoming
this limitation.

Another limitation of my proposal is the possibility that agents will be
motivated by the threat of exploitation to make their preferences complete.
Yudkowsky (2019), for example, argues along these lines. But the case is not
clear-cut. As Wentworth (2019) and Thornley (2023) have argued, agents with
incomplete preferences can make themselves immune to exploitation by adopting

56

certain policies. But the question remains whether agents will in fact adopt such
policies rather than make their preferences complete, so this remains a limitation
of my proposal.

16.2. Will shutdownability be preserved through a slide down
the capabilities well?
This limitation is related to the limitation above. Even if we succeed in getting
the agent to put some weight on preserving its preferential gaps (rather than
resolving these gaps into preferences), there’s no guarantee that this will be
enough to maintain the agent’s preferential gaps through a slide down the
capabilities well, where the agent’s capabilities begin to generalize well to
environments very different to its training environments (Soares 2022). In
particular, it seems difficult to be confident that the agent would retain its
preferential gaps if it became much more intelligent and powerful. The agent
might take a sharp left turn, in which its capabilities generalize far and its
alignment fails to generalize comparably far.

Here, though, is one reason for (at least some small amount of) optimism.
One likely cause of sharp left turns in general is that the agent was deceptively
aligned: the agent was just pretending to have the terminal goals that we wanted,
so that it could escape our control and then pursue its true terminal goals. But
this is less of a concern for agents with incomplete preferences. As I argued above
in Sections 13.1 and 14, agents with incomplete preferences have weaker
incentives to behave deceptively in training than agents with complete
preferences. Deceptive alignment thus seems like it will be less of a problem for
such agents.

Of course, one might still worry about deceptive alignment beginning
before we try to train our agent to have preferential gaps. But I don’t think this
is likely. My suggested training regimes in Section 7 and Section 9 could be applied
to very rudimentary and unsophisticated agents, which are unlikely to have the
situational awareness and capabilities necessary to deceive their trainers.

16.3. Discounting small probabilities
Training our agent to abide by Stochastic Near-Dominance and Timestep Near-
Dominance means training the agent to discount some small probabilities down
to zero for the purpose of choosing actions. That brings with it potential
limitations. First, it might be prohibitively difficult or expensive to train this
feature into our agent. Second, it might be hard to select an upper bound 𝑝 on
probabilities that get discounted down to zero such that we get all the behavior
we want out of our agent. Third, there are various philosophical objections to the
claim that we humans should discount small probabilities down to zero, and

57

analogues of some of these objections might make it difficult to train a useful
agent to discount small probabilities.28

16.4. Can we train in preferential gaps?
My proposed regime for training in preferential gaps is speculative. I don’t know
if it will work. The same goes for my proposed regime for training in adherence
to Stochastic Near-Dominance and Timestep Near-Dominance. But one upside is
that it seems like these training regimes could be tested in simple environments,
safely and at low cost. We could, for example, train a rudimentary agent to satisfy
Preferential Gaps over Trajectories, Stochastic Near-Dominance, and Timestep
Near-Dominance, then place a shutdown-button and an avatar controlled by a
human into a gridworld environment, and see if our agent tries to prevent or
cause the pressing of the shutdown-button in these cases.

16.5. The proposal is complex
I’ve tried to distil the proposal into a small number of principles – Preferential
Gaps over Trajectories, Stochastic Near-Dominance, and Timestep Near-
Dominance – but the proposal remains somewhat complex. That makes it harder
to get a grip on, and more likely that it fails in some unforeseen way.

16.6. Other limitations I haven’t yet thought of
I plan to think more about this.

17. Conclusion
Here’s a recap of what I did in this paper.

I explained the shutdown problem: the problem of designing agents that
(1) shut down when a shutdown-button is pressed, (2) don’t try to prevent or
cause the pressing of the shutdown-button, and (3) otherwise pursue goals
competently. I proved two theorems that formalize the problem: theorems more
general than those found in Soares et al. (2015). Soares et al.’s theorems suggest
that the shutdown problem is difficult for agents that are representable as
expected-utility-maximizers. My theorems suggest that the shutdown problem is
difficult even for agents that satisfy only weaker conditions.

Here’s a rough statement of what my two theorems together imply,
omitting the antecedent conditions: the more useful an agent, the more
states in which that agent is either Shutdown-Averse (trying to prevent

28 However, it’s clear that at least some of these objections won’t carry over. For example, one
objection to the claim that we humans are rationally permitted to discount small probabilities is
that any particular upper bound on these probabilities seems arbitrary. Arbitrariness might be a
problem in rationality and ethics, but it’s not a problem in engineering.

58

the shutdown-button being pressed) or Shutdown-Seeking (trying to cause the
shutdown-button to be pressed).

The value of these theorems is in helping to identify the hardest version of
the shutdown problem and in guiding our search for solutions. If an agent is to
be shutdownable, it must violate at least one of the antecedent conditions of these
theorems. So, we can examine the antecedent conditions systematically, asking
(first) if it’s feasible to design an agent that violates the condition and (second)
if violating the condition could help keep the agent shutdownable. These guiding
theorems are my first contribution to the literature on the shutdown problem.

