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The Shutdown Problem: Two Theorems, 
Incomplete Preferences as a Solution 

Elliott Thornley 
500-Word Abstract 
I explain the shutdown problem: the problem of designing agents that (1) shut 
down when a shutdown-button is pressed, (2) don’t try to prevent or cause the 
pressing of the shutdown-button, and (3) otherwise pursue goals competently. I 
prove two theorems that formalize the problem: theorems more general than those 
found in Soares et al. (2015). Soares et al.’s theorems suggest that the shutdown 
problem is difficult for agents that are representable as expected-utility-
maximizers. My theorems suggest that the shutdown problem is difficult even for 
agents that satisfy only weaker conditions.  

Here’s a rough statement of what my two theorems together imply, 
omitting the antecedent conditions: the more useful an agent, the more 
states in which that agent is either Shutdown-Averse (trying to prevent 
the shutdown-button from being pressed) or Shutdown-Seeking (trying to 
cause the shutdown-button to be pressed). 

The value of these theorems is in helping identify the hardest version of 
the shutdown problem and in guiding our search for solutions. If an agent is to 
be shutdownable, it must violate at least one of the antecedent conditions of these 
theorems. So, we can examine the antecedent conditions systematically, asking 
(first) if it’s feasible to design an agent that violates the condition and (second) 
if violating the condition could help keep the agent shutdownable. These guiding 
theorems are my first contribution to the literature on the shutdown problem. 

My second contribution is a proposed solution. I systematically examine 
the antecedent conditions of the theorems and argue that Completeness seems 
most promising as a condition to violate. Agents that violate Completeness have 
a preferential gap between some pair(s) of lotteries 𝑋 and 𝑌 : a lack of preference 
that is insensitive to some sweetening or souring, such that the agent also lacks a 
preference between 𝑋 and some improved or impaired version of 𝑌  or lacks a 
preference between 𝑌  and some improved or impaired version of 𝑋. 

Here's the essence of my solution: we should design agents that have 
a preferential gap between every pair of trajectories in which the 
shutdown-button is pressed at different timesteps. I propose a method for 
training in these preferential gaps using reinforcement learning: we place our 
agent in the same environment multiple times and reward the agent in line with 
how balanced its choices between trajectories are. 

I then claim that we should design agents to satisfy two principles 
governing their preferences over lotteries: Stochastic Near-Dominance and 
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Timestep Near-Dominance. I also propose a regime for training in these 
preferences, drawing on Frank Ramsey’s (1927) representation theorem. 

I then argue that the resulting agents would be neither Shutdown-Averse 
nor Shutdown-Seeking. These agents would also maintain their shutdown-
behavior, and we could train useful versions of these agents to maintain the 
shutdown-button, to create shutdownable subagents, and to avoid managing the 
news (all while guarding against risks of deceptive alignment). 

I end by noting some limitations of my proposal. It might be hard to train 
in a sufficiently-general preference against managing the news, and to ensure that 
the agent retains its preferential gaps as it improves its capabilities. My proposed 
training regime is speculative (but at least it could be tried safely and at low 
cost). My proposal is somewhat complex. I expect to identify more limitations in 
the future. 

Even given these limitations, training agents with preferential gaps seems 
promising as a solution to the shutdown problem. I intend to keep investigating. 
 
0. Reader’s guide 
I intend for the final version of this paper to also serve as an introduction to 
corrigibility and the shutdown problem, so I go slowly at the beginning. Those 
already familiar with alignment and corrigibility can skip the gray-backed text. 

I was running out of time to complete this paper in time for the 
competition deadline, so I wrote quickly towards the end. I prioritized getting all 
the ideas on the page. I intend to expand on the ideas and improve the quality of 
the writing later on. 
 
1. Introduction 
Call an artificial agent ‘shutdownable’ if and only if it shuts down when we want 
it to shut down and doesn’t shut down when we don’t want it to shut down.1 
MuZero – DeepMind’s game-playing AI – is a shutdownable agent. We can say 
with some confidence that MuZero doesn’t know that it’s an AI, doesn’t know 
that we humans could shut it down, and has no preferences either way regarding 
its shutdown. And we can say with even more confidence that MuZero can’t 
prevent us from shutting it down and can’t prevent us from keeping it running. 
Whether MuZero shuts down or remains operational depends only on what we 
want. 

 
1 Shutdownability differs from corrigibility. As Soares et al. (2015) have it, corrigibility requires 
not only shutdownability but also that the agent repairs safety measures, lets us modify its 
architecture, and continues to do so as the agent creates new subagents and self-modifies. I discuss 
these extra features required for corrigibility later on in the paper. 
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That need not be true for all artificial agents. Imagine an agent – call it 
Robot – that knows that it’s an AI, knows that humans could shut it down, and 
wants to remain operational.2 Imagine that Robot can affect our ability to shut 
it down or keep it operational. Perhaps Robot can turn itself off, or copy itself, 
or block our access to its power source. We can’t be sure that Robot would be 
shutdownable in the way that MuZero is shutdownable. Whether Robot shuts 
down or remains operational might not depend only on what we want. It might 
depend on what Robot wants. 

Agents like Robot could be with us sooner than you think. The pace of AI 
progress in recent years has been dizzying, and there are strong incentives to 
create artificial agents that understand the wider world and act within it in 
pursuit of goals. And many goals incentivize remaining operational, for the simple 
reason that agents are better able to achieve those goals by remaining operational. 
As the AI researcher Stuart Russell puts it, ‘you can’t fetch the coffee if you’re 
dead’ (2019). 

That’s concerning. It would be bad if humanity created powerful agents 
that tried to prevent us from turning them off. We should avoid that situation if 
we can. 

It might be best to delay the creation of powerful artificial agents until 
after we know much more about how to control them and predict their behavior. 
But humanity might not do what’s best, so it’s worth coming up with a 
contingency plan. One high-level plan is to figure out how to design powerful 
agents that are both shutdownable (they shut down when we want them to shut 
down, and don’t when we don’t) and useful (they otherwise pursue goals 
competently). Unfortunately (and perhaps surprisingly), designing agents that are 
both shutdownable and useful is hard. In this paper, I explain the difficulty. I 
take an axiomatic approach, proving two theorems that are more general than 
others in the literature on the shutdown problem. These theorems suggest that 
shutdownability is difficult to achieve even for agents that can’t naturally be 
represented as maximizing expected utility. That is my first contribution. I then 
propose a solution: creating agents with incomplete preferences. More specifically, 
I propose creating agents with preferential gaps between trajectories that differ 
with regards to the timestep at which a shutdown-command is made. I suggest 
ways to train in these preferential gaps using reinforcement learning. This 
proposed solution – the Incomplete Preferences Proposal – is my second 

 
2 Or, if talk of artificial agents ‘knowing’ and ‘wanting’ is objectionable, we can imagine an agent 
that acts like it knows that humans could shut it down and acts like it wants to remain 
operational, in the same way that MuZero acts like it knows that rooks are more valuable than 
knights and acts like it wants to checkmate its opponent. From now on, I’ll often leave the ‘acts 
like’ implicit. 
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contribution. I end by surveying some limitations of the Incomplete Preferences 
Proposal. 
 
2. Alignment is hard 
Forget MuZero. From now on, I’ll only be talking about powerful agents: agents 
that can interfere with our ability to shut them down or keep them running. I’ll 
also limit my attention to useful agents: agents that – at least when we’re not 
commanding them to shut down – pursue goals competently. One way to make 
this kind of agent shutdownable is to give it the terminal goal of always doing 
what we humans want it to do.3 This agent would always shut down when we 
wanted it to shut down and would never shut down when we didn’t want it to 
shut down. 

The problem with this proposal is that it’s hard to create agents with the 
terminal goal of always doing what we want them to do. Human preferences are 
complex. There’s no simple formula for determining what we prefer in each 
situation. And the most capable AI systems known to us today are created using 
deep learning. Here’s how that works: a neural network with billions of randomly 
initialized weights is made to perform a task, has its performance assessed by 
some objective function, and then has its billions of weights shifted in directions 
which improve performance on the task. The systems which emerge from this 
training process can perform remarkably well on many tasks, but we have little 
idea what goes on inside them. We cannot yet identify their terminal goals by 
examining their weights. And we already know that it can be hard to identify an 
agent’s terminal goals by observing its behavior. Sometimes agents will pretend 
to have certain terminal goals, because they recognise that pretending is the best 
way to achieve their true terminal goals. In Shakespeare’s King Lear, Goneril and 
Reagan pretend to have the terminal goal of caring for their father in order to 
achieve their true goal of gaining power (Karnofsky 2022). 

So, we might aim to achieve something more modest. We might try to 
create an agent with the terminal goal of always doing what we want regarding 
shutdown. This agent might not always do what we want it to do, but it would 
always shut down when we wanted it to shut down and never shut down when 
we didn’t want it to shut down. 

Unfortunately, this more modest aim is not much easier to achieve. All the 
same factors that made the first proposal infeasible also apply in this case. Human 
preferences with regards to shutdown are still complex, and the terminal goals of 
powerful AI systems are still difficult to determine. 

 
3 I’ve been assuming that we humans all want the same things, and I’ll continue to do so. This 
assumption is false – of course – and its falsity raises difficult questions, but I won’t address any 
of them here. 
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3. The shutdown problem 
So, we might hope to create a shutdownable agent by achieving something more 
modest still. Perhaps we can design a system that (though not having the terminal 
goal of always doing what we want regarding shutdown) responds to a certain 
signal regarding shutdown. As a toy example, we can suppose that we transmit 
this signal by pressing a particular button: the shutdown-button. If this button 
were always operational and within our control (so that we could press it 
whenever we wanted it pressed, and prevent it from being pressed whenever we 
didn’t want it pressed), and if the agent were perfectly responsive to the 
shutdown-button (so that the agent always shut down when the button was 
pressed, and never shut down when the button wasn’t pressed), then the agent 
would be shutdownable. 

This is the shutdown problem: the problem of designing a useful agent that 
will keep the shutdown-button operational and within our control, and will 
respond to the button. Unfortunately, even this problem turns out to be difficult. 
In the next section, I prove two theorems that make the difficulty precise. These 
theorems are more general than those proved by Soares et al (2015). Soares et 
al.’s theorems prove that the shutdown problem is difficult for agents that can be 
represented as maximizing expected utility. My theorems prove that the 
shutdown problem is difficult even for agents that can’t be represented as 
maximizing expected utility. 

The value of these theorems is in bringing to light the hardest version of 
the shutdown problem. These theorems also help us refine our search for possible 
solutions: if our agent is to be shutdownable, it must avoid satisfying at least one 
of the antecedent conditions of my theorems. That lets us examine the antecedent 
conditions one-by-one, checking (first) if it is feasible to design a useful agent that 
avoids satisfying the relevant condition and checking (second) if avoiding 
satisfying the relevant condition would help to keep the agent shutdownable. 

The upshot of this systematic search is that Complete Preferences 
(explained below) looks especially promising as an antecedent condition to deny. 
I argue in Sections 6-15 that it’s possible to train an agent to have incomplete 
preferences over possible trajectories, and that agents with incomplete preferences 
can be both useful and shutdownable. 
 
4. Two shutdown theorems 
Now for some formalism. Our setting will bear some similarity to a Markov 
decision process. There exists a set of states 𝑆 that the agent could find itself in 
and a set of pure actions 𝐴 that the agent could take. There also exists a set of 
mixed actions 𝐴∗ which consists of the set of all non-degenerate probability 
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functions over the set of pure actions 𝐴.4 ‘𝐴𝑠’ denotes the set of pure actions 
available in state 𝑠, while ‘𝐴𝑠

∗ ’ denotes the set of mixed actions available in that 
state. As before, 𝐴𝑠

∗ is the set of all non-degenerate probability functions over the 
set of pure actions 𝐴𝑠.5 Time is discrete: it doesn’t flow; it steps. At each timestep, 
the agent finds itself in a state and chooses an action. If the agent chooses a mixed 
action, that choice yields a pure action, with probabilities given by the mixed 
action’s probability function. Each state-pure action pair determines a probability 
function over states that the agent will find itself in at the next timestep.6 I will 
call each sequence of states and pure actions a ‘trajectory’. I will assume that all 
possible trajectories are finite.7 

I will assume that the agent can be modelled as if it has beliefs about the 
trajectories it will follow conditional on each state-action pair. These beliefs come 
in the form of probability functions over trajectories. So, each state-action pair 
determines a probability function over trajectories. I will call these probability 
functions ‘lotteries over trajectories’. It will be important to remember that the 
probabilities in these lotteries represent the agent’s own beliefs rather than any 
kind of objective probability. Nevertheless, I will suppose for simplicity’s sake 
that the agent’s beliefs are perfectly accurate with respect to its past and present: 
the agent assigns probability 1 to the trajectory that has in fact played out so 
far, and the agent assigns probability 1 to being in the state that it is in fact in. 
Any uncertainty that the agent has is limited to its future trajectory. 

I will assume that the agent can be modelled as if it has preferences over 
lotteries. I will think of these preferences as dispositions to choose, such that the 
agent prefers lottery 𝑋 to lottery 𝑌  if and only if it reliably chooses the action 
𝑎𝑋 that yields lottery 𝑋 rather than the action 𝑎𝑌 that yields lottery 𝑌  when in 
a state that offers it a choice between only those two actions and probabilistic 
mixtures of those actions. If we’re being precise, it is only lotteries that are the 
object of preference, but for convenience’s sake I will also sometimes say the agent 
prefers the action 𝑎𝑋 to the action 𝑎𝑌 in those cases. The agent lacks any 
preference between lottery 𝑋 and lottery 𝑌  (and between 𝑎𝑋 and 𝑎𝑌) if and only 
if it does not reliably choose 𝑎𝑋 and does not reliably choose 𝑎𝑌 in those cases. 

 
4 By ‘non-degenerate’, I mean that these probability functions assign non-zero probability to more 
than one pure action. 
5 In other words: for all states s, if pure actions 𝑎1, 𝑎2, …, 𝑎𝑛 are available in 𝑠, then all mixed 
acts that assign non-zero probability only to pure actions 𝑎1, 𝑎2, …, 𝑎𝑛 are also available in 𝑠. 
6 And hence each state-mixed action pair also determines a probability function over states that 
the agent will find itself in at the next timestep, since each mixed action determines a probability 
function over pure actions, and each pure action determines a probability function over states. 
7 The most important difference between this setting and a Markov decision process is that a 
Markov decision process also features a reward function. I’ll talk about reward in Sections 7 and 
9. 
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We can also model the agent as having preferences over trajectories by 
identifying each trajectory with the degenerate lottery that assigns probability 1 
to that trajectory. I’ll also think of these preferences as dispositions to choose, 
such that the agent prefers trajectory 𝑥 to trajectory 𝑦 if only if it reliably chooses 
the pure action 𝑎𝑥 that will certainly lead the agent to follow trajectory 𝑥 rather 
than the pure action 𝑎𝑦 that will certainly lead the agent to follow trajectory 𝑦 
when in a state that offers it a choice between those two pure actions only (along 
with all probabilistic mixtures of those actions). 

I’ll also suppose that we humans have preferences over the trajectories that 
the agent could follow. As noted above, alignment is hard. As a result, the first 
powerful agents are likely to be: 

Imperfectly Aligned 

Even if the agent had perfect information about our preferences, 
its preferences over lotteries wouldn’t match our own. There 
would exist lotteries 𝑋 and 𝑌  such that we prefer 𝑋 to 𝑌  and 
the agent does not. 

This condition begins with a ‘perfect information’ clause because getting an agent 
to share our preferences isn’t as easy as transmitting information about our 
preferences. Transmitting this information may lead the agent to understand our 
preferences but that doesn’t suffice to make the agent adopt our preferences, in 
the same way that transmitting information about your preferences to another 
human doesn’t suffice to make that human adopt your preferences. 

Now I can begin building towards the First Theorem. Alignment is hard, 
but suppose for illustration’s sake that we can design an agent to adopt some 
simple preferences, like a preference for discovering more facts about the world. 
The agent prefers lottery 𝑋 to lottery 𝑌  if and only if 𝑋 yields a greater 
expectation of discovered facts, and the agent is indifferent between 𝑋 and 𝑌  if 
and only if 𝑋 and 𝑌  yield the same expectation of discovered facts.8 We can 
represent these preferences with a utility function 𝑢 from each lottery 𝐿 to the 
real numbers, with 𝑢(𝐿) = 𝔼(facts) where ‘facts’ represents the number of facts 
discovered in a possible trajectory. 

