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Missing Link Prediction
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Use case — Anti Money Laundering
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Use case — Anti Money Laundering
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Use case — Anti Money Laundering
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Incentives for bad actors!
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Challenge — Metric for adversarial impact
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Challenge — Large Search Space
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Identify the most influential training triple
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Instance Attribution Metrics 3
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3. Influence Functions [Koh and Liang, 2017]
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Adversarial Attacks on KGE x "

Future Directions

Sub-graph Influence

Can we measure the influence of a training sub-graph on the
model’s prediction for target triple?
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Adversarial Attacks on KGE x .

Future Directions

Sub-graph Influence

Can we measure the influence of a training sub-graph on the
model’s prediction for target triple?

Adversarial Robustness

Can we improve the adversarial robustness of KGE
models to defend them against adversarial attacks?
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