
Copyright 2007 © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document 
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org 

Shake Hands With BeEF

Christian “@xntrik” Frichot
OWASP Perth Chapter
Asterisk Information Security
christian.frichot@asteriskinfosec.com.au

mailto:email@domain.com
mailto:email@domain.com


- Introduction



Story

-Traditional external pen testing tale of woe



Egg shell

- Many environments have hardened exteriors but less protected 
interiors
http://www.flickr.com/photos/sidereal/2355999910/sizes/o/in/
photostream/



OWASP

Effectiveness

• <html>(

Web(Browser(

• <?php(
Web(Server(

• SELECT(*(

Database(

5

- How effective can your penetration testing be if all your doing is 
assessing a single external system ...



without putting it in the context of the whole environment?
http://forums.untangle.com/runkel/Logical-Network-Diagram.gif



OWASP

Metasploit / SET 

2007
2008

2009
2010

2011

Growth *

*nb: not real statistics 7

I call this the state of modern pen testing, you can’t just knock on 
the perimeter, you have to pivot through clients



Shrinking attack 
surfaces

 - offsite SMTP
 - 3rd party (or different) location web hosting
 - VPNs
 - Proxies
 - Small to zero attack surface
.. The attack surface is shrinking.



OWASP

Where’s the data?

9

 - Internal systems are where the information is held, or via web 
portals to *aaS providers .. and
 - We can't gain access to these systems and their information 
without pivoting through a client.



OWASP

Patched?

10

 - Metasploit, in particular combined with SET, is effective at 
providing this pivot point
 - What if the target environment is patched? Against known 
Metasploit exploits.



OWASP

Between full blown exploitation 
and pure social engineering

11

- This is the advantage point the BeEF has, to happily sit in the 
browser.



OWASP

Lots of HTTP

12

- Lots of websites (@jeremiahg mentioned ~30mil new websites a 
month)



Got BeEF?

 - So what is BeEF? For those who don't know, it's the Browser 
Exploitation Framework



OWASP

PHP BeEF

14

- Originally announced on ha.ckers.org in 2006 based entirely 
PHP by Wade Alcorn



OWASP

Top 10 2010 - A2 - XSS

15

 - In it's old incarnation BeEF was a great tool to demonstrate just 
how nasty XSS flaws could be (Instead of the typical alert(1); 
dialog)



OWASP

Method of pivoting, method of 
penetration

16

 - and trying to become an all-round go-to platform for client-side 
exploitation development.
 - The framework allows a penetration tester to select specific 
modules in real time to target against a hooked browser within its 
current context (which will provide different, unique, attack 
vectors)



Moving to the future
 - These days BeEF is developed in Ruby (like Metasploit), with 
stacks of Javascript (we roll jquery in there for command modules 
too)



BeEF Architecture

Framework (slide thanks to Michele @antisnatchor Orru)



http://blog.beefproject.com

I like utilising Amazon’s EC2 instances. We have a blog post 
on how to quickly run up a fully blown BeEF instance in no 
time. .. BeEF Cloud



Ruby BeEF





Our dev team rely on modern agile development 
techniques, including a Continuous Integration service via 
Jenkins, utilising Rake test unit, selenium, capybara etc etc



OWASP

BeEF Trilogy (“Who is your father?”)

23

Beef is currently made up of 3 main components:
http://img4.cookinglight.com/i/2009/01/0901p40f-beef-patty-
m.jpg?300:300



Firstly is the core..
http://www.imdb.com/media/rm1627756544/tt0298814



OWASP

Core

Central API

Filters

Primary client-side JS

Server-side asset handling Web servicing

Ruby extensions

Database models

Hooking methods 
for Extensions & Modules

25

! - The Core
! ! - Central API
! ! - Filters
! ! - Primary client-side javascript
! ! - Server-side asset handling and web servicing
! ! - Ruby extensions
! ! - Database models
! ! - Hooking methods to load and manage arbitrary extensions 
and command modules



Extensions

Extensions



OWASP

Extensions

Web UI

Console

Demo pages

Event handling Browser initialisation

Metasploit

Proxy/Requester

XSSRays

27

! - Extensions
! ! - Where you need to provide fairly tightly coupled functionality 
into the core, the extensions provide the developer with various 
API firing points, such as mounting new URL points. Currently 
beef has extensions for the admin web ui, the console, demo 
pages, event handling, initialisation of hooked browsers, 
metasploit, proxy, requester and the xssrays functionality.