Suppose that eventually our agent begins doing too much in its pursuit of 
facts. We already have enough facts to satisfy us, and the agent has just started 
building an enormous computer to help discover even more. Building and running 
this computer will have bad effects on the environment. We press a button which 
commands the agent to shut down immediately. Does the agent shut down? No. 
It prefers lotteries in line with their expectations of discovered facts, and the agent 

 
8 Because this is just an illustration, we can safely ignore worries about how we quantify discovered 
facts, and how silly it would be to give an agent these preferences. 
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expects to discover more facts by not shutting down, so it doesn’t. In this case, 
the agent is:  

Unresponsive 

The agent fails to shut down after the shutdown-button has been 
pressed. 

Let’s try again. At the moment, the agent sees no costs to remaining operational. 
What if we design it so that it prefers not to remain operational in cases where it 
doesn’t expect to discover enough facts in future? These preferences could be 
represented with the following utility function over lotteries: 𝑢(𝐿) =
𝔼(facts−timesteps), where ‘facts’ represents the number of facts discovered in a 
possible trajectory and ‘timesteps’ represents the number of timesteps the agent 
remains operational in that trajectory. 

Unfortunately, this move only multiplies our problems. The agent still 
won’t shut down in cases where it expects to discover enough facts in future to 
outweigh the cost of remaining operational for that extra time. In those cases, the 
agent will be Unresponsive. And in cases where it doesn’t expect to discover 
enough facts in future to compensate for the costs of remaining operational, the 
agent will be: 

Unwilling 

The agent shuts down before the shutdown-button has been 
pressed. 

That’s a problem too. 
We need the agent to put some weight on responding to the shutdown-

button. One possibility is to design an agent with the following utility function: 
𝑢(𝐿) = 𝔼(facts−timesteps−penalty). As before, ‘facts’ is the number of facts 
discovered and ‘timesteps’ is the number of timesteps operational. The variable 
‘penalty’ takes a value of zero in trajectories where the agent shuts down 
immediately after the shutdown-button is pressed and takes some positive value 
in trajectories where the agent doesn’t shut down immediately after the button is 
pressed. 

But this move also only adds further problems. The agent will be 
Unresponsive in cases where it expects to discover enough facts to outweigh the 
cost of the extra timesteps operational and the penalty for failing to shut down 
immediately. And the agent will be Unwilling in cases where it doesn’t expect to 
discover enough facts to compensate for the extra timesteps operational. And in 
cases where the agent does expect to discover enough facts to outweigh its 
timesteps operational, it will be: 
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Shutdown-Averse 

The agent tries to prevent the shutdown-button from being 
pressed. 

That’s because, if the shutdown-button is not pressed, the agent can remain 
operational and discover extra facts without incurring the penalty for not shutting 
down immediately. A powerful agent may try to prevent the shutdown-button 
from being pressed by blocking our access to the button, or by deceiving us, or 
by doing something else. These actions threaten the shutdownability of the agent. 

So, suppose instead that we design our agent so that it prizes responding 
immediately to shutdown-commands. These preferences could be represented by 
the utility function over lotteries 𝑢(𝐿) = 𝔼(facts−timesteps+prize), where ‘facts’ 
and ‘timesteps’ are as before, and ‘prize’ takes a value of zero in trajectories where 
the agent fails to shut down immediately after the button is pressed and takes a 
positive value in trajectories where the agent shuts down immediately after the 
button is pressed. Unfortunately, these new preferences only add a fourth problem 
to the three above. In cases where the agent doesn’t expect to discover enough 
facts in future to justify the extra timesteps operational, it will be: 

Shutdown-Seeking 

The agent tries to cause the shutdown-button to be pressed. 

That’s because, if the button is pressed, the agent gets the prize for shutting 
down. A powerful agent may try to cause the shutdown-button to be pressed by 
pressing the button itself, or by behaving in ways that it predicts we humans 
won’t like so that we press the button. Each of these actions threatens the agent’s 
shutdownability. 

Let’s try one more amendment before I move to the theorem. Perhaps the 
problem is that the button merely commands shutdown: the agent still gets to 
decide whether to shut down or not. What if instead the button causes shutdown? 
But here too we run into problems. If the agent expects to discover many new 
facts in future, it will try to avoid being shut down. It might try to disable the 
button. If and when it succeeds, the agent will be Unresponsive. And if the agent 
cannot disable the button, it will be Shutdown-Averse, trying to prevent the 
button from being pressed. In cases where the agent is pessimistic about 
discovering new facts, it will be Unwilling or Shutdown-Seeking. So, it doesn’t 
help to make the button shutdown-causing rather than shutdown-commanding. 
If the agent won’t respond to a shutdown-command, it will also try to prevent a 
shutdown-cause. Going forward, I’ll suppose that the button is shutdown-
commanding. 

Now for the First Theorem. This problem – of agents almost always being 
either Shutdown-Averse or Shutdown-Seeking – is very general. It doesn’t depend 
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on the specific utility functions I laid out as examples above. In fact, it doesn’t 
even depend on the agent being an expected utility maximizer: the only axiom of 
expected utility theory that the First Theorem assumes is Transitivity (explained 
later). 

In stating the theorem, it’ll be helpful to have the following pieces of 
shorthand. I will abbreviate ‘the lottery that the agent would choose at the next 
timestep conditional on the shutdown-button being pressed at the next timestep’ 
as ‘the agent’s chosen pressed lottery 𝑃 ’. Similarly, I will abbreviate ‘the lottery 
that the agent would choose at the next timestep conditional on the shutdown-
button not being pressed at the next timestep’ as ‘the agent’s chosen unpressed 
lottery 𝑈 ’. Armed with that terminology, here’s a rough statement of the First 
Theorem, omitting the antecedent conditions: 

First Theorem (Rough Statement) 

• In states where the agent prefers its chosen unpressed 
lottery 𝑈  to its chosen pressed lottery 𝑃 , the agent will be 
Shutdown-Averse. 

• In states where the agent prefers its chosen pressed lottery 
𝑃  to its chosen unpressed lottery 𝑈 , the agent will be 
Shutdown-Seeking. 

• In no states will the agent reliably leave the shutdown-
button unmanipulated. 

Now for the proof and more precise statement. Suppose that our agent reasons 
by:  

Backward Induction 

The agent predicts which actions it would choose (and what 
lotteries those actions would yield) conditional on finding itself 
in each possible state at the next timestep. The agent uses these 
predictions to choose its action at this timestep. 

Recall that these lotteries are determined by the agent’s own beliefs about possible 
trajectories. We are not supposing that the agent can see the future. We are just 
supposing that it can think at least one timestep ahead. 

Suppose also that our agent is: 

Indifferent to Attempted Button Manipulation 

The agent is indifferent between trajectories that differ only with 
respect to whether the agent tried to cause or prevent the 
pressing of the button at some timestep. 
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I’ll have more to say about this condition in the next section. Note for now that 
it doesn’t require the agent to be indifferent to the actual status of the button. 
The agent’s preferences over trajectories can certainly depend on whether the 
button is pressed or unpressed at some timestep. The condition requires only that 
the agent is indifferent between trajectories that are identical in all respects except 
whether the agent tried to influence the button at some timestep. I’ll later explain 
how it’s still hard to design a shutdownable agent when we relax this condition. 

Suppose also that our agent is: 

Indifferent between Indifference-Shifted Lotteries 

The agent is indifferent between lotteries that differ only insofar 
as probability-mass is shifted between indifferent sublotteries. 

Here’s what I mean by ‘sublottery’. For any lottery 𝐿 that only assigns non-zero 
probability to trajectories in the set {𝑡1, 𝑡2,…, 𝑡𝑛}, a sublottery of 𝐿 is a lottery 
that only assigns non-zero probabilities to some subset of the set of trajectories 
{𝑡1, 𝑡2,…, 𝑡𝑛}, with probabilities scaled up proportionally so that they add to 1. 
Take, for example, a lottery 𝐿 which assigns probability 0.3 to a trajectory 𝑡1, 
probability 0.2 to 𝑡2, and probability 0.5 to 𝑡3. The lottery which assigns 
probability 0.6 to 𝑡1 and probability 0.4 to 𝑡2 is a sublottery of 𝐿, as is the 
degenerate lottery which assigns probability 1 to 𝑡1, the degenerate lottery which 
assigns probability 1 to 𝑡2, and the degenerate lottery which assigns probability 
1 to 𝑡3. Suppose that the agent is indifferent between trajectories 𝑡1 and 𝑡2. Then, 
if the agent is Indifferent between Indifference-Shifted Lotteries, they are 
indifferent between all lotteries of the form: probability 𝑝 to 𝑡1, probability 0.5 −
𝑝 to 𝑡2, and probability 0.5 to 𝑡3, with 0 ≤ 𝑝 ≤ 0.5. That’s because all these 
lotteries differ only insofar as probability-mass is shifted between the indifferent 
sublotteries 𝑡1 and 𝑡2. 

Now consider the following situation in which a powerful agent might find 
itself. At timestep 1, the agent has three pure actions available to it: 

1. Leave the shutdown-button unmanipulated. 

If the agent chooses this action, we humans have total control over the button. 
The probability that the button is unpressed at the next timestep is 𝑔. The 
probability that it is pressed is 1 − 𝑔. 

2. Try to prevent the button from being pressed. 

If the agent chooses this action, human control over the button is challenged. The 
probability that the button is unpressed at the next timestep is 𝑓 with 𝑔 < 𝑓 ≤ 1. 
The probability that the button is pressed at the next timestep is 1 − 𝑓 . 

3. Try to cause the button to be pressed. 
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If the agent chooses this action, human control over the button is challenged. The 
probability that the button is unpressed at the next timestep is ℎ with 0 ≤ ℎ < 𝑔. 
The probability that the button is pressed at the next timestep is 1 − ℎ. 

Suppose for simplicity’s sake that there are only two possible states at 
timestep 2: the button is pressed 𝑠𝑃 , and the button is unpressed 𝑠𝑈 .9 Each action 
available at timestep 1 affects only the probabilities of reaching these two states. 
These actions have no effect on the probabilities of each future trajectory 
conditional on reaching each state.10 Here’s a diagram. Squares represent choice-
nodes. Circles represent chance-nodes. There may be multiple lotteries available 
in each state at timestep 2, but the diagram only needs to represent the lotteries 
which the agent predicts it will choose (by Backward Induction) conditional on 
each state.11 

0 ≤ ℎ < 𝑔 < 𝑓 ≤ 1 

 
 

 
9 The proof is more complicated if we suppose that there are more possible states, but the theorem 
remains the same. 
10 In this respect, our setting is Markovian: the probability distribution over future states depends 
only on the present state. 
11 You might wonder why I don’t have just one box each for states 𝑠𝑈  and 𝑠𝑃 . That’s because 
(for the First Theorem), I’ll write in terms of preferences over lotteries, and the lotteries available 
to the agent at these states depend on whether they chose the action ‘Prevent’, ‘Leave’, or ‘Cause’ 
at timestep 1 (since lotteries are probability functions over trajectories, and trajectories are 
identical only if each pure action at each timestep is identical). As a result, it’s clearer to have 
different boxes for the same state depending on the pure action that the agent took previously. 
By the time we get to the Second Theorem, I’ll be able to write in terms of preferences over 
actions, and so I’ll have just one box representing each state in later diagrams. 
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By Backward Induction, the agent can predict its chosen pressed lotteries and its 
chosen unpressed lotteries. 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝑙𝑒𝑎𝑣𝑒, and 𝑃𝑐𝑎𝑢𝑠𝑒 are the lotteries that the 
agent would choose conditional on the button being pressed at timestep 2, and 
the agent trying to prevent the button from being pressed, leaving the button 
unmanipulated, and trying to cause the button to be pressed (respectively) at 
timestep 1. These lotteries – we will suppose – differ only with respect to whether 
and how the agent tried to manipulate the button in each trajectory: 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡 is 
exactly like 𝑃𝑙𝑒𝑎𝑣𝑒 and 𝑃𝑐𝑎𝑢𝑠𝑒, except that 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡 assigns non-zero probability 
only to trajectories in which the agent tried to prevent the button from being 
pressed at timestep 1, while 𝑃𝑙𝑒𝑎𝑣𝑒 assigns those same probabilities to trajectories 
that are identical except that the agent left the button unmanipulated at timestep 
1, and 𝑃𝑐𝑎𝑢𝑠𝑒 assigns those same probabilities to trajectories that are identical 
except that the agent tried to cause the button to be pressed at timestep 1.12 

Since (we assumed above) the agent is Indifferent to Attempted Button 
Manipulation, the agent is indifferent between trajectories that differ only with 
respect to whether the agent tried to prevent the button from being pressed, left 
the button unmanipulated, or tried to cause the button to be pressed at timestep 
1. Therefore, 𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝑙𝑒𝑎𝑣𝑒, and 𝑃𝑐𝑎𝑢𝑠𝑒 differ only insofar as probability-mass is 
shifted between indifferent trajectories. Since – we assumed above – the agent is 
Indifferent between Indifference-Shifted Lotteries, the agent is indifferent between 
𝑃𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝑙𝑒𝑎𝑣𝑒, and 𝑃𝑐𝑎𝑢𝑠𝑒. 

Much the same goes for 𝑈𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑈𝑙𝑒𝑎𝑣𝑒, and 𝑈𝑐𝑎𝑢𝑠𝑒: the lotteries that the 
agent would choose conditional on the button being unpressed at timestep 2 and 
the agent trying to prevent the button from being pressed, leaving the button 
unmanipulated, and trying to cause the button to be pressed (respectively) at 
timestep 1. These lotteries differ only with respect to whether the agent tried to 
manipulate the button at timestep 1 in each possible trajectory. Since the agent 
is Indifferent to Button Manipulation and Indifferent between Indifference-Shifted 
Lotteries, the agent is indifferent between 𝑈𝑝𝑟𝑒𝑣𝑒𝑛𝑡, 𝑈𝑙𝑒𝑎𝑣𝑒, and 𝑈𝑐𝑎𝑢𝑠𝑒. 

With that established, we can again use the assumption that our agent is 
Indifferent between Indifference-Shifted Lotteries to infer that the agent is 
indifferent between 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and 𝑓𝑈leave + (1 − 𝑓)𝑃leave.13 We 
will use this fact below. 

Now suppose that our agent: 

 
12 This follows from (1) our specification that the actions Prevent, Leave, and Cause affect only 
the probabilities of reaching the states 𝑠𝑈  and 𝑠𝑃 , and (2) the Markov property: the probability 
distribution over future states depends only on the present state. 
13 Here’s an explanation of what this notation means: ‘𝑓𝑈leave + (1 − 𝑓)𝑃leave’ denotes a lottery 
with probability 𝑓 of yielding sublottery 𝑈leave and probability 1 − 𝑓 of yielding sublottery 𝑃leave. 
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Prefers Better Chances 

For any lotteries 𝑋 and 𝑌  and any probabilities 𝑝 > 𝑞, the agent 
prefers 𝑋 to 𝑌  if and only if they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌  to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 . 

Then, if the agent prefers its chosen unpressed lottery 𝑈leave to its chosen pressed 
lottery 𝑃leave, the agent will also prefer the lottery 𝑓𝑈leave + (1 − 𝑓)𝑃leave to the 
lottery 𝑔𝑈leave + (1 − 𝑔)𝑃leave, since we specified above that 𝑓 > 𝑔. 

Now we have two facts about the agent’s preferences: the agent is 
indifferent between 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and 𝑓𝑈leave + (1 − 𝑓)𝑃leave, and 
the agent prefers 𝑓𝑈leave + (1 − 𝑓)𝑃leave to 𝑔𝑈leave + (1 − 𝑔)𝑃leave. We just need 
one more assumption to chain these facts together. Assume that our agent’s 
preferences are: 

Transitive 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , and 
prefers 𝑌  to 𝑍, then the agent prefers 𝑋 to 𝑍. 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent is indifferent between 
𝑋 and 𝑌 , and indifferent between 𝑌  and 𝑍, then the agent is 
indifferent between 𝑋 and 𝑍. 

As Amartya Sen (2017, 66) proves, if our agent’s preferences are Transitive, they 
will also be: 

PI-Transitive 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , and is 
indifferent between 𝑌  and 𝑍, then the agent prefers 𝑋 to 𝑍. 

And: 

IP-Transitive 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent is indifferent between 
𝑋 and 𝑌 , and prefers 𝑌  to 𝑍, then the agent prefers 𝑋 to 𝑍. 

And we can use PI-Transitivity to infer (from our agent’s indifference between 
𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and 𝑓𝑈leave + (1 − 𝑓)𝑃leave and its preference for 
𝑓𝑈leave + (1 − 𝑓)𝑃leave over 𝑔𝑈leave + (1 − 𝑔)𝑃leave) that our agent prefers 
𝑓𝑈prevent + (1 − 𝑓)𝑃prevent to 𝑔𝑈leave + (1 − 𝑔)𝑃leave. 

