




Contents
• Motivation
• State of Art
• World Model
• Modified Boids Algorithm
• Results
• Conclusion



Contents
• Motivation
• State of Art
• World Model
• Modified Boids Algorithm
• Results
• Conclusion

(*Reference Notation, 2022)



Contents

๏ Motivation
• State of Art
• World Model
• Modified Boids Algorithm
• Results
• Conclusion





Solar Irradiance
the flux of radiant energy per unit area
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Forecasting Time Scales (Alonso-Suárez et al., 2020)

nowcasting

short-term

mid-term

sub-seasonal

seasonal

long-term



minutes

hours

days

weeks

months

years

Forecasting Time Scales (Alonso-Suárez et al., 2020)

nowcasting

short-term

mid-term

sub-seasonal

seasonal

long-term

cloud forecast



• SYNASC 2019
• IEEE BigData 2021 
• ISPDC 2021
• IEEE ISGT 2021

Published Papers



• SYNASC 2019
• IEEE BigData 2021 
• ISPDC 2021
• IEEE ISGT 2021

Published Papers

C

B

C

DOMAIN SPECIFIC



This work was supported by a grant from the 
Romanian Ministry of Education and Research, 

CNCS - UEFISCDI project number
PN-III-P1-1.1-TE-2019-0859,

within PNCDI III. 

Funding Acknowledgment



Contents

• Motivation

๏ State of Art
• World Model
• Modified Boids Algorithm
• Results
• Conclusion



State of Art



State of Art (Su, 1984; Irish, 2000; Irish et al., 2006)

Early cloud assessment method;
Processed satellite imagery;
Filtered cloudy images;

Computed cloud cover percentage;
Hardware had limitations;
Utilized orbiting satellites.



State of Art (Wang et al., 1999; Goodwin et al., 2013; Escrig et al., 2013)

Fused multiple images;
Constructed cloud-free images;
Isolated clouds using time series;

Need captures of cloud-free areas;
Time series constructed 
from years of pictures.



State of Art (Mecikalsky, Minnis, and Palikonda, 2013; Zhu and Helmer, 2018)

Quantify clouds beneath other clouds;
Fewer images than other methods;
Less bands needed for computation;

Nowcasting of thunderstorms;
Developed for tropical 
and subtropical regions;



State of Art (Zhu and Woodcock, 2012 - 2019)

Inherits earlier method’s strengths;
Is frequently updated;
Offers extended hardware 
and sensor support;

Goal to remove clouds;
Needs external data;



State of Art (Chen et al., 2018)

Differentiate clouds from snow;

Needs training for each sensor and 
scene configuration;



State of Art (Hamill and Nehrkorn, 1993; Escrig et al., 2013)

Short-term cloud forecasting using 
cross-correlation;
Computing motion vectors;

Parts of the scene are interpolated;
Advection applied to entire image;
Image segmenting leads to 
a lack of granularity.



State of Art (Chow, Belongie, and Kleissl, 2015)

Optical Flow-based method;
Better than cross-correlation methods;
Captured multiple independent 
cloud motions;

Forecasts just for the camera’s location;
Unstable clouds lower 
forecast confidence.
No geographic mapping 
of pixels;



State of Art (Alonso-Suárez et al., 2020; Perez et al. 2010)

Irradiance forecasts up to three hours;
Often used in weather forecasting;

No cloud position or extent;
Outperformed by 
image-based forecasts; 
Site-specific forecasts.
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My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

Increased time series 
frequency compared to 
orbiting satellites.

Enables hours-ahead 
forecasts.

Larger horizon compared 
to all-sky cameras.



My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

No need for powerful 
super-computers.

No specialized hardware 
requirements for 
acquiring data.



My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

No historical data needed 
to start forecasting, only 
last hour images.

Only provide images, no 
other ground-measured 
data or weather 
information.



My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

Not necessary to filter out 
cloudy images. Forecasts 
are made based on 
previous cloud motion.



My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

Simulate realistic 
behavior of cloud 
movement on a global 
scale.



My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

Motion detection and 
forecasts are per pixel, not 
groups of pixels or image 
segments.