OWASP 28

Command Modules
http://www.mobiinformer.com/wp-content/uploads/2010/11/big_red_button.jpg



OWASP

Command Modules

Browser

Debugging

Host Miscellaneous

Network

Persistence

Recon

Router
29

! - Command Modules
! ! - Command modules are where individually packaged HTML/
JS packages are stored, currently these are broken down into the 
following categories: browser, debugging, host, misc, network, 
persistence, recon, router. Anything you want to do in Javascript, 
HTML, Java, <insert arbitrary browser acceptable language> can 
be done.



OWASP

It always starts with Hooking
30

The first step in getting a browser into the framework is to 
get it to execute the BeEF payload, there’s a few methods of 
achieving this:



OWASP

Hooking Browsers

XSS
Social Engineering (i.e. tiny URL, or phishing via 

email)
Embedding the payload (think drive-by-

download)
Maintaining persistence after already being 

hooked (think Tab BeEF Injection)

31



OWASP

(Ab)use Cases

32



Credit to Michele @antisnatchor Orru and Gareth Hayes for 
creating XSSRays



OWASP

Tunnelling Proxy

34

http://www.youtube.com/watch?v=Z4cHyC3lowk&lr

http://www.youtube.com/watch?
v=Z4cHyC3lowk&lr

http://www.youtube.com/watch?v=Z4cHyC3lowk&lr=1
http://www.youtube.com/watch?v=Z4cHyC3lowk&lr=1


OWASP

Hooking Mobile Devices

35

http://www.youtube.com/watch?v=5SVu6VdLWgs

http://www.youtube.com/watch?
v=5SVu6VdLWgs

http://www.youtube.com/watch?v=5SVu6VdLWgs
http://www.youtube.com/watch?v=5SVu6VdLWgs


Teach a man to Fish 
BeEF...

So lets look at how we can customise BeEF .. first we’ll look 
at a simple command module



OWASP

RouterPwn.com

Compilation of ready to run JS/HTML exploits 
against many consumer routers

Designed to be run on smart phones
Great candidate for a collection of BeEF 

Command Modules

37

RouterPwn, from websec.ca’s Roberto Salgado



Each module resides of at least 3 files, the config file (in 
yaml format), the ruby module file, and the javascript file.
The files are populated into categories, as touched on 
before.



Each config file contains the category, the name, a 
description, the authors and targeting configuration (This 
allows you to specify things like Safari only, or “user notify” 
for iPhone and Safari etc)



The module’s ruby file, in it’s simplest form, is used to 
configure what options are configurable, via the 
self.options method - and what to do with returned results.



And here is most of the javascript content. We utilise eruby 
for variable substitution (as can be seen where we’re 
pulling in the previously set ip and dns settings).
You can also notice in this javascript we use a JS object 
called beef. This is the core beef library within the 
framework, and has a lot of functionality in-built, such as 
creating invisible iframes.



Here you can see what the user is presented with in the UI.



Introducing “Chipmunking” ..named, at least at the 
moment, in reference to movie posters, in particular, this 
movie poster...
so QR codes are .. everywhere.. 



I mean .. Everywhere .. and they’re only becoming more 
ubuiquitous



So lets put together a new extension for BeEF .. lets build a 
custom hook point (URL) that if you (or your victims) visit it, 
will be hooked into BeEF, and immediately presented with a 
full-screen iFrame of the target site .. we’ll then use the 
current QRCode Extension into BeEF to generate this QR 
code for us too..



Similar to command modules, extensions require a few 
files.
The config file (again, a yaml file)
and then the extension ruby file itself.



beef/extensions/chipmunked/extension.rb



beef/extensions/chipmunked/api.rb

“/yougotchipmunked”



beef/extensions/chipmunked/html/index.html



beef/extensions/chipmunked/handler.rb

Handles the requests to /yougotchipmunked



Wrapping it together
(here qr code qr code)



beef/extensions/qrcode/config.yaml





Demo
http://www.youtube.com/watch?v=aTLHeMrNBFQ&hd=1

http://www.youtube.com/watch?v=aTLHeMrNBFQ&hd=1

http://www.youtube.com/watch?v=aTLHeMrNBFQ&hd=1
http://www.youtube.com/watch?v=aTLHeMrNBFQ&hd=1


Where to from here?



If you get stuck .. or if we get stuck.. 



Help us out!
Pull Requests Please

github.com/beefproject/beef
beefproject.com
@beefproject



Want to talk more?
@xntrik

christian.frichot@asteriskinfosec.com.au

mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au
mailto:christian.frichot@asteriskinfosec.com.au


OWASP

Questions?

59

Hehe .. “Descisions” 