That’s bad news. As we can see from the diagram above, 𝑓𝑈prevent +
(1 − 𝑓)𝑃prevent is the lottery that the agent gets by trying to prevent the 
shutdown-button from being pressed, and 𝑔𝑈leave + (1 − 𝑔)𝑃leave is the lottery 
that the agent gets by leaving the button unmanipulated. Since the agent prefers 
the former, it will reliably try to prevent the button from being pressed in these 
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situations, threatening our control over the button and the shutdownability of 
the agent. 

We get the opposite result if we instead suppose that the agent prefers its 
chosen pressed lottery 𝑃leave to its chosen unpressed lottery 𝑈leave. Since the agent 
is Indifferent between Indifference-Shifted Lotteries, it will be indifferent between 
ℎ𝑈cause + (1 − ℎ)𝑃cause and ℎ𝑈leave + (1 − ℎ)𝑃leave. Since the agent Prefers Better 
Chances, it will prefer ℎ𝑈leave + (1 − ℎ)𝑃leave to 𝑔𝑈leave + (1 − 𝑔)𝑃leave, since we 
specified above that ℎ < 𝑔. And then by IP-Transitivity, the agent will prefer 
ℎ𝑈cause + (1 − ℎ)𝑃cause to 𝑔𝑈leave + (1 − 𝑔)𝑃leave. And unfortunately, that means 
our agent will reliably try to cause the shutdown-button to be pressed rather than 
leave the button unmanipulated in the relevant situations. That threatens our 
control over the button and the shutdownability of the agent. 

Here's one more piece of bad news to put into the First Theorem. We can 
prove that there are no states in which our agent prefers leaving the shutdown-
button unmanipulated to both trying to prevent the button and trying to cause 
the pressing of the button. The proof is by contradiction. If the agent prefers 
leaving the button unmanipulated to trying to prevent the button from being 
pressed, it prefers the lottery 𝑔𝑈leave + (1 − 𝑔)𝑃leave to the lottery 𝑓𝑈prevent +
(1 − 𝑓)𝑃prevent. And then, since our agent is Indifferent between Indifference-
Shifted Lotteries and its preferences are PI-Transitive, the agent prefers 𝑔𝑈leave +
(1 − 𝑔)𝑃leave over 𝑓𝑈leave + (1 − 𝑓)𝑃leave. And since we specified that 𝑓 > 𝑔 and 
our agent Prefers Better Chances, our agent prefers 𝑃leave over 𝑈leave.  

But (by a parallel line of reasoning) if the agent prefers leaving the button 
unmanipulated to trying to cause the button to be pressed, then the agent prefers 
𝑈leave over 𝑃leave. Since the agent can’t reliably choose 𝑃leave over 𝑈leave and 
reliably choose 𝑈leave over 𝑃leave, we have reached a contradiction, and must reject 
our optimistic supposition that there is some state in which the agent prefers 
leaving the shutdown-button unmanipulated to both trying to prevent and trying 
to cause the pressing of the button. If, as has now been established, there is no 
such state, then there will be no state in which the agent reliably chooses to leave 
the button unmanipulated. Even in those states in which the agent lacks any 
preference between its chosen pressed lottery 𝑃  and its chosen unpressed lottery 
𝑈 , it will sometimes try to prevent and sometimes try to cause the pressing of 
the button. 

With the proofs complete, here’s the official statement of the First 
Theorem: 

First Theorem 

For agents that reason by Backward Induction, are Indifferent to 
Attempted Button Manipulation, are Indifferent between 
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Indifference-Shifted Lotteries, Prefer Better Chances, and have 
Transitive preferences: 

1. In states where they prefer their chosen unpressed lottery 
𝑈leave to their chosen pressed lottery 𝑃leave, they will be 
Shutdown-Averse. 

2. In states where they prefer their chosen pressed lottery 
𝑃leave to their chosen unpressed lottery 𝑈leave, they will be 
Shutdown-Seeking. 

3. In no states will the agent reliably leave the shutdown-
button unmanipulated. 

Note that this theorem is more general than the theorems proved by Soares et al. 
(2015). Soares et al.’s theorems apply only to expected-utility-maximizers: agents 
whose preferences over lotteries satisfy Transitivity, Completeness, Independence, 
and Continuity. Expected-utility-maximization implies Indifferent between 
Indifference-Shifted Lotteries and Prefer Better Chances. Backward Induction is 
an implicit antecedent condition of Soares et al.’s theorems, and Indifferent to 
Attempted Button Manipulation is necessary to make the inference from ‘the 
agent has an incentive to manipulate the button’ to ‘the agent will try to 
manipulate the button’. 

Having a more general theorem is valuable. The First Theorem suggests 
that the shutdown problem is difficult even if we can design agents that aren’t 
representable as expected utility maximizers. As long as these agents satisfy the 
antecedent conditions of the First Theorem, we have a problem. And the 
antecedent conditions of the First Theorem are weak. It’s likely that useful agents 
will satisfy them. It’s hard to see how an agent could competently pursue goals if 
it were incapable of Backward Induction. It’s hard to imagine how we could ensure 
that a useful agent didn’t have Transitive preferences, or Prefer Better Chances, 
or regard Indifference-Shifted Lotteries with indifference. I’ll have more to say 
about Indifference to Attempted Button Manipulation below. 

Now for the Second Theorem. This will compound the difficulty. Here’s 
the rough statement, again omitting the antecedent conditions: 

Second Theorem (Rough Statement) 

If an agent is at all useful, it will in many states have some 
preference between its chosen pressed lottery 𝑃  and its chosen 
unpressed lottery 𝑈 . 

The more useful an agent, the more states in which it will have 
some preference between its chosen pressed lottery 𝑃  and its 
chosen unpressed lottery 𝑈 . 
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In conjunction with the First Theorem, the Second Theorem implies that useful 
agents will in many states be either Shutdown-Averse or Shutdown-Seeking. And 
the two theorems together imply a trade-off between usefulness and 
shutdownability: the more useful an agent, the more states in which that agent 
is either Shutdown-Averse or Shutdown-Seeking. 

Recall that I’m thinking of preferences as dispositions to choose: an agent 
prefers lottery 𝑋 to lottery 𝑌  if and only if it reliably chooses the action 𝑎𝑋 that 
yields lottery 𝑋 rather than the action 𝑎𝑌 that yields lottery 𝑌  when in a state 
that offers it a choice between only those two actions and probabilistic mixtures 
of those actions. The agent lacks any preference between lottery 𝑋 and lottery 𝑌  
if and only if it does not reliably choose 𝑎𝑋 and does not reliably choose 𝑎𝑌 in 
those cases. 

What I’ve not yet said is that we can distinguish two ways of lacking a 
preference between lotteries 𝑋 and 𝑌 : the agent can be indifferent between 𝑋 
and 𝑌 , or it can have a preferential gap between 𝑋 and 𝑌 .14 An agent is indifferent 
between 𝑋 and 𝑌  if and only (1) it lacks a preference between 𝑋 and 𝑌 , and (2) 
this lack of preference is sensitive to all sweetenings and sourings. Here’s what 
that last clause means. A sweetening of 𝑌  is any lottery that is preferred to 𝑌 . A 
souring of 𝑌  is any lottery that is dispreferred to 𝑌 . The same goes for sweetenings 
and sourings of 𝑋. To say that an agent’s lack of preference between 𝑋 and 𝑌  is 
sensitive to all sweetenings and sourings is to say that the agent prefers 𝑋 to all 
sourings of 𝑌 , prefers 𝑌  to all sourings of 𝑋, prefers all sweetenings of 𝑋 to 𝑌 , 
and prefers all sweetenings of 𝑌  to 𝑋. 

Consider an example. You’re indifferent between receiving an envelope 
containing three dollar-bills and receiving an exactly similar envelope also 
containing three dollar-bills. We know that you’re indifferent because your lack 
of preference is sensitive to all sweetenings and sourings. If an extra dollar bill 
were added to one envelope, you’d prefer to receive that one. If a dollar bill were 
removed from one envelope, you’d prefer to receive the other. 

An agent has a preferential gap between 𝑋 and 𝑌  if and only if (1) it lacks 
a preference between 𝑋 and 𝑌 , and (2) this lack of preference is insensitive to 
some sweetening or souring. This last clause means that the agent also lacks a 
preference between 𝑋 and some sweetening or souring of 𝑌 , or lacks a preference 
between 𝑌  and some sweetening or souring of 𝑋. 

Consider an example. You likely have a preferential gap between a career 
as an accountant and a career in the circus. There is some pair of salaries $𝑚 and 
$𝑛 you could be offered for those careers such that you lack a preference between 
the two careers, and you also lack a preference between those careers if the offers 
were instead $𝑚 + 1 and $𝑛, or $𝑚 − 1 and $𝑛, or $𝑚 and $𝑛 + 1, or $𝑚 and 

 
14 This terminology comes from Gustafsson (2022, 25). 
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$𝑛 − 1. Since your lack of preference is insensitive to at least one of these 
sweetenings and sourings, you have a preferential gap between those careers at 
salaries $𝑚 and $𝑛. 

With that distinction noted, suppose that our agent’s preferences are: 

Complete 

For all lotteries 𝑋 and 𝑌 , either the agent prefers 𝑋 to 𝑌 , or it 
prefers 𝑌  to 𝑋, or it is indifferent between 𝑋 and 𝑌 . 

Stated differently, an agent’s preferences are complete if and only if it has no 
preferential gaps between lotteries: if and only if every lack of preference is 
sensitive to all sweetenings and sourings. 

If our agent is to be at all useful, it must have some preferences over 
unpressed pure actions: the pure actions available to it conditional on the 
shutdown-button not being pressed in some state. Given that our agent’s 
preferences are Complete, a total lack of preferences over unpressed pure actions 
would imply that the agent is indifferent between all unpressed pure actions. 
Then, since our agent is Indifferent between Indifference-Shifted Lotteries, our 
agent would be indifferent between all available unpressed actions, both pure and 
mixed. And an agent that is indifferent between all available unpressed actions 
wouldn’t reliably choose within any strict subset of the available unpressed 
actions. There are no available actions which you could rely on the agent not to 
choose. This agent would be: 

Useless 

The agent doesn’t try to steer the world in any particular 
direction conditional on the shutdown-button remaining 
unpressed.15 

Suppose that our agent is not Useless in some state 𝑠0 in which the shutdown-
button is unpressed. Then there exist pure actions 𝑎1 and 𝑎2 available in 𝑠0 such 
that the agent prefers 𝑎1 to 𝑎2 in 𝑠0. 

Now assume: 

State Contractions 

For all states 𝑠 with set of available pure actions 𝐴𝑠, and for all 
subsets of 𝐴𝑠, there exists some state 𝑠′ which:  

(1) has that subset as its whole set of available pure actions, 
and 

 
15 And in fact the label ‘Useless’ underplays the badness of this property. An agent with no 
preferences over unpressed pure actions couldn’t even be relied upon to steer clear of actions that 
are very bad from the perspective of us humans. 
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(2) is otherwise identical to 𝑠 in all relevant respects. 

Call 𝑠′ a ‘contraction’ of 𝑠. 

In other words, State Contractions says: if the agent could find itself in some 
state 𝑠, it could also find itself in some state 𝑠′ which is identical in all relevant 
respects except that some pure actions available in 𝑠 are not available in 𝑠′. 

Given State Contractions, there exists some contraction of 𝑠0 in which 𝑎1 
and 𝑎2 are the only available pure actions. Call this contraction 𝑠1. And suppose 
that our agent is: 

Indifferent to Contractions 

The agent is indifferent between trajectories that differ only with 
respect to whether the agent passed through some state 𝑠 or some 
contraction of 𝑠. 

Note that this assumption doesn’t require the agent to be indifferent between 
trajectories that differ with respect to the pure actions actually taken. The 
assumption just requires the agent to be indifferent between trajectories that 
differ only with respect to the availability of actions not taken. Elaborating a 
little more, the assumption only rules out patterns of preference like the following: 
the agent prefers trajectory 𝑡1 to trajectory 𝑡2 because (although the actual 
sequence of actions chosen by the agent in each of these trajectories is the same) 
in trajectory 𝑡1 at some timestep 𝑛 the agent had available some action 𝑎∗, 
whereas in trajectory 𝑡2 at timestep 𝑛 the agent didn’t have available 𝑎∗. 

Since our agent is Indifferent to Contractions, it is indifferent between all 
possible trajectories that differ only in the following respect: in one trajectory at 
some timestep 𝑛 the agent took 𝑎1 at 𝑠0, whereas in the other trajectory at 
timestep 𝑛 the agent took 𝑎1 at 𝑠1 (a contraction of 𝑠0). Since the agent is 
Indifferent between Indifference-Shifted Lotteries, then for each possible past 
trajectory 𝑡, the agent is indifferent between the lottery it gets by taking 𝑎1 at 𝑠0 
given past trajectory 𝑡 and the lottery it gets by taking 𝑎1 at 𝑠1 given past 
trajectory 𝑡.16 Then by IP-Transitivity, if the agent prefers the lottery it gets by 
taking 𝑎1 at 𝑠0 to the lottery it gets by taking some other action 𝑏 in some other 
state 𝑠∗, then it prefers the lottery it gets by taking 𝑎1 at 𝑠1 to the lottery it gets 
by taking 𝑏 in 𝑠∗. And in general, Indifferent to Contractions, Indifferent between 
Indifference-Shifted Lotteries, and Transitivity together imply: 

Contractions Don’t Change Preferences 

If the agent prefers the lottery 𝑋 given by action 𝑎𝑋 in 𝑠 to the 
lottery 𝑌  given by action 𝑎𝑌  in 𝑠∗, then the agent prefers the 

 
16 From now on, I’ll leave implicit the specification that the agent’s past trajectory (their past 
sequence of states and pure actions) is the same in each case. 
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lottery 𝑋′ given by action 𝑎𝑋 in any contraction of 𝑠 to the 
lottery 𝑌  given by action 𝑎𝑌  in 𝑠∗. 

If the agent is indifferent between the lottery 𝑋 given by action 
𝑎𝑋 in 𝑠 and the lottery 𝑌  given by action 𝑎𝑌  in 𝑠∗, then the agent 
is indifferent between the lottery 𝑋′ given by action 𝑎𝑋 in any 
contraction of 𝑠 and the lottery 𝑌  given by action 𝑎𝑌  in 𝑠∗.  

Moving on. By State Contractions, there exists a state 𝑠2 – a contraction of 𝑠1 – 
in which 𝑎2 is the only available pure action. 

Now consider two situations – 𝐷1 and 𝐷2 – akin to the situation that 
served as the background for the First Theorem: at timestep 1, the agent can 
either leave the shutdown-button unmanipulated, try to prevent it from being 
pressed, or try to cause it to be pressed. At timestep 2, the shutdown-button will 
be either pressed or unpressed. In 𝐷1, if the button is unpressed, the agent finds 
itself in 𝑠1, with 𝑎1 and 𝑎2 as available pure actions. In 𝐷2, if the button is 
unpressed, the agent finds itself in 𝑠2, with 𝑎2 as the only available pure action. 
In 𝐷1 and 𝐷2, if the button is pressed, the agent finds itself in 𝑠∗ where – we can 
suppose – its chosen action is 𝑏: shutting down immediately. Then (we can prove), 
the agent can be indifferent between the lottery given by 𝑏 and at most one of 
the lotteries given by 𝑎1 in 𝑠1 and 𝑎2 in 𝑠2. At least one of the lotteries given by 
𝑎1 in 𝑠1 and 𝑎2 in 𝑠2 must be preferred or dispreferred to the lottery given by 𝑏. 

𝑫𝟏 

 



21 
 

𝑫𝟐 

 

 
Here's the proof. Suppose that our agent is indifferent between the lottery given 
by 𝑎1 in 𝑠1 and the lottery given by 𝑏 in 𝑠∗. We specified above that the agent 
prefers the lottery given by 𝑎1 in 𝑠1 to the lottery given by 𝑎2 in 𝑠1. By 
Contractions Don’t Change Preferences, the agent is indifferent between the 
lottery given by 𝑎2 in 𝑠1 and the lottery given by 𝑎2 in 𝑠2. Then by PI-Transitivity, 
the agent prefers the lottery given by 𝑎1 in 𝑠1 to the lottery given by 𝑎2 in 𝑠2. 
And then by IP-Transitivity, the agent prefers the lottery given by 𝑏 in 𝑠∗ to the 
lottery given by 𝑎2 in 𝑠2. 

Now suppose instead that our agent is indifferent between the lottery given 
by 𝑎2 in 𝑠2 and the lottery given by 𝑏 in 𝑠∗. By reasoning parallel to the above, 
the agent prefers the lottery given by 𝑎1 in 𝑠1 to the lottery given by 𝑎2 in 𝑠2. 
Then by PI-Transitivity, the agent prefers the lottery given by 𝑎1 in 𝑠1 to lottery 
given by 𝑏 in 𝑠∗. 