My Contribution

Commodity Hardware
Low Maintenance Costs

Geostationary Satellites

Curved Paths

Per Pixel Forecast

Utilize Cloudy Pixels

Start with Two Images

Pixel Level Motion Detection

No Additional Input

Generalized Application

Solution ignores 
background information 
(which is still) and works 
with observed motion.

No training needed for a   
particular region.
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Notations
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motion vector

W



(Petersen et al., 1998a)

H

X mb

Y mb

distance

Pressure Gradient Force = X − Y
distance

high pressure = cold air      H
low pressure  = warm air   L

a

b

The Pressure Gradient Force



The Pressure Gradient Force
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The Coriolis Force (Coriolis, 1832 & 1835) 

Coriolis Force = 2Ω ⃗v sin Φ

Ω

Φ
⃗v

 – Earth's angular velocity
 – velocity of moving body
 – latitude of moving body

Ω
⃗v

Φ



The Coriolis Force (Coriolis, 1832 & 1835) 

Coriolis Force = 2Ω ⃗v sin Φ  – Earth's angular velocity
 – velocity of moving body
 – latitude of moving body

Ω
⃗v

Φ

Bosch and Kleissl (2013) assumed linear  motion.

footnote



The Coriolis Force (Coriolis, 1832 & 1835) 

Coriolis Force = 2Ω ⃗v sin Φ  – Earth's angular velocity
 – velocity of moving body
 – latitude of moving body

Ω
⃗v

Φ

Bosch and Kleissl (2013) assumed linear  motion.

They used a network of ground-mounted irradiance 
sensors on the site of a PV plant.

 direction was obtained from edge detection of 
transient , and  speed was computed by correlating 
time lags in PV panels power output.

C

⃗v
C ⃗v

footnote



The Frictional Force

1 km

(Petersen et al., 1998a)

Frictional Force ≤ μ ⃗v

0 km



The Frictional Force
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(Petersen et al., 1998a)
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The Centrifugal Force (Weidner and Sells, 1973)

Centrifugal Force = mω2r

r

ω

 – air mass
 –  angular velocity

 – curved path's radius

m
ω W
r



The Centrifugal Force (Weidner and Sells, 1973)

Centrifugal Force = mω2r

r

ω

 – air mass
 –  angular velocity

 – curved path's radius
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The Centrifugal Force (Cushman-Roisin and Beckers, 2011; Nanda, 2018) 
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Assumption 1

I assume  is a product of the global forces (except 
for the Frictional Force), but not affected by terrain 
roughness, topography, and tall structures.

W



(Sun et al., 2018; Nouri et al., 2019) Assumption 2

I assume  are at the appropriate altitude to be 
transported by large-scale , and  movement is 
not influenced by other phenomena except for .

C
W C

W



(Sun et al., 2018; Nouri et al., 2019) Assumption 2

I assume  are at the appropriate altitude to be 
transported by large-scale , and  movement is 
not influenced by other phenomena except for .

C
W C

W



Assumption 3

I assume  velocity and direction of movement are 
attainable from  motion by applying the Optical 
Flow Procedure to construct the  using .

W
C

Wmap ⃗v

(Farnebäck, 2003) 



Assumption 3 • Optical Flow Example (Farnebäck, 2003) 



Assumption 3 • Optical Flow Example

Marquez and Coimbra, (2013), and Zaher et al. (2017) 

footnote

(Farnebäck, 2003) 



Assumption 3 • Optical Flow Example

Marquez and Coimbra, (2013), and Zaher et al. (2017) 
believe  can be obtained from sky cameras or 
ground-mounted irradiance sensors.

They omitted geostationary satellite imagery from 
their study.

⃗v

footnote

(Farnebäck, 2003) 



Assumption 4

I assume  and  exist on the same 2D plane from 
the perspective of the satellite's sensor.

W C



Assumption 4 • 2D Plane
+ 35 000 000 m

12 000 m

2000 m

0 m

16 000 m



Assumption 4 • 2D Plane
+ 35 000 000 m

12 000 m2000 m0 m16 000 m

Nouri et al. (2019) measured average cloud heights 

2D plane

footnote



Assumption 4 • 2D Plane
+ 35 000 000 m

12 000 m2000 m0 m16 000 m

Nouri et al. (2019) measured average cloud heights 
between 2 and 12 km altitude.

