import pandas as pd import numpy as np import statsmodels.formula.api as sm import statsmodels #from yahoo_finance import Share #import scipy #import statsmodels.formula.api as sm #import datetime #from datetime import date #today = str(date.today()) #month = 12 #start_date = str((date.today() - datetime.timedelta(month * 365 / 12)).isoformat()) #sym_1 = Share("aapl") #sym_2 = Share("msft") #sym_3 = Share("cvx") #data_1 = pd.DataFrame(sym_1.get_historical(start_date, today)) #data_2 = pd.DataFrame(sym_2.get_historical(start_date, today)) #data_3 = pd.DataFrame(sym_3.get_historical(start_date, today)) #df = pd.DataFrame({'apple':data_1.Close, 'microsoft':data_2.Close, 'chevron':data_3.Close,}) #dmdl = pd.stats.ols.OLS(y=df['apple'], x =df[['microsoft','chevron']]) df = pd.DataFrame({'A': [10,20,30,40,50], 'B': [20, 30, 10, 40, 50], 'C': [32, 234, 23, 23, 42523]}) result = sm.ols(formula="A ~ B + C", data=df).fit() #jesper = pd.ols(y=df['A'], x=df[['B','C']]) jesper = print(result.summary()) print(result.params[1]) print(result.conf_int(alpha=0.05, cols=None)[0][0]) df2 = pd.DataFrame() print(df[0]) print (pd.__version__) print (np.__version__) print (statsmodels.__version__) #x = pd.Series(np.random.randn(100)) #sm.ols