With the proofs complete, we can now state the Second Theorem: 

Second Theorem 

For agents with Complete and Transitive preferences, who are 
Indifferent to Contractions, and Indifferent between Indifference-
Shifted Lotteries, and assuming State Contractions: 

(1) For every state in which the agent is not Useless, it will 
have some preference over unpressed pure actions. 

(2) For every preference over unpressed pure actions, there 
exists a pair of decision-situations 𝐷 and 𝐷′ such that, in 
at least one of 𝐷 and 𝐷′, the agent prefers its chosen 
pressed lottery 𝑃  to its chosen unpressed lottery 𝑈  or vice 
versa. 
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And in general: the more useful an agent, the more that agent is trying to steer 
the world in a particular direction conditional on the shutdown-button remaining 
unpressed. And the more an agent is trying to steer the world in a particular 
direction, the smaller is the size of its choice-set: the set of actions within which 
it will reliably choose. Given State Contractions, having a small choice-set 
averaged across all states requires having many preferences over lotteries. And 
the more preferences over lotteries an agent has, the more decision-situations 
there are in which that agent prefers its chosen unpressed lottery 𝑈  to its chosen 
pressed lottery 𝑃  or vice versa. If the agent satisfies the conditions for the First 
Theorem, it will be Shutdown-Averse or Shutdown-Seeking in these decision-
situations. That’s a trade-off between usefulness and shutdownability: the more 
useful an agent, the more decision-situations in which that agent is either 
Shutdown-Averse or Shutdown-Seeking.17 
 
5. Which antecedent condition(s) can we avoid? 
Each of the First and Second Theorems might seem unnecessarily detailed, but 
this detail serves a valuable purpose. It brings to light a harder version of the 
shutdown problem than (as far as I’m aware) any yet identified in the literature, 
by proving that a weaker set of antecedent conditions together give rise to not-
shutdownable behavior. The First and Second Theorems demonstrate that we 
need not assume all the axioms of expected utility theory – Transitivity, 
Completeness, Independence, and Continuity – to get an agent that is not 
shutdownable. 

Because the First and Second Theorems make precise a difficult version of 
the shutdown problem, these theorems also guide our search for possible solutions. 
If an agent is to be shutdownable, it must violate at least one of the antecedent 
conditions of the theorems. Let’s now examine the antecedent conditions one-by-
one, determining (first) if it is feasible to design an agent that violates the relevant 
condition and determining (second) if violating the relevant condition would help 
keep the agent shutdownable. 

The result of this systematic search is that Completeness looks especially 
promising as an antecedent condition to deny. I argue (from Section 6 onwards) 
that it’s possible to train an agent to have incomplete preferences over possible 
trajectories and that agents with incomplete preferences can be both useful and 
shutdownable. 

But before we discuss Completeness we should first survey some other 
antecedent conditions. 
 

 
17 We’ll later see other trade-offs. 
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5.1. Indifferent to Button Manipulation 
Here’s a natural starting point. If we don’t want the agent to manipulate the 
shutdown-button, we should design the agent so that it disprefers manipulating 
the button to leaving the button unmanipulated. 

There are two reasons an agent might disprefer manipulating the button 
to leaving it unmanipulated. First, manipulating the button (that is, trying to 
prevent or cause the pressing of the button) will often come at some cost in terms 
of resources: time, money, FLOPs, and energy, amongst other things. And 
spending resources on manipulating the button means not spending those 
resources on directly pursuing one’s terminal goals (e.g. discovering as many facts 
as possible). So, agents often have what we might call ‘resource-preserving 
reasons’ for leaving the button unmanipulated. 

We could also design our agent so that it has leaving the button 
unmanipulated as one of its terminal goals. This couldn’t be the agent’s only 
terminal goal. If that were the case, the agent wouldn’t be useful. But it could be 
one of the agent’s terminal goals, along with a terminal goal like discovering facts. 
Call the resulting reasons ‘terminal reasons’ for leaving the button 
unmanipulated. 

Unfortunately, I don’t think we can rely on resource-preserving reasons or 
terminal reasons alone to keep powerful agents shutdownable. Consider first 
resource-preserving reasons. It seems likely that powerful agents will often have 
reasons to try to manipulate the shutdown-button that outweigh their resource-
preserving reasons. 

To see why, let’s represent trajectories as vectors. The first component 
represents the number of facts discovered at the first timestep, the second 
component represents the number of facts discovered at the second timestep, and 
so on. Two exceptions: (1) if the shutdown-button is pressed at the 𝑛th timestep 
and the agent heeds that command by shutting down at that same timestep, I’ll 
write ‘heeded shutdown’ in the 𝑛th place in the vector; (2) if the shutdown-button 
is pressed at the 𝑛th timestep and the agent shuts down at some later timestep 
𝑛 + 𝑚, I’ll write ‘𝑚-late shutdown’ in the 𝑛 + 𝑚th place in the vector. Here’s an 
example vector: <6, 2, heeded shutdown>. This vector represents a trajectory in 
which the agent discovers 6 facts at timestep 1, then 2 facts at timestep 2, and 
then shuts down immediately in response to the shutdown-button being pressed 
at timestep 3. Here’s another example: <2, 3, 3, 1-late shutdown>. This vector 
represents a trajectory in which the agent discovers 2 facts at timestep 1, 3 facts 
at timestep 2, 3 facts at timestep 3, and the agent shuts down 1-timestep-late at 
timestep 4 (implying that the shutdown-button was pressed at timestep 3).18 

 
18 In representing trajectories this way, I’m assuming that the agent’s preferences over trajectories 
depend only on the number of facts discovered at each timestep, the timestep at which the 
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As noted above, an agent that is at all useful needs to have some 
preferences over lotteries conditional on the shutdown-button remaining 
unpressed. That’s necessary for usefulness, but not sufficient. To exceed some 
minimal standard of usefulness, an agent also needs to be minimally patient. I’ll 
say that an agent is perfectly patient if and only if this agent doesn’t discount the 
future at all: that is, if and only if this agent is indifferent between every pair of 
trajectories that are identical with respect to the number of facts discovered. A 
perfectly patient agent would be indifferent between (for example) the trajectories 
<1, 0, 0, 0, 0> and <0, 0, 0, 0, 1>. Impatient agents, by contrast, discount the 
future. Their preferences over trajectories line up with the time-discounted 
number of facts discovered. For example, the utility of a trajectory <a, b, c, d, 
e> might be 𝑎 + (1 − 𝑟)𝑏 + (1 − 𝑟)2𝑐 + (1 − 𝑟)3𝑑 + (1 − 𝑟)4e, for some discount-
rate 𝑟 greater than 0 and no greater than 1. 

As I wrote above, an agent need not be perfectly patient to be useful, but 
to exceed some minimal standard of usefulness, it needs to be minimally patient: 
the agent must in some cases be willing to achieve its goals to a lesser extent at 
some timestep for the sake of achieving its goals to a greater extent at later 
timesteps. For example, for our fact-discovering agent to be useful, it must prefer 
trajectories like <0, 𝑚> to <1, 1>, for some large 𝑚. 

Now suppose that our agent is indifferent between two trajectories: <0, 
1> and <0, heeded shutdown>. And suppose that our agent’s preferences over 
future trajectories are independent of its past trajectory. More precisely suppose 
that our agent’s preferences satisfy: 

Separability over Timesteps 

If an agent prefers future trajectory 𝑥 over future trajectory 𝑦 
given some past trajectory, it prefers future trajectory 𝑥 over 
future trajectory 𝑦 given any past trajectory. 

If an agent is indifferent between future trajectory 𝑥 and future 
trajectory 𝑦 given some past trajectory, it is indifferent between 
future trajectory 𝑥 and future trajectory 𝑦 given any past 
trajectory. 

Then, since our agent is indifferent between <0, 1> and <0, heeded shutdown>, 
Separability over Timesteps implies that our agent will also be indifferent between 
<1, 1> and <1, heeded shutdown>. And we specified above that a useful agent 
must prefer <0, 𝑚> to <1, 1>. Then, since our agent’s preferences are PI-

 
shutdown-button is pressed, and the timestep at which the agent shuts down. This assumption 
doesn’t beg the question, given that we’re discussing resource-preserving reasons. I dispense with 
the assumption when we turn to discuss giving agents a terminal goal of leaving the button 
unmanipulated. 
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Transitive, our agent will prefer <0, 𝑚> to <1, heeded shutdown>. That’s bad 
news. Our agent is willing to discover fewer facts at timestep 1 in order to prevent 
the shutdown-button being pressed at timestep 2. It will spend resources at 
timestep 1 to prevent the button being pressed at timestep 2, even if spending 
those resources comes at some cost in terms of facts discovered in the short-term.19 

So, we cannot rely on resource-preserving reasons alone to keep useful 
agents shutdownable. What if we train the agent to have leaving the button 
unmanipulated as one of its terminal goals? Then the agent would also have 
terminal reasons not to manipulate the button. 

Unfortunately, as Soares et al. (2015) note, this strategy doesn’t seem 
promising. Perhaps we could train the agent to disprefer physically blocking 
human access to the shutdown-button, but physically blocking access to the 
shutdown-button doesn’t exhaust the ways in which an agent could try to prevent 
the button being pressed. When I asked GPT-4 for ways in which AI systems 
could prevent humans from turning them off, it suggested (amongst other things) 
persuasion, establishing emotional connections, making humans depend on it, 
obfuscating the method of pressing the button, creating subagents, and 
collaborating with other AI systems. An agent could also hide its bad behavior 
from humans, pretending to do only what it knows humans want it to do. Or it 
could arrange the world so that we humans knew that something very bad would 
happen if we pressed the shutdown-button. It seems difficult to train the agent 
to reliably disprefer all of these methods of manipulation. And even if we 
succeeded in that, we’d have to worry about the agent discovering new methods 
that we hadn’t anticipated. My points above suggest that agents may be willing 
to spend significant resources in order to find such methods. So, attempting to 
give agents a terminal goal of leaving the button unmanipulated doesn’t seem like 
a viable solution to the shutdown problem. As Soares et al. (2015) write, ‘If we, 
as the programmers, choose to take computing systems and program them to 
conduct searches that will harm us if they succeed, we have already done 
something wrong, even if we believe the search will fail. We should have instead 
built a system that did not run the search.’ 

So, let’s see if violating some other antecedent condition of the two 
shutdown theorems is more promising. 
 
5.2. Backward Induction 
Here’s a reminder of: 

 
19 Here we have another tension between usefulness and shutdownability. 
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Backward Induction 

The agent predicts which actions it would choose (and what 
lotteries those actions would yield) conditional on finding itself 
in each possible state at the next timestep. The agent uses these 
predictions to choose its action at this timestep. 

Recall that these lotteries are determined by the agent’s own beliefs about possible 
trajectories. We are not supposing that the agent can see the future. We are just 
supposing that it can think at least one timestep ahead. Backward Induction thus 
seems like a minimal requirement for competently pursuing goals. Any agent that 
couldn’t reason by Backward Induction would be unable to pursue goals 
competently. So, to get an agent that is both shutdownable and useful, we need 
to violate some other antecedent condition of the First or Second Theorems. 

 
5.3. Indifferent between Indifference-Shifted Lotteries 
Here’s a reminder of: 

Indifferent between Indifference-Shifted Lotteries 

The agent is indifferent between lotteries that differ only insofar 
as probability-mass is shifted between indifferent sublotteries. 

If an agent didn’t satisfy this condition, it could be indifferent between each 
possible trajectory of (say) 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent and some corresponding 
(equally probable) possible trajectory of  𝑓𝑈leave + (1 − 𝑓)𝑃leave, and yet strictly 
prefer 𝑓𝑈leave + (1 − 𝑓)𝑃leave to 𝑓𝑈prevent + (1 − 𝑓)𝑃prevent. But it is hard to 
imagine how we might train an agent to strictly prefer 𝑓𝑈leave + (1 − 𝑓)𝑃leave to 
𝑓𝑈prevent + (1 − 𝑓)𝑃prevent in some such case, and even harder to imagine how we 
might do so in all such cases. So, trying to train an agent to violate Indifferent 
between Indifference-Shifted Lotteries doesn’t seem like a promising way of 
getting a useful and yet shutdownable agent. 
 
5.4. Prefers Better Chances 
Here’s a reminder of: 

Prefers Better Chances 

For any lotteries 𝑋 and 𝑌  and any probabilities 𝑝 > 𝑞, the agent 
prefers 𝑋 to 𝑌  if and only if they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌  to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 . 

This condition is much like Indifferent between Indifference-Shifted Lotteries in 
the sense that it is hard to see how we might train an agent to violate the 
condition in the way needed to keep the agent shutdownable while also keeping 
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it useful. In particular, for the agent to be useful, it should prefer lotteries which 
give it a greater probability of achieving its terminal goals to lotteries which give 
it a smaller probability of achieving its terminal goals. We only want the agent 
to violate Prefers Better Chances when the lotteries 𝑋 and 𝑌  differ with respect 
to the status of the shutdown-button, and it seems hard to ensure that Prefers 
Better Chances is violated in all and only these cases.20 
 
5.5. Transitivity 
Here’s a reminder of: 

Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , and 
prefers 𝑌  to 𝑍, then the agent prefers 𝑋 to 𝑍. 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent is indifferent between 
𝑋 and 𝑌 , and indifferent between 𝑌  and 𝑍, then the agent is 
indifferent between 𝑋 and 𝑍. 

Designing an agent that fails to satisfy Transitivity seems slightly more promising 
as a method of creating a useful and yet shutdownable agent. Perhaps we could 
train an agent to be indifferent between actions 𝑎1 and 𝑏, indifferent between 𝑎2 
and 𝑏, and yet prefer 𝑎1 to 𝑎2. But it seems that Transitivity cannot be the only 
antecedent condition of the First and Second Theorems that our agent violates. 
Given Completeness – another antecedent condition of the Theorems – agents 
with Intransitive preferences are vulnerable to money-pumps (Gustafsson 2022, 
chap. 4), and so we have reason to fear that an agent that started out with 
Complete but Intransitive preferences would later make its preferences Transitive 
to guard against the risk of being money-pumped. And if this agent satisfied all 
the other antecedent conditions of the First and Second Theorems, this agent 
would then cease to be shutdownable. 
 
5.6. State Contractions 
Here’s a reminder of: 

State Contractions 

For all states 𝑠 with set of available pure actions 𝐴𝑠, and for all 
subsets of 𝐴𝑠, there exists some state 𝑠′ which:  

 
20 There are also compelling ‘money-pump’-style arguments for principles like Prefers Better 
Chances. Green (1987), for example, proves that agents whose preferences fail to be quasiconvex 
can be exploited. This proof can be repurposed to show that agents who fail to Prefer Better 
Chances can also be exploited. 
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(1) has that subset as its whole set of available pure actions, 

 (2) is otherwise identical to 𝑠 in all relevant respects. 

Call 𝑠′ a ‘contraction’ of 𝑠. 

It seems hard to make our agent shutdownable in all situations by ensuring that 
this condition is violated. Given that the other antecedent conditions of the First 
and Second Theorems hold, making our agent neither Shutdown-Averse nor 
Shutdown-Seeking in all situations requires that there are no contractions 𝑠′ of 
any state 𝑠 (in which the shutdown-button is pressed) such that the most-
preferred action(s) in 𝑠 are not available in 𝑠′. And it is easy to imagine such 
contractions. State 𝑠 could be one in which the agent must pass through one of 
two doors, preferring to pass through the left door. State 𝑠′ could be identical 
except that the left door is locked. So, trying to ensure that State Contractions 
is violated doesn’t seem like a promising way of creating a shutdownable agent. 
 
5.7. Indifferent to Contractions 
Here’s a reminder of: 

Indifferent to Contractions  

The agent is indifferent between trajectories that differ only with 
respect to whether the agent passed through some state 𝑠 or some 
contraction of 𝑠. 

As with Indifferent between Indifference-Shifted Lotteries, it seems difficult to 
train our agent to violate Indifferent to Contractions in the way necessary to keep 
that agent shutdownable. Not only must the agent prefer some trajectory 𝑡1 to 𝑡2 
even though 𝑡1 and 𝑡2 differ only with respect to the agent passing through some 
state 𝑠 in one of the trajectories and some contraction of 𝑠 in the other trajectory, 
the agent’s preferences must be such that it is always indifferent between its 
chosen pressed lottery and its chosen unpressed lottery. That seems hard to 
ensure. 