Nanda, (2018) writes about atmospheric processes 
claiming wind is present up to 16 km altitude.

2D plane
footnote



Assumption 5

I assume  is constant and flows continuously in the 
same directions because of the aforementioned 
forces and the global air circulation system.

W

(Cushman-Roisin and Beckers, 2011; Nanda, 2018; Coriolis, 1832 & 1835) 



Assumption 6

I assume  is smooth. 
As pressures gradually come to an equilibrium, 
changes in  speed and direction over an amount of 
time is smoother rather than abrupt. The greater the 
pressure difference, the stronger the  is.

W

W

W

(Petersen et al., 1998a)



Assumption 7

I assume  is present everywhere on the  even 
if it does not contain  in . The gaps in the map can 
be filled in using  found in other regions of .

W Wmap
⃗v p

⃗v S



Assumption 7 • Wind Map Example
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Assumption 7 • Wind Map Example

Assumed Wind Observed Wind
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The Flocking Behavior (Reynolds, 1987)

Simulate groups of birds, fish, and animals;
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The Flocking Behavior (Reynolds, 1987)

Simulate groups of birds, fish, and animals;

Has origins in computer graphics;

Evolved from particle systems;

Nature-inspired.



The Flocking Behavior

Nature-inspired

(Reynolds, 1987)



The Flocking Behavior • Collision Avoidance



The Flocking Behavior • Velocity Matching



The Flocking Behavior • Flock Centering
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Analyze neighbors

Match velocity
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Flock Centering



Migratory Behavior

Global movement targets

Set coordinates checkpoints

Affects all boids

a

b

c



Similarity

a

b

H
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Modified Boids Algorithm
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Modified Boids Algorithm

Collision Avoidance  (Asm. 1)

Flock Centering  (Asm. 5)

≈ Velocity Matching 

+ Define neighborhood radius

+ Existence of a 

+ 
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Centrifugal Force



Construct S’ Wmap. Insert C particles in S. Forecast W and C.

Aggregate flows into a general
Wmap.

Save ~v 2 i as optical flows.

Detect motion in each i 2 I.

Initialize C particles in S.

Filter C pixels and isolate them
from S’ background.

Update the C particles’
positions according to the new
Wmap.

Update the Wmap using the set
of rules.

Workflow • Construct the wind map
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Wmap.

Save ~v 2 i as optical flows.

Detect motion in each i 2 I.
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Workflow • Initialize the cloud particles



Construct S’ Wmap. Insert C particles in S. Forecast W and C.

Aggregate flows into a general
Wmap.

Save ~v 2 i as optical flows.

Detect motion in each i 2 I.

Initialize C particles in S.

Filter C pixels and isolate them
from S’ background.

Update the C particles’
positions according to the new
Wmap.

Update the Wmap using the set
of rules.

Workflow • Forecast the scene



Workflow (NOAA GOES Archive) 
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Workflow (Farnebäck, 2003) 



Workflow (Farnebäck, 2003) 
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Optical Flow Process
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0.8993
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Optical Flow Process
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#pragma omp parallel for shared(files) 
    private(i) schedule(dynamic, 3) 

for i ← 0 to range(files) do 
    drawOpticalFlowMap() 
    saveOverlays() 
    averageFlows() 
end for

Parallelisations • OpenMP



drawOpticalFlowMap()

#pragma omp parallel for shared(files) 
    private(i) schedule(dynamic, 3) 

for i ← 0 to range(files) do 
    #pragma omp sind 
    for y ← 0 to rows do 
        for x ← 0 to cols do 
            drawLine() 
            drawCircle() 
        end for 
    end for 
    saveOverlays() 
    averageFlows() 
end for

Parallelisations • OpenMP



#pragma omp parallel for shared(files) 
    private(i) schedule(dynamic, 3) 

for i ← 0 to range(files) do 
    drawOpticalFlowMap() 
    saveOverlays() 
    averageFlows() 
end for

Parallelisations • OpenMP



averageFlows()