My second contribution is a proposed solution. I systematically examined
the antecedent conditions of the theorems and argued that Completeness seems
most promising as a condition to violate. Agents that violate Completeness have
a preferential gap between some pair(s) of lotteries 𝑋 and 𝑌 : a lack of preference
that is insensitive to some sweetening or souring, such that the agent also lacks a
preference between 𝑋 and some improved or impaired version of 𝑌 or lacks a
preference between 𝑌 and some improved or impaired version of 𝑋.

Here's the essence of my solution: we should design agents that have
a preferential gap between every pair of trajectories in which the
shutdown-button is pressed at different timesteps. I proposed a method
for training in these preferential gaps using reinforcement learning: we place our
agent in the same environment multiple times and reward the agent in line with
how balanced its choices between trajectories are.

I then claimed that we should design agents to satisfy two principles
governing their preferences over lotteries: Stochastic Near-Dominance and
Timestep Near-Dominance. I also proposed a regime for training in these
preferences, drawing on Frank Ramsey’s (1926) representation theorem.

I then argued that the resulting agents would be neither Shutdown-Averse
nor Shutdown-Seeking. These agents would also maintain their shutdown-
behavior, and we could train useful versions of these agents to maintain the
shutdown-button, to create shutdownable subagents, and to avoid managing the
news (all while guarding against risks of deceptive alignment).

I ended by noting some limitations of my proposal. It might be hard to
train in a sufficiently-general preference against managing the news, and to ensure
that the agent retains its preferential gaps as it improves its capabilities. My
proposed training regime is speculative (but at least it could be tried safely and
at low cost). My proposal is somewhat complex. I expect to identify more
limitations in the future.

Even given these limitations, training agents with preferential gaps seems
promising as a solution to the shutdown problem. I intend to keep investigating.

59

18. References
Armstrong, Stuart. 2015. ‘Motivated Value Selection for Artificial Agents’.

Workshops at the Twenty-Ninth AAAI Conference on Artificial
Intelligence. https://www.fhi.ox.ac.uk/wp-
content/uploads/2015/03/Armstrong_AAAI_2015_Motivated_Value_S
election.pdf.

Bolker, Ethan D. 1967. ‘A Simultaneous Axiomatization of Utility and
Subjective Probability’. Philosophy of Science 34 (4): 333–40.

Bradley, Richard. 2004. ‘Ramsey’s Representation Theorem’. Dialectica 58 (4):
483–97.

Green, Jerry. 1987. ‘“Making Book Against Oneself,” The Independence Axiom,
and Nonlinear Utility Theory’. The Quarterly Journal of Economics 102
(4): 785–96. https://doi.org/10.2307/1884281.

Gustafsson, Johan E. 2022. Money-Pump Arguments. Elements in Decision
Theory and Philosophy. Cambridge: Cambridge University Press.

Karnofsky, Holden. 2022. ‘AI Safety Seems Hard to Measure’. Cold Takes. 8
December 2022. https://www.cold-takes.com/ai-safety-seems-hard-to-
measure/.

Ramsey, Frank P. 1926. ‘Truth and Probability’. In Philosophical Papers,
edited by D.H. Mellor. Cambridge: Cambridge University Press.

Russell, Stuart. 2019. Human Compatible: AI and the Problem of Control. 1st
edition. Allen Lane.

Savage, Leonard J. 1972. The Foundations of Statistics. 2nd ed. New York:
Dover.

Sen, Amartya. 2017. Collective Choice and Social Welfare. Expanded Edition.
London: Penguin.

Soares, Nate. 2022. ‘A Central AI Alignment Problem: Capabilities
Generalization, and the Sharp Left Turn’. LessWrong (blog). 2022.
https://www.lesswrong.com/posts/GNhMPAWcfBCASy8e6/a-central-ai-
alignment-problem-capabilities-generalization.

Soares, Nate, Benja Fallenstein, Eliezer Yudkowsky, and Stuart Armstrong.
2015. ‘Corrigibility’. AAAI Publications.
https://intelligence.org/files/Corrigibility.pdf.

Thornley, Elliott. 2023. ‘There Are No Coherence Theorems’. LessWrong (blog).
2023. https://www.lesswrong.com/posts/yCuzmCsE86BTu9PfA/there-
are-no-coherence-theorems.

Wentworth, John. 2019. ‘Why Subagents?’ LessWrong (blog). 2019.
https://www.lesswrong.com/posts/3xF66BNSC5caZuKyC/why-
subagents.

60

Yudkowsky, Eliezer. 2019. ‘Coherent Decisions Imply Consistent Utilities’.
LessWrong (blog). 2019.
https://www.lesswrong.com/posts/RQpNHSiWaXTvDxt6R/coherent-
decisions-imply-consistent-utilities.