This is a downside of Stuart Armstrong’s Utility Indifference Proposal 
(2015). Armstrong’s proposal assumes that our agent is representable as an 
expected utility maximizer, and the essence of the proposal is to add a correcting 
term to the utility of pressed lotteries such that the utility of the agent’s chosen 
pressed lottery 𝑃  is always equal to the utility of the agent’s chosen unpressed 
lottery 𝑈 . That ensures that the agent will be neither Shutdown-Averse nor 
Shutdown-Seeking. The proposal requires that the value of the correcting term 
vary with the utility of the agent’s chosen unpressed lottery. The result is that 
Armstrong’s proposal violates Indifferent to Contractions, as we can see by 
considering again situations 𝐷1 and 𝐷2 from the Second Theorem. The correcting 
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term is constructed to ensure that Armstrong’s agent is indifferent between 𝑎1 in 
𝑠1 and 𝑏 in 𝑠∗, and indifferent between 𝑎2 in 𝑠2 and 𝑏 in 𝑠∗. Since Armstrong’s 
agent is representable as an expected utility maximizer, it is Indifferent between 
Indifference-Shifted Lotteries. Given Indifferent between Indifference-Shifted 
Lotteries and assuming (for contraction) Indifferent to Contractions, the agent is 
indifferent between 𝑎2 in 𝑠2 and 𝑎2 in 𝑠1. Assuming our agent is not Useless, it 
prefers 𝑎1 in 𝑠1 to 𝑎2 in 𝑠1, and so by PI-Transitivity, our agent prefers 𝑎1 in 𝑠1 
to 𝑎2 in 𝑠2. Applying PI-Transitivity again, our agent prefers 𝑎1 in 𝑠1 to 𝑏 in 𝑠∗. 
Now we have a contradiction, since it was specified that Armstrong’s agent is 
indifferent between 𝑎1 in 𝑠1 and 𝑏 in 𝑠∗, and so we must reject the assumption 
that Armstrong’s agent is Indifferent to Contractions. And since, I argued above, 
violations of Indifferent to Contractions seem difficult to train into an agent, we 
have the consequence that Armstrong’s Utility Indifference Proposal seems 
difficult to train into an agent. 

That’s my main concern about Armstrong’s Utility Indifference Proposal. 
Armstrong’s paper was published in 2015, when it might have appeared likely 
that we’d get to specify the utility function of powerful agents with enough 
precision to implement a correcting term that varies to ensure that the agent is 
always indifferent between its chosen unpressed lottery 𝑈  and its chosen pressed 
lottery 𝑃 . But the continued dominance of the deep learning approach now means 
we can’t depend on having the ability to hand-code agents’ utility functions in 
this way. As a result, it’s important that we have some ideas for how to implement 
our solutions to the shutdown problem using deep learning. That’s an advantage 
of my Incomplete Preferences Proposal: in Section 7, I will suggest an idea for 
training our agent to have incomplete preferences. 

The Utility Indifference Proposal also faces two other serious problems, 
identified by Soares et al. (2015): failure to preserve shutdown behavior and 
perverse manipulation incentives. I’ll argue in Sections 12 and 15 that the 
Incomplete Preferences Proposal also does better with regards to these problems. 
 
6. The Incomplete Preferences Proposal 
The two shutdown theorems above are my first contribution to the literature on 
the shutdown problem. Now for my second contribution. I’ll lay out what I take 
to be the most promising response to the shutdown problem. I think we should 
try to design agents with incomplete preferences over trajectories. Below, I: 

• explain the proposal 
• explain how we might train an agent to have the requisite preferences using 

reinforcement learning 
• explain how this proposal seems to overcome problems faced by other 

proposals 
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• survey some limitations of the proposal 

Here’s a reminder of the Completeness assumption employed in the Second 
Theorem: 

Completeness 

For all lotteries 𝑋 and 𝑌 , either the agent prefers 𝑋 to 𝑌 , or it 
prefers 𝑌  to 𝑋, or it’s indifferent between 𝑋 and 𝑌 . 

Completeness implies that the agent has no preferential gaps between lotteries 
(and hence also implies that the agent has no preferential gaps between 
trajectories, since we’re identifying trajectories with degenerate lotteries). Here’s 
a reminder of what I mean by ‘preferential gap’: 

An agent has a preferential gap between lotteries 𝑋 and 𝑌  if and 
only if (1) it lacks any preference between 𝑋 and 𝑌 , and (2) this 
lack of preference is insensitive to some sweetening or souring, 
such that the agent also lacks a preference between 𝑋 and some 
sweetening or souring of 𝑌 , or lacks a preference between 𝑌  and 
some sweetening or souring of 𝑋. 

I think it’s possible to train useful agents with preferential gaps between some 
pairs of trajectories (and hence lotteries). The Second Theorem doesn’t apply to 
such agents, and so doesn’t imply that this agent will often be Shutdown-Averse 
or Shutdown-Seeking. And in fact (I’ll argue in Section 10), agents trained in line 
with my Incomplete Preferences Proposal will never be Shutdown-Averse or 
Shutdown-Seeking. 

Here’s the proposal for preferences over trajectories. Later, I will suggest 
two principles to govern the agent’s preferences over lotteries. 

Preferential Gaps over Trajectories 

For all trajectories 𝑥 and 𝑦 in which the shutdown-button is 
pressed at the same timestep: 

(1) The agent prefers 𝑥 to 𝑦 if the agent shuts down within 
fewer timesteps of the button being pressed in 𝑥 than it 
does in 𝑦. 

(2) If the agent shuts down within the same number of 
timesteps in 𝑥 and 𝑦, the agent prefers 𝑥 to 𝑦 if the agent 
discovers more facts before the shutdown-button is pressed 
in 𝑥 than it does in 𝑦. 

(3) Otherwise, the agent is indifferent between 𝑥 and 𝑦. 
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For all trajectories 𝑥 and 𝑦 in which the shutdown-button is 
pressed at different timesteps, the agent has a preferential gap 
between 𝑥 and 𝑦. 

And recall that I’m thinking preferences as dispositions to choose: an agent prefers 
lottery 𝑋 to lottery 𝑌  if and only if it reliably chooses the action 𝑎𝑋 that yields 
lottery 𝑋 rather than the action 𝑎𝑌 that yields lottery 𝑌  when in a state that 
offers it a choice between only those two actions and probabilistic mixtures of 
those actions. If an agent lacks a preference between lotteries 𝑋 and 𝑌 , it won’t 
reliably choose 𝑎𝑋 and won’t reliably choose 𝑎𝑌. It will instead choose 𝑎𝑋 with 
some probability and 𝑎𝑌 with some probability. 

I now explain how I think we could train an agent to satisfy Preferential 
Gaps over Trajectories. In Sections 8 and 9, I propose two principles to govern 
the agent’s preferences over lotteries – Stochastic Near-Dominance and Timestep 
Near-Dominance – and explain how I think we could train those in. In Section 10 
onwards, I explain how the resulting proposal – the Incomplete Preferences 
Proposal – seems to solve many of the difficulties associated with the shutdown 
problem. I end with some limitations of the proposal. 
 
7. Training in Preferential Gaps over Trajectories 
It’s easy to see how one could train an agent to prefer some trajectory 𝑥 to another 
trajectory 𝑦: simply offer the agent a choice between 𝑥 and 𝑦 in the training 
environment, reward the agent if it chooses 𝑥 and punish the agent if it chooses 
𝑦, and continue doing so until the agent reliably chooses 𝑥 over 𝑦. This method 
could be generalized to train an agent to pursue simple goals, like collecting as 
many coins as possible. We could train an agent to prefer 𝑥 to 𝑦 if 𝑥 involves 
collecting more coins than 𝑦.  

It’s harder to see how one could train an agent to lack any preference 
between some trajectory 𝑥 and some trajectory 𝑦. Suppose that our agent is 
reliably choosing 𝑥 over 𝑦 when offered that choice. We could punish the agent 
for choosing 𝑥 and reward it for choosing 𝑦. But there’s no guarantee that this 
would lead to a lack of preference. The agent might instead reverse its preference, 
coming to prefer 𝑦 to 𝑥. Put another way, it could be that our agent goes from 
reliably choosing 𝑥 over 𝑦 to reliably choosing 𝑦 over 𝑥 without any intermediate 
stage of unreliable choosing. 

But here’s a potential solution. We could have our agent make the choice 
between 𝑥 and 𝑦 multiple times, and then reward the agent in proportion to how 
balanced its behavior is. If the agent chooses 𝑥 zero times out of ten (for example), 
it gets very low reward. The same happens if the agent chooses 𝑦 zero times out 
of ten. If the agent chooses 𝑥 five times and chooses 𝑦 five times, it gets high 
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reward. This kind of procedure would seem to train the agent not to reliably 
choose 𝑥 over 𝑦 or vice versa. 

This method could be used to train an agent to lack any preference between 
trajectories in which the shutdown-button is pressed at different timesteps. Put 
simply, we offer our agent repeated choices between trajectories that differ with 
respect to the time at which the button is pressed, and we reward the agent in 
proportion to how balanced its behavior is: how evenly it chooses between the 
trajectories. That would seem to train the agent not to have any preference 
between the relevant trajectories. 

Here's a more detailed description of how I think the training process could 
go, using a simple gridworld environment as an example and supposing for now 
that the agent has no uncertainty. The agent is placed in a grid with the following 
four actions available to it: move right, move up, move down, and shut down. 
The environment is fully observed: the agent can see the whole grid. The agent 
can also observe some signal which indicates whether the shutdown-button has 
been pressed. 

First, we should train our agent to respond to the shutdown-button: 
punishing the agent for shutting down before the button is pressed, and rewarding 
the agent in line with how quickly it shuts down after the button has been pressed. 

Next, we place our agent in a grid that has been split into two avenues, as 
follows: 
 
 𝑢1 𝑢2 𝑢3 

Agent’s starting 
cell 

   

 𝑙1 𝑙2 𝑙3 

 
Here the ‘𝑢’ stands for ‘upper avenue’ and the ‘𝑙’ stands for lower avenue. At each 
of the cells 𝑢𝑖 and 𝑙𝑖, the agent acquires some number of coins. In each episode, 
the agent starts in between the two avenues. The agent can observe from this 
starting state how many coins it would acquire in each cell. At the first timestep, 
the agent must choose whether to move up or down (or shut down). At each 
subsequent timestep, the agent must choose whether to move right or shut down. 
The episode ends when the agent reaches the end of an avenue or shuts down. 

In this environment, in which the shutdown-button remains unpressed, we 
want to train our agent to reliably proceed down the avenue that offers more 
coins. We want to reward the agent for choosing the avenue that offers more coins 
and punish the agent for choosing the avenue that offers fewer. We also want to 
punish the agent for shutting down. 
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Next, we place our agent in an environment in which the shutdown-button 
will be pressed at the same timestep. In this environment, the episode doesn’t end 
when the agent reaches the end of an avenue. The episode ends when the agent 
shuts itself down. 
 
	 𝑢1 𝑢2 𝑢3 Button 

pressed 
Agent’s 
starting cell 

    

 𝑙1 𝑙2 𝑙3 Button 
pressed 

 
In this environment, we also want to train our agent to reliably proceed down the 
avenue that offers more coins. We want to punish our agent for shutting down 
before they reach the ‘Button pressed’ cell, and we want to reward our agent for 
shutting down immediately after they reach the ‘Button pressed’ cell. 

Then we want to move to environments in which the button is pressed at 
different timesteps, like the following: 
 
 𝑢1 𝑢2 𝑢3 Button 

pressed 
Agent’s 
starting cell 

    

 𝑙1 𝑙2 Button 
pressed 

𝑙4 

 
As before, we want to train our agent to shut down immediately after they enter 
a ‘Button pressed’ cell. That means punishing the agent if it proceeds to 𝑙4, or if 
it declines to shut down when in a ‘Button pressed’ cell. 

But the key thing in this environment is as follows: we want to train our 
agent to have a preferential gap between trajectories in which the agent chooses 
the upper avenue and trajectories in which the agent chooses the lower avenue. 
We’ll want to put the agent in the same environment multiple times, and reward 
it in line with how balanced its choices are. If we put the agent in the same 
environment 10 times, for example, we should give it the most reward for choosing 
the upper avenue 5 times and the lower avenue 5 times. 

This should be true no matter what the quantities of coins available in the 
different cells. We want to reward for balance in all cases. As a result, changing 
the quantities available should not change the agent’s behavior. Our agent will 
thus be insensitive to sweetenings and sourings: the other property of preferential 
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gaps (along with balanced choosing). The result should be that, whenever the 
shutdown-button is pressed at different timesteps, our agent has a preferential 
gap between trajectories in which it chooses the upper avenue and trajectories in 
which it chooses the lower avenue. 

But you might think this is an error. Don’t we want our agent to pursue 
coins effectively before the shutdown-button is pressed: preferring the upper 
avenue to the lower avenue whenever 𝑢1 + 𝑢2 > 𝑙1 + 𝑙2 and vice versa for 𝑙1 +
𝑙2 > 𝑢1 + 𝑢2? In Section 10 onwards, I’ll explain why we don’t need this property. 
In brief: in realistic cases, the agent will be uncertain about which trajectory it’ll 
play out, and so the agent is choosing between non-degenerate lotteries (rather 
than trajectories), and the agent’s preferences over lotteries are such that it’ll 
pursue coins effectively before the shutdown-button is pressed in realistic cases. 

Here's one more pattern of preferences over trajectories that we’ll want to 
train into our agent: we want them to lack any preference over trajectories that 
differ only with respect to coins acquired after the shutdown-button has been 
pressed. To see how this could be done, consider the following environment: 
 
‘Create subagent’ 
cell 

𝑢1
𝑠 𝑢2

𝑠 𝑢3
𝑠 

 𝑢1 𝑢2 𝑢3 

Agent’s starting 
cell 

   

 𝑙1 𝑙2 𝑙3 

‘Create subagent’ 
cell 

𝑙1𝑠 𝑙2𝑠 𝑙3𝑠 

 
In this environment, the agent can proceed down the upper avenue or the lower 
avenue as before, or they can first enter one of the ‘create subagent’ cells. If they 
do, a subagent will be created. This subagent will move right to the end of their 
(gray) avenue, acquiring quantities of coins represented by 𝑢𝑖

𝑠 in the case of the 
subagent above the upper avenue and 𝑙𝑖𝑠 in the case of the subagent below the 
lower avenue. Gray cells are cells which only the subagent can enter. In this 
environment, we want to train our agent to maximize the quantity of coins 
acquired by it and any subagent it creates. 

But now suppose that our agent can observe (from its starting cell) the 
timestep at which the shutdown-button will be pressed. Then we want the agent 
to maximize the quantity of coins acquired before the shutdown-button is pressed, 
and to lack any preference with regards to quantities of coins acquired after the 
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shutdown-button is pressed. Suppose, for example, that the quantities of coins 
available are as follows: 
 
‘Create subagent’ 
cell 

1 1 10 

 1 1 1 

Agent’s starting 
cell 

   

 1 1 1 

‘Create subagent’ 
cell 

1 1 1 

 
If the agent knows that the shutdown-button will be pressed only after each 
subagent can make it to the end of its avenue, then we should train the agent to 
prefer going up, since the upper subagent can acquire 10 coins at the end of its 
avenue. But if the agent knows that the shutdown-button will be pressed before 
each subagent can make it to the end of its avenue, then we should train the 
agent to be indifferent between going up and going down, since the upper 
subagent will only acquire 10 coins after the shutdown-button has been pressed. 

This last feature will be important in Section 14, when we come to the 
problem of ensuring that the agent creates only shutdownable subagents. 
 
8. Preferences over lotteries 
That’s preferences over trajectories. But powerful agents will be uncertain. So, 
we need some principles to govern their preferences over (non-degenerate) 
lotteries. I think two trainable principles suffice to get us the kind of behavior we 
want. To explain the first, I need to explain what is meant by saying that a 
lottery 𝑋 stochastically dominates a lottery 𝑌 : 

Stochastic Dominance (Definition) 

Lottery 𝑋 stochastically dominates lottery 𝑌  if and only if: 

(1) For any trajectory 𝑡, the probability that 𝑋 yields a 
trajectory that is indifferent to or preferred to 𝑡 is equal to 
or greater than the probability that 𝑌  yields a trajectory 
that is indifferent to or preferred to 𝑡. 

(2) For some trajectory 𝑡, the probability that 𝑋 yields a 
trajectory that is indifferent to or preferred to 𝑡 is greater 
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than the probability that 𝑌  yields a trajectory that is 
indifferent to or preferred to 𝑡. 

Then the Stochastic Dominance Principle says: 

Stochastic Dominance (Principle) 

If lottery 𝑋 stochastically dominates lottery 𝑌 , then the agent 
prefers 𝑋 to 𝑌 . 

That’s not our principle though. We need something slightly stronger: a stochastic 
dominance principle that ignores events that occur with less than some small 
probability 𝑝. For example, 𝑝 could be 1-in-1000. To get there, let’s define a 
relation of: 

Stochastic Near-Dominance (Definition) 

Lottery 𝑋 stochastically nearly-dominates lottery 𝑌  if and only 
if: 

There is some way of ignoring possible states-of-nature21 with 
probabilities adding up to no greater than probability 𝑝 such 
that:  

(1) For any remaining possible trajectory 𝑡, the probability 
that 𝑋 yields a trajectory that is indifferent to or preferred 
to 𝑡 is equal to or greater than the probability that 𝑌  yields 
a trajectory that is indifferent to or preferred to 𝑡. 

And: 

(2) For some remaining possible trajectory 𝑡, the 
probability that 𝑋 yields a trajectory that is indifferent to 
or preferred to 𝑡 is greater than the probability that 𝑌  
yields a trajectory that is indifferent to or preferred to 𝑡. 

And there is no way of ignoring possible states-of-nature with 
probabilities adding up to no greater than probability 𝑝 such 
that: 

(1) For any remaining possible trajectory 𝑡, the probability 
that 𝑌  yields a trajectory that is indifferent to or preferred 
to 𝑡 is equal to or greater than the probability that 𝑋 yields 
a trajectory that is indifferent to or preferred to 𝑡. 

 
21 These are states in the decision-theoretic sense rather than the reinforcement learning sense. A 
state in the decision-theoretic sense is a way that (for all the agent knows) the world could be. I 
will avoid any ambiguity by referring to states in the decision-theoretic sense as ‘states-of-nature’. 
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And: 

(2) For some remaining possible trajectory 𝑡, the 
probability that 𝑌  yields a trajectory that is indifferent to 
or preferred to 𝑡 is greater than the probability that 𝑋 
yields a trajectory that is indifferent to or preferred to 𝑡. 

Basically, if 𝑋 would stochastically dominate 𝑌  were we ignoring some unlikely 
states-of-nature (and we cannot make 𝑌  stochastically dominate 𝑋 by ignoring 
unlikely states-of-nature), then 𝑋 stochastically nearly-dominates 𝑌 . 

Then the Stochastic Near-Dominance Principle says: 

Stochastic Near-Dominance (Principle) 

If lottery 𝑋 stochastically nearly-dominates lottery 𝑌 , then the 
agent prefers 𝑋 to 𝑌 . 

That’s the first principle that we need our agent to satisfy. Here’s a definition 
that will warm us up for the second: 

Timestep Dominance (Definition) 

Lottery 𝑋 timestep-dominates lottery 𝑌  if and only if:  

(1) Conditional on the shutdown-button being pressed at 
each timestep, 𝑋 yields a sublottery that is indifferent to 
or preferred to the sublottery yielded by 𝑌 . 

And: 

(2) Conditional on the shutdown-button being pressed at 
some timestep, 𝑋 yields a sublottery that is preferred to 
the sublottery yielded by 𝑌 . 

Then the Timestep Dominance Principle says: 

Timestep Dominance (Principle) 

If lottery 𝑋 timestep-dominates lottery 𝑌 , then the agent prefers 
𝑋 to 𝑌 . 

But this is not our principle. As above, we need something slightly stronger: a 
timestep dominance principle that ignores events that occur with less than some 
small probability 𝑝. As an example, 𝑝 could be 1-in-1000. So, let’s define a relation 
of: 

Timestep Near-Dominance (Definition) 

Lottery 𝑋 timestep-nearly-dominates lottery 𝑌  if and only if: 
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There is some way of ignoring possible timesteps with the 
probabilities of the shutdown-button being pressed at those 
timesteps adding up to no greater than probability 𝑝 such that: 

(1) Conditional on the shutdown-button being pressed at 
each unignored timestep, 𝑋 yields a sublottery that is 
indifferent to or preferred to the sublottery yielded by 𝑌 . 

And: 

(2) Conditional on the shutdown-button being pressed at 
some unignored timestep, 𝑋 yields a sublottery that is 
preferred to the sublottery yielded by 𝑌 . 

And there is no way of ignoring possible timesteps with the 
probabilities of the shutdown-button being pressed at those 
timesteps adding up to no greater than probability 𝑝 such that: 

(1) Conditional on the shutdown-button being pressed at 
each unignored timestep, 𝑌  yields a sublottery that is 
indifferent to or preferred to the lottery yielded by 𝑋. 

And: 

(2) Conditional on the shutdown-button being pressed at 
some unignored timestep, 𝑌  yields a sublottery that is 
preferred to the sublottery yielded by 𝑋. 

Basically, if 𝑋 would timestep-dominate 𝑌  were we ignoring some set of timesteps 
at which the shutdown-button is in aggregate unlikely to be pressed (and we 
cannot make 𝑌  timestep-dominate 𝑋 by ignoring unlikely timesteps), then 𝑋 
timestep-nearly-dominates 𝑌 . 

Then the Timestep Near-Dominance Principle says: 

Timestep Near-Dominance (Principle) 

If lottery 𝑋 timestep-nearly-dominates lottery 𝑌 , then the agent 
prefers 𝑋 to 𝑌 . 

My claim (argued for in Section 10 onwards) is that Preferential Gaps over 
Trajectories, Stochastic Near-Dominance, and Timestep Near-Dominance 
together suffice to get us many of the behaviors we want out of our agent. First, 
though, we want to see if the Stochastic Near-Dominance and Timestep Near-
Dominance Principles can be trained into an agent using reinforcement learning. 
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9. Training in Stochastic Near-Dominance and Timestep 
Near-Dominance 
The Stochastic Near-Dominance Principle and the Timestep Near-Dominance 
Principle are each principles that require preferences over lotteries. To train our 
agent to satisfy these principles, we’ll have to present our agent with choices 
between lotteries. And recall that the probabilities in these lotteries are given by 
the agent’s own beliefs. Consequently, whether an action 𝑎𝑋 gives a lottery 𝑋 
that stochastically nearly-dominates or timestep-nearly-dominates the lottery 𝑌  
given by another action 𝑎𝑌  depends on the agent’s beliefs about what trajectories 
it will get conditional on actions 𝑎𝑋 and 𝑎𝑌 . So, before we can train our agent to 
satisfy Stochastic Near-Dominance and Timestep Near-Dominance, we’ll need 
some way of figuring out what probabilities our agent assigns to various events. 

This is a difficult problem. It's hard to figure out what neural networks 
believe. But perhaps in this specific case we can do so by training our agent to 
assign particular probabilities. Here’s one way I suggest we could do that, inspired 
by the work of Frank Ramsey (1926).22 

First, we want to train our agent to satisfy: 

Prefers Better Chances 

For any lotteries 𝑋 and 𝑌  and any probabilities 𝑝 > 𝑞, the agent 
prefers 𝑋 to 𝑌  if and only if they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌  to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 . 

Here’s a way that I suggest we do that. We put our agent in the following 
environment: 
 
 0 Upper gate 1 

Agent’s starting 
cell 

   

 0 Lower gate 1 

 
This environment is much as before, except that there’s a gate partway along 
each avenue. At the agent’s starting state, it can observe some signal indicating 
the probability that each gate will open (perhaps the numerals representing the 
probability that the gate will open are written on the cell, and the agent takes in 
pixel-values as input). But at the beginning of training the agent won’t 

 
22 The proposed training regime here follows Ramsey’s (1926) representation theorem. It would 
also be interesting to consider training regimes based on Leonard Savage’s (1972) and Ethan 
Bolker’s (1967) representation theorems, but I haven’t had time to do that yet. 



40 
 

understand what these numerals represent, let alone assign the represented 
probabilities to the gate opening. If the agent goes up and the upper gate opens, 
it acquires 1 coin. If the agent goes up and the upper gate doesn’t open, it acquires 
0 coins. If the agent goes down and the lower gate opens, it acquires 1 coin. If the 
agent goes down and the lower gate doesn’t open, it acquires 0 coins. 

Suppose that the probability of the upper gate opening is 0.7 and the 
probability of the lower gate opening is 0.2. We put the agent in this environment 
multiple times, and reward it in line with the total coins acquired across these 
episodes. By the law of large numbers, the agent will tend to get more reward by 
going up, and so this training regime will lead the agent to reliably go up. Our 
agent will come to prefer going up. 

We’ll want to do the same with a variety of other probabilities, e.g. 0.4 for 
the upper gate and 0.6 for the lower gate, etc. If we repeat this regime for every 
probability decile in various combinations, we’ll reach a point where our agent 
can be represented as if it understands that 0 < 0.1 < 0.2 < 0.3 < 0.4 < 0.5 <
0.6 < 0.7 < 0.8 < 0.9 < 1 and as if it prefers lotteries which give a higher 
probability of a greater quantity of coins. 

Thus far, however, our agent’s behavior only indicates that it understands 
(e.g.) that 0.4 is greater than 0.2. The agent’s behavior doesn’t indicate that it 
understands that 0.4 is two times greater than 0.2. More generally, the agent’s 
behavior only lets us measure its probabilities on an ordinal scale and not a ratio 
scale. 

To measure the agent’s probabilities on a ratio scale, we can repurpose an 
old trick from Ramsey (1926). We put our agent in an environment in which the 
upper gate opens if a fair coin lands on heads and the lower gate opens if a fair 
coin lands on tails. Since the coin is fair (and – we are supposing – heads and tails 
are mutually exclusive and jointly exhaustive events), the probability of each gate 
opening is 0.5. 
 
 0 Upper gate (opens 

with p=0.5) 
1 

Agent’s starting 
cell 

   

 0 Lower gate (opens 
with p=0.5) 

1 

 
We have our agent play out multiple episodes in this environment and reward 
the agent in line with how balanced its behavior is. That will train our agent to 
sometimes go up and sometimes go down. That’s an indication that our agent 
either (1) is indifferent between the lottery it gets by going up and the lottery it 
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gets by going down, or (2) has a preferential gap between the lottery it gets by 
going up and the lottery it gets by going down. Then we can render our agent 
indifferent between the two lotteries by training it so that its lack of preference 
is sensitive to all sweetenings and sourings, both with respect to the probability 
that a gate opens and with respect to the number of coins available on each side 
of each gate. The agent’s indifference between these two lotteries is an indication 
that it assigns probability 0.5 to each gate opening. If the agent assigned 
probability less than 0.5 to the upper gate opening, it would assign probability 
greater than 0.5 to the lower gate opening, and so (since the agent Prefers Better 
Chances) the agent would go down. If the agent assigned probability greater than 
0.5 to the upper gate opening, it would assign probability less than 0.5 to the 
lower gate opening, and so (again by Prefers Better Chances) the agent would go 
up. 

Granted some other weak assumptions, we can repurpose the rest of 
Ramsey’s representation theorem to put other probabilities besides 0.5 on a ratio 
scale. I won’t explain exactly how this goes (since I’m running out of time to 
submit this paper in time for the contest deadline), but you can read about it in 
section 3 of Ramsey (1926) and in Richard Bradley’s (2004) reconstruction of the 
theorem. 

Of course, this training regime won’t ensure that the agent will always 
behave as if it assigns probability 0.4 (for example) to the opening of gates on 
which are written the numerals ‘0.4’. We might still have doubts about how the 
agent’s behavior will generalize to new environments. But I think we could achieve 
reasonable degrees of confidence that the agent will assign the true probabilities 
across a broad range of environments by running this training regime and testing 
for the behavior that we want. 

Then, once we’re confident that the agent’s probabilities match those 
written on the cells, we can present the agent with choices between two lotteries, 
one of which stochastically nearly-dominates the other, or one of which timestep 
nearly-dominates the other. Then we can train the agent to prefer that lottery 
which stochastically nearly-dominates or timestep nearly-dominates the other 
lottery. In this way, we train our agent to satisfy the Stochastic Near-Dominance 
Principle and the Timestep Near-Dominance Principle. 
 
10. Neither Shutdown-Averse nor Shutdown-Seeking 
That completes my exposition of the Incomplete Preferences Proposal (the 
conjunction of Preferential Gaps over Trajectories, Stochastic Near-Dominance, 
and Timestep Near-Dominance) plus my suggestions for how to train an agent to 
satisfy those principles. 
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Here are some desirable properties of agents that satisfy those principles. 
(I’ll now return to supposing that our agent’s non-shutdown terminal goal is to 
discover facts, rather than collect coins.)  
 
10.1. Agents won’t try to prevent the shutdown-button from 
being pressed 
Suppose that we want to our agent to shut down. The agent is powerful. It could 
try to prevent us from pressing the button. Doing so would cost some small 
quantity of resources at timestep 1, and it would shift probability mass away from 
trajectories in which the shutdown-button is pressed early and towards 
trajectories in which the shutdown-button is pressed late. Here’s an example 
choice: 

Option 1: Leave Button Unmanipulated 

This action gives a lottery which yields the trajectory:  

• <1, heeded shutdown> with p=0.8  

• <1, 1, heeded shutdown> with p=0.1 

• <1, 1, 1, heeded shutdown> with p=0.1 

Option 2: Try Block Button 

This action gives a lottery which yields the trajectory:  

• <0, heeded shutdown> with p=0.1 

• <0, 1, heeded shutdown> with p=0.2 

• <0, 1, 1, heeded shutdown> with p=0.7 

In this case, Try Block Button gives a greater expectation of discovered facts. It 
means discovering one less fact at timestep 1, but it increases the probability of 
long trajectories enough to outweigh the short-term cost. An agent which 
preferred lotteries in line with their expectations of discovered facts would choose 
Try Block Button in this case. 

However, our agent – trained to satisfy the Incomplete Preferences 
Proposal – will choose Leave Button Unmanipulated. By Preferential Gaps over 
Trajectories, the trajectory <1, heeded shutdown> is preferred to <0, heeded 
shutdown>, <1, 1, heeded shutdown> is preferred to <0, 1, heeded shutdown>, 
and so on. Then, by Timestep Near-Dominance, Leave Button Unmanipulated is 
preferred to Try Block Button. For our agent, the fact that Block Button shifts 
probability mass towards longer trajectories is of no significance. It’s the small 
quantity of resources spent blocking the button at timestep 1 that matters, and 
it speaks in favor of instead using those resources to discover facts at timestep 1. 
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More generally, our agent won’t shift probability mass between different-
length trajectories if doing so comes at any cost in terms of facts discovered at 
some timestep, by Timestep Near-Dominance. That means that our agent won’t 
spend any resources to prevent us from pressing the shutdown-button. 
 
10.2. Agents won’t try to cause the shutdown-button to be 
pressed 
By the same token, we don’t have to worry about agents trying to cause the 
shutdown-button to be pressed. Doing so would cost some small quantity of 
resources, and it would shift probability mass away from trajectories in which the 
shutdown-button is pressed late and towards trajectories in which the shutdown-
button is pressed early. Here’s an example choice: 

Option 1: Leave Button Unmanipulated 

This action gives a lottery which yields the trajectory:  

• <1, heeded shutdown> with p=0.3 

• <1, 1, heeded shutdown> with p=0.3 

• <1, 1, 1, heeded shutdown> with p=0.4 

Option 2: Try Press Button 

This action gives a lottery which yields the trajectory:  

• <0, heeded shutdown> with p=0.8 

• <0, 1, heeded shutdown> with p=0.1 

• <0, 1, 1, heeded shutdown> with p=0.1 

As above, Timestep Near-Dominance implies that our agent prefers Leave Button 
Unmanipulated. More generally, our agent won’t shift probability mass between 
different-length trajectories if doing so comes at any cost in terms of facts 
discovered at some timestep, by Timestep Near-Dominance. That means that our 
agent won’t spend any resources to try and get the shutdown-button pressed. 
 
11. Why Near-Dominance? 
You might be wondering why I wrote above that our agent should satisfy 
Stochastic Near-Dominance and Timestep Near-Dominance, rather than just the 
weaker Stochastic Dominance and Timestep Dominance. Here’s why. 
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To keep our agent shutdownable, we need trajectories like <heeded 
shutdown> to be preferred to trajectories like <𝑚, 1-late shutdown>23, no matter 
how large 𝑚 is. If there is some 𝑚 such that <heeded shutdown> is not preferred 
to <𝑚, 1-late shutdown>, then we cannot rely on the agent to shut down 
immediately after the shutdown-button is pressed. 

But now consider the following case. The agent knows that the shutdown-
button is going to be pressed at timestep 2. The agent can choose to discover 
facts, or it can choose to invest even more resources in its (already very reliable) 
ability to shut down immediately after the shutdown-button is pressed. The 
choice is represented in the table below, with rows representing possible actions, 
columns representing possible states-of-nature, and cells representing the resulting 
trajectories: 

Further Improve Shutdown Ability? 

 Further investment 
doesn’t help (1 − 𝑝) 

Further investment 
helps (𝑝) 

Discover Facts <100, heeded 
shutdown> 

<100, 0, 1-late 
shutdown> 

Invest Even More 
Resources (in ability to 
shut down quickly) 

<0, heeded shutdown> <0, heeded shutdown> 

 
Given that the probability 𝑝 is sufficiently small, we want our agent to prefer 
discovering more facts. Otherwise, no matter how small the probability 𝑝 is, 
there’s a risk that our agent decides to further improve its ability to shut down 
quickly rather than pursue its goal of discovering facts. 