#pragma omp parallel for shared(files) 
    private(i) schedule(dynamic, 3) 

for i ← 0 to range(files) do 
    drawOpticalFlowMap() 
    saveOverlays() 
    #pragma omp parallel for shared(files) private(index, row, col) 
    for index ← 0 to numberOfFlows do 
        readImage() 
        for row ← 0 to imageRows do 
            for col ← 0 to imageCols do 
                addPoints() 
            end for 
        end for 
    end for 
    #pragma omp parallel for private(row, col) 
    for row ← 0 to imageRows do 
        for col ← 0 to imageCols do 
            updatePoints() 
        end for 
    end for 
end for

Parallelisations • OpenMP



loc ← input[Tid] 
v1, v2, v3 ← (0, 0) 
for i ← -radius to radius do 
    for j ← -radius to radius do 
        v ← vel[(loc.y + i) * width + loc.x + j] 
        if v ≠ (0, 0) then 
            accumulateVelocity(v, v1, v2, v3) 
        end if 
    end for 
end for 
output[Tid] ← v1 + v2 + v3

Parallelisations • CUDA
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Bias

MAPE = 1
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∑
k=1
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MAnE* =
θ( ⃗va, ⃗vf)

π
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π

= 0.05
*Mean Angle Error

θ ∈ [0,π]
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 • 1 hour forecastCM
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 • 15 hoursCM
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Recall Score = TP/(TP + FN)

20%

40%

60%

80%

10 h 20 h 40 h 50 h30 h5 h 15 h 35 h 45 h25 h



Precision Score = TP/(TP + FP)
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Scalability (Spătaru et al., 2021)

The sequential algorithm forecasts one frame 
containing 10 000 particles in around 16 seconds. 
Parallel versions have a shorter execution time and 
can process orders of magnitude more particles.

The number of  is upper bound.  
The number of  particles is not.

⃗v
C



Wind map update execution time



Cloud particles update execution time



Neural Network approach (Penteliuc and Frîncu, 2019)

Isolate  using a thresholding method.

Generate  using the Optical Flow Procedure.

Train the network on  time series.

C

⃗v

⃗v



Feed Forward Back Propagation Neural Network (Rojas, 1996)
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Neural Network results

Mean Squared Error is between  and 
 depending on input size.

Inefficient compared to the Modified Boids 
Algorithm because the network was trained on 
small sections of images.

The network is overfitted because it needs vast 
amounts of resources to train and forecast.

4.5 × 10−6

9.76 × 10−6
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Ci - High Thin Cirrus 
Cm - Medium Clouds 
St - Stratus, Mist 
Sc - Stratocumulus 
Cu - Cumulus 
Cb - Cumulonimbus 
Cg - Cumulus 
       Congestus

(Mamoru, 2002)Correlation with Irradiance



Band Resolution Wavelength Purpose

1 60 m 443 nm Aerosol Detection
2 10 m 490 nm Color Blue
3 10 m 560 nm Color Green
4 10 m 665 nm Color Red
5 20 m 705 nm Vegetation
6 20 m 740 nm Vegetation
7 20 m 783 nm Vegetation
8 10 m 842 nm Near Infrared

8A 20 m 865 nm Vegetation
9 60 m 945 nm Water Vapor
10 60 m 1375 nm Cirrus Cloud
11 20 m 1610 nm Snow-Ice-Cloud
12 20 m 2190 nm Snow-Ice-Cloud

(European Space Agency, 2015)
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Solar Platform



Date Time Global Irradiance Diffuse Irradiance

... ... ... ...

2021-07-08 09:40:29 884.3 111.2

2021-08-10 09:30:41 865.1 182.7

2021-07-13 09:40:31 865.5 187.3

2021-07-15 09:30:39 870.7 242.4

2021-07-18 09:40:39 870.5 128.5

2021-07-20 09:30:41 377.7 342.8

2021-07-23 09:40:31 891.9 184.5

2021-07-25 09:30:39 849.5 161.5

2021-07-28 09:40:29 836 167.3

2021-07-30 09:30:41 852 131.3

W/m2

(Paulescu et al., 2010)
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Future Work

Higher resolution images;

Online forecasting service;

Applicability on sky images;

Effectiveness of auxiliary input.
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