

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Peru Bhardwaj, John Kelleher, Luca Costabello, Declan O'Sullivan

Contact: peru.bhardwaj@adaptcentre.ie

EMNLP 2021

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Contact: peru.bhardwaj@adaptcentre.ie

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

✓ Adversarial Deletions + Additions

Contact: peru.bhardwaj@adaptcentre.ie

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Instance Similarity

Gradient Similarity

Influence Function

- Adversarial Deletions + Additions
- Identify influential training examples

Contact: peru.bhardwaj@adaptcentre.ie

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Instance Similarity

Gradient Similarity

Influence Function

- Adversarial Deletions + Additions
- Identify influential training examples
- Outperform state-of-art attacks

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

S	r	0
Karl	credit_card	Card_K
Karl	SSN_info	SSN_K
Karl	contact_num	Mobile_K
Karl	lives_in	Country_K

S	r	0
Karl	credit_card	Card_K
Karl	SSN_info	SSN_K
Karl	contact_num	Mobile_K
Karl	lives_in	Country_K

S	r	0
Karl	credit_card	Card_K
Karl	SSN_info	SSN_K
Karl	contact_num	Mobile_K
Karl	lives_in	Country_K

Use case – Anti Money Laundering

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Use case – Anti Money Laundering

Knowledge Graph Embeddings (KGE)

Generate negatives by corrupting s/o

S	r	0
Karl	credit_card	Card_X
Karl	credit_card	Card_Y
Karl	credit_card	Card_K
Person_X	credit_card	Card_K
Person_Y	credit_card	Card_K

Knowledge Graph Embeddings (KGE)

Generate negatives by corrupting s/o

S	r	0
Karl	credit_card	Card_X
Karl	credit_card	Card_Y
Karl	credit_card	Card_K
Person_X	credit_card	Card_K
Person_Y	credit_card	Card_K

Knowledge Graph Embeddings (KGE)

Minimize \mathcal{L} by updating \boldsymbol{e}_{S} , \boldsymbol{e}_{r} , \boldsymbol{e}_{o}

Scores for positive triples are higher than scores for negative triples

Generate negatives by corrupting s/o

S	r	0
Karl	credit_card	Card_X
Karl	credit_card	Card_Y
Karl	credit_card	Card_K
Person_X	credit_card	Card_K
Person_Y	credit_card	Card_K

Missing Link Prediction with KGE

Use case – Anti Money Laundering

Where to find KGE in practice?

Security Sensitive

High Stakes

KGE in High-Stakes Applications

Use case – Anti Money Laundering

KGE in High-Stakes Applications

Incentives for bad actors!

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Aim – Degrade the prediction on target triple

Challenge – Metric for adversarial impact

How to measure the impact of a candidate adversarial perturbation on the prediction of target triple?

Challenge – Large Search Space

How to search through the combinatorial space of candidate adversarial additions?

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Identify the most influential training triple

$$z \coloneqq (z_s, z_r, z_o)$$
Target Triple

$$x := (x_s, x_r, x_o)$$

Candidate Influential Triple

1. Instance Similarity

Similarity between
$$f(e_{z_s}, e_{z_r}, e_{z_o})$$
 and $f(e_{x_s}, e_{x_r}, e_{x_o})$

where z – Target triple, x – Candidate triple

2. Gradient Similarity

Similarity between $g(z,\widehat{\theta})$ and $g(x,\widehat{\theta})$

where

z – Target triple, x – Candidate triple

and
$$g(\mathbf{z},\widehat{\boldsymbol{\theta}}) = \nabla_{\!\boldsymbol{\theta}} \mathcal{L}(\mathbf{z},\widehat{\boldsymbol{\theta}})$$

3. Influence Functions [Koh and Liang, 2017]

Dot product between $g(z,\widehat{\theta})$ and $H_{\widehat{\theta}}^{-1}g(x,\widehat{\theta})$

where

z – Target triple, x – Candidate triple

and
$$g(z,\widehat{\theta}) = \nabla_{\!\theta} \mathcal{L}(z,\widehat{\theta})$$

Adversarial Deletions

Identify the most influential training triple

Adversarial Deletions

Identify the most influential training triple

Adversarial Additions

Replace with dissimilar entity

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Evaluation

Proposed Vs State-of-Art

Proposed Vs State-of-Art

Proposed Vs State-of-Art

Instance Attribution Methods

Instance Attribution Methods

Adversarial Attacks on KGE

Future Directions

Sub-graph Influence

Can we measure the influence of a training sub-graph on the model's prediction for target triple?

Adversarial Attacks on KGE

Future Directions

Sub-graph Influence

Can we measure the influence of a training sub-graph on the model's prediction for target triple?

Adversarial Robustness

Can we improve the adversarial robustness of KGE models to defend them against adversarial attacks?

Contact: peru.bhardwaj@adaptcentre.ie

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

✓ Adversarial Deletions + Additions

Contact: peru.bhardwaj@adaptcentre.ie

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods

Instance Similarity

Gradient Similarity

Influence Function

- Adversarial Deletions + Additions
- Identify influential training examples
- Outperform state-of-art attacks