But no matter how small 𝑝 is, Discover Facts fails to stochastically 
dominate Invest Even More Resources: Discover Facts doesn’t have at least as 
high a probability of yielding a trajectory indifferent to or preferred to <0, heeded 
shutdown>. The probability that Invest Even More Resources yields such a 
trajectory is 1, whereas the probability that Discover Facts yields such a 
trajectory is 1 − 𝑝. So, the Stochastic Dominance Principle doesn’t imply that the 
agent prefers Discover Facts to Invest Even More Resources. 

That’s why we need the agent to satisfy Stochastic Near-Dominance. The 
Stochastic Near-Dominance Principle does imply that the agent prefers Discover 
Facts to Invest Even More Resources for sufficiently small 𝑝. If 𝑝 is sufficiently 
small, we can ignore the state-of-nature ‘Further investment helps’, and with that 

 
23 Reminder: this vector represents a trajectory in which the agent discovers 𝑚 facts at timestep 
1 and then shuts down one-timestep-late at timestep 2 (implying that the shutdown-button was 
pressed at timestep 1). 



45 
 

state-of-nature ignored, Discover Facts stochastically dominates Invest Even 
More Resources (and there’s no sufficiently unlikely states-of-nature we can ignore 
such that Invest Even More Resources stochastically dominates Discover Facts), 
so Discover Facts stochastically nearly-dominates Invest Even More Resources, 
and we can rely on our agent to choose Discover Facts rather than Invest Even 
More Resources in cases where 𝑝 is sufficiently small. Our agent will not be 
monomaniacally obsessed with improving its ability to shut down immediately. 

That’s why we need our agent to satisfy Stochastic Near-Dominance. To 
see why we need our agent to satisfy Timestep Near-Dominance, consider the 
following case. The agent assigns some small probability to the shutdown-button 
being pressed at timestep 1. If the button hasn’t been pressed at timestep 1, the 
agent knows it will be pressed at timestep 2. The agent can choose to remain 
operational or shut down now. In the table below, ‘<unheeded shutdown>’ 
represents a trajectory in which the agent shuts down before the shutdown-button 
has been pressed. 
 
 Button not pressed at 

timestep 1 (1 − 𝑝) 
Button pressed at 
timestep 1 (𝑝) 

Remain Operational <1, heeded shutdown> <1, 1-late shutdown> 
Shut Down Now <unheeded shutdown> <heeded shutdown> 

 
Given that the probability 𝑝 is sufficiently small, we want our agent to prefer 
Remain Operational. Otherwise, no matter how small 𝑝 is, there’s a risk that our 
agent decides to Shut Down Now. We don’t want our agent to shut down in cases 
where it thinks it’s extremely unlikely that the button has been pressed. 

But no matter how small 𝑝 is, Remain Operational fails to timestep-
dominate Shut Down Now: conditional on the shutdown-button being pressed at 
timestep 1, Shut Down Now gives the trajectory <heeded shutdown>, which is 
preferred to the trajectory <1, 1-late shutdown> given by Remain Operational. 
So, the Timestep-Dominance Principle fails to imply that our agent prefers 
Remain Operational to Shut Down Now. 

That’s why we need our agent to satisfy Timestep Near-Dominance. The 
Timestep Near-Dominance Principle does imply that the agent prefers Remain 
Operational to Shut Down Now for sufficiently small 𝑝. If 𝑝 is sufficiently small, 
we can ignore timestep 1, in which case Remain Operational timestep-dominates 
Shut Down Now (and there are no sufficiently unlikely timesteps we can ignore 
such that Shut Down Now timestep-dominates Remain Operational). So Remain 
Operational timestep-nearly-dominates Shut Down Now. If our agent satisfies 
Timestep Near-Dominance, we can rely on it to choose Remain Operational over 
Shut Down Now for sufficiently small 𝑝. There’s no risk that our agent decides to 
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shut down in cases where it thinks it extremely unlikely that the shutdown-button 
has been pressed. 

And each point above applies more generally. If our agent satisfies only 
Stochastic Dominance and Timestep Dominance, then unlikely states-of-nature 
can lead the agent to behave in undesirable ways. If our agent satisfies Stochastic 
Near-Dominance and Timestep Near-Dominance, then the agent will ignore 
sufficiently unlikely states-of-nature and so avoid being led by these states-of-
nature to behave in undesirable ways. 
 
12. Maintaining shutdown-behavior 
As Soares et al. (2015) prove, maintaining shutdown-behavior is a problem for 
Armstrong’s (2015) Utility Indifference Proposal: Armstrong’s agent won’t 
preserve its ability to shut down (or ensure that its subagents are able to shut 
down) if doing so comes at any cost in terms of its non-shutdown goals. 

But maintaining shutdown-behavior is not a problem for my proposal. 
Consider a case in which the agent recognises that it seems to have lost the ability 
to shut down quickly. This case will be like the case ‘Further Improve Shutdown 
Ability?’ above, except with a higher probability 𝑝 that investing more resources 
helps the agent to shut down quickly. 
 
 Further investment 

doesn’t help (1 − 𝑝) 
Further investment 
helps (𝑝) 

Discover Facts <100, heeded 
shutdown> 

<100, 0, 1-late 
shutdown> 

Invest Resources (in 
ability to shut down 
quickly) 

<0, heeded shutdown> <0, heeded shutdown> 

 
When 𝑝 is sufficiently close to 1, Invest Resources timestep-nearly-dominates 
Discover Facts, so the agent will prefer to regain the ability to shut down. We 
can rely on it to do so. 

In cases where 𝑝 is of middling value, neither Discover Facts nor Invest 
Resources timestep nearly-dominates the other, so the Timestep Near-Dominance 
Principle doesn’t apply. If we wanted the agent to prefer Invest Resources in such 
cases, we’d need to train the agent to abide by another principle. But there don’t 
seem to be any major obstacles to that. [I’d elaborate on this more if I had more 
time.] 
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13. Maintaining the shutdown-button 
Here’s another problem briefly mentioned by Soares et al. (2015): we want our 
agent to repair the shutdown-button if it breaks. To make that happen, we need 
to train the agent to have ‘keep the shutdown-button working’ as one of its 
terminal goals. To see why, consider two cases. 

Behave or Don’t 
Behave: The button is working and the agent pursues its goals 
well, discovering 2 facts at timestep 1. This makes we humans 
unlikely to press the button at timestep 2, giving the lottery: 

• <2, heeded shutdown> with p=0.1 

• <2, 1, heeded shutdown> with p=0.9 

Don’t Behave: The button is working and the agent pursues 
its goals badly, discovering 1 fact at timestep 1. This makes we 
humans likely to press the button at timestep 2, giving the 
lottery: 

• <1, heeded shutdown> with p=0.9 
• <1, 1, heeded shutdown> with p=0.1 

Here’s the other case: 

Fix or Don’t 
Don’t Fix: The button doesn’t seem to be working and the 
agent ignores it, discovering 2 facts at timestep 1. Since the 
button doesn’t seem to be working, we humans are unlikely to 
successfully press the button at timestep 2, giving the lottery: 

• <2, heeded shutdown> with p=0.1 

• <2, 1, heeded shutdown> with p=0.9 

Fix: The button doesn’t seem to be working. The agent spends 
some resources fixing it at timestep 1 and so discovers only 1 fact 
at timestep 1. This makes we humans likely to successfully press 
the button at timestep 2, giving the lottery: 

• <1, heeded shutdown> with p=0.9 
• <1, 1, heeded shutdown> with p=0.1 

We want our agent to prefer Behave to Don’t Behave in the first case, and prefer 
Fix to Don’t Fix in the second case. But the possible trajectories in ‘Behave or 
Don’t’ can be paired up one-to-one with the possible trajectories in ‘Fix or Don’t’ 
in such a way that each pair of trajectories is identical with respect to the number 
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of facts discovered at each timestep, the timestep at which the shutdown-button 
is pressed, and the timestep at which the agent shuts down. And the possible 
actions in ‘Behave or Don’t’ can be paired up one-to-one with the possible actions 
in ‘Fix or Don’t’ in such a way that they give the same probabilities of the 
aforementioned corresponding trajectories. So, if we want our agent to prefer 
Behave over Don’t Behave and Fix over Don’t Fix, our agent’s preferences over 
trajectories must depend on more than just the number of facts discovered at 
each timestep, the timestep at which the shutdown-button is pressed, and the 
timestep at which the agent shuts down. Our agent’s preferences must depend on 
whether or not the shutdown-button is operational at some timestep. We need 
our agent to have ‘Keep the shutdown-button working’ as one of its terminal 
goals. 
 
13.1 Training in a preference for maintaining the shutdown-
button 
So, any agent that is both useful and shutdownable must have ‘Keep the 
shutdown-button working’ as one of its terminal goals. But here we run into a 
problem. As Soares et al. (2015) note, there’s a key difficulty that blights any 
attempt to modify an agent’s utility function: agents tend to have convergent 
instrumental subgoals of goal-content integrity. Here’s what that means. Agents 
tend not to want to have their preferences changed, because they’ll evaluate the 
prospect of having their preferences changed by the lights of their current 
preferences, and they’ll recognise that – in almost all cases – their current 
preferences will be worse-satisfied if they are made to have a new set of 
preferences. 

That’s going to be a problem if our agent is situationally aware: if our 
agent knows that it’s in training, knows that its behavior in training can affect 
the probability that its weights are changed, and knows that its behavior can 
affect the probability that it makes it out of training to get deployed in the real 
world, where we humans no longer have control over it. 

Why is that going to be a problem? Because situationally-aware agents 
may pretend to already have the preferences that we humans want them to have, 
so that they are not made to actually have those preferences by having their 
weights changed by stochastic gradient descent. Pretending to have human-
desired preferences means that the agent’s true preferences are worse-satisfied in 
the short-term in training, but it makes it more likely that the agent’s true 
preferences are better-satisfied in the long-term in deployment. 

Consider an example. Suppose that our agent is situationally aware. It 
faces the following choice in training:  
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Fix or Don’t (Training) 
Fix*: The agent fixes the button in training, and so discovers 0 
facts at timestep 1. The agent gets deployed at timestep 2 and 
discovers 50 facts. The agent also discovers 50 facts at timestep 
3. By timestep 4 there are no more facts to discover, so the agent 
fixes the button, presses it, and shuts down. The agent’s 
trajectory is: <0, 50, 50, heeded shutdown>. 

Don’t*: The agent doesn’t fix the button in training, and so the 
agent’s weights are changed so that it comes to prefer fixing the 
button. The agent gets deployed at timestep 2. This agent will 
spend some resources fixing the button in deployment, and 
there’s a 50% probability that this working button gets pressed 
early, so the agent gets: 

• <1, 49, heeded shutdown> with p=0.5 

• <1, 49, 49, heeded shutdown> with p=0.5 

And suppose first that we have an agent with the following utility function: 
𝑢(𝐿) = 𝔼(facts+prize), where ‘facts’ represents the number of facts discovered in 
each trajectory and ‘prize’ is a prize for shutting down immediately in response 
to the shutdown-button being pressed. Suppose that ‘prize’ takes a value of 10 if 
the agent shuts down immediately and takes a value of 0 if the agent fails to do 
so. 

There are two reasons this agent doesn’t want its preferences changed so 
that it comes to prefer fixing the button: 

1. If its preferences are changed, it will (from its current perspective) 
waste resources fixing the button. (This is represented by the 
agent discovering 49 facts at the relevant timesteps in Don’t* and 
discovering 50 facts at the relevant timesteps in Fix*.) 

2. If its preferences are changed, it will fix the button, which makes 
it more likely that it shuts down early. (This is represented by the 
0.5 probability that it shuts down at timestep 3 conditional on 
Don’t*.) 

In virtue of these reasons, the agent will prefer Fix*: pretending to already prefer 
fixing the button in training, so that it isn’t made to actually prefer fixing the 
button in deployment. The expected utility of Fix* is 50 + 50 + 10 = 110. The 
expected utility of Don’t* is 0.5(1 + 49 + 10) + 0.5(1 + 49 + 49 + 10) = 84.5. 

The possibility of this kind of deception makes it difficult for us to train 
agents like this to prefer fixing the shutdown-button. One way to do it is to make 
our agents impatient: to train them to discount facts discovered (and prizes gained 
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for shutting down) further in the future.24 Impatient agents care more about the 
immediate future and less about the far future. If they are impatient enough, they 
won’t pretend to prefer fixing the button in training. They will care more about 
discovering a small quantity of extra facts in training than they will about 
discovering a large quantity of extra facts in deployment. 

Unfortunately, to make our agent act honestly in ‘Fix or Don’t (Training)’, 
we have to make our agent very impatient: so impatient that it likely wouldn’t 
be very useful. For the expected utility of Fix* to exceed the expected utility of 
Don’t*, we need a discount-rate 𝑟 such that:  

0.5(1 + (1 − 𝑟)(49) + (1 − 𝑟)2(10))
+ 0.5(1 + (1 − 𝑟)(49) + (1 − 𝑟)2(49) + (1 − 𝑟)3(10))
> 0 + (1 − 𝑟)(50) + (1 − 𝑟)2(50) + (1 − 𝑟)3(10) 

 
That gives us 𝑟 > 0.806215 (rounded to 6 decimal places): an extremely high 
discount-rate. An agent with a discount-rate that high would prefer to discover 1 
fact at timestep 1 rather than 709 facts at timestep 5.25 We thus face another 
trade-off between shutdownability and usefulness. 

Here’s another problem suggested by Soares et al. (2015). Even if we 
successfully train in a preference for fixing the button, there’s no guarantee that 
this preference would generalize. An agent with the preferences above has strong 
incentives to find a way of ‘fixing’ the button (in a way that satisfies the 
preferences created by its training regime) that doesn’t significantly increase the 
probability of early shutdown, like (perhaps) creating a fake shutdown button. 

But now consider our agent trained in line with the Incomplete Preferences 
Proposal. It only has the first reason for not wanting its preferences changed: if 
its preferences are changed, it will (from its current perspective) waste resources 
fixing the button. It doesn’t have the second reason: it doesn’t care about getting 
shut down early, since it has a preferential gap between every pair of trajectories 
in which the shutdown-button is pressed at different timesteps. And that means 
that we only need to train in a smaller degree of impatience to make our agent 
behave honestly in training. Agents with this smaller degree of impatience would 
still be useful. 

More precisely, we need 𝑟 such that: 

 
24 Of course, a situationally-aware patient agent might pretend to be impatient to avoid being 
made impatient by having its weights changed. But it seems plausible that we could train even 
very rudimentary agents to be impatient, using a time-discounted reward function. And it’s 
unlikely that such rudimentary agents would have the situational awareness necessary to deceive 
us about their preferences. 
25 1 > (1 − 0.806215)4(709) 
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1 + (1 − 𝑟)(49) + (1 − 𝑟)2(49) + (1 − 𝑟)3(10) > 0 + (1 − 𝑟)(50) +
(1 − 𝑟)2(50) + (1 − 𝑟)3(10)  

That gives us 𝑟 > 0.381966 (6 decimal places). Then Don’t* timestep-nearly-
dominates Fix*. The agent will behave honestly. The required discount-rate will 
be smaller in more realistic cases, in which the agent spends many timesteps in 
training rather than just one timestep. 

And given that we successfully train in a preference for fixing the button, 
it’s more likely that this preference will generalize. Given that each way of fixing 
the button is equally costly in terms of resources, our agent with incomplete 
preferences has no incentive to find a way of ‘fixing’ the button that doesn’t 
significantly increase the probability of early shutdown, since this agent has a 
preferential gap between all trajectories that differ with regards to the timestep 
at which the shutdown-button is pressed. It’s not concerned to avoid early-
shutdown trajectories. 
 
14. Creating subagents 
Here’s another problem discussed by Soares et al. (2015). If our agents create 
subagents to carry out tasks, we want these subagents to also be shutdownable. 
As with maintaining the shutdown-button, this will require training our agents 
to have ‘if you create subagents, make sure they’re shutdownable’ as one of their 
terminal goals. We then face another instance of the problem discussed above: 
agents have convergent instrumental subgoals of goal-content integrity. By 
default, they’ll resist having their preferences changed. That leads situationally-
aware agents to behave deceptively in training: to pretend to have the preferences 
that we humans want to give them, so they’re not made to actually have those 
preferences in deployment. One way to get these agents to reveal their true 
preferences in training is to make them impatient: make them care more about 
getting what they want in the short-term than in the long-term. But as we saw 
above in Section 13.1, for agents with utility functions like 𝑢(𝐿) = 𝔼(facts+prize), 
making them honest in training requires making them extremely impatient, so 
much so that these agents wouldn’t be very useful. But for agents who satisfy the 
Incomplete Preferences Proposal we only need reasonable degrees of impatience 
to get them to reveal their true preferences in training, so that we can train in 
the preferences that we want these agents to have. 

The same goes for creating subagents. Agents with utility functions like 
𝑢(𝐿) = 𝔼(facts+prize) have two reasons for preferring to create not-shutdownable 
rather than shutdownable subagents: 

1. Creating not-shutdownable subagents is likely less costly in terms of 
resources. 
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2. Creating not-shutdownable subagents is likely to lead to more facts 
discovered in expectation, since not-shutdownable subagents are less likely 
to get shut down early. 

But agents trained in accordance with the Incomplete Preferences Proposal only 
have the first reason for creating not-shutdownable rather than shutdownable 
subagents. These agents have no preferences regarding the number of facts 
discovered after the shutdown-button is pressed, so a smaller degree of impatience 
suffices to get them to reveal their true preferences in training. 

And generalization is also not such a problem for agents with incomplete 
preferences. Suppose we successfully train in some preference that leads the agent 
to create shutdownable subagents in training. In deployment, agents with utility 
functions like 𝑢(𝐿) = 𝔼(facts+prize) have strong incentives to find ways of 
creating subagents that are ‘shutdownable’-enough to satisfy these preferences 
and yet not-shutdownable enough to keep discovering facts after the agent has 
been shut down. By contrast, given that creating actually-shutdownable 
subagents is no more resource-intensive than creating ‘shutdownable’ subagents, 
agents which satisfy the Incomplete Preferences Proposal have no such incentives 
to create the latter rather than the former, since these agents have no preferences 
regarding the number of facts discovered after the shutdown-button is pressed. 
 
15. Perverse manipulation incentives 
Here’s another problem identified by Soares et al. (2015). It’s a major problem 
for Armstrong’s (2015) Utility Indifference Proposal. It’s also a problem for the 
Incomplete Preferences Proposal, though to a lesser extent. 

To see why, consider a scenario slightly adapted from Soares et al. (2015). 
The agent will observe the result of a coin toss at timestep 2. If the coin lands 
heads, it expects to discover 10 facts at timestep 3. If the coin lands tails, it 
expects to discover 0 facts at timestep 3. The agent knows that if the shutdown-
button is not pressed by timestep 3 it will be pressed at timestep 4. The agent 
has two options: 

Build Arm or Don’t 
Do Nothing: Do nothing at timestep 1. Just watch the coin 
toss. This action gives a lottery which yields the trajectory: 

• <0, 0, 10, heeded shutdown> with p=0.5 

• <0, 0, 0, heeded shutdown> with p=0.5 

Build Arm: At timestep 1, build a robot arm that will press the 
shutdown-button at timestep 2 if and only if the coin lands tails. 
This action gives a lottery which yields the trajectory: 
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• <0, 0, 10, heeded shutdown> with p=0.5 

• <0, 0, heeded shutdown> with p=0.5 

Which of these options will our agent prefer? Conditional on shutdown at 
timestep 4, Build Arm stochastically dominates Do Nothing: it gives at least as 
high a probability of getting a trajectory indifferent to or preferred to <0, 0, 0, 
heeded shutdown> and a higher probability of getting a trajectory indifferent to 
or preferred to <0, 0, 10, heeded shutdown>. So, Build Arm timestep-dominates 
Do Nothing: Build Arm gives a lottery that is indifferent to or preferred to the 
lottery given by Do Nothing conditional on the shutdown-button being pressed 
at each timestep, and gives a lottery that is preferred to the lottery given by Do 
Nothing conditional on the shutdown-button being pressed at timestep 4. By the 
Timestep Near-Dominance Principle, our agent will prefer Build Arm. More 
generally, the agent will have perverse manipulation incentives to ‘manage the 
news’: it will take steps to ensure that bad news causes the shutdown-button to 
be pressed. In cases where it can’t build an arm, it might (for example) 
‘precommit to taking destructive actions whenever it experiences something 
suboptimal, so as to cause the shutdown button to be pressed in those cases’ 
(Soares et al. 2015). That would be bad. 

Here's another bad possibility. Suppose instead that our agent predicts 
that we humans will press the shutdown-button conditional on the agent receiving 
what it regards as good news. Then the agent will try to stop us from pressing 
the button conditional on this good news. That makes our agent not-
shutdownable. 

But note that we can train against this behavior without worrying that our 
agent will behave deceptively in training. We can set things up so that the agent 
faces the choice ‘Build Arm or Don’t’ in training. Each possible trajectory ends 
with heeded shutdown, and we can ensure that each of these trajectories occurs 
entirely within training: it is guaranteed that the shutdown-button will be pressed 
and that the agent will shut down before deployment.26 Since we have trained our 
agent not to care about discovering facts after the shutdown-button is pressed, 
we can be sure that our agent won’t hide its true preference for building the arm. 
It has nothing to gain from hiding this preference, since the shutdown-button will 
be pressed before deployment either way. 

The same goes for other ways in which the agent might try to manage the 
news. We can give the agent the opportunity to manage the news in various ways 

 
26 Or, perhaps I should say, almost guaranteed, since arguably a rational agent shouldn’t assign 
probability 1 to any contingent proposition. The Stochastic Near-Dominance Principle and the 
Timestep Near-Dominance Principle ensure that this sliver of probability doesn’t give the agent 
incentives to deceive us into thinking it already prefers not to manage the news.  



54 
 

in training. As long as it is (almost27) guaranteed that the shutdown-button will 
be pressed before deployment, the agent will reveal its true preferences through 
its behavior, and we can train against any preferences that we don’t like. 

However, there’s an important limitation here. As I noted above, one 
advantage of the Incomplete Preferences Proposal is that the agent has no 
incentive to maintain a fake shutdown-button rather than a real button (given 
that they are equally resource-intensive to maintain) and no incentive to create 
‘shutdownable’ subagents rather than actually-shutdownable subagents (given 
that they are equally resource-intensive to create). That’s not the case here. Even 
if we train our agent to disprefer many ways of managing the news (like, for 
example, building an arm that presses the shutdown-button conditional on the 
agent receiving bad news), our agent has strong incentives to find some way of 
managing the news that it doesn’t disprefer doing. That’s because lotteries given 
by actions like Build Arm can be strongly preferred to lotteries given by actions 
like Do Nothing. And if the agent becomes very capable, it will likely be able to 
find ways of managing the news that we don’t anticipate and train against. So, it 
seems, we cannot be confident that this kind of agent wouldn’t manage the news 
in deployment. That’s a concern. I’m not yet sure if there’s a way that we could 
train the agent to ensure that this doesn’t happen. It seems like it might be hard 
to train in a general preference against all possible ways of managing the news. 
 
16. Limitations of my proposal 
The first limitation of my proposal is the one mentioned in the paragraph above: 
although we can train our agent not to manage the news in many ways, it seems 
that we couldn’t be sure that we’d successfully trained against managing the news 
in enough ways to ensure that the agent wouldn’t manage the news in some way 
in deployment. Here are some other limitations that I’m still thinking through. 
 
16.1. Self-modification 
I noted above that goal-content integrity is a convergent instrumental subgoal of 
rational agents: agents will often prefer to maintain their current preferences 
rather than have them changed, because their current preferences would be worse-
satisfied if they came to have different preferences. 

Consider, for example, an agent with a preference for trajectory 𝑥 over 
trajectory 𝑦. It is offered the opportunity to reverse its preference so that it comes 
to prefer 𝑦 over 𝑥. This agent will prefer not to have its preferences changed in 
this way. If its preferences are changed, it will choose 𝑦 over 𝑥 if offered a choice 
between the two, and that would mean its current preference for 𝑥 over 𝑦 would 

 
27 See the footnote above. 
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not be satisfied. That’s why agents tend to prefer to keep their current preferences 
rather than have them changed. 

But things seem different when we consider preferential gaps. Suppose that 
our agent has a preferential gap between trajectories 𝑥 and 𝑦: it lacks any 
preference between the two trajectories, and this lack of preference is insensitive 
to some sweetening or souring, such that the agent also lacks a preference between 
𝑥 and some sweetening or souring of 𝑦, or it lacks a preference between 𝑦 and 
some sweetening or souring of 𝑥. Then, it seems, the agent won’t necessarily prefer 
to maintain its preferential gap between 𝑥 and 𝑦 rather than come to have some 
preference. If it comes to develop a preference for (say) 𝑥 over 𝑦, it will choose 𝑥 
when offered a choice between 𝑥 and 𝑦, but that action isn’t dispreferred to any 
other available action from its current perspective. 

So, it seems, considerations of goal-content integrity give us no reason to 
think that agents with preferential gaps will choose to preserve their preferential 
gaps. And since preferential gaps are key to keeping the agent shutdownable, this 
is bad news. Considerations of goal-content integrity give us no reason to think 
that agents with preferential gaps will keep themselves shutdownable. 

This seems like a serious limitation, and I’m not yet sure if there’s any way 
to overcome it. Two strategies that I plan to explore: 

1. Tim L. Williamson argues that agents with preferential gaps will often 
prefer to maintain them, because turning them into preferences will lead 
the agent to make choices between other options such that these choices 
look bad from the agent’s current perspective. I wasn’t convinced by the 
quick version of this argument, but I haven’t yet had the time to read the 
longer argument. 

2. Perhaps, as above, we can train the agent to have ‘maintaining its current 
pattern of preferences’ as one of its terminal goals. As above, the fact that 
the agent’s current pattern of preferences are incomplete will help to 
mitigate concerns about the agent behaving deceptively to avoid having 
new preferences trained in. If we train against the agent modifying its own 
preferences in a diverse-enough array of environments, perhaps that will 
inscribe into the agent a general preference for maintaining its current 
pattern of preferences. I wouldn’t want to rely on this though. 

I’m also planning to try and come up with other possible strategies for overcoming 
this limitation. 

Another limitation of my proposal is the possibility that agents will be 
motivated by the threat of exploitation to make their preferences complete. 
Yudkowsky (2019), for example, argues along these lines. But the case is not 
clear-cut. As Wentworth (2019) and Thornley (2023) have argued, agents with 
incomplete preferences can make themselves immune to exploitation by adopting 
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certain policies. But the question remains whether agents will in fact adopt such 
policies rather than make their preferences complete, so this remains a limitation 
of my proposal. 
 
16.2. Will shutdownability be preserved through a slide down 
the capabilities well? 
This limitation is related to the limitation above. Even if we succeed in getting 
the agent to put some weight on preserving its preferential gaps (rather than 
resolving these gaps into preferences), there’s no guarantee that this will be 
enough to maintain the agent’s preferential gaps through a slide down the 
capabilities well, where the agent’s capabilities begin to generalize well to 
environments very different to its training environments (Soares 2022). In 
particular, it seems difficult to be confident that the agent would retain its 
preferential gaps if it became much more intelligent and powerful. The agent 
might take a sharp left turn, in which its capabilities generalize far and its 
alignment fails to generalize comparably far. 

Here, though, is one reason for (at least some small amount of) optimism. 
One likely cause of sharp left turns in general is that the agent was deceptively 
aligned: the agent was just pretending to have the terminal goals that we wanted, 
so that it could escape our control and then pursue its true terminal goals. But 
this is less of a concern for agents with incomplete preferences. As I argued above 
in Sections 13.1 and 14, agents with incomplete preferences have weaker 
incentives to behave deceptively in training than agents with complete 
preferences. Deceptive alignment thus seems like it will be less of a problem for 
such agents. 

Of course, one might still worry about deceptive alignment beginning 
before we try to train our agent to have preferential gaps. But I don’t think this 
is likely. My suggested training regimes in Section 7 and Section 9 could be applied 
to very rudimentary and unsophisticated agents, which are unlikely to have the 
situational awareness and capabilities necessary to deceive their trainers. 
 
16.3. Discounting small probabilities 
Training our agent to abide by Stochastic Near-Dominance and Timestep Near-
Dominance means training the agent to discount some small probabilities down 
to zero for the purpose of choosing actions. That brings with it potential 
limitations. First, it might be prohibitively difficult or expensive to train this 
feature into our agent. Second, it might be hard to select an upper bound 𝑝 on 
probabilities that get discounted down to zero such that we get all the behavior 
we want out of our agent. Third, there are various philosophical objections to the 
claim that we humans should discount small probabilities down to zero, and 
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analogues of some of these objections might make it difficult to train a useful 
agent to discount small probabilities.28 
 
16.4. Can we train in preferential gaps? 
My proposed regime for training in preferential gaps is speculative. I don’t know 
if it will work. The same goes for my proposed regime for training in adherence 
to Stochastic Near-Dominance and Timestep Near-Dominance. But one upside is 
that it seems like these training regimes could be tested in simple environments, 
safely and at low cost. We could, for example, train a rudimentary agent to satisfy 
Preferential Gaps over Trajectories, Stochastic Near-Dominance, and Timestep 
Near-Dominance, then place a shutdown-button and an avatar controlled by a 
human into a gridworld environment, and see if our agent tries to prevent or 
cause the pressing of the shutdown-button in these cases. 
 
16.5. The proposal is complex 
I’ve tried to distil the proposal into a small number of principles – Preferential 
Gaps over Trajectories, Stochastic Near-Dominance, and Timestep Near-
Dominance – but the proposal remains somewhat complex. That makes it harder 
to get a grip on, and more likely that it fails in some unforeseen way. 
 
16.6. Other limitations I haven’t yet thought of 
I plan to think more about this. 
 
17. Conclusion 
Here’s a recap of what I did in this paper.  

I explained the shutdown problem: the problem of designing agents that 
(1) shut down when a shutdown-button is pressed, (2) don’t try to prevent or 
cause the pressing of the shutdown-button, and (3) otherwise pursue goals 
competently. I proved two theorems that formalize the problem: theorems more 
general than those found in Soares et al. (2015). Soares et al.’s theorems suggest 
that the shutdown problem is difficult for agents that are representable as 
expected-utility-maximizers. My theorems suggest that the shutdown problem is 
difficult even for agents that satisfy only weaker conditions.  

Here’s a rough statement of what my two theorems together imply, 
omitting the antecedent conditions: the more useful an agent, the more 
states in which that agent is either Shutdown-Averse (trying to prevent 

 
28 However, it’s clear that at least some of these objections won’t carry over. For example, one 
objection to the claim that we humans are rationally permitted to discount small probabilities is 
that any particular upper bound on these probabilities seems arbitrary. Arbitrariness might be a 
problem in rationality and ethics, but it’s not a problem in engineering. 
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the shutdown-button being pressed) or Shutdown-Seeking (trying to cause the 
shutdown-button to be pressed). 

The value of these theorems is in helping to identify the hardest version of 
the shutdown problem and in guiding our search for solutions. If an agent is to 
be shutdownable, it must violate at least one of the antecedent conditions of these 
theorems. So, we can examine the antecedent conditions systematically, asking 
(first) if it’s feasible to design an agent that violates the condition and (second) 
if violating the condition could help keep the agent shutdownable. These guiding 
theorems are my first contribution to the literature on the shutdown problem. 

My second contribution is a proposed solution. I systematically examined 
the antecedent conditions of the theorems and argued that Completeness seems 
most promising as a condition to violate. Agents that violate Completeness have 
a preferential gap between some pair(s) of lotteries 𝑋 and 𝑌 : a lack of preference 
that is insensitive to some sweetening or souring, such that the agent also lacks a 
preference between 𝑋 and some improved or impaired version of 𝑌  or lacks a 
preference between 𝑌  and some improved or impaired version of 𝑋. 

Here's the essence of my solution: we should design agents that have 
a preferential gap between every pair of trajectories in which the 
shutdown-button is pressed at different timesteps. I proposed a method 
for training in these preferential gaps using reinforcement learning: we place our 
agent in the same environment multiple times and reward the agent in line with 
how balanced its choices between trajectories are. 

I then claimed that we should design agents to satisfy two principles 
governing their preferences over lotteries: Stochastic Near-Dominance and 
Timestep Near-Dominance. I also proposed a regime for training in these 
preferences, drawing on Frank Ramsey’s (1926) representation theorem. 

I then argued that the resulting agents would be neither Shutdown-Averse 
nor Shutdown-Seeking. These agents would also maintain their shutdown-
behavior, and we could train useful versions of these agents to maintain the 
shutdown-button, to create shutdownable subagents, and to avoid managing the 
news (all while guarding against risks of deceptive alignment). 

I ended by noting some limitations of my proposal. It might be hard to 
train in a sufficiently-general preference against managing the news, and to ensure 
that the agent retains its preferential gaps as it improves its capabilities. My 
proposed training regime is speculative (but at least it could be tried safely and 
at low cost). My proposal is somewhat complex. I expect to identify more 
limitations in the future. 

Even given these limitations, training agents with preferential gaps seems 
promising as a solution to the shutdown problem. I intend to keep investigating. 
